3 (Sem-3/CBCS) MAT HC 2

2024

MATHEMATICS

(Honours Core)

Paper: MAT-HC-3026

(Group Theory-I)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: 1×10=10
 - (a) "The set S of positive irrational numbers together with 1 is a group under multiplication." Justify whether it is true or false.
 - (b) "In the set of integers, subtraction is not associative." Justify the statement.
 - (c) "Product of two subgroups of a group is again a subgroup." State whether true or false.

- (d) In the group \mathbb{Z}_{12} , find the order of 6.
- (e) Write all the generators of \mathbb{Z}_8 .
- (f) List all the elements of the group $\frac{Z}{4Z}$.
- (g) Give the statement of Cayley's theorem.
- (h) Write the following permutation as product of 2-cycles:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 4 & 6 & 5 & 7 & 2 \end{pmatrix}$$

- (i) State whether the following statement is true or false:
 - "If the homomorphic image of a group is Abelian, then the group itself is Abelian."
- (j) Give the statement of second isomorphism theorem.
- 2. Answer the following questions: 2×5=10
 - (a) Prove that in a group G, for any elements a and b and any integer n, $\left(a^{-1}ba\right)^n = a^{-1}b^na$.

- (b) Show that in a group G, right and left cancellation laws hold.
- (c) Define centre of a group G and give an example.
- (d) What is meant by cycle of a permutation? Give an example.
- (e) If ϕ is a homomorphism from a group G onto a group \overline{G} , then show that ϕ carries the identity element of G to the identity element of \overline{G} .
- 3. Answer any four questions: 5×4=20
 - (a) Let G be a group and H be a nonempty finite subset of G. Prove that H is a subgroup of G if and only if H is closed under the operation in G.
 - (b) Let G be a group and H be a subgroup of G. For an element a in G, prove that aH = H if and only if a is in H.
 - (c) Let G be a finite group and H be a subgroup of G. Prove that |H| divides |G|.

- (d) Prove that in a finite group, the number of elements of order d is divisible by $\phi(d)$.
 - (e) Define external direct product of a finite collection of groups. List all elements of $U(8) \oplus U(10)$ and find $|U(8) \oplus U(10)|$. 2+2+1=5
 - (f) Let ϕ be a homomorphism from a group G to a group \overline{G} . If \overline{K} is a normal subgroup of \overline{G} , prove that $\phi^{-1}(\overline{K}) = \{k \in G \mid \phi(k) \in \overline{K}\}$ is a normal subgroup of G.

Answer either (a) or (b) from each of the following questions (Q.4 to Q.7): 10×4=40

4. (a) Describe the elements of D_4 , the symmetrics of a square. Write down a complete Cayley's table for D_4 . Show that D_4 forms a group under composition of functions. Is D_4 an Abelian group? 2+3+4+1=10

- (b) Let G be a group and H be a nonempty subset of H. Prove that H is a subgroup of G if and only if a.b⁻¹ is in H whenever a and b are in H. Also, write all the subgroups of the group of integers Z. 8+2=10
- 5. (a) (i) Let a be an element of order n in a group G and let k be a positive integer. Then prove that $\left\langle a^{k}\right\rangle =\left\langle a^{gcd(n,k)}\right\rangle$ and $\left|a^{k}\right| = \frac{n}{gcd(n,k)}$
 - (ii) Prove that in a finite cyclic group, the order of an element divides the order of the group. 8+2=10
 - (b) Prove that every subgroup of a cyclic group is cyclic. Also, if $|\langle a \rangle| = n$, then show that the order of any subgroup of $\langle a \rangle$ is a divisor of n; and for each positive divisor k of n, the group $\langle a \rangle$ has exactly one subgroup of order k, which is $\langle a^{n/k} \rangle$. 5+2+3=10

- 6. (a) Prove that every group is isomorphic to a group of permutations.
 - (b) Prove that the order of a permutation of a finite set written in disjoint cycle form is the least common multiple of the lengths of the cycles.
- 7. (a) (i) Let ϕ be a group homomorphism from a group G to a group \overline{G} .

 Prove that $\frac{G}{Ker\,\phi}$ is isomorphic to $\phi(G)$.

et a be an element of order n

- entropy of the provement of the proveme
- (b) Let ϕ be an isomorphism from a group G onto a group \overline{G} . Prove that:
- for every integer n and for every group element a in G, $\phi(a^n) = [\phi(a)]^n.$
- (ii) $|a| = |\phi(a)|$ for all a in G.

(iii) if G is finite, then G and \bar{G} have exactly the same number of elements of every order.

4+3+3=10