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Preface 

A computer algebra system (CAS) not only has the ability to "crunch numbers" 
and plot results, like traditional computing languages such as Fortran and C, 
but it can also perform the symbolic manipulations and analytic derivations 
required in most undergraduate and graduate science and engineering courses. 
To introduce students in these disciplines to mathematical modeling and com
putation using a CAS, the authors have previously published Computer Algebra 
Recipes: A Gourmet ^s Guide to the Mathematical Models of Science, based on 
the Maple CAS. Judging by course evaluations and reader feedback, the re
sponse to this book and the CAS approach has been quite favorable. After 
observing students' enthusiasm, their higher quality of work, their ability to 
solve more realistic problems, and best of all, their ability to answer "what 
if?" questions, we believe that the importance of using a CAS in learning and 
exploring mathematically based science subjects cannot be overstated. 

With the release of new, more powerful, versions of the Maple CAS since the 
first edition was published and the accumulation of many insightful comments 
and helpful suggestions from readers of the text, it seemed timely to produce a 
second edition. However, incorporating the necessary changes and suggestions 
would make an already lengthy book even longer, so the topics of the first 
edition have been reorganized and expanded into two new standalone volumes 
based on the expected mathematical level of the reader. 

In this first volume, we assume the reader's familiarity with linear algebra, 
vectors, and elementary calculus, and knowledge of (but not necessarily exper
tise at) linear ordinary diflPerential equations. The second volume {Computer 
Algebra Recipes: An Advanced Guide to the Mathematical Models of Science) 
deals with more advanced differential equation models, both ordinary and par
tial, and nonlinear as well as linear. 

Each volume, which may be used either as a course text or for self-study, fea
tures an eclectic collection of Maple computer algebra worksheets or "recipes" 
drawn from a wide variety of disciplines, including biology, economics, medicine, 
engineering, game theory, physics, mathematics, and chemistry. These recipes 
are systematically organized to illustrate graphical, analytical, and numerical 
techniques applied to scientific modeling. No prior knowledge of Maple is as
sumed in either volume, the early recipes of each book introducing the reader to 
the basic Maple syntax, and the subsequent recipes introducing further Maple 
commands and structure on a need-to-know basis. 
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The recipes are fully annotated in the text and typically presented as "sto
ries" or in a historical context. Each recipe takes the reader from the analytic 
formulation or statement of an interesting mathematical model to its analytic 
or numerical solution, and to a graphical visualization of the answer where rel
evant. The graphical representations vary from static 2-dimensional pictures, 
to contour and vector field plots, to 3-dimensional graphs that can be rotated, 
and to animations of analytic and numerical solutions. 

Every recipe is followed by a set of problems that readers can use to check 
their understanding or develop the topic further. For your convenience in solv
ing these problems and to facilitate further exploration of a given topic, the 
unannotated recipes for each volume are included on an accompanying CD. 



Contents 

Preface 

INTRODUCTION 1 
A. Computer Algebra Systems 1 
B. Computer Algebra Recipes 3 
C. Introductory Recipe: Bridge Design 101 5 
D. Maple Help 9 
E. How to Use This Text 10 

I THE APPETIZERS 11 

1 The Pictures of Science 13 
1.1 Data and Function Plots 13 

1.1.1 Correcting for Inflation 15 
1.1.2 The Plummeting Badminton Bird 22 
1.1.3 Minimizing the Travel Time 31 

1.2 Log-Log (Power Law) Plots 36 
1.2.1 Chimpanzee Brain Size 36 
1.2.2 Scaling Arguments and Gulliver's Travels 40 

1.3 Contour and Gradient Plots 46 
1.3.1 The Secret Message 46 
1.3.2 Designing a Ski Hih 49 

1.4 Animated Plots 56 
1.4.1 Waves Are Dynamic 56 
1.4.2 The Sands of Time 59 
1.4.3 These Arrows Are Useful 61 

2 Deriving Model Equations 65 
2.1 Linear Correlation 66 

2.1.1 The Corn Palace 67 
2.2 Least Squares Derivations 69 

2.2.1 Will You Be Better Off Than Your Parents? 71 
2.2.2 What Was the Heart Rate of a Brachiosaur? 76 



viii CONTENTS 

2.2.3 Senate Renewal 84 
2.2.4 Bikini Sales and the Logistic Curve 87 
2.2.5 Following the Dow Jones Index 91 
2.2.6 Variation of "y" with Latitude 98 
2.2.7 Finding Romeo a Juliet 103 

2.3 Multiple Regression Equations 106 
2.3.1 Real Estate Appraisals 107 
2.3.2 And the Winner Is? 113 

II THE ENTREES 119 

3 Algebraic Models. Part I 121 
3.1 Scalar Models 121 

3.1.1 Bombs Versus Schools 122 
3.1.2 Kirchhoff Rules the Electrical World 129 
3.1.3 The Window Washer's Secret 136 
3.1.4 The Science Student's Summer Job Interview 142 
3.1.5 Envelope of Safety 148 
3.1.6 Rainbow County 152 

3.2 Integral Examples 156 
3.2.1 The Great Pyramid of Cheops 156 
3.2.2 Noah's Ark 162 

4 Algebraic Models. Part II 173 
4.1 Vector Models 173 

4.1.1 Vectoria's Mathematical Heritage 174 
4.1.2 Vectoria and Fowles's Fly 179 
4.1.3 Ain't She Sweet 183 
4.1.4 Born Curl-Free 188 
4.1.5 Of Coordinates and Circulation Too 194 
4.1.6 All Is Flux 199 

4.2 Matrix Models 202 
4.2.1 Secret Message Revisited 202 
4.2.2 A Fishy Tale 205 
4.2.3 Population Waves 208 

5 Linear ODE Models 213 
5.1 Phase-Plane Portraits 214 

5.1.1 Tenure Policy at Erehwon University 216 
5.1.2 Vectoria Investigates the RLC Circuit 221 

5.2 First-Order ODE Models 229 
5.2.1 There Goes Louie's Alibi 229 
5.2.2 The Water Skier 238 
5.2.3 Ready to Charge 242 



CONTENTS ix 

5.3 Second-Order ODE Models 245 
5.3.1 Shrinking the Safety Envelope 245 
5.3.2 Frank N. Stein Is Not Heartless 251 
5.3.3 Halley's Comet 255 
5.3.4 Wheel of misFortune 260 
5.3.5 The Weedeater 266 
5.3.6 Can an Unstable Spring Find Stability? 269 

6 Difference Equation Models 271 
6.1 Linear Models 272 

6.1.1 Those Dratted Gnats 272 
6.1.2 Gone Fishing 276 
6.1.3 Fibonacci's Adam and Eve Rabbit 279 
6.1.4 How Red Is Your Blood? 283 
6.1.5 Fermi-Pasta-Ulam Is Not a Spaghetti Western 285 

6.2 Nonhnear Models 292 
6.2.1 Competition for Available Resources 292 
6.2.2 The Logistic Map and Cobweb Diagrams 299 
6.2.3 The Bouncing Bah Art Gallery 306 
6.2.4 Onset of Chaos: A Model for the Outbreak of War . . . . 310 

III THE DESSERTS 317 

7 Monte Carlo Methods 319 
7.1 Random Walks 321 

7.1.1 The Soccer Fan's Drunken Walk 324 
7.1.2 Blowin' in the Wind 329 
7.1.3 Flight of Penelope Jitter Bug 333 
7.1.4 That Meandering Perfume Molecule 335 

7.2 Monte Carlo Integration 338 
7.2.1 Numerical Integration Methods 339 
7.2.2 Wait and Buy Later! 344 
7.2.3 Wait and Buy Later! The Sequel 348 
7.2.4 Estimating TT 353 
7.2.5 Chariot of Fire and Destruction 355 

7.3 Probability Distributions 361 
7.3.1 Of Nuts and Bolts and Hospital Beds Too 361 
7.3.2 The Ice Wines of Rainbow County 367 

7.4 Monte Carlo Statistical Distributions 372 
7.4.1 Estimating e 372 
7.4.2 Vapor Deposition 376 



CONTENTS 

Fractal Patterns 381 
8.1 Difference Equations 384 

8.1.1 Wallpaper for the Mind 384 
8.1.2 Sierpinski's Fractal Gasket 386 
8.1.3 Barnsley's Fern 391 
8.1.4 Douady's Rabbit and Other Fauna and Flora 396 
8.1.5 The Rings of Saturn 400 

8.2 Cellular Automata 408 
8.2.1 A Navaho Rug Design 408 
8.2.2 The One out of Eight Rule 411 

8.3 Strange Attractors 414 
8.3.1 Lorenz's Butterfly 414 

Epilogue 416 

Bibliography 417 

Index 421 



INTRODUCTION 

A. Computer Algebra Systems 

The purpose of computing is insight, not numbers, 
R.W. Hamming, Numerical Methods for Scientists and Engineers (1973) 

Although modern scientific models are usually not difficult to understand qual
itatively, the task of deriving the relevant model equations and finding, visual
izing, and interpreting the associated solutions may be too demanding or too 
tedious to realistically carry out without the aid of a computer. As a con
sequence, over the last several years a new branch of science, referred to as 
computational science, has evolved to deal with this issue. Traditionally, the 
approach of most computational science texts [PFTV89], [DeV94], [LP97] has 
been to introduce engineering and science students to the art of creating ef
ficient computer programs in languages such as Fortran and C to carry out 
a multitude of numerical tasks ranging from finding the solutions to ordinary 
and partial differential equations (ODEs and PDEs) to performing Monte Carlo 
simulations and so on. Although some scientists and engineers may still wish 
to learn one or more of these programming languages for certain specialized 
research objectives, an even more powerful general computer algebra approach 
is being developed. This new approach is changing the way that complex math
ematical modeling problems are tackled by science and engineering students as 
well as by practitioners in these fields. It not only allows the user to handle 
such problems numerically, but also permits him or her to carry out analytic 
differentiation, integration, and other symbolic manipulations, and easily create 
a wide variety of two- and three-dimensional static, as well as animated, plots. 
Computer software systems, such as Maple, that can carry out all of these di
verse functions in a unified and cohesive fashion, are referred to as symbolic 
computation systems or computer algebra systems (CASs). 

As personal computers become smaller, cheaper, faster, and possess greater 
memory, it is already clear that CASs, which are also rapidly increasing in 
sophistication and ease of use, are making many of the traditional topics and 
approaches covered in existing computational science texts less relevant, since 
many of the same tasks can be executed more easily with a CAS. With a 
CAS not only can complex model equations be analytically derived, they can 
be solved either analytically or numerically and then plotted in two or three 
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dimensions, all steps executed with short, simple, transparent commands. The 
aim of this text is to introduce you, the reader, to what we shall call the "new" 
computational science based on the utihzation of a CAS. More specifically, this 
text is designed to demonstrate how a CAS can serve as a valuable adjunct tool 
in easily deriving, solving, plotting, and exploring interesting, modern scientific 
models chosen from a wide variety of disciplines ranging from the physical and 
biological sciences to the social sciences and engineering. 

Associated with each of the investigated mathematical models of a physical 
phenomenon is an accompanying computer algebra worksheet or recipe based 
on the Maple 10 software system. Useful reference books to this CAS are the 
Maple 10 User Manual [Map05] and the Maple 10 Introductory and Advanced 
Programming Guides [MGH+05]. "Classic" Maple is employed in this text and 
the classic worksheet interface^ used to produce all Maple output (including 
figures) displayed here. 

A common fear that prevails among some instructors who have not used a 
CAS is that in solving assigned problems, their students will rely on the com
puter and do calculations with, say. Maple, that could be easily done with pen 
and paper or even in their heads. But often this trepidation arises because the 
problems are oversimplified models of reality that have been simplified precisely 
so that they can be solved by hand or in one's head.^ For example, in studying 
the flight of a golf ball,*^ the student is usually told to ignore the viscous drag 
of the air and the lift on the ball due to its dimpled surface and the back spin 
imparted to it by the grooved golf club. Heaven forbid if, on top of all of this, 
the effects of a cross wind, or even a swirling wind, have to be included. Ne
glecting all of these effects, a nice parabolic trajectory results, the path being 
readily derived with pen and paper and shown in every elementary physics text. 
Unfortunately, as any ardent golfer will attest, this is not usually the trajectory 
that a golf ball actually follows, even when the ball is not "shanked," "sliced," 
or otherwise badly hit. But, says the timorous instructor, the more realistic 
model that includes drag and lift is too difficult for my students to solve. We 
think otherwise. The more realistic model is easily set up and the underlying 
dynamical equations can be readily understood by any second-year undergrad
uate physics or engineering student. With a CAS, the solution to the resulting 
ODE for the more complex golf ball model is easy to obtain and the golf ball's 
motion is readily animated. 

Is it really important that a second-year student know the details of the 
numerical algorithm that Maple uses in solving the relevant ODE? Our experi
ence has shown the answer to be no. These mathematical details can be learned 
at a later stage in the student's academic development. It is more important 
initially that he or she be able to explore how the motion of the golf ball is 
affected by greater or lesser spin, by varying air density, and so on. In fact. 

•'̂ The alternative "standard" worksheet interface has some additional features, such as a 
math palette and a math dictionary, so requires more computer memory. 

"^The authors of this text plead guilty to having engaged in the same practice! 
"^This example, which involves nonlinear ODEs, is dealt with in the Advanced Guide. 
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developing the model and exploring the behavior that it predicts is more im
portant at any stage of the student's career than the mechanics of solving the 
relevant equations. With a CAS the student can take an interactive approach to 
problems such as the one involving the golf ball and ask "What happens if... ?" 
questions and, most importantly, use the complete computer algebra package to 
answer these questions. Within seconds or minutes of changing the model pa
rameters or altering the model assumptions, new solutions can be produced by 
executing the modified recipe. With this CAS approach to scientific computa
tion, we have found that students are able to investigate complex mathematical 
and physical models early in their educational careers and gain a much deeper 
understanding of the models and the effects of changing assumptions and/or 
parameters. Most importantly, we have seen our students turn into budding 
scientific researchers by this interactive approach; rather than quitting thinking, 
their thought processes are accelerated and their imagination stimulated. 

B. Computer Algebra Recipes 

Science is a collection of successful recipes. 
Paul Valery, French poet and essayist (1871-1945) 

The recipes in our computer algebra menu have been organized into Appe
tizers, Entrees, and Desserts. The Appetizers consist of mathematically 
tasty light fare, featuring recipes dealing with aspects of graphical analysis. 
Chapter 1 shows how to create different types of data and function plots, while 
Chapter 2 illustrates how model equations can be obtained from data by least 
squares fitting techniques. The Entrees contain the "meat and potatoes" of a 
CAS, involving topics in symbolic computation. Chapters 3 and 4 feature al
gebraic (scalar, vector, and matrix) models, while Chapters 5 and 6 deal with 
hnear ODEs and linear and nonlinear diff'erence equation models, respectively. 
The Desserts feature two "scrumptious" numerical topics, viz., Monte Carlo 
methods and fractal patterns. 

The recipes have been designed to fulfill not only a useful and serious ped
agogical purpose but also to titillate and stimulate the reader's intellect and 
imagination. Associated with each recipe is an intrinsically important scientific 
model or method and often an interesting or amusing story^ featuring a fellow 
engineering or science student who will guide YOU, the reader, through the 
steps of the recipe. These storybook students are fictitious composites of the 
many delightful individuals that the authors have had the privilege of teaching 
over the years. Admittedly, a few students were not so delightful and we have 
declined to include them in our stories. They will have to write their own books! 
Some of the stories have been deliberately given enigmatic titles. For example, 
one of the recipes in the first chapter is called The Secret Message, with the 
contents of the message being revealed only when the computer code or recipe 

^If a story elicits a groan, rather than a chuckle, feel free to make up your own story line! 
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is run. Still other recipes, particularly those that are animated, will truly reveal 
their power and/or beauty only when viewed on the computer screen. 

Every topic or story in the text contains the Maple code or recipe to explore 
that particular topic. To make life easier for you, all recipes have been placed 
on the CD-ROM enclosed within the back cover of this text. The recipes are or
dered according to the chapter number, the section number, and the subsection 
(story) number. For example, the recipe 01-2-2, entitled Scaling Arguments 
and Gulliver's Travels, is associated with Chapter 1, Section 2, Subsection 
2. Although the recipes can be directly accessed on the CD by clicking on 
the appropriate worksheet number, it is strongly recommended that you access 
them through the menu index file, OOmenu. All recipes can be conveniently 
accessed from this menu using the provided hyperlinks. Complete instructions 
on how to do this may be found in the menu file. 

The computer code on the CD is unannotated, so you will have to read the 
text in order to understand what the code is trying to accomplish. The code has 
been imported into the text and here is accompanied by detailed explanations 
of the underlying modeling concepts and computational methods. 

The recommended procedure for using this text is first to read a given 
topic/story for overall understanding and enjoyment. If you are having any 
difficulty in understanding a piece of the text code, then you should execute 
the corresponding Maple worksheet and try variations on the code. Keep in 
mind that the same objective can often be achieved by a diff'erent combination 
of Maple commands from those used by the authors. After reading the topic, 
you should execute the worksheet (if you have not already done so) to make 
sure the code works as expected. At this point feel free to explore the topic. 
Try rotating any three-dimensional graphs or running any animations in the 
file. See what happens when changes in the model or Maple code are made and 
then try to interpret any new results. This book is intended to be open-ended 
and merely serve as a guide to what is possible in mathematical modeling using 
a CAS, the possibilities being limited only by your own background and desires. 

Each topic or story is self-contained and generally done completely, from 
the derivation to the solution to the plot, and accompanied by a thorough dis
cussion of the steps and results. Since arriving at the answer is more important 
in our opinion than the method used, one will encounter some recipes where an 
analytic derivation of the model equations occurs, followed by a numerical so
lution because an analytic solution doesn't exist. Although brief introductions, 
which generally include some definitions of terminology and short explanations 
of underlying concepts, are given for each main topic area, this text is not 
intended to teach you everything that you want to know, for example, about 
vector operators, or working with matrices. Neither is it intended to teach you 
about the myriad subject areas of science or engineering. Instead, it is meant 
to serve as a guide to how these topics and areas can be handled using a CAS. 
However, this book is not just any ordinary guide. It is a gourmeVs guidel 
It presupposes that the reader has learned or is about to learn about various 
scientific models and/or methods, and we are providing the computer algebra 
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tools to enable you to solve complex scientific problems more easily, to attain 
greater understanding, and to explore the frontiers of science that interest you. 

At the end of most recipe subsections there are related problems where you, 
the reader, can check your mastery of the scientific computation and computer 
algebra techniques presented in the recipes. The problems also allow you to 
explore new frontiers and challenge you to invent and solve "What happens 
i f . . . ?" problems. The purpose of this text is not only to teach computer-
assisted computational techniques useful to engineering and science students, 
but to whet the student's curiosity and put some fun back into the pursuit 
of a science education. For maximum satisfaction and learning, it demands 
an interactive approach by the reader. Although the stories were designed to 
be interesting or amusing to read, the Maple recipes must be run, the models 
explored, and the problems solved. Some things never change in the learning 
process! 

C. Introductory Recipe: Bridge Design 101 

,,.there is nothing in embankments and railways and iron bridges,,, 
to oblige them to be ugly. Ugliness is the measure of imperfection, 
H. G. Wells, British writer, A Modern Utopia (1905) 

To give you some idea of what a typical computer algebra recipe looks like 
and to introduce some basic Maple syntax, consider the problem that follows. 
The recipe that solves this problem is not on the CD, so after reading this 
section you should open up "classic" Maple 10 on your computer, type in the 
recipe, and execute it. You might then wish, for example, to change the bridge 
design or the cost equations and see how quickly new results can be obtained. 

Russell, an engineer, is to design a steel bridge that crosses a river 300 me
ters wide in such a way that the total cost is a minimum. Assume that the 
bridge has a supporting pier at each end in addition to the intermediate piers 
and that the length x of each span between adjacent piers is the same. The cost 
per span goes up with length but fewer supporting piers would then be needed. 
The cost (in dollars) per span is given by the formula 

Cs = 50x^ + 5000 X - 100000, 
while the cost (in dollars) per pier is 

Cp-200000 +1000 X. 

(a) Derive a formula for the total cost of the bridge as a function of x. 

(b) What is the cost of the bridge if it has 6 spans? 

(c) Plot the total cost formula over a suitable range of x. 

(d) Determine the value of x that minimizes the total cost. 

(e) How many spans and piers would be needed? 

(f) What is the minimum total cost? 
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To solve this problem, Russell first clears Maple's internal memory of any 
previously assigned values (other worksheets may be open with numerical values 
given to some of the same symbols being used in the present recipe). This is 
done by typing in the r e s t a r t command after the opening prompt ( >) symbol, 
ending the command with a colon (:), and pressing Enter (which generates a 
new prompt symbol) on the computer keyboard. 

> r e s t a r t : 
All Maple command lines must be ended with either a colon, which suppresses 
any output, or a semicolon (;), which allows the output to be viewed. 

The cost per span formula is now entered. 

> Cs:=50*x'^2+5000*x-100000; #cost per span 

Cs := 50x2 ^ 5QQo^ __ looOOO 
Use has been made of the assignment (:=) operator, placing Cs (C for cost, s 
for span) on the left-hand side (Ihs) of the operator and its analytic form on the 
right-hand side (rhs). Assigned quantities can be mathematically manipulated. 
The symbols +, -, *, and ^ are used for addition, subtraction, multiplication, 
and exponentiation, respectively. The symbol / is used for division. Russell 
has added a comment to the command line, which is useful for later reference 
or for other people to read. Comments are prefixed by the sharp character #. 

Similarly, Russell inputs the cost per pier formula, again adding a comment. 

> Cp:=200000+1000*x; #cost per p i e r 

Cp := 200000 +1000 X 
Because they are short, Russell now enters two commands on the same line. 
Although not necessary, he separates the commands with an intervening space 
for reading clarity. He first enters the width W = 300 of the river, and then 
the expression n — W/x for calculating the number n of spans. Note how the 
assigned value of W is automatically substituted into n. 

> W:=300: n:=W/x; #n=number of speins 

300 
n \— 

X 

Since it is stated in the problem wording that the bridge has a supporting pier 
at each end, the number of piers must be be one more than the number of spans. 
Therefore, the total cost of the bridge must be given by Ct — n Cs^{n-\-\)C'p. 

> Ct:=n*Cs+(n+l)*Cp; # t o t a l cost 

^^ _^ 300(50x^ + 5000.-100000) + ( ^ + i ) (2000OO + 1000.) 

Again, the expressions for n, Cs, and Cp have been automatically substituted 
into the total cost expression. To reduce Ct to a simpler form, Russell applies 
the simplify command to it. 

> to ta l_cos t :=s impl i fy (Ct ) ; 

16000 (x2 + 125x +1875) 
totaLcost := 



INTRODUCTORY RECIPE: BRIDGE DESIGN 101 7 

For variety, Russell has decided to use words for labeling the total cost, using 
an underscore to separate the two words on the Ihs. Words are more tedious 
to type than symbols, but have the advantage of being easier for someone else 
to read. Maple has certainly simplified the total cost expression. However, be 
warned. Maple doesn't always simphfy a complicated expression in the form 
that you may desire. As will be utilized in later recipes, the simplify command 
comes with various possible options that can be included in the command as 
an additional argument, such as simplify (expression, t r i g ) for simplifying 
a trigonometric expression. 

As requested, Russell calculates the total cost of the bridge assuming that 
it has 6 spans. This is done by applying the evaluation (eval) command to the 
total cost, taking the span length to be x = W/6, i.e., x = 300/6 = 50 meters. 

> cost_example:=eval(total_cost,x=W/6); #cost for 6 spans 

cost.example := 3400000 
In this case the total cost would be $3,400,000, i.e., 3.4 million dollars. 

Russell next plots^ the total cost, expressed in millions of dollars, over the 
range x = 10 (which would correspond to 30 spans) to x == 150 (2 spans). The 
resulting computer picture is reproduced in Figure 1. 

> p lo t ( to ta l_cos t /10^6 ,x=10 . .150 , t i ckmarks=[3 ,3] , 
labels= ["x", " t o t a l . c o s f ' ] ) ; 

total cost 

50 X 100 150 

Figure 1: Total cost (millions of dollars) of bridge vs. span length x. 

The p lo t command comes with various optional arguments. Russell has con
trolled the minimum number (3 here) of tickmarks along the horizontal and 

^To fit into the page width, the plot command is artificially split into two lines here. Other 
long Maple commands will be similarly split in the text. 
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vertical axes, and has added labels to both axes. Note that the axis label names 
have been enclosed in double quotes. Each enclosed item is a Maple "string." A 
string is a sequence of characters that has no value other than itself. It cannot 
be assigned to, and will always evaluate to itself. Omit the double quotes and 
see what happens. Then omit the axis labels and the tickmarks option entirely, 
and again see what picture Maple produces. 

If you wish to learn more about the plot command and its optional argu
ments, click the left mouse button on the plot command and then on Help 
at the top of the computer screen. Clicking on the entry Help on plot opens 
up a help page with information about this command structure. The various 
plotting options available can be found by clicking on the underlined hyperlink 
plot/details that appears on the help page and then on plot [options]. 

Returning to the problem at hand, Russell observes that the curve has a 
minimum in the neighborhood of x = 40. Clicking on the computer plot with 
the left mouse button, then placing the cursor on the minimum of the curve, and 
clicking again opens up a small window at the top left of the computer screen, 
which gives the horizontal and vertical coordinates of the cursor location. Try 
it and see what approximate values you get for span length and total cost. 

To find the minimum in the curve quantitatively, Russell uses the dif f 
command to analytically differentiate the total cost with respect to x, and 
assigns the result the name derx (derivative with respect to x). 

> derx:=diff(total_cost,x); 

_ 16000 (2 x +125) 16000 (x̂  + 125 x + 1875) 
X X^ 

The minimum value of x can be found by setting derx equal to 0, and solving 
for X. This is done numerically by using the floating-point solve command, 
f solve, which is based on Newton's method. Guided by the information already 
obtained, the search range is taken to be between x = 30 and 60. It should 
be noted that if Russell had not explicitly set derx equal to zero in the f solve 
command. Maple would have by default assumed that this is what was intended. 

> X:=fsolve(derx=0,x=30..60); 

X := 43.30127019 
The answer is given to 10 digits. Maple's default accuracy for the f solve com
mand. The minimum in the curve occurs at about x = X = 43.3. The number 
Â  of spans is obtained by evaluating n at x = X, 

> N:=eval(n,x=X); 

Â  := 6.928203231 
yielding TV ?̂  6.9. But the number of spans (and piers) must be an integer. The 
round command now rounds N to the nearest integer, 

> Ns:=round(N); Np:=Ns+l; 

Ns := 7 Np:=S 
yielding Ns = 7 spans. The number Np of piers is one more than the number of 
spans, i.e., Np — S. 
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Russell then uses the floating-point evaluation command, evalf, to numer
ically evaluate the span length Xmin = W/Ns that minimizes the total cost. If 
evalf is omitted from the following command line, Xmin will appear as a ratio 
of whole numbers. 

> Xmin:=evalf(W/Ns); 

Xmin := 42.85714286 
The minimum total cost in millions of dollars follows on evaluating the total 
cost, divided by 10^, at x — Xmin. 

> min^cost:=eval(total_cost/10^6,x=Xinin); #mil l ions of dollars 
min.cost := 3.385714286 

The minimum total cost is about 3.386 million dollars. This is slightly less than 
the 3.4 million dollars that Russell obtained earlier for 6 spans. 

D. Maple Help 

Public money is like holy water; everyone helps himself to it. 
Italian proverb 

We have already seen in the introductory recipe one approach to accessing 
Maple's Help. The reader may use this method to learn more about the vari
ous Maple commands that appear in the text recipes. 

If you wish to learn what other help approaches are available, click on Help 
at the top of the computer screen and then on the entry Using Help. A 
help page opens with a number of hyperlinks that you should explore. Two 
of the more important hyperlinks are entitled Perform a Topic Search and 
Perform a Full Text Search. Here we shall give two simple examples of 
these searches, leaving the full descriptions of the search types for you to read. 
It should be noted that neither type of search is case-sensitive. 

Our first example illustrates a topic search, which locates help based on a 
keyword that you specify. For example, suppose that you wanted the correct 
form of the command for taking a square root. Click on Help, then on Topic 
Search, making sure that the Auto-search box is selected. Depending on the 
programming language, the square root command could be sqr, sq r t , . . . . . . . 
On typing sq in the Topic box. Maple will display all the commands starting 
with sq. Double click on sqr t or, alternatively, single click on sqr t and then 
on OK. A description of the square root command will appear on the computer 
screen. 

The second example illustrates a full text search. Suppose, for example, 
that you wish to find the command for analytically or numerically solving an 
ODE. In the Help window, chck on Full Text Search. Then type ode in 
the Word(s) box and click on Search. When you double chck on dsolve, a 
description of the dsolve command for solving ODEs will appear along with 
several examples. If you want to know how to find a numerical solution, click 
on the hyperhnk dsolve,numeric. 
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The approach employed in the introductory recipe can also be used to find 
information about unfamiliar mathematical functions that appear in the Maple 
output. If, for example, the output contained the word "EllipticF," you can 
find out what this function is by clicking on the word to highlight it, then on 
Help, and finally on Help on EllipticF. You will find that EhipticF refers to 
the incomplete elliptic integral of the first kind, which is defined in the Help 
page. The same Help window can also be opened by typing in a question mark 
followed by the word and a semicolon, e.g., ? E l l i p t i c F ; 

Maple's Help is not perfect, and on occasion you might feel frustrated, but 
generally it is helpful. It should be consulted whenever you do not fully under
stand the Maple syntax, or the options available, in one of the text recipes or 
are seeking just the right command to accomplish a certain mathematical task 
in your own recipe. 

E. How to Use This Text 

Begin at the beginning ... and go on till you come to the end, 
Lewis Carroll, Alice's Adventures in Wonderland (1865) 

The recommended procedure for most readers, particularly for someone who 
is new to CASs in general and to Maple in particular, is to follow the advice 
given in the quotation from Lewis Carroll. Start with the Appetizers, then 
go on to the Entrees, and finish off" with the Desserts. In the early recipes 
of the Appetizers you will be introduced to more of the basic features of the 
Maple system and see further examples of Maple's Help. 

Of course, if you are already a Maple expert, feel free to pick and choose 
those topics and recipes that interest you or are relevant to your own scientific 
tastes or goals. 

No matter what approach to using this text is taken, we hope that you will 
enjoy the wide range of interdisciplinary topics and stories, which range from 
the stock market to zoological scaling and from the world of sports to chaos 
and the outbreak of war. Before beginning your journey through this text, let 
us paraphrase a well-known saying from the world of sports with these words 
of advice: 

You can^t learn the great game of scientific modeling 
by being a spectator. You must play the game! 

We trust that as you sample and explore the various recipes on which our 
menu is based, you will enjoy the "intellectual feast" that we have prepared and 
presented in this introductory guide to the mathematical models of science. 

Bon Appetit! 
Richard and George, 
Your CAS chefs 



Part I 

THE APPETIZERS 

Some books are to be tasted, others to be swallowed, 
and some few to be chewed and digested. 

Francis Bacon, English monk (1561-1626) 

/ did toy with the idea of doing a cook-book. 
The recipes were to be the routine ones: 

how to make dry toast, instant coffee,— 
But as an added attraction... 

my idea was to put a fried egg on the cover. 
I think a lot of people who hate literature but 

love fried eggs would buy it if the price was right. 
Groucho Marx, American comic actor (1895-1977) 

It^s red hot, mate. I hate to think of this sort of book 
getting into the wrong hands. As soon as 

I^ve finished this, I shall recommend they ban it. 
Tony Hancock, British comedian (1924-1968) 



Chapter 1 

The Pictures of Science 
The great tragedy of science ... 
the slaying of a beautiful theory by an ugly fact, 
Thomas Huxley, English biologist (1825-1895) 

In experimental science, the detailed analysis of accurate data is of paramount 
importance in checking existing theories and formulating new ones. Since the 
laws of science are more useful and more easily understood when they are ex
pressed as mathematical relationships rather than as a collection of numbers, 
methods are needed for deriving these relationships. One of the simplest ap
proaches to determining whether a mathematical relationship exists between 
one variable and another is to create a graph of the data and establish whether 
the data can be fitted by a model equation. This is the central subject matter 
of the two graphical analysis chapters that form the Appetizers. A model 
equation is, of course, valid only in so far as it is supported by new data, the 
history of science being dotted with instances in which model equations have 
had to be revised, sometimes substantially, because of new facts coming to light. 

In this first chapter we look at how to create a variety of computer-generated 
graphs, while in the second chapter the least squares method of deriving model 
equations, using the Maple command structure, is the central topic. Our cov
erage of graphing techniques at this stage is only an introduction to the topic, 
since many other important types of graphs will be encountered in ensuing 
chapters. For your convenience as well as for future reference, a complete list of 
all the Maple command structures used in this text, including graphical com
mands, can be found in the index under the heading "Maple Command." 

1.1 Data and Function Plots 

The old adage that a picture is worth a thousand words is certainly applicable 
to the world of graphs. Graphs are the pictures of science. It is rare to read a 
scientific paper or text that contains no graphs. Graphs are important because 
they help fulfill a number of useful functions: 
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(1) Graphs present the data in a unified, concise, and visual manner and can 
stimulate insight and aid in remembrance of the data structure. 

(2) Graphs can be created that show the data averaged by a smooth continu
ous line. It is the scientist's hope that the line forms an easily recognized 
shape that can be described by a simple model equation. Some commonly 
encountered shapes and associated model equations are schematically il
lustrated in Figure 1.1. The exact shapes depend on the signs and values 
of the parameters a, 6, c, and n. 

linear 

y=a+bx-cj^-^' 

>x 
power 

>x 

inverse 

polynomial exponential logistic 

Figure 1.1: Commonly encountered shapes and model equations. 

(3) Graphs permit an individual data point to be compared with the curve 
of the proposed model equation. A data point that has a large deviation 
from the curve might indicate a measurement error, a blunder in entering 
the data, or the need for a more realistic mathematical expression. 

(4) Graphs help one to remember visually the mathematical expression de
rived from the graph. 

PROBLEMS: 
Problem 1-1: Physical laws 
Suggest some examples of physical laws or data sets that correspond to each of 
the shapes shown in Figure 1.1. 

Problem 1-2: Ideal gas law 
For n moles of gas, the ideal gas law is given by PV = nRT, where P is the 
pressure, V the volume, R the gas constant, and T the absolute temperature. 
Sketch the possible gas law graphs relating any two of the thermodynamic 
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variables P , F , and T, holding the third variable fixed. Relate the graphs to 
the shapes in Figure 1.1. 

Problem 1-3: Kepler's third law 
Kepler's third law states that the square of the period T for elliptical planetary 
motion about the sun is proportional to the cube of the ellipse's semimajor axis 
a. Sketch possible third law graphs, relating them to the shapes in Figure 1.1. 

Problem 1-4: Potential Curves 
For each of the following relationships, sketch the potential V{r) as a function 
of the radial distance r and relate the shape to one or more of the graphs in 
Figure 1.1 (/c, a, and b are positive constants): 

(a) Coulomb potential: V{r) = /c/r, 

(b) Lennard-Jones potential: V{r) — a/r^^ — b/r^. 

1.1.1 Correcting for Inflation 
/ / all economists were laid end to end, 
they would not reach a conclusion, 
George Bernard Shaw, Anglo-Irish playwright, critic (1856-1950) 

When presented with observational or experimental data, it is recommended 
that a science or engineering student first plot the data to get a qualitative 
feeling for any possible trend or, perhaps, cyclic behavior. The pictorial rep
resentation of data is also the normal starting point for further quantitative 
analysis. For example, it may be possible to describe the data by a model 
equation that can in turn be used to make predictions of future trends. Data 
come in all sorts of shapes and sizes and from a wide variety of sources, such 
as scientific journals and newspapers. For example, the business sections of 
newspapers and magazines often give the prices of various commodities as a 
function of time. In some cases, the prices are corrected for changes in pur
chasing power and in other cases not. Purchasing power refers to the value of 
money as measured by the services it can buy [DG95] and is inversely related 
to the consumer price index. It is usually referenced to the purchasing power 
in a particular year. For example, one dollar in the mid-1990s had only 67% 
the purchasing power of a dollar in 1982 due to inflation. As an illustration of 
how to correct prices for changes in purchasing power, consider the following 
example. 

Colleen is a science graduate who recently received an MBA degree. She 
has just been hired as a sales manager at the Glitz department store located in 
a suburban shopping mall in the city of Metropolis. To get to work from her 
high-rise apartment in the city center, she is considering buying a new car but 
is concerned with the cost and scarcity of rental spaces as well as the cost of 
running the car. In particular, she speculates on whether the current price of 
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gasoline will undergo a substantial inflationary increase. She intends on doing 
an Internet search to get gasoline price statistics covering the last few years, 
but while waiting for her friend Vectoria to drive her to work she plays around 
with the data presented in Table 1.1, gleaned from an old economics text. 

Table 1.1: Gasoline prices and purchasing power of the dollar. 

Year 

1983 
1984 
1985 
1986 
1987 

Price 
(dollars) 

1.24 
1.21 
1.20 
0.93 
0.95 

Purchasing 
power 

1.00 
0.96 
0.93 
0.91 
0.88 

Year 

1988 
1989 
1990 
1991 
1992 

Price 
(dollars) 

0.95 
1.02 
1.16 
1.14 
1.13 

Purchasing 
power 

0.85 
0.81 
0.77 
0.73 
0.71 

This table, extracted from the Statistical Abstract of the U.S. [SAU94], shows 
the average price in dollars of a gallon of regular unleaded gasoline in the United 
States for the years 1983 to 1992. The purchasing power of the dollar, as 
measured by consumer prices, relative to that in 1983 is also given. 

As an exercise, she decides to first plot the uncorrected data of Table 1.1 
and then calculate and plot the gasoline prices adjusted for the decrease in 
purchasing power. Influenced by her engineering and mathematics friends, she 
has learned to use the Maple CAS. For your benefit, we will eavesdrop on what 
Colleen is doing and explain the structure and purpose of each command line 
that she uses in her worksheet. 

Colleen knows that it is a good idea to start each worksheet with the r e s t a r t 
command, which clears Maple's internal memory and removes all assigned val
ues from the variables. Since she intends to create a statistical plot, she also 
enters the command w i t h ( S t a t i s t i c s ) , which accesses the statistics library 
package. Library packages are extremely important, since they contain approx
imately 90% of Maple's mathematical knowledge. The preface with always 
indicates that a Maple library package is being "loaded" into the worksheet. 
Because the command is ended here with a semicolon, a partial^ list of the 
contents of this library package is revealed in the output shown below. 

> r e s t a r t : w i t h ( S t a t i s t i c s ) ; 

[AbsoluteDeviation, AreaChart, BarChart, Bootstrap, BoxPlot, BubblePlot, 

, ScatterPlot, , WeightedMovingAverage, Winsorize, WinsorizedMean] 

Colleen will use the Sca t t e rP lo t command to plot the relevant data points, 
using the entries of Table 1.1. 

^Because the list of contents of this Hbrary package is very long, not all output entries are 
shown here in the text. 
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For convenience in entering and plotting the data, Colleen labels the year 
1983 as 0, 1984 as 1, and so on. The years are then entered as a Maple "list" 
and assigned the name year. In a list the items are separated by commas and 
enclosed with square brackets. Maple preserves the order of the items in a list, 
a property that is obviously important for plotting data. Colleen also adds a 
comment to the end of the command line, indicating that the data entries refer 
to the year since 1983. 

> y e a r : = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] ; #year since 1983 

year := [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
Similarly, Colleen creates separate lists for the uncorrected gasoline prices and 
the purchasing power, attaches appropriate names, and suppresses the redun
dant output with line-ending colons. 

> p r i c e : = [ 1 . 2 4 , 1 . 2 1 , 1 . 2 0 , 0 . 9 3 , 0 . 9 5 , 0 . 9 5 , 1 . 0 2 , 1 . 1 6 , 1 . 1 4 , 1 . 1 3 ] : 

> purchas ing .power :=[1 .00 ,0 .96 ,0 .93 ,0 .91 ,0 .88 ,0 .85 ,0 .81 , 
0 .77 ,0 .73 ,0 .71 ] : 

Again, to fit into the page width the purchasing power data have been artificially 
split over two text lines. In some cases, it will be necessary for us to split the 
Maple command over even more text lines, so remember that the command is 
not complete until you see a colon or a semicolon. 

The Sca t te rP lo t command is used in graphl to create a plot of price vs. 
year. The first argument, year, will be plotted horizontally and the second 
argument, p r ice , vertically. 

> graphl:=ScatterPlot(year,price,symbol=box,symbolsize=16, 
v i ew=[0 . .9 .1 ,0 . . 1 .25 ] , t i ckmarks=[3 ,2 ] , 
l a b e l s = [ " y e a r " , " p r i c e " ] ) : 

Colleen has included various plot options. For example, she has decided to 
use size-16 boxes^ to represent the data points and has also included a view 
command option for the horizontal and vertical axes. The numbers 0. .9 .1 
in the view option span the entire horizontal plotting range, while 0. . 1.25 
specifies the vertical range. If this option is omitted. Maple will choose its own 
vertical range, which excludes the origin. Omit this view option and see what 
vertical range Maple gives. This option is very useful and will often be invoked 
throughout this text. 

Continuing with the other plot options in the above command fine, the 
minimum number of tickmarks on the horizontal and vertical axes was specified 
and labels added to these axes. Since she wants ultimately to superimpose the 
"raw" gasohne price data on the same graph as the inflationary adjusted data, 
Colleen has suppressed the output in the last command line by using a colon 
and attaching the name graphl to the plot. 

To actually see the graph, she types the name again followed by a semicolon. 

•^The default symbol size is 10. Circles, crosses, and diamonds are other symbols that can 
be used. Employing different symbols is obviously useful when more than one set of data is 
to be plotted in the same figure. 
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> graph1; 

thus producing the picture shown in Figure 1.2. 

D D 

D D 

price 

n D 

4 year 6 

Figure 1.2: Uncorrected gasohne prices in dollars per gallon. 

The reader can, and should, experiment with other stylistic options. This 
can be easily done by clicking the left mouse button on the computer plot, 
which opens up some style options on the uppermost tool bar on the computer 
screen. For example, you might click on the Style box and then change the 
Symbol from a Box to a Cross and the Symbol Size to, say, 20. Similarly, the 
axes style may also be changed, e.g., from Normal to Boxed. Chcking on the 
Projection box opens up two options. Constrained and Unconstrained. The 
default picture produced here was unconstrained. What happens to the picture 
if you choose the Constrained projection? 

After one has viewed the above possibilities, more permanent changes can 
be produced, if desired, by changing the style options in the code. To find out 
what options are available, you can click^ on the Sca t te rP lo t command, on 
Help, and then on Help on ScatterPlot. This opens a help page with a 
hyperlink to plot [options]. Using the information provided there, you could 
try adding a title of your own choice to the plot. 

To correct the gasoline prices for the decrease in purchasing power, the en
tries in the price column of Table 1.1 should be multiplied by the corresponding 
entries in the purchasing power column. In the following command line. Colleen 
uses the command p r i ce [ i ] to extract the ith entry from the Maple p r i ce list. 
A similar command structure is used to select the ith entry for the purchasing 
power, and then the multiplication is performed. A sequence command, seq. 

^Alternatively, you could access this hyperlink by typing ScatterPlot in Topic Search. 
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is added to the command structure so as to perform the above operation on all 
10 entries, i = l . . 10. Finally, the result is enclosed in square brackets to make 
a Maple list, and Colleen attaches a new name, using the acronym ap to stand 
for (inflation) "adjusted price." 

> ap :=[ seq(p r i ce [ i ]*purchas ing_power [ i ] , i= l . . 10 ) ] ; 

ap := [1.2400, 1.1616, 1.1160, .8463, .8360, .8075, .8262, .8932, .8322, .8023] 
A plot (graph2) of the gasoline prices adjusted for decreasing purchasing power 
is now created, the data points being represented by size-16 crosses. 

> graph2:=ScatterPlot(year,ap,symbol=cross,symbolsize=16, 
view=[0. . 9 . 1 , 0 . .1.6] ,tickinarks=[3,2] , 
l a b e l s = [ " y e a r " , " p r i c e " ] ) : 

Examining the adjusted gasoline prices in ap, Colleen notices that the data 
appear to be approximated by a "piecewise linear" curve consisting of three 
straight-line segments. She takes the first fine segment to be from the point 
(0,1.24) to the point (2,1.11), the second line from (2,1.11) to (3, 0.83), and the 
third line to be horizontal between (3,0.83) and (10,0.83). To plot the three 
line segments, she uses the following p lo t command to produce graphS. 

> g r a p h 3 : = p l o t ( { [ [ 0 , 1 . 2 4 ] , [ 2 , 1 . 1 1 ] ] , [ [ 2 , 1 . 1 1 ] , [ 3 , 0 . 8 3 ] ] , 
[ [3 ,0 .83] , [10 ,0 .83]]} ,color=magenta , th ickness=2) : 

To form the first line segment. Colleen has placed the two coordinates of the 
line's endpoints into Maple lists, viz., [0,1.24] and [2 ,1 .11] . These two lists 
are then separated by a comma and enclosed in square brackets, thus forming 
a "list of lists." Two more lists of lists are formed for the endpoints of the other 
two straight-hne segments. The three lists of lists are then separated by commas 
and enclosed within curly brackets. Such curly brackets indicate a Maple "set." 
Maple sets have the same properties as sets in mathematics. Unlike a list, a set 
does not preserve order or repetition. In some later recipes, the order in which 
the curves or pictures are plotted will matter. Then, square brackets should 
be used instead of curly brackets. Finally, the three line segments were given a 
magenta color and a thickness of 2 (the default, 0, produces a fairly thin line). 

The three graphs can be superimposed in the same figure using the display 
command. First the plots library package must be accessed, because it contains 
this command. Replace the colon with a semicolon to see the very lengthy list 
of specialized plot commands contained in the plots package. 

> w i t h ( p l o t s ) : 
Warning, the name changecoords has been redefined 

Note that a warning message is produced here, which informs us that the name 
changecoords has been redefined in the current release of Maple. If desired, 
warnings can be removed by inserting the command in te r f ace(warnlevel=0) 
prior to loading the library package. From now on, all such warnings will 
generally be artificially removed in the text. 

Using the display command, the three graphs are now superimposed in the 
same figure, which is reproduced in Figure 1.3. 
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display ({graphl, graph2, graphS}) ; 

pnce 

Figure 1.3: Inflation corrected (+) and uncorrected (•) gasoline prices. 

Colleen's piecewise linear curve does a reasonable job of fitting the adjusted 
data. In 1986 (year 3), there was a sizeable drop in the adjusted prices, the 
data thereafter oscillating around the 83-cent level up to 1992 (year 10). 

Colleen wonders what the trend was after 1992. What do you think? Much 
higher? Remember that one is talking about inflation-adjusted gasoline prices 
here, not the unadjusted prices. Also remember that for a scientist or engineer, 
it's not good enough to state an unsupported opinion without some backup evi
dence. This might mean a library search or a search on the Internet for relevant 
statistics, followed by a calculation similar to that carried out by Colleen. 

We will leave Colleen now as her young friend Vectoria has arrived to give 
her a ride to work. As to her earlier trepidation on whether to buy a new car 
or not, she has decided, in a fit of "irrational exuberance,"^ that the sporty red 
convertible that she saw the other day would suit her just fine! 

PROBLEMS: 
Problem 1-5: Purchasing power 
Plot the relative purchasing power for the years 1983 to 1992 given in Table 1.1, 
choosing your own stylistic options. 

Problem 1-6: More recent gasoline data 
Go to the Internet and obtain more recent data on gasoline prices and on the 
purchasing power of the dollar and carry out a calculation similar to that in 
the text. Discuss your results. 

'^With due apologies to the U.S. Federal Reserve chairman Alan Greenspan, who used this 
phrase to describe the mood underlying the U.S. stock market surge of the late 1990s. 
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Problem 1-7: Colleen's restaurant job 
While going to college, Colleen worked part-time at a local restaurant, the 
Hungry Heifer Steak House, to pay for her tuition. As part of her job, she kept 
tabs on the number of customers that the restaurant served each hour as well 
as the total revenue (dollars spent) taken in during that hour. Table 1.2 shows, 
for example, that in the hour centered on 7:00 a.m., 30 customers had been 
served, with a total of 120 dollars having been taken in. Your task is to plot 
Colleen's restaurant data in various ways. 

Table 1.2: Colleen's restaurant data. 

Time 

7 a.m. 
8 a.m. 
9 a.m. 
10 a.m. 
11 a.m. 
12 p.m. 
1 p.m. 
2 p.m. 

Number 

30 
45 
35 
45 
62 
80 
78 
55 

$ Spent 

120 
230 
170 
200 
320 
650 
546 
280 

Time 

3 p.m. 
4 p.m. 
5 p.m. 
6 p.m. 
7 p.m. 
8 p.m. 
9 p.m. 
10 p.m. 

Number 

40 
50 
75 
100 
95 
60 
30 
20 

$ Spent 

205 
310 
680 
1150 
1215 
500 
200 
100 

(a) Using Colleen's data, plot the number of customers against the time, 
setting 7:00 a.m. as zero. Use circles and add appropriate labels and 
tickmarks. Choose a view that includes the origin and the whole range of 
customer data. 

(b) Plot the dollars taken in against the time. Use boxes and add appropriate 
labels and tickmarks. Choose an appropriate view. 

(c) Create a Maple list showing the average amount spent per customer as a 
function of time. 

(d) Plot the above Maple list, using crosses and appropriate labels and tick-
marks. Choose a view that includes the origin. 

(e) Display the first and third graphs in the same picture, adding an appro
priate title that distinguishes the two sets of data. 

Problem 1-8: The great Spanish flu epidemic of 1918 
In the fall of 1918, just as World War I was ending, a flu epidemic (the Spanish 
flu) began in the U.S. navy, spread to the U.S army, then to the American 
civilian population, and finally to the rest of the world, resulting ultimately in 
some 20 million deaths by 1920. Table 1.3 shows U.S. death statistics [LFHC95] 
due to the flu for the fall of 1918. The numbers refer to the cumulative (total) 
deaths up to the end of the week indicated for the navy, army, and civilian 
(Civ.) populations. The civilian deaths are for 45 major cities. 
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Table 1.3: Cumulative deaths for the 1918 great flu. 

Week 

Aug. 31 
Sept. 7 
Sept. 14 
Sept. 21 
Sept. 28 
Oct. 5 
Oct. 12 

Navy 

2 
13 
56 
292 
1172 
1823 
2338 

Army 

40 
76 
174 
1146 
3590 
9760 

Civ. 

68 
517 
1970 
6528 
17,914 

Week 

Oct. 19 
Oct. 26 
Nov. 2 
Nov. 9 
Nov. 16 
Nov. 23 
Nov. 30 

Navy 

2670 
2820 
2919 
2990 
3047 
3104 
3137 

Army 

15,319 
17,943 
19,126 
20,034 
20,553 
20,865 
21,184 

Civ. 

37,853 
58,659 
73,477 
81,919 
86,957 
90,449 
93,641 

(a) Plot three separate graphs for the naval, army, and civilian death num
bers. Take the same number of tickmarks in each case and a view that in
cludes the origin. Use different symbols for the data points of the diff'erent 
graphs. To keep the number of list entries the same for later comparison, 
set the army and civilian entries that are blank in the table equal to zero. 

(b) Create a list for the total number of deaths for the navy, army, and civilian 
populations combined. Plot the new list data, with a view that includes 
the origin and a different symbol for the data points from those chosen 
for the first three graphs. 

(c) Use the d isplay command to show all four graphs in the same plot. Add 
the title "number of deaths versus week" to your plot. 

(d) The curves in each case are examples of what type of model equation? 

