Total number of printed pages-8

3 (Sem-4/CBCS) MAT HC 2

2025

MATHEMATICS

(Honours Core)

Paper: MAT-HC-4026

(Numerical Methods)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (i) Name the underlying theorem on which the Bisection method is based upon?
 - (ii) Show that $1 + \Delta = E$
 - (iii) Show that $\nabla = 1 E^{-1}$
 - (iv) Out of the following two rules, which will give the accurate result of

$$\int_{-1}^{1} x^2 dx ?$$

(a) Trapezoidal Rule

- (b) Simpson's Rule Give reason for your answer.
- Write the name of a method for solving a first-order non-linear ordinary differential equation with a given initial condition
- Identify the correct statement from the following:
 - (a) Lagrange's interpolation formula can be used only if unequally spaced arguments are given.
 - (b) Lagrange's interpolation formula can be used only if equally spaced arguments are given.
 - Lagrange's interpolation formula can be used for both equally and unequally spaced arguments.
 - (d) Lagrange's interpolation formula can be used only if equally spaced function values are given.
- (vii) Write two advantages of interpolation.

2

- 2. Answer the following questions: 2×4=8
 - Given $f(x) = x^3 4x^2 + 5x 2$. Can bisection method be applied for this function in any sub-interval interval of (0.2) ? Will it be applicable for any sub-interval of (1.3)? Give proper justification.
 - (ii) What do you mean by fixed point of a function? Find the fixed point (s) of the function f(x) = 2x(1-x).
 - (iii) With proper reasoning state whether fixed point iteration method can be applicable for finding solution of the equation:

$$2x = \sin x + 5.$$

- (iv) Find the approximate value of $\int_{x}^{1} dx$ using Trapezoidal rule.
- Answer any three questions: 5×3=15
 - Determine the LU decomposition for the matrix A where

$$A = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 7 & 9 \\ 5 & 8 & -2 \end{bmatrix}$$

(ii) Determine the Newton's form of the interpolating polynomial for the following data set:

x	0	1	2
y	2	-1	4

Use this polynomial to estimate the values of y when x = 1.5.

- (iii) Consider the function $f(x) = \sin x$. Construct the Lagrange's form of the interpolating polynomial for f passing through the points $(0, \sin 0)$, $\left(\frac{\pi}{4}, \sin \frac{\pi}{4}\right)$ and $\left(\frac{\pi}{2}, \sin \frac{\pi}{2}\right)$. Use this obtained polynomial to estimate $\sin \left(\frac{\pi}{3}\right)$. What is the error in this approximation? 3+1+1=5
- (iv) What do you mean by degree of precision of a quadrature rule? Determine values for the co-efficients A_0, A_1 and A_2 so that the quadrature formula

$$I(f) = \int_{-1}^{1} f(x)dx = A_0 f\left(-\frac{1}{2}\right) + A_1 f(0) + A_2 f\left(\frac{1}{2}\right)$$
has degree of precision at least 2.
$$1+4=5$$

(v) Derive Euler's method for approximating the solution to the initial value problem,

$$y'(t) = f(t, y(t)), \alpha \le t \le b$$

 $y(\alpha) = \alpha$

- 4. Answer any three questions: 10×3=30
 - (i) Verify that the equation $x^4 18x^2 + 45 = 0$ has a root on the interval (1,2). Perform three iterations of Newton's Method with initial approximation $p_0 = 1$. Given that the exact value of the root is $x = \sqrt{3}$, compute the absolute error in the approximation obtained. What is the apparent order of convergence?
 - (ii) Develop the method of false position for approximating the zeros of continuous functions. Provide an appropriate stopping condition for the method of false position. Given that the function $f(x) = x^3 + 2x^2 3x 1$ has a simple zero on (1,2), perform three iterations of the method of false position to demonstrate the general procedure. 5+2+3=10

5

(iii) If x_0, x_1, \ldots, x_n are (n+1) distinct points and f is defined at x_0, x_1, \ldots, x_n , then prove that there exists a unique interpolating polynomial P of degree at most n such that P interpolates f.

Next, consider the data set

x	-1	0	1	2
y	5	1	1	11

Show that the polynomials of $f(x) = x^3 + 2x^2 - 3x + 1$ and

$$g(x) = \frac{1}{8}x^4 + \frac{3}{4}x^3 + \frac{15}{8}x^2 - \frac{11}{4}x + 1$$

both interpolate all the data. Explain why this does not contradict the uniqueness part of the result you have just proved.

5+2+3=10

(iv) Let $x_0, x_1, x_2, \dots, x_n$ be (n+1) distinct points in [a,b]. If f is continuous on [a,b] and f has (n+1) continuous derivatives on (a,b), then prove that for each $x \in [a,b]$, there exists a $\xi(x) \in [a,b]$, such that

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)...(x-x_n),$$

where P is the interpolating polynomial.

(v) If f is continuous on [a,b], g is integrable on [a,b] and g(x) does not change sign on [a,b], then prove that there exists a number $\xi \in [a,b]$ such

that
$$\int_{a}^{b} f(x) g(x) dx = f(\xi) \int_{a}^{b} g(x) dx$$
.

Use the above result to determine the error term associated with the Newton-Cotes formula given as,

$$I(f) = I_1(f) + \int_a^b f[a,b,x](x-a)(x-b)dx$$

where
$$I(f) = \int_{a}^{b} f(x) dx$$
,

$$I_1(f) = \int_a^b P_1(x) dx$$
 and

 P_1 is unique linear polynomial that interpolates the integrand at x = a and x = b. 7+3=10

(vi) Derive a formula for approximating the first derivative of an arbitrary function at $x = x_0$ by interpolating at $x = x_0 + h$ and $x = x_0 - h$.

Also, derive a formula for approximating the second derivative of an arbitrary function at $x = x_0$ by interpolating at

$$x = x_0 + h$$
, $x = x_0$ and $x = x_0 - h$.

5+5=10