3 (Sem-3/CBCS) PHY HC 2

2024

PHYSICS

(Honours)

Paper: PHY-HC-3026

(Thermal Physics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×7=7
 - (a) What is a cyclic process?
 - (b) Is coefficient of performance of a refrigerator a constant quantity?
 - (c) What is the importance of Clausius inequality in thermodynamics?
 - (d) What is the entropy value of a perfect crystalline solid at absolute zero temperature?

- (e) Name the phenomenon where transport of momentum takes place in gas.
- (f) What do mean by temperature of inversion?
- (g) Define compressibility factor.
- 2. Answer the following questions: 2×4=8
 - (a) Why is C_P greater than C_V ? Explain.
 - (b) What is the basic difference between reversible and irreversible processes?
 - (c) What is the effect of temperature and pressure on mean free path?
 - (d) How does velocity distribution curve depend on temperature?
- 3. Answer **any three** of the following questions: 5×3=15
 - (a) Derive an expression for work done during an isothermal process.
 - (b) The melting point of solid tin is 232°C. The specific heat of solid tin is 0.055 cal/gm K and molten tin is 0.064 cal./gm.K. Calculate the change is entropy when one gm of solid tin is heated from 147°C to 310°C. (Given, L=15 cal./gm).

(c) Calculate the average speed and the most probable speed of 1 mole of hydrogen molecule at 300 K. Neglect mass of electron.
 K_B = Boltzmann constant = 1.380649 ×10⁻²³ joule per kelvin (K).

21/2+21/2= 5

(d) For 6.75 mol. of N₂ gas in a volume of 1 litre at 150 K, calculate the pressure exerted by N₂ using (i) ideal gas law (ii) Van der Waals equation and (iii) Compressibility factor.

Given $a = 1.39 atm L^2 / mol^2$

 $b = 0.03913 \ L/mol$

R = 0.0821 Latm/mol K

1+2+2=5

(e) Show that in an isothermal expansion of a Van der Waals' gas, the heat taken

in is
$$Q = RT log \left(\frac{V_f - b}{V_i - b} \right)$$
 where V_f and V_i are the final and initial volume respectively.

- 4. Answer any three of the following questions: 10×3=30
 - (a) Explain Carnot's cycle. Calculate the work done in the cycle of operation and hence find the efficiency of a Carnot engine.

(b) Show that the change of entropy of one mole of a perfect gas is given by

$$\Delta \Delta S = C_V \log_e \frac{P_2}{P_1} + C_P \log_e \frac{V_2}{V_1}$$

- (c) Deduce Clausius Clapeyron equation from Maxwell's second thermodynamic relation.
- (d) Derive Maxwell's velocity distribution function.
- (e) Derive an expression of coefficient of viscosity using kinetic theory.
 - (f) Deduce Van der Waals equation.

in is $Q = RT \log \left| \frac{V_f - b}{V_f} \right|$ where V_f and

V, are the final and initial volume

work viole in the cycle of operation and hence and the efficiency of a Carnot

Answer any three of the following

(b) Show that the change of entropy of one mole of a perfect gas is given by

holds of a perfect gas is given

$$\Delta S = C_V \log_e \frac{P_2}{P_1} + C_P \log_e \frac{V_2}{V_1}$$

- (c) Deduce Clausius Clapeyron equation from Maxwell's second thermodynamic relation.
- (d) Derive Maxwell's velocity distribution function.
- (e) Derive an expression of coefficient of viscosity using kinetic theory.
 - (f) Deduce Van der Waals equation.

in is $Q = RT \log \left(\frac{V_f - b}{V_f} \right)$ where V_f and

V, are the final and initial volume