SON TAM (SONO) E + 2gx + 2fy + c = 0
may represents a pair of parallel

straight lines 1202

(Held in 2022)

add of MATHEMATICS

(Honours) -x sasiq

Paper: MAT-HC-3036

(Analytical Geometry)

0 = b + zus + Full Marks : 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×10=10
 - (i) What is the nature of the conic represented by

$$4x^2 - 4xy + y^2 - 12x + 6y + 9 = 0$$
?

(ii) Define skew lines.

(iii) Under what condition

 $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ may represents a pair of parallel straight lines?

- (iv) If the axes are rectangular, find the direction cosines of the normal to the plane x+2y-2z=9.
- (v) Write down the conditions under which the general equation of second degree $ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$ represents a sphere.
- (vi) If $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$ is a generator of the cone represented by the homogeneous equation f(x, y, z), then what is the value of f(l, m, n)?
- (vii) What is meant by diametral plane of a conicoid?

- when the origin is transferred to the point (a, b).
- (ix) Find the point on the conic $\frac{8}{r} = 3 \sqrt{2} \cos \theta$ whose radius vector is 4.
 - (x) What is the polar equation of a circle when the pole is at the centre?
- 2. Answer the following questions: 2×5=10
- (a) Write down the equation to the cone whose vertex is the origin and which passes through the curve of intersection of the plane lx+my+nz=p and the surface $ax^2+by^2+cz^2=1$.
- (b) Transform the equation $x^2 y^2 = a^2$ by taking the perpendicular lines y x = 0 and y + x = 0 as coordinate axes.

- (c) If $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$ are the extremities of any focal chord of the parabola $y^2 = 4ax$, then prove that $t_1 t_2 = -1.$
- toto(d) Find the centre and foci of the hyperbola $x^2 - y^2 = a^2$.
- (e) Find where the line $\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+3}{4}$ Olecular meets the plane x+y+z=3

(a) Write down the equation to the cone

and u+x = 0 as coordinate axes,

3. Answer *any four*: 5×4=20

(a) If by transformation from one set of rectangular axes to another with the same origin the expression ax + bychanges to a'x' + b'y', prove that $a^2 + b^2 = a'^2 + b'^2$

(b) Prove that the equation

 $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ represents a pair of parallel straight

awarb lines, if $\frac{a}{h} = \frac{h}{h} = \frac{g}{f}$ would 3.8 si I v uparalleb to the coordinate planes, show

that locus of their point of intersection (c) Find the condition that line $q = \sum_{i=1}^{n} \frac{1}{1} = A\cos\theta + B\sin\theta$

(a) Find the point of intersection of the

may touch the conic $\frac{l}{r} = 1 - e \cos \theta$.

- (d) Find the equation to the plane which cuts $x^2 + 4y^2 - 5z^2 = 1$ in a conic whose centre is the point (2,3,4). (b) Show that the equation
- (e) Show that the equation to the cone whose vertex is origin and base is a parabola and it can be

z = k, f(x, y) = 0 is $f\left(\frac{kx}{z}, \frac{ky}{z}\right) = 0$.

Find the coordinates of the vertex and

the focus.

- (f) A variable plane is at a constant distance p from the origin and meets the axes, which are rectangular in A, B, C. Through A, B, C planes are drawn parallel to the coordinate planes, show that locus of their point of intersection is given by $x^{-2} + y^{-2} + z^{-2} = p^{-2}$.
- 4. Answer the following questions: 10×4=40
 - (a) Find the point of intersection of the lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$
 - (b) Show that the equation $9x^2 24xy + 16y^2 18x 101y + 19 = 0$ represents a parabola and it can be reduced to the standard form $Y^2 = 3X$.

 Find the coordinates of the vertex and the focus.

- (c) Prove that the sum of the reciprocals of two perpendicular focal chords of a conic is constant.
- (d) Show that the ortho-centre of the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my = 1 is given by $\frac{x}{l} = \frac{y}{m} = \frac{a+b}{am^2 2hlm + bl^2}$
- (e) Find the condition that the plane lx+my+nz=p may touch the conicoid $ax^2+by^2+cz^2=1$. Verify that the plane 2x-2y+8z=9 touches the ellipsoid $x^2+2y^2+3z^2=9$.
- Show that the shortest distance between any two opposite edges of the tetrahedron formed by the planes y+z=0, z+x=0, x+y=0,
 - x+y+z=a is $\frac{2a}{\sqrt{6}}$ and that the three lines of shortest distance intersect at the point x=y=z=-a.

7

- (g) Find the equation to the cylinder generated by the lines drawn through the points of the circle
- and x + y + z = 1, $x^2 + y^2 + z^2 = 4$ which are

parallel to the line
$$\frac{x}{2} = \frac{y}{-1} = \frac{z}{2}$$
.

- (h) A variable plane is parallel to the given
- plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$ and meets the axes
- in A, B, C respectively. Prove that the circle ABC lies on the

$$yz\left(\frac{b}{c} + \frac{c}{b}\right) + zx\left(\frac{c}{a} + \frac{a}{c}\right) + xy\left(\frac{a}{b} + \frac{b}{a}\right) = 0.$$

Show that the shortest distance between any two opposite edges of the tetrahedron formed by the planes

$$y + z = 0$$
, $z + x = 0$, $x + y = 0$,

$$x+y+z=a$$
 is $\sqrt{8}$ and that the three

nnes of shortest distance intersect at the point
$$x = y = z = -a_{\rm rool}$$
 or