1.1.2 The Plummeting Badminton Bird 

Physics tries to discover the pattern of events which 
controls the phenomena we observe. 
Sir James Jeans, British physicist (1877-1946) 

In a delightful reprint collection entitled The Physics of Sports^ edited by Angelo 
Armenti, Jr. [PLA92], the sports-minded reader can learn about the aerody
namics of a knuckleball,^ the physics of drag racing, the stability of a bicycle, 
and the physics of karate, to name just a few topics that are covered. 

Vectoria,^ a physics major at the Metropolis Institute of Technology (MIT), 
enjoys playing badminton and is delighted to find an article in Armenti's book 

^A knuckleball is a type of baseball pitch. The baseball is held with the first knuckles or 
the fingertips and thrown in such a way as to virtually eliminate the spin. Because of the 
stitching on the baseball, this leads to an erratic trajectory of the ball. 

^The origin of this unusual first name will be the subject of a later story. 
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on the aerodynamics of a badminton bird. Peastrel et al. report on their inves
tigation of the effect of air resistance on a badminton bird fahing vertically from 
rest. Taking y to be the distance fallen (in meters) and t to be the elapsed time 
(in seconds), their experimental data are given in Table 1.4. Vectoria decides 
to plot these data and investigate the behavior of the falling bird. 

Table 1.4: Distance that the badminton bird falls in t seconds. 

y (meters) 

0.61 
1.00 
1.22 
1.52 
1.83 
2.00 
2.13 
2.44 

t (seconds) 

0.347 
0.470 
0.519 
0.582 
0.650 
0.674 
0.717 
0.766 

y (meters) 

2.74 
3.00 
4.00 
5.00 
6.00 
7.00 
8.50 
9.50 

t (seconds) 

0.823 
0.870 
1.031 
1.193 
1.354 
1.501 
1.726 
1.873 

She accesses the same Maple library packages as used by her good friend Colleen 
in the previous example, but suppresses all of the output by using colons. 

> restart: with(plots): with(Statistics): 

Maple protects certain symbols and names, time being one of them. The com
mand t ime( ) returns the total CPU time in seconds used since the start of a 
Maple session.^ Since Vectoria intends to use this name for a list of numbers, 
the word time must be first unprotected from its Maple meaning. 

> unprotect(time): 

To learn more about the unprotect command, consult the relevant help page, 
opened by clicking on unprotect . Help, and Help on unprotect. 

The data are entered as separate Maple lists for the time and the distance. 

> t ime:=[0.347,0 .470,0 .519,0 .582,0 .650,0 .674,0 .717,0 .766, 
0 .823,0 .870,1 .031,1 .193,1 .354,1 .501,1 .726,1 .873] : 

> d i s t ance := [0 .61 ,1 .00 ,1 .22 ,1 .52 ,1 .83 ,2 .00 ,2 .13 ,2 .44 , 
2 .74 ,3 .00 ,4 .00 ,5 .00 ,6 .00 ,7 .00 ,8 .50 ,9 .50 ] : 

A graph of the data points (represented by size-16 circles) is created 

> pts :=Scat terPlot ( t ime,dis tance ,symbol=circ le ,symbols ize=16, 
t ickmarks=[2,4]) : 

using the Sca t te rP lo t command, and then displayed in Figure 1.4, the circles 
being colored blue on the computer screen. 

> d i sp lay (p t s , co lo r=b lue ) ; 

^This use of the time command will be exploited in Chapters 7 and 8, dealing with Monte 
Carlo numerical methods and fractal patterns, respectively. 
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Figure 1.4: Plot of distance versus time data points. 

Qualitatively, Vectoria notes that the shape of the graph looks like a power 
law for small times and a straight line for larger times. Thus, she anticipates 
a mathematical form that has these limiting behaviors. Actually, a model 
equation can be analytically derived directly from Newton's second law. The 
interested reader should consult the Advanced Guide, where Vectoria carries 
out the nontrivial derivation. Here she will only outline the underlying physics. 

Assuming that the resistive force on the falling badminton bird is described 
by Newton^s law of resistance, Fj.es = —km \v\ v, where /c is a positive constant, 
m the mass of the bird, and v its velocity, the distance that the bird falls from 
rest is given by 

y 
v> T I 
— In cosh 
9 V 

(1.1) 

Here g is the acceleration due to gravity, VT is the terminal velocity, and cosh 
is the hyperbolic cosine function, i.e., cosh{gt/vT) = (e- \t/vT -gt/vT )/2. 
When air resistance is present, a falling object does not continually accelerate 
but instead reaches a terminal velocity, VT- At this speed, there is a balance 
between the gravitational force downward and the resistive force of the air 
upward, viz., mg — kmv'^, so that VT = y/g/k. A sky diver, with arms and legs 
spread-eagled, will hit a terminal speed of about 200 km/h (125 miles/hour). 

A name can be subscripted using the Maple syntax, name [ subsc r ip t ] . 
Thus to create VT in the Maple output, one enters v[T]. Making use of this 
result, formula (1.1) is now entered and displayed. 

> y :=(v[T]^2/g)* ln(cosh(g*t /v[T]) ) ; 

y '= 

. . n „ ( c o s h ( g ) ) 
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To confirm that y reduces to a straight-line equation for large t, Vectoria first 
assumes^ that g > 0, VT > 0. Next, she Taylor expands y about t = (X), to 
second order. 

> assume(g>0,v[T]>0): y_asympto t i c := tay lo r (y , t= in f in i ty ,2 ) ; 

y.asymptotic := tvr + 0(1) 
The "order of term, 0(1), is removed with the following convert command. 

> y_asymptotic:=convert(y_asymptotic,polynom); 

y.asymptotic := tvr 
The asymptotic form of y is the straight-line equation y = VTt. The slope of the 
graph at large t gives the terminal velocity. Using the last pair of data points 
in Table 1.4, Vectoria finds that 

(9.50 - 8.50) ^^^ , 
'^ = (1.873-1.726) = '•'' " / " 

To plot the analytic expression for y, the parameter values must be given. The 
badminton investigators took the gravitational acceleration to be ^ = 9.81 m/s^, 
while, as shown above, their data yields VT — ^-SO m/s. 

> g:=9.81: v[T]:=6.80: 
Vectoria now displays the distance formula with the parameter values inserted. 

> y:=y; 

y := 4.713557594 ln(cosh(1.442647059t)) 
The default setting of Maple is to give 10-digit accuracy. The formula in the last 
line should not be quoted to more significant figures than in the original data. 
How many significant figures are relevant here? The number of digits, e.g., 4, 
can be controlled by inserting the command Dig i t s : =4; at the beginning of 
the Maple program. If you do specify the number of digits, be sure to carry 
enough digits in your calculation to avoid round-off error. In the recipes that 
follow, the default setting on digits will generally be used. Thus, in discussing 
the results, one should remember to round off the answers to the number of 
digits that are significant. 

A graph, Gr, of y is now created over the time interval t = 0 to 2 seconds. 

> Gr :=p lo t (y , t=0 . . 2 ) : 
Using the display command, both the data points and distance formula are 
now superimposed in the same graph. For variety, Vectoria chooses size-12 
Times italic symbols for the axis label fonts. In the plot options, the number 
of tickmarks is controlled and a title entered as a Maple string. 

> d i sp l ay ({p t s ,Gr} , t i ckmarks=[3 ,2 ] , l abe l s= [" t " , "y" ] , 
labelfoiit=[TIMES,ITALIC,12],title="distance vs t ime") ; 

^The assume command will apply the cissumption throughout the worksheet. Assumed 
quantities will generally appear in the output with "trailing tildes," e.g., g~ . These trailing 
tildes can be removed from all worksheets by clicking on File, then Preferences, I /O Display, 
No Annotation, and Apply Globally. This has been done here. 
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Figure 1.5: Left: data points and formula. Right: Approach of velocity to VT-

The resulting picture is shown on the Ihs of Figure 1.5. The theoretically derived 
formula fits the experimental data extremely well. 

To see how the velocity of the falling bird approaches the terminal velocity, 
Vectoria analytically differentiates the solution y with respect to t, 

> v e l : = d i f f ( y , t ) ; 

, . o^^^^^^^^ sinh( 1.4426470591) 
vel := 6.800000000 — / , . ^^.^^.^ \ 

cosh( 1.442647059^) 
and forms a plot (coloring the curve black) of vel for t from 0 to 3 seconds. 

> V :=plot(vel , t=0 . .3 ,color=black) : 
She also plots a horizontal line corresponding to the terminal velocity (6.80 m/s), 

> t erminal .ve l :=plot ( [ [0 ,6 .80] , [3 ,6 .80] ] , co lor=blue) : 
and displays the two curves on the rhs of Figure 1.5. 

> display({terminal_vel,V},labels=["time","vel"]); 

From this figure, Vectoria can see that the terminal velocity of 6.8 m/s was 
reached at about 2 s. How much time, she wonders, did the bird take to reach a 
speed of, say, 5.0 m/s? From the plot, the answer must clearly lie between 1/2 
and 1 s. However, she can produce a more accurate result by first clicking the 
mouse on the computer plot. This action results in the lowest context bar at the 
top of the screen being replaced with a new bar displaying a small window on 
the far left. Then placing the tip of the cursor arrow on the velocity curve near 
5 m/s and cUcking once again produces the horizontal and vertical coordinates 
(e.g., 0.64, 4.97) of the arrow tip, displayed inside the window. Vectoria finds 
that the relevant time is about 0.64 s. To generate an even more accurate 
answer, she can use the floating-point solve command, f solve, to numerically 
solve the equation vel = 5.0 for the time, the result being labeled t5. 

> t 5 : = f s o l v e ( v e l = 5 . 0 , t ) ; 
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t5 := 0.6516884552 
The badminton bird reached a speed of 5.0 m/s in about 0.65 seconds. 

Experimentally, from Table 1.4, we see that the distance through which the 
bird falls in the first 1.501 s is 7.00 meters. From Figure 1.5, the theoretical 
value at this time must be very close to the experimental result. What is the 
theoretical value? This can be answered in two different ways. In her intro
ductory physics course, Vectoria has learned that the area under the velocity 
curve for a certain time interval gives the distance traveled in that interval. To 
calculate the area, an integration must be performed. The distance (in meters) 
traveled will be equal to the definite integral from t = 0 to 1.501 seconds, viz., 

> d i s t a n c e : = l n t ( v e l , t = 0 . . 1 . 5 0 1 ) = i n t ( v e l , t = 0 . . 1 . 5 0 1 ) ; 

distance- / ' " ' 6.800000000 ^^^;^(/-^42647059t) ^^ ^ 7.QQ1221152 
^0 /o cosh( 1.4426470591) 

Note that Maple is case sensitive here. Vectoria used the capitalized form Int 
to display the integral without evaluating it, while the lower-case form in t 
allowed the integral to be calculated. Similarly, the capitalized form Dif f will 
display the derivative without evaluating it. Another important example of 
case sensitivity is that the Maple command for the constant TT is Pi, not p i . 

The same distance should result if the time t — 1.501 is substituted into the 
analytic expression for y, 

> subs( t=1.501,y) ; 

4.713557594 ln(cosh(2.165413236)) 
and the previous line (referred to by the ditto operator %) numerically evalu
ated^ with the floating-point evaluation command, evalf. 

> y:=evalf(7o); 

y := 7.001221157 
On rounding off to two decimal places, Vectoria observes that both of the an
alytically derived answers are in agreement with the experimental number in 
Table 1.4. So Newton's law of resistance does a very good job of explaining the 
dynamics of the falhng badminton bird. 

Vectoria is somewhat surprised that Peastrel, Lynch, and Armenti found 
that the more famihar Stokes's law of resistance {F^es — —kmv)., which is the 
drag relation cited in most elementary physics texts, does not prevail for the 
badminton bird. Can you offer any suggestions of why this is so? 

PROBLEMS: 
Problem 1-9: Limiting case 
Determine the power law behavior of Equation (1.1) for small t. Hint: Use the 
analytic form for y given in the text and Taylor expand about t = 0 to third 
order. Remember to remove the "order of" sign. 

^ If Vectoria had used the evaluation command, eva l (y , t=1 .501) , instead of the substitute 
command, the numerical evaluation would have been automatically done. Try it and see. 
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Problem 1-10: Taylor expansion 
Determine the Taylor expansion of (1/x) — cotx about x = 0 to the fourteenth 
order in x. Be sure to remove the "order of" term. 

Problem 1-11: Stokes's law of resistance 
If the drag force on the falhng badminton bird were given by Stokes's law of 
resistance (Fres = —kmv)^ the theoretical distance y through which the bird 
falls from rest in time t would be given by 

9 

with the terminal velocity vr — g/k. Taking ^ = 9.81 m/s^ and fT = 6.80 m/s: 

(a) Plot the theoretical distance on the same graph as the experimental data. 
Discuss how well the formula agrees with the data. 

(b) Analytically differentiate the distance formula to calculate the velocity 

(c) Plot the velocity as a function of time. 

(d) About how long would it take the bird to reach its terminal speed accord
ing to this plot? 

(e) Differentiate the velocity formula to obtain the acceleration. 

(f) Plot the acceleration as a function of time. 

Problem 1-12: Projectile motion 
Table 1.5 shows the horizontal velocity v in meters/second as a function of time 
t in seconds for a shell fired from a 6-inch naval gun [Oha85]. 

Table 1.5: Projectile velocity as a function of time. 

t 

V 

0 

657 

0.30 

638 

0.60 

619 

0.90 

604 

1.20 

588 

1.50 

571 

1.80 

557 

2.10 

542 

2.40 

528 

2.70 

514 

3.00 

502 

(a) Make a plot of velocity versus time. 

(b) The velocity can be approximately represented by the formula 

^ = 655.9-61.4t +3 .261^ 

Plot the velocity equation on the same graph as the experimental data. 

(c) By integrating the area under the velocity curve, calculate the horizontal 
distance traveled by the shell in the first 3 seconds. 

(d) Plot the acceleration versus time over the time interval 0 to 3.0 seconds 
by differentiating the velocity equation once with respect to time. 
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Problem 1-13: Hydrogen atom motion 
The potential energy of one of the atoms in a hydrogen molecule is given by 

f/(x)-[/o(e-2(^-«)/^ _ 2e-(a:-a)/6) 

with [/o = 2.36eV (leV = 1.6 x 10"^^ J), a = 0.37A(l A= lO-^^m), 6 = 0.341. 

(a) Plot U{x) in electron volts (eV) as a function of x in angstroms (A). 

(b) The force F on the atom is given by F=—{dU/dx). Plot F versus x. 

(c) Under the influence of this force, the atom moves back and forth along 
the X-axis between certain limits, called the turning points^ determined 
by the total energy. If the total energy is £" = -1.15 eV, find the turning 
points graphically. This can be done by plotting the total energy and 
potential energy versus x on the same graph and clicking the mouse with 
the cursor placed on the intersection points of the plot. 

(d) Obtain more accurate turning points using the f solve command. 

Problem 1-14: Roots and minimum of a function 

Consider the polynomial function f[x)—x^ + x — 3. 

(a) Plot the function over the range x = —3 to 3. 

(b) By clicking on the plot, determine the approximate roots of the function. 

(c) Determine the roots of the function using the f solve command. 
(d) Analytically, using the dif f command, find the x-coordinate of the min

imum in the curve and evaluate the function f{x) at the minimum. 

Problem 1-15: Definite integrals 
Evaluate the following definite integrals, first obtaining the default output, and 
then simplifying where necessary: 

dx 

^^^[^^r <"i'^^^- (0/'-»-'"M^-
Hint: For (d) assume that a > 0, 6 > 0, and a > b. 

Problem 1-16: Integration and Differentiation 
Consider the function / (x) = ln(l + (x/100)) ln(6 — x). 

(a) Determine the indefinite integral of f{x). Does the answer involve any 
function with which you are unfamiliar? If so, use Maple's help facility 
to find out the meaning of the function. 

(b) Determine the numerical value of the integral for the range x = 0 to 5. 

(c) Calculate the first and second derivatives of f{x). 



30 CHAPTER 1. THE PICTURES OF SCIENCE 

Problem 1-17: Savings account 
The accumulated amount A in a savings account earning interest at an annual 
rate of ra% on an initial investment of P dollars is given by the compound 
interest formula A = P {1 + 0.01 Ta)^ after y years. Given an annual interest 
rate of 5% and P =$1000, plot A for a period of 10 years after the initial 
deposit. What is the accumulated amount at the end of 10 years? 

Problem 1-18: Manhattan Island 
In 1626, Peter Minuit, of the Dutch West Indies Company, bought the rights 
to Manhattan Island from the local residents for $24. If this money had been 
invested by these residents at an interest rate of 6% compounded annually (i.e., 
once a year), how much would the $24 investment have grown to by the year 
2006? Plot the value of the investment over this 380-year time span. 

Problem 1-19: Smoking is bad for your economic health 
Although probably aware of the potential danger to one's physical health, the 
young smoker may not be quite as aware of the large cumulative drain that 
smoking will have on his or her economic health. Consider the following exam
ple, which is set up for the reader to complete. 

(a) A 20-year-old stops smoking and then deposits the $5 per day it costs to 
purchase cigarettes into a bank. Assuming the bank pays an interest of 5% 
annually, but compounded daily, what amount of money will this person 
have in the bank when he or she becomes 65? The exact amount A is 
given by the general compound interest formula A = R X]fc=i(l + ^a/^) •̂ 
Here, the principal investment i?= $5.00 per day, r^ is the annual interest 
rate expressed as a decimal, y is the number of years elapsed, and n the 
number of compounding periods (365 here) per year. Hint: make use of 
the add command to evaluate the sum. 

(b) Justify the formula given in part (a). 

(c) An approximate value for A can be obtained by using the integral ex
pression A = JQ i?(t)e^^^/^^^-^~*^ dt where R{t) is the number of dollars 
invested in each time period and T — ny. By what percent does the 
approximate value of A differ from the exact value calculated in part (a)? 

(d) Optional: Making use of the fundamental definition of the exponential 
function and assuming that the interest is compounded continuously, de
rive the integral expression used in part (c) to calculate A. 

Problem 1-20: Investments 
The owners of a small factory are making plans to purchase a much larger 
factory. The owners invest $100,000 each month that they think will yield 24% 
annually after daily compounding. How much will these investments be worth 
10 years from now? Use the integral approach of the previous problem. 

Problem 1-21: Visitors to Erehwon 
The number of foreign visitors to the planet Erehwon between 1984 and 1991 
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can be described by the functional form 

where t is the number of years since 1984. The fraction of these visitors who 
came from Earth is given by 

f{t) = 1.429 X 10-^ t^ - 2.234 x 10"^ t + 0.08955. 

(a) Plot the number N{t) = n{t) f{t) of visitors from Earth for the period 
1984 to 1991. 

(b) Calculate the analytic derivative of N{t). 

(c) Determine the inflection point of the curve N{t). This can be done by 
calculating the second derivative of N{t), which gives the curvature of 
the function. The inflection point corresponds to the t value at which the 
second derivative is zero. Hint: If you use the f solve command, you may 
have to specify the t range. 

(d) How many visitors came from Earth in 1989? 

(e) How rapidly was this number changing at this time? 

Problem 1-22: Milk sales 
In a particular 31 day month, the selhng price of milk S{d) on day d, in dollars 
per gallon, and the number of gallons G{d) sold were found to be given by 

S{d) = 0.007d-i-1.492, G{d) = 31 - 6.332 (0.921)^. 

Plot the milk sales, i.e., S{d)G{d)^ as a function of d. By integrating under 
the milk sales curve, determine the total milk sales in dollars for that month. 
Compare this result with the exact sum. 

1.1.3 Minimizing the Travel Time 

A traveler without knowledge is like a bird without wings, 
Musharif-UD-DIN (1184-1291) 

In addition to the free maps and tour books that the American Automobile 
Association (AAA) provides to its clients, it will design travel routes that fol
low scenic secondary highways or take the shortest routes or shortest traveling 
times between two cities. If you were to work for the AAA, you would want to 
avoid repeatedly working out the shortest traveling time or route each time a 
new customer came in and asked the question for a different pair of cities. Why 
not let the computer do the work for you. It might cost more effort initially, but 
if, say all the cities and towns in North America were entered with the travel 
times for all possible highway routes given, you could quickly tell your client 
the answer without having to laboriously work it out. To see how this can be 
done, we shall consider a simple example. 
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Our engineering friend Russell is transferred from Seattle to Phoenix and 
wants to take the inland route between the two cities tha t takes the shortest 
traveling time. Here is a computer algebra recipe tha t might be used. 

The Maple networks package is accessed and cities^^ with longer names tha t 
lie on one of the various connecting routes are aliased, using the a l i a s com
mand, to save on subsequent typing. For example, typing in Pen will produce 
Pendleton in any displayed output . 

> r e s t a r t : w i t h ( n e t w o r k s ) : a l i a s (Sa l t_Lake_Ci ty=SLC, 
P o r t l a n d = P o r t , Yakima=Yak, Pend le ton=Pen , Las_Vegas=LV, 
Winnemucca=Win,Sea t t le=S,Phoenix=Ph) : 

A new graph G is to be created. 

> new(G): 

All of the major cities on inland highway routes connecting Seattle (S) and 
Phoenix (Ph) are entered. 

> c i t i e s : = { S , P o r t , Y a k , P e n , B e n d , R e n o , W i n , B o i s e , S L C , L V , P h } : 

In the terminology of mathematical graph theory, the cities are added as vertices 
in the graph. 

> addvertex(cities,G); 

Salt-Lake.City, Yakima, Portland, Seattle, Pendleton, Las-Vegas, 

Winnemucca, Phoenix, Bend, Reno, Boise 

The various cities are now connected. For example, in the next command line 
Seattle is connected to Portland, Oregon, and to Yakima, Washington. The 
average traveling times^^ for each connection (3.4 hours for Seattle to Port land 
and 2.7 hours for Seattle to Yakima) are included as "weights." The output 
gives names (equivalent to highway numbers) to the two routes. 

> c o n n e c t ( [ S ] , [ P o r t , Y a k ] , w e i g h t s = [ 3 . 4 , 2 . 7 ] , G ) ; 

el, e2 
Here route el (highway 1-5 in real life) connects Seattle to Portland, while route 
e2 (portions of highways 1-90 and 1-82) joins Seattle to Yakima. The remaining 
connections are entered in a similar manner. How many hours does it take to 
drive from Yakima to Bend? Wha t is the corresponding route number (replace 
the colon with a semicolon)? 

> c o n n e c t ( [ Y a k ] , [ P e n , B e n d ] , w e i g h t s = [ 2 . 6 , 4 . 5 ] ,G) : 

> c o n n e c t ( [ P o r t ] , [ B e n d , R e n o ] , w e i g h t s = [ 3 . 4 , 1 1 . 2 ] , G ) : 

> c o n n e c t ( [ P e n ] , [ W i n , B o i s e ] , w e i g h t s = [ 1 0 . 0 , 4 . 2 ] , G ) : 

> c o n n e c t ( [ B e n d ] , [ R e n o , W i n ] , w e i g h t s = [ 8 . 3 , 7 . 5 ] ,G) : 

> c o n n e c t ( [ B o i s e ] , [ W i n , S L C ] , w e i g h t s = [ 5 . 2 , 6 . 6 ] , G ) : 

> c o n n e c t ( [ S L C , W i n , R e n o ] , [ L V ] , w e i g h t s = [ 8 . 3 , 9 . 9 , 9 . 0 ] , G ) : 

> c o n n e c t ( [ L V , S L C ] , [ P h ] , w e i g h t s = [ 6 . 0 , 1 6 . 0 ] ,G) : 

^°If any of these cities are unfamiliar, consult a highway map of the western United States. 
^̂  Obtained from the American Automobile Association travel books. 
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After all the connections have been finished, the number of different routes 
involved are displayed with the following edges command. 

> routes:=edges(G); 

routes := {el, e2, e3, e4, e5, e6, el, e8, e9, elO, ell, el2, el3, el4, el5, 

el6, ell] 

According to the output, there are 17 of them. 
If the colon is replaced with a semicolon in the following edge-weight com

mand, the various times (in hours) between cities in the graph will be displayed. 

> times:=eweight(G): #in hours 

We will now create a graph made up of straight-line segments joining the vertices 
(cities) according to the connecting routes entered earlier. The graph, which 
is produced with the hnear draw command, will not place the cities at their 
proper relative geographic positions, but instead will artistically group cities as 
follows. The first city in the argument is Seattle (S), which will be placed at 
the far left of the resulting picture. The next entry lists the cities of Portland 
(Port) and Yakima (Yak). These cities will be placed to the right of Seattle, 
and lined up vertically, one above the other. Each successive list of cities is 
placed further to the right and the members of the list organized vertically, 
until finally Phoenix (Ph) is placed on the far right of the graph G. 

> draw(Linear([S],[Port ,Yak],[Pen,Bend],[Reno,Win,Boise] , 
[LV,SLC],[Ph]),G); 

The resulting graph produced by the draw command is shown in Figure 1.6. 
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Figure 1.6: Various inland highway routes between Seattle and Phoenix. 

The cities are correctly joined according to the connections that were entered 
earlier. The a l l p a i r s command is now used to calculate the shortest traveling 
time between any two cities in the graph. The output is suppressed for brevity. 

> T:=a l lpa i r s (G) : # t rave l ing times between p a i r s of c i t i e s 
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The minimum traveling time between Seattle and Phoenix is desired, and is 

> Minimuin_Time:=T[S,Ph] ; #between Sea t t l e and Phoenix 

Minimum.Time := 29.6 
found to be 29.6 hours. To determine the route that corresponds to this short
est time, we use the shor tpa th t ree command, which implements Dijkstra^s 
algorithm^'^ for the shortest-path spanning tree. This produces Figure 1.7. 

> SPT:=shortpathtree(G,S,Ph): draw(SPT); 

F»en 

X ^"-
/ \ ^ B o i s e / \ / 

Port ^ / \ / 
\ / 
\ / i\ //^ X ^-/^--^ 

LV / \ / 
K \ / \ / 

R e n o \ / V 
\ / / \ \ - - - " - ^ ' " ' / S ^ / / 

S L C / W i n 

Figure 1.7: The shortest route between Seattle and Phoenix has no dead ends. 

The shortest route between Seattle and Phoenix is the only one in Figure 1.7 
that connects the two cities. To draw this route, remove those cities that clearly 
do not connect Seattle and Phoenix in the shortest path tree. For example, you 
can see that both Winnemucca (Win) and Salt Lake City (SLC) are dead ends 
in Figure 1.7 and can be deleted. Then Bend and Boise become dead ends, 
so delete them too. Finally, include Pendleton (Pen) and Yakima (Yak) in the 
following delete command. On applying the draw command to SPT, 

> delete({Win,Bend,SLC,Boise,Pen,Yak},SPT): draw(SPT); 
only the route that has the shortest traveling time between Seattle and Phoenix 
remains and is shown in Figure 1.8. The cities of Portland, Reno, and Las Vegas 
lie along this route. This is the route that would be recommended to our friend 
Russell. Again, remember that the cities in the picture are not oriented in their 
proper geographic positions. 

Of course, for this example, the number of different routes was not so chal
lenging that the calculation could not have been done fairly quickly with pen 
and paper. But imagine doing this for a graph with all the cities and towns 
in North America or in Europe. Further, once one has created the graph, the 
shortest path between any two towns or cities is easily obtained. 

The scientifically inclined reader might wonder what the concept of mini-

^^Named after its inventor, the Dutch computer scientist Edsger Dijkstra [CLR90]. 
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Figure 1.8: Route for the shortest traveUng time. 

mizing the time, which appeared in this example, has to do with engineering 
or physical phenomena. FermaVs principle in geometrical optics is based on 
a similar idea. In its simplest form [Tip91], it states that the path taken by 
light in traveling from one point to another is such that the time of travel is a 
minimum. Fermat's principle can be used to generate Snell's law in geometrical 
optics, as well as to account for the phenomena of mirages in a medium with a 
variable refractive index. 

PROBLEMS: 
Problem 1-23: Minimum distance 
By consulting an appropriate set of maps, modify the provided recipe to deter
mine the shortest distance from Seattle to Phoenix passing through the given 
cities. Be sure to draw all the appropriate graphs. 

Problem 1-24: Boise to Reno 
Use the provided recipe to determine the shortest travel time and the corre
sponding route to travel between Boise, Idaho, and Reno, Nevada. Show the 
appropriate graphs. Is this really the shortest route between these two cities? 
To answer this question, you might want to consult the appropriate road maps, 
add more connecting cities, and modify the recipe. 

Problem 1-25: Planning your route 
Choose two major American or European cities that are widely separated in 
distance and that have many possible connecting routes. Find the driving times 
and mileages between sizeable cities or towns along the various routes. To save 
on typing, do not include every village or hamlet that you would pass through. 
Repeat the procedure outlined in the text to determine the route between the 
two major cities that minimizes the total driving time. Determine the route 
that minimizes the total distance. 
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1.2 Log-Log (Power Law) P lo t s 

1.2.1 Chimpanzee Brain Size 

I believe that our Heavenly Father invented man 
because he was disappointed in the monkey, 
Mark Twain (Samuel Langhorne Clemens), American humorist (1835-1910) 

Heather is a premed student enrolled in the biological sciences program at 
MIT. In an introductory calculus text [AL79] that she is consulting, it is stated 
that within a given species of mammal, it is found that the brain volume V 
varies with the body mass m according to the power law V = am^. Here a and 
b are positive constants. Table 1.6, taken from the same text, shows the brain 
volumes {V in cm^) as a function of body mass (m in kg) for a number of adult 
chimpanzees. 

Table 1.6: Chimpanzee brain volumes V and body masses m. 

m 

V 

31 

365 

36 

380 

38 

382 

41 

395 

42 

397 

45 

410 

47 

410 

48 

415 

50 

420 

53 

427 

55 

437 

57 

440 

The text further states that if these data satisfy the power law equation, the 
values of a and b can be determined by making a log-log plot of the data and 
determining b from the slope and a from the intercept of the best-fitting straight 
hue. To confirm that this statement is true. Heather takes the log of both sides 
of the power law equation, yielding 

\n{V) = ln(a m^) = ln(a) + b ln(m) (1.2) 

which is a straight line of slope b and intercept ln(a) when \n{V) is plotted 
against ln(m). That is to say, if she sets y = ln(1/), A = ln(a), and x = ln(m), 
then the straight line equation y = A-^bx results. Once A is determined, then 
a — e"^. Heather decides to use the log-log plotting procedure to determine the 
parameters a and b in the power law formula for the chimpanzee data. 

To make a log-log data plot, the plots library package must be entered. 

> restart: w i th (p lo t s ) : 
The mass and volume values are inputted as separate Maple lists. 

> mass:=[31,36,38,41,42,45,47,48,50,53,55,57] : 

> volume:=[365,380,382,395,397,410,410,415,420,427,437,440]: 
In the following command line, Heather uses the "arrow," or functional, oper
ator, which is entered by typing a "hyphen" followed by a "greater than" sign, 
to group the mass and volume together as a list. 
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> pair:=(mass,volume)->[mass,volume]; 

pair := {mass, volume) —> [mass, volume] 
The lists are then "zipped" together into a Ust of hsts, ready for plotting, and 
assigned the name points. 

> points:=zip(pair,mass,volume); 

points := [[31, 365], [36, 380], [38, 382], [41, 395], [42, 397], [45, 410], 

[47, 410], [48, 415], [50, 420], [53, 427], [55, 437], [57, 440]] 
A log-log plot of the data points (presented as size-12 blue boxes) is formed, 

> pts:=loglogplot(points,style=point,symbol=box, 

color=blue,symbolsize=12): 
and the display command used to produce Figure 1.9. The display command 
was utilized by Heather because it allows more control of the plot options than 
loglogplot . In particular, it allows use of the view command, which is often 
employed in this text to set the horizontal and vertical ranges in order to get 
a good picture. For complicated plot structures, it enables one to zoom in on 
any desired region without computing the graph again. 

> d i sp lay(p t s , l abe l s=[" In (m)" , " ln (V)" ] , t i ckmarks=[3 ,2 ] , 
v i e w = [ 1 . 5 . . 1 . 8 , 2 . 5 . . 2 . 6 5 ] ) ; 

2.6 

ln(V) 

2-5 1.5 1.6 ln(m) 1.7 1.8 

Figure 1.9: Log-log plot of brain volumes versus mass. 

Heather notes that the data lie approximately along a straight line. From Ta
ble 1.6, she calculates that the slope is roughly 

( ln(440)- ln(365))_ 
(ln(57) - ln(31)) * * 

With this value as a starting point, she manages to establish by trial and error 
that b—1/3. Similarly, she finds that a?^114|, so that the model equation for 
the chimpanzee data is of the power law form F = 114.5 m^/'^. 
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To demonstrate how well this model formula fits the data, Heather makes a 
log-log plot of the power law equation for the mass range m = 30 to 60 kg, 

> eq:=loglogplot(114.5*in' ' ( l /3) ,m=30. .60) : 
and displays it and the data in the same graph, viz., the left plot of Figure 1.10. 

> display({eq,pts} , t ickmarks=[3,2] , labels=["ln(in) " , "ln(V)"] 
v i e w = [ 1 . 5 . . 1 . 8 , 2 . 5 . . 2 . 6 5 ] ) ; 

The data and power law formula are now plotted "normally" (i.e., without 
taking logs) for the mass range m = 0 to 60 kg, 

> pts2:=plot(points ,s tyle=point ,syinbol=box,color=blue, 
symbolsize=12): 

> v:=plot(114.5*m'^(l/3),m=0. .60) : 
and displayed together on the right-hand side of Figure 1.10. 

> d isplay({pts2 ,v} , labels=["m","V"] , t ickmarks=[3 ,3]) ; 

1.6 ln(m) 1.7 20 m 40 

Figure 1.10: Log-log (left) and "normal" (right) plots of V = 114.5 ms and data. 

Heather is pleased to note that the power law F = 114.5 m^/^ fits the observa
tional data quite well. However, she is bothered by the fact that she doesn't 
know why this should be the case. Perhaps her older sister Jennifer, who is an 
MIT applied mathematician, can provide an explanation? In the next story, we 
shall hear what Jennifer has to say about this example. 

PROBLEMS: 
Problem 1-26: Fir tree yield 
The volume V of wood obtained from an average fir tree increases with age A 
as shown in Table 1.7. The age is in years and the volume in hundreds of board 
feet. A board foot is the volume of a board 1 foot square and 1 inch thick. 

(a) Plot V versus A. Does the curve suggest a power law? Explain. 

(b) Make a log-log data plot. Is the curve approximately a straight line? 
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(c) The straight-line data in the log-log plot can be fitted by the functional 
form F = 5.6 x 10~^x^/^. Confirm that this is the case by plotting the 
log of the formula on the same graph as the log-log data. 

(d) Plot the formula on the same graph as the original data. 

Table 1.7: Volume V of wood as a function of age A. 

A 

V 

50 

11 

75 

28 

100 

56 

125 

98 

150 

158 

175 

225 

200 

330 

Problem 1-27: Rowing times 
Using dimensional scaling analysis (discussed in the next story) based on the 
idea that racing shells for different numbers n of oarsmen are geometrically 
similar, McMahon [PLA92] has shown that the time T (in minutes) to row 
2000 meters is given by T = kn~^^^ with k a positive constant. Table 1.8 gives 
times for I: 1964 Tokyo Olympics; II: 1968 Mexico Olympics; III: 1970 World 
Rowing Championships, St. Catherines, Ontario; and IV: 1970 International 
Championships, Lucerne, Switzerland. 

Table 1.8: Rowing times T for different numbers n of oarsmen. 

n 

8 
4 
2 
1 

T (min) I 

5.87 
6.33 
6.87 
7.16 

T (min) II 

5.92 
6.42 
6.92 
7.25 

T (min) III 

5.82 
6.48 
6.95 
7.28 

T (min) IV 

5.73 
6.13 
6.77 
7.17 

Using a trial and error approach, find a value for the constant k that gives a 
good fit to the data when plotted on a log-log scale. Plot the theoretical formula 
and data in the same log-log graph and also produce a normal graph. 

Problem 1-28: Newton's law of cooling 
Russell, who has moved into his new lab in Phoenix, boils some water to make 
a cup of instant coffee. While sipping cautiously on his hot drink, he has 
placed a mercury-in-glass thermometer in the remaining boiling water for a few 
minutes and then removed the thermometer. He records the readings in degrees 
Celsius on the thermometer t seconds after removal, the results being shown 
in Table 1.9. The temperature of the room is a warm 26.0 °C. According to 
Newton^s law of cooling, if ATQ is the initial temperature difference between an 
object and its surroundings, the temperature difference t seconds later is given 
by the exponential law AT = ATQ e"^^, with K the cooling constant. 

(a) Show that K is given by the slope of a straight line in a semilog plot. 
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Table 1.9: Temperature (T) readings t seconds after thermometer removal. 

t 

T 

t 

T 

0 

98.4 

50 

59.4 

5 

76.1 

70 

55.4 

10 

71.1 

100 

50.3 

15 

67.7 

150 

43.7 

20 

66.4 

200 

38.8 

25 

65.1 

300 

32.7 

30 

63.9 

500 

27.8 

40 

61.6 

700 

26.5 

(b) Using the logplot command, show that most of the data in Table 1.9 he 
on a straight hne. What might give rise to data points that deviate from 
the straight hne? 

(c) By trial and error, plot a straight line that best fits the data and thus 
extract the approximate value of the cooling constant K. 

1.2.2 Scaling Arguments and Gulliver's Travels 

'^What is the use of a book/' thought Alice, 
'^without pictures or conversation f 
Lewis Carroll, Alice's Adventures in Wonderland (1865) 

In the real world, the properties of many complex systems can, surprisingly, 
be described by simple power law curves. That such a curve might apply to a 
given set of data can be ascertained by checking to see whether the observation 
points lie on a straight line when a log-log plot of the data is made. This is 
the procedure that Heather applied in the last recipe for the brain volumes V 
of adult chimpanzees. In this case, the data were found to be consistent with 
a power law of the form V = a M^/^, where M is the body mass of the chim
panzee and a ^ 114^. To understand how such a power law relation can arise. 
Heather has gone to see her sister Jennifer, who is a junior faculty member in 
the Institute of Applied Mathematics at MIT. 

"Well, Heather," Jennifer begins, "To answer your question, I will have to 
tell you about the concept of scaling, which deals with how the properties and 
characteristics of various systems change with size. I will try to keep it simple, 
but if you want a more complete treatment I would refer you to an interesting 
paper entitled "Fundamentals of zoological scaling" written by Herbert Lin and 
published in the American Journal of Physics [Lin82]. As you are undoubtedly 
becoming aware, introductory science courses tend to deal with highly idealized 
models of the real world that are set up to give unique, well-defined answers. In 
reality, experimentalists are often confronted with complex systems for which 
the properties could depend on many factors. The appearance of power law 
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behavior when one variable is plotted against another is particularly exciting 
to the experimentalist because it signals the possibility that the behavior could 
be explained on the basis of scaling arguments, i.e., on how the properties of 
a system change with a characteristic system size L. Let me give you a few 
simple examples. You're not in a hurry to get anywhere, are you?" 

"No, I don't have any classes for the next couple of hours, so go ahead." 
"OK, my first example, taken from Lin's article, is about the burning of 

wood of different diameters. A log of about 10 cm diameter will take around 
an hour to burn, while 1 cm diameter kindling will burn in several minutes, 
and a fuse of diameter 1 mm will burn in several seconds. To understand this, 
note that burning takes place only at the surface, so the rate of combustion is 
limited by the surface area S with which oxygen, necessary for burning, must 
make contact. The burning rate must be proportional to 5, which in turn is 
proportional to L^, where L is the diameter. On the other hand, the rate must 
be inversely proportional to the amount of material present, i.e., to the volume 
V (X L^. Combining these two aspects, the rate then should be proportional 
to S/V oc L'^/L^ — 1/L. Thus, according to this scahng argument, since the 
time to burn is inversely proportional to the rate of combustion, the log should 
burn about 10 times slower than the kindling, which in turn will burn about 10 
times slower than the fuse. This is in rough agreement with the observations. 
Although the precise burning times clearly would depend on other factors, the 
gross observed behavior is dominated by changes in characteristic size L." 

"I followed your argument, but what about the chimpanzee power law that 
I told you about? Can you also use scaling to explain it?" 

"Oh, that's quite easy. Let's make the assumption that in order to maintain 
the same functional power, the adult chimpanzee brain volume V is proportional 
to the size L of the chimp. That is to say, the 'bigger' an animal of a given 
species is, the bigger is its brain. But the body mass M is equal to the density 
times the body volume. The density of all mammals is fairly constant, especially 
within a given species such as the chimps. So M oc L*̂ , or conversely L oc M^^^. 
Thus, the brain volume satisfies F oc L oc M^/^. Inserting the proportionality 
constant a, then the power law formula V = aM^^^ results. And, as you 
verified, this power law is in very good agreement with the experimental data." 

"That's interesting! Do you have any more simple examples of scaling?" 
"Well, I have an example that I have been thinking about for a while. What 

got my mind going on it was all these movies that have appeared over the years 
featuring giant ants, apes, etc., which usually terrify humanity until some hero 
or heroine steps in to save the world. These movies are often not very good, 
but more importantly in the context of our discussion, they are flawed from a 
scaling viewpoint." 

"What do you mean? Can you give me a concrete example?" 
"Sure, but my example is from the world of classic fiction. Do you remember 

reading the novel Gulliver's Travels by Jonathan Swift? I am going to use 
scaling to punch some scientific holes in Swift's story. Recall that in the novel 
Gulliver travels to a number of strange lands. In two of these lands, Lilliput and 
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Brobdingnag, there exist inhabitants who look just Hke humans but are much 
smaller and larger than Gulliver. They are geometrically similar to humans, 
i.e., scaled-down and magnified replicas of humans. For calculation convenience, 
let's make the Lilliputians ten times as small and the Brobdingnagians (Brobs, 
for short) ten times as large. What effects might this have on their biological 
processes and on the scientific accuracy of Swift's tale? 

Since body volume {V) and therefore weight W (proportional to mass) vary 
as L^, the Lilliputians and Brobs would have weights 1000 times smaller and 
1000 times larger, respectively, than Gulliver. On the other hand, as I pointed 
out in my first example, surface area S is proportional to L^. So, the Lilliputians 
and Brobs would have surface areas 100 times smaller and 100 times larger than 
Gulliver. Now it is a well-known biological fact that warm-blooded animals lose 
heat through their skin. This means that the heat loss H satisfies H oc S (x L^. 
Since heat is a form of energy, in equilibrium the heat energy loss must be 
balanced by energy intake in the form of food. Thus, it is reasonable to assume 
that the amount of food eaten is proportional to the area S. Now Swift's tale is 
in trouble! In the story, the Lilliputians live in a scaled-down version of human 
society, with all the trappings of civilization. Scaling will tell us that this is 
highly unlikely. 

Suppose that Gulliver had a mass of 80 kg and that he ate 1/40 of his 
weight (2 kg) each day, which took him about 1 hour to consume. A Lilliputian 
is 10^ = 1000 times less massive, having a mass of 0.08 kg, but has a surface 
area only 10^ = 100 times smaller. The typical Lilliputian would have to eat 
2/100 = 0.02 kg each day, which amounts to one-quarter of his or her body 
weight. Assuming that scaling prevails, the time devoted to eating would be 
about 10 hours. When this time is combined with that required for acquiring 
and preparing the food, this would leave little time left over for the Lilliputians 
to develop a society similar to that of humans. If you think that this is pushing 
scaling too far, think of our world. Creatures that are much smaller than 
humans do indeed spend much of their time in gathering and eating food." 

"Given your line of reasoning, Jennifer, surely everything would be fine in 
the land of Brobdingnag, the home of the mega-humans. They have weights 
1000 times greater than Gulliver, but surface areas only 100 times larger. Thus, 
they would have to eat only about 1/400 of their body weight each day and 
probably could go for long stretches of time without eating. This is indeed the 
case for very large creatures in our own world. Therefore, it is possible that the 
Brobs would have sufficient time to develop an advanced civilization. So I see 
no problems with Swift's story in the land of Brobdingnag." 

"Ah, but there is a different problem. It's in the bones! Let's look at the 
Brobs' leg bones, which must support their much greater weight. According to 
Lin's article, the simplest model assumes that the static compressive stress^^ a 
sets the lower limit on the thickness d of the leg bone. If the leg bone has a 
cross-sectional area A (x (P and supports the entire weight VF, then by balancing 

^Stress equals force per unit area. 
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forces, we have aA — W. If d were to scale '̂* with the characteristic size L, 
then d? (X L^ (X W'^^^ and a oc W'^^^. Now, nature uses bone for skeletal 
frames, not titanium. As the weight W is increased sufficiently, a point would 
be reached where the bone could no longer sustain the compressive stress and 
would shatter. To prevent breaking, the thickness d must increase faster than 
L. If the compressive stress is kept constant, then d"^ oc VF, or d oc W^l'^. Since 
the Brobs are 1000 times heavier, their legs would have to be about \/lOOO '^ 32 
times as thick. So, their legs would be disproportionately fatter, and they would 
not be simply perfectly magnified versions of humans." 

"How good is the approximation d oc VK^/^?" 
"More refined scaling arguments presented in Lin's paper give a slight cor

rection, so that d oc W^l^^. Now, zoologists have measured the skeletal bone 
weight VFsk as a function of body weight W of various animals. Some values 
(expressed as kilogram weights) are given in Table 1.10. 

Table 1.10: Body (VF) and skeletal weights (H ŝk ) for some mammals. 

Animal 

W 

T^sk 

Shrew 

0.0063 

0.0003 

Mouse 

0.0295 

0.0013 

Cat 

0.845 

0.0436 

Rabbit 

2.0 

0.181 

Beaver 

22.7 

1.15 

Human 

67.3 

12.2 

Elephant 

6600 

1782 

Assuming that W^^, oc Ld^, then W^^, oc W^l'^ (yv^l^^f = lyVe. Let's check 
this power law formula against the empirical data. I will use a code very similar 
to the one that you used for the chimpanzee data, so you should be able to easily 
follow it without too much detailed explanation. 

restart: with(plots): 

weight:=[0.0063,0.0295,0.845,2.0,22.7,67.3,6600.0]: 

bone_weight: = [0.0003,0.0013,0.0436,0.181,1.15,12.2,1782]: 

pair:=(weight,bone.weight)->[weight,bone^weight]: 

points:=zip(pair,weight,bone_weight); 

> 

> 

> 

> 

> 

Voinis := [[.0063, .0003], [.0295, .0013], [.845, .0436], [2.0, .181], 

[22.7, 1.15], [67.3, 12.2], [6600.0, 1782]] 
> pts:=loglogplot(points,style=POINT,symbol=box, 

color=black,syinbolsize=12) : 
Now I will create a log-log plot of the function VFgk = a VF^/^. Using a best-fit 

procedure, one finds that the constant a is equal to 0.065. 

> a:=0.065: 

> eq:=loglogplot(a+W^ (7/6),W=.0002..7000,color=black): 

* Since all other lengths, including leg length, are assumed to scale with L. 
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The two log-log plots, p t s and eq, are then displayed together in Figure 1.11. 
Here b and w are the logs of the bone weight and body weight, respectively. 

> display ({pts , eq}, labels= ["w", "b"] , axe s=f rained, 
t i ckmarks=[3 ,3 ] ,v iew=[ -2 .5 . .4 , -3 .5 . .4 ] ) ; 

-2 0 w 2 4 

Figure 1.11: Log-log plot of the observational points and the model equation. 

The agreement between the power law model equation, derived on the basis of 
scaling arguments, and the data is very good. Although scaling law arguments 
are somewhat empirical, they have proven very successful in understanding a 
wide variety of power law curves in the biological and physical sciences." 

"Thanks for your help, Jennifer, but I have to be off to my next class. If I 
have any more questions on scaling, I will come to see you later." 

PROBLEMS: 
Problem 1-29: Human surface area 
The surface area S of humans is related on average to their masses M and 
heights iJ by a formula of the structure S — a M^ H^ where a, 6, and c are 
constants. Table 1.11 gives the surface area in square meters and mass in 
kilograms for a group of people of the same height (1.80 m). For fixed H^ then, 
the power law S = A M^ should describe the data. 

Table 1.11: Human surface area at a fixed height as a function of mass. 

M 

S 

70 

2.10 

75 

2.12 

77 

2.15 

80 

2.20 

82 

2.22 

84 

2.23 

87 

2.26 

90 

2.30 

95 

2.33 

98 

2.37 

(a) Make a log-log plot of the data and show that the data lie approximately 
on a straight line. 
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(b) By trial and error fit the log of the power law to the log-log data to obtain 
approximate values of A and b. 

(c) Noting that the height is fixed, use scaling arguments to plausibly account 
for the observed value of b. 

Problem 1-30: Of lions & house cats 
Vectoria has a house cat that weighs 13 lb (mass of 5.9 kg), is 0.85 m long 
(including the tail), and consumes about 150 g of food per day. Given that a 
female lion is, on average, about 8 ft long (including the tail), weighs 275 lb, and 
in the wild consumes about 30 lb of food every 6 days, use scaling arguments 
to estimate the expected weight and the expected daily food consumption of 
Vectoria's cat. Compare the estimated values with the actual values and give 
possible explanations for any discrepancies. 

Problem 1-31: Attack of the giant killer ants? 
For a certain species of ant, a typical ant has a length of 1.0 cm, a mass of 
0.20 g, and is able to lift 100 times its body weight. A Hollywood movie 
director proposes to base a horror film on the theme of giant versions of these 
ants attacking and destroying downtown Metropolis. Each of the giant ants is 
supposed to have a length of 10 m. Using scaling arguments discuss what is 
wrong with the director's giant ant scenario. Hint: Can the giant ants lift their 
own weight? 

Problem 1-32: Sequoias 
According to Ohanian [Oha85], for tall trees the diameter at the base (or the 
diameter at any given point of the trunk, such as the midpoint) is roughly 
proportional to the 3/2 power of the distance x from the top of the tree. The 
tallest sequoia in Sequoia National Park, in California, has a length of 81 meters, 
a diameter of 7.6 meters at the base, and a mass of 6100 metric tons. 

(a) Explain the observed scaling of diameter with distance x. 

(b) Using the given data, derive the formula for the diameter c? at a distance 
X from the top of a sequoia. 

(c) Plot d over the range x = 0 to x = 100 meters. 

(d) A petrified sequoia found in Nevada has a length of 90 meters. Estimate 
its diameter at the base when it was alive. 

(e) Derive a formula for the volume F of a sequoia of length x meters. 

(f) Plot V over the range x = 0 to x = 100 meters. 

(g) Calculate the average density in metric tons per cubic meter of a sequoia 
using the data for the tallest tree. What was the mass of the petrified 
sequoia in metric tons when it was alive? 
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1.3 Contour and Gradient Plots 
1.3.1 The Secret Message 

Something deeply hidden had to be behind things. 
Albert Einstein, theoretical physicist (1879-1955) 

Mike, a mathematics student and amateur archaeologist, has been fortunate 
to obtain a summer job with an archaeological dig in the high Andes region 
near the Inca ruins of Machu Pichu. On the first day that Mike is there, the 
chief archaeologist takes him on a tour of the site and shows him how the area 
has been divided into squares with strings. Specifically, there are 121 squares, 
or "cells," in an 11 x 11 grid. Within each square, the type of artifact and the 
number found is recorded. At the moment, the number of artifacts discovered 
in each square is given in tabular form. 

Mike's first task will be to plot these data in some suitable form. He is keen 
to get to work and asks for the data. Unbeknownst to him, he is not given 
the real numbers but some artificial data designed to carry a secret message of 
greetings from his new coworkers. He is also told that the rows and columns of 
the data array were inadvertently interchanged and should be transposed. 

On the camp laptop computer, Mike loads Maple's plots and LinearAlgebra 
packages, the latter needed for the matrix representation of the data. 

