Total number of printed pages-7

3 (Sem-6/CBCS) MAT HE 4

2025

MATHEMATICS

(Honours Elective)

Paper: MAT-HE-6046

(Hydromechanics)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 10 = 10$
 - (i) Define specific heat of a body.
 - (ii) Define surface of equal pressure.
 - (iii) For an irrotational flow $curl \ddot{q} \neq 0$. (State True **or** False)
 - (iv) State Charle's law.
 - (v) Name the instrument used to measure atmospheric pressure.
 - (vi) What is tube of flow?

- (vii) What is the physical meaning of curlā?
- (viii) Define absolute zero of temperature.
- Name the two methods of treating the general problem of Hydrodynamics.
- What is meant by rotational flow?
- 2. Answer the following questions: $2 \times 5 = 10$
 - Show that the surface of equal pressure is intersected orthogonally by the lines of force.
 - If ρ_0 and ρ be the densities of a gas at 0° and to centigrade respectively, then establish the relation $\rho_0 = \rho(1 + \alpha t)$

where
$$\alpha = \frac{1}{273}$$
.

B01FS 0115

- Establish the relation between local and individual time rate of change.
- What is meant by velocity potential? Does velocity potential exist for a rotational flow?
- Define streamline and path line of a fluid particle.

- Answer any four of the following questions: $5 \times 4 = 20$
 - A mass of fluid is at rest under the forces $X = (y+z)^2 - x^2$, $Y = (z+x)^2 - y^2$, $Z = (x+y)^2 - z^2$; find the density and the surfaces of equal pressure.
 - A fluid at rest is in equilibrium in the forces field $X = y^2 + z^2 - xy - zx$, $Y = z^2 + x^2 - yz - yx,$ $Z = x^2 + y^2 - zx_zy$. Show that the curves of equal pressure and density are a set of circles.
 - If the absolute temperature Tat a height z is a function of the pressures at two heights z, and z, then show that

$$\log \frac{p_2}{p_1} = -\frac{g}{R} \int_{z_1}^{z_2} \frac{dz}{f(z)}$$

3

R being the constant in the equation $p = R \rho T$.

- (d) The velocity components of a flow in cylindrical polar coordinates are $(r^2z\cos\theta, rz\sin\theta, z^2t)$. Determine the components of the acceleration of a fluid particle.
- (e) Test whether the motion specified by $\vec{q} = \frac{k^2(xi yj)}{x^2 + y^2}, k \text{ is constant, is a}$ possible motion for an incompressible fluid. If so, determine the equations of

streamlines.

The particles of a fluid motion move

- symmetrically in space with regard to a fixed centre; prove that the equation of continuity is $\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial r} + \frac{\rho}{r^2} \frac{\partial}{\partial r} (ur^2) = 0$, where u is the velocity at a distance r.
- 4. Answer *any four* parts: 10×4=40
 - (a) (i) Show that $\frac{x^2}{a^2}tan^2t + \frac{y^2}{b^2}cot^2t = 1$ is a possible form of bounding surface of a liquid.

4

(ii) Two volumes V_1 and V_2 of different gases at pressures P_1 and P_2 and absolute temperatures T_1 and T_2 are mixed together, so that the volume of the mixture is V and absolute temperature is T. Prove that the pressure of the mixture is

$$\frac{T}{V} \left(\frac{P_1 V_1}{T_1} + \frac{P_2 V_2}{T_2} \right).$$

- (b) (i) A mass of homogeneous liquid, contained in a vessel, revolves uniformly about a vertical axis.

 Determine the pressure at any point and the surfaces of equal pressure.
 - (ii) Show that the centre of pressure of a circular area immersed in the liquid whose centre is at a depth *h* below the surface, when the density of the liquid varies as the depth, is

at a depth
$$\frac{2a^2h}{a^2+4h^2}$$
 below the centre of the circle, where a is the radius of the circular area.

(c) (i) A liquid of given volume V is at rest under the forces

$$X = \frac{\mu x}{a^2}$$
, $Y = -\frac{\mu y}{b^2}$, $Z = -\frac{\mu z}{c^2}$. Find the pressure at any point of the liquid and the surfaces of equal pressure.

- (ii) For a perfect gas, establish the relation $C_p C_v = R$, where the symbols have their usual meanings.
- (d) Obtain Euler's equation of motion for a non-viscous fluid in the form $\frac{D\vec{q}}{Dt} = \vec{F} \frac{1}{\rho} \vec{\nabla} P.$
- (e) Obtain the equation of continuity for a fluid in motion in the form $\frac{\partial p}{\partial t} + div(P\vec{q}) = 0 \text{ where } p \text{ and } \vec{q} \text{ are repectively the density and the velocity of the fluid. Deduce the form of equation of continuity when the fluid is homogeneous and incompressible.$

Stream is rushing form a boiler through a conical pipe, the diameters of the ends of which are *D* and *d*; if *V* and *v* be the corresponding velocities of the stream and if the motion be supposed to be that of divergence from the vertex of the cone,

prove that $\frac{v}{V} = \frac{D^2}{d^2}e^{\frac{v^2 - V^2}{2k}}$ where k is the pressure divided by the density and suppose constant.

- (g) Prove that if the forces per unit of mass at (x, y, z) parallel to the axes are y(a-z), x(a-z), xy; the surface of equal pressure are hyperbolic paraboloid and the curves of equal pressure and density are rectangular hyperbolas.
- (h) A hemispherical bowl is filled with water and two vertical planes are drawn through its central radius, cutting off a semilune of the surface, If 2α be the angle between the planes, prove that the angle which the resultant pressure on the surface makes with the vertical is

$$tan^{-1}\left(\frac{\sin\alpha}{\alpha}\right)$$