Total number of printed pages-40 at 10 2003

3 (Sem-2/CBCS) CHE HC 2

2024

CHEMISTRY

(Honours Core)

Paper: CHE-HC-2026

(Physical Chemistry-II)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×7=7
 - (a) What do you mean by thermodynamics state function?
 - (b) Why is the first law of thermodynamics necessary?
 - (c) What is meant by $\Delta U = -P\Delta V$?
 - (d) Define molar heat capacity at constant volume.
 - (e) What do you mean by available energy?
 - (f) Write the S.I. unit of chemical potential.
 - (g) Write the statement of second law of thermodynamics given by Kelvin-Planck.

Total number of printed pages-4

3 (Sem-2/CBCS) CHE HC 2

2024

CHEMISTRY

(Honours Core)

Paper: CHE-HC-2026

(Physical Chemistry–II)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×7=7
 - (a) What do you mean by thermodynamics state function?
 - (b) Why is the first law of thermodynamics necessary?
 - (c) What is meant by $\Delta U = -P\Delta V$?
 - (d) Define molar heat capacity at constant volume.
 - (e) What do you mean by available energy?
 - (f) Write the S.I. unit of chemical potential.
 - (g) Write the statement of second law of thermodynamics given by Kelvin-Planck.

- 2. Answer the following questions: 2×4=8
 - (a) Define thermodynamic equilibrium.
 - (b) Show that ΔG is a measure of total non-mechanical work.
 - (c) How does chemical potential of an ideal solution change with temperature?
 - (d) Define state function with an example.
- 3. Answer **any three** from following questions: 5×3=15
 - (a) Derive the expression of work done in an isothermal reversible expansion of an ideal gas. 88g CO₂ gas is expanded isothermally and reversibly from 100L to 120L at 27°C. Calculate the amount of work done by the system. 3+2=5
 - (b) Derive Gibbs-Duhem equation for a two-component system.
 - (c) For a cyclic process show that $\oint dS = 0$.
 - (d) Predict the spontaneity of the following reactions: 1×5=5
 - (i) $2N_2O_5(g) \to 4NO_2(g) + O_2(g)$
 - (ii) $N_2(g) + 3H_2(g) \rightarrow 2NH_3$
 - (iii) $2SO_2(g) + O_2(g) \rightarrow 2SO_3$
 - (iv) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
 - (v) $2HI(g) \rightarrow H_2(g) + I_2(g)$

(e) What is extensive property? For 1 mole of an ideal gas show that $\overline{C}_P - \overline{C}_V = R$.

1+4=5

- 4. Answer **any three** questions from the following: 10×3=30
 - (a) What is Joule-Thomson effect? Show that Joule-Thomson experiment is an isoenthalpic process. Define Joule-Thomson co-efficient. How can you determine Joule-Thomson co-efficient experimentally? Show that

$$\left(\frac{\partial H}{\partial P}\right)_T = -\mu_{JT}C_P \cdot 1 + 4 + 2 + 1 + 2 = 10$$

- (b) Derive the expression of efficiency of Carnot engine. Give the characteristics of η . Give the signs of ω , ΔS and q in each step of the Carnot cycle. 5+2+3=10
- (c) (i) Derive Kirchhoff's equation.
 - (ii) Calculate the standard enthalpy change formation of C_2H_6 from the following data of heat of combustion: 6+4=10

$$\begin{split} C_2H_6 + & \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O, \, \Delta H_1 = -1560kJ \, mol^{-1} \\ & C + O_2 \rightarrow CO_2, \quad \Delta H_2 = -393 \cdot 5 \, kJ \, mol^{-1} \\ & H_2 + \frac{1}{2}O_2 \rightarrow H_2O, \, \, \Delta H_3 = -286kJ \, mol^{-1} \end{split}$$

- elo (d) Show that wieneste at tadW (e)
- (i) PV^r = constant for an adiabatic process:
- (ii) $\Delta S = C_V \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1}$ for an ideal words Stool gas; another thousand the second secon
- 01=2+2+8 omson co-efficient. How can you
- (e) (i) For an irreversible process show that $\Delta S_{unin} \geq 0$ 5
- 01-9+ (ii) What is residual entropy? Explain with an example.
- (f) (i) Show that

change formation of C.H. from the

does not be
$$K_p = K_x(P)^{\Delta ng} = K_c(RT)^{\Delta ng}$$

What are colligative properties? Explain two practical applications voluntary of colligative properties.

 $C_2H_6 + \frac{1}{2}O_2 \rightarrow 2CO_2 + 3H_2O_2AH_3 = -1560 \text{ke/mol-1}$