3 (Sem-5/CBCS) ZOO HC 1

2022

ZOOLOGY

(Honours)

Paper: ZOO-HC-5016

(Molecular Biology)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer : (any seven)

 1. Choose the correct answer : (any seven)

 1×7=7
 - (i) The number of base pair per turn is 11 in
 - (a) Z-DNA
 - (b) A-DNA
 - (c) B-DNA
 - (d) C-DNA STATION OF THE COLUMN TWO IN COLUM

- During splicing (ii)
 - Introns are removed and exons are joined together
 - Exons are removed and introns are joined
 - Both introns and exons are removed
 - (d) Both introns and exons are joined
- DNA replication is
 - conservative
 - dispersive (b)
 - semiconservative (c)
 - (d) repulsive
- (iv) RNA primers are synthesized with the help of the enzyme
 - RNA polymerase
 - Primase
 - Topoisomerase
 - Ligase (d)

- The factor involved in initiation of (v) transcription in prokaryotes is
 - alpha factor (a)
 - beta factor (b)
 - sigma factor (c)
 - None of the above
- Poly A tail is attached at the (vi)
 - 3' end of DNA
 - 5' end of DNA
 - 3' end of RNA
 - 5' end of RNA
- (vii) The release factor(s) involved in termination of polypeptide in prokaryotes is/are
 - RF1
 - RF2 wilde wildenstle (d)
 - RF3
 - RF1, RF2 and RF3

- (viii) The lac operon in E. coli was discovered by
 - Meselson and Stahl
 - Jacob and Monod
 - Barbara McClintock
 - Watson and Crick
- (ix) A miRNA is a last A viny
 - a small coding RNA
 - a small coding tRNA
 - a small non-coding RNA
 - a small rRNA
- The process by which a given gene is spliced into more than one type of mRNA molecule is called
 - exon shuffling
 - alternative splicing (b)
 - intron shuffling (c)
 - spliceosome machinery

- The site of protein synthesis is
 - Nucleolus
 - Ribosome
 - Mitochondria
 - Nucleus
- (xii) If the sequence of bases in the mRNA codon is CAU, then the anticodon sequence in the corresponding tRNA will be
 - GTA
 - AUG
 - GUG
 - GUA
- Write short notes on the following: (any four)
 - Chargaff's rule
 - Replication fork (b)
 - RNA interference (c)
 - DNA dependent RNA polymerase
 - Transcription factors (e)

- (f) Shine-Dalgarno sequence
- (g) Role of aminoacyl-tRNA synthetases
- (h) Methylation of DNA
- 3. Answer **any three** questions from the following: 5×3=15
 - (a) What is a telomere? Write a note on replication of telomere. 1+4=5
 - (b) Write the steps involved in the replication of linear ds-DNA.
 - (c) What do you mean by degeneracy of the genetic code? Define Wobble hypothesis with suitable example.

2+3=5

- (d) Briefly explain the process of rhoindependent and rho-dependent termination in prokaryotes. 3+2=5
- (e) Comment on the structure of globin mRNA with proper illustration.
- (f) What do you mean by initiation factor and elongation factor in eukaryotic translation? Name those eukaryotic initiation and elongation factors.

1+2+2=5

- (g) What is a silencer in the context of regulation of gene expression? Elaborate on the location of silencer within the genome. 2+3=5
- (h) What is photoreactivation repair of DNA? Write the steps involved in the process of photoreactivation repair of thymine dimer in DNA molecule.

2+3=5

- 4. Answer **any three** from the following: 10×3=30
 - (a) Briefly explain the mechanism of rolling circle DNA replication.
 - (b) What do you mean by 5'UTR and 3'UTR? Elaborate the mechanism of transcription in eukaryotes with appropriate diagrams. 2+8=10
 - (c) What are protein synthesis inhibitors?

 Explain the inhibition mechanism of protein synthesis inhibitors with examples.

 2+8=10
 - (d) Write the difference between prokaryotic and eukaryotic translation.

- (e) What is RNA splicing? Explain the mechanism of t-RNA splicing pathway. 2+8=10
- (f) What is regulation of gene expression?

 Discuss the regulation of tryptophan synthesis in prokaryotes. 2+8=10
- (g) Describe the salient features of genetic code.
- (h) Briefly explain the structure and assembly of a prokaryotic ribosome.

 4+6=10