Total number of printed pages-7

3 (Sem-2/CBCS) MAT HC 1

(e) "The unit interval (c) 1] is uncountable."

SOTTAMENTAM NIE OF False)

(Honours Core)

Paper: MAT-HC-2016

(Real Analysis)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed:

 1×10=10
 - (a) Define, ε -neighbourhood of a point a in \mathbb{R} , where $\varepsilon > 0$.

converges to the number 0.

- (b) Give an example of a set which is not bounded above.
 - (c) Write the Archimedean property of \mathbb{R} .

- (d) What is the limit of the sequence $\{x_n\}$, where $x_n = \frac{2n}{n^2 + 1}$?
 - (e) "The unit interval [0, 1] is uncountable." (State True **or** False)
 - (f) For what value of p, the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges?
 - (g) "A convergent sequence of real numbers is a Cauchy sequence."

(State True or False)

(h) The sequence {0, 2, 0, 2, 0, 2, ...} converges to the number 0.

(State True **or** False)

- (i) Give an example of a Cauchy sequence in \mathbb{R} .
- (j) Let $\{x_n\}$ be a non-zero sequence of real numbers such that $r = \lim \left| \frac{x_{n+1}}{x_n} \right|$. Then Σx_n is absolutely convergent if
 - (i) r < 1

- 3. Answer any four questif $\geq r \geq 0$ (ii) $5 \times 4 = 20$
- (a) If x > -1, then prove that $(n+(iii) \ge 1 + nx)$
 - (iv) $1 \le r \le 2$

(Choose the correct option)
this endmun less you are a bas x lt (d)

AMEN

- 2. Answer the following questions: 2×5=10
 - (a) Determine the set A of $x \in \mathbb{R}$ such that |2x+3| < 7.
 - (b) Define supremum of a non-empty subset S of \mathbb{R} . Write the supremum of the set $S = \{x \in \mathbb{R} : 0 < x < 1\}$.

The min and words the I

- (c) Show that the sequence $\left\{\frac{2n-7}{3n+2}\right\}$ is
- Show that the series $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$ is convergent.
- (e) State Cauchy's root test for convergence.

- 3. Answer *any four* questions : 5×4=20
 - (a) If x > -1, then prove that $(1+x)^n \ge 1+nx$ $\forall n \in \mathbb{N}$.
 - (b) If x and y are any real numbers with x < y, then show that there exists a rational number $r \in Q$ such that x < r < y.
 - (c) Prove that a convergent sequence of real numbers is bounded.
 - (d) Show that $\lim_{n\to\infty} \left(n^{1/n}\right) = 1$

S of R. Write the supremum of the set

Show that the sequence telted lights

- (e) Use comparison test to test convergence of the series whose n^{th} term is $\frac{1}{\sqrt{n+1}}$.
- (f) Show that every absolutely convergent series is convergent. Is the converse true? Justify. 4+1=5

3 (Sandary Concentration of Many 100 3 (4)

- 4. Answer the following questions: 10×4=40
 - (a) For $a, b \in \mathbb{R}$, prove that—
 bus $(a) = X_{a}(a) = X_{a}(a)$

$$Z = (z_n) \operatorname{ar} |d| + |a| \ge |a + a| \operatorname{eal}(i) \operatorname{umbers}$$

bas
$$|a| = a$$
 lis to $|a| \ge a \ge a$ tant dought $|a| - |b| \le |a - b|$

(iii)
$$|a-b| \le |a| + |b|$$
 5+3+2=10

to show that tim

Prove that there exists a positive real number x such that $x^2 = 2$.

- (b) (i) Prove that every monotonically increasing sequence which is bounded above converges to its least upper bound.
- (ii) Show that a sequence in \mathbb{R} can have atmost one limit.

Or

(i) Show that a bounded sequence of real numbers has a convergent subsequence. 5

- 04=4x0(ii) State and prove that nested interval theorem.
- (a) For a, b ∈ R, prove that— (c) Suppose that $X = (x_n), Y = (y_n)$ and $Z = (z_n)$ are sequences of real numbers such that $x_n \le y_n \le z_n$ for all $n \in \mathbb{N}$ and that $\lim x_n = \lim z_n$. Then prove that $Y = (y_n)$ is convergent and $\lim_{n \to \infty} (x_n) = \lim_{n \to \infty} (y_n) = \lim_{n \to \infty} (z_n)$. Use the result

to show that $\lim_{n \to \infty} \left(\frac{\sin n}{n} \right) = 0$.

Prove that there exists a positive real 7+3=10.

(b) (i) Prove that every monotonically

increasing sequence which is Show that the sequence $\left\{\left(1+\frac{1}{n}\right)^n\right\}$, $n \in \mathbb{N}$

is convergent and $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$ where 2<e<3. 10

(d) (i) Define absolute convergene of a series in \mathbb{R} .

- (ii) Let Σu_n be any absolutely convergent series in \mathbb{R} . Then show that any rearrangement Σv_n of Σu_n converges to the same value.
- (iii) Write one rearrangement of the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$.

Or

Discuss convergence of the geometric series $\sum_{n=0}^{\infty} r^n$, where $r \in \mathbb{R}$.