> r e s t a r t : w i t h ( p l o t s ) : with(LinearAlgebra): 
To explicitly view the 11 x 11 data matrix (otherwise, the default maximum 
is 10 X 10), Mike includes the following in te r face command. Here r t a b l e 
stands for "rectangular table," and although he could set r t a b l e s ize to 11, 
Mike sets the value to infinity in case the data matrix is later increased in size. 

> i n t e r f a c e ( r t a b l e s i z e = i n f i n i t y ) : 
He then enters the numbers given to him as the data matrix A. 

> A :=Mat r ix ( [ [1 ,0 ,1 ,0 ,1 ,1 ,2 ,1 ,0 ,2 , ! ] , [ ! , 2 , 2 , 2 , 1 , 1 , 2 , 0 , 3 , 1 , 0 ] , 
[ 1 , 1 , 2 , 0 , 1 , 1 , 3 , 1 , 0 , 1 , 0 ] , [ 0 , 1 , 9 , 0 , 1 0 , 1 , 1 , 7 , 7 , 8 , 1 ] , [ 1 , 2 , 8 , 2 , 1 0 , 
3 , 2 , 1 , 9 , 2 , 0 ] , [ 1 , 1 , 7 , 1 0 , 9 , 2 , 1 , 0 , 9 , 1 , 0 ] , [ 1 , 1 , 7 , 1 , 9 , 2 , 1 , 2 , 8 , 0 , 1 ] , 
[ 0 , 2 , 9 , 2 , 1 0 , 3 , 1 , 9 , 9 , 8 , 2 ] , [ 2 , 1 , 2 , 1 , 0 , 0 , 3 , 2 , 0 , 1 , 0 ] , 
[ 1 , 2 , 3 , 0 , 1 , 1 , 2 , 1 , 1 , 0 , 0 ] , [ 0 , 1 , 2 , 1 , 0 , 3 , 1 , 0 , 2 , 1 , 0 ] ] ) ; 

A:= 

1 
1 
1 
0 
1 
1 
1 
0 
2 
1 
0 

0 
2 
1 
1 
2 
1 
1 
2 
1 
2 
1 

1 
2 
2 
9 
8 
7 
7 
9 
2 
3 
2 

0 
2 
0 
0 
2 

10 
1 
2 
1 
0 
1 

1 
1 
1 

10 
10 
9 
9 

10 
0 
1 
0 

1 
1 
1 
1 
3 
2 
2 
3 
0 
1 
3 

2 
2 
3 
1 
2 
1 
1 
1 
3 
2 
1 

1 
0 
1 
7 
1 
0 
2 
9 
2 
1 
0 

0 
3 
0 
7 
9 
9 
8 
9 
0 
1 
2 

2 
1 
1 
8 
2 
1 
0 
8 
1 
0 
1 

1 
0 
0 
1 
0 
0 
1 
2 
0 
0 
0 
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As was suggested to him, Mike transposes the matrix A into a new matrix B, 
but suppresses the lengthy output. 

> B:=Transpose(A): 
Studying the Maple manual, Mike learns that there are various ways of plotting 
the matrix B. One approach is to use the matr ixplot command and repre
sent the data as three-dimensional, suitably colored, histograms, the height 
of each histogram corresponding to the number of artifacts in that particular 
square. The three-dimensional nature of the plot can be explored by clicking the 
left mouse button on the plot and dragging the mouse on the resulting three-
dimensional box. If an interesting orientation occurs, the angular numbers 0 
and 0 appearing at the top left of the computer screen can be permanently en
tered into the code with the o r i en t a t i on command so that viewpoint turns up 
the next time the code is run. Similarly, by clicking on the plot and the Color 
box at the top of the computer screen, different possible coloring schemes may 
be selected. In the following command line, Mike has chosen an orientation of 
9 = —60°, (f) = 15° and used shading=zhue to color the histogram boxes in the 
z-direction, i.e., the direction of increasing number Â  of artifacts. 

> matrixplot(B,heights=histograin,style=patch,shading=zhue, 
axes=boxed, labe ls=["x" ,"y" ,"N"] ,or ien ta t ion=[-60 ,15]) ; 

On running the code,^^ Mike is surprised by the output, which seems to reveal a 
simple message that was not apparent to him in the tabulated data. To confirm 
the secret message, as well as to gain familiarity with other plotting styles, he 
tries three other graphical methods, the second approach being to make a list 
density plot of B. To reveal the message more clearly, Mike accepts Maple's 
default coloring in which each cell is assigned a gray level from white to black 
as the value of the cell increases. To assign colors other than shades of gray, he 
could have inserted the plots option colorstyle=HUE in the following command 
line. Try it and see what the message would then look like. 

> listdensityplot(B,axes=boxed,labels=["x","y"]); 

Did Mike make the right choice in accepting the default gray coloring scheme? 
Converting the matrix B to an array C, the third method is to make a 

two-dimensional contour plot of C, choosing to take 20 contours (the default is 
eight contours). The contour plot creates lines corresponding to a fixed number 
of artifacts. Hikers often use contour maps that give lines of constant elevation. 

> C:=convert(B,array): 

> l i s tcontp lo t (C,axes=boxed, labe ls=["x" ,"y"] ,contours=20) ; 
The final method is to create a three-dimensional contour plot of C, using 
f i l l ed= t rue to fill in the 20 contours with a color gradation. Mike takes the 
coloring and orientation of the figure to be the same as for the matrix plot. 

> l i s tcontplot3d(C,f i l led=true,axes=boxed,shading=zhue, 
l abe l s=["x" , "y" , "N"] ,contours=20 ,or ien ta t ion=[-60 ,15] ) ; 

At this point, Mike hears good-natured laughter outside the tent in which he 

^^The reader will have to do it in order to reproduce what Mike sees. 
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has been looking at the computer output. "Hi, Mike," someone yells, "we are 
going down to the village for some beer, or a Coke if you prefer. We will give 
you the real data tomorrow." 

PROBLEMS: 
Problem 1-33: Design your own secret message 
Create your own data matrix that when plotted with the four methods of this 
subsection and the proper orientation and coloring scheme gives an interesting 
written message or pattern. 

Problem 1-34: Electrostatic potential 
The electrostatic potential $ in the region 0 < x < a , ^ > 0 with the boundary 
conditions $ = 0 along the sides x = 0, x = a, and for large y, and ^ = V for 
y = 0 and 0 < x < a, is 

$ = [2V/n) arctan [sin(7rx/a)/sinh(7r?//a)]. 
Taking a — I meter, V — 2 volts, produce two-dimensional and color-coded 
three-dimensional contour plots of the potential. If necessary, play with the 
number of contours, the grid, and the view to produce nice plots. 

Problem 1-35: Visual hallucination patterns 
According to the text Mathematical Biology, by Jim Murray [Mur89], visual 
hallucination patterns can occur when an individual has a migraine headache, 
epileptic seizure, advanced syphilis, or as a result of taking drugs such as LSD 
or mescaline. From extensive experimental studies of drug-induced hallucina
tions, it appears that in the early stages, the test subject sees simple geometric 
patterns. A theoretical model for the underlying brain mechanism leads to a 
variety of visual patterns, one such pattern being described by the formula 

V = cos(a + k{V3y + x)/2)) + cos(6 + k{V3y - x)/2)) + cos(c + kx). • 

(a) Taking a = 7r/2, 6 = 0, c = 0, and k = l, form a two-dimensional, filled-in, 
color-coded, contour plot of the visual pattern V. Take the range x = —10 
to 10, y = —lO to 10, and ten contours. 

(b) What symmetry does the pattern have? Try some other values of the 
parameters and discuss your results. 

Problem 1-36: Data storage matrices 
As evident from the text recipe, matrices can be used to conveniently store 
data. For example, suppose that four varieties of wheat are treated with three 
different fertilizers and the outputs in bushels per acre are recorded, the data 
being stored in the 3 x 4 matrix A: 

30 39 33 24 
36 42 33 27 
33 33 39 36 

The element A^j, with i = 1,2,3 denoting rows and j — 1,2,3,4 indicating 
columns, gives the output of the j th wheat variety due to the ith fertilizer. 
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Now to the problem. Consider the following two different ecosystems, each 
consisting of three species, in which each species is the food source for the other: 

(1) Each species consumes one each of the other two species. 

(2) Species 1 consumes one of species 2 and none of species 3; species 2 
consumes one-half each of species 1 and 3; species 3 consumes two of 
species 1 and none of species 2. 

For each of the above ecosystems: 

(a) Construct the consumption matrix C, where the element Cij indicates 
the number of species j consumed daily by an individual of species i. 

(b) Make a matrix plot for each consumption matrix. 

(c) Make a l i s t con tp lo tSd for each matrix. 

Problem 1-37: Twin towers apartment complex 
By using the binomial function to generate the binomial coefficients, the fol
lowing code produces an architect's scale model of an apartment complex. Run 
the code and see what it looks like. Experiment with the command structure 
and see what apartment complexes you can design. 

> restart: wi th(plots ) : with(LinearAlgebra): 

> L: = [ s eq ( i , i=0 . .8)] ; #binomial(n,m)=n!in!/(n-m) ! 

> A:=[seq([seq(binomial(n,m),m=L)],n=L)]: 

> B:=Matrix(A); C:=B+Transpose(B); 

> matrixplot(C, height s=histograin,style=patch, 

orientation=[-135,50],shading=xyz,lightmodel=light3); 

1.3.2 Designing a Ski Hill 

Imagination is more important than knowledge. 
Albert Einstein, theoretical physicist (1879-1955) 

Rob, a young ski-hill designer and avid skier, has received a request to cre
ate a three-dimensional model of a mountainous area that allows ski runs of 
varying difficulties. He is asked not to build a physical model but instead to 
present the design in the form of a three-dimensional computer display that can 
be rotated so that the terrain can be viewed from different perspectives. It is 
also indicated that it is important to show the contours of constant elevation 
as well as the maximum slopes or gradients at various points on the ski hill. 

In order to indicate the direction and magnitude of the gradients at various 
ski hill locations, it is necessary for Rob to load the VectorCalculus package. 

> restart: wi th(plots ) : with(VectorCalculus): 
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Before attempting to design a realistic ski area, he first creates a simple math
ematical model of a hill. A circularly symmetric mountain of peak height H 
with center at x = a and y = b can be produced using the exponential function 

-{{x-af-i-iy-b)^) h{x,y) = H e (1.3) 

where h{x^y) is the elevation at the point (x^y). By experimenting with differ
ent functional forms, Rob realizes that more interesting terrain can be created 
by using additional exponential terms and by multiplying them by other func
tions such as simple polynomials. Adding slowly varying cosine terms can make 
the surrounding area have a rolling foothill appearance. Incorporating these 
aspects and using his imagination, Rob enters the following command line to 
produce an interesting mountainous terrain with slopes of different difficulties. 
All distances are in kilometers. 

> h: =2*cos (0. 4*x) *cos (0. 4*y) +5*x*y*exp (- (x'^2+y'^2)) 

+3*exp(-((x-2)^2+(y-2)'^2)); 

h := 2cos(0.4a:) cos(0.4i/) + Sx^/e^"^'-^') ^ ^^{-ix-2f-iy-2f) 

To generate a three-dimensional picture of the function /i, the plotSd command 

is used with various plot options, the result being shown in Figure 1.12. 

> p lo t3d(h ,x=-3 . .4 ,y=-3 . .4 ,axes=f ramed,or ien ta t ion=[-65 ,55] , 
s tyle=patchcontour ,contours=20,scal ing=constrained, 
shading=zgreyscale , l ightmodel=l ight4); 

Figure 1.12: The ski hill produced by the input height function. 
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Rob has chosen a particular orientation in creating the figure and shown 20 
elevation levels. For the purposes of this textbook he has, at our request, 
used a vertical gray scale with appropriate lighting. But he suggests that you 
experiment with different color and lighting schemes. 

To fly around the ski hill designed by Rob and see it from different view 
points, click on the plot with the left mouse button and rotate the viewing 
box by dragging on the resulting box. Alternatively, you can rotate the plot in 
two-degree increments by clicking on the small up and down arrows adjacent 
to the two angular coordinate boxes near the top left of the computer screen. 

To indicate the direction of maximum slope at a particular location, the 
gradient operator of mathematics must be used. If one has a function f{x) 
of one independent variable, the slope of f{x) at a particular point x = c is 
obtained by calculating {df{x)/dx)\x=c' A maximum or minimum of f{x) is 
characterized by zero slope. For the ski hill, h{x,y) is a function of two coordi
nates. If the coordinate y is held fixed, the slope in the x-direction is given by 
the partial derivative dh{x,y)/dx. Similarly, if x is held constant, the slope in 
the ^-direction is given by dh{x,y)/dy. If e^ and Cy are unit vectors^^ in the 
X- and ^/-directions, then the gradient^'' of the function h{x,y) is given by 

gvadh{x,y) ^ Vh{x,y) = ^ ^ ^ e . + ^ ^ ^ e , . (1.4) 

It can be shown that the gradient of any well-behaved h{x,y) always points 
perpendicularly to the contours of constant elevation (or constant gravitational 
potential), i.e., /i(x, ?/) = constant, and its magnitude at a point (xo,^o) is equal 
to the maximum slope at that location. The following command line produces 
the gradient of the function h in terms of the Cartesian coordinates x and y.^^ 
For other coordinate choices, the coordinate system must be specified in the 
argument, e.g., 'polar' [r , theta] , for the plane polar coordinates r, 0. 

> gradeq:=Gradient(h ,[x ,y]); 

gradeq := (-0.8sin(0.4x) cos(0.4i/) + 5?/%l - 10x^y%l 

+ 3 ( - 2 x + 4)e(-(^-2)2-(2y-2)2)>l^^_^(_0 8cos(0.4x)sin(0.4^) 

+ 5 x % l - 1 0 x 2 / 2 % l - f 3 ( - 2 ? / + 4)e(-(^-2)'-(^-2)'))ey 

Rob uses the f ie ldplot command to produce thick red arrows pointing in the 
direction of the positive gradient with the magnitude of the slope indicated by 

> fp:=fieldplot(gradeq,x=-3..4,y=-3..4,arrows=THICK,color=red): 

^^ Vectors of unit length. 
^^The standard mathematical symbol for the gradient operator is V. 
^^All Maple input/output appearing in this LaTeX-prepared text has been exported from 

the worksheet by clicking on File, Export As, and LaTeX. Lengthy Maple outputs will often 
appear here in terms of subexpressions, e.g., % 1 := e^~^ ~^ ^ above, not seen on the com
puter screen. The overbars on the unit vectors in gradeq indicate that the gradient is a vector 
field, i.e., a vector-valued function of the coordinates. 
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the length of the arrow. Longer arrows correspond to a steeper maximum slope 
or gradient. The name fp is an acronym for field plot. 

A two-dimensional contour plot, cp, is formed with 15 contours, the default 
being 8 contours. The smoothness of the contour lines is controlled through the 
grid option. The default grid is [25,25] . 

> cp :=contourplot(h,x=-3. .4,y=-3. .4,color=blue, 
grid= [30,30],contours=15,scaling=constrained ) : 

Figure 1.13 results from using the display command to superimpose f p and cp. 

> display({fp ,cp}) ; 

Figure 1.13: Contour plot of the ski hill with slope directions indicated. 

From this plot, you can see confirmation that the gradient operator produces 
slope arrows perpendicular to the contours of constant elevation and that their 
length is an indication of hill steepness in the direction of the arrows. 

The two maxima and two minima are easy to spot, and their locations can 
be approximately found by clicking the mouse with the cursor arrow placed on 
the relevant points or more accurately by using the f solve command. At the 
maxima and minima, the slope is zero. In the following command line, Rob 
locates the coordinates of the top of the tallest peak in Figure 1.13, which lies 
in the quadrant x = 0 to 4, z/ = 0 to 4. The entries gradeq[l] and gradeq[2] 
in the Maple set refer to the first and second {x and y) components in gradeq. 
Note that if Rob hadn't set these entries equal to zero. Maple would have done 
so, unless Rob had otherwise indicated. 
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> coords:=fsolve({gradeq[l]=0,gradeq[2]=0},{x=0. .4,y=0..4}); 

coords := {y = 1.926405613, x = 1.926405613} 
The tallest peak is located at x —7/ ?̂  1.93 km. Substituting these coordinates 
into h and numerically evaluating the result to 3 digits 

> subs(coords,h) : height :=evalf(7o,3) ; 

height := 4.01 
yields a peak height of about 4 km. 

According to Rob, the reader should have no difficulty in choosing a ski run 
of suitable steepness for his or her ability. The maximum slope at a given point, 
for example, at x = 0, y = 2 km, is easily evaluated. Substituting the specified 
coordinates into gradeq[l] and numerically evaluating the result yields the 
x-component, Sx, of the maximum slope s. 

> subs({x=0,y=2},gradeq[l]) : s[x]:=evalf(%); 

Sx := 0.4029440556 
The ^-component, s^, of the maximum slope at a: = 0, ^ = 2 is similarly obtained. 

> subs({x=0,y=2},gradeq[2]): s[y]:=evalf(%); 

Sy := -0.5738848727 

The maximum slope is then given by 5= ^/s'^ + Sy. 

> max.slope:=sqrt(s[x]"2+s[y]"2); 

max.slope := 0.7012187669 
The maximum slope at x — O, y — 2 is about 0.7, i.e., a vertical rise of 7 meters 
for every 10 meters horizontally. To translate this result into degrees, Rob first 
calculates the angle in radians, 

> angle:=arctan(max.slope); #in radians 

angle := 0.6115434605 
and converts it to degrees (to 3 figures), using the fact that TTradians = 180°. 

> angle:=evalf (2Lngle*180/Pi,3); #in degrees 

angle :— 35.0 
At X = 0, y — 2., the maximum slope corresponds to an angle of 35° with the 
horizontal. It is left as an exercise for the reader to determine what direction 
the maximum slope points in at this location. 

PROBLEMS: 
Problem 1-38: Ski-hill design 
Design your own unique ski hill and repeat the steps in the text. 

Problem 1-39: A different hill 
Consider the height function 

h{x,y) = 5 0 ( 2 x ? / - 3 x ^ 4 - 1 4 x - ^ ^ - 2 ? / + 10) 

over the range a: = —3 to 9 km , 7/ = —3 to 9 km with the height in meters. 
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(a) Produce a three-dimensional plot of this function, using the Maple options 
or ien ta t ion= [-20,70], axes=frained, and style=patchcontour. 

(b) Produce a two-dimensional contour plot with 15 contours and gradient 
arrows included. 

(c) Where is the top of the hill located and what is the height there? 

(d) If a person is standing at x = 1 km, y = I km, in what direction is the 
steepest slope? What is the slope at this location? 

Problem 1-40: Enon on the hill 
The height /i of a certain hill (in meters) on the planet Erehwon is given by 

h{x,y) = 2xy-3x^ -4y^ + Ux + 10y+l2, 

where x and y are the easterly and northerly coordinates in kilometers. 

(a) Produce a three-dimensional contour map of the hill. 

(b) Where is the top of the hill located? 

(c) How high is the hill? 

(d) The small town of Enon is located on the hill at x = 2, y = l km. When it 
rains what is the natural direction in which the water drains out of town? 

(e) Make a two-dimensional plot that shows the contours of constant eleva
tion, the direction arrows for water drainage, and the location of Enon. 
Consider the range x = 1.5 to 2.5, ^ = 0.5 to 1.5 km and take 16 contours. 

(f) Assuming that the draining water is frictionless and g :^ 9.8 m/s^, use 
Newton's second law to determine its acceleration down the hill at Enon. 

Problem 1-41: Climbing a hill 
Suppose that you are climbing a hill whose height is given by 

h = 1000 - 0.01 x^ - 0.02 y'^ meters 

and you are standing at a point with coordinates (60,100, 764) meters. 

(a) Produce a three-dimensional contour map of the hill. 

(b) In which direction should you proceed initially in order to reach the top 
of the hill in the shortest distance. 

(c) Make a two-dimensional plot that shows the contours of constant eleva
tion, the direction arrows pointing in the direction of positive gradient, 
and your present location indicated by a suitably sized circle. 

(d) If you climb in the direction found in part (b), at what angle above the 
horizontal will you be climbing initially? 

Problem 1-42: Follow that mosquito 
The temperature in a warehouse is given by T = x^ + ?/̂  — z. A mosquito located 
at (1,1,2) in the warehouse desires to fly in such a direction that it will get 
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warm as soon as possible. In what direction must it fly? Express your answer 
as a three-dimensional vector. 

Problem 1-43: Electric dipole potential 
An electric dipole potential in the 2; = 0 plane containing two charges of equal 
but opposite sign is given by 

_ 0.4 0.4 

(a) Use the plotSd command to make a three-dimensional plot of V. As your 
plotting options, take x = —3 to 3, y = —3 to 3, zhue color, 20 contours, 
patchcontour style, lightmodel = l i g h t s , and constrained scaling. 

(b) The electric field E is equal to — VF. Calculate E for the dipole. 

(c) Use the f i e ldp lo t and contourplot commands to plot the electric field, 
represented by arrows, and the equipotentials in the same graph. Take 
the range to be x = —1.5 to 1.5, y = —1.5 to 1.5, and use suitable arrows. 
You will probably wish to set the zoom magnification to 200% (the largest 
magnifying glass in the tool bar) to view the arrows. 

Problem 1-44: Electric quadrupole potential 
An electric quadrupole potential in the z = 0 plane containing four charges of 
equal but alternating sign placed at the four corners of a square is given by 

0.4 0.4 0.4 0.4 
V = _ = =4-

For this quadrupole potential, carry out the same steps as in the electric dipole 
problem, but choose whatever options that you think give the best plots. 

Problem 1-45: Temperature variation 
Consider the temperature function r ( x , y, z) = 80/(1 + x^ + 2 2/̂  + 3 z^), where 
T is measured in °C and x, ?/, and z in meters. In which direction does the 
temperature increase the fastest at the point (1,1,-2)? What is the maximum 
rate of increase? 

Problem 1-46: Van der Waals equation of state 
The suitably normalized Van der Waals equation of state can be written as 

(P + 3/V2) (V - 1/3) = (8/3) T. 

Here P , V, and T are the normalized pressure, volume, and temperature. Use 
plotSd to plot the following isotherms over the range V = 0.1 to 3, P = 0 to 3: 

T = 0.85,0.9,0.95,1.0,1.05,1.10,1.15,1.20,1.25,1.5,2.0,2.5 

Take grid=[150,150], numpoints=5000, style=patchcontour, shading=zhue, 
view=[0. . 3 , 0 . . 3 , 0 . . 3 ] , and unconstrained scaling. Choose an orientation 
that shows the isotherms in the P-V plane. 
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1.4 Animated Plots 

1.4.1 Waves Are Dynamic 

Life is a wave, which in no two consecutive moments of its existence 
is composed of the same particles, 
John Tyndall, British physicist (1820-1893) 

In most introductory physics courses, science students learn about wave motion 
and in particular how to add different wave forms to study such wave phenom
ena as standing waves, beats, and interference pat terns . The associated physics 
text will usually have static pictures of the resulting waves at some instant in 
t ime. In the real world, waves tend to move and evolve with t ime. In other 
words, they are dynamic. The dynamic behavior of wave forms can be studied 
by animating them, tha t is to say, creating a t ime sequence of frames tha t when 
displayed rapidly give the illusion of continuous wave motion. 

Two illustrative examples, which can be easily altered to investigate other 
wave phenomena, are now animated. To use the an imate command, the plots 
package must be loaded. 

> r e s t a r t : w i t h ( p l o t s ) : 

The displacement [/ of a sinusoidal wave of amplitude A and wavelength A 
traveling in the x-direction with velocity v may be represented by 

U = Asm (^{x -vt) + 6]. (1.5) 

If t' > 0 the wave travels in the positive x-direction, while if f < 0 it travels in 
the negative x-direction. Here t is the time and 5 the phase angle, which shifts 
the location of the maxima and minima. Longitudinal waves such as sound 
have their displacement in the direction of propagation, while transverse waves 
such as light have their displacement perpendicular to the direction of motion. 

In the next command line, two different sinusoidal waves with, in general, 
different amplitudes, wavelengths, velocities, etc., are added together. 

> U [ l ] : = A [ l ] * s i n ( ( 2 * P i / l a m b d a [ l ] ) * ( x - v [ l ] * t ) + d e l t a [ l ] ) + 

A [ 2 ] * s i n ( ( 2 * P i / l a m b d a [ 2 ] ) * ( x - v [ 2 ] * t ) + d e l t a [ 2 ] ) ; 

Ui := Ai sm ( ^— '—^ + 6i j -{-A2 sm f ^——^-^ + 5̂  

Depending on the values assigned to the parameters, various wave phenomena 
can occur. For example, let's consider two waves of the same amplitude (^1 = 
^ 2 = 1), wavelength (Ai=A2 = 27r), and phase angle {61—62 = 0), traveling with 
the same speeds ( | f i | = |t'2| =0 .5) but in opposite directions. Other possibilities 
can be explored in the problems at the end of this subsection. 

> A [ l ] : = l : A [ 2 ] : = l : v [ l ] : = 0 . 5 : v [ 2 ] : = - 0 . 5 : l a m b d a [ 1 ] : = 2 * P i : 

l a m b d a [ 2 ] : = 2 * P i : d e l t a [ 1 ] : = 0 : d e l t a [ 2 ] : = 0 : 
The resulting waveform with the parameter values substi tuted is now displayed, 

> Waved] :=U[1] ; 
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Wavei := sin(x - 0.50000000001) -h sin(x + 0.50000000001) 
and animated. 

> animate (Waved] ,x=-20. .20, t=0. .4*Pi,frames=40,numpoints=250); 
The spatial range has been taken to be from x = — 20 to +20 and the time 
interval from t = 0 to 4 7r. Depending on what input parameters you choose, 
you might have to alter these ranges. The default setting of the animation 
command is to give 25 equally spaced time frames. Here we have chosen 40 
frames as a compromise between obtaining a visually smooth time sequence 
and the increase in computing time that results when more frames are specified. 
A sufficient number of plotting points (minimum default number is 50) must 
be selected to give a smooth spatial profile that is fine enough not to miss 
any important structural details. Specifying more points slows the calculation 
down, so once again a compromise usually must be achieved. 

When the animate command line is executed, the initial frame of the wave 
animation appears on the screen. Clicking on the picture with the left mouse 
button places the picture in a viewing box and opens up an animation bar at 
the top of the screen. The animation is started by clicking on the arrowhead 
( > ) and stopped by clicking on the square ( • ). If you want the sequence to be 
continuous, click on the loop arrow. In this particular animation, the resultant 
wave travels neither to the right nor to the left, but simply oscillates up and 
down. This is an example of a standing wave. Such a wave can be achieved 
experimentally, for example, by suitably displacing a string, fixed at both ends, 
in the transverse direction. 

Our second example involves a traveling wave made up of a superposition 
of many sinusoidal waves, 

> r e s t a r t : w i t h ( p l o t s ) : 
the nth wave having a velocity c= 1/(1 -\- an) with a > 0. Let us suppose that 
Â  = 5 waves are present so that, since n = l ,2, . . . ,A^, each wave in general has 
a different velocity. 

> c := l / ( l+a*n) ; N:=5: 

1 
c := 

1 + an 
We now add waves described by the following mathematical structure. This 
particular series, in the limit Â  ^ oo, is an example of what mathematicians 
call a Fourier series. 

> U[2] :=(4 /P i )*( l+add(s in( (2*n+l )*(x-c* t ) ) / (2*n+l ) ,n=0 . .N)) ; 

. A • / N 1 . / St \ 1 . f^ 5t 
[/2 := 4 1 -f sm(x - )̂ + - sm 3 x - + - sm 5 x - —-

V ^ ^ 3 V 1 + a / 5 V l-\-2a 
1 . /̂ ^ 7t \ 1 . / 9^ \ 1 . A . 11^ \ \ / 

+ - s m \ 7x - -— + - s m 9x - -— + —-sm U x - -— ] n 
7 V l + 3ay 9 V H - 4 a y 11 V l + 5 a / ' ^ 

First, let's take a = 0, so that c—1 for each sinusoidal wave in the sum. 
> a:=0: c:=c; 



58 CHAPTER 1. THE PICTURES OF SCIENCE 

c := 1 
Then the resultant wave is given by the output of the fohowing command hue. 

> Wave[2] :=U[2] ; 

Wave2 : = 4 [ 1 + sin(x - t) + - s i n ( 3 x - 3 t ) + -sm{5x-5t) + - s i n ( 7 x - 7t) 

-h - s i n ( 9 x - 9 t ) + — - s i n ( l l x - l i t ) j /TT 

The wave is animated, an alternative syntax to that given above being used. 
The syntax is animate(plotcommand,[plotarguments] , t=a. .b,options) . As 
shown in the next recipe, this form can be readily generalized to 3-dimensional 
animations by replacing p lo t with plotSd and including the range of the second 
spatial argument in p lo t arguments. Stylistic options can also be included. 

> animate(plot ,[Wave[2],x=-20. .20,numpoints=500], t=0. .10, 
frames=50); 
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Figure 1.14: A traveling wave of approximately rectangular pulses. 

The opening picture on the computer screen is shown in Figure 1.14. Except 
for the wiggles, the profile is a periodic sequence of rectangularly shaped pulses. 
The finite Fourier series for TV = 5 is an approximation to a rectangular pulse 
train. On being animated, the rectangular pulses travel to the right without 
changing shape. By default, the numerical value of the animation parameter t 
is displayed to 5 significant digits for each frame in the animation in the title 
region of the plot. If desired, the optional argument paraminf o=f a l se can be 
included to turn this information off. 

Now the reader should set a = 1, so that the speed c is equal to 1/(1 -fn). On 
running the animation you should see that the initial shape alters dramatically 
because the individual sinusoidal waves are traveling at different velocities. The 
wave is said to be dispersive^ whereas for a — 0 the wave was nondispersive. 
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PROBLEMS: 
Problem 1-47: Beats 
Consider the addition of two waves with Ai= A2 — I, t*! = i;2 = 1, 61=62 = 0, 
Ai=2 7r, and A2 = 2.05 7r. 

(a) Animate the resultant wave, taking an x range from —200 to +200, t = 0 
to 500, 25 frames, and 600 points. 

(b) Describe the envelope of the resultant wave. If these were sound waves 
what intensity variation would an observer hear at a fixed spatial point 
as the resultant wave passed by? This is the phenomenon of beats. 

Problem 1-48: Triangular wave train 
Making use of the animation command with c = l and Â  = 20, show that 

2 / - y " ( - l ) ^ + i -sm{n{x-ct)) 
n=l 

is a traveling wave consisting of approximately triangular pulses. 

Problem 1-49: Wave pulse 
Animate and discuss the behavior of the following wave profile: 

y = 0.03 (x -vt)/{l 4- {x -vtf), 

with f = 2 m/s. Take x = —5 to 25 meters, t = 0 to 10 seconds, 250 points, 
100 frames, and use the color magenta. Discuss what happens if the v in the 
denominator is replaced with v'^. You may wish to increase the x and t ranges. 

1.4.2 The Sands of Time 

Thou seest the mountains and thou deemest them affixed, 
(verily) they are as fleeting as the clouds. 
The Koran 

In an earlier tale, Rob, a young ski-hill designer and gung-ho skier, was asked 
to create a three-dimensional computer model of a mountainous area suitable 
for ski runs of varying difficulties. Although we were able to "fly" around the 
ski hill by rotating the viewing perspective in the computer file, the model itself 
was static, not displaying the temporal evolution that real mountains would ex
hibit over sufficiently long times due to the competing geological forces of uplift 
and water and wind erosion. Although this feature would be of no concern to 
the ski-hill designer, it is of interest to geologists concerned with the evolution 
of real mountain ranges over the eons. 

In this upcoming recipe, we shall show how to build geological erosion into 
the earlier ski-hill model and illustrate the time evolution of the mountain range 
by producing a three-dimensional animation. The relevant command structure 
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is very useful in animating the transverse vibrations of elastic membranes and 
other dynamic models in science and engineering. A call is first made to the 
plots package, which is needed in order to use the animate command. 

> restart: with(plots): 

Two decay coefficients, a i = 0 . 5 and 0̂ 2 = 0-005, are introduced, 

> a lpha[1] :=0 .5 : a lpha[2]:=0.005: 
and exponentially decaying time-dependent functions formed. 

> d [ l ] : = e x p ( - a l p h a [ l ] * t ) ; d [2] :=exp( -a lpha[2]* t ) ; 

Geological uplift might be simulated, for example, by changing the sign of one of 
the decay coefficients and executing the recipe over a limited time so as to avoid 
"exponential overflow." Of course, one need not use only exponential functions 
for the time dependence. 

Now the ski hill in recipe 01-3-2 is modified by inserting the time-dependent 
functions di and ^2 into the height function. The new height function h given 
below was chosen, using a trial and error approach, in such a way that the 
erosion looks somewhat realistic, displaying asymmetric spatial variation. 

> h:=2*d[2]*cos(0.4*x)*cos(0.4*y) 
+5*x*y*d [1] *exp(-(x'^2+d [1] *y'^2)) 
+3*d[l]*exp(-(d[l]*(x-2) '^2+(y-2) '^2)); 

h:=2e(-0-005*) cos(0.4x) cos(0 .4y)^5xy e^-^-^*) ^{-x'-e^-^-^*) y') 

By running the following animate command,^^ the reader can view the erosion 
of the ski-hill mountain range. The opening argument is the Maple plotting 
command, plotSd. 

> animate(plo tSd, [h ,x=-3 . .4 ,y=-3 . .4] , t=0. .15 , f rames=40,axes= 
framed,or ienta t ion=[-65,55] ,s tyle=patchcontour ,contours=20, 
scal ing=constrained,shading=xyz, l ightmodel=l ight2) ; 

The plot arguments, h and the two spatial ranges, were entered as a list. The 
range of the animation parameter, time t, was then given, followed by the 
number of frames and a large number of style and color options. We have 
retained the original 20 contours appearing in the earlier recipe, so that the 
temporal evolution of the hill can be more easily visualized. Instead of the 
zgreyscale coloring that Rob was instructed to use, here we take shading=xyz 
to color the hill in all three directions. The lighting has also been changed from 
that used in the original ski-hill recipe. 

You can experiment with controlling the erosion by inserting different tem
porally decaying functions and playing with the decay coefficients. Also feel 
free to change the coloring and lighting. 

^^This command syntax supersedes the animateSd command used in earlier releases. 
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PROBLEMS: 
Problem 1-50: Uplift 
Modify the erosion recipe to illustrate the geological phenomenon of uplift of a 
portion of the mountain chain. Be careful with your choice of parameters and 
the total running time, or the initial profile will look extremely small compared 
to the final profile. 

Problem 1-51: Normal modes of a rectangular membrane 
The transverse displacement ^ of a light, uniform, horizontal, rectangular mem
brane fixed along its four edges at x —0, x = a, y = 0, and y = b will in general 
be described by a linear combination of its characteristic functions, or nor
mal modes. The (m, n)th normal mode (m = 1, 2 ,3 , . . . , n = 1, 2,3,. . .) with 
amphtude Am,n is given at time t by [Mor48] 

sin(m7rx/a) sm{n7r y/b) cos(2 TT z/^,n 0 

with characteristic (eigen) frequencies iym,n — {^/'^)\/T/(JyJ{m/aY + {n/hy. 
Here T is the tension in the stretched membrane and a the mass per unit area 
of the membrane. Take r = l , cr = l, a = 3/2, and 6=1 . 

(a) Animate the membrane for the normal mode m = 2, n — 2 with ^2,2 = 1-
Take the time sufficiently long to show several complete vibrations. 

(b) Animate the membrane for several other values of m and n. 

(c) Animate different combinations of two or more normal modes, choosing 
amplitudes Am^n that give interesting vibrational patterns. 

1.4.3 These Arrows Are Useful 

/ / the Third World War is fought with nuclear weapons, 
the fourth will be fought with bows and arrows. 
Lord Louis Mountbatten, British admiral, member of royal family (1900-1979) 

The "arrow" or functional operator, which appeared in some earlier recipes, 
is much more useful than its debut may have indicated. Here are two examples, 
a simple one to start with and then a more advanced illustration of its use. 

Suppose that young Justine's personal weekly income consists oi p — 2d^ 
pennies put into her piggy bank by her parents each day d that she is good. 
At the beginning of each new week, d is reset to 1, so that her parents don't 
ultimately go broke. On the first day {d—l) of the week, she receives 2 pennies, 
on the second (d = 2) day she receives 2 x 2^ = 8 pennies, and so on. If she is 
bad, the income ceases for the rest of the week. Let's consider a (rare?) week 
when Justine was good every day. 

The plots hbrary package is loaded because it contains the po in tp lo t com
mand, which will be used to plot Justine's daily income in a point format. 
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Alternatively, one could use the plot command, with the option style=point. 
However, the display command will also be needed in order to superimpose 
plots in our second example, so the plots library package is required in any case. 

> restart : wi th(plots ) : 
Using the arrow operator, Justine's income formula can be entered as follows: 

> p:=d->2*d^2; 

When the day d of the week is supplied to p as an argument, Justine's income 
for that day will be calculated. For example, the number of pennies deposited 
in her piggy bank on day 3 is obtained by entering p(3) . 

> p (3 ) ; 

18 
So, Justine receives 18 pennies on the third day. Using the pointplot com
mand, Justine's daily income can be plotted as seven size-16 circles for the seven 
days of the week. The resulting power law behavior is shown in Figure 1.15. 

> po intplot ( [ seq([d ,p(d) ] ,d=l . .7 ) ] , symbol=circ le , 
symbolsize=16,labels=["day","income"]); 

80: 

income 

40-

20-

9— 
o 

o 

o 

o 

o 

o 

1 2 3 4 day 6 7 

Figure 1.15: Justine's daily income versus day of the week. 

Her total allowance for the week is obtained by adding up the daily totals. 

> tota l :=add(p(d) ,d=l . .7) ; 

total := 280 
Thus, Justine would receive $2.80 in a week that she was good every day. 

In this simple example, there was only one input variable in the functional 
operator, namely the number d of the day. The extension to more input vari
ables and a more complex situation is easily handled, as is now demonstrated. 

Recall that in the introductory recipe. Bridge Design 101, Russell the 
engineer found that in order to minimize the cost of the bridge it should have 
eight piers including one at each end. We have asked Russell to return and 
create a recipe that schematically draws the bridge, with a river below. Then 
he is to place a square box on the horizontal bridge deck and make the box 
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undergo simple harmonic motion about the center of the bridge, with turning 
points at the ends of the bridge. 

Russell decides that he will use solidly colored rectangles to depict the river, 
the bridge deck, and the piers. The necessary Maple command, rec tangle , is 
in the plottools library package. This package contains many other geometrical 
shapes that can be plotted. Replace the colon with a semicolon in the following 
command line to see what shapes are available. 

> with(plottools): 

The command rec tang le ( [x l , y l ] , [x2,y2] ,color=c) creates a plot data ob
ject, which when displayed is a two-dimensional rectangle whose top left corner 
is located at xl , yl and bottom right corner at x2, y2. The color c must be spec
ified. An arrow operator r (r for rectangle) is formed, with the five quantities 
xl , yl , x2, y2, c required as input variables. 

> r : = ( x l , y l , x 2 , y 2 , c ) - > r e c t a n g l e ( [ x l , y l ] , [ x 2 , y 2 ] , c o l o r = c ) : 
Using this operator, a green bridge deck, a blue river, and eight equally spaced 
magenta-colored piers are created. A surrealistically colored scene indeed! 

> d e c k : = r ( l , 2 . 2 , 8 . 2 , 2 , g r e e n ) : 

> r i v e r : = r ( l , 0 , 8 . 2 , - 0 . 5 , b l u e ) : 

> p i e r s :=seq ( r ( i , 2 ,1+0 .2 ,0 ,magen ta ) ,1=1 . .8 ) : 
Russell uses the t e x t p l o t command to add the red-colored words "pier," 
"deck," and "river" to the plot. Each word is entered as a Maple string, and the 
associated numbers specify the horizontal and vertical positions for that word. 
The word positions are determined initially by examining the parameter values 
used in the above three commands, and then fine-tuned by trial and error. Each 
word grouping is put into a list format and then a list of lists formed. 

> t p : = t e x t p l o t ( [ [ 5 . 7 , 1 , " p i e r " ] , [2 .6 ,1 .85 , "deck" ] , 
[ 4 . 6 , 0 . 1 5 , " r i v e r " ] ] , c o l o r = r e d ) : 

The four plots are superimposed with the display command, and assigned the 
acronym bg standing for "background." The annotated bridge and river will 
provide the stationary background in the animation of the moving box. 

> bg:=dlsplay({deck,tp,piers,river}): 

Using the following arrow operator, a red box is drawn whose position at time t 
is determined when t is given as input. The horizontal input coordinates (first 
and third arguments of r) are such that the box will undergo simple harmonic 
motion along the bridge deck surface as t increases, the motion being about the 
center of the bridge, with the turning points at the bridge ends. 

> box := t ->PL0T( r (4 .4+3 .4*s ln ( t ) ,2 .6 ,4 .8+3 .4*s ln ( t ) ,2 .2 , r ed ) ) : 
Simple harmonic motion of the box on the bridge deck is produced with the 
animate command over the time interval t == 0 to 47r. 

> animate(box,[t],t=0..4*P1,frames=100,background=bg, 
scallng=constralned,axes=NONE,paramlnfo=false); 

For a reasonably smooth animation, one hundred frames are used. In the 
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background option, Russell specifies bg. The scaling is constrained and all 
axes are removed from the resulting figure by including axes=NONE. The time 
parameter will not appear in the title region of the animated plot, because the 
option paraminf o=f a l se is included. The opening frame of the animation is 
shown in Figure 1.16. 

Figure 1.16: Box undergoing simple harmonic motion on the bridge deck. 

To initiate the animation, click on the computer plot with the left mouse button 
and then on the start arrow in the tool bar. 

PROBLEMS: 
Problem 1-52: Mathematical example 
Use the arrow operator to apply the operation 5t^ —2t^-\-t'^ to the sequence 
of integers 3 to 9. Use the add command to total the sequence. 

Problem 1-53: Another math examiple 
For the function / (x , y) = 2x^ + 4?/^, use the arrow operator to evaluate /(5,9). 
Create a 3-dimensional plot of / (x , y) over the range x = —2 to 2, ^ = —2 to 2. 

Problem 1-54: Altering the text recipe 
Change the shape of the sliding box in the text recipe into a circular disk. 
Change the shapes of the piers into triangles with the flat sides down. Alter the 
colors of the background components and allow the time parameter to appear 
in the animation. 



Chapter 2 

Deriving Model Equations 
Aristotle could have avoided the mistake of thinking that women have 
fewer teeth than men by,., asking Mrs. Aristotle to open her mouth, 
Bertrand Russell, British philosopher and mathematician (1872-1970) 

In Chapter 1 you learned how to plot observational and experimental data 
and functional forms in a variety of ways. Still other important types of graphs 
and other plotting commands will be encountered in ensuing chapters. The 
main purpose of first creating pictures in science is to gain a quahtative idea of 
the overall behavior of the data or the often complicated mathematical equa
tions used to describe physical phenomena. When one is presented with a graph 
of the data, the next step is to derive a model equation or mathematical form 
that best describes the data. In this chapter, we shall illustrate how this is done 
using the method of least squares. The least squares method, which will be ex
plained shortly, can be easily implemented by accessing the Statistics library 
package. This package, which was briefly encountered in the previous chapter, 
contains all of the relevant Maple statistical analysis and graphing commands. 
It supersedes the stats and statplots library package of earlier Maple releases. 

Our specific goal is to further our understanding of which types of data 
structures lead to the model equations of Table 2.1 and, more importantly, to 
learn how to derive these equations using simple Maple command structures. 

Table 2.1: Types of model equations encountered in this chapter. 

Linear model 

y = a-\-bx 

Power law model 

y = ax^ 

Polynomial model 

y = a-\-bx — cx'^-{-'•• 

Exponential model 

y = ae 
-bx 

Logistic model 
a 

V — 

Functional model 

y = f{x) 
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The qualitative shapes of the curves associated with the linear, power law, poly
nomial, exponential, and logistic models were qualitatively drawn in Figure 1.1 
of Chapter 1. The reader might wish to review these shapes before proceeding. 
The label "functional models" will be used in this chapter to refer to model 
equations involving functions f{x) other than powers and exponentials. 

Once a particular model equation has been determined for a specified set 
of data, it can then be used either to interpolate between data points or to 
extrapolate outside the range of the given data and make predictions of the 
anticipated behavior of the physical phenomena. Of course, the latter can 
prove dangerous if the underlying assumptions of the model equation no longer 
hold. Before plunging into the least squares derivation of model equations 
from a wide variety of interesting data, we begin by introducing the linear 
correlation coefficient r. If you suspect that the plotted data can be fitted, 
at least approximately, with a straight line, the calculation of r can quickly 
confirm whether your intuition is correct. 

2.1 Linear Correlation 

If a set of Â  paired quantities (x^, ^^), i = 1, 2 , . . . , TV, appear to lie along a 
straight line it is useful to first calculate the linear correlation coefficient r. If 

1 ^ 1 ^ 

i=l i=l 

denote the mean values of the x and y data, respectively, the linear correlation 
coefficient is defined by 

N 

Yl^^' -x)(^, -y) 
= • (2.2) 

2 = 1 

r — 
N 

^ ( x , - x ) ^^2 
N 

T.(y'-yy 

The value of r lies between —1 and 1. It takes on the value of 1 when the data 
points lie on a perfectly straight line with positive slope, x and y increasing 
together. Complete positive correlation is said to exist. To see that this is true, 
let the data points lie on the straight line yi = aXi-\-b, with the slope a positive. 
Then, yi — y = a {xi — x) and r = a ^^{xi — x)^ ja ^^[xi — x)^ = l. Thus, since 
a cancels out, the value 1 holds no matter what the magnitude of the slope. 

Complete negative correlation exists when r = — 1. In this case the data 
points lie on a perfectly straight line with negative slope, y decreasing as x 
increases. If r is close to zero, the variables x and y are said to be uncorrelated, 
and a straight-line relation between them would not be expected. 

Since the mathematical steps involved in Equation (2.2) are easily accom
plished with a single simple command, the following "corny" example should 
suffice to show how the correlation coefficient is calculated with Maple. 
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2.1.1 The Corn Palace 

"Who did you pass on the road?^^ the King went on..,, 
"Nobody/^ said the Messenger, 
"Quite right,'' said the King, "this young lad saw him too. 
So of course Nobody walks slower than you.'' 
Lewis Carroll, Through the Looking Glass (1872) 

Driving through South Dakota on 1-90 without stopping can be a somewhat 
monotonous drive, unless one takes time to visit one or more of the attractions 
that are off the Interstate. The main natural feature along this stretch of free
way is Badlands National Park, where spectacular examples of weathering and 
erosion can be viewed. There are also several man-made attractions that dot 
the highway. From west to east, these are Mount Rushmore National Memorial 
with its colossal sculpted heads of George Washington, Thomas Jefferson, Abra
ham Lincoln, and Theodore Roosevelt; then, further to the east, the block-long 
"world famous" Wall Drugstore in Wall, South Dakota; and finally, still further 
to the east, the Corn Palace in Mitchell, South Dakota. Mitchell is a trade 
center for locally produced corn, grain, and cattle. Its local events are centered 
around corn, and the Corn Palace is perhaps the ultimate artistic tribute to 
corn. Quoting from the American Automobile Association tour book, "The 
Corn Palace is of Moorish architecture with minarets and kiosks. Portions of 
the exterior and interior are covered with designs of corn outlined with grasses 
and grains. Each year 2000-3000 bushels of various shades of corn and grasses 
are used to redecorate the building, which is illuminated at night." 

In the spirit of the Corn Palace, let's consider an example involving corn. 

Table 2.2: United States corn yield for the period 1950-1971. 

Year 

1950 
1951 
1952 
1953 
1954 
1955 
1956 
1957 
1958 
1959 
1960 

Corn output 
(bushels/acre) 

38 
36 
41 
40 
38 
40 
45 
46 
52 
53 
54 

Year 

1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 

Corn output 
(bushels/acre) 

63 
65 
67 
70 
73 
72 
80 
79 
87 
83 
88 
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Table 2.2 shows the corn output [AL79], expressed in bushels per acre, for the 
United States for the period 1950-1971. 

The call with ( S t a t i s t i c s ) is needed in order to calculate the linear corre
lation coefficient and to make a scatter plot of the corn data. 

> restart: with(Statistics): 

Taking the year 1950 to be 0, 1951 to be 1, etc., the sequence command is used 
to enter the years as a list of numbers from 0 to 21. 

> year: = [seq(n,n=0. .21)] : 
The corn output given in Table 2.2 is also entered as a list. 

> output :=[38,36,41,40,38,40,45,46,52,53,54,63,65,67,70, 
73 ,72 ,80 ,79 ,87 ,83 ,88] : 

Using the Sca t te rP lo t command, the data are plotted in Figure 2.1 and appear 
to lie approximately along a straight line. 

> Sca t te rP lo t (year ,ou tpu t ,v iew=[0 . .21 ,0 . .90] , sy inbol=c i rc le , 
l abe ls=[" year" , "output"] ,tickinarks=[3,3] ) ; 
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Figure 2.1: United States corn output (bushels/acre) for the period 1950-1971. 

The linear correlation coefficient between output and year is calculated. 

> r :=Cor re l a t ion (yea r ,ou tpu t ) ; 

r = 0.9842870603 
The correlation coefficient is 0.984, which is near +1 , so a straight-line relation 
with positive slope is indicated. The best-fitting straight line can be found with 
the linear least squares procedure discussed in the next section. 
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PROBLEMS: 
Problem 2-1: Deer antler weights 
Table 2.3 shows the weights W, expressed in 0.01 kg, as a function of age 
A in months for a number of different deer antlers [AL79]. Plot the data and 
calculate the linear correlation coefficient. Is there a linear relationship between 
deer antler weights and age? 

Table 2.3: Deer antler weights VF as a function of age A. 

A 

W 

20 

8 

22 

10 

30 

15 

34 

20 

42 

27 

43 

26 

46 

31 

54 

36 

56 

40 

68 

49 

70 

49 

Problem 2-2: Purchasing power of the dollar 
In Table 1.1, the purchasing power of the U.S. dollar, as measured by con
sumer prices, was given for the period 1983 to 1992. The purchasing power 
in the base year 1983 was assigned the value 1.00. By calculating the linear 
correlation coefficient and showing that it is quite close to the value — 1, demon
strate that the data can be well fitted by a straight line with negative slope. 

2.2 Least Squares Derivations 

A standard procedure in fitting observational data that appear to lie along a 
straight line is to find the best-fitting straight line using the method of least 
squares. Statisticians refer to this procedure as regression analysis. Let the 
equation of the proposed straight line be Y = a -\- bx, where the intercept a 
and the slope b are to be determined. Label the Â  data points {xi^yi) with 
i = l ,2 ,3 , . . . ,A ' . If only two data points [N — 2) are present, a straight line 
can be found immediately that passes exactly through the two points. Unless 
all the points lie precisely on a straight line, for Â  > 2 there will in general be 
a difference between the F-coordinate of the straight line and the value of yi at 
the same value of x (i.e., at the Xi). Depending on whether the yi lie above or 
below the straight line, the differences will be either positive or negative. To 
eliminate the possibility of producing an average error of zero, the differences 
are squared. Adding up the squares of the differences, a "total error" is formed. 

