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1. Answer any ten : 1x10=10

(a) The set Z of integers under ordinary
addition and multiplication is a
commutative ring with unity 1. What
are the units of Z?

(b) What is the trivial subring of R?
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(d)

()

(9)

(h)

()

What are the elements of Z3 [i] ?

Give the definition of zero divisor.
Give an example of a commutative ring
without zero divisors that is not an

integral domain.

What is the characteristic of an integral

domain ?

Why is the idea (xz +1> not prime in
Z, [x]?
Find all maximal ideals in Zg.

Is the mapping from Zs to Z3, given by

x—» 6x is a ring homomorphism ?
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0)

If ¢ is an isomorphism from a ring R
onto a ring S, then ¢-! is an
isomorphism from S onto R.

Write True or False.

(k) Is the ring 2z isomorphic to the ring
3z7?

) Let f(x)=x3+2x+4 and g(x)=3x+2
is z5[x]. Determine the quotient and
remainder upon dividing f(x) by g(x).

(m) Why is the polynomial
3x° +15x* —20x° +10x + 20
irreducible over Q?

(n) Give the definition of Euclidean domain.

(o) State the second isomorphism theorem
for rings.
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Answer any five :

(@)

(b)

(c)

(@)

(e)

2x5=10

Define ring. What is the unity of a
polynomial ring Z[x] ?

Prove that in a ring R, (-a)(-b)=ab
for all a,beR.

Prove that set S of all matrices of the

a O
form [0 b} with a and b, forms a

sub-ring of the ring R of all 2x2
matrices having elements as integers.

Let R be a ring with unity 1. If 1 has
infinite order under addition, then the
characteristic of Ris 0. If 1 has order
n under addition, then prove that the

characteristic of R is n.

Let
z[4z={0+4z,1+4z2,2+42,3+4z).
Find (2 + 4z) “t (3. i« 42) and

(2+42) (3 +42).
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(g)

(h)

Answer any four :

(@)
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LCet R:{l:; b:|a,beZ} and let ¢ be
a

airb b
the mapping defined as a —>a->no.

Show that ¢ is a homomorphism.
Let f(x)=4x3+2x*+x+3 and
g(x)z 3x*+3x3 +3x% +x+4

where f(x), g(x)e Zs[x].
Compute f(x)+g(x) and f(x) g(x).

Prove that in an integral domain, every

prime is an irreducible.

5x4=20

Define a sub-ring. Prove that a non-
empty subset S of a ring R is a s1:1b-
ring if S is closed under subtraction
and multiplication, that is if a— b' and
ab are in S whenever a and b are in St

1+4=5
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(b)

()

(@)

(e)

1jj

Prove that the ring of Gaussian integers
zli]=[a+ib|a,bez] is an integral

domain.

Let R be a commutative ring with unity
and let A be an ideal of R. Then prove
that R/A is an integral domain if and
only if A is prime.

If D is an integral domain, then prove
that D[x] is an integral domain.

() If Ris commutative ring then prove
that ¢ (R) is commutative, where ¢
1s an isomorphism on R. 3
(i) If the ring R has a unity 1, S # {0}
and ¢:R — S is onto, then prove

that ¢(1) is the unity of S. 2

Let f(x)ez[x]. If f(x) is reducible

over Q, then prove that it is reducible
over Z.
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(9)

()

Answer any four :

(@ ()
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Consider the ring

S:{[ 5 b]a,bez}. Show that
-b a

¢:C— S is given by

; a b
¢(a+b1)=[_b a] is a ring

isomorphism.

Prove that Zz[i]={a+bila,beZ }, the

ring of Gaussian integers is an
Euclidean domain.

10x4=40

Prove that the set of all continuous
real-valued functions of a real
variable whose graphs pass
through the point (1,0) is
a commutative ring without unity
under the operation of pointwise
addition and multiplication
[that is, the operations

(f +9)(@)=f(a)+g(a) and
(ﬁ@@%f@g@} 6
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(i) Prove that if a ring has a unity, it
1s unique and if a ring element

has an inverse, it is unique. 4

(b) Define a field. Is the set I of all integers

(c)

a field with respect to ordinary

addition and multiplication ? Let

Q[\/E]= {a+b\/§|a,beQ. Prove that

Q[JE] is a field. 2+1+7=10

(i)  Prove that the intersection of any
collection of subrings of a ring R
is a sub-ring of R S

(i) Let R be a commutative ring with
unity and let A be an ideal of R

Prove that R/A is a field if A is

maximal. 5
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(@)

(e)
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Define factor ring. Let R be a ring and
let A be a subring of R. Prove that the

set of co-sets {r+A|reR} is a ring

under the operation
(s+A)+(t+A)=(s+t)+A and

(s+A)(t+A)=st+A if and only if A is

an ideal of R. L5410

(i) Let ¢ be a ring homomorphism
from R to S. Prove that the
mapping from R/ker ¢ to ¢(R),
given by r+kerg—g¢(r) is an
isomorphism. S

(i) Let Rbea ring with unity and the
characteristic of R is n>0.
Prove that R contains a sub-
ring isomorphic to Zn. If the
characteristic of R is 0, then prove
that R contains a sub-ring
isomorphic to Z. 3+2=5

Let F be a field and let p(x)eF[x].
Prove that {p(x)) is a maximal ideal in

F[x] if and only if p(x) is irreducible

over F.
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Prove that every Euclidean domain

@ Let Fbe afield and let f(x) and | () 0
is a principal ideal domain. S

g(x)eF[x] with g(x)=0. Prove that
there exists unique pol ; «
and r(x) inq - polynomials g (x) | (i) Show that the ring
ol e V55 |- fa b7 fabe2)
Z a+byJ-5|abeZ

flx)=g(x)g(x)+r(x) and either |
is an integral domain but not a

r(x) =0 or degr(x) (deg Q'(x). With the unique factorization domain. S

help -of an example verify the division
algorithm for F[x]. 7+3=10

(h) () If Fis afield, then prove that F[x]
is a principal ideal domain., S L

(i) Let Fbe a field and let p(x), a(x)
b(x)e Flx]. If p(x) is irreducible

over F and p(x)|a(x)b(x), then
prove that p(x la or p(x )| b(x).
S

(i) ?rove that every principal ideal domain
1s a unique factorization domain
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