N N 

(2.3) Total error = ^{yi - YiY = ^{Vi - a - bxif 

If the Xi are exactly known but there is an uncertainty CFI for each y ,̂ e.g., due 
to measurement error, this result is slightly modified to yield the chi-square 
merit function of statistics, viz., 

N 

=1 

(2.4) 
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Points with smaller uncertainty ai are given more weight in the chi-square 
function. If the individual uncertainties ai are not known, then the ai are taken 
to be all the same and arbitrarily assigned the value 1, thus reducing chi-square 
to the total error defined above. In the examples that follow, we shall take 
all the ai = l and use the phrases chi-square and total error interchangeably. 
The best-fitting straight line is the one that minimizes chi-square or the total 
error. At the minimum, the derivatives of chi-square with respect to a, b vanish, 
yielding the two equations 

Sy ^ aN -\-bSx, Sxy = aSx -\-bSxxi (2.5) 

with Sy = J^iVi^ Sx = Yli^i^ Sxx = Y^i^h and Sxy = T^iXiVi. This pair 
of equations is easily solved for the intercept a and slope b of the best-fitting 
straight line, 

b={NSxy-SxSy)/A, a = y-bx, (2.6) 

where y = Sy/N and x — Sx/N are the mean values and A = N Sxx - (Sx)'^-
Maple has a built-in least squares procedure that takes care of finding the best-
fit coefficients a and b for us. 

As a measure of the accuracy of the least squares fit, statisticians define the 
standard error or standard deviation as 

X̂  _ ^ iT^iiVi - a - bxi)'^ _ jSyy -aSy-bSxy 
(2 7) 

N-2 V N-2 V A ^ - 2 ' ^ • ^ 
where use has been made of the least squares equations (2.5) to obtain the 
last form. The factor Â  — 2 is inserted in the denominator rather than N to 
refiect the fact that only Â  — 2 data points are really independent of the fitting 
procedure. The straight-line fit involves two unknowns, a and 6, which require 
two data points to determine. Assuming a normal distribution of data points 
about the mean, there is a 68.3% probability of a data point being within one 
standard deviation of the mean, 95.4% of being within 2 a of the mean, 99.7% 
of being within 3 a of the mean, and so on. 

It can be shown [PFTV89] that the standard deviations, aa and a^, in the 
least squares estimates of a and 6, respectively, are given by 

aa = V{SxJA)a, a, = ,/{N/A)a. (2.8) 

If the observational data do not lie along a straight line but instead along 
one of the other curves of Table 2.1, the least squares method can be generalized 
to handle these situations as well. You will see several such examples as you 
progress through the chapter. 

PROBLEMS: 
Problem 2-3: Verification 
Derive Equations (2.5) and (2.6). 
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2.2.1 Will You Be Bet ter Off Than Your Parents? 

He was a self-made man who owed his lack of success to nobody, 
Joseph Heller, Catch 22 (1961) 

One of the great worries of the younger generation is that they won't be as 
economically well-off as their parents. To see whether this concern is backed 
by recent historical trends, the disposable (per capita) personal income over a 
period of time can be tracked and a model equation formulated. The validity 
of the model can then be checked by comparing its predictions with the actual 
disposable personal income at some later date. Table 2.4 shows the disposable 

Table 2.4: United States per capita disposable income and GNP. 

Year 

1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 

Income 

8660 
8794 
9077 
9274 
9805 
10292 
10715 
11061 
11448 
11708 
12022 
12345 
12770 

GNP 

12585 
12651 
13215 
13587 
14184 
14897 
15661 
15896 
16485 
16809 
16616 
16959 
17694 

Year 

1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 

Income 

13539 
13310 
13404 
13793 
14095 
14662 
14899 
14813 
15009 
14999 
15277 
16252 
16597 

GNP 

18572 
18360 
18032 
18878 
19611 
20367 
20794 
20497 
20756 
20090 
20702 
21896 
22443 

personal income (in dollars) for citizens of the United States for the period 1960 
to 1985. To account for inflation, the dollar amounts have been "chained" to 
1992 dollars. The per capita GNP is also shown.^ Separate lists are formed 
for the year (using the sequence command) and for the disposable income. We 
take the year 1960 to be 0, the year 1961 to be 1, and so on. A comment to 
this effect has been added to the command line by using the sharp symbol #. 

> restart: with(Statistics): with(plots): 

> year:=[seq(n,n=0..25)]: #year since 1960 

> income:=[8660,8794,9077,9274,9805,10292,10715,11061,11448, 

11708,12022,12345,12770,13539,13310,13404,13793,14095, 

14662,14899,14813,15009,14999,15277,16252,16597]; 

^GNP stands for gross national product, the annual sum of all goods and services produced 
by a country. 
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The year and income lists are then zipped together to form a single list of lists 
for the plotting points. 

> pair: = (year, income) -> [year, income] : 
> points:=zip(pair,year,income) ; 

points := [[0, 8660], [1, 8794], [2, 9077], [3, 9274], [4, 9805], [5, 10292], 

[6, 10715], [7, 11061], [8, 11448], [9, 11708], [10, 12022], 

[11, 12345], [12, 12770], [13, 13539], [14, 13310], [15, 13404], 

[16, 13793], [17, 14095], [18, 14662], [19, 14899], [20, 14813], 

[21, 15009], [22, 14999], [23, 15277], [24, 16252], [25, 16597]] 
A call is made to the plot command, with its stylistic options, to generate a 
graph (labeled pts) of the plotting points, which are then shown in Figure 2.2. 
The view option is included so as to force the vertical axis to begin at zero, 
which it would not otherwise do. 

> pts :=plot(points,style=point,symbol=circle,symbolsize=12, 
color=blue,tickmarks=[3,2],labels=["year" ,"income"] , 
view=[0. .25 ,0 . .16000]) : pts; 

income t 

10000} 

^ O o O O 

U 10 year 20 

Figure 2.2: Personal income from Table 2.4 versus year after 1960. 

Aside from some small oscillations, it appears that the points can be fitted 
by a straight line. This can be confirmed by calculating the linear correlation 
coefficient r. 

> r:=Correlation(year,income); 

r := 0.9922275441 
Since the correlation coefficient r is close to 1, it is reasonable to seek a straight-
line fit to the data using the least squares fitting procedure. This can be accom-
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plished with two different Maple command structures. First, the F i t command 
is used with the hnear form a -\- bx given. The independent variable x is the 
number of years after 1960. The income formula is assigned the name y. 

> y:=Fit(a+b*x,year , income,x); 

y := 8757.98290598290806 -f 310.499829059828869 x 
Alternatively, the same result can be obtained using the LinearPi t command. 

> y2 :=LinearFi t ( [1 ,x] ,year , income,x) ; 

y2 := 8757.98290598290806 -h 310.499829059828869 x 
In either case, the default answer is given to higher floating-point accuracy than 
the "normal" ten digits. On rounding off to 4 digits with the evalf command, 
the best-fitting straight line relating the personal income {p) to the year (x) 
since 1960 is 

> p :=eva l f (y ,4 ) ; 

p :-8758.-h 310.5 X 
The default "straight-hne model" equation, y, based on the data for 1960-1985, 
will now be checked for its predictive accuracy by including "future" data points 
for the period 1986-1995 taken from Table 2.5. 

Table 2.5: Income and GNP data for 1986-1995. 

Year 

1986 
1987 
1988 
1989 
1990 

Income 

16981 
17106 
17621 
17801 
17941 

GNP 

22866 
23296 
23979 
24553 
24642 

Year 

1991 
1992 
1993 
1994 
1995 

Income 

17756 
18062 
18075 
18320 
18757 

GNP 

24119 
24490 
24767 
25305 
25588 

To carry out the check, a single picture will be created, containing the future 
data points, the data points from 1960 to 1985, and the best-fitting straight 
line y. The latter is now plotted in Gr over the range x = 0 to 35. 

> Gr :=plo t (y ,x=0. .35 ,color=red) : 
Next a plot of the future points (shown as size 12 green boxes) is created. 

> fu turepts :=plo t ( [ [26 ,16981] , [27 ,17106] , [28 ,17621] , 
[29,17801], [30,17942],[31,17756],[32,18062] ,[33,18075] , 
[34,18320] , [35 ,18757]] ,color=green,s ty le=point , 
symbol=box,syinbolsize=12) : 

Finally, all three plots are superimposed in a single graph by the use of the 
by-now-familiar d isplay command. 

> d i sp lay({Gr ,p t s , fu tu rep t s} , l abe l s=["year" , " income"] , 
t ickmarks=[4,2] ,view=[0. .35,0. .20000] ) ; 
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Figure 2.3: Best-fitting straight line for personal income data. 

Figure 2.3 shows the results of applying Maple's best-fitting straight-line rou
tine. The first five future data points (boxes) for the period 1986 to 1990 
{x =26 to 30) lie on the model equation's extrapolated straight line. Not 
surprisingly, the linear (straight-line) model does a good job in predicting the 
short-term future. The last five future data points for 1991 to 1995 lie below 
the straight-line prediction. Is this a trend or part of the small oscillations seen 
for the earlier data? You might try searching the hterature or, perhaps, going 
to the Internet for some more data points since 1995. 

Assuming that the linear model displays the correct trend, one could use it to 
predict the per capita disposable income in, say, the year 2005. Obviously, one 
could obtain the answer by substituting (use subs) these numbers into the linear 
model equation y^ or by using the evaluation (eval) command. Alternatively, 
we can turn y into a functional operator / by using the unapply command: 

> f :=unapply(y,x) ; 

f :=x-^ 8757.98290598290806 + 310.499829059828869 x 
The appearance of the arrow in the output signals the presence of a functional 
operator. It indicates that if you specify a value of x, then the operation on 
the right-hand side of the arrow will be applied to x. Thus, since the year 2005 
corresponds to x = 45, the command 

> f (45) ; 
22730.47522 

yields $22,730.48 as the predicted per capita income in that year. Again, to 
check on the model equation, the reader could compare the predicted income 
values with the actual numbers as they become available. 
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PROBLEMS: 
Problem 2-4: Predicting the G N P 
Using the data of Table 2.4 for the period 1960-1985, find the best fitting 
straight fine for the GNP of the United States. Then include the 1986-1995 
data of Table 2.5 to see how well the straight line predicts the "future" GNP. 
What GNP does the linear model predict for the years 2000, 2005, and 2010? 

Problem 2-5: Deer antlers 
Table 2.3 shows the weights W, expressed in 0.01 kg, as a function of age A 
in months for a number of different deer. Find the best-fitting straight line for 
these data. What is the predicted weight in kilograms for deer antlers belonging 
to a deer of age 60 months? 

Problem 2-6: Corn yield 
Table 2.2 shows the corn output, expressed in bushels per acre, for the United 
States for the period 1950-1971. Determine the best-fitting straight line for 
these data. Assuming that the linear trend prevailed, what should have been 
the corn output for the year 1975? 1985? 1995? Do an Internet or literature 
search and find out what the actual corn output was for these years and compare 
with the predicted values. 

Problem 2-7: Heating-oil consumption 
Table 2.6 gives the number of gallons of oil in a tank used for heating a condo 
complex d days after January 1, the day that the tank was last filled. 

Table 2.6: Number of gallons in the tank on day d. 

d 

gallons 

0 

30,000 

1 

29,525 

2 

29,250 

3 

28,775 

4 

28,300 

5 

27,800 

6 

27,300 

(a) Determine the linear correlation coefficient for these data. Does your 
result suggest a straight-line fit? 

(b) Determine the best-fitting straight line to the data. 

(c) Predict the number of gallons of oil in the tank on the last day of January. 
What assumptions are you making in using the best-fit equation for your 
prediction? 

(d) If the pattern of fuel consumption remains unchanged, when would the 
tank be empty? Express your answer in terms of the day of the month. 

(e) If the tank is to be refilled when 25% remains, on what day of which 
month should the oil tanker return to fill the tank? 

Problem 2-8: T-shirts 
Colleen, the MBA graduate, was employed one summer at a tourist shop, which 
among other things sold printed T-shirts with the city logo on the front. At 
the time, the owner of the shop wanted to order 650 more T-shirts, but the 
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catalogue prices, which are reproduced in Table 2.7, only went up to 350 T-
shirts. The owner tried to contact her supplier to see what the total cost would 
be for 650 T-shirts but the supplier was away for a few days. In the meantime. 

Table 2.7: Total cost of T-shirts as a function of the number ordered. 

Number purchased 

Total cost 

50 

250 

100 

375 

150 

500 

200 

600 

250 

700 

300 

825 

350 

950 

she asked Colleen to answer the following questions, which you can also try: 

(a) What is the linear correlation coefficient for the data? Does this suggest 
a linear model relating the total cost to the number purchased? 

(b) What is the equation of the straight line that best fits the tabulated data? 

(c) Using the model equation, how much should 650 T-shirts cost the store 
owner? 

(d) If 650 shirts are bought, what is the average cost per shirt? 

(e) If the store owner plans to mark the T-shirts up 300% over the cost, what 
should a T-shirt be sold for? 

(f) At the marked-up price, how many T-shirts would have to be sold to just 
cover the total cost of the 650 shirts? That is, what is the break-even 
number of shirts that must be sold? 

Problem 2-9: Enon Revisited 
The hill on which the small town of Enon is located is described by 

h{x,y) = 2xy -3x'^ - Ay'^ -\-lAx -\-10y + 12 meters 

where x and y are the easterly and northerly coordinates in kilometers and h 
is the height. Convert h into a functional operator. If Enon's coordinates are 
x = 2, ^ = 1, use the functional operator to determine Enon's elevation? What 
is the elevation difference between Enon and the top of the hill? 

2.2.2 What Was the Heart Rate of a Brachiosaur? 

The progress of science is strewn^ like an ancient desert trail, 
with the bleached skeleton of discarded theories which once seemed 
to possess eternal life, 
Arthur Koestler, British writer (1905-1983) 

Previously, the general scientific concensus was that dinosaurs were cold-blooded 
animals (reptiles), but opinions have shifted, and many scientists now believe 
that they were actually warm-blooded. Learning of this possibility in one of her 
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zoology courses, Heather, the premed student, asks her mathematician sister 
Jennifer the following question: 

"Even though dinosaurs have been extinct for millions of years, can the 
heart rate of, say, the brachiosaur be determined? This creature was believed 
to be the largest dinosaur that ever lived, with an estimated body mass of about 
75 thousand kilograms." 

To which Jennifer replies, "Assuming that the brachiosaurs were warm
blooded, the answer is yes. Given the heart rate data as a function of body 
mass for present-day warm-blooded animals, we can formulate a model equation 
to estimate the heart rate for a brachiosaur. Not only that, the model equation 
can be understood by using scaling arguments similar to those that we discussed 
earlier." 

"OK, Jennifer, but where are we going to get the necessary data and how 
are we going to use it to extract the model equation?" 

"Remember Herbert Lin's paper [Lin82] on zoological scaling. Using data 
from this paper, we can construct Table 2.8 showing the approximate (average 

Table 2.8: Heart rate and body mass for some warm-blooded animals. 

Mass 

Rate 

mouse 

0.015 

624 

rabbit 

2.0 

210 

dog 

15 

76 

human 

63 

72 

tiger 

99 

55 

donkey 

407 

46 

elephant 

3000 

37 

whale 

50000 

17 

values for a species) body mass in kilograms and heart rate in beats per minute 
for a selection of present-day warm-blooded animals. Notice that the heart rate 
and body mass are inversely related, the heart rate decreasing as the body mass 
increases. Further, look at the wide span of the data. The ratio of largest heart 
rate to smallest is about 37 (624/17), while the ratio of largest body mass to 
the smallest is about 3,000,000 (50,000/0.0150). As you recall from our earlier 
scaling examples, since the data span many orders of magnitude, this suggests 
that we create a log-log plot and look for a power law of the structure y = kx^.^^ 

"I understand what you're saying, Jennifer. If the points can be fitted by 
such a power law models the log-log graph will be a straight line of slope b 
and intercept ln(A:) if \n{y) is plotted against ln(x). So if we set Y = ln{y), 
X = ln(x), and a = ln(A:), then the straight-line equation is Y = a-{- bX. So 
by using a best-fit procedure, we should be able to extract the model equation 
parameters a and 6." 

"That's precisely, what we are going to do. Let's begin by forming a log-log 
plot of the data in Table 2.8. For our purposes it will suffice to work to five 
digits accuracy. The number of entries in each data list will be N=8. 

> restart: with(Statistics): with(plots): 

> Digits:=5: N:=8: 
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We enter the heart rate and body mass data as separate Hsts. I prefer to work 
with floating-point numbers, so let's add decimal zero to the numbers. 

> r a t e := [624 .0 ,210 .0 ,76 .0 ,72 .0 ,55 .0 ,46 .0 ,37 .0 ,17 .0 ] : 

> mass :=[0 .015,2 .0 ,15.0 ,63.0 ,99.0 ,407.0 ,3000.0 ,50000.0] : 
Next we need to take the log of each data entry in both lists. This can be ac
complished using the In command on the zth entry of each list and the sequence 
(seq) command to include all N=8 entries. The names lograte and logmass are 
then attached to the new hsts. 

> l o g r a t e : = [ s e q ( l n ( r a t e [ i ] ) , i = l . . N ) ] ; 

lograte := [6.4362, 5.3471, 4.3307, 4.2767, 4.0073, 3.8286, 3.6109, 2.8332] 
> logmass := [ seq ( ln (mass [ i ] ) , i= l . .N) ] ; 

logmass := [-4.1997, .69315, 2.7081, 4.1431, 4.5951, 6.0088, 8.0064, 10.820] 

Making use of the arrow operator and the z ip command, the two new lists are 
then "zipped" together into a list of lists named coords. 

> pa i r :=( logra te , logmass ) ->[ logra te , logmass ] ; 

pair :— {lograte, logmass) -^ [lograte, logmass] 

> coords :=z ip(pa i r , logmass , logra te ) ; 

coords := [[-4.1997, 6.4362], [.69315, 5.3471], [2.7081, 4.3307], 

[4.1431, 4.2767], [4.5951, 4.0073], [6.0088, 3.8286], 

[8.0064, 3.6109], [10.820, 2.8332]] 

The log-log plot for the data is created but not displayed. 

> Gr l :=p lo t ( coo rds ,x= -5 . . l l , v i ew=[ -5 . . 11 ,0 . . 10 ] , s t y l e=po in t , 
symbol=circle,symbolsize=12,color=black): 

The best-fitting straight line y = a-\-bx to the log-log data is then found using 
the F i t command. The output is evaluated to 5 digits. 

> y :=eva l f (F i t (a+b*x , logmass , logra te ,x ) ,5 ) ; 

?/:= 5.3092-0.23807 X 
The best-fitting straight line is of the form ^ = 5.31 — 0.24 x, from which we can 
identify b ^ -0.24 and a ^ 5.31. The log-log plot Grl for the data points and 
the plot Gr2 of the best-fitting straight line are displayed together in Figure 2.4. 

> Gr2:=plo t (y ,x=-5 . .11) : 

> display({Grl ,Gr2},t ickmarks=[3,3] , l abe ls=["x" ,"y"] ) ; 
The straight line clearly fits the data reasonably well. To find the model equa
tion for the original data, we need to extract b and a, 

> b :=coef f (y ,x) ; a :=coef f (y ,x ,0) ; 

b := -0.23807 a := 5.3092 
so that the model equation is of the form r = e^ m^, where r is the heart rate 
and m the body mass. 
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Figure 2.4: Best-fitting straight line for log-log data. 

The relation between heart rate and body mass 

> heartrate:=exp(a)*bodymass"b; 

202.19 
heartrate := 7 7 0 . 2 3 8 0 7 

bodymass 

is given by the inverse power law r = 202/m^'^"^, which can be plotted. 

> Gr3:=plot(heartrate,bodymass=0.01. .55000, 
view=[0. .55000,0. .100]) : 

The original two lists for the heart rates and body mass are zipped together, 
plotted, and displayed in Figure 2.5 along with the empirical formula." 

> pa i r := ( r a t e ,mass ) -> [ r a t e ,mass ] ; 
pair := {rate^ mass) -^ [rate, mass] 

> coords2 :=z ip(pa i r ,mass , ra te ) ; 

coords2 := [[.015, 624.0], [2.0, 210.0], [15.0, 76.0], [63.0, 72.0], 

[99.0, 55.0], [407.0, 46.0], [3000.0, 37.0], [50000.0, 17.0]] 
> Gr4:=plot(coords2,view=[0. .55000,0 . .100] ,s tyle=point , 

symbol=box,symbolsize=12,color=blue): 

> d isplay({Gr3,Gr4}, t ickmarks=[3,4] , labels=["m","r"] ) ; 
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Figure 2.5: Best-fitting curve for the data of Table 2.8. 

"I hate to interrupt, Jennifer, but your curve doesn't do a bad job of fitting 
the data, but you have used only eight data points, and there is clearly a large 
region in the figure where there are no data points at all. How good is this 
power law formula, given the limited data?" 

"Actually, in Lin's paper 54 data points are used, and I could certainly get 
some more points for you. However, his quoted value for 6 is 6 = —0.24 ± 0.01, 
so we haven't done too badly with only eight points." 

"How did Lin calculate the error in the slope?" 
"Did you read the general discussion on estimating error at the beginning 

of this section? You did. Good. We can calculate the standard deviation a^ for 
the slope b in the best-fit straight line using 

ab = y/N/Aa, 

where 

A - TV5,, - (5,)2, a = ^{Syy-aSy-bS,y)/{N-2), 

w i t h So: = Yli^i^ ^xx = E z ^ ^ e t c . 
In the present problem, the Xi are the logmass [ i ] , while the yi are the 

logra te [ i ] . Evaluating all the relevant sums in the next few command lines, 

> Sx:=sum(logmass[ i ] , i=l . .N): Sy :=sum( logra t e [ i ] , i= l . .N) : 
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> Sxx:=siim(logmass[i] '^2,1=1. .N): Syy:=suin(lograte [i] " 2 , i = l . .N): 

> Sxy:=sum(logmass[ i ]* logra te[ i ] , i= l . .N8) : Delta:=N*Sxx-(Sx)^2: 

> sigma.b:=sqrt(N/Delta)*sqrt((Syy-a*Sy-b*Sxy)/(N-2)); 

sigma.h := 0.017511 
we see that the standard deviation for b is about 0.018. Not surprisingly, this 
is shghtly higher than Lin's calculated standard deviation, since we have used 
a lot fewer points. The standard deviation scales as 1/y/N. Using our result, 
we have 6= -0.238 ib 0.018." 

"Jennifer, you mentioned earlier that we could use a scaling argument to 
support our model equation. How does the argument go for this example?" 

"A simple scaling argument presented in Lin's paper predicts that 6= —1/4 = 
—0.25, which is within one standard deviation of our b value. The scaling argu
ment goes like this. Suppose that an animal has a body size characterized by 
the dimension or "length" L. The weight W of the animal then is proportional 
to the volume, i.e., VF oc L^, since the density of all warm-blooded animals 
is about the same. To determine an animal's energy requirements, note that 
its metabolic heat production P must be balanced by heat loss through its 
surface. Since surface area is proportional to L^, then P ex L^ (x W^l"^. A 
more detailed argument due to McMahon [McM73] alters this mathematical 
relationship slightly, yielding P oc W'^l'^. This latter scaling relationship has 
been found to hold empirically over several decades of weight. 

The heart acts as a pump, delivering with each heartbeat a given amount of 
blood into the circulatory system. The oxygen carried by the blood reaches the 
cell level, where it is used in the metabolic process. The rate R at which oxygen 
is delivered must be proportional to P oc W'^l^. But R oc A/Thb, where A is 
the amount of oxygen delivered in one heartbeat of duration Thb- Now, A is 
proportional to the volume of blood delivered in one heartbeat. The volume of 
blood delivered must be proportional to the volume of the heart. If the heart's 
volume is assumed to be proportional to body weight VF, then 

-Mib -Mib 

or solving for Thb, we have Thb oc W^l^. The heart rate is the reciprocal of Thb, 
so the heart rate satisfies r oc XjW^I^ oc vnT^I^^ where vn is the mass." 

"OK," Heather interjects, "now that we are fairly confident that our model 
equation is reasonable, I can see how to answer my original question. If we 
enter the estimated body mass of the brachiosaur, 

> bodymass:=75000; #brachiosaur mass in kg 

bodymass :— 75000 
its heart rate is readily calculated, 

> h e a r t r a t e ; 
13.969 

and must have been about 14 beats per minute." 
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PROBLEMS: 
Problem 2-10: Lifetime 
As a rule of thumb, the larger the animal, the longer it lives. Table 2.9 gives the 

Table 2.9: Lifetime L and body mass m for some warm-blooded animals. 

m 

L 

Mouse 

0.02 

3.5 

Guinea Pig 

0.26 

7.5 

Fox 

3 

14 

Goat 

34 

18 

Human 

63 

70 

Gorilla 

190 

36 

Elephant 

3500 

70 

body mass (m in kilograms) and lifetime (L in years) of various animals [Lin82]. 
Making use of the best-fitting straight line to a log-log plot of the data, deter
mine the empirical dependence of L on m. It is known that cardiac (heart) 
muscle can tolerate only a fixed number (about 100 million to 1 billion) of 
contractions for all warm-blooded animals. Assuming that heart failure is the 
major limiting factor for longevity, the lifetime = number of heart beats (fixed) 
X period of one heart beat. So, theoretically, L oc m^/^. How does the expo
nent in this theoretical prediction compare with the exponent obtained from 
the data? Discuss reasons for any discrepancy. 

Problem 2-11: Kepler's third law 
Table 2.10 shows the semimajor axis a, expressed in millions of kilometers, and 
the period T, in years, for the planets of our solar system [Oha85]. Use these 
data to verify Kepler's third law, which states that the square of the period is 
proportional to the cube of the semimajor axis of the planetary orbit. Plot the 
given data and the best-fitting curve in the same graph. 

Table 2.10: Semimajor axis a and period T for the planets of our solar system. 

Planet 

Mercury 
Venus 
Earth 
Mars 
Jupiter 

a(lO^km) 

57.9 
108 
150 
228 
778 

T( years) 

0.241 
0.615 
1.00 
1.88 
11.9 

Planet 

Saturn 
Uranus 
Neptune 
Pluto 

a(lO^km) 

1430 
2870 
4500 
5890 

T (years) 

29.5 
84.0 
165 
248 

Problem 2-12: Chimpanzee brain volumes 
Within a given species of mammal, it is found that the brain volume V varies 
with the body mass m according to a power law V = am^, where a and b 
are constants. Table 1.6 shows the brain volumes for a number of adult chim
panzees. Using the best-fit procedure, determine a and b and determine the 
standard deviations for each parameter. 
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Problem 2-13: Olympic 100-meter times 
Table 2.11 shows the winning times in seconds for the 100-meter run at the 
Olympic games, (S.A. = South Africa; G.B. = Great Britain; Tr. = Trinidad). 

Table 2.11: Olympic 100 meter times. 

Year 

1896 
1900 
1904 
1908 
1912 
1920 
1924 
1928 
1932 
1936 

Winner 

T. Burke, U.S. 
F. Jarvis,U.S. 
A. Hahn,U.S. 
R. Walker, S.A. 
R. Craig, U.S. 
C. Paddock, U.S. 
H. Abrahams, G.B. 
P. Williams, Canada 
E. Tolan, U.S. 
J. Owens, U.S. 

Time 

12.0 
10.8 
11.0 
10.8 
10.8 
10.8 
10.6 
10.8 
10.3 
10.3 

Year 

1948 
1952 
1956 
1960 
1964 
1968 
1972 
1976 
1980 
1984 

Winner 

H. Dillard,U.S. 
L. Remigino, U.S. 
B. Morrow, U.S. 
A. Hary, Germany 
B. Hayes, U.S. 
J. Hines, U.S. 
V. Borzov,U.S.S.R. 
H. Crawford, Tr. 
A. Wells, G.B. 
C. Lewis, U.S. 

Time 

10.3 
10.4 
10.5 
10.2 
10.0 
9.9 
10.14 
10.06 
10.25 
9.99 

(a) Make a log-log plot of the data and find the best-fitting straight line. 

(b) Use this result to obtain a model equation for the winning time as a 
function of Olympic year. 

(c) What is the predicted winning time for the 100 meter run at the 1996 
Atlanta Olympic games? How does your prediction compare with the 
actual winning time of 9.84 seconds posted by Donovan Bailey of Canada? 

Problem 2-14: Long-distance running 
Table 2.12 shows the world record times T, expressed in hours (/i), minutes (m), 
and seconds (5), for various long-distance runs {D km) as of 1983. Calculate the 

Table 2.12: World record times for long-distance runs. 

D 

h 

m 

s 

2 

4 

51.40 

3 

7 

32.10 

5 

13 

00.41 

10 

27 

22.40 

20 

57 

24.20 

25 

1 

13 

55.80 

30 

1 

29 

18.80 

42.195 

2 

08 

13.00 

average velocity V in meters/second for each run. According to Strnad [Str85], 
the average velocity should be given by a formula of the structure V = Vi/T^, 
where T is in seconds and Vi, n are positive constants. Make a log-log plot 
and use the best-fit procedure to determine the values of the two constants. 
Calculate the standard deviations for each constant. 
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2.2.3 Senate Renewal 

Practical politics consists of ignoring facts, 
Henry Adams, The Education of Henry Adams (1838-1918) 

In 1954, Strom Thurmond, of South CaroHna, was elected for the first time 
to the U.S. Senate and began serving his six-year term in 1955. There were 96 
senators in this congress, including future presidents John Kennedy and Lyndon 
Johnson, and presidential candidates Hubert Humphrey and Barry Goldwater. 
Of those 96, the number still serving (i.e., those who were reelected) one, two, 
and three terms later is given in Table 2.13. Can one use this admittedly hm-

Table 2.13: Number of 1955 senators serving in subsequent congresses. 

Year 

Number 

1955 

96 

1961 

64 

1967 

42 

1973 

25 

ited data to estimate how many of the original 96 senators served in subsequent 
congresses, for example, in the congress beginning in 1997? 

Political scientists tend to favor an exponential model to describe legislative 
turnover [LFHC95]. If there are Â  senators after an election, then it is assumed 
that there are S' = A^e~^* of those senators still serving t terms later, with k a 
positive constant. For the congress beginning in 1997, t = 7. 

Although we could set N = 96 and determine k by trial and error using the 
remaining three data points, a better way is to use a semilog plot for the data 
and use all four data points to determine the values of both Â  and k that give 
the best fit. To see why a semilog plot is used, take the natural log of S so that 
y=^A — kt, where y = \nS and A = In A'. Thus, once again we are looking for 
the best-fitting straight line to determine the coefficients A and k. Once these 
parameters are found, then S = e^ e~^^. 

As in the previous examples, the Statistics and plots packages are loaded. 

> r e s t a r t : w i t h ( S t a t i s t i c s ) : w i t h ( p l o t s ) : 
Separate Maple lists are entered for the year and number and a new list created 
for the log of the number. All of the number entries are converted to floating
point numbers, by adding decimal zero to them, so that the logs are evaluated. 

> year: = [0 ,1 ,2 ,3] : 

> number: = [96 .0 ,64 .0 ,42 .0 ,25 .0] : 

> niimber_log: = [seq(ln(number[i]) , i = l . .4)] ; 

number Jog := [4.564348191, 4.158883083, 3.737669618, 3.218875825] 
The year and number_log are zipped together into a list of lists. 

> p a i r : = (year, number_log) -> [year, niimber.log] : 

> coord ina tes :=z ip(pa i r ,year ,number . log) : 
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A graph of the coordinates is formed but not displayed. 

> Gr1 :=p lo t (coord ina tes ,v iew=[0 . .4 ,3 . .5 ] , s ty le=po in t , 
syinbol=circle, color=blue, syinbolsize=16) : 

A hnear least squares fit is sought to the year and numberJog data. 

> y:=Fit(A-k*t,year,number_log,t); 

y := 4.58858876370000068 - 0.445763056300000404t 
A plot of the best-fitting straight line, y^ is created 

> Gr2 :=p lo t (y , t=0 . .4 ) : 
and displayed in Figure 2.6 along with a semilog plot of the input data. 

> d i sp lay({Gr l ,Gr2} ,v iew=[0 . .4 ,2 .5 . .5 ] , 
tickinarks= [ 2 , 3 ] , labels= ["year" , "log(n) " ] ) ; 

0 2 year 4 

Figure 2.6: Best-fitting straight line for a semilog plot of the input data. 

The coefficients A and k are extracted from y. 

> A:=coef f (y , t ,0 ) ; k : = - c o e f f ( y , t ) ; 

A := 4.58858876370000068 k := 0.445763056300000404 
Forming 5 = e^e~'^S we see that the number of 1955 senators still serving t 
terms later is given by 

> S:=exp(A)*exp(-k*t); 

S := 98.35552931 e(-0-44^^^^o^630000o^o^*) 
Actually, Maple has a built-in algorithm (ExponentialFit) for determining the 
best exponential fit to the original year and number data, viz., 

> S2:=ExponentialFi t (year ,number, t ) ; 

S2 := 98.355529332525 e(-0-̂ 4^^630^^48^ îo^^o*) 
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which is the same as obtained in our "first principles" calculation. Of the 
original 96 senators, the number still serving in the 1997 Congress is obtained 
by setting t = 7 in either S or 52 and rounding off" to the nearest whole senator. 

> t : = 7 : Number[1997]:=round(S); 

Numberiggj := 4 
So, the exponential model equation predicts that approximately four of the 
original 1955 senators should be in the 1997 Congress. In actuality, only one of 
the original 96 remained as of 1998, namely Strom Thurmond. The exponential 
model overestimated the number somewhat, but considering the sparsity of the 
data and the fact that 42 years had elapsed, the estimate was not too bad. 

PROBLEMS: 
Problem 2-15: Nikita Khrushchev's Secret Purge 
In 1956 a total of 133 members were elected by the Party Congress to the Central 
Committee of the Communist Party of the U.S.S.R. The number of these who 
were reelected in 1961, 1966, and 1971 are given [LFHC95] in Table 2.14. 

Table 2.14: Number of 1956 Central Committee members reelected. 

Year 

Number 

1956 

133 

1961 

66 

1966 

54 

1971 

35 

However, in 1957 Nikita Khrushchev secretly purged some of his opponents 
from the Central Committee. The number who were purged is not known. 
Assuming that an exponential model approximately fits the last three data 
points, estimate the number who were purged. State any assumptions. 

Problem 2-16: Blood alcohol level 
A college student, celebrating the end of final exams, consumes a substantial 
amount of whiskey. His blood alcohol level rises to 0.22 mg/ml and then slowly 
decreases as indicated [AL79] in Table 2.15. The elapsed time is in hours. 

Table 2.15: Blood alcohol level as a function of time. 

Time 

Alcohol level 

0 

0.22 

0.5 

0.18 

0.75 

0.15 

1.0 

0.13 

1.5 

0.10 

2.0 

0.08 

2.5 

0.06 

3.0 

0.05 

Assuming that the data can be approximated by an exponential model, find the 
best-fitting curve and plot it along with the original data. What is the blood 
alcohol level after 4 hours have elapsed? 
Problem 2-17: Effect of a bactericide 
A bactericide is added to a solution containing 10^ bacteria. The number of 
bacteria remaining at various elapsed times is given in Table 2.16. Assuming 
that the data can be modeled with an exponential curve, find the best-fitting 
function and plot it along with the original data. How many minutes after 
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administering the bactericide is the bacterial count down to 70? 

Table 2.16: Bacterial count (in thousands) as a function of time (in minutes). 

Time 

Count 

0 

10000 

10 

3200 

20 

1000 

30 

320 

40 

100 

50 

32 

60 

10 

70 

3.2 

80 

1 

Problem 2-18: Intel processor chips 
In 1965, Intel cofounder Gordon Moore predicted (known as Moore's law) that 
the number of transistors on a chip would double about every two years. The 
number of transistors in various Intel processor chips and the date of their 
appearance is given in Table 2.17. (U.S.A. TODAY, Feb. 17, 1995.) 

Table 2.17: Number of transistors (in millions) in Intel chips. 

Year 

Processor chip 

Number 

1971 

4004 

0.0023 

1986 

386DX 

0.275 

1989 

486DX 

1.2 

1993 

Pentium 

3.3 

1995 

P6 

5.5 

Determine the best-fitting exponential curve and then use the model equation 
to determine the annual percentage increase in the number of transistors used 
in an Intel chip. Comment on the applicability of Moore's law. 

2.2.4 Bikini Sales and the Logistic Curve 

Everything you see, I owe to spaghetti. 
Sophia Loren, Italian film actress (1934-) 

Colleen, the manager of the ladies' leisure section of the Glitz department store, 
ordered 800 bikini swimsuits for the current year. At the end of September, she 
looks over her records of cumulative sales numbers for the first 9 months of the 
year, which are reproduced in Table 2.18. She notes that only four bikinis were 
sold by the end of the first month (by January 31), 12 bikinis sold by the end 
of February (second month), and so on. Observing that a total of 769 bikinis 

Table 2.18: Number of bikinis sold in the first nine months of the year. 

Month 

Number 

1 

4 

2 

12 

3 

25 

4 

58 

5 

230 

6 

439 

7 

648 

8 

748 

9 

769 
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had been sold by the end of September, Colleen wonders whether she will sell 
all of this year's model of bikini or will have some swimsuits left over at the 
end of the year. Having taken a statistics course in college, Colleen decides to 
develop a model equation that can be used to predict the total sales by the end 
of December (month 12). 

Using the Sca t te rP lo t command. Colleen graphs the sales data, 

restart: with(Statistics): 

month:=[l,2,3,4,5,6,7,8,9]; 

number: = [4,12,25,58,230,439,648,748,769] ; 

graphl:=ScatterPlot(month,number,symbol=box,symbolsize=14, 

labels=["month","number"],tickmarks=[6,2]): 

graphl; 

number 
500-

0" 
n 

1 
. n 

2 
a 
3 

D 

4 

D 

5 

D 

T̂  

a 

' ' 1 ' ' 

7 

D 

' ' 1 ' ' 

8 

a 

9 
month 

Figure 2.7: Cumulative number of bikinis sold at the end of months 1 to 9. 

which is shown in Figure 2.7. The number of sales rises slowly in January and 
February, takes off in the summer months, and begins to plateau in the fall. 
Colleen recalls that such data can be modeled by the logistic curve, which is 
described by the mathematical form 

n{m) (2.9) 
l + 6e-^^ 

where n{m) is the number of bikinis sold by the end of month m and the 
parameters a, 6, and c have to be adjusted to give the best fit to the data. 
As m increases, the number n will become closer and closer to the constant a. 
Since a fixes the height of the plateau, Colleen anticipates that a will have a 
value greater than the total sales number of 769 for the first 9 months. 
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She could use a linear least squares approach similar to that in the earlier 
recipes. To this end, she could rewrite the logistic equation (2.9) in the form 

be-'"^ = {a/n{m))-l. (2.10) 

Then, taking the natural logarithm of the above equation yields 

ln(6) -cm = ln((a/n(m)) - 1) = N{a,m). (2.11) 

The Ihs of Equation (2.11) is a straight line with slope —c and intercept ln(6). 
Thus, if N{a, m) is plotted versus m for a given value of a, the linear least 
squares method will yield c and b. The parameter a is chosen to minimize the 
total error. 

Guided by the Senate example, Colleen wonders whether she could bypass 
the above linearized approach and find the a, 6, and c values simultaneously 
that minimize the total error Yli=i{yi ~~ '^iY^ where Â  is the number of data 
points, yi the y coordinate of the zth data point, and rii = n{mi), where rrii 
is the ith month. Since n is a nonlinear function of the parameters a, 6, and 
c, a nonlinear fitting algorithm is required. Consulting the Statistics library 
package. Colleen finds that the NonlinearFit command is available. Colleen 
now uses this command, supplying search ranges for the parameters. 

> f:=NonlinearFit(a/(l+b*exp(-c*m)),month,number,m, 
parameterranges=[a=769. .2000,b=500. .2000,c=l . .2]) ; 

786.704443551278814 
-̂  *~ 1 + 1464.70166905573888 e(-l-26109661752213742m) 

The best-fitting function / is plotted and superimposed on the data, 

> graph2:=plot(f ,m=0. .12, thickness=2): 

> p lo t s [d i sp lay] ({graphl ,g raph2}) ; 

number 

4 month 8 10 12 

Figure 2.8: Best-fit logistic curve and bikini sales numbers. 
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the resulting picture being shown in Figure 2.8. It should be noted that if the 
search ranges had not been specified in the NonlinearFit command, the fit of 
the logistic curve to the bikini sales numbers would be quite poor. 

Now that Colleen has her model equation, she can apply it to estimating 
how many swimsuits will be left over at the end of December. The projected 
number (rounded to the nearest whole swimsuit) 

> projected_niiinber:=romid(eval(f ,in=12)); 

projected-number := 786 
is approximately 786 bikinis sold for the year. Since Colleen originally purchased 
800 bikinis, there will be about 14 swimsuits unsold at the end of the year. 

PROBLEMS: 
Problem 2-19: Linearized approach 
Carry out the linearized approach discussed in the text and compare the result 
with that obtained using the NonlinearFit command. Discuss the goodness 
of fit and the projected number of unsold swimsuits. 

Problem 2-20: Polio epidemic 
Table 2.19 shows the cumulative number (A )̂ of polio cases diagnosed each 
month (M) in the U.S. polio epidemic of 1949, the second worst in that country's 
history (National Foundation for Infantile Paralysis, 12th Annual Report^ 1949). 

Table 2.19: Cumulative number of polio cases in 1949. 

M 

N 

M 

N 

January 

494 

July 

8489 

February 

759 

August 

22377 

March 

1016 

September 

32618 

April 

1215 

October 

38153 

May 

1619 

November 

41462 

June 

2964 

December 

42375 

(a) Plot the data to see whether they suggest trying a logistic curve fit. 

(b) Determine the best-fitting logistic curve and plot it along with the data. 

(c) Comment on the goodness of fit and offer some plausible reasons for any 
deviations of the data from the curve. 

Problem 2-21: The great flu epidemic, revisited 
Table 1.3 gives death statistics for the great fiu epidemic of 1918: 

(a) Find the best-fitting logistic equation for each of the navy, army, and 
civilian deaths due to the fiu. 

(b) Plot each best-fitting logistic curve on the same graph as the data. 

(c) Which set of data appears to be best-fitted by a logistic curve? Which 
set has the worst fit? Can you offer any plausible explanation for the 
diff'erence in goodness of fit? 
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2.2.5 Following the Dow Jones Index 

Money is better than poverty, if only for financial reasons. 
Woody Allen, American writer, comedian, actor, and film director (1935-) 

The Dow Jones index is of great interest to stock market investors. This in
dustrial average is quoted in the business section of most daily newspapers. 
The "Dow," as it is usually called, is one of the most widely recognized stock 
market indicators in the world. The Dow tracks the performance of 30 very 
large "blue-chip" companies (e.g., Boeing, Disney, G.E., IBM, Microsoft), and 
it is felt that changes in the value of the Dow mirror the general state of the 
United States, and, to some degree, the global economies. The Dow has been in 
existence for over 100 years, and the daily Dow Jones value is readily available 
from the Internet for the period 1900 onward. To obtain a model curve, we 
shall work with the Dow at year's end, i.e., on the last trading day of the year, 
for the period 1900 to 1990. The year 1900 wiU be labeled as 0, the year 1901 
as 1, and so on. 

> r e s t a r t : w i t h ( p l o t s ) : w i t h ( S t a t i s t i c s ) : 
The sequence command is used to enter the 91 years, 

> yea r := [ seq(n ,n=0 . .90 ) ] : 
and the Dow index values (obtained from the Internet) inputted. 

> Dow:=[70.71,64.56,64.29,49.11,69.61,96.20,94.35, 
58 .75,86.15,99.05,81.36,81.68,87.87,78.78,54.58, 
99.15,95.00,74.38,82.20,107.23,71.95,81.10,98.73, 
95.52,120.5,156.66,157.20,202.40,300.01,248.48,164.58, 
77.90,59.93,99.90,104.64,144.13,179.90,120.85,154.76, 
150.24,131.13,110.96,119.40,135.89,152.32,192.91,177.20, 
181.16,177.30,200.13,235.41,269.23,291.90,280.90,404.39, 
488.40,499.47,435.69,583.65,679.36,615.89,731.14,652.10, 
762.95,874.13,969.26,785.69,905.11,943.75,800.36,838.92, 
890.20,1020.02,850.86,616.24,852.41,1004.65,831.17, 
805.01,838.74,963.99,875.00,1046.54,1258.64,1211.57, 
1546.67,1895.95,1938.83,2168.57,2753.20,2633.66^ : 

It is important to realize that the Dow values given above are not corrected 
for inflation. Inflation-corrected values are available in graphical form from the 
Internet. Trusting that the numbers have been inputted correctly, the number 
of operands (nops) command checks that there are 91 entries in the Dow list. 

> N:=nops(Dow); 

7V:=91 
A graph of the Dow index as a function of year is created using the Sca t te rP lo t 
command, the data points being represented by size-12 circles. 

> pts:=ScatterPlot(year,Dow,symbol=circle,symbolsize=12, 
v iew=[0. .91,0 . .3500] , labels=["year" ,"Dow"] , 
t ickmarks=[3,3]) : 
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The data points are colored blue and displayed in Figure 2.9. 

> d i sp lay (p t s , co lo r=b lue ) ; 

3000 

2000 + 

Dow I 

1000 

. « o o» 

0 2b 40 year 60 80 

Figure 2.9: Dow Jones index at year's end for the period 1900-1990. 

From the figure, it is clear that the data cannot be fitted by a single straight 
line, but has an overall trend characterized by a curve with low slope (on the 
scale of the plot) for the first 30-40 years and then rising much more quickly 
in recent times. Superimposed on the general trend are fluctuations that are of 
great importance to short-term investors or those who cannot leave their money 
in stocks for a long period of time. Can you spot the infamous stock market 
crash of 1929? 

The mechanisms giving rise to the overall trend and the fluctuations are 
the subject of many so-called theories about stock market behavior. Delving 
into these theories is beyond the scope of this text or the expertise of the 
authors. However, in the spirit of this chapter, it is possible to find a best-
fitting polynomial model equation that does a good job of fitting the 1900-1990 
data trend and successfully predicting the Dow for several following years. 

A functional operator, labeled eq, is now formed to obtain the best-fitting 
nth-order polynomial equation to the Dow Jones data. The nth-order polyno
mial Yl7=o ^iV^ ^^ created using the add command. 

> eq:=n->Fi t (add(a[ i ] *y ' ' i , i=0 . .n),year,Dow,y) : 
Using eq in the following sequence command, best-fitting polynomial equations 
are generated for n = 2, 4, and 6. 
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> s e q ( p [ 2 * i ] = e q ( 2 * i ) , i = l . . 3 ) ; 

P2 = 239.691790299461274 - 18.7401940528387492 y + .404515215547016750t/2, 

j94 = 178.942577528342412 - 28.2568098375523143?/ + 1.650501104940748327/2 

- 0.0309520539296583228^/3 + 0.000210617039324588283 ^^ 

P6 = 189.147571067008556 - 81.5765465285548858?/ + 11.5240779259858410 T/̂  

- 0.603890924929016193 ?/3 + 0.0143426153049926175?/^ 

- 0.000155412644461251410 y^ + 0.627688870349042276 10"^ y^ 

To see how well the second-, fourth-, and sixth-order polynomials fit the data, 
we will create graphs of the above polynomial equations. A functional operator, 
assigned the name Graph, is formed to plot the nth-order polynomial for the 
period 1900-2000. Entering Graph (4), for example, will produce a plot of the 
quartic polynomial. 

> Graph:=n->plot(eq(n) ,y=0. .100, thickness=2): 
To test the predictive power of the various polynomials, the Dow Jones index 
values for the years 1991 to 1999 are plotted as size-12 green boxes using the 
po in tp lo t command. The graph is assigned the name fu turepts . 

> fu turepts :=poin tp lo t ( [ [91 ,3168.83] , [92 ,3301.11] , [93 ,3754.09] , 
[94,3834.44], [95,5117.12],[96,6448.27],[97,7908.25], 
[98,9181.43], [99,11497.12]],color=green,symbol=box, 
s5nnbolsize=12) : 

A "do loop" will be used to display the superposition of the nth-order polyno
mial on the "past" and "future" data points for n = 2, 4, and 6. 

The general syntax for a do loop is 

for <name> from <expression> by <expression> to <expression> 
while <expression> do <statement sequence> end do 

where the <statement sequence> is the main body of the do loop and the loop 
ends with end do. In the following do loop, <name> is the index n, the first 
<expression> is 2, the second <expression> is also 2, the third <expression> is 
6, and there is no conditional while <expression> present. On executing the do 
loop, pictures are generated for n = 2, 4, 6. 

> for n from 2 by 2 to 6 do 

> display({Graph(n),pts,futurepts}, 

view=[0..100,0...12000],labels=["year","Dow"]); 

> end do; 
And the winner is? Of the three curves, the sixth-order polynomial shown 

in Figure 2.10 does the best job of fitting the 1900-1990 data (circles) and 
predicting the "future" points (square boxes) for 1991 to 1999. The n = 2 
and 4 curves can be viewed on the computer screen. The do loop can be 
altered to observe the polynomial fits for other values of n. Note that if the by 
<expression> is missing in the do loop, the default is to increment n by 1 each 
time the <statement sequence> is executed. 
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Figure 2.10: Best-fitting polynomial curve for n = 6. 

A standard approach to deciding which polynomial fits best, other than simply 
looking at the plot, is to generalize the formula for calculating the standard 
deviation a. Suppose that there are N data points, and the proposed best-fitting 
curve is the nth order polynomial Y — ao + aix + a2 x^ -f anX^. The 
polynomial will then have n + 1 fitting parameters, or coefficients, ao, a i , . . . , a^. 
If yi and Yi are the y coordinates of the data point and the polynomial curve 
at the same x^, respectively, the standard deviation becomes 

N 
X' 

N~{n+l) 

N 
ivi - Y.r 

1 N -
(2.12) 

If F = ao -h ai X, i.e., a straight line, then n + 1 = 2 and a reduces to the form 
introduced at the beginning of this section. The reasoning behind dividing 
through by the factor N ~ {n -\- 1) in the square root is the same as before. In 
fitting a polynomial with n + 1 coefficients, only N — {n -\- 1) data points are 
really independent of the fitting procedure. Another way to look at it is to note 
that the higher the order of the polynomial, the easier it is to fit a fixed number 
of data points. Dividing by Â  — n — 1 is a way of evening out this advantage. 

A functional operator s is formed to calculate the standard deviation a given 
by Equation (2.12) for the best-fitting polynomial of order n. 

> s :=n->eval f (add(sqr t ( (Dow[i] -subs(y=year[ i ] ,eq(n)) )"2) , 
i = l . .N) / sq r t (N- i i - l ) ) : 

Employing s, the sequence command is used to generate cr2, 0-4, and CTQ. 
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> s eq ( s igma[2* i ]=s (2* i ) , i= l . . 3 ) ; 

(72 = 1296.991659, a^ = 1267.886913, erg = 678.7838616 
As expected, the sixth-order polynomial has the lowest value of a of the three 
polynomial curves. It also does the best job of fitting the "future" points for 
the period 1991-1999. 

However, a strong word of caution is in order! Using model equations to pre
dict the future growth of the stock market could be dangerous to your economic 
health. Extrapolation is a dangerous game, particularly if one uses a high-order 
polynomial to make a long-range prediction. As you can easily check by run
ning the Maple file, the sixth-order polynomial just keeps on increasing as time 
evolves. As has been demonstrated over and over again (e.g., the stock market 
crash of 1929), unchecked growth is not the way the world works. Indeed, more 
recently the "bubble" burst in the year 2000, the year-end Dow value dropping 
to 8341.63 by 2002, before beginning a slow upward trend. The drop in the 
value of the tech stocks was particularly bad, with some sectors dropping by 90 
percent, with very little improvement by the year 2004. 

"Aha," the reader might say. "If I can wait out the short-term fluctuations, 
the trend in the Dow according to Figure 2.9 has always been historically up
ward." An important ingredient has been left out of the analysis, namely the 
eff'ect of inflation. Go to the Internet and look at the inflation-adjusted Dow 
graph and you will see that there are actually large-amplitude cycles of about 30 
years duration, a long time to wait if you invest at the beginning of a downturn. 

PROBLEMS: 
Problem 2-22: Black Friday 
Take the years 1900 to 1925 as the "present" points and the years 1926 to 1932 
as the "future" points. Fit various polynomial curves to the present data and 
see whether any curves predict the precipitous stock market crash of 1929 to 
1932. Do a historical search as to the meaning of the phrase Black Friday in 
connection with the crash. 

Problem 2-23: Are you going to bet all your money on this horse? 
At year's end, the Dow was 10786.85, 10021.50, 8341.63, 10453.92, 10783.01 for 
the years 2000 to 2004. Add these data points to the future points in the text 
recipe and execute the code. How well does the sixth-order polynomial model 
account for these data points? Experiment with other polynomial models. 

Problem 2-24: Cleveland's population 
Table 2.20 gives the population statistics for the city of Cleveland, Ohio, for 
the period 1900 to 1980. 

(a) Taking 1900 to be year zero, determine the best-fitting quadratic (para
bolic) curve and plot it on the same graph as the data points. 

(b) What is the projected population for Cleveland in 1990? Go to the Inter
net and find out what Cleveland's actual population was in 1990. Com
pare the two numbers and comment on the accuracy of the prediction. 
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Table 2.20: Population of Cleveland from 1900 to 1980. 

Year 

Population 

Year 

Population 

1900 

381,768 

1950 

914,808 

1910 

560,663 

1960 

876,050 

1920 

796,841 

1970 

750,879 

1930 

900,429 

1980 

573,822 

1940 

878,336 

1990 

? 

Problem 2-25: Natural gas prices 
Table 2.21 shows the average price in dollars per thousand cubic feet of natural 
gas for household use in the United States from 1980 to 1990. 

Table 2.21: Natural gas prices. 

Year 

Price 

Year 

Price 

1980 

3.68 

1986 

5.83 

1981 

4.29 

1987 

5.54 

1982 

5.17 

1988 

5.47 

1983 

6.06 

1989 

5.64 

1984 

6.12 

1990 

5.77 

1985 

6.12 

(a) Taking 1980 as year zero, find the best-fitting cubic equation to the data 
and plot it on the same graph as the data. 

(b) Compare the fit with that of a fifth-order polynomial. In particular, how 
do the sigma values compare? 

Problem 2-26: Imported cars 
Table 2.22 gives the number (in thousands) of imported cars sold in the United 
States from 1984 to 1992. 

Table 2.22: Number of imported cars sold in the United States. 

Year 

Number 

1984 

2439 

1985 

2838 

1986 

3245 

1987 

3196 

1988 

3004 

1989 

2699 

1990 

2403 

1991 

2038 

1992 

1938 

(a) Plot the data and qualitatively decide which curve fits best: linear, quadratic, 
or cubic. Take 1984 to be year zero. 

(b) Confirm your guess by finding the best-fitting linear, quadratic, and cubic 
equations and calculating the corresponding sigma values. 

(c) Plot all three curves along with the data points. 



2.2. LEAST SQUARES DERIVATIONS 97 

(d) For the best model equation, how many imported cars are predicted to 
be sold in 1994? 

Problem 2-27: Lung cancer death rates 
Table 2.23 shows the death rates (deaths per 100,000 males) due to lung cancer 
every decade from 1930 to 1990. 

Table 2.23: Death rates due to lung cancer. [SAU94] 

Year 

Death rate 

1930 

5 

1940 

11 

1950 

21 

1960 

39 

1970 

59 

1980 

66 

1990 

67 

(a) By plotting the data, decide on qualitative grounds which model, linear, 
polynomial, exponential, or logistic, is most appropriate for the data. 

(b) Based on your choice, obtain the best-fitting model equation. 

(c) Use your model equation to predict the death rate in the year 2000. 

(d) If possible, compare your prediction with the actual death rate. Comment 
on how good the prediction is. 

Problem 2-28: World mile records 
In the time interval since Roger Bannister of Great Britain broke the 4-minute 
barrier for the mile run with a time of 3 minutes, 59.4 seconds, on May 6, 1954, 
the world mile record has been lowered progressively as indicated in Table 2.24. 

Table 2.24: Progressive lowering of world record times for the mile run. 

Year 

1954 
1957 
1958 
1962 
1964 
1965 
1966 
1967 
1975 

Runner 

J. Landy (N.Z.) 
D. Ibbotson (G.B.) 
H. Elliot (A.) 
P. Snell (N.Z.) 
P. Snell (N.Z.) 
M. Jazy (F.) 
J. Ryan (U.S.A.) 
J. Ryan (U.S.A.) 
F. Bayi (T.) 

Time 

3:58.0 
3:57.2 
3:54.5 
3:54.4 
3:54.1 
3:53.6 
3:51.3 
3:51.1 
3:51.0 

Year 

1975 
1979 
1980 
1981 
1981 
1981 
1985 
1993 
1999 

Runner 

J. Walker (N.Z.) 
S. Coe (G.B.) 
S. Ovett (G.B.) 
S. Coe (G..B.) 
S. Ovett (G.B.) 
S. Coe (G.B.) 
S. Cram (G.B.) 
N. Morcelh (Al.) 
H. El Guerrouj (M.) 

Time 

3:49.4 
3:49.0 
3:48.8 
3:48.53 
3:48.40 
3:47.33 
3:46.32 
3:44.39 
3:43.13 

Develop a model equation from these data and estimate in what year a runner 
will break the 3:40.00 minute barrier. Note that the times after 1980 were mea
sured to one-hundredths of a second. The country of each runner is indicated: 
N.Z. = New Zealand, G.B = Britain, A = Australia, F = France, T=: Tanzania, 
Al = Algeria, M = Morocco. 
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Problem 2-29: Boiling point temperature 
Table 2.25 shows the variation of the boihng-point temperature (in degrees 
Celsius) of water as the atmospheric pressure (in 10~^ atmospheres) changes. 
Derive the best-fit equation and plot it on the same graph as the data. 

Table 2.25: Boihng-point data. 

Temperature 

Pressure 

Temperature 

Pressure 

0 

.605 

70 

31.2 

10 

1.21 

80 

46.7 

20 

2.30 

90 

69.2 

30 

4.30 

100 

100 

40 

7.30 

110 

143 

50 

12.2 

120 

196 

60 

19.7 

130 

267 

Problem 2-30: Brain weight 
Table 2.26 lists the average percentage weight of the brain in human males as 
a percentage of body weight from birth to age 16. 

Table 2.26: Brain weight data. 

Age 

% Brain Weight 

0 

11 

2 

8 

4 

7 

6 

6 

8 

5 

10 

4.5 

12 

4 

14 

3.5 

16 

3.25 

(a) Fit quadratic and exponential models to the data. Which model yields 
the better fit? 

(b) Use the better-fitting model to determine the age in months at which the 
brain weight is 10% of the body weight. 

(c) What is the predicted percentage brain weight in an average 18-year-old 
male? 

2.2.6 Variation of "g'' with Lat i tude 

Where in this small-talking world can I find 
A latitude* with no platitude? 
Christopher Fry, English dramatist (1907-). *longitude in original quote. 

In this section, Vectoria will look at an elementary example from the world 
of physics and show a new wrinkle to finding the best-fitting curve to the data. 
Instead of assuming a straight line or a polynomial to fit the data, she will 
consider a functional form guided by simple theoretical analysis. 

> restart: w i th (S ta t i s t i c s ) : with(plots ) : 
Neglecting the earth's rotational motion, the acceleration ai of an object of 
mass m near the earth's (mass Mg) surface due to gravitational attraction is 
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determined by inserting the gravitational force law into Newton's second law: 

GmMe 
mai Rl 

(2.13) 

Here G = 6.67 x 10~^^ N • m^/kg^ is the gravitational constant and RQ is the 
earth's radius. The earth's mass is Afe = 5.98 x 10^^ kg, and Vectoria assumes 
that the earth is nearly spherical with a mean radius i?e = 6.37 x 10^ meters. 

> G:=6.67*10^(-l l ) : M[e] :=5.98*10-(24) : R[e] : =6.37*10-^6: 
Canceling out m in Eq. (2.13), the acceleration in m/s^ due to gravity then is 

> a [ l ] :=G*M[e]/R[e]'^2; 
ai := 9.829878576 

Vectoria now includes the effect of the earth's rotation, noting that the earth 
rotates about its axis with a period of approximately 23 hours, 56 minutes, or 

> T:=(23+56/60)*60*60; 

T := 86160 
86,160 seconds. Letting 6 be the latitude with ^ = 0 at the equator and 90° or 
7r/2 radians at the North Pole, a point at the equator moves in a circle of radius 
RQ, while at latitude 9 the radius (see Fig. 2.11) of the circle is r = RQCOS{0). 

Figure 2.11: Contribution to "^" due to the earth's rotation. 

Since v = 27Tr/T is the speed, the corresponding acceleration is 

_v^ _ 4 7r̂ î eCOs(6>) 
(2.14) 
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Thus, referring to Figure 2.11, the rotational contribution to the gravitational 
acceleration is given by a2 = acos(^), 

> a[2] :=evalf (4*Pi^2*R[e]*(cos( theta))^2/ (T^2)) ; 

a2 := 0.03387566182 cos((9)2 
or, on introducing the angle y in degrees, by the output of the following line. 

> a[2] :=subs(theta=y*evalf (Pi)/180,7e); 

a2 := 0.03387566182 cos(0.01745329252^)2 

The net acceleration, or net "^," is the difference^ between ai and a2. 

> ne t_acce l :=a [ l ] - a [2 ] ; 

net.accel := 9.829878576 - 0.03387566182 cos(0.01745329252y)2 

Vectoria now creates a plot of the theoretical formula for the net acceleration. 

> Gr1:=plot (net_accel ,y=0. .90 ,color=black) : 
From the introductory physics text by Hans C. Ohanian [Oha85], Vectoria 
extracts Table 2.27, which gives the acceleration g (in m/s^) due to gravity at 

Table 2.27: Variation of "^" with latitude. 

Location 

Quito, Ecuador 
Madras, India 
Hong Kong 
Cairo, Egypt 
New York City 

lat 

0 
13 
22 
30 
41 

9 

9.780 
9.783 
9.788 
9.793 
9.803 

Location 

London, England 
Oslo, Norway 
Murmansk, U.S.S.R. 
Spitsbergen, Norway 
North Pole 

lat 

51 
60 
69 
80 
90 

9 

9.811 
9.819 
9.825 
9.831 
9.832 

several locations at different latitudes (in degrees north of the equator) on the 
earth's surface. Vectoria intends to compare the theoretical curve derived above 
with the data and also obtain a best-fitting curve for the data. Data lists are 
formed for the latitude (lat) and observed g values. 

> l a t := [0 ,13 ,22 ,30 ,41 ,51 ,60 ,69 ,80 ,90] : 

> g :=[9 .780,9 .783,9 .788,9 .793,9 .803,9 .811,9 .819,9 .825, 
9 .831,9 .832] : 

The Sca t te rP lo t command is used to plot the data as size-12 circles. 
> p t s :=Sca t te rP lo t ( la t ,g , symbol=c i rc le , symbols ize=12) : 

Guided by the theoretical analysis, Vectoria fits the data with a curve of the 
structure a — 6cos(7r?//180)^, with the two parameters a and b determined. 

> eq: =Fit (a-b*(cos(y*evalf (Pi) /180)) ' ^ 2 , l a t , g , y ) ; 

eq := 9.83201711513076404 - 0.0517244526832718946 cos(0.01745329252?/)2 

•̂ Do you see why it is the difference? 
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The equation eq is the best-fitting curve of the postulated form. To compare 
the curves and data, eq is plotted using a thick red dashed line style, 

> Gr2:=plot(eq,y=0. .90,color=red,l inestyle=DASH,thickness=2): 
and all three plots displayed in Figure 2.12. 

> d i s p l a y ( { G r l , p t s , G r 2 } , l a b e l s = [ " l a t i t u d e " , " g " ] , 
t i ckmarks=[4 ,3 ] ,v iew=[0 . .90 ,9 .77 . .9 .85] , 
t i t l e = " V a r i a t i o n of g with l a t i t u d e " ) ; 

9.84 

9.82 

g 

9.8 

9.78< 

Variation of g with latitude 

p ' ' 

» ' 

1 — 

y^'^ 

X '^ 

1 1 1 — 

- o 

0 20 latitude 60 80 

Figure 2.12: Data (circles) and theoretical (solid) and best-fit (dashed) curves. 

In Figure 2.12 the best-fit curve passes right through the observational data. 
Vectoria notes that the theoretical curve has the right shape but is not in 
quantitative agreement. (Note that the differences are very small, the vertical 
scale being a little misleading.) She thinks this is due to the fact that the earth 
was modeled as being spherical and the mean radius used. 

Due to rotation, the earth flattens slightly inward at the poles and bulges 
slightly outward at the equator. A point at the equator is at a radius greater 
than the mean radius, so g, which decreases with larger radius, will be slightly 
decreased at the equator. Conversely, the poles are at a radius smaller than the 
mean so g is shghtly increased at the poles. 

Vectoria believes that taking this slight distortion of the spherical shape into 
account will bring the theoretical curve into good agreement with the data. As 
an excercise you might estimate how big this distortion would have to be. 
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PROBLEMS: 
Problem 2-31: Differential cross section 
For a certain nuclear reaction, measurements of the differential scattering cross 
section a{0) (units are lO"'^^ cm^/steradian) as a function of angle 9 (in degrees) 
yield the values listed in Table 2.28. 

Table 2.28: Differential scattering cross section data. 

e 
aie) 

30 

11 

45 

13 

90 

17 

120 

17 

150 

14 

(a) Make a least squares fit to a{0) of the form 

a = a -\- b cos 
180 + c cos' V180 

(b) Plot the data points and the least squares curve on the same graph over 
the range 0° to 180°. 

(c) What is the predicted differential cross section at 0°? 

(d) Using the best-fit equation, calculate the total scattering cross section by 
performing the integration 

c r -27r / (j((9) sinOde. 
Jo 

Problem 2-32: Swimsuit sales 
Table 2.29 shows the cumulative number of men's swimsuits that the Glitz 
department store had sold by the end of January (month 1), by the end of 
February, and so on, for the first three-quarters of last year. 

Table 2.29: Cumulative number of men's swimsuits sold. 

Month 

Number 

1 

10 

2 

16 

3 

25 

4 

58 

5 

230 

6 

439 

7 

648 

8 

748 

9 

795 

Letting x label the month and y the cumulative number of swimsuits sold, an 
equation of the form y = a + 6tanh(0.60 (6.0 —x)) is believed to model the data. 

Find the coefficients a and b that give a best fit. Then plot the least squares 
curve and the data points on the same graph. If the manager had ordered 
900 swimsuits at the beginning of the previous year, how many swimsuits are 
predicted to remain unsold at year's end? 
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2.2.7 Finding Romeo a Juliet 

You have so many computers, 
why don^t you use them, in the search for love ? 
Lech Walesa, Polish president, Interview in Paris, on his first journey outside 
the Soviet bloc (1988) 

A certain lonely bachelor, Mat, decides to try to find his Juliet through the 
Happy Hearts dating service. As part of her interviewing process, the manager 
of the service explains how initial matches are achieved. First, the client is 
asked to fill in a questionnaire answering questions about income, hobbies, reli
gious affiliation, and so on. The answer to each question is entered in numerical 
form so that a computer search can be done, comparing the client's responses 
to those of thousands of possible dates. A least squares process is then used to 
select a possible Juliet for the lonely bachelor. A similar procedure is used to 
find a possible Romeo for a lonely, single, female. 

Mat, a professional who is interested in computing, asks the sales manager 
for a specific example of how the least squares matches are carried out. To pro
tect the identity of her actual clients, the manager decides to create a list of 10 
fictitious possible dates using a random matrix generator to create the numeri
cal responses that they might have given to the questions on the questionnaire. 
In her program, she loads the necessary LinearAlgebra package. 

> r e s t a r t : with(LinearAlgebra): 
To create a random matrix, the command randomize ( ) is first entered. With 
no argument specified, this command will set the random number seed to a 
number based on the computer system clock. The number of possible dates, 
Â  = 10, is entered and each date is asked q — b questions. For possible matches 
involving real people, the values of Â  and q are, of course, much larger. 

> N:=10: q:=5: randomize() : 
The potential Romeo's responses to the five questions are entered as a matrix^ 
along with the chent's name, in this case Mat. For each question, the client is 
asked to give a numerical answer between 1 and 5. In this example. Mat has 
given a response of 2 to the first question, 3 to the second one, and so on. The 
form of the resulting matrix, which has 1 row and 6 columns, is displayed. 

> Romeo:=Matrix([[Mat,2,3,1,2,2]]) ; 

Romeo := [ Mat 2 3 1 2 2 ] 
The names of 10 possible dates are entered as a "column matrix"^ (output not 
displayed here), having TV rows and only 1 column. 

> dates:=Matrix([[Ann],[Lynda],[Karen],[Mary],[Judy] ,[Sue] , 
[Be t ty ] , [Lara ] , [Rose] , [Cindy] ] ) ; 

The responses of each of the Â  = 10 possible dates to the q = 5 questions is 

^This is the "long" form. A "short" form for entering the row matrix is «Mat 1213111212». 
"^The "short" form is «Ann,Lynda,Karen,Mary,Judy,Sue,Betty,Lara,Rose,Cindy». 
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A:= 

Ann 
Lynda 
Karen 
Mary 
Judy 
Sue 

Betty 
Lara 
Rose 
Cindy 

5 
1 
2 
5 
2 
3 
3 
4 
3 
5 

5 
5 
5 
2 
3 
3 
4 
4 
1 
2 

5 
2 
4 
1 
1 
3 
2 
1 
2 
1 

5 
4 
4 
3 
4 
3 
2 
5 
3 
1 

3 
3 
2 
1 
3 
1 
2 
4 
3 
1 

simulated using the RandomMatrix command with the entries determined by 
g e n e r a t o r = r a n d ( l . . 5 ) , which generates random integers between 1 and 5. 

> A : = R a n d o m M a t r i x ( N , q , g e n e r a t o r = r a n d ( l . . 5 ) ) : 

The numerical responses embodied in matr ix A, which were suppressed, are 
joined to the names of the dates and the new A matr ix displayed. 

> A:=<dates |A>; 

A 

So Ann has given a response 5 to the first question, 5 to the second, etc. Of 
course, in this example, Ann's responses will differ the next t ime the program 
is run, since the random number seed changes with computer clock time. 

Now a comparison of each of the N = 10 date 's answers to Romeo's (Mat's) 
responses is made using a repetitive do loop. As a measure of compatibility, 
the response on each question for each potential Juliet is subtracted from Mat ' s 
response to the same question. The difference is then squared, to accentuate 
large differences in personalities or traits, and a sum of squares over all questions 
formed. The date with the lowest least squares total , or score, will then be the 
computer 's choice for Mat. (If a tie occurs, the first lowest score is selected.) 

> f o r j from 1 t o N do : 

> B[ j ] : =add( (Romeo [ l , i ] - A [ j , i ] ) ' ^ 2 , 1 = 2 . . q + 1 ) ; 

> end do : 

The totals for the 10 possible dates are put into a column matr ix form B, 

> B : = « s e q ( B [ j ] , j = l . . N ) » ; 

which is joined to the A matrix. The least squares totals are in the last column. 

> A : = < A | B > ; 

Ann 
Lynda 
Karen 
Mary 
Judy 
Sue 

Betty 
Lara 
Rose 
Cindy 

5 
1 
2 
5 
2 
3 
3 
4 
3 
5 

5 
5 
5 
2 
3 
3 
4 
4 
1 
2 

5 
2 
4 
1 
1 
3 
2 
1 
2 
1 

5 
4 
4 
3 
4 
3 
2 
5 
3 
1 

3 
3 
2 
1 
3 
1 
2 
4 
3 
1 

39 
11 
17 
12 
5 
7 
3 

18 
8 

12 
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In this case, the number of possible dates is so small that one glance at the 
last column of the output will tell the sales manager who the best match is. 
However, remember that in practice she is working with thousands of possible 
dates, and it would be tedious to skim through the data for each new client. So, 
the identification of the best match is automated. In the next line, the score 
(least squares total) of the first date (Ann) listed in the matrix A is recorded. 

> score:= A[l ,q+2]; 

score := 39 
A do loop containing a conditional "if...then" statement is used to compare the 
scores of the remaining possible Juliets in the matrix A to Ann's score. The 
loop runs over the rows i = 2 to Â  of the matrix. 

> for i from 2 to N do; 
If the last {q + 2) entry in the zth row of A is less than score, then this value 
becomes the new score. This process continues until the lowest score is achieved. 
The corresponding row value, /c, is recorded and the "if...then" statement ended. 

> if (A[i,q+2]<score) then score:=A[i ,q+2]; k := i ; end if; 

> end do: 
In some runs it may turn out that Ann has the lowest score, so no numeric 
value is generated for k in the do loop. In the following command fine, the 
type command is used to check whether k has a numeric value. If it does, 
then the value of k is chosen. Otherwise k must have the value 1. 

> if type(k,numeric) then k:=k; e l se k := l ; end if : 
For the illustrative example, the name of the potential Juliet is obtained by 
extracting the matrix element from A corresponding to the kth row and first 
column. And the potential Juliet is 

> Juliets_name:=A[k,1]; Her_score:=score; 

Juliets .name := Betty Her score := 3 
Betty, with a winning low score of 3. If it is desired to compare her responses to 
individual questions with those of Romeo, her complete record can be obtained 
by extracting the entire kth row from A. This might be important to a client 
who weights the response to certain questions more highly than to others. 

> Juliets_responses:=Row(A,k); 

Juliets-responses := [Betty, 3, 4, 2, 2, 2, 3] 
The sales manager, having finished her example, asks Mat whether he is inter
ested in using their dating service. On learning of the cost of the service. Mat 
hems and haws and says that he will think about it. 

PROBLEMS: 
Problem 2-33: More selection 
Modify the Romeo and Juliet file to include the five responses given by 25 Juliets 
and write your code so that it gives the names of the three leading candidates 
with the three lowest scores. 
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Problem 2-34: The Microhard training procedure 
The Microhard Computer Company has a training procedure in which its new 
employees are assigned to work with experienced and proven group leaders. 
Kevin, a newcomer to the company, is to be assigned to a group leader who best 
matches his skills and personality, using a computer matching process similar 
to that in the Romeo and Juliet recipe. The relevant data can be obtained by 
running "readdata.mws," which reads the two Maple data files "hiredname.m" 
and "trainernames.m." Use these data and modify 02-2-7 to see which group 
leader should train Kevin. 

2.3 Multiple Regression Equations 

In the previous section, almost all of the examples involved only two variables: 
the independent variable x and the dependent variable y. If the data appeared 
to lie along a straight line, a straight-line model equation Y — a -\- bx was 
sought. As mentioned earlier, statisticians refer to the least squares procedure 
that produces the "best" values of a and b as regression analysis. Suppose that 
y is thought to depend linearly on two independent variables, xi and X2. For 
example, medical school admissions are generally based on both the student's 
college GPA (xi) and the student's MCAT score (X2). In this case, the proposed 
model equation would be assumed to be of the form y = a -f 61 Xi -[- 62 ^2- In 
geometrical terms, the three variables xi , X2, and y form a three-dimensional 
space, and the model equation defines a plane in this three-dimensional space. 
The least squares procedure in this case corresponds to minimizing the sums of 
the squares of the distances of the data points from the plane. Determining the 
coefficients by the generalization of the least squares method is referred to as 
multiple regression analysis^ and the best-fitting equation is called the multiple 
regression equation. To carry out the multiple regression analysis, we again 
introduce x^7 which now takes the form 

AT 

x ' = I](2/^ -a-b,xi-b2 X2f. (2.15) 
2 = 1 

Differentiating x^ with respect to a, 61, and 62 yields the following three equa
tions, which are an obvious generalization of Equations (2.5), for the three 
unknowns a, 61, and 62: 

Sy = aN ^bi Sxi + 2̂ Sx2, 

Sxl y = Ci Sxl + ^1 Sxl xl + ^2 Sxl x2^ 

Sx2 y — Ci Sx2 + bi Sxl x2 + ^2 Sx2 x2' 

Here, Sxi = X]i(^i)^' Sxiy = ^i{'^iy)i-> etc. Once again, we can make use 
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of Maple's built-in least squares procedure, which solves these equations and 
produces the best-fit coefficients a, 61, and 62- Noting that there are now 
three fitting coefficients, the standard deviation for N data points is given by 
^ "= Vx^/{^ - 3). The multiple regression analysis can be easily generalized 
to more than two independent variables. For a more complete discussion of 
deriving multiple regression equations and the validity of such models, we refer 
the reader to the statistics text by Anderson et al. [ASW87]. 

2.3.1 Real Estate Appraisals 

Everyone lives by selling something. 
Robert Louis Stevenson, Scottish writer (1850-1894) 

Syd Boff'o, chief appraiser and co-owner of the Boffo Brothers Real Estate Com
pany, wishes to develop a linear mathematical formula that predicts the selling 
price of a house in his town, given the square footage of the house and the 
square footage of the lot. The company accountant gives him the data, which 
are displayed in Table 2.30. The house size is in hundreds of square feet, the lot 
size in thousands of square feet, and the selling price in thousands of dollars. 

Table 2.30: Data to develop real estate formula. 

Price 

House size 

Lot size 

135 

21 

11 

111 

16 

13 

88 

17 

7 

96 

14 

9 

102 

19 

11 

147 

18 

25 

159 

23 

12 

195 

22 

13 

223 

24 

15 

264 

26 

22 

Syd enters the lists for the house size (hs), lot size (Is), and selling price 
(pr). The number of entries N should be 10 in each list, and this is checked for 
the house sizes with the nops command. 

> restart: wi th(Stat i s t ics ) : with(plots): with(LinearAlgebra): 

> hs:=[21,16,17,14,19,18,23,22,24,26] : #house s ize 

> N:=nops(hs); 

A^:= 10 

> l s : = [ l l , 1 3 , 7 , 9 , l l , 2 5 , 1 2 , 1 3 , 1 5 , 2 2 ] : # l o t s i z e 

> pr:=[135,111,88,96,102,147,159,195,223,264] : #price 
Syd decides to first check how good his assumption is of a linear relationship 
between price and house size and between price and lot size. He calculates the 
linear correlation coefficient for price versus house size, 

> l incoeff1:=Correlation(hs,pr) ; 

lincoeffl := 0.8858411229 
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X := 

obtaining a value of 0.89. There appears to be quite a reasonable correlation 
between these two variables. Similarly, he finds that the linear correlation 
coefficient for price versus lot size, 

> l i ncoe f f2 :=Cor r e l a t i on ( l s , p r ) ; 

lincoeff2 := 0.6134269770 
is about 0.61. The correlation between price and lot size is not quite as good 
as that between price and house size. Nevertheless, he decides to use both the 
house size and lot size data. To apply the F i t command, he forms a matrix of 
the house size and lot size data and transposes the matrix. 

> X:=Transpose(Matrix([hs,1s])) ; 

21 11 
16 13 
17 7 
14 9 
19 11 
18 25 
23 12 
22 13 
24 15 
26 22 

Using X in the F i t command, a linear model equation with two independent 
variables xl (corresponding to house size) and x2 (lot size) is obtained for the 
selling price sp. 

> sp:=Fit(a+bl*xl+b2*x2.,X,pr, [xl ,x2]) ; 

sp := -127.361560581726636 + 11.7242891875249864 xi 
+3.25186788632078994 x2 

By first using the selling price formula to calculate the predicted prices ppr^ 

> p p r : = s e q ( s u b s ( x l = h s [ i ] , x 2 = l s [ i ] , s p ) , i = l . . N ) ; 

ppr := 154.6190592, 102.5013489, 94.71443080, 66.04529907, 
131.1704808,164.9723420, 181.3195054, 172.8470841, 
202.7993983, 249.0110518 

the standard deviation, or error, a in the selling price is easily obtained. 

> s igma:=sqr t ( sum((pr [ i ] -ppr [ i ] ) ' ^2 , i= l . .N)/(N-3)) ; 

a := 24.48051456 
The standard deviation is about $24,000. Syd decides to check graphically on 
how well the model equation fits the data. He first creates a three-dimensional 
plot of the selling price sp, choosing a style option that colors the planar surface 
with no grid. 

> graphl:=plot3d(sp,xl=10. .30,x2=5. .30,axes=boxed, 
s ty le=patchnogr id) : 

He then combines the zth entry of each list into triplets of numbers that give 
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the coordinates of the zth plotting point, 

> p o i n t s : = s e q ( [ h s [ i ] , l s [ i ] , p r [ i ] ] , i = l . . N ) ; 

points := [21, 11, 135], [16, 13, 111], [17, 7, 88], [14, 9, 96], 

[19, 11, 102], [18, 25, 147], [23, 12, 159], [22, 13, 195], 
[24, 15, 223], [26, 22, 264] 

and creates a three-dimensional graph of the poin ts . 

> graph2:=pointplot3d({points},style=point,symbol=circle, 

color=blue): 
The two graphs are superimposed with the display command and a suitable 
orientation chosen. The result is shown in Figure 2.13. 

> display ({graphl, gr aph2},orient a t ion= [-20,60] ,tickmarks= [3,3,3], 

l abe l s=["x l " , "x2" , " sp" ] ,v iew=[10 . .30 ,5 . .30 ,75 . .325] ) ; 

Figure 2.13: Data points and planar surface corresponding to sp formula. 

The data points seem to be moderately well described by the linear relation
ship, although the standard error is a bit bigger than Syd would like. This is 
undoubtedly due to the somewhat weak linear correlation between price and 
lot size. Syd's brother and co-owner, Benny, is skeptical that any such formula 
will indeed be useful. Benny gives Syd a test on the accuracy of the predicted 
selling price formula. 
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"OK, Syd, we have a new house to put on the market. It is 2000 ft̂  in size 
and the lot is 90 feet by 200 feet. What should we set the selling price at?" 

Syd replies, "We input xl = 20 and, since 90 x 200 = 18,000 square feet, 
x2 = l8 into our formula for the selling price, 

> xl :=20; x2:=18; se l l ing_pr ice :=sp ; 

xl := 20 x2 := 18 selling.price := 165.6578452 
which tells us that the house should sell for about $166,000." 

Benny snorts and says, "Would you like to bet a filet mignon dinner at the 
Hungry Heifer Steak House on your prediction?" 

"Well," Syd answers, "I do not like the sizeable standard error of $24,000 
for my answer, which undoubtedly is associated with the fact that the lot size 
data didn't linearly correlate that well with the price. Do we have any other 
additional data?" 

"Sure," Benny replies, "we have the median neighborhood selling price in 
thousands of dollars for the homes in your sample. I will read them off and you 
can input them." 

So then Syd proceeds to enter the new data in the following median price 
list mpr. 

> mpr:=[150,120,69,96,117,135,147,210,198,273]: #median p r ice 
Again, as a preliminary check, he calculates the linear correlation coefficient for 
the price versus the median selling price, 

> l incoeff3:=Correlat ion(inpr ,pr) ; 

lincoeffS := 0.9672802592 
obtaining 0.97. "Ah, this is better," Syd remarks, "I should get an improved 
model equation using these new data." 

He then assumes a relationship of the form y = A +Bi XI -\-B2 X2 + B^ X3^ 
with X3 referring to the median selling price. In this case, Syd would have had 
to solve the four equations 

Sy = AN -{- Bi Sxi + B2 Sx2 + ^3 Sx?,^ 

Sxl y — ^ ^xl + Bi Sxl xl + B2 Sxl x2 + Bs Sxl x3^ 

Sx2 y ~ ^ Sx2 + Bi Sxl x2 + ^2 Sx2 x2 + -̂ 3 Sx2 x?,-, 

(2.17) 

SxZy — ^ ^x'i -^ BiSxlx?^-^ B2 Sx2 2:3 + ^ 3 Sx3 x2> -, 

for the four unknowns A, JBI, ^2 , ^ 3 , if Maple's least squares fitting procedure 
were not available to do the work for him. The new selling price {nsp) formula 
is given by the output of the following command line. 

> nsp:=Fit(A+B1*X1+B2*X2+B3*X3,Transpose(Matrix([hs,Is,mpr])), 
pr , [Xl ,X2,X3]); 

nsp := -42.5535998199035106 + 3.83297084662808540 Xi 
+1.18029719945884404 X2 + 0.670667204850229459 X3 
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Syd extends the formula for the standard error to the new situation and calcu
lates a new standard error, 

> new_ppr:=seq(subs(Xl=hs[i],X2=ls[i],X3=mpr[i],nsp),i=l. .N); 

new.ppr := 151.5221379, 114.5978619, 77.14502211, 86.11471850, 
121.7241784, 146.4873781, 158.3563752, 197.9557354, 
199.9342651, 266.1623275 

> Sigma [new] :=sqrt(suin((pr [i]-new_ppr [i])'^2,1=1. .N)/(N-4)) ; 

anew : - 15.47382409 
of about $15,000, considerably reduced from his previous calculated value. 
Benny tells him that the median selling price for his calculation can be taken 
as X3 = $156,000. Syd enters the values of XI, X2, and X3 into his formula, 

> XI:=20: X2:=18: X3:=156: new_sell ing_price:=nsp; 

new.selling.price :— 159.9752507 
and finds that the new predicted selling price of $160,000 is slightly lower than 
the original estimate. 

"Benny," Syd says, "If you will allow me one standard deviation on either 
side of this value, the bet is on." 

"Come on," Benny replies, "That's a spread from about $145,000 to $175,000. 
I will buy the dinner if the house sells for between $152,000 and $167,000!" 

"You have always been a hard bargainer, oh skeptical brother of mine, but 
I will take your bet. My mouth is already drooling in anticipation of a medium 
rare filet mignon. I understand that they also serve a delicious chocolate dessert 
that is almost worth dying for. If you're going to pick up the tab, as I anticipate 
will happen, I am going to splurge at your expense!" 

In the spirit of the typical soap opera, the reader will have to wait until the 
next exciting episode, when Syd and Benny reappear to tell us who has won 
the bet. 

PROBLEMS: 
Problem 2-35: Effect of Advertising 
In Table 2.31 the owners of a movie theater chain [ASW87] have recorded their 
gross weekly revenue (GR, in thousands of dollars) and the amounts (also in 
thousands) spent on advertising on TV and in the newspapers (NP). 

Table 2.31: Weekly revenue and advertising expenditures. 

GR 

TV 

NP 

96 

5.0 

1.5 

90 

2.0 

2.0 

95 

4.0 

1.5 

92 

2.5 

2.5 

95 

3.0 

3.3 

94 

3.5 

2.3 

94 

2.5 

4.2 

94 

3.0 

2.5 

(a) Derive a linear best-fit formula for the weekly gross revenue in terms of 
the two types of advertising. 
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(b) If both the weekly television and newspaper advertising are $5000, what 
is the estimated weekly gross revenue? 

(c) What is the standard deviation for your estimate? 

(d) Produce a plot of the data points and the planar surface corresponding 
to the best fit. 

Problem 2-36: Car prices 
Table 2.32 gives the list price (P in thousands of dollars), masses (M in thou
sands of kg), interior volumes {V in m'^), the gas consumption (G in liters per 
100 km), the sales volume {S in thousands of cars), and country of origin (C: 
U.S. = United States, J. = Japan, G.B. = Great Britain, G. = Germany) for 10 
different models of cars sold in North America. 

Table 2.32: Car data. 

p 

M 

V 

G 

S 

c 

13.5 

1.3 

3.4 

8.5 

350 

U.S. 

9.6 

1.2 

3.4 

9.0 

170 

U.S. 

15.3 

1.0 

2.9 

7.4 

85 

J. 

24.5 

1.4 

1.9 

10.0 

10 

G.B. 

35.5 

1.3 

3.0 

8.0 

25 

G. 

6.9 

1.0 

2.7 

7.0 

140 

U.S. 

14.5 

1.2 

3.0 

9.5 

210 

U.S. 

7.5 

1.1 

2.8 

7.2 

160 

J. 

9.5 

1.2 

3.3 

8.5 

100 

U.S. 

17.4 

1.5 

3.5 

9.9 

55 

U.S. 

(a) Calculate the correlation coefficient between list price and each of the 
possible factors (e.g., weight) that could influence the list price. Also 
produce a scatter plot in each case. Is there a strong dependence of the 
list price on any of the factors? 

(b) Remove the non-U.S. cars from the list and repeat part (a). Do any of 
the correlation coefficients improve? 

(c) Choose the two factors that have the highest correlation coefficient and 
derive a best-fit formula for the list price in terms of these two factors. 

(d) Produce a plot of the data points and the planar surface corresponding 
to the best fit. 

(e) Calculate the standard deviation in list price for your best fit formula. 
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2.3.2 And the Winner Is? 

There ^s no such thing as a free lunch. 
Milton Friedman, American economist (1912-) 

It's two weeks later and Syd and Benny are comfortably seated in the main 
dining room of the Hungry Heifer Steak House. This is the night of their wives' 
biweekly ladies bridge session, and the Boffo brothers are combining a business 
meeting with a night out. They have both consumed sizeable filet mignons done 
to perfection and quaffed a bottle of vintage red Cabernet wine produced from 
grapes grown in the Columbia River basin of eastern Washington. The real 
estate business has been good recently, and the house for which Syd predicted 
the selling price has been sold to a nice young family. Looking over the dessert 
menu, Syd orders a chocolate pecan torte followed by a cup of Sumatran coffee. 
On finishing, he asks the waiter to bring the bill. 

With a gentle belch, Syd put his hand on the bill, turns it over, and looks 
at the total. "This wasn't a cheap meal," he remarks. He then pushes the bill 
across the table to Benny. "I believe this is yours tonight. That nice young 
couple got the house for $165,000, which is within the range of $152,000 to 
$167,000 that you allowed me." 

"Ah, you were lucky with your prediction, Syd. If you feel so confident, we 
can make a similar bet with regard to our associated trucking company. I will 
talk to Cousin Brenda, who manages that side of our operations, and see if she 
has any recent numbers that you can use. I will give you the data in the office 
tomorrow." 

"OK, Syd, but I will have to see how good a model equation I can develop 
before I make any new bet with you." 

The next day, Syd is given the information [ASW87] displayed in Table 2.33. 
The table gives the miles traveled, the number of deliveries, and the travel time 

Table 2.33: Data for the Boffo Trucking Company. 

Day 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Miles traveled 

100 
50 
100 
100 
50 
80 
75 
80 
90 
90 

Delivery number 

4 
3 
4 
2 
2 
1 
3 
2 
3 
2 

Travel time 

9.3 
4.8 
8.9 
5.8 
4.2 
6.8 
6.6 
5.9 
7.6 
6.1 
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in hours for 10 consecutive days for the Boffo Trucking Company. The objec
tive is to develop a Hnear model equation that predicts the travel time, given 
the number of miles traveled and the number of deliveries. The problem is 
similar to the one Syd solved for the housing prices. Although he could simply 
use a cut and paste approach, replacing the old data and labels in his earlier 
recipe with the new data and labels, Syd decides to create a generic Maple 
"procedure" instead. This has the advantage that he has then only to recall 
the procedure, type in the new data where indicated in the worksheet, and 
execute the worksheet. 

> r e s t a r t : w i t h ( S t a t i s t i c s ) : with(LinearAlgebra): 
The linear least squares fitting procedure is assigned the name f i t l i n . In the 
argument of the procedure command, proc, Syd inserts the generic names of 
the three data lists, which will have to be entered in order for any explicit 
calculations to be done. 

> f i t l i n : = p r o c ( x l l i s t , x 2 1 i s t , y l i s t ) 
For the example at hand, the miles traveled will be entered as the x l l i s t , the 
number of deliveries as the x21ist , and the travel time as the y l i s t . 

The next two command lines indicate which Maple names in the fitting 
procedure are taken to be as "global" and which are to be regarded as "local" 
to this procedure. Maple regards local variables in diff'erent procedures to be 
different variables, even if they have the same name. Global variables hold 
outside procedures. If a variable is not specified as global or local. Maple will 
automatically assume that it is local if it appears on the left-hand side of an 
assignment (name) statement. Since they are all quantities that Syd wishes to 
evaluate outside the procedure, the Maple assignments l incoef f 1, l incoef f 2, 
eq, Sigma, and Y, whose meaning will be made clear shortly, are indicated to 
be global. 

> global l incoef f l , l incoef f2 ,eq , s igma,Y; 
The remaining Maple names in the procedure are taken as being local. 

> loca l N,predy,xl ,x2,X; 
Using the nops command, the number of entries in the x l l i s t is determined. 

> N:=nops (x l l i s t ) : 
The linear correlation coefficients between the xl and y data, 

> l i n c o e f f l : = C o r r e l a t i o n ( x l l i s t , y l i s t ) ; 
and the x2 and y data are calculated. 

> l i n c o e f f 2 : = C o r r e l a t i o n ( x 2 1 i s t , y l i s t ) ; 
The x l l i s t and y l i s t are formed into a tranposed matrix. 

> X:=Transpose (Mat r ix ( [x l l i s t ,x21 i s t ] ) ) ; 
The least squares F i t command is used to derive the linear model equation, 

y = a+blxl +b2x2, (2.18) 

that best fits the three data lists. 

> eq :=Fi t (a+bl*x l+b2*x2 ,X,y l i s t , [x l ,x2] ) ; 
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The next two command lines determine the standard deviation a. 

> p r e d y : = s e q ( s u b s ( x l = x l l i s t [ i ] , x 2 = x 2 1 i s t [ i ] , e q ) , i = l . . N ) ; 

> Sigma: =sqrt (siimC ( y l i s t [ i] -predy [i] ) '^2, i = l . . N) / (N-3) ) ; 
Given specific input values of XI (miles traveled) and X2 (number of deliveries), 
the predicted travel time in hours, F , is evaluated. 

> Y:=subs(xl=Xl,x2=X2,eq); 
The procedure syntax is then terminated with the end proc command. 

> end proc: 
In the next three command lines, Syd enters the relevant trucking data hsts. 
For other problems in which it is desired to use the same fitting procedure, the 
new data can be entered where indicated by the comments. If fewer or more 
dependent variables were used than in this example, the procedure could be 
easily modified and saved under a new procedure name. 

> x l l i s t :=[100 ,50 ,100 ,100 ,50 ,80 ,75 ,80 ,90 ,90] : #enter data 

> x 2 1 i s t : = [ 4 , 3 , 4 , 2 , 2 , l , 3 , 2 , 3 , 2 ] : #enter data 

> y l i s t : = [ 9 . 3 , 4 . 8 , 8 . 9 , 5 . 8 , 4 . 2 , 6 . 8 , 6 . 6 , 5 . 9 , 7 . 6 , 6 . 1 ] : #enter data 

As an example, Syd wishes to use the model equation to estimate the travel 
time for a day on which the number of miles traveled is 90 with 3 deliveries. 

> XI:=90: X2:=3: #enter data 
After entering the various data, a call is now made for the f i t l i n procedure. 

> f i t l i n ( x l l i s t , x 2 1 i s t , y l i s t ) : 
The global quantities are now explicitly evaluated for the specified data. The 
linear correlation coefficients LCxiy (between miles traveled and travel time) 
and LCx2y (between delivery number and travel time) 

> LC[xly]:= l i n c o e f f l ; LC[x2y]:= l incoeff2 ; 

LCxiy := 0.7755115490 LCx2y := 0.6338656910 
are 0.78 and 0.63, respectively. The best-fitting linear model equation is given 
by the output of the following command line, 

> y :=eq; 

y := 0.0366552350211831746 + 0.0561630018156142399 j;i 
+ 0.763869275771636768 x2 

while the standard deviation is 0.85. 

> standard_deviation:=sigma; 

standard-deviation := 0.8493805413 
Corresponding to the input values of 90 miles traveled and three deliveries, 

> travel_time:=Y; 

traveLtime := 7.382933226 
the model equation predicts a travel time of 7.38 hours 
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After doing the calculation, Syd is not certain as to whether he should take 
Benny up on his bet or once again ask for more information in order to develop 
a better model equation. What do you recommend that Syd do? 

PROBLEMS: 
Problem 2-37: Generalizing the text procedure 
Generalize the Maple procedure of this section to deal with a list of y values 
depending linearly on lists of xi , X2, and xs values. 

Apply this generalized procedure to the housing example considered by Syd 
Boffo where the selling price depended on house size, lot size, and median 
neighborhood selling price. 

Problem 2-38: New home cost 
According to U.S. News and World Report (April 6, 1992), the median cost C 
of a new house, the number of new housing starts S in 1991-92, and the average 
household income / are as given in Table 2.34. All entries are in thousands. 
Making use of the Maple procedure in the text: 

Table 2.34: Housing market data. 

City 

Atlanta 
Baltimore 
Chicago 

Cleveland 
Columbia, S.C. 

Dayton, Oh. 
Gary, Ind. 

Jacksonville 

C 

100.6 
121.8 
181.8 
122.9 
90.3 
107.8 
98.2 
82.1 

S 

24.2 
11.1 
12.9 
5.4 
3.1 
3.8 
3.2 
8.0 

I 

54.7 
62.8 
61.0 
54.0 
57.4 
48.4 
45.7 
47.5 

City 

Mobile, Ala. 
Oklahoma City 

Pittsburgh 
Richmond, Va. 

San Antonio 
Scranton, Pa. 

Tacoma 
W. Palm Beach 

C 

68.5 
68.9 
79.5 
102.8 
72.5 
81.6 
96.1 
130.4 

S 

1.0 
3.3 
4.9 
6.0 
1.5 
2.5 
4.1 
8.9 

/ 

41.0 
53.2 
49.2 
64.5 
57.0 
44.8 
51.1 
58.1 

(a) Develop a linear least squares formula relating the cost to the number of 
new housing starts and the household income. 

(b) Estimate the median cost for a new house for a city with 8000 new housing 
starts and average household income of $50,000. 

(c) Determine the standard deviation. 

(d) Calculate the relevant linear correlation coefficients and comment on how 
good you think the model equation is. 

Problem 2-39: Commercial office buildings 
Generalize the Maple procedure of this section to deal with a list of y values 
depending linearly on lists of xi, X2, X3, and X4 values. Apply this generalized 
procedure to the following problem. The Boffo brothers are considering buying 
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a group of small office buildings in the downtown Metropolis business district. 
Syd has obtained the data shown in Table 2.35 for 11 representative office 
buildings. 

Table 2.35: Office building data. 

Floor space 

(̂ i) 

2310 
2333 
2356 
2379 
2402 
2425 
2448 
2471 
2494 
2517 
2540 

Offices 

(^2). 

2 
2 
3 
3 
2 
4 
2 
2 
3 
4 
2 

Entrances 

(xs) 

2 
2 
1.5 
2 
3 
2 
1.5 
2 
3 
4 
3 

Age 
iX4) 

20 
12 
33 
43 
53 
23 
99 
34 
23 
55 
22 

Value 

(y) 

142 
144 
151 
150 
139 
169 
126 
142.9 
163 
169 
149 

The variables are floor space in square feet (xi), number of offices (X2), number 
of entrances (X3), age of the office building in years (X4), and the assessed value 
(y) in thousands of dollars of the office building. The two values "1.5" in the 
X3 column indicate that for these two buildings, one of the two entrances is a 
delivery entrance only and has been counted as half an entrance. 

(a) Help Syd develop a linear multiple regression equation relating the as
sessed value to the four independent x values. 

(b) Use this formula to estimate the assessed value of an office building in 
the same business district that has 2500 square feet, three offices, two 
entrances, and is 25 years old. 

(c) Which X variable has the highest linear correlation coefficient? Is this 
coefficient positive or negative. What does this indicate? 

(d) Which X variable has a negative correlation coefficient? What does this 
indicate? 



Part II 

THE ENTREES 

Science is the knowledge of many, 
orderly and methodically digested and arranged, 

so as to become attainable by one. 
John F. W. Herschel, English astronomer (1792-1871) 

It isn^t so much whaVs on the table that matters 
as whaVs on the chairs. 

Wmiam S. Gilbert, English librettist (1836-1911) 

"Take some more tea, ^^ the March Hare said to Alice, 
"I^ve had nothing yet, ^^ Alice replied 

in an offended tone: "so I can^t take more. ^^ 
"You mean you can^t take less,^^ said the Hatter: 

"it ^s very easy to take more than nothing. ^^ 
Lewis Carroll, English writer and mathematician (1832-1898) 



Chapter 3 

Algebraic Models. Part I 
For the sake of,., different types, scientific truth should be presented 
in different forms, and should be regarded as equally scientific, whe
ther it appears in the robust form and.,. vivid coloring of a physical 
illustration, or in the tenuity and paleness of a symbolic expression. 
James Clerk Maxwell, Scottish physicist (1831-1879) 

Because of the typical mathematical background of the students involved, intro
ductory college science courses tend to concentrate on simple algebraic models 
that can be solved analytically. Usually, the concepts of derivatives and inte
grals are introduced as well as the associated idea of finding the maximum or 
minimum of a function. Also, the student learns about dot and cross products 
as well as vector operators, and is expected to solve simultaneous equations. 

In contrast to conventional programming languages, which require numerical 
values for all variables, computer algebra systems have the additional advan
tage of allowing the user to symbolically derive, manipulate, and solve a wide 
variety of interesting scientific model equations. This introductory chapter of 
the Entrees illustrates the application of the Maple CAS to a wide variety of 
intellectually stimulating scalar algebraic models. Vector and matrix models are 
covered in the following chapter, followed by chapters dealing with linear ODE 
and diff"erence equation models. We are confident that you will not find the sym
bolic expressions appearing in our recipes and stories to be tenuous and pale, 
for they will generally be embedded in robust and colorful physical illustrations. 

3.1 Scalar Models 

In this chapter, we concentrate on scalar algebraic models and show how Maple's 
symbolic manipulative ability can make one's mathematical life much easier and 
the learning process more fun. However, remember that using the computer to 
do the algebra is no substitute for thinking. The computer cannot derive the 
basic equations. It's up to you to correctly enter the relevant expressions. This 
is the hard part of the task, which you will master only by carefully studying 
the recipes and trying the provided problems. 
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3.1.1 Bombs Versus Schools 

/ have never let my schooling interfere with my education, 
Mark Twain, American author (1835-1910) 

In 1872, Samuel Butler wrote a satiric novel about an adventurer who stumbles 
across an unknown civilization where everything seems to be done backward. 
The novel was called Erewhon, which is an anagram for nowhere. On the planet 
Erehwon (note the different spelling), which is featured periodically in this text, 
the civilization is not particularly backward, but the inhabitants have an id
iosyncratic habit of often spelling names backward. Keep this in mind whenever 
a strange name is encountered in a story involving this planet. 

Planet Erehwon has been spending an enormous amount of money (100 
trillion ehs^) on bombs (defense) and much less (1 trillion ehs) on schools (edu
cation). It has been decided to increase the base budget of 101 trillion ehs next 
year by 5 trillion ehs, an approximate 5% increase. The 5 trillion increase is to 
be divided between the two groups in a way that maximizes the effective use of 
the money. 

Now, as it happens, Trebla Nietsnie, the administrator deciding how the di
vision is to occur, is a former scientist who wishes to rationalize how the money 
is to be split by constructing a reasonable mathematical model. Trebla believes 
that a group's effective use of the extra funds is linear for small percentage 
increases but grows less rapidly for large percentage increases. A phenomeno-
logical model that mimics this behavior is needed and created. As a measure 
of the effectiveness, letting x be the increase in funding and the constant C 
represent the base budget, Trebla defines an "effectiveness index" i, 

> r e s t a r t : w i t h ( p l o t s ) : 

> i :=ln(C+x)-ln(C); 

i := ln(C + x) - ln(C) 
and then combines the In terms in the previous output into a simpler expression. 

> i : =coinbine (%, In , symbolic) ; 

z :^ In ^ - ^ 

The second argument in the combine command instructs Maple to use known 
logarithmic transformations. However, since the parameter C could, from a 
general mathematical viewpoint, be negative, the argument symbolic must be 
included here. This instructs Maple to assume that all parameters are positive. 

The behavior of the index for small x can be obtained by Taylor expanding 
i about x = 0 out to second order in x. 

> t a y l o r ( i , x = 0 , 2 ) ; 

^ ^ + 0(x2) 

^This unusual name for their currency arises from the fact that the planet's citizens end 
every sentence with an "eh"—pronounced to rhyme with "play." 
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The term of order x^ is removed from the Taylor series output of the previous 
command hne by converting it to polynomial form. 

> small_x_behavior:=convert(%,polynom); 

X 

small.X-behavior := — 
Thus, for small x the index is linear in x, with slope l/C. The complete behavior 
of the index can be examined by substituting a specific C value, e.g., C = l, in 
units of 1 trillion ehs. 

> i :=subs(C=l, i ) ; 

i := ln(l -hx) 
The index i and the linear form x (valid for small x, with C = 1) are now plotted 
together over the range x = 0 to 5. The two functions are entered as a Maple 
list here because order is important. Trebla wants the curve for i to be colored 
blue and the curve for x to be colored red, so the colors are also entered as a 
list. Because colors do not show up in a black-and-white rendering (such as this 
text), different line styles are chosen for the two curves, the two line styles also 
entered as a list. The linestyle 1 produces a solid curve, the linestyle 3 a dashed 
line. Equivalently, Trebla could have entered l inesty le= [SOLID,DASH]. The 
other plot options should be familiar to the reader by now. 

> p lo t ( [ i , x ] ,x=0 . .5 , co lor=[b lue , red] , l ines ty l e=[1 ,3 ] , th i ckness 
=2,view=[0. . 5 ,0 . .2] ,tickinarks=[4,2] ,labels=["x" , " i"] ) ; 

The resulting picture is shown in Figure 3.1. 

0 1 2 x 3 4 5 

Figure 3.1: Variation of effectiveness index i with increase x in funding. 

The deviation of i away from linear behavior as x increases is clearly seen. For 
large x, the behavior of the effectiveness index can be obtained by expanding 
around x= oo, to second order, and removing the "order of term. 
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> t a y l o r ( i , x = i n f i n i t y , 2 ) ; 

ln(x) + - + o f ^ 

> large_x_behavior: =convert (7,,polynom); 

large.x-behavior := ln(:r) 
1 

For very large x, the index behavior is dominated by the log term, with the 
first-order correction being 1/x. 

In the bombs versus schools situation, Trebla lets x refer to the amount of 
extra funds allocated to building bombs and y = 5 — x to building schools. He 
labels the effectiveness index for building bombs B and for schools 5. Then, 

> B:=( ln( l+x/C[b]) ) ; 

y:=5-x; 

> S:=ln( l+y/C[s] ) ; 

B - In ( 1 + — 

y := 5 — X 

5 := In 1 -h 
5 — X 

~c7 
With the base budgets Ch — 100 trillion ehs and C^ = 1 trillion ehs, the 
spacecurve command is used to produce a three-dimensional plot of B ver
sus S versus x over the range x = 0 to 5. 

> C[b] :=100: C[s] :=1: 
> spacecurve([B,S,x] ,x=0. .5 , labels=["B","S","x"] ,axes=normal , 

t i ckmarks=[3 ,3 ,3 ] , th ickness=2 ,o r ien ta t ion=[ -90 ,0 ] ) ; 

Figure 3.2: Relationship between the bomb index B and the school index S. 
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The orientation was chosen so as to produce Figure 3.2, showing the school index 
S versus the bomb index B. The three-dimensional character of the picture 
can be observed by clicking on the computer plot and dragging the mouse to 
change the orientation. Once the expressions for the individual indices have 
been written down, an overall index / that is the product of the two indices, 
f = B S^ is formed and plotted, the result being shown in Figure 3.3. With 
tongue in cheek, Trebla refers to this as the BS model. 

> f:=B*S; 

f--=H'^^)'^^'-^ 
> p l o tCf ,x=0 . . 5 , t i ckmarks= [4 ,3 ] , l abe l s= [ "x" , " f ' ] ) ; 

0.03 

Figure 3.3: Overall effectiveness index / as a function of x. 

Many problems dealing with decision theory and bargaining models generate 
curves similar to that shown in Figure 3.3. 

The approximate location of the maximum can be found by clicking the 
mouse on the curve's peak and reading the coordinate values that appear in 
the small window in the upper left corner of the computer screen. The value of 
X at the maximum can also be found by first analytically differentiating / with 
respect to x and setting the result equal to zero. 

> d i f f ( f , x )=0 ; 

1 ln(6 - x) 
Too 1 , ^ 

100 

l n ( l + 
100/ 0 
X 

The output is a complicated transcendental equation that must be solved by 
numerical means. The command f solve, which is based on Newton's method. 
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is used to produce a floating-point solution of the last output equation. 

> x:=f solve(7o,x); 
X := 3.080667922 

Thus, the value of x that maximizes the overall index is x ?̂  3.08 trillion ehs, 

> Y'-~Y'i ^iii t r i l l i o n of ehs 
y := 1.919332078 

and therefore y ^ 1.92 trillion ehs. Notice that the percentage increase of 
the bomb group's budget is small (3.08%) even though the actual eh [sic] in
crease is more than that allotted for schools. However, in this model the school 
group benefits proportionally more because it gains 1.92 trillion ehs, which is 
a percentage increase of 192%. This conclusion is supported by calculating the 
separate eflPectiveness indices, B and S. 

> B:=B; S:=S; #effectiveness indices for bombs and schools 

B := 0.03034167921 S := 1.071354850 
The effectiveness index S for schools is much larger than that for bombs. 

PROBLEMS: 
Problem 3-1: Drug concentration 
If A units of a drug are injected into a patient, the concentration c (in mg/ml) 
of the drug in the bloodstream after t hours is given by c{t)=Ate-^^^. The 
maximum safe concentration of the drug is 1 mg/ml. 

(a) What amount A should be injected to reach the maximum safe concen
tration and when does this maximum occur? Plot the concentration over 
the time interval t = 0 to 15 hours. 

(b) By clicking on the plot, determine the approximate time when the con
centration has dropped to 0.25 mg/ml. 

(c) An additional amount of drug is to be administered when this concentra
tion is reached. Use the f solve command to determine the time to the 
nearest minute when this second injection is to be given. 

Problem 3-2: Newton's method 
Newton's method makes use of the first two terms of the Taylor series expansion 
of a function/(x) about a point x = a, i.e., f (x) — f (a)-\-(x - a) f'{a)-\ , where 
the prime denotes a derivative with respect to x. The root of f{x) corresponds 
to setting f{x) — 0. Then x '^ a - f{a)/f'{a). If xi is the first guess for the 
root, one repeatedly iterates the relation x^+i =Xi — f{xi)/f'{xi) for i = 1, 2 , . . . , 
until the solution has converged to an answer of acceptable accuracy. 

In the text example, the root of the function 

^^""^ ~ 100+ x 6 ^ ^ " ^ 

is found to be X = 3.080667922. Using Newton's method and the initial guess 
xi =2 , determine X2, X3, X4, and x^. How many iterations of Newton's method 
does it take to get the above value for xl 
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Problem 3-3: Tug of war 
In a tug of war contest, each team consists of five persons. The average 

mass m of each person is 60 kilograms. Each individual on Team 1 exerts an 
average force Fi =900e~^"^^ newtons as a function of time t in seconds, while 
each person on Team 2 exerts a force F2 = 950e~^-^'^^ newtons. The negative 
exponents indicate a tiring effect on the part of both teams. Neglecting any 
dissipation and assuming that the mass of the connecting rope can be neglected 
and that the two teams are initially at rest, answer the following questions: 

(a) What is the acceleration, velocity, and displacement of the two-team sys
tem at arbitrary time t > 0? 

(b) Plot the displacement up to t = 7 seconds. 

(c) Which team is the first to pull the other team a distance of 0.75 meters? 

(d) Using f solve, find how long it takes to move this distance. 

(e) If the object of the game is to pull the other team a distance of 1 meter, 
which team wins and at what time does it win? Use the f solve command. 

Problem 3-4: Richter earthquake magnitude scale 
Large earthquakes may generate seismic waves with energies E as much as 10^^ 
joules. The Richter magnitude scale has been historically used to express the 
magnitude of an earthquake as a much smaller number. The Richter magnitude 
M is related to E by the relation 

M = 0.671og£;-2.9, 
where the logarithm is to the base 10. The great San Francisco earthquake of 
1906 had an energy of about 10^^ joules. 

(a) What was its Richter magnitude? (Use the loglO command.) 

(b) What energy corresponds to M = 0? 

(c) Analytically solve for the energy E in terms of Af. 

(d) Plot the resulting formula for the range M = 7 to 9. Put the data point 
for the San Francisco earthquake on the same graph. 

Problem 3-5: Income versus study time 
In economics, the "utility function" t/ is a measure of how valuable or desirable 
alternative products or options are considered to be. Alice, an economics stu
dent, has a part-time job at the Hungry Heifer Steak House which pays $8 an 
hour. She deems her utility function for earning i dollars and spending s hours 
studying to be U = i^^^ s^^^. The total amount of time she spends each week 
working in the restaurant and studying is 100 hours. Interpret Ahce's utility 
function. How should she divide her time up in order to maximize her utility? 
What would her weekly income be? Arrive at the answer by carrying out the 
following steps. Express the utility function entirely in terms of s. Plot the 
utility function over the appropriate range. Use the mouse to determine the 
value of s that makes U a maximum. Analytically determine this value of s. 
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Problem 3-6: Alice's sweet tooth 
Alice loves fruit and chocolates. Her utility function for / units of fruit and c 
units of chocolate is U = f^^^ c^^^. She has $49 to spend each month on fruit 
and chocolates. Fruit costs $1 per unit and chocolate $2 per unit. 

(a) Make a three-dimensional plot of Alice's utility function. 

(b) Make a plot of her utility function as a function of c alone. 

(c) Graphically and analytically, determine how many units of fruit and of 
chocolate Alice should buy each month to maximize her utility function. 

Problem 3-7: Ground-state energy of an electron 
For an electron of mass m confined to a rectangular potential well of height VQ 
and width a, the lowest or "ground-state" energy E must be found by solving 
the transcendental equation [Wie73], 

X t a n X = V i ? 2 - X 2 , where R=J -^—, X = d -^ , 

and h is Planck's constant. Taking m = 9 x 10~^^ kg, VQ = 1.6 x 10~^^ joules, 
a = 10~^^ meters, and h = 6.63 x 10"*̂ ^ joule • seconds, what is the numerical 
value of the normalized ground-state energy E/Vo? 

Problem 3-8: Pressure to sink a plate in mud [BF89] 
The pressure (force per unit area) required to sink a large object in muddy 
soil lying above a hard soil base can be predicted by the pressure required to 
sink smaller objects in the same mud. According to M. G. Becker [Bec69], the 
pressure p in psi (pounds per square inch) required to sink a circular plate of 
radius r inches a distance d inches in the mud, where the hard soil base lies a 
distance D > d below the mud surface, is given approximately by the formula 

p = kie^^"^ -{- ks r, 
with /c2 > 0. The parameters /ci, A:2, /cs, depend on d and the consistency of 
the mud, but not on r. 

(a) It is observed that to sink circular plates of radii 1,2, and 3 inches to a 
depth of 1 foot in a certain muddy field requires pressures of 10, 12, and 
15 psi, respectively. Determine the parameters /ci, A:2, and ks. 

(b) For the above field, what is the minimal radius of circular plate that is 
required to sustain a load of 500 lb without sinking more than 1 ft? 

Problem 3-9: Taylor series expansion 

Expand the following functions in a Taylor series as indicated: 

(a) f{x) = l / \ / l + 3x2 about x = 0 to order 10; 

(b) f{x) = x/{e^ ~ 1) about x = 0 to order 10; 

(c) / (x) = e '̂̂ *^"(̂ ) about x = 7r/4 to order 6; 

(d) f{x) = ln(l + v ^ T T ^ ) about x = 0 to order 10; 

(e) f{x) — In(sinx) about x = 0 to order 10. 
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Problem 3-10: The rule of 72, the measure of money growing 
Investors soon learn that the number 72 is a magical number in financial circles. 
If 72 is divided by the annual investment return in percent, the resulting number 
is the number of years it will take to (approximately) double the original amount 
of money For example, if one earns 6% annually on a savings bond, it will take 
72/6 = 12 years to double the money. Many investors are apparently not aware 
of why this rule works and how good it is for normal ranges of interest. It has 
to do with the way compound interest works. If the return is, say, 6%, then 
$1 produces $1.06 the next year, 1.06 x 1.06 = (1.06)^ the second year, and so 
on. Let the number of years to double, according to the rule of 72, be 0.72/r, 
where r is the annual rate of interest expressed as a decimal, e.g., r = 0.06 for 
the example above. Then, according to the rule of 72, (1 + r)^''^/^ ^ 2. 

(a) Calculate the Taylor expansion of this expression about r = 0 out to r"^. 

(b) Plot the difference between the Taylor expansion and 2 for r = 0 to 0.12, 
i.e., 0 to 12%. At what percent annual return does the rule of 72 exactly 
agree with the Taylor expansion? 

3.1.2 Kirchhoff Rules the Electrical World 

"T/ie rule is, jam tomorrow, and jam, yesterday-
hut never jam today. '̂  
''It must come sometimes to 'jam today,^ '̂  Alice objected. 
"No, it can't,^^ said the Queen. "It's jam every other day: 
today isn't any other day, you know." 
Lewis Carroll, Through the Looking Glass (1872) 

In the world of electrical circuit theory, the application of two rules established 
by the German physicist Gustav Kirchhoff (1824-1887) to mathematical models 
of actual circuits helps in the design of complex useful electrical systems. In the 
simplest circuits the energy sources, batteries, are idealized to have constant 
potentials that push the current in only one direction (a direct current, DC). 
The resistance of the wires is neglected in comparison to that of the resistors. 
Figure 3.4 shows a simple DC circuit containing three batteries with voltages 
^1,^2,^3, and five resistors with resistances R, 2R, 3i?, 4i?, 6R. The objec
tive is to find the current through each resistor in terms of the given battery 
voltages and resistances. To achieve this, Kirchhoff''s rules will be applied. 

The first rule states that the algebraic sum of the potential drops around 
any closed loop is zero. The convention is that if one goes through a battery 
from the negative (labeled with a minus sign) terminal to the positive (plus 
sign) terminal, the potential change is positive. If one goes through the battery 
from plus to minus the potential change is negative. For each loop chosen, one 
assumes a direction for the current^ i. Traveling through a resistor R ohms in 

•^Note that Maple reserves capital / , a common symbol for current, to stand for y/—l. 
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R 3R 

Figure 3.4: A simple DC circuit. 

the sense of the assumed current produces a potential drop writ ten as —i R. 
Going through the resistor in the opposite sense produces a H-i i? contribution. 
The product iR for the potential difference is just a s tatement of Ohm's law,^ 
a well-known result for electrical circuits. 

Kirchhoff's second rule states tha t the sum of the currents flowing out of a 
junction point (a dot in the figure) is equal to the sum of the currents flowing 
into the junction point. For example, if the current flowing through the bat
tery Vi is 2i and assumed to be counterclockwise, and the current through the 
bat tery V2 (also assumed counterclockwise) is 22, then there is a current 22 ~ h 
flowing up through the AR resistor. The sum of the currents into the junction 
between the bat tery V2 and the 6 R resistor is i i + (22 — i i ) = ^2, which matches 
the current out of the junction. 

Wi th this brief review behind us, our task is to solve for the currents through 
each resistor. We go through each of the loops in a counterclockwise sense and 
assume tha t the currents are flowing in tha t direction. 

> r e s t a r t : 

Loop 1 is the loop furthest to the right in the circuit with the current i i through 
the bat tery labeled Vi. Loop 2 is the middle loop with the current through V2 
taken to be 22- Finally, Loop 3 is the loop furthest to the left with the current 
through V3 labeled as is- Applying Kirchhoff's potential drop rule to each loop 
yields the following system of equations for the three loops. 

> L o o p . l : = V [ 1 ] - 6 * R * i [ 1 ] + 4 * R * ( i [ 2 ] - i [ 1 ] ) = 0 ; 

Loop.l := Vi -6Rii + 4 i ? ( z 2 - z i ) = 0 

> L o o p _ 2 : = V [ 2 ] + 2 * R * ( i [ 3 ] - i [ 2 ] ) - 3 * R * i [ 2 ] - 4 * R * ( i [ 2 ] - i [ 1 ] ) = 0 ; 

Loop.2 :=V2 + 2R{i3~i2) - 3Ri2 - ^R{i2 - h) = 0 

> L o o p _ 3 : = - V [ 3 ] - R * i [ 3 ] - 2 * R * ( i [ 3 ] - i [ 2 ] ) = 0 ; 

Loop.3 := -V3-Ri3-2R{i3-i2) = 0 

^Discovered by another German physicist, George Ohm, in 1827. 
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The system of loop equations is analytically solved for the currents i i , Z2, is-

> Current :=solve({Loop_l ,Loop_2,Loop_3},{i [ l ] , i [2] , i [3]}) ; 

r . 1 1 2 ^ 2 - 8 ^ 3 + 2 3 Vi 1 6V1 + I 5 F 2 - I O F 3 
Current :— <ii = , Z2 R ' " 91 R 

1 -h4Fi + 1 0 y 2 - 3 7 V 3 ' 
^̂  91 R 

In order to extract the individual currents, e.g., i i . Current must be assigned. 
Otherwise, entering i [ l ] would generate the symbol ii , not the analytic solu
tion for this current. 

> ass ign(Curren t ) : 
As a check, the assigned values of the currents are substituted into a list of the 
three loop equations and expanded. 

> expand([Loop_l,Loop_2,Loop_3]); 

[0 = 0,0 = 0,0 = 0] 
For each loop equation, we obtain 0 = 0, confirming that each loop equation is 
satisfied by the analytically calculated currents. Then the current through each 
resistor is calculated for some specific values of the voltages and resistances. If, 
for example, i?=10 ohms, F i=27 volts, V2 = 10.5 volts, and Vs=^b volts, 

> R:=10: V[l] :=27: V[2]:=10.5: V[3]:=5: 
the currents, in amperes, are as follows: 

> Current_through_R_resis tor :=i[3] ; 

Current Jhrough-R.resistor := 0.03076923077 

> Current_through_2R_resis tor :=si inpl i fy( i [3]- i [2]) ; 

Current.through^2R-resistor := —0.2653846154 

> Current_through_3R_resis tor :=i[2] ; 

Current Jhrough.SR.resistor := 0.2961538462 

> Current_through_4R_res is tor :=s i inpl i fy( i [2]- i [ l ] ) ; 

Current.through.4R.resistor := -0.09230769230 

> Current_through_6R_res is tor :=i [ l ] ; 

Current-through-6R-resistor := 0.3884615385 
The appearance of a minus sign for a current indicates that the current is in 
the opposite direction to that assumed. 

As a second, more advanced, example, we consider the circuit shown in 
Figure 3.5, which has an alternating current (AC) source, with real voltage 
amplitude V and frequency cj, three identical resistors R^ a capacitor with ca
pacitance C, and an inductor with inductance L. Kirchhoff's rules still apply at 
each instant of time t, but the concept of resistance must be generalized [FLS64] 
to that of impedance Z. Using the complex representation"^ V e^^^ for the AC 

^The real AC voltage is the real part of V e ^ ^ * , namely, Vcos{ujt). 
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voltage, with / = V"—T, the impedances of a resistor, inductor, and capacitor 
are Z = R (as in the DC case), Z = IUJL, and Z — —I/{UJC)^ respectively. 
The potential change across an impedance through which an AC current i is 
passing is equal to —iZ in the direction of the assumed current, an obvious 
generalization of Ohm's law. 

(^ycos(cot) 

Figure 3.5: An AC circuit. 

Suppose that our goal is to determine the steady-state current through the 
diagonal resistor in the AC circuit of Figure 3.5. Let zc, ILI and IR be the 
amplitudes of the currents through the capacitor, the inductor, and the diagonal 
resistor. The instantaneous assumed directions of the currents are as indicated. 

> r e s t a r t : 
The first loop equation is for the outermost loop of the circuit passing clockwise 
through the AC source. The loop equations are applied to the amplitudes. The 
voltage amplitude V is assumed to be real, but the various current amplitudes 
will in general be complex. (Note the Maple entry I for V^^.) 

> Loop.l: =V+I/ (oinega*C) *i [C] - ( i [C] - i [R]) *R=0; 

Loop.l :=V+^-^-{ic-iR)R = 0 
UJC 

The second loop equation is taken counterclockwise through the inductor L, 

the diagonal resistor R, and the capacitor C. 

> Loop_2:=-I*omega*L*i[L]+i[R]*R-I/(omega*C)*i [C]=0; 

lie Loop.2 := —IUOLIL -{-IRR 
UJC 

0 

The third loop is taken counterclockwise through the diagonal resistor, the 
horizontal resistor, and the vertical resistor. 

> Loop_3:=-i[R]*R-(i[L]+i[R])*R+(i[C]-i[R])*R=0; 

Loop.3 := -iR R~{iL-\- IR) R-i-{ic - in) R = 0 
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The three loop equations are solved for the three current amplitudes, 

> solution:=solve({Loop_l,Loop_2,Loop_3},{i[C], i[R], i[L]}); 

IV{LU^LC+1) 
solution := <iji = 

3u; L + 2Iuj^LCR-2IR^R^LoC' 

V{Ru;C-3I) 

3UJL + 2IU;'^LCR-2IR^R'^UJC' 

VUJC{3IUJL + R) 1 

3u;L + 2Iuj'^LCR-2IR + R^u;C} 

and the solution is assigned. 

> assign(solution): 

We are interested in the current iR through the diagonal resistor. As it stands, 
the answer is expressed as the ratio of two complex quantities, both denominator 
and numerator involving / = \/—l. To put in in the form (Real Part) + 
/(Imaginary Part), the complex evaluation command, evalc, is applied. 

> cu r ren t :=eva lc ( i [R] ) ; 

V (uo^ LC + 1) (2u;^ LCR - 2R) 
current := 

+ 

{3u;L + R^ujCy^{2uj^LCR-2R)^ 

IV{UO'^LC-\-1){3UJL + R^UJC) 

{3UJL-^R^UJCY^{2UJ'^LCR-2RY 

The current expression is pretty formidable, so let's remove the real term by 
assuming that the frequency of the AC source is given by u) — l/\fLC. 

> omega:=l/sqrt(L*C): 
With Lo automatically substituted, the current is simplified with the radnormal 
command. This command normalizes expressions containing radical numbers. 

> Diagonal_current:=radnormal(current); 

2ivVTc 
Diagonal-current :— r>o r^ 

3 L -{- R^ C 
The current amplitude is still expressed as a complex number. To relate it 
to the real voltage amplitude V, we shall recast the current amplitude in polar 
form. A complex number z can be rewritten as 2: = re^^, where r is the modulus 
and 9 is the phase angle. Assuming that all circuit parameters are positive, 

> assume (V>0, L>0, OO, R>0, omega>0, t>0) ; 
the current amplitude through the diagonal resistor is converted to polar form. 

> Diagonal_current: =polar (7o); 

Diagonal .current \— polar 2 
L V^LC 
\ 3L^R^C' 2 

Note that the ditto sign allowed the polar command to be applied to the last 
output, not to the assume command line. The first argument in the polar 
command output is the modulus (magnitude), while the second is the phase 
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angle of the current relative to that of the voltage source. The two arguments 
of DiagonaLcurrent can be extracted with the operand (op) command. 

> r :=op( l ,Diagonal_current ) ; theta :=op(2,Diagonal_current) ; 
The real current through the diagonal resistor is the real part of r e^(^*+^)^ viz., 

> Re(r*exp(I*(omega*t+theta))); 

t 

3L-^R^C 
This result tells us that the maximum in the diagonal AC current occurs 1/4 
of a cycle earlier than the maximum in the AC voltage source. 

PROBLEMS: 
Problem 3-11: Double square configuration 
A piece of uniform (constant resistance) wire is made up into two connected 
squares arranged as a horizontal figure 8 as in Figure 3.6. 

Figure 3.6: Horizontal figure 8 configuration. 

A current enters the lower left-hand corner of the figure 8 and leaves at the 
upper right-hand corner. What fraction of the entering current passes through 
the common side of the two squares? 

Problem 3-12: DC circuit 
Five resistors, of resistance /^i = 2, i?2 — 4, i^s = 6, R4 — 2, and i^s = 3 ohms, are 
connected to a 12-volt battery as shown in the left circuit of Figure 3.7. What 
is the current in each resistor? What is the potential difference between the 
points A and B? 

R^ Rn 

A\V AWn 

Figure 3.7: Left: circuit for Problem 3-12. Right: circuit for Problem 3-13. 
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Problem 3-13: Another DC circuit 
Two batteries with Ei=6 and £"2 = 8 volts are connected to three resistors with 
J?i = 6, î 2 = 4, and i^s = 2 ohms as shown in the right circuit of Figure 3.7. 
Find the current in each resistor and the current in each battery. 

Problem 3-14: Warning! Do not attempt by hand. 
The circuit diagram in Figure 3.8 shows 14 resistors with two batteries present. 
Analyticahy determine the currents through each resistor. 

2V 

4R 

w^^J—vvv 
V 

Figure 3.8: Circuit with 14 resistors. 

Problem 3-15: An AC circuit 
Consider the circuit [LC90] shown in Figure 3.9. 

10 Q 

10 Q 5 mH 

o \/\/\i mmv. 

5|LiF 

Figure 3.9: AC circuit. 

(a) Calculate the impedance Z of the circuit for an arbitrary frequency uj. 

(b) What are the magnitude and phase angle of Z at 1 kHz? 

(c) Can the real part of the impedance become negative? 

(d) For what frequency range is the circuit equivalent to (i) a resistor in series 
with an inductor; (ii) a resistor in series with a capacitor? 

(e) At what frequency is the circuit equivalent to a pure resistance? 
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Problem 3-16: Phase shifter 
It is often necessary to shift the phase of a signal. A simple circuit [LC90] for 
doing this is shown in Figure 3.10. The resistances are adjustable, but are kept 
equal. Use the polarities shown. Here Vi is the voltage of the top terminal 
with respect to the bottom one, and VQ is the voltage of the right terminal with 
respect to the left-hand one. The connection through VQ carries no current. 

Figure 3.10: Phase shifter. 

(a) Show that Vo/Vi = exp[2/arctan(l/(i?cjC))]. 

(b) Draw a graph of the phase of VQ with respect to Vi, in the range RLOC = 0.1 

to 10. Use a log scale for RUJC. 

3.1.3 The Window Washer's Secret 
A professor can never better distinguish himself in his work than by 
encouraging a clever pupil, for the true discoverers are among them, 
as comets among the stars, 
Carl Linnaeus, Swedish botanist (1707-1778) 

A retired engineering professor is getting too old to climb a tall ladder to wash 
the windows on the second floor of his house. So he calls on the services of the 
Dirty Bird window washing service, which sends out a young lady by the name 
of Heather. Striking up a conversation with her, the elderly professor notes 
that Heather seems to be too well educated to be permanently employed at the 
window washing occupation. As the professor surreptitiously watches, she does 
some apparently odd things. The surface on which the ladder is standing is 
fairly smooth and slippery, so Heather experiments with leaning the ladder at 
different angles to the vertical and concludes that the ladder will begin to slip 
when the angle is about 45°. After some deep thought and furious scribbling, 
she is heard to exclaim, "Aha! Since the ladder has a mass of about 25 kg and 
my mass^ is 75 kg, and since I want to go three-quarters of the way up the 

^Heather rows in the varsity eights and has "bulked up" for that purpose. 
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ladder, I should keep the angle that the ladder makes with the vertical smaller 
than 33°." The professor is intrigued by what he observes. He confronts the 
window washer and says, "You must have taken an introductory college physics 
course and done well in the subject." Heather grins and confesses to the fact 
of actually being a premed science student who is trying to earn money to pay 
for next semester's tuition. We shall now reproduce her reasoning. 

The ladder problem is modeled by the two-dimensional picture shown in 
Figure 3.11. Assuming the ladder to be of length L and of uniform composition, 

Figure 3.11: Free body diagram for window washer's problem. 

all of its weight is considered for purposes of calculation to be located at a single 
point (the center of gravity) halfway along the ladder. If the ladder's mass is m, 
its weight is w — mg^ where g is the acceleration due to gravity. Heather makes 
a free-body diagram indicating all of the external forces acting on the ladder. 
The ground and the wall exert normal (perpendicular) forces Â i and Â2 on the 
bottom and top ends of the ladder, respectively. If the ladder is not to slip, 
there also must be frictional forces Fri and Fr2 acting on the ends of the ladder 
as shown. If /i is the coefficient of static (not moving) friction, the maximum 
values of the frictional forces are Fri = /xTVi and Fr2 = /iA^2- If Heather's 
weight is W = M g, then the following are entered into the calculation. 

> res ta r t : 

> Fr[l] :=mu*N[l] : Fr[2]:=mu*N[2]: w:=m*g: W:=M*g: 

In order to calculate /i, Heather first assumes that she is not on the ladder. 
For static equilibrium, the horizontal and vertical components (in the x- and y-
directions, respectively) of the forces must balance or, equivalently, algebraically 
sum to zero. 
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> x _ e q : = N [ 2 ] - F r [ l ] = 0 ; 

x.eq := N2- /J^Ni =0 

> y _ e q : = N [ l ] + F r [ 2 ] - w =0; 

y.eq := Ni -{- ji N2 — mg — Q 
A third condition, to prevent rotation of the ladder, is tha t the algebraic sum 
of the moments^ (torques) of the forces must add to zero. If moments are taken 
about the bo t tom end of the ladder, the forces A î and Fri have zero moment 
arms and do not contribute to the rotational equilibrium equation. Including 
the moments of the remaining forces, the rotational equilibrium equation is 

> r o t _ e q : = N [ 2 ] * ( L * c o s ( t h e t a ) ) + ( F r [ 2 ] ) * ( L * s i n ( t h e t a ) ) 

- w * ( ( L / 2 ) * s i n ( t h e t a ) ) = 0 ; 

rot-eq := N2 Lcos{6) + 11N2 Lsm{6) - -mgLsm{0) = 0 

Since the length L is a common factor, it is divided out of the equation. 

> r o t _ e q : = s i m p l i f y ( r o t _ e q / L ) ; 

rot.eq := Â 2 cos(^) -\- /i N2 sm{0) — -mgsm{9) = 0 

Assuming tha t the angle 0 at which slipping occurs is known, the three equations 
(x_eg, y-eq^rot.eq) are solved symbolically for the unknowns A^i, A^2, and /x. 

> s o l : = s o l v e ( { x _ e q , y _ e q , r o t _ e q } , { N [ 1 ] , N [ 2 ] , m u } ) ; 

r l m ^ ( % l t a n ( ^ ) + 2) ^̂  1 %1 m ^ (%1 tan(^) + 2) ) 
. o / : = | / i = % i , i v , = - ^ ^ ^ ^ ^ ^ ^ ^ ( ^ ) .N2--—Y^%^;^Me)—/ 

%1 := RootOf (-tan(6>) + -Z^ tan(^) + 2 _Z) 
In the subexpression % 1 , Root Of is a placeholder for all the roots of the 
quadratic equation in _Z. Heather assigns the solution, 50/, and selects //, 
whose value she first wants to calculate. 

> a s s i g n ( s o l ) : inu:=mu; 

/i := RootOf (-tan(i9) + _Z^ tan(<9) + 2 .Z) 

To find the actual roots of the quadratic equation contained in RootOf, the 

a l l v a l u e s command is applied to the previous line. 

> S 0 I 2 : = a l l v a l u e s ( m u ) ; 

S0I2 — - ^ + V ^ + ^ ^ ^ W 1 + y i + tan(^)2 
' ~ tan(l9) ' tan(l9) 

Since the negative square root answer will yield a negative value for ^ , which 
is physically unacceptable, the positive square root answer must be selected. 

> m u : = s o l 2 [ 1 ] ; #choose p o s i t i v e s q u a r e r o o t 

_ - 1 + v ^ l + t a n ( ( 9 ) 2 

^ ''~ tan((9) 

^The moment of a force is the product of the magnitude of the force and the perpendicular 
distance from the hne of action of the force to the axis about which the moment is calculated. 
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Heather, the window washer (science major), observed that the ladder shpped 
at 45° or 45 x 7r/180 = 7r/4 radians, so the numerical value of // can be evaluated. 

> theta:=evalf(Pi/4): mu:=mu; 

/i := 0.4142135620 
Thus, the coefficient of static friction // is about 0.41. This value will be used 
in the remainder of the calculation. 

Now Heather redoes the calculation with her weight W concentrated at a 
point three-quarters of the way up the ladder. So that Maple will not remember 
the value 0 — 7r/4 in the first part of the calculation or the values obtained for 
Â i and Â2 in sol, the variables 0, Ni, and Â2 must be unassigned. 

> u n a s s i g n ( ' t h e t a \ ^ N [ l ] ' , 'N [2 ] '); 
The horizontal force equation remains unchanged, but with the numerical value 
of fi now appearing. 

> x_eq2:=N[2]-Fr[l]=0; 

x.eq2 := N2 - 0.4142135620 M - 0 
Heather's weight W is included in the vertical force equation. 

> y_eq2:=N[1]+Fr[2]-w-W=0; 

y.eq2 := TVi + 0 .4142135620N2-mg-Mg = 0 
The rotational equilibrium equation is also modified, the contribution of Heather's 
moment being included (last term in the following command line). 

> rot_eq2:=N[2]*(L*cos(theta))+Fr[2]*(L*sin(theta)) 

-w*((L/2)*sin( theta))-W*(3/4)*L*sin(theta)=0; 

rot,eq2 := N2 Lcos(6>) -f 0.4142135620 7V2 Lsm{0) - -mgLsin((9) 

-jMgLsm{e) = 0 

> rot_eq2:=simplify(rot_eq2/L); 

rot.eq2 := Ar2 cos(l9) + 0.4142135620 7V2 sin((9) - 0.5000000000 m^sin(<9) 
- 0.7500000000 M^sin((9) = 0 

The three equilibrium equations are solved for the unknowns A î, N2, and 0 
(output not shown here) and the solution sol3 assigned. 

> sol3:=solve({x_eq2,y_eq2,rot_eq2},{N[l] ,N[2] , the ta} ) ; 

> a s s ign ( so l3 ) : 
The values for the masses are entered and the angle 6 in radians is determined, 

> m:=25: M:=75: t h e t a : = t h e t a ; 

0 := 0.5787993638 
or, on using the following convert command, expressed in degrees. 

> max_angle:=evalf (conver t ( theta ,degrees)) ; #angle in degrees 

max-angle := 33.16276073 degrees 
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Thus Heather concludes that the angle with the vertical should be kept below 
about 33°. 

When Heather is done washing the professor's windows, the professor's wife 
invites her in for a drink of lemonade while her husband searches for his wallet. 
The professor's wife is pleased with the job that Heather has done and would like 
to learn a little more about her and her career aspirations. Both the professor 
and his wife like to encourage promising students and have missed the contact 
with eager, bright, young people since his retirement. 

PROBLEMS: 
Problem 3-17: Coulomb's law 
The force between two point charges Qi and Q2 separated by a distance r is 
given by Coulomb's law, which in SI units states that the magnitude Fe of the 
electrical force between the charges is given by Fe = Qi Q2/(47reo r^), where eg 
is the permittivity of free space. The force acts along the line between the two 
charges and is repulsive (attractive) for charges of the same (opposite) sign. 

Two point charges of equal mass m and charge Q are suspended from a 
common point by two threads of negligible mass and each of length L. Show 
that at equilibrium the inclination angle a of each thread with the vertical is 
given by s in^a /cosa = Q"^/{16TTcomgL'^). 

Problem 3-18: Suspension bridge 
A suspension bridge in Rainbow County is to span a deep river gorge 54 m wide 
as shown in Figure 3.12. The "floor" of the bridge is a steel truss of 48,000 kg. 

Figure 3.12: Suspension bridge. 

The six pairs of vertical cables are spaced 9 m apart and are to carry an equal 
amount of the weight. The two central pairs of vertical cables are 2 m in length. 
The end cables of the suspension arc make an angle of 45 ° with the horizontal. 
Determine the lengths A and B of the remaining vertical cables and the tension 
T in the end cables of the arc. Neglect the weights of all cables. 

Problem 3-19: Traffic lights 
On one of Metropolis's main streets, three traffic lights, each of mass 20 kg, hang 
from a wire stretched between two telephone poles 15 m apart. The horizontal 
spacing of the traffic lights is uniform. At each pole, the wire makes a downward 
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angle of 10° with the horizontal. Determine the tensions in all the segments of 
wire as well as the distance of each lamp below the horizontal line. 

Problem 3-20: Pushing a box 
A cubical wooden box of mass 75 kg and 0.5 m in length on each side sits on 
a concrete floor in Rob's basement. The box is of uniform density and the 
coefficient of static friction between the floor and the box is /i^ = 0.80. If Rob 
exerts a sufliciently strong horizontal push against one side of the box, it will 
either tip over or start sliding without tipping over, depending on how high 
above the floor level he pushes. What is the maximum height at which Rob 
can push if he wants the box to slide? What is the magnitude of the force that 
he must exert to start the box sliding? 

Problem 3-21: Playing cards 
While playing poker with his engineering colleagues, Russell leans two cards 
against each other to form an "A-frame" roof. If the frictional coeflicient be
tween the bottom of the cards and the table is /i^, what is the maximum angle 
that the cards can make with the vertical without slipping? 

Problem 3-22: A challenging inclined plane problem 
The inclined plane problem that follows, with certain numerical values supplied 
to make the problem easier, was once used on one of the author's first-year 
physics exams. After making up the exam, the author gave it to his colleague, 
Professor X, to produce the solution key. When Professor X encountered the 
problem, he tried to solve it first symbolically before substituting in the nu
merical values of the masses, coefficients of friction, etc. This is the standard 
method of attack favored by physics professionals, but not by the majority of 
first-year students. Professor X was able to easily set up the relevant general 
equations, but struggled to solve them correctly analytically. It turned out that 
substituting in the numerical values first and evaluating the coefficients in the 
algebraic equations made the problem considerably easier to solve. However, 
if Professor X had used a CAS, he would have had no difficulty in solving the 
general symbolic problem. Here is that challenging inclined plane problem for 
you to try. A symbolic solution is sought, so do not substitute numbers until 

Figure 3.13: Geometry of the inclined plane problem. 
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you are told to do so! Referring to Figure 3.13, a horizontal force F is applied 
to the inclined plane whose mass is M and angle with the horizontal is 6. The 
coefficient of kinetic friction between the bottom of the inclined plane and the 
level surface is a. Resting on the inclined plane is a block of mass m. The 
coefficient of kinetic friction between the block and the upper surface of the 
inclined plane is p. 

(a) Make separate free body diagrams for the block and for the inclined plane, 
indicating all of the external forces acting on each. Clearly label your 
forces. Be careful here, because this is where the heart of the physics is. 

(b) Choose the horizontal direction to the right as the positive x-axis and the 
upward vertical direction as the positive ?/-axis. Resolve the forces and 
accelerations into their x- and ^/-components. 

(c) Using Newton's second law, write down the equations for the x- and y-
components of the accelerations of the block and of the inclined plane. 

(d) From the geometry of the figure, write down an equation that relates 
the acceleration components to each other in terms of the angle 0. Hint 
Referring to the figure, note that tan^ = {h — y)/{x — X). 

(e) Express the frictional forces in terms of the normal forces. 

(f) Write down the normal force that is exerted by the level surface on the 
bottom of the inclined plane. 

(g) Solve the system of equations for the three acceleration components and 
the normal force on the block in terms of 6, F , a, /?, M, m, and g (the 
acceleration due to gravity). The form of the answers is quite formidable! 
You will appreciate the sweat raised on Professor X's brow in trying to 
carry out this step by hand without any mistakes. 

(h) Given M = 8kg, m = 2kg, a - 0.2, /̂  = 0.6, F = 37N, 6> = 35°, and ^ = 
9.8 m/s^, determine the numerical values of the acceleration components 
and the normal forces. 

3.1.4 The Science Student's Summer Job Interview 
/ evidently knew more about economics than my examiners, 
John Maynard Keynes, English economist (1883-1946), 
explaining why he performed badly in the Civil Service examinations 

Wanting a job experience more directly related to science than the window 
washing job held last summer, our premed student Heather goes for an inter
view with an engineering firm that has a student work-term job available. After 
some preliminary chitchat, the interviewer gets down to business and says, "I 
notice that you have done quite well in your courses and that you have taken an 
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economics course as one of your options. Let's see whether you remember what 
you have learned. Here are a couple of little problems for you taken from my 
old economics text by Riggs, Rentz, Kahl, and West [RRKW86]. I would hke to 
know what you would recommend or conclude in each case. Although you could 
do the problems by hand, we like our students to have some computing skills. 
From your resume it appears that you have used the computer algebra system 
Maple. Therefore, I would like you to sit at this computer and do the problems 
with Maple. Be sure to clearly explain your reasoning and show me that you 
know how to plot functions and obtain graphical and algebraic solutions. Here's 
the first problem. Which alternative is the best choice?" 

An engineering firm has a contract to supervise construction of a sewage 
treatment plant in an isolated town. It is estimated that the installation phase 
will probably last at most 2 years and two of the firm's engineers will be required 
to supervise the construction. Separate living accommodations for the two 
engineers and an office will be needed. The following alternatives are available: 

(1) A building can be rented with furnished living quarters and an office for 
$3000 a month including utilities and upkeep. 

(2) The firm could rent office space at $800 a month and buy two furnished 
trailers at a cost of $24,000 each. The trailer company has agreed to buy 
back the used trailers for 40% of the purchase price at any time up to 2 
years. The water and electricity, site rental, and upkeep of the trailers is 
$200 per trailer per month. 

(3) Finally, the firm could buy the two house trailers as in the second alterna
tive and a third smaller one for the office for $16,000. The same buyback 
conditions apply, since it is the same dealer as in alternative (2). The 
$200 per month outlay for each trailer also still holds. 

"OK," says Heather, as she sits down at the computer, "we are going to need 
some specialized plots, so let's start by including the plots library package. 

> restart: with(plots): 

The total cost, TCi, of alternative 1 after n months will be as follows: 

> TC[1]:=3000*n; 

TCi :=3000n 
Since it is anticipated that the trailers will be sold back within 2 years, they 
cost 60% of the original purchase price. Thus, the total cost of alternative (2) 
after n months is given by the following input line. 

> TC[2] : = (2*24000*0.6) + ((2*200+800)*n; 

TC2 := 28800.0 +1200 n 
For the third alternative, the total cost is given by TC3. 

> TC[3]:=(2*24000+16000)*0.6+(3*200)*n; 

TC3 := 38400.0 +600 n 
We now create a plot for the three total cost formulas and put labels and a title 
on the graph. 
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> P l :=plot({TC[l] ,TC[2] ,TC[3]},n=0. .24, labels=["n" ,"D"] ,color 
=b lack , t i t l e="To ta l cos ts in d o l l a r s (D) vs months (n)") : 

So that the three alternative curves can be identified, the t e x t p l o t command 
will be used to add text names for the alternatives to the above plot. The 
locations of the names are determined by trial and error. 

> P2:=textp lo t ( [ [10,21000,"TC[1]"],[5,30000,"TC[2]"], 
[5,45000, "TC[3] • • ] ] ) : 

> display({Pl ,P2}, t ickmarks=[3 ,3]) ; 

To ta l cos ts in dol lars (D) vs m o n t h s (n) 

0^ l b n 2 0 

Figure 3.14: Graph of the three alternatives. 

As you can see from the figure (Figure 3.14), there is apparently a single break
even point (BEP) at which the three lines cross. By clicking on the plot and 
then on the BEP, one can see that the crossing point occurs for n about 16 
months. Better yet, one can equate the total costs, e.g. for the first and second 
alternatives, and algebraically solve for n. 

> eq:=TC[l]=TC[2]; 

eg := 3000 n = 28800.0 + 1200 n 

> BEP:=solve(eq,n); 

BEP := 16. 
Equating the total costs for the first and third alternatives and solving for n, 

> BEP:=solve(TC[l]=TC[3],n); 

BEP := 16. 
yields exactly the same value for BEP. So 16 months is indeed the BEP for the 
three alternatives. It appears that the choice must be between alternatives 1 
and 3. Up to 16 months, the straight rent alternative (1) is the cheapest way to 
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go. After 16 months, alternative 3 (buying three trailers) is less costly. Since it 
is not certain that the project will last 24 months, and to avoid possible loan 
expenses in buying the trailers and the hassle with trade-in of the used trailers, 
it might be best to choose the first alternative." 

"Very good! I like your approach and your ability to articulate your reason
ing and conclusion," replies the interviewer. 

"Now here's a second hypothetical case for you to examine." 
A manufacturing plant keeps monthly records of operating expenses and 

revenues in turning out and selling a new product. By making use of a least 
squares polynomial fit, it is determined that if n is the number of units made 
and sold per month, the total cost (TC) in dollars to produce n units is given 
by the formula 

TC = 200,000 + 4n + 0.005 n^ (3.1) 

while the total revenue (TR) is given by the sales price (SP) per unit, 

SP = 100-0.001 n, (3.2) 
multiplied by the number of units. The plant is designed to produce 12,000 
units per month. Based on these formulas, determine the BEPs at which the 
profit is zero and the levels of output that produce the largest profit and the 
least average unit cost. 

"To get a feeling for the total cost and revenue, I will plot the formulas that 
you have given to me," states Heather. 

> restart: with(plots): 

"The total cost, TC, for n units is entered, 

> TC:=200000+4*n+0.005*n^2; 

TC := 200000 + 4 n -h 0.005 n^ 
along with the sales price, SP^ per unit. 

> SP:=100-0.001*n; 

SP := 100 - 0.001 n 
The total revenue, TR^ for n units is equal to SP x n. 

> TR:=SP*n; 

TR:= (100-0.001 n )n 
As in the first problem, it is convenient to put both graphs in the same plot 
with the BEPs indicated. 

> Pl :=plot(TC,n=0. .15000,color=blue): 

> P2:=plot(TR,n=0..15000,color=red): 

> P3:=textplot([[3000,194000,"BEP"],[12500,1180000,"BEP"], 
[7300,900000,"Total Revenue"],[7700,370000,"Total Cos t" ] ] ) : 

> display({Pl ,P2,P3},view=[0. .15000,0. .1500000], 
tickinarks=[2,2] , l abe ls=["n" , "D"] ) ; 

The profit is the difference between the total revenue and total cost curves. As 
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can be seen from the figure (Figure 3.15), for small n the total cost lies above 
the total revenue, and the profit is negative, i.e., losses occur. 

36-

D 

B E P / ^ 

Total R e v e n u e / ^ / 

/ ^ . ^ T o t a l Cost 

-^/^BP 

0 10000 

Figure 3.15: Total cost and total revenue curves. 

As n is increased, there is a BEP at which the profit passes through zero and 
becomes positive, i.e., the company makes money. At much larger n there is a 
second BEP at which losses again occur. Although we could again click on the 
graph to find approximate values for the two BEPs, the profit formula is easily 
derived, 

> Profit:=expand(TR-TC); 

Profit := 96n - 0.006 n^ - 200000. 
and the BEPs found by solving the quadratic equation in n: 

> BEP:=fsolve(Profit=0); 

BEP := 2462.250758, 13537.74924 
The BEPs are at n?^2462 and n?^ 13,538 units. As long as the plant operates 
between the two BEPs it will make a profit. To find the maximum profit, simply 
differentiate the profit formula with respect to n and set the result equal to zero. 

> eq :=d i f f (Prof i t ,n )=0 ; 

e^ : = 9 6 - 0 . 0 1 2 n = 0 

> N[msLx] :=solve(eq,n) ; 

Nmax := 8000. 
The maximum profit occurs for an output of 8000 units per month. The average 
unit cost, AUG, is given by dividing the total cost by n. 

> AUG:=expand(TC/n); 

200000 
AUG + 4 +0.005 n 
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The least average unit cost is found by differentiating AUC with respect to n 
and setting the result equal to zero." 

> eq2:=diff(AUC,n)=0; 

e , . : = - ^ + 0 . 0 0 5 = 0 

> Sol :=solve(eq2,n) ; 

Sol := 6324.555320, -6324.555320 
Heather concludes with, "Thus, selecting the positive answer, 

> N[min] :=Sol[l] ; 

Nrmn -= 6324.555320 
and rounding it off to the nearest integer, 

> N[min]:=round(%); 

Nrmn '•= 6325 
the least average unit cost occurs for an output of 6325 units per month. Would 
you like me to say any more on this case, or solve any more problems?" 

To which the interviewer replies, "No, it is clear that you know some of the 
basic concepts of engineering economics and how to apply them effectively. Our 
engineering firm would be only too happy to offer you a summer job that makes 
use of the skills you have demonstrated!" 

PROBLEMS: 
Problem 3-23: Widget production 
The selling price {SP) in dollars per widget is given by 5P = 21,000/v^, where 
n is the number of widgets produced per day. The total cost (TC) in dollars 
per day is given by TC = 100,000 + 1000 n. 

(a) Plot the total revenue (TR) formula and TC in the same graph. 

(b) Derive the profit formula and plot it. 

(c) Determine the break-even values of n. First obtain approximate values 
by clicking on the graph and then more precise values using f solve. 

(d) At what n value is the profit a maximum? First obtain an approximate 
value and then use an analytic approach. 

Problem 3-24: Another revenue problem 
A small manufacturing plant can sell all n items it produces per hour at a selling 
price of $750 per item. The total cost function, in thousands of dollars, is given 
by TC = (n^ - 8 n^ + 25 n -h 30)/25. 

(a) Construct a graph of the cost and total revenue curves with the scale in 
thousands of dollars and such that the BEPs are clearly seen. Add text 
to the graph indicating the two curves and the BEPs. 

(b) Derive the profit formula and plot it. 

(c) Determine accurate numerical values for the BEPs. 
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(d) Derive an analytic formula for n that corresponds to the maximum profit. 
Numerically solve for this value of n. How many items are produced per 
8 hour shift? 

3.1.5 Envelope of Safety 

Mechanics is the paradise of the mathematical sciences because by 
means of it one comes to the fruits of mathematics. 
Leonardo da Vinci, Italian painter, sculptor, architect, scientist, musician, and 
natural philosopher (1452-1519) 

A previously dormant volcanic mountain in the North Cascades range of the Pa
cific Northwest has erupted and is throwing rocks into the atmosphere at speeds 
of up to Vb = 700 m/s. Colleen's sister Sheelo, who is a part-time National Ge
ographic photographer, has been assigned to film the spectacle from the air. 
Hiring an aircraft in Seattle, Sheelo instructs the pilot to get as close to the 
erupting mountain as safety will allow. Neglecting the volcano's height and air 
resistance, and assuming that rocks are thrown out uniformly in all directions, 
what is the envelope of safety that the hired plane should stay outside? 

> restart: with(plots): 

If Vo is the initial speed of a rock and its initial angle with the horizontal is ^, 
the distance that the rock will travel horizontally in time t seconds is given by 

> xeq:=x=Vo*cos(theta)*t; 

xeq := X = Vo cos{6) t 
In the same time, the rock will rise through a vertical distance, 

> yeq:=y=Vo*sin(theta)*t-(l/2)*g*t^2; 

yeq :=y=Vo sin(6>) t — 

where g is the acceleration due to gravity. Then xeq is solved for the time, 

> t :=so lve (xeq , t ) ; 
X 

^'^ Vocos{e) 
and the expression for t is automatically substituted into yeq. 

> yeq; 

sin(^)j: 1 gx'^ 
y = cos(<9) 2 ]/o^cos(l9)2 

For a given value of 0, the last result is a parabolic equation relating x and 
y, i.e., neglecting air resistance, the rocks travel along parabohc trajectories. 
This equation can be cast into a simpler form by substituting the trigono
metric identities sin^ = cos^ x tan^ and 1/cos^ ^ = 1 + tan^ 0. 
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> yeq2 :=subs ({s in ( the ta )=cos ( the ta )* tan( the ta ) , 
l /cos( theta) '^2=l+tan(theta)^2},yeq); 

yeq2 := y ^ tan(^) x - - ^ y^2 

To find the envelope of safety, we must determine the upper bounding curve 
that is tangent to all possible parabolas. This can be accomplished as follows. 
Since y — y{6, x), then dy = (dy/dO) d9-\-{dy/dx) dx. At a fixed value of x, the 
upper bounding curve is determined by setting dy equal to zero, which implies 
that {dy/dO) = 0. Thus, the curve is determined by setting the derivative of 
yeq2 with respect to 9 equal to zero, 

> d i f f ( y e q 2 , t h e t a ) ; 

solving for tan ^, 

> sol :=solve(7o, tan ( t h e t a ) ) ; 

sol := / , —/, 
gx 

and selecting the real solution (the third answer in sol). 
> t a n ( t h e t a ) : = s o l [3] ; 

tan((9) := 
gx 

With the above assignment for tan^, yeq2 becomes 
> yeq2; 

Vo^ ^ " V ^ ^ ^ 
9 2Vo^ 

and expanding yields the equation yeq3 for the envelope of safety, 
> yeq3:=expand(yeq2); 

which is also parabolic in shape. Taking g ^ 10 m/s^ to make the coefficients 
somewhat nicer, and inserting the upper limit Vo = 700 m/s^ on the initial 
speed of the rocks, yeqS for the envelope of safety becomes 

> Vo:=700: g:=10: yeqS; 

x'^ 
y = 24500 - - — -
^ 98000 

Unassigning tan^, yeq2 for the parabolic trajectory for a given initial angle 0 
is given by 

> u n a s s i g n C ' t a n ( t h e t a ) O : yeq2; 

y = tan((9) x - ——- x^ (1 + tan((9)2) 
^ ^ ^ 98000 ^ ^ ^ ^ 
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The following do loop creates a set of plots of 41 parabolas for different values of 
6> ranging from l9 == 1.51-20x0.075 = 0.01 radians up to 1.51+20x0.075 = 3.01 
radians (just under 180° or 3.14 radians). 

> for i from -20 to 20 do 

> the ta :=1 .51+( i* .075) : 

> pl[ i] :=plot(rhs(yeq2),x=-50000. .50000,numpoints=500); 

> end do: 
Since there are 1000 meters in 1 kilometer, the x range is from —50 to 50 km. 
To superimpose the 41 parabolas, the display command is used in d. 

> d : = d i s p l a y ( s e q ( p l [ i ] , i = - 2 0 . . 2 0 ) ) ; 
The envelope of safety is now plotted, but not displayed. 

> p:=plot(rhs(yeqS),x=-50000..50000,y=0..25000, 
color=black, thickness=2): 

Finally, the envelope of safety is superimposed on the family of parabolas, the 
result being shown in Figure 3.16. Since all directions are uniformly possible, 
this plot should be mentally rotated around the vertical axis. Note that the 
scaling is not constrained here. 

> d i sp lay({d ,p}) ; 

2 5 0 0 0 

2 0 0 0 0 4 0 0 0 0 

Figure 3.16: Parabolic trajectories and envelope of safety curve. 

Thus, neglecting air resistance and the height of the mountain, the aircraft 
carrying Sheelo, the National Geographic photographer, should fly outside the 
envelope of safety shown in Figure 3.16. Taking air resistance into account 
will alter the parabolic trajectories and, not surprisingly, shrink the envelope of 
safety, thus allowing Sheelo to fly somewhat closer to the erupting mountain. 
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PROBLEMS: 
Problem 3-25: Throwing rocks at a tree 
Justine is whiling away her time by throwing rocks at trees. The maximum 
speed with which she can throw a rock is about 25 m/s. Assuming that she 
can throw accurately, can Justine hit a tah tree 50 m away and 13 m up from 
the point where the stone leaves her hand? What is the maximum height that 
she can hit on this tree? Make a plot of the rock's trajectory in the latter case. 
Neglect air resistance and take '̂ = 9.8 m/s^. 

Problem 3-26: Is it a homer? 
At a recent baseball game that Russell attended, Boomer Bailey hit a ball with 
a velocity of 132ft/s at an angle of 26° above the horizontal. The ball was 
3 ft above home plate when hit towards an 8 ft high bleacher wall located 386 ft 
from home plate. Assuming that the outfielder was unable to reach the ball, 
did Boomer hit a home run or did the ball hit the wall? How long did it take 
the ball to reach the wall? Plot the trajectory of the ball over this time inerval. 
Take^ = 32f t / s^ 

Problem 3-27: Invaders beware 
A gun on the shore of a beleaguered town fires a shell at an enemy ship that 
is heading directly toward the gun at a constant speed of 40 km/hr. At the 
instant of firing, the ship is 15 km away. The muzzle velocity of the shell is 
700 m/s and air resistance is to be neglected. What is the required angle of 
elevation for the gun in order for the shell to hit the ship? How much time 
elapses between the firing of the shell and its impact with the ship? Animate 
the motion of the shell and the ship up to the moment of impact, (̂ f = 9.8 m/s^) 

Problem 3-28: A military problem 
At the Erehwon Military Academy, the army cadets are presented with the 
following hypothetical problem. Referring to Figure 3.17, an enemy gun em-

."—^.. s h e l l 
X t r a j e c t o r y 

g u n / 

Figure 3.17: Schematic representation of military problem. 

placement is set 8230 m horizontally from the edge of a vertical cliff that drops 
107 m down from the level of the gun emplacement to a flat plain. How close 
to the bottom edge of the cliff should the invading cadets remain in order to 
guarantee that they will not be directly hit by an incoming shell? The muzzle 
speed of the shells is 305 m/s. Take ^ = 9.8 m/s^. 
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3.1.6 Rainbow County 

Climb evVy mountain, ford evYy stream 
Follow ev'ry rainbow, till you find your dream! 
Oscar Hammerstein II, American songwriter (1895-1960) 

The county in which Russeh, our engineering friend, spent his early childhood 
years is called Rainbow County, because of the spectacular rainbows that of
ten occur there. Russell has studied the origin of rainbows in his introductory 
college physics class and cannot resist setting up the theoretical development 
as a computer algebra exercise. He knows from frequent observation that the 
primary rainbow has red at the top and violet at the bottom. Occasionally a 
secondary rainbow is seen above the primary one with the color order reversed. 

Doing some background reading, Russell finds that the Greek philosopher 
Aristotle recorded only four colors, red, yellow, green, and blue, and suggested 
that the rainbow was due to reflection by the raindrops. The role of the indi
vidual drops was recognized by Roger Bacon, who noted in the year 1267 that 
the primary rainbow subtends an angle of about 42°. An explanation of the 
origin of rainbows quite close to our modern view was developed by Theodoric 
of Freiburg in 1304 and a nearly complete explanation given by the French 
philosopher and mathematician Rene Descartes in 1635. The coup de grace 
to the rainbow problem came in Isaac Newton's famous prism experiments. 
Clearly the origin of rainbows has intrigued great thinkers for centuries. On 
finishing his reading, Russell is ready to begin his calculation of how a rainbow 
is formed. 

Russell models a typical raindrop as a sphere of water whose refractive index 
n ^ 1.33 is greater than that of the surrounding air, which has a refractive index 
n ^ 1. He draws a picture as illustrated in Figure 3.18. A light ray from the 
sun enters the raindrop at an angle 6 to the normal to the spherical surface. 

ray from sun 

toward eye 

Figure 3.18: Ray diagram for a spherical raindrop in air. 
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Snell's law states that a light ray passing from a medium of refractive index rii 
into a medium with index 712 will have its angle of refraction <p with the normal 
determined by the relation n is in^ = 712 sin (j). Since the refractive index of 
water is approximately 1.33 and thus greater than that for the surrounding 
air, one has (j) < 6 and the refracted ray is bent toward the normal. Inside 
the raindrop, the ray is reflected off" the "back side" of the sphere. Since the 
geometry in the figure is that of an isosceles triangle, the light ray is incident 
on the back side at an angle (j) to the normal. But making use of another law 
of geometrical optics, the angle of reflection is equal to the angle of incidence, 
and thus equal to (j) as well. Finally, the light ray is incident on the inner front 
surface of the drop at an angle 0 and is then refracted back into air at an angle 
9 to the normal toward the observer's eye. 

Russell begins his calculation by feeding in the refractive indices of air and 
water, leaving the latter value unspecified for the moment, since its precise value 
n depends on the wavelength component of the incident light. 

> restart: n [ l ] : = l : n[2] :=n: 
Next, Snell's law is stated. 

> Snel ls . law:=n[1]*sin(theta)=n[2]*sin(phi(theta) ) ; 

SnellsJaw :— sm{6) — nsm{(p{6)) 
The angle 0 depends on 0. How (f) changes with 9 is determined by diff'erenti-
ating the previous line. 

> diff_eq:=diff(Snel ls_law,theta) ; 

diff.eq - cos{9) = ncos(0(e)) (-^ m 

Another relationship is needed to eliminate the quantity d(j){9)/d9. From the 
figure, the total angular deflection 5 of the incident ray is given by the sum of 
9 — (j) dX the air-water interface plus TT — 20 at the back side plus 9 — (j) dX the 
water-air interface. 

> delta:=2*(theta-phi(theta))+(Pi-2*phi(theta) ) ; 

(5:=2l9-40((9) + 7r 
Descartes had experimentally discovered that the primary rainbow occurred 
when the angle of deflection 5 was a minimum and that the angle subtended by 
the continuation of the incident and outgoing rays, i.e., 180 — 5, ranged from 
about 40° to 42°. So, Russell diff"erentiates 5 with respect to 9 and sets the 
result equal to zero, 

> d i f f (de l ta , theta)=0; 
d 

which is easily solved for d(j){9)/d9, 

> diff(phi(theta),theta)=solve(%,diff(phi(theta),theta)); 
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yielding the value | . This value for d(j){9)/d6 is substi tuted into diff-eq. 

> eq l :=subs(yo,dif f _ e q ) ; 

eql := cos{0) = - ncos{(j){6)) 

Both sides of eql are squared, 

> eq2 : = l h s ( e q l ) '^2=rhs ( e q l ) ^2 ; 

eq2 := cos(6>)2 = 7 ^^ cos(0(6>))2 

and the well-known trigonometric substi tution cos^((/)) = l — sin (0) made. 

> eq3 : = s u b s ( c o s ( p h i ( t h e t a ) ) " 2 = l - s i n ( p h i ( t h e t a ) ) '^2 ,eq2) ; 

eq3 := cos(0)2 = 1 n^ (1 - sin((/>(»))2) 

Next, Snell's law is solved for sin((/)), 

> s i n ( p h i ( t h e t a ) ) : = s o l v e ( S n e l l s _ l a w , s i n ( p h i ( t h e t a ) ) ) ; 

sin(^(^)) := ^ ^ 
n 

so tha t eq3 becomes 

> eq3; 

2 _ 1 2 A sin(^)^ 
cos(^)^ = -n' [1 

4 V 
Substi tuting the trig identity sin^(^) = l — cos^(^), 

> s u b s ( s i n ( t h e t a ) ' ^ 2 = l - c o s ( t h e t a ) ' ' 2 , e q 3 ) ; 

cos(^)^ = - n^ 1 4 \̂ ~ n^ 

and isolating cos^(^) to the Ihs of the equation yields the following expression 
for the critical angle of incidence, which is then factored. 

> e q 4 : = i s o l a t e ( % , c o s ( t h e t a ) ^ 2 ) ; 

eq4 := cos(l9)2 =.—---

> c r i t i c a l _ a n g l e _ e q : = f a c t o r ( e q 4 ) ; 

critical.angle-eq := cos(^)^ = 
o 

The visible spectrum of light ranges from red to violet. The index of refraction 
for red light in water is n— 1.3311, whereas n = 1.3435 for violet hght. The 
critical angle of incidence for red light tha t produces a minimum in 5 is evaluated 
in the next few command lines, 

> n : = 1 . 3 3 1 1 ; c r i t i c a l _ a n g l e _ e q ; 

n := 1.3311 cos(l9)2 = 0.2572757367 

> t h e t a [ c ] :=f s o l v e ( 7 o , t h e t a ) ; 

Or := 1.038836227 
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and found to be about 1.04 radians, 

> t he t a [ c ] :=evalf (7o*180/Pi); 

Oc := 59.52093141 
or 59.5°. The angle 0 is evaluated, 

> ph i ( the t a ) :=evalf (arcsin(sin(7o7o)/n)*180/Pi) ; 

(l){0) := 40.34926868 
and found to be 40.3°. The minimum angle of deflection S, 

> de l ta :=180+2*the ta[c] -4*phi ( the ta) ; 

S := 137.6447881 
is 137.6°. Finally, the angle between the incoming and outgoing rays is obtained 
by calculating 180 — 5, 

> Angle:=180-delta; 

Angle := 42.3552119 
which yields 42.4° for red light. By changing the value of n to 1.3435, the reader 
can check that the angle for violet light is 40.6°. These results are in agreement 
with Descartes's observations. 

It should be noted that only one color reaches the eye from any particular 
drop. By considering a number of raindrops, one above the other, it follows 
that a viewer's eye would observe the primary rainbow with red light at the top 
and violet light at the bottom. Because 6 is less for red light than violet light, 
red light must come from a higher raindrop than for violet light. 

The secondary rainbow, which is fainter, involves two internal reflections in
side the raindrop. Considerations similar to those above lead to the conclusion 
that there is an inversion of the color order compared to the primary rainbow. 

PROBLEMS: 
Problem 3-29: Applying Fermat's principle 
Suppose that a light ray in going from point A to point B traverses distances 
di, ^2 , . . . , dN in media of refractive indices ni , n2 , . . . , UN, respectively. The 
total time of flight is then 

1 ^ 
t = - V'n^d,, 

c ^-^ 

where c is the vacuum speed of light. The summation is referred to as the 
optical path length. In its simplest form, Fermat's principle states that in 
traveling from A to B, a hght ray travels a path that minimizes the time, or, 
equivalently, minimizes the optical path length. By minimizing the relevant 
optical path lengths, prove the following laws of geometrical optics: (i) the 
angle of reflection is equal to the angle of incidence; (ii) Snell's law. 

Problem 3-30: Applying Snell's law 
A wide glass container (refractive index Ug = 1.51) is 8 cm tall with a glass 
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bottom and top lid, each of a uniform thickness of 1 cm. The interior of the 
container is fiUed with two hquids, the bottom half with water {riyj = 1.33), 
the top half with carbon disulphide {ric = 1.63). The glass container is in air 
{ria = 1)- A light ray enters the container through the top glass Hd making an 
angle of 50° with the vertical to the lid and exits through the glass bottom. 
Determine the angles that the beam makes with the vertical as it passes through 
glass, carbon disulphide, water, glass, and air. Make a labeled plot showing the 
path traversed by a representative light ray. By how many centimeters is the 
exit point displaced from the entry point of the light ray? 

3.2 Integral Examples 

In the next two recipes, scalar algebraic models are presented, involving one-, 
two- and three-dimensional integrations. 

3.2.1 The Great Pyramid of Cheops 

Who shall doubt "the secret hid under Cheops^ pyramid^^ 
Was that the contractor did Cheops out of several millions ? 
Rudyard Kipling, British Nobel laureate in literature (1907) 

Mike, the mathematics student and amateur archaeologist whom we met on 
an archaeological dig at Machu Pichu, is impressed by the ingenuity and effort 
that must have gone into the crafting and assembling of the massive, precisely 
cut stone blocks in the Inca ruins. On the recommendation of the chief archae
ologist, when he returns to his university campus at the end of the summer he 
goes to the library and searches for some books dealing with a similar impressive 
achievement by the Egyptian pharaohs in the building of their pyramids.'' 

Mike comes across some factual information as well as accounts by the fifth 
century B.C. Greek historian Herodotus, who was called the Father of History. 
The Great Pyramid near present-day Gizeh, Egypt, was built by a pharaoh 
whom Herodotus referred to as Cheops. Cheops, also known as Khufu, ruled 
Egypt about 2600 B.C. The Great Pyramid was originally about 481 ft (nearly 
150 m) high, but has lost nearly 7 m of its height due to the stripping of its 
marble casing. At its base, each of the four sides is about 230 m in length. 
The pyramid is solid, with only a few blocks having been omitted to leave a 
secret passageway for depositing Cheops's earthly remains. There are about 
21 million limestone blocks in the pyramid, some weighing as much as 15 tons, 
but the average being about 2^ tons. The rocks were quarried in the Arabian 
mountains, dragged to the Nile, and taken in boats to a site near the pyramid. 
According to Herodotus, 100,000 workers, which was about one-tenth of Egypt's 

'^Pyramid derives from the Egyptian word pi-re-mus, which translates as altitude [Dur54]. 
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population, toiled for 20 years in building the road along which the rocks were 
moved and in constructing the pyramid. 

Being a mathematics student, Mike cannot resist playing around with the 
above numbers involved in this historical event. He first calculates the number 
of worker-years involved in the building of the Great Pyramid of Cheops. 

> restart: 

> Herodotus.estimate:=100000*20*worker*years; 

Herodotus-estimate := 2000000 worker years 
The project involved about 2 million worker-years. Next Mike decides to con
struct a hypothetical model of the number of workers involved as a function of 
time. He assumes that the number of workers can be modeled as two logistic 
curves placed back to back. He creates the following piecewise function in eql 
to accomplish this. 

> eql:=piecewise(t<=10,100000/(l+100*exp(-3*t))+5000, 
t>=10,105000/(1+0.00015*exp(1.25*(t-10)))); 

100000 

eql := < l + 100e(-3*) 
105000 

+ 5000 t< 10 

10 < t 
, l + 0.00015e(i-25*-i2.50) 

Note that the two logistic curves do not precisely match at t = 10. The param
eters of the model have been adjusted so that the area under the curve yields 
approximately the correct worker-year total. The initial number is not zero but 
reflects the permanent population already present in the nearby settlement. 
Mike plots the piecewise function eql for the time span 0 to 20 years. 

> p l o t ( e q l , t = 0 . .20,tickinarks=[4,2] , labels= ["years" , "workers"] ); 

lOOOOO 

w^ork ie r s 

O y e a r s 1 5 2 0 

Figure 3.19: Plot of the piecewise model equation. 

Given the shape of the curve, he decides to see how easy it is to extract various 
pieces of information. Mike determines the location of the two inflection points 
at which the curvature changes by differentiating eql twice with respect to time 
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and labeling the result as eq2. Note that Mike uses the alternative syntax t$2 
for the second argument in the diff command, instead of t , t . 

> eq2 :=d i f f ( eq l , t $2 ) ; 
Looking at the output (which has been artificially suppressed here because of its 
length), Mike notes that because the two logistic curves are not precisely joined 
at t = 10, the slope (first derivative) has an artificial discontinuity and hence the 
second derivative is undefined at this value. To determine the inflection points, 
he applies the floating-point solve command to eq2 = 0, specifying the ranges 
of t to be searched for each solution. 

> inflection_pointl:=fsolve(eq2=0,t=0..9); 

inflection-point 1 := 1.535056729 

> inflection_point2:=fsolve(eq2=0,t=ll..20); 

inflection-point 2 := 17.04390021 
The flrst inflection point is at about 1.54 years, the second at 17.04 years. Mike 
calculates the number of workers at the second inflection point by applying the 
evaluation (eval) command to eql. 

> workers:=eval(eql,t=inflection_point2); 

workers := 52500.00010 
There are about 52,500 workers at the time of the second inflection point. The 
total number of worker-years is obtained by integrating eql with respect to 
time to flnd the area under the curve for the period t — 0 to 20. 

> a r e a _ l : = l n t ( e q l , t = 0 . . 2 0 ) = i n t ( e q l , t = 0 . . 2 0 . 0 ) * worker*years; 

^20 

area. ^ 
Jo 

100000 
+ 5000 t < 10 l + 100e(-3 0 .. 

105000 ^^ 
l + 0.00015e(i-25*-i2.50) 

= 0.1633723348 10^ worker years 

Mike's model gives about 1.63 million worker-years, which is not too far from 
the Herodotus estimate of 2 million worker-years. The number of worker-years 
from the second inflection point at 17.04 years to the twentieth year is obtained 
by a similar integration. Mike uses three ditto operators in series to pick up 
the inflection point that was calculated three command lines earlier. 

> area_2:=Int(eql,t=7o7o7o. .20)=int(eql,t=7oye7o. .20)*worker*years; 

Jl7 

^20 

area-2 := 
'17.04390021 

l + 100e(-3 0 - ., 
105000 ^^ 

1 +0.00015 e(i-25t-i2.50) 

= 56162.94008 worker years 
About 56,000 worker-years were involved for this period. Now Mike decides to 
see what other deductions he can make from the numbers that he has gleaned 
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from the literature. He wants to calculate how much work it took to assemble 
the pyramid, i.e., to hft the blocks into place. 

Mike idealizes the pyramid by considering four straight lines from the four 
basal corners to the apex of the pyramid as shown on the left-hand side of 
Figure 3.20. He takes the basal length to be 2 L and lets each horizontal coor
dinate range from x = -L to +L as shown in the two-dimensional view on the 
right-hand side of the same figure. 

Figure 3.20: Diagram of the pyramid. 

Assuming the height at the apex to be H, the mathematical equation describing 
the slanted surface between x = -L and x = 0 is y^H + H{x/L). 

> y:=H+H*x/L; 

TT Hx 

At x = 0, y = H and at x = ~L, y = 0, so the entered form of y checks out. If the 
density (assumed to be constant) of the stones in the pyramid is p, the total 
mass can be calculated by multiplying the volume by p. The mass dM of a thin 
square volume element with sides of length 2 x and thickness dy at a height y 
will be 

dM = p(2x)(2x)dy = 4px^ ( ~-] dx 
dy 

dx. (3.3) /dAT 
^dx J \ dx 

By integrating (3.3) from x = -L to 0, the formula for the total mass can be 
determined. The integrand dM/dx is entered, with left quotes being attached to 
the assigned name to prevent Maple from thinking that a mathematical division 
is intended. 

> 'dM/dx':= 4*rho*x^2*diff(y,x); 

dM/dx := -̂ -— 

The mass of the pyramid is determined by integrating the previous command 
line output from x = - L to x = 0. 

> Mass:=Int(7o,x=-L. .O)=int(yo,x=-L. . 0 ) ; 

Mass -i: Apx'^H , ApHL^ 
dx — 
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The total mass of the pyramid is A pH L^/3. The amount of work to hft a small 
mass dM through a vertical distance y from the ground is 

dW = dMgy = (^^'^ gydx ^ (^^^ dx, (3.4) 

where g is the acceleration due to gravity. Mike enters the quantity dW/dx, 
again using left quotes to enclose the name. 

> 'dW/dx':='dM/dx'*g*y; 

Apx^Hg (H+^ 
dW/dx := 

L 
Carrying out the integration of the previous line from x = —Ltox = 0, 

> W:= Int(7o,x=-L. .0) =int(7o,x=-L. . 0 ) ; 

.0 4px^Hg{H+-^) pH^L^g 
W := / ^^— dx ^ ^ 

/ : -L L 3 
Mike finds that the work to lift all the blocks in the pyramid is W — pgH^ L^/3. 
Although he could look up the density of limestone and calculate the work using 
this formula, Mike decides to use the information given at the beginning of this 
story. To accomplish this, he solves for the density in terms of the total mass 
M and pyramid dimensions, 

> density:=solve(rhs(Mass)=M,rho); 

, . 3M 
density := ^ - ^ ^ 

and substitutes the density expression into the right-hand side of W. 

> Work:=subs(rho=density,rhs(W)); 

Work := —^ 
4 

This yields the expression W = M g H/A for the work. The mass M of the 
pyramid is obtained by multiplying the number (about 2.5 x 10^) of blocks by 
the average weight (about 2.5 tons) in tons of each block and converting the 
result into kilograms. To accomplish the latter, Mike notes that a weight of 1 
ton corresponds to a mass of 907.2 kg. 

> M:=2.5*10^6*2.5*907.2; #kilograms 
M := 0.5670000000 10^° 

The pyramid has a mass M = 0.567 x 10^^ kg. With this number automatically 
entered, Mike takes iJ = 150 m and 5̂  = 9.81 m/s^ and evaluates Work. 

> Work:=eval(Work,{H=150,g=9.81})*j oules; 

Work := 0.2085851250 10^^ jo7//e5 
Thus, the total amount of work to lift the stones into place is 0.21 x 10̂ "̂  J. Mike 
is curious about whether Herodotus's estimate of the number of worker-years 
needed to build the pyramid is reasonable. He decides to calculate how much 
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work energy was available from the workers. He assumes that the average food 
consumption was about 2000 food calories per day and converts this number 
into joules by recalling that there are 4186 joules in a food calorie. 

> Food_energy:=(2000*calories/(worker*day)) 

* (4186*joules /ca lor ies ) ; 

^ , 8372000 joules 
rood.energy := 

worker day 
Thus, the average food consumption per worker is about 8 million joules per 
day. Now only a small fraction, perhaps 1%, of this ends up as useful work, the 
rest being lost in sweat, etc. 

> Useful_work_energy:=0.01*%; 

, , , , , 83720.00 jo^/e5 
UsejuLwork-energy :— ; ; 

worker day 
Over the 20 year period, taking 365 days in a year, the total useful work is, 

> Total_useful_work_energy: =yo*Herodotus_estimate*365*day/years; 

Total-Useful-Work.energy \— 0.6111560000 10^^ joi^/e5 
about 6.1 X 10̂ *̂  J. This is about 30 times the amount of energy needed to 
build the pyramid. Of course, the energy needed to build the roads along which 
the limestone blocks were hauled and the ramps up the pyramid has not been 
included. 

After doing this calculation, Mike can't wait to get another opportunity to 
combine his archaeological and mathematical interests. His contact with the 
chief archaeologist at Machu Pichu has given him the inside track on a dig in 
a remote region of Asia not that far from the Great Wall of China, which he 
hopes to join in his next summer semester. 

PROBLEMS: 
Problem 3-31: A bizarre proposal 
Suppose that some modern Egyptian developers propose to build a pyramid 
whose height would have been H but has the top 20% removed so that the 
pyramid has a flat (horizontal) top. This pyramid would be located in the 
Valley of the Pyramids and the roof would accommodate an upscale restaurant 
where prominent socialites could feast and enjoy the view of the surrounding 
monuments. Using a first principles integration approach, derive the work for
mula for assembling this pyramid in terms of the total mass M, height i / , and 
the acceleration due to gravity g. Check your result by using a more clever 
approach. 

Problem 3-32: A cone-shaped "pyramid" 
Suppose that the Egyptians had built a "pyramid" out of the same limestone 
blocks but in the shape of a right circular cone of height 150 m and radius 
115 m. How much work would have to be done in order to lift the blocks into 
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place? How does your answer compare with the work done to build the Cheops 
pyramid discussed in the text? Does your answer make sense? Explain. 

Problem 3-33: Rocket flight 
A rocket fired vertically has a constant upward acceleration of 2g during the 
burning of the rocket motor, which lasted for 50 seconds. 

(a) Neglecting air resistance and the variation of g with altitude, express the 
acceleration as a piecewise function for the two time intervals before and 
after 50 seconds. 

(b) By carrying out the indefinite integral of the acceleration, obtain an an
alytical expression for the velocity as a function of time. 

(c) Plot the velocity expression for the time interval that it takes the rocket 
to reach maximum altitude. Remember that the velocity is zero at this 
point. 

(d) Carry out the definite integral of the velocity expression with respect to 
time to find the maximum altitude. Express your answer in kilometers. 

(e) Calculate the total time that the rocket is in the air. 

(f) Plot the altitude versus time for the entire flight of the rocket. 

3.2.2 Noah's Ark 

If Noah had been truly wise, he would have swatted those two flies. 
Attributed to Helen Castle in the 1999 Merrill Lynch daily planner. 

Noah, a meteorologist by training and TV weatherman by profession, has en
rolled in a course on computer-assisted sailing-ship design at the local com
munity college. Because it has been unusually rainy lately, he has taken some 
good-natured ribbing about the weather from his TV viewers and friends. On 
learning of his enrollment in the ship-design course, one of his neighbors, Jerry, 
was heard to chortle, "Hey, Noah, when are you going to build your ark?" 

Fortunately, Noah is used to this syndrome of blaming the messenger for 
bad news, and is able to take such comments in his stride. "Very funny, Jerry. 
No, as you are aware, I am into sailing and have participated in transoceanic 
yacht races such as the one from Victoria, British Columbia, to Maui in the 
Hawaiian Island chain. I simply want to learn more about designing a high
speed racing hull and I have always been interested in applying the computer 
to solving technical problems. Why don't you take the course with me? You 
like to come out sailing with me in the summer, and at the least, the course 
might help both of us to improve our computer skills." 

"OK, Noah, it sounds like it might be interesting. I will take the course 
with you, if you promise to let me crew in one of your next yacht races." 

Having agreed to Jerry's request, Noah takes Jerry along with him to the 
first evening of the computer-assisted ship-design course. To get his students 
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up to speed on the computers, the instructor, Buzz, has given them a simple 
warm-up exercise designed to show them some aspects of the Maple software 
system that they will be using. Buzz asks them to create a colored plot, suitably 
annotated, of the planar cross section of a ship's hull that is mathematically 
bounded on the bottom by the parabola Y = x'^ and on the top by the horizontal 
deck line Y — 1. For this planar hull cross section, they are then to use integral 
calculus and Maple's integral command to determine its area, its mass, and 
the location of the center of mass assuming that the mass density function 
is p = ay^ e~^y with the choice of parameter values, a, n, and 6, left up to 
Noah and Jerry. The location of the center of mass (the point at which all the 
mass can be thought of as being concentrated) is important in determining the 
stability of the ship's hull against tipping. 

Noah and Jerry begin by making a call to the following library packages. The 
plottools package is needed in order to place an arrow indicating an integration 
direction on the planar hull plot. 

> restart: with(plots) : wi th(plot too ls ) : 

Next, Noah and Jerry enter the parabolic equation Y = x'^. 

> Y:=x^2; 

Y:=x^ 
Buzz hasn't specified any units of length, so Jerry jocularly says "let's take 
distances to be in units of 5 cubits. I am sure that Buzz doesn't know how big 
a cubit is." 

"I don't know, either," retorts Noah. 
"A cubit is an ancient measure of length, about 18 to 22 inches," Jerry 

rephes. "It was originally the length of the arm from the end of the middle 
finger to the elbow. So 5 cubits is about 7^ to 9 feet, or 2^ to 3 meters. Since 
Buzz has said that the deck line corresponds to Y = 1, then equating this to 
F = x^ gives us a deck width whose coordinates range from x = —l to +1 . So, 
the deck width for the planar cross section would be about 15 to 18 feet." 

Noah and Jerry form a plot of Y. "Let's make an artistic plot," says Noah, 
"and fill the region below the parabolic hull bottom with an aquamarine color 
to represent tropical sea water." 

> plot I I l:=plot(Y,x=-l . . l , f i l led=true,color=aquainarine) : 
Noah and Jerry have used the concatenation operator I I to attach the num
ber 1 to the name plot. The sequence command can be apphed to sets of 
concatenated names that include the number in this manner. 

"Remember that we are going to have to calculate the cross-sectional area 
A of the planar hull," points out Jerry. "We can make use of a double integral, 
writing the area in the form A = JJ dA = J J dx dy and inserting the correct 
limits for the hull cross section. Let's integrate vertically in the ^/-direction first, 
then horizontally in the x-direction. To let Buzz know what we are doing, let's 
create a thick red arrow placed at x = 0.4 with its tail on the parabola Y — x'^ 
and its tip at y = 1. The numbers 0.035, 0.1, 0.1 in the following command line 
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refer to the width of the arrow, the width of the arrowhead, and the ratio of 
the arrowhead length to the overall length of the arrow. 

> ploti 12 :=arrow( [0.4,0.4-^2] , [0.4,1] , 0 .035 ,0 .1 ,0 . l ,color=red) : 
While we're at it, let's fill the interior of the hull with a grey color, 

> plot I | 3 :=p lo t ( l , x= - l . . l , f i l l ed=true , co lor=grey ) : 
and use the textplot command to add some black labehng to the plot." 

> plot I |4:=textplot( [[0.48,0.18,"Y=x^2"],[0.48,0.96,"Y=l"]] , 
align=RIGHT,color=black): 

"OK, Jerry, if we are going on a coloring binge, let's outline the hull in red for 
easy visualization on the computer screen." 

> p l o t i | 5 : = p l o t ( [ [ - l , l ] , [1,1]] ,color=red,thickness=2): 

> p lot i |6 :=plot (Y,x=- l . . l , co lor=red, th ickness=2) : 
"We should have enough for our plot," notes Noah, "so let's superimpose the 
six plots and see what we have created. Note that the plots are put into a list 
format in the display command and the order of the plots matters. If plot I 13 
preceded plot I 11 in the list, the picture would be completely grey. In plot 113, 
everthing below ^ = 1 is colored grey, but it does not color over a previously 
plotted fin." 

> d isplay([seq(plot | |k,k=l. .6)] ,tickinarks=[2,4] , 
labels=["x","y"]); 

Figure 3.21 shows a black-and-white rendition of the colorful and informative 
picture that Noah and Jerry have created. 
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KY=X'^2 

Figure 3.21: Geometry of the planar parabolic hull. 

Having shown Buzz their artistic creation, Noah and Jerry next evaluate the 
area of the hull enclosed by the curves Y — x^ and Y — \. From Figure 3.21, the 
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double integral, expressed in Cartesian coordinates, takes the specific form 

dydx. (3.5) A 

The vertical arrow in Figure 3.21 indicates the range of the y integration. 
"We don't need to use a computer to do this simple integral," Noah remarks. 

"In fact, we didn't even have to express the area as a double integral but could 
have chosen to take vertical strips of thickness dx and written the area integral 
as the difference between the area under the curve Y = 1 and the parabolic 
curve Y = x'^. This would yield A = J^^dx - J^^x^ dx = 2 - 2/3 = 4/3 units of 
area. As a check, let's use the double integral form (3.5) to evaluate the area. 
The following command line will produce the inert form of the area integral, 

> Area:=Int (Int ( l ,y=Y. .1 ) ,x=- l . .1 ) ; 

J-lJx^ 
Area := / I 1 dydx 

which can be evaluated with the value command. 

> Area: = value (7o); 
4 

Area := -
o 

The cross-sectional area of the hull is 4/3 units, which is what we expected. 
You can multiply this by 5^ = 25, Jerry, to express the answer in terms of cubits 
squared. Let's now calculate the mass of this planar hull cross section by first 
entering the density profile that Buzz gave us. 

> rho:=a*y"n*exp(-b*y); 

p:=ay''e^-^y^ 
Buzz didn't specify the parameter values or the units, so I am going to choose 
a = 3, n = l, and b = 2 and see what the density profile looks like, by plotting p 
as a thick blue curve. 

> a:=3: n:=l: b:=2: 

> plot(rho,y=0. . l , t ickmarks=[3,3] , labels=["y","density"], 
color=blue,thickness=2); 

O' 0 . 2 0 . 4 y 0 .8 1 

Figure 3.22: Variation of the density p with the vertical coordinate y. 
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For my choice of parameters, the density rises to a maximum roughly midway 
between the bottom of the hull and the top and then begins to decrease with 
increasing y. The mass of the planar hull cross section will be given by" 

J-i 7x2 
M - / pdydx. (3.6) 

Noah and Jerry enter this mass integral, and calculate its value. 

> Mass_ in t := In t ( In t ( rho ,y=Y. .1 ) ,x=- l . . 1 ) ; 

Mass Ant \— I I 3ye^ '^^^dydx 

> Mass:=value(%); 

Mass := - ^ e(-2) + ^ ^ y ^ e r f ( y 2 ) 

They note that the answer is specified in terms of a "special" function, called 
the error function, which is defined as 

erf(ix) = 4 = r e-'' dt. (3.7) 
V r̂ Jo 

The error function and therefore the mass can be numerically evaluated, 
> Mass:=evalf(%); 

Mass := 0.6353137782 
so Jerry and Noah find that the mass is about 0.64 mass units. 

"Let's now calculate the location of the center of mass," Noah comments. 
"I recall from my freshman physics text [Oha85] that the y- and x-coordinates 
of the center of mass are defined by the expressions" 

ĉm = ^ / I ypdydx, Xcm = - ^ / jxpdydx. 

Entering the y center of mass coordinate, 

> y_ciii:=Int(Int(y*rho,y=Y. . 1) ,x=- l . . 1)/Mass_int; 

(3.8) 

y-cm := 

/ / Sy^e^-^yUydx 

/ / 3ye(-'^y)dydx 

and evaluating it, 

> y_cin:=value(y_cm) ; 

- ^ e ( - 2 ) + g v / 2 v ^ e r f ( y 2 ) 
y.cm := - ^ ^ 

- ^ e ( - 2 ) + ^ V 2 v ^ e r f ( x / 2 ) 

> y_cm:=evalf(%); 

y.cm := 0.6109364936 
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Noah and Jerry find that ycm ~ 0.61, i.e., about 3 cubits above the hull bottom. 
"By symmetry," Jerry points out, "the x-coordinate of the center of mass 

must clearly be equal to zero." 
"You're right," Noah replies, "but let's check it anyway." So Noah enters 

the integral expression for x_cm, 

> x_cm:=Int( Int (x*rho,y=Y. .1) ,x=- l . .1) /Mass_int ; 

X-cm :— 
J-lJx^ 

3xy e {-2y) dydx 

J-lJx^ 
3ye'<-'^y^ dydx 

and evaluates the double integral, 
> x_cm:=value(x_ciii); 

x.cm :— 0 
obtaining zero as required. 

"Noah, I think that we should locate the center of mass on the figure of the 
planar hull that we created earlier. Let's place a red circle at X-cm^ y-cm, 

> p lo t 117:=plot([ [x_cm,y.cm]],style=point ,syinbol=circle, 
syinbolsize=16,color=red) : 

and place the phrase center of mass adjacent to the circle. 

> p lo t I 18:=textplot([0.05,y_cm,"center of mass"] , 
align={ABOVE,RIGHT},color=red): 

We don't need the arrow on the diagram anymore so let's remove p lo t I I 2 
and superimpose ah the other plots, i.e., p lo t I 11 and p lo t I 13 to p lo t I 18, to 
create a new figure." The resulting picture is shown in Figure 3.23. 

> d i s p l a y ( [ p l o t | | l , s e q ( p l o t | | k , k = 3 . . 8 ) ] , 
t i ckmarks=[2 ,2 ] , l abe l s=["x" , "y" ] ) ; 

1 center of mass 

Figure 3.23: Center of mass for planar parabolic hull. 



168 CHAPTER 3. ALGEBRAIC MODELS. PART I 

At this point, Buzz takes a look at their picture and comments, "A nice picture 
guys, but I think that your center of mass is quite high in relation to the hull's 
vertical dimension and as a consequence your hull might not be very stable. 
You might want to play around with the parameters and lower ycm- You can 
do this later, however, as I have another exercise for you. Keeping the density 
profile the same, I would like you to create a three-dimensional paraboloid of 
revolution, by rotating the parabola about its symmetry axis, x = 0, and then 
calculate the volume, mass, and center of mass of this paraboloid." 

To create the paraboloid, Noah and Jerry apply the contourplotSd com
mand to the function y = x'^ -\- z'^, which corresponds to rotating the parabola 
around the 7/-axis. 

> p lo t I | 9 : = c o n t o u r p l o t 3 d ( ( ( x ^ 2 + z ^ 2 ) ) , x = - l . . l , z = - l . . 1 , 

contours=14, f i l l ed=t rue , l igh tmodel=l igh t2) : 
They also add labels to the three-dimensional figure with textplotSd, 

> plot I 110: =textplot3d( [[-0.6,0.3,0.1,"Y=x^2+z'*2"] , 

[-0.9,0.7,1,"Y=l"] ] ,align=RIGHT,color=black): 
and use the display command to show the completed plot, which is similar to 
that in Figure 3.24. (The colored and shaded version on the computer screen 
displays substantially fewer contours than shown in the text figure.) 

> d isp lay( [seqCplot I |k,k=9. .10)] ,axes=framed, 
v i e w = [ - l . . 1 , - 1 . . 1 , 0 . . 1 ] , o r i e n t a t i o n = [ 5 4 , 5 0 ] , t i c k m a r k s = 
[2 ,2 ,2 ] , l abe l s=["x" , "z" , "y" ] , shad ing=Z) ; 

1 1 

Figure 3.24: Paraboloidal hull shape. 
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"Excuse my language, Noah, but from a sailing ship viewpoint, that's a H_LL 
of a hull. The drag would be tremendous. I guess that this is just a warm-up 
exercise and we will be looking at more realistic designs later in the course. 
Let's determine the volume, V = JJJ dV, for the paraboloid of revolution by 
carrying out the triple integration. If we take the z integration to range from 
z = — yjy — x^ to z = \Jy — x^, the remaining two integrals will be identical to 
those used in the planar case. So the volume is symbolically expressed as 

> Vo lume:=In t ( In t ( In t ( l , z= - sq r t (y -Y) . . sq r t (y -Y) ) ,y=Y. .1 ) , 

x = - l . . l ) ; 

/ / Idzdydx 

which is easily evaluated. 

> Volume:=value(%); 

Volume := — 

The volume is equal to 7r/2 in normalized units. To express the volume in cubic 
cubits, we can multiply this result by 5^ = 125. Let's evaluate the mass integral, 
which is now of the form M = JJJpdV.'' Noah types in the mass integral, 

> Mass2_ in t := In t ( In t ( In t ( rho , z= - sq r t (y -Y) . . sq r t (y -Y) ) , 

y = Y . . l ) , x = - l . . l ) ; 

/

I /•! ry/y-x^ 

/ / '^ye^-'^y^ dzdydx 

and attempts to evaluate it. 

> Mass2:=value(7o); 

Mass2 :^ / ' _ A(i6(i-x2)(3/2)e(-2+2x^)_^12^/]r^^e(-2+2a:^) 
7-1 16 

- 3 x/2 v ^ e r f ( ^ r ^ ^ x / 2 ) + 16x^ VT^^e^'^^^^"^ 

-4x2x /2y^e r f (^ / r^^^y2) )e ( -2^ ' ) r fx 

"That's interesting. Maple isn't able to perform the x integration." 
"Who cares," Jerry snorts, "let's evaluate the result numerically." 

> Mass2:=evalf (7o); 

Mass2 := 0.7618132467 
That's better. The mass is 0.76 mass units. Now, why don't you type in the 
integral form for the ^-coordinate of the center of mass, 

> y2_cm:=In t ( In t ( In t (y*rho ,z=-sqr t (y -Y) . . sq r t (y -Y)) , 

y=Y. .1) ,x=-l . .1) /Mass2_int ; 
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/

I pi ny/y-x^ 

/ / 3y^e^-^yUzdydx 

^ -iJx^J-y/y-x^ 
y2-cm : — 3 y e(~^ ̂ ) dz dy dx 

-yjy-x'^ 

and then evaluate it. 
u:i 

> y2_cin: =evalf (value (%)); 

y2.cm := 0.6628492940 
So, T/cm = 0.66, which is even higher than the 0.61 value that we obtained for 
the planar case. We had better play around with the parameters and lower the 
center of mass before Buzz comes back. As far as the values of Xcm and Zcm are 
concerned, they must clearly be equal to zero by symmetry. You might check 
one of these, for example Xcm-" 

As instructed, Noah enters the integral expression for Xcm? 

> x2_cm:=In t ( In t ( In t (x*rho ,z=-sqr t (y -Y) . . sq r t (y -Y)) , 

y=Y. . l ) ,x=- l . .1 ) /Mass2_in t ; 

x2-cm := 
/

I nl py/y-x^ 

/ / Sxye^-^yUzdydx 

IXL y/y-x^ 
3^g(-2^) dzdy dx 

-yy-^ 

> x2_cm:=evalf(value(%)); 

x2-cm :— 0. 
and finds that it is indeed zero. 

With the exercise completed. Buzz informs Noah and Jerry that their first 
class is over and he will see them next week. However, he doesn't let them off 
easily, assigning the following set of problems to be completed before the next 
class. Perhaps you should try them as well. 

PROBLEMS: 
Problem 3-34: Lowering the center of mass 
Noah and Jerry's choice of parameters led to a ycm for both the planar and 
three-dimensional calculations that was substantially above the bottom of the 
hull. Help them out by lowering the center of mass. Change the parameter 6, 
holding all other parameter values unchanged, to a value that lowers ycm just 
below 0.4. What is this critical value of b for each case? 

Problem 3-35: Confirmation that Zcm = 0 
For the three-dimensional case, confirm that Zcm = 0. 

Problem 3-36: Varying n in the density function 
Keeping all other parameters unchanged, calculate ĉm for the planar hull case 
for n = 2, 3 ,4 , . . . and plot this center of mass coordinate as a function of n. 
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Problem 3-37: A more realistic hull 
A somewhat more realistically shaped hull can be defined by 

with y < 1, where y points down into the water. Taking a —1, 6 = 6, and c = l : 

(a) Make a three-dimensional plot of this hull, using both constrained and 
unconstrained scaling. 

(b) Calculate the volume, mass, and center of mass of the hull if the density 
is given by p = Ay^ e~^^, with A = 3, n — 1, and B = 2. 

(c) Plot the center of mass along with the outline of the hull in both the x-y 
and z-y planes, using constrained scaling. 

Problem 3-38: Triangular plate 
A thin triangular plate with vertices (0, 0), (1,0), and (0, 2) has density p{x, y) — 
l-\-3x -\-y. Using double integrals, calculate: 

(a) the mass of the plate; 

(b) the center of mass coordinates; 

(c) the moment of inertia I^ = / / y^p{x^ y) dx dy, about the x-axis; 

(d) the moment of inertia ly = fj x^p{x, y) dx dy^ about the y-axis. 

Create a plot of the triangular plate, suitably colored, and superimpose the 
center of mass in the form of a colored circle on the plate. 

Problem 3-39: Semicircular plate 
The density at any point on a thin semicircular plate of radius a is proportional 
to the distance from the center of the circle. Making use of double integrals 
and appropriate plotting tools: 

(a) calculate the mass of the plate; 

(b) calculate the coordinates of the center of mass; 

(c) plot the center of mass, appropriately labeled, on a colored picture of the 
plate. 

Hint: Use polar coordinates (r, 6) and note that the area element is 
dA = {rde)dr. 

Problem 3-40: Charge distribution 
Charge of surface charge density (j{x,y) = xy C/m^ is distributed over the 
triangular region defined by the lines x = l, ?/ = l, ?/ = l — x. Using double 
integrals and appropriate plotting tools: 

(a) calculate the total charge; 

(b) calculate the center of mass coordinates of the charge distribution; 

(c) plot the charge density distribution over the triangular plate; 
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(d) plot the center of mass, appropriately labeled, on the plate. 

Problem 3-41: Mass of a solid tetrahedron 
A solid tetrahedron of mass density p = 2; is bounded by the four planes a: = 0, 
7/ = 0, z = 0, and x -\- y -\- z = I. Making use of triple integrals, calculate: 

(a) the volume of the tetrahedron; 

(b) the mass of the tetrahedron; 

(c) the center of mass coordinates. 



Chapter 4 

Algebraic Models. Part II 
It is written in the language of mathematics, and its characters are 
triangles, circles, and other geometrical figures, without which it is 
impossible to understand a single word of it; without these, one is 
wandering about in a dark labyrinth, 
Galileo Galilei, Italian astronomer and physicist (1564-1642) 

In the first section of this chapter, the recipes illustrate how Maple can be 
used to formulate and explore vector models in Cartesian as well as other or
thogonal^ curvilinear coordinate systems. The key library package for entering 
and manipulating vectors is the Vector Calculus package. 

The second section features matrix models, the LinearAlgebra library pack
age being of central importance for dealing with matrices. 

4.1 Vector Models 

If Cx, Cy, and e^ are Cartesian unit vectors (vectors of unit length) pointing along 
the X, y^ and z axes, respectively, the sum of two vectors A = Ax ex-\-Ay ey-\-Az e^ 
and B =^ Bx ex -\- By ey + Bz Cz is given by 

1-f B^{Ax + Bx) ex + {Ay + By) e^ + {Az + Bz) e^. 

The dot or scalar product between two vectors A and B is defined by 

A' B^AxBx + AyBy -\- AzBz^'AB cos(9, 

where A = JAl -j- A^ + A^ and B = JBl + 5^ + B^ are the magnitudes of A 

and 5 , and 6 is the angle between them. 
The cross or vector product of A and B, written as yl x ^ , is another vector 

whose magnitude | ^ x 5 | is equal to AB smO. The direction of yl x 5 is given 
by the right-hand rule. Put the fingers of the right hand along A and curl them 
toward B in the direction of the smaller angle between A and B. The thumb 
then points in the direction of the new vector. 

^The angle between unit vectors is 90°. 
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4.1.1 Vectoria's Mathematical Heritage 

There are some things which cannot be learned quickly, and time, 
which is all we have, must be paid heavily for their acquiring. They 
are the very simplest things and because it takes a man^s life to know 
them the little new that each man gets from life is very costly and 
the only heritage he has to leave. 
Ernest Hemingway, American writer, Death in the Afternoon (1932) 

Vectoria, a physics student whom we have already met on a number of oc
casions, is in the process of learning about the magical kingdom of vectors. At 
least this field of mathematics is somewhat magical to her, since it inspired 
her mathematically inclined mother, Dorothy (Dot, for short) Product, to give 
Vectoria her unique first name. Taking after her mother, who is an avid com
puter algebra fan, Vectoria soon grows tired of doing messy vector manipulation 
problems by hand and says, "Let's see what we can do with Maple." 

To plot vectors and mathematically manipulate them, she finds that a call 
must be made to the plots, plottools, and VectorCalculus packages. To sup
press four warning messages that would otherwise appear on "loading" these 
packages, the warning level is first set to zero in the in te r face command. 

> restart: interface(warnlevel=0) : 

> wi th(plots ) : wi th(plot too ls ) : with(VectorCalculus): 
Vectoria decides to first carry out various standard vector operations, such as 
the analytical and graphical addition of vectors, finding the angle between two 
vectors, and determining dot and cross products for combinations of vectors. 

She decides to work with some representative three-dimensional vectors in 
Cartesian coordinates, viz., 

A — 2ae^-\-aey, B — be^-\-bbe^, C = ccx + 4cey 4-Sce^, (4.1) 
where a, 6, and c are real constants. The three vectors are entered, the "long" 
syntax form being used for A, the "short" forms for B and C. 

> A:=Vector([2*a,a ,0]) ; B:=<b,0,5*b>; C:=<c,4*c,3*c>; 

A :=^ 2ae^-\-aey B := be^-\-bbe^ C := cCx + 4cey + ScCz 
Vectoria observes that the hat symbol doesn't appear on the unit vectors in the 
output, which is notationally consistent with the fact that vector arrows do not 
appear on A, B^ and C. 

For the specific vectors that she has chosen, Vectoria can easily calculate 
the resultant vector R = A-\-B-\-C in her head. However, she checks to see 
whether Maple will add the vector components properly. 

> R:=A+B+C; 

i^ := (2 a + 6 + c) Cx + (a + 4 c) Cy + (5 6 + 3 c) Cz 
Vectoria can see that the answer is correct, and undoubtedly you can too! 

Another standard problem encountered by beginning science students is to 
find the angle 0 between any two vectors, say A and B. It follows from the 
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definition of the dot product that the angle between A and B is given by 

e = dirccos{{A'B)/{AB)). (4.2) 

Vectoria notes that the dot product of two vectors A and B can be accomphshed 
with either the long form of the command, viz., DotProduct (A,B), or the short 
form A . B. She chooses to use the short form in evaluating the angle 9 between 
the two vectors A and B entered earlier. 

> theta:=arccos((A . B) /sqr t ( (A . A)*(B . B))) ; 

/ 1 abVT36\ 
6 := arccos 

^65 y/^^ J 

In the last output line, the parameters a and b should have canceled but didn't 
because the term Va^ could yield either a positive or negative result. Since 
the angle should be positive, Vectoria applies the simplify command with the 
symbolic option (which assumes that a and b are positive). 

> theta :=simpl i fy( theta ,s )ni ibol ic) ; 

9 '.— arccos , , 
\ 65 / 

The angle between A and B is numerically evaluated, 

> t h e t a : = e v a l f ( t h e t a ) ; 

9 := 1.394472488 
yielding 1.39 radians. The angle can be converted from radians to degrees, 

> t h e t a : = c o n v e r t ( t h e t a , u n i t s , r a d i a n s , d e g r e e s ) ) ; 

9 := 79.89738818 
so the angle between A and ^ is ^ = 79.9°. 

Vectoria has heard that the cross, or vector, product (the latter being the 
inspiration for her own name) tends to give many beginning students trouble, 
so she reviews the definition given at the beginning of this chapter. She also 
notes that it is straightforward to prove that 

Ax B^ {AyB, - A^By) ex + {A,B^ - A^^B,) e^ + {A^^By - AyB^) e^. (4.3) 

It may also be shown that the magnitude \A x B\ is equal to the area of the 
parallelogram having A and B along two of the sides. 

Vectoria uses Maple to calculate the cross products Ax B and B xC ior the 
previously entered vectors, using the long form of the cross product command 
for the former, and the short form for the latter. 

> AcrossB:=CrossProduct(A,B); BcrossC:=B &x C; 

AcrossB := 5abe^ — lOabey — abe^ 

BcrossC := -20bce^ -{-2bcey -^ Abce^ 
She calculates the areas, Areal and Area2, of the two parallelograms hav
ing A, B and B, C, respectively, as adjacent edges. For Areal., she employs 
the simplify (symbolic) command once again, while for Area2 she uses the 
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assiiming command. This command differs from the assume command in that 
it apphes the assumption only to the command hue in which it appears, while 
the latter applies the assumption to the entire worksheet after being entered. 

> Areal :=simplify(sqr t (AcrossB . AcrossB), symbolic); 

Areal := SVTiab 

> Area2:=sqrt(BcrossC . BcrossC) assuming b>0,c>0; 

Area2 := 2y/l0Ebc 
The volume of the parallelepiped having A, B, and C as adjacent edges can be 
calculated by forming the "mixed" product A- {B xC) and taking the absolute 
value. Vectoria labels the result Volume 1. She also calculates the volume 
1(̂ 4 X ̂ ) • C|, calling this result Volume2. 

> Volumel:=abs(A . (B&xO); Voliime2:=abs((A&xB) . C) ; 

Volumel := 38 \abc\ Volume2 := 38 \abc\ 
The two volumes are identical. If the absolute values are not taken, Vectoria is 
able to confirm the "vector identity" 

A'{BxC) = {AxB)'C, (4.4) 

by subtracting the right-hand side from the left-hand-side, 

> 'Adot(BcrossC)-(AcrossB)dotC':=A . (B&xC) - (A&xB) . C; 

Adot{BcrossC) - {AcrossB)dotC := 0 
and obtaining zero. Vectoria has had to use "left quotes" on the assigned name 
because it contains mathematical operations. 

In the next two command lines, she finds, however, that A x {B x C) is not 
the same as {Ax B) x C. In mathematical language, the "associative law" does 
not hold for the cross product. 

> ' Across (BcrossC)' : =A &x (B &x C); 

Across{BcrossC) := Aabce^ — SabcCy -\-24:abcez 

> ' (AcrossB) crossC' : = (A &x B) &x C; 

{AcrossB)crossC \— ~26abce^ — 16abcey + 30abce^ 
To plot the four vectors A, B, (7, and R, Vectoria chooses some specific values 
for the parameters, viz., a = 3, 6 = 2, and c = 1. She also creates a functional 
operator F to evaluate an arbitrary quantity V with these parameter values. 

> params:={a=3,b=2,c=l}: F:=V->eval(V,params): 

Then, using F, the forms of A, B, (7, and R are explicitly displayed with the 
parameter values substituted. 

> A:=F(A); B:=F(B); C:=F(C); R:=F(R); 

A :=:6ex-h3ey B := 2ex + lOcz C :=ex + 4 e y + 3ez 

R := 9e^-h7ey + 13ez 
The arrow command is used to produce a red arrow connecting the tail (which is 
placed at the origin, (0,0,0)) of the vector A to its tip. The numbers 0 .2 ,1 ,0 .2 
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refer to the width of the arrow's body, the width of the arrow's head, and the 
arrowhead length expressed as a ratio of the arrow body length, respectively. 
The arrow plot is suppressed temporarily and given the label AA. 

> AA:=arrow([0,0,0], A , 0 . 2 , l , 0 . 2 , c o l o r = r e d ) : 
To carry out the vector addition of A and B graphically, the vector B is placed 
with its tail at the tip of the vector A. The B vector will be represented on the 
computer screen by a brown arrow. 

> BB:=arrow(A,B,0.2,1,0.2,color=brown): 
The third vector C must then be placed with its tail at the vector sum of A 
and B. A coral colored arrow is used to represent C. 

> CC:=arrow(A+B,C,0.2,1,0.25,color=coral): 
The resultant vector ^ is a vector with tail at the origin and tip R located at 
the vector sum of A^ B^ and C. It is represented by a black arrow. 

> RR:=arrow([0 ,0 ,0] ,R,0 .25,1 ,0 .2 ,color=black) : 
The four plots are superimposed with the display command, 

> display({AA,BB,CC,RR},axes=normal,orientation=[55,74], 

tickmarks=[2,2,2],labels=["x","y","z"]); 

the resulting picture being shown in Figure 4.1. 

Figure 4.1: Graphical illustration of the vector sum of A^ B, and C. 

By clicking on the plot with the mouse, the plot can be rotated by dragging 
on it to view the vector addition from different perspectives. 

With these preliminaries under her belt, Vectoria is ready to tackle some 
simple physical applications of vectors. This will be done in the following story. 
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PROBLEMS: 
Problem 4-1: Angle between vectors 
Determine the angle in degrees between the vectors A and B in each of the 
fohowing cases: 

(a) A = 3ex+ 4 e y + ez, B = Ocx + 2ey - Se^; 

(b) A = ex + Ocy + 3ez, ^ = 5ex + 2ey - 6ez. 

In each case, make a graph showing the vectors A and B and their sum. Also 
calculate the areas of the parallelograms with A, B 8iS edges. 

Problem 4-2: Vector manipulations 
Consider the three vectors 

P = 2ex + Ocy - Cz, Q — 2ex - Cy + 2ez, ^ = 2ex - 3ey + e^. 

Make a graph showing P , Q, ^ and their sum. Then determine: 

(a) (P + Q ) x ( P - Q ) ; 

(b) Q-iRxP); 

(c) P-iQxR); 

(d) angle between Q and R; 

(e) P X (Q X P); 

(f) the component of P along Q. 

Problem 4-3: Area of a triangle 
Determine the area of the triangle with vertices ^(1,4,6), P(—2,5, —1), and 
C ( l , - l , l ) . 

Problem 4-4: Coplanar vectors 
Show that 

A = Cx H-4ey - 7ez, B = 2ex - Cy + 4ez, C = -9ey + ISe^ 
are coplanar, i.e., the vectors lie in the same plane. Hint: Show that the volume 
of the parallepiped formed by A, P , and C is zero. 

Problem 4-5: Unit vector 
Determine the unit vector perpendicular to the plane that contains the vectors 
A = 2 Cx — 6 Cy — 3 Cz and P = 4 Cx + 3 Cy — Cz. 
Problem 4-6: Torque 
When a force F acts on a rigid body at a point given by a position vector r 
relative to a given origin of coordinates, the torque (or moment) f with respect 
to the origin is defined by the cross product f = r x F. The torque measures 
the tendency of the body to rotate about the origin. Calculate the torque if 
r = Cx + 3ey + 2ez meters and F = - 40 Cx - 20ey + 40 Cz newtons. What 
direction does the torque vector point in? 
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Problem 4-7: Trig identity 
Consider the two vectors 

P = cos 9i Cx -f sin ^i Cy, Q = cos 62 e^ + sin 62 Cy. 

(a) Prove that P , Q are unit vectors making angles Oi and O2 with the x-axis. 

(b) Using the dot product, obtain a well-known trig identity for cos(^2 — ^i)-

Problem 4-8: Volume of a parallelepiped 
As already noted, any three distinct vectors A^ B, and C whose tails have 
a common origin or vertex may be thought of as defining a volume element 
having six faces, parallel in pairs: a parallelepiped. The volume V of such a 
parallepiped is given by V = \A • {B x C)\. A parallepiped with one vertex at 
the origin is described by three vectors whose tips are located at the vertices 
(10,-5,3), (3 , -4 ,7) , and ( - 5 , - 6 , 3 ) , respectively, in rectangular coordinates. 
Distances are in centimeters. Calculate V for the corresponding parallelepiped. 
Make a graph showing the three vectors, each with its tail at the origin. 

Problem 4-9: Angle 
Determine the angle between the central diagonal of a cube and one of its edges. 
Express your answer in degrees and in radians. 

Problem 4-10: Vector identity 
For general three-dimensional vectors, show that 

Ax{BxC) = B{A'C) - C{A'B). 

4.1.2 Vectoria and Fowles's Fly 

The fly that does not want to be swatted is safest 
if it sits on the fly-swat. 
G. C. Lichtenberg, German physicist, philosopher (1742-1799) 

In an elementary mechanics text by Fowles and Cassiday [FC99], Vectoria runs 
across a simple kinematic application of vectors. It is stated that a fly moves 
along a path given by the time-dependent position vector 

'^{t) = Gx G? sin(cj t) -\- eyd cos(u; t) + Cz e t^, (4.5) 
where d, e and uj are real parameters and Cx, Cy, and Cz are unit vectors along 
the X-, I/-, and 2;-axes, respectively. She is asked to show that the magnitude 
of the acceleration is constant. In addition she decides to plot the path traced 
out by the fly, the distance it travels along the path, and its displacement from 
the starting point, for representative values of the parameters. 

Loading the necessary hbrary packages, with the warning level set to zero, 

> restart: interface(warnlevel=0): 

> with(plots): with(VectorCalculus): with(LinearAlgebra): 
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and entering the position vector, 

> pos:=<d*sin(omega*t) ,d*cos(omega*t) ,e*t ' '2>; 

pos := d sm{uj 1)0^ + d cos{uj t) ey -f e t'^ e^ 
the velocity and acceleration vectors are calculated by taking the first and 
second time derivatives of the position. 

> v e l : = d i f f ( p o s , t ) ; a c c e l : = d i f f ( p o s , t , t ) ; 

vel :— dcos(a; t)uje^ — dsin(c<; t) a; Cy + 2 e t Cz 

accel := —d sm{u} t) uj'^ e^ — d cos(a; t) u;̂  Cy + 2 e Cz 
The dot product of the acceleration vector with itself is carried out, assuming 
that d > 0, e > 0, u; > 0, and t > 0. 

> acceldotaccel :=DotProduct(accel ,accel) 
assuming d>0,e>0,omega>0,t>0; 

acceldotaccel := d̂  sin(a; t)^ uj^ -h d"^ cos(a; t)^ cj^ + 4 ê  
The previous line is simplified using the trig option of the combine command, 
and the magnitude of the acceleration obtained by taking the square root. 

> accelmag:=sqrt(combineC/o,trig)) ; 

accelmag := \Jd? uj^ -\- Ae"^ 
Vectoria notes that she could have calculated the magnitude of the accelera
tion in a different manner, using the Vector Norm command (contained in the 
Linear Algebra package) and simplifying with the same assumptions. 

> accelmag2:=VectorNorm(accel,2); 

accelmag2 := A/|(isin(c<;^)cc; |̂ -h \dcos{(jjt)uj'^\ + 4 |e| 

> accelmag2:=simplify(yo) assuming d>0,e>0,omega>0,t>0; 

accelmag2 := Vd'^ cu^ -\- Ae'^ 
In either case, since the output does not contain the time t, the acceleration 
magnitude is indeed constant. 

To plot the path traced out by the fly, Vectoria chooses the nominal param
eter values rf = 2, e = l/20, and u; = 3, and creates an operator F to evaluate 
an arbitrary quantity V with these parameter values. 

> params:={d=2,e=l/20,omega=3}: F:=V->eval(V,params): 

Using F, the position, velocity, and acceleration vectors take the following forms. 

> pos:=F(pos); ve l :=F(ve l ) ; acce l :=F(acce l ) ; 

pos := 2 sin(3 t)e^-\-2 cos(3 0 ŷ + ; ^ ẑ 

vel :— 6 cos(3 t)e^ — 6 sin(3 ̂ ) ̂ y + 77: ẑ 

accel '.— —18 sin(31) e^ — 18 cos(3 0 ^y -f — Cz 
1 

10 
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Extracting the three components of the position vector and forming them into 
a Maple hst, the spacecurve command is used to plot the 3-dimensional path 
(spatial coordinates in meters) traveled by the fly over a time interval of 20 s. 

> spacecurve( [pos[l] ,pos[2] ,pos[3]] , t=0 . .20,nuinpoints=200, 

axes=normal,tickinarks= [ 2 , 2 , 2 ] , labels= ["x" , "y" , "z"] ) ; 

2 ^ ^ = ^ ^ 1 ^ = ^ ^ = ^ ^ 2 

Figure 4.2: Helical path of the fly. 

The resulting picture is shown in Figure 4.2, revealing that the fly moves along a 
helical path. Vectoria is curious as to how much distance the fly covers moving 
along this path. Because of the nature of the trajectory, this distance will 
be considerably larger than the magnitude of the displacement vector pointing 
from the starting position to the fly's position at t = 20 s. The distance along the 
helix must be equal to the time integral of the speed, i.e., / v dt. To calculate the 
speed, Vectoria applies the VectorNorm and simplify(sjrmbolic) commands. 

> V:=VectorNorm(vel,2); 

v:^ -^ y^3600 |cos(3 0l^ + 3600 |sin(3^)| 

> V:=simplify(v,symbolic); 

^ + \t? 

V := 
Vt^ + 3600 

10 
The distance traveled in the time interval ^ = 0 to 20 seconds is calculated by 
performing the following time integration. 

> d i s t a n c e : = I n t ( v , t = 0 . . 2 0 ) = i n t ( v , t = 0 . . 2 0 ) ; 
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90 ^^-—^ 2 v/7rarcsinh -

-I distance :— / dt 
10 V^ 

Vectoria numerically evaluates the right-hand side of the previous output, to 4 
digits accuracy. 

> d i s t ance : =evalf (rhs (7o), 4 ) ; 

distance := 122.2 
The fly has covered about 122 meters along the helix in the 20 second time 
interval. Its displacement from its starting point at ^ = 0 is, of course, much 
less. The displacement vector is calculated by evaluating the position vector at 
t = 20 and t = 0 and subtracting. 

> d i sp l . vec to r :=eva l f ( eva l (pos , t=20) -eva l (pos , t=0 ) ) ; 

dispLvector := -0.6096212422 e^ - 3.904825961 Cy + 20. ê  
Using the VectorNorm and evalf commands, the magnitude of the displace
ment is evaluated to 3 significant figures. 

> displ_mag:=evalf (VectorNorm(7o,2) , 3 ) ; 

dispLmag := 20.4 
The fly is only about 20 meters from its starting position. 

PROBLEMS: 
Problem 4-11: Flight of the bumblebee 
A bumblebee goes out from its hive along a path given in plane polar coordinates 
by 

r = at'^, e^bt, 

where a and b are positive constants. Using Cartesian coordinates, 

(a) Plot the path traced out by the bumblebee for a = 6 = 1 . 

(b) Calculate the velocity and acceleration vectors. 

(c) Show that the angle between the velocity and acceleration is constant. 

Problem 4-12: Polar plots 
Using Maple Help, look up the command structure to make a polar plot. Then 
make polar plots of the following for a few different positive a values: 

(a) The flight of the bumblebee in the previous problem; 

(b) r = aO; (c) r = acos(2(9); (d) r ^ a ^ sin(2l9); (e) r = asm{30). 

Problem 4-13: A flight of fantasy 
A mythical creature of mass 1 kilogram is flying in such a way that its position 
vector in meters is given at time t seconds by 

1 o\ . 4 . /rrt 
te^-\- (t-^ -t^ j Cy -;j sm 
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(a) Plot the creature's position as a function of time for ^ = 0 to 100. 

(b) Calculate the creature's velocity, acceleration, and kinetic energy as a 
function of time. Evaluate these quantities at t = l second. 

(c) Calculate the creature's distance from the origin at t —1 second. 

4.1.3 Ain' t She Sweet 

Ain't she nice? Just cast an eye in her direction. 
Oh, me! Oh, my! Ain't that perfection? 
1926 Hit song (Words by Jack Yellen, Music by Milton Ager) 

On finishing with Fowles's fly, Vectoria looks out the window of the computer 
lab where she has been working and realizes what a beautiful sunny day it is 
outside. So, she decides to soak up some sunshine on a rustic bench located un
der a flowering cherry tree adjacent to an ivy covered brick wall near the math 
building. In the distance, she spots her classmate Mike jogging in an easterly 
direction along a straight sidewalk (see Figure 4.3), which passes through an 
arch in the wall. 

140 m 

Figure 4.3: Schematic drawing of Mike's path. 

She has heard from her friend Colleen that Mike is training for an upcoming 
triathlon. Vectoria has been interested in Mike for some time, but he has been 
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too shy to approach her and, unhke many of her contemporaries, she doesn't 
want to appear too forward and ask him out. 

At the point A in the figure, some 140 m from the wah, Mike has spotted 
Vectoria and finally worked up his courage to ask her out on a date. He wishes 
to join her posthaste before she possibly gets up and leaves. Mike is running 
at a speed of 5 m/s along the sidewalk, and at some point B must cut across 
the rough grassy field to get to the bench at C, located 120 m south of the 
sidewalk. However, his speed on the rough grassy field is only 3 m/s, so the 
question is what path ABC must Mike follow to reach Vectoria in minimum 
time, and what is the minimum time? Mike is too busy jogging and thinking of 
Vectoria, so let's answer these questions for him and, as a bonus, animate his 
motion along the path. 

Let's first load the plots and VectorCalculus packages. 

> r e s t a r t : w i t h ( p l o t s ) : with(VectorCalculus): 
We will let tl be the time it takes Mike to run from A to B. For times t < tl, 
Mike's displacement (with x corresponding to east) from his starting point is 

> dl:=<5*t,0>; 

dl := 5/;ex 
Let T — tl be the time it takes him to run from B to C, where T is the total 
time. The goal is to make T a minimum. If 6 is the acute angle that the 
path segment BC makes with the sidewalk, then Mike's displacement (with y 
corresponding to south) from his starting point for the interval tl < t < T is 

> d2 :=<5* t l+3*cos ( the t a )* ( t - t 1 ) , 3*s in ( t he t a )* ( t - t l )> ; 

d2 := (5 t i + 3 cos(0) (t - t i ) ) Cx + 3 sin(6>) {t-tl) Cy 
The relevant kinematic equations are obtained by evaluating the first (x) and 
second (y) components of d2 at time t = T and equating the results to 140 and 
120, respectively. The pair of equations are entered as a Maple set. 

> eqs:={eval(d2[l] , t=T)=140,eval(d2[2] , t=T)=120}; 

eqs := {5tl +3cos(6>) {T - tl) = 140, 3sin(^) {T - tl) = 120} 
We analytically solve eqs for tl and T in terms of the unknown angle 0. 

> s o l :=so lve (eqs , { t l ,T} ) ; 

. 4(7sin((9)-6cos((9)) 4 (7sin((9) - 6cos(/9) + 10) 

-{" sin((9) ' sin((9) 
The solution is assigned, 

> a s s i g n ( s o l ) : 
and the time T differentiated with respect to 6 and set equal to zero. 

> eq3:=dif f (T, theta)=0; 

4(7cos(l9)+6sin((9)) 4 (7sin(6>) - 6 cos(6>) + 10) cos(6>) 
^^ ''~ sm{0) ^d^ 

The transcendental equation eq3 is numerically solved for the angle 0 that 
minimizes the total time. 
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> t he t a := f so lve ( eq3 , t he t a ) ; 

e := 0.9272952180 
The angle is approximately 0.93 radians, or on converting 9 to degrees and 
keeping 3 digits, 

> The ta :=eva l f (conver t ( the ta ,degrees ) ,3 ) ; 

0 := 53.1 degrees 
about 53°. The angle could be obtained in a completely different manner by 
generalizing Fermat's principle to this example. This principle states that a 
hght ray will travel along a path that minimizes the time. Using this idea, 
one can prove Snell's law for a light ray passing from one medium to another 
through a planar interface dividing them. If a light ray with speed Vi in medium 
1 is incident on the interface at an angle Oi to the interface, and is refracted at 
an angle 62 in medium 2 (where the speed is 172), then Snell's law is 

S ^ = ^ . (4.6) 
COS 62 V2 

For ^2 = 0 radians, the refracted ray will travel along the interface. Then 
cos(^2) = cos(O) = 1, and the critical angle in medium 1 is given by Oi = 
6cr = SiTccos{vi/v2). Mentally reversing Mike's path, and taking the grass to be 
medium 1 (where Mike's speed is t'l = 3 m/s) and the sidewalk to be medium 
2 (where his speed is 7;2 = 5 m/s), the critical angle to minimize the time is 
^cr = ctrccos(3/5). This relation is now entered and numerically evaluated, 

> angle_check:=evalf(arccos(3/5)) ; # S n e l l ' s law 

angle.check := 0.9272952180 
yielding exactly the same value (in radians) for the angle as before. 

The time tl from A to B, the total time T, and the distance from A to B 
are evaluated. 

> t l : = t l ; T:=T; d i s t ance :=5* t l ; 

tl := 10.00000000 T := 60.00000000 distance := 50.00000000 
So the minimum (total) time for Mike to reach Vectoria is 60 seconds. He must 
run for 10 seconds along the sidewalk, traveling a distance of 50 meters, before 
cutting across the field. 

To create a plot of Mike's path, his horizontal and vertical coordinates for 
the first and second legs of the path ABC are rewritten as follows. 

> d lb : = ( d l [ 1 ] , 1 2 0 - d l [ 2 ] ) : d2b: = (d2[1],120-d2 [2] ) : 
The entire path can then be expressed as the following piecewise function.'^ 

> d : = p i e c e w i s e ( t < = t l , [ d l b ] , t > = t l , [ d 2 b ] ) ; 

^ _ J [5t, 120] t< 10.000 
[32.000 + 1.8001, -2.4001 + 144.000] 10.000 < t 

The first portion, AB, of the path is plotted as a thick red line, 

> p lo t I 11 :=p lo t ( [d lb , t=0 . . t l ] , co lo r= red , t h i cknes s=2) : 

^To fit into the page widtii, superfluous zeros have been removed from the decimal output. 
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the second leg, BC, as a thick green hne, 

> p lo t I | 2 :=p lo t ( [d2b , t= t l . .T ] , co lo r=green , th i ckness=2) : 

and the labels A, B, C included with the t e x t p l o t command. 

> p l o t i | 3 : = t e x t p l o t ( [ [ 5 , 1 1 5 , " A " ] , [45 ,115,"B"] , [130,5 ,"C"]] ) : 

The 3 plots are superimposed with constrained scaling to produce Mike's path. 

> path :=display({seq(plot I | i , i = l . .3)},t ickinarks=[3,3] , 
axes=box,view=[0. .140,0 . .120] ,scal ing=constra ined) : 

Mike's run along this path is now animated, Mike being represented by a size-20 
blue circle. The first frame of the animation is shown in Figure 4.4, the circle 
located at (0,120). Click on the computer plot and the start arrow to initiate 
Mike's run. The time for each frame will be displayed as the animation runs. 

> an imate(poin tp lo t , [ [eva l (d , t= tau) ] , sy inbol=ci rc le , symbols ize 
=20,color=blue],tau=0..T,fraines=100,background=path); 

loo

se-

A B^ 

tau = 0. 

__ c\ 
^ 0 50 100 

Figure 4.4: Opening frame of animation of Mike's run along the path . 

Dripping with sweat, Mike reaches the bench, and persuades a not-too-reluctant 
Vectoria to go to a movie with him on Friday night. 

PROBLEMS: 
Problem 4-14: Relative velocity 
A gravel truck belonging to the Boffo Trucking Company is traveling due north 
and descending a hill that has a 10% grade at a constant speed of 90 km/hr. 
At the bottom of the hill, the road is level and heads 30° east of north. A 
southbound police car, with a radar unit, is traveling at 80 km/hr along the 
level stretch at the base of the hill and is approaching the truck. 
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What is the relative velocity of the truck with respect to the police car? 
What is its relative speed? Make a 3-dimensional plot showing the relative 
velocity vector and the velocity vectors for the truck and the police car. 

Problem 4-15: A brainteaser 
Our sales manager friend Colleen was recently on a sea cruise with her ship 
traveling steadily east at 15 knots (knot is the abbreviation for nautical mile 
(6076.1 ft)) per hour. At some instant in time, she observed a naval ship 6 
nautical miles due south of her, traveling on a steady course at a speed of 26 
knots. Some time later the naval ship was observed to pass somewhere behind 
her ship, the distance of closest approach being 3 nautical miles. Her brainteaser 
for you is to answer the following set of questions using a vector approach, given 
only the above information: 

(a) What was the course of the naval ship? 

(b) What was the time elapsed between the first sighting and the time of 
minimum distance? 

(c) Making an appropriate plot, labeled with the compass directions, deduce 
the location of each ship (relative to the cruise ship's initial position) at 
the time when the minimum separation occurs. 

(d) Animate the motion of the ships. 

Problem 4-16: Coulomb's force law 
The electrical force F (in N) exerted on a point charge q (in C) in free space 
located at the position f (in m) due to n other charges qi located at f̂ , 
i = 1, 2 , . . . , n, is given by Coulomb's law, 

Z L T T ^ ^ ^--^ 

qi{r-ri) 

47reo ^ |r - r^P 

where eo= 8.85 x 10~^^ C^/(N • m^) is the permittivity of free space. The electric 
field E at the point f due to the n charges is defined as E = F/q (in V/m). 

Point charges qi — l mC and q2 = —2 mC are located at r\ = 3 Cx + 2 Cy — ê  
and f2 = -Cx - Cy + 46^, respectively. (Note: 1 mC = 10~^ C, 1 nC = 10~^ C.) 

(a) What is the angle in radians and degrees between the vectors fi and r2? 

(b) Calculate F in mN on a 10-nC charge that is located at ro = 3ey + Cz. 

(c) Determine E in kV/m at fo- Calculate the angle that E makes with the 
positive x-, y-, and 2:-axes at that point. 

Problem 4-17: Another Coulomb's law problem 
Point charges with charge 5 nC and —2 nC are located at (2, 0,4) and (—3,0, 5). 

(a) Make a 2-dimensional plot showing the position vectors of these charges. 

(b) What is the angle in radians and degrees between the two position vectors? 

(c) Determine the force on a 4-nC point charge located at (1, —3, 7). 
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(d) What is the electric field E at (1,-3,7)? Calculate the angle that E 
makes with the positive x-, y-, z-axes at this point. 

Problem 4-18: Electric force 
A particle of mass 2 kg and charge 3 C starts at t = 0 at the point (1, —2,0) with 
velocity v — Aey^ + 3ez m/s in an electric field E = 12e^-{- lOcy V/m. 

(a) Determine the particle acceleration, velocity, and position at arbitrary 
time ^ > 0. 

(b) Make a three-dimensional plot showing the trajectory of the particle over 
the time interval t = 0 to 1 second. Animate the motion of the particle 
over this interval, using the plot as the background. 

4.1.4 Born Curl-Free 

None who have always been free can understand the terrible fasci
nating power of the hope of freedom to those who are not free. 
Pearl S. Buck, American novelist. What America Means to Me (1943) 

Since our previous encounter, Vectoria Product has advanced in her physics 
degree program and is currently learning all about the vector operator triad, 
gradient, divergence, and curl, as well as how to calculate line integrals, in her 
vector calculus and intermediate electromagnetics courses. Recall that Vecto-
ria's learning philosophy is to first solve a number of simple examples by hand 
in order to understand the underlying concepts and then explore what can be 
done with a CAS. Then, any tedious or difficult manipulations that she may 
have to do can be done accurately and quickly and the results suitably plotted. 
After her first date with Mike, Vectoria's friendship with him has blossomed 
into something more serious and now they can often be found working together 
in the computer lab. In response to her request, Mike has found or invented 
some interesting examples of vector fields^ that they can hone their computer 
algebra skills on. We shall now eavesdrop on one of their work sessions. 

"I have already done some preliminary calculations with these new vector 
operators," Mike remarks, "and I suggest that we load the plots and VectorCal-
culus library packages. In addition to the gradient, the Vector Calculus package 
contains the divergence, curl, and line integral operators, all of which we will 
be using in this vector field example. 

> restart: wi th(plots ) : with(VectorCalculus): 
To apply any of the vector operators, the coordinate system must generally 
be specified. We will start with a typical example, from elementary electro
magnetic theory, involving a specified electric field vector E given in Cartesian 
coordinates. So I will set the coordinates to be Cartesian. 

"̂ A vector field is a vector quantity whose value varies from point to point in space. 
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> S e t C o o r d i n a t e s ( ' c a r t e s i a n ' [ x , y , z ] ) : 
Using the VectorField command, let's enter the following polynomial expres
sion for an electric field vector E, 

> E: =VectorField (<2*a*x*y*z-3*a*z, 4*b*x'^2*z+4*b*z, 
a*x^2*y-3*x+2*c*y>); 

E := {2aXy z - 3az)ex -\- {ibx'^ z -f 4 6^) Cy -h (ax^ y - 3x + 2cy)ez 
with the real parameters a, 6, and c unknown. The overbars on the unit vectors 
in the output indicate that we are dealing with a vector field. 

The question is, what values should a, b, and c have in order that the elec
tric field be derivable from an electrostatic potential $, i.e., that we can write 
^ = — V^. From your lectures, you know that a potential will exist if the vector 
field is irrotational, i.e., curl ^ = 0 everywhere. In the language of physics, 
we want to choose the parameters so as to make E a conservative field. Or to 
paraphrase the title of a movie that was popular in my parents' more youthful 
days, we want our vector field to be born curl-free. In Cartesian coordinates, 
the curl of a general electric field E takes the determinantal form 

curl E = V X E d 
^ 
Ex 

d 
'dy 
Ey 

d 
Wz 
E. 

(4.7) 

Although we could easily calculate the curl of our particular electric field by 
hand, let's let the computer determine cur l^ . 

> CurlE:=Curl(E); 

CurlE := (ax^ + 2 c - 4 6 x ^ - Ab)e^ -h ( - 3 a + 3)ey + {Sbxz - 2axz)ez 

We can obtain the same result by using the Del operator to calculate V x E. 

> Del &x E; 

(ax^ + 2 c - 4 6 x ^ - 4 6)exH- ( - 3 a + 3)ey + {^bxz-2axz)^^ 
For the curl to vanish, each curl component must be set equal to zero. Again, 
for our example, this is easily done by hand. But we may ultimately have 
to solve more complex examples, so let's continue with our computer algebra 
approach. We can impose the zero curl condition with the following command 
line and simultaneously solve for a, 6, and c. Note that solve's default is to 
assume that the curl components are zero even though this is not specified. 

> sol:=solve({CurlE[1] ,CurlE[2] ,CurlE[3] } ,{a ,b ,c}) ; 

sol .{.., , . .1,0=1} 
So, curlJ5 = 0 and an associated potential exists if we choose a = 1, 6 = 1/4, 
and c — 1/2. Evaluating E with sol, we see that the conservative electric field 
E is now completely determined." 

> E:=eval (E,so l ) ; 

E :— (2 X ?/ z — 3 z) Cx + {x? z + z) Cy -h (x^ ^ — 3 x -h ^) Cz 
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"Mike," Vectoria interjects, "now that E is known, we can calculate the 
charge density p that produces this field as well as the potential itself. In MKS 
units, the field and charge density are related through the diff"erential form of 
Gauss's law, 

divE = S/ -E = p/eo, (4.8) 
where eo is the permittivity of free space. So using the Divergence command,^ 
we can calculate p from E. 

> rho:=epsilon[0]*Divergence(E); 

p:=2eoyz 
The charge density is proportional to the product y z but is independent of x. 
Notice that the charge density is positive if y and z are both positive or both 
negative, but is negative if y and z are of opposite sign. We can get an even 
better feeling for the charge density by plotting it. The plot 3d command can be 
used to graph the normalized charge density p/eo, with contours corresponding 
to different values of this quantity. 

> plot3d(rho/epsilon[0],y=-5. .5,z=-5. .5,axes=frained, 
contours=[-25 , -20 , -15 , -10 , - l , l ,10 ,20 ,30] , t ickmarks=[3 ,3 ,3] , 
style=patchcontour,labels=["y","z","rho"], 
orientation= [-15,70]) ; 

5 0 

r h o 

Figure 4.5: Plot of the normalized charge density. 

The charge density distribution (which is reproduced in Figure 4.5) resembles 
a horse saddle. If we rotate the saddle and view it in the y-z, plane, the 
rectangular hyperbolas corresponding to holding the product yz equal to a 
constant can be more clearly seen. 

^Alternatively, one can use Del . E. 
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To determine the potential function, we have to carry out the hue integral 

^ = - [ Eds, (4.9) 

where ds — e^ dx-\-ey dy+e^ dz is the vector element of length. This line integral 
is readily carried out with the following Lineint command, the integration be
ing along the straight line from the origin (0, 0,0) to an arbitrary point ix.y^z). 
Since the field is irrotational, $ doesn't depend on the path chosen. The form 
of $ can be simplified by applying simplify to the line integral result. 

> Phi:=simplify(-Lineint(E,Line(<0,0,0>,<x,y,z>))); 

$ := —x̂  y z -\-?>x z — y z 
So the electrostatic potential $ is now known to within an arbitrary additive 
constant. If we start at some point (x, y, z) and integrate the electric field 
around a closed contour ending at the same point, the line integral will be 
zero and we will have come back to the same value of $(x,y,z) . This zero 
"circulation" of the electric field is the signature of a curl-free situation. I don't 
know about you, Mike, but I have no feeling for what this potential or the 
associated electric field really look like. Do you think that we should plot these 
functions as well?" 

"You're right. We are dealing with a three-dimensional vector field and I 
would feel more comfortable with a picture showing us the electric field distri
bution and a couple of representative equipotential surfaces. Let's consider two 
equipotential surfaces corresponding to $ = $ i = 8 V and $ = $2 = —8 V. 

> Phil:=Phi=8; Phi2:=Phi=-8; 

$1 := —x^yz + 3x2: — ?/2; = 8 ^2 :— —x'^yz -\-3xz — yz = —8 
The three-dimensional equipotential surface corresponding to a given value of $ 
can be generated using the impl ic i tp lo tSd command. Let's create a functional 
operator ip to carry out this task for an implicitly defined surface v. To create 
differently colored surfaces, the shading s must also be supplied. 

> i p : = ( v , s ) - > i i n p l i c i t p l o t 3 d ( v , x = - 5 . . 5 , y = - 5 . . 5 , z = - 3 . . 3 , 
grid=[25,25,25],style=patchcontour,axes=boxed,shading=s): 

For the equipotentials $1 and $2, let's use the shadings zgreyscale and zhue, 
respectively, to color the surfaces. Although not too distinguishable in a text
book, the surfaces will look quite distinct on the computer screen. 

> ipl:=ip(Phil,zgreyscale): ip2:=ip(Phi2,zhue): 

We can use the f ie ldplo t3d command to graph the electric field vectors. The 
field at a point will be represented by a thick black arrow indicating the direc
tion of the electric field at that point and whose length is proportional to the 
magnitude of the electric field. 

> fp:=f ie ldplot3d(E,x=-5. .5 ,y=-5. .5 ,z=-3. .3 ,axes=fra ined, 
arrows=THICK,orientation=[-121,43],color=black): 

The two equipotential surfaces and the electric field arrows can be superim
posed with the display command. Including the option style=hidden makes 
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the arrows hollow rather than filled. (The eavesdropping reader is referred to 
Figure 4.6 for the resulting picture.) 

> d isplay({ ipl , ip2, fp} ,orientat ion=[45,45] ,s tyle=hidden) ; 

Figure 4.6: The arrows indicate E, the surfaces the equipotentials. 

Boy, am I glad that we created this picture. I had no idea that the electric field 
and equipotential surfaces were so complicated. For each value of the potential, 
there are two distinct surfaces, which are best viewed by rotating the viewing 
box on the computer screen. By looking from diff'erent angular perspectives, 
we can see that the electric field arrows are perpendicular to the equipotential 
surfaces as they should be. If we rotate the viewing box to see the y-z plane, I 
can see that the circulation of the electric field could be zero for some choices 
of contour path, but if we hadn't imposed the curl-free condition in the first 
place I am not confident that I would have been absolutely sure of the field's 
conservative nature." 

"Mike, I am thirsty. Let's take a short break and go over to the student union 
cafeteria and get something to drink. Then you can show me some examples in 
non-Cartesian coordinate systems as well some applications of Stokes's theorem 
and Gauss's theorem." 

PROBLEMS: 
Problem 4-19: Conservative field 
Consider the vector field A = (x+2?/+a2:) e^ + {bx-3y-z) ey + (4x+c^+2 2;) ê  
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(a) Determine the values of a, b, and c that make A a conservative field. 

(b) Determine the divergence of A. 

(c) Determine the potential function ^ such that A = V^. 

(d) Make a 3-dimensional plot of A, showing the field arrows, axes, etc. 

(e) Plot a few of the equipotential surfaces for values of your own choosing. 

(f) Superimpose the two previous plots in the same figure and thus demon
strate that the field arrows are perpendicular to the equipotential surfaces. 

Problem 4-20: A possible irrotational field 
Consider the electric field with components Ex = 6xy, Ey — 3x^ — 3y^, Ez—0. 

(a) Calculate the curl of the electric field. Is the field irrotational? Explain. 

(b) Calculate the associated charge density. 

(c) Determine the electrostatic potent:^.] function. 

(d) Make a three-dimensional plot of the electric field, clearly showing the 
field arrows. 

(e) Plot a few of the equipotential surfaces for values of your own choosing. 

(f) Superimpose the two previous plots in the same figure and thus demon
strate that the electric field is perpendicular to the equipotential surfaces. 

Problem 4-21: Radial field 
Consider the radial electric field E = f/r^, where r* = x Cx + ^ ey + z Cz is the 
position vector. 

(a) Without doing any calculation, present an argument that shows that E 
is conservative. 

(b) Confirm your argument by calculating curl E in Cartesian coordinates. 

(c) Determine the potential function $ such that E — - V $ and $(a) = 0, 
where a > 0. Express your answer in terms of r and a, simplifying ^ as 
much as possible. 

Problem 4-22: Another conservative field 

(a) Show that A = {6 x y -{- z^) e^ -\- {3 x'^ — z) ey -{- {3 x z"^ — y) e^ is conservative. 

(b) Calculate the divergence of A. 

(c) Find the corresponding potential function $ such that A = V $ . 

(d) Create a suitably colored three-dimensional plot that contains represen
tative field lines and equipotentials. 
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4.1.5 Of Coordinates and Circulation Too 

The denunciation of the young is a necessary part of the hygiene of 
older people, and greatly assists the circulation of their blood, 
Logan Pearsall Smith, American essayist, aphorist (1865-1946) 

On returning to the computer lab with Vectoria, Mike begins a new worksheet 
by loading the following library packages. He first sets the interface warnlevel 
to zero to avoid displaying the multiple warnings that would otherwise occur. 

> r e s t a r t : in terface(warnlevel=0) : 

> w i t h ( p l o t s ) : with(VectorCalculus): w i t h ( p l o t t o o l s ) : 
"In addition to the packages we used in the last worksheet, plottools is needed 
because it has commands for drawing contours involving circular arcs and ar
rows. What type of example would you like to see first?" 

"Mike, vector operator computations are relatively easy to do in Carte
sian coordinates, unless the functions are very complicated. For other co
ordinate systems, such as spherical polar, the calculations can be consider
ably harder. Suppose, for example, that we are given the potential function 
[/ = 10r sin 0 cos0 in terms of the spherical polar coordinates r, 0^ and 0. 

> U:=10*r*sin(theta) '^2*003(phi); 

U := 10rsin(6>)2cos((/)) 
I know that r, 0, and 0 are related to the Cartesian coordinates by the relations 

X — r sin 0 cos 0, y = r sin 6 sin (/), z = r cos 0^ (4-10) 

where r is the radial distance from the origin, 9 is the angle between the radius 
vector and the z-axis, and (f) is the angle that the projection of the radius vector 
into the x-y plane makes with the x-axis.^ I also know that the directions of 
the unit vectors in any other coordinate system than Cartesian depend on 
position. However, I can't remember the forms of the gradient, divergence, or 
curl operators in the spherical polar coordinate system. Sure, I could either 
derive the forms by hand or look them up in a math text, but this is a waste 
of my time. Can Maple do the calculations for me?" 

"Sure, we can set the coordinates to be spherical as follows. Alternatively, 
we would have to include the option ' s p h e r i c a l ' [ r , t h e t a , p h i ] in each of 
the vector operator commands. 

> S e t C o o r d i n a t e s ( ' s p h e r i c a l ' [ r , t h e t a , p h i ] ) : 
Now let's calculate the electric field E = —\/U and then take its curl. 

> E:=Gradient(-U); CurIE:=Curl(E); 

E :=-10 sin(6>)2 cos((/)) e^ - 20 sin(6>) cos(0) cos(6>) ee + 10 sin(6>) sin(0) e^ 

CurlE :=Oer 
The existence of a potential guarantees a conservative (curl-free) electric field. 

^This is the physics convention. Mathematicians and the default Maple reverse 6 and ( 
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If you are interested in calculating the gradient, curl, etc., in other coordi
nate systems, go to Maple's Help, enter coords in the Topic Search, and hit OK 
to find out what coordinate systems Maple supports. Many of the coordinate 
systems listed there are rarely used in physical problems. 

As in our first Cartesian coordinate example, we could calculate the normal
ized charge density from the electric field. But we haven't used the Laplacian 
operator, V^( ) = div grad( ) = V • V( ), yet. The normalized charge den
sity is related to the potential U by the relation p/eo = — V^t/ and is readily 
calculated as follows." 

> norm_rho:=-Laplacian(U); 

40 r sm(0) cosid) cos((9)^ - 10 r sin(6>) cosid)) 
norm.rho :— -^ —^—^ ,̂ . ^ ^— 

r^ sm[0) 

> norm_rho:=expand(%); 

4Ocos(0)cos(l9)2 lOcos(0) 
norm.rho := ^-^ ^—— + ^ ^ 

r r 
"Mike, this example as well as the one you showed me in the previous worksheet 
are of an electrostatic nature and characterized by zero curls. How about some 
examples with nonzero curls and possibly from other areas of physics? In fluid 
mechanics, for example, we know that the line integral or circulation of the 
velocity field around the center of a circular whirlpool is not equal to zero. 
Further, we haven't looked at any situations involving Stokes's theorem."^ 

"OK, if it's a fluid mechanics example that you want, let's choose to work 
in cylindrical coordinates r, 9, z, 

> S e t C o o r d i n a t e s ( ' c y l i n d r i c a l ' [ r , t h e t a , z ] ) : 
and consider the following 2;-independent fluid velocity vector field V. 

> V:=VectorF ie ld(<r*cos( the ta ) , s in ( the ta ) ,0>) ; 

V := r cos{0) Cr + sin(^) e^ 
Would you like to see Stokes's theorem applied to the fluid velocity field? You 
remember the mathematical form of Stokes's theorem, don't you?" 

"Yes, we just covered it in our vector calculus course. For a vector field F , 
Stokes's theorem is given by 

(f V-ds= / ( V x V)-dA. (4.11) 
JL JS 

It states that the circulation of V around a closed path L is equal to the surface 
integral of the curl of V over the open surface S bounded by L." 

"Good. First, I will make a plot of the velocity field in the x-y plane as 
well as the path L that will be used to confirm Stokes's theorem. To plot the 
velocity field, let's use the MapToBasis command to convert V into Cartesian 
coordinates x,y,z. This command makes use of the fact that the cylindrical 
and Cartesian coordinates are related by x = rcosO, y = rsin^, and z — z. 

^Named after the Irish mathematical physicist George Stokes (1819-1903). 
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> V b : = M a p T o B a s i s ( V , ' c a r t e s i a n ' [ x , y , z ] ) ; 

In the plot I am going to create a simple closed path. The first leg of the pa th 
is an arc of radius 2 centered at the origin and spanning the angular range 7r/6 
radians (30°) to 7r/3 radians (60°). The a r c command is used to plot this leg. 

> a : = a r c ( [ 0 , 0 ] , 2 , P i / 6 . . P i / 3 , t h i c k n e s s = 3 ) : 

For the second leg, I will use the arrow command to indicate an integration 
along the line 9 = 7r/6 from r = 2 to r = 5. 

> b : = a r r o w ( [ 2 * c o s ( P i / 6 ) , 2 * s i n ( P i / 6 ) ] , 

[ 5 * c o s ( P i / 6 ) , 5 * s i n ( P i / 6 ) ] , . 0 5 , . 4 , . 1 ) : 
The third leg of the pa th is an arc of radius 5, centered at the origin and 
spanning the same angular range as the first arc. 

> c : = a r c ( [ 0 , 0 ] , 5 , P i / 6 . . P i / 3 , t h i c k n e s s = 3 ) : 

The contour is closed with a second arrow command joining the outer arc to 
the inner one along the line 9 = n/S. 

> d : = a r r o w ( [ 5 * c o s ( P i / 3 ) , 5 * s i n ( P i / 3 ) ] , 

[ 2 * c o s ( P i / 3 ) , 2 * s i n ( P i / 3 ) ] , . 0 5 , . 4 , . 1 ) : 
The t e x t p l o t command is used to label the various legs of the pa th L. 

> t p : = t e x t p l o t ( [ [ 3 . 4 , 1 . 4 5 , " t h e t a = P i / 6 " ] , [ 1 . 3 , 3 . 6 , " t h e t a = P i / 3 " ] , 

[ 3 . 9 , 3 . 6 5 , " r = 5 " ] , [ 1 , 1 . 4 , " r = 2 " ] ] , c o l o r = b l a c k ) : 
The f i e l d p l o t command produces a picture of the vector field. 

> f p : = f i e l d p l o t ( [ V b [ l ] , V b [ 2 ] ] , x = 0 . 1 . . 5 , y = 0 . 1 . . 5 , a r r o w s = t h i c k , 

g r i d = [ 1 0 , 1 0 ] , c o l o r = b l u e ) : 
All the graphs are now superimposed, the integration pa th being colored red. 

> d i s p l a y ( { a , b , c , d , t p , f p } , v i e w = [ 0 . . 5 , 0 . . 5 ] , c o l o r = r e d , 

s c a l i n g = c o n s t r a i n e d , l a b e l s = [ " x " , "y"] , t i c k i n a r k s = [ 3 , 3 ] ) ; 
The resulting picture is displayed in Figure 4.7. It would appear tha t the 
velocity field has a nonzero curl. This is easily verified. 

> Cur lV:=Cur l (V) ; 

r 
Let's use this result to check Stokes's theorem for the contour of Figure 4.7. 
First we will evaluate the line integral around the contour, taking the inner arc 
as our first leg. Along this arc, the element of length is ds — rd9 with r — 2. The 

line integral is then j^L Ver d9 = j^L 2 s in^d^ , which is easily evaluated. 

> L l : = I i i t ( s u b s ( r = 2 , V [ 2 ] * r ) , t h e t a = P i / 3 . . P i / 6 ) 

= i n t ( s u b s ( r = 2 , V [ 2 ] * r ) , t h e t a = P i / 3 . . P i / 6 ) ; 

LI := r 2 sin(6>) d9 = - \ / 3 + 1 
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Figure 4.7: Velocity field vectors and integration path for line integral. 

The second leg involves the integral J^ K dr along the line 9 = IT/6. 

> L2:=In t ( subs( the ta=Pi /6 ,V[1] ) , r=2 . .5 ) 

=siinplif y ( in t (subs ( the ta=Pi /6 , V [1] ) , r=2. . 5 ) ) ; 

21\/3 
L2 := / r c o s f — ) d r = 

The third integral is like the first, except now r = 5 and the angular integration 
is in the opposite sense. 

> L3:=In t ( subs ( r=5 ,V[2]*r ) , the ta=Pi /6 . .P i /3 ) 

= in t ( subs ( r=5 ,V[2 ]* r ) , t he t a=P i /6 . .P i / 3 ) ; 

5\/3 _ 5 
" ^ 2 

L3 

71 

bsm{e) dO 

The fourth integral is like the second, except that it is along 0 = 7r/3 and the 
integration direction is reversed. 

> L4 :=In t ( subs ( the ta=Pi /3 ,V[ l ] ) , r=5 . .2 ) 

=siniplif y ( in t (subs ( the ta=Pi /3 , V [1] ) , r = 5 . . 2)) ; 

The total line integral is the sum of the four contributions. 

> Line.int:=rhs(L1+L2+L3+L4); 

27\/3 _ 27 

T LineJnt : = 
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According to Stokes's theorem, the same number should result if we carry out 
the surface integral 

/•TT/S pb 

/ / (V X V),rdrdO. 

Forming the surface integral, 

> Su r f ace_ in t := In t ( In t ( r*Cur lV[3 ] , r=2 . . 5 ) , t he t a=P i /6 . .P i / 3 ) ; 

- 5 

Surface Ant := I I sm{0)-\-r sm{9) dr dO 

if A 
and evaluating it, we obtain the same result as for the line integral. 

> Surface. int :=value(%); 

27 v ^ 27 
•̂  4 4 

Thus, we have confirmed Stokes's theorem for our fluid velocity field." 

PROBLEMS: 
Problem 4-23: Gradient of a potential 
Calculate the electric field E — —W li the electric potential function is given 
in spherical polar coordinates by F = In r cos 0 sin (p -{- r"^ (p. 

Problem 4-24: Divergence and curl of an electric field 
Consider an electric field given in spherical polar coordinates by 

E — — cos ̂  Cr + r sin ^ cos 0 6 ^ + cos 0 ê /,. 

Calculate the divergence of the electric field and the charge density associated 
with the field. Calculate the curl of the electric field. 

Problem 4-25: Divergence and curl 
Determine the divergence and curl of the following vector fields expressed in 
Cartesian, cylindrical, and spherical polar coordinates, respectively. Also eval
uate them at the specified points: 

(a) i*=^2:ex + 4x?yey-f?/ez, at (1 , -2,3) ; 

(b) B = pz sin^Cp + 3pz'^ cos^e^ -h Ocz, at (5,7r/2,1); 

(c) C = 2r cosO cos^Cr + V^e^, at (l,7r/6,7r/3). 

Problem 4-26: Vector identity 
Consider a general vector field A = Ai{x,y, z)ex + A2{x^y,z)ey-\-As{x^y^z)ez-
Prove the vector identity V • (V x A) = 0 . Prove that the identity also holds in 
spherical and cylindrical coordinates. 
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4.1.6 All Is Flux 

All is flux, nothing stays still, 
Heraclitus, Greek philosopher (c. 540-c. 480 B.C.) 

Continuing with their computer algebra session, Vectoria asks, "Mike, do you 
also have a good example of applying Gauss's theorem. For a vector field W^ 
this theorem states that for a closed volume V having a bounding surface 5, 

([ W' dA= f W' dA= I V • WdV. (4.12) 
Is Jv 

That is to say, the total outward flux of a vector field W (the Ihs of (4.12)) is 
equal to the volume integral of the divergence of W (the right-hand side)." 

"Actually, I ran into an interesting math example in Stewart's Calculus 
text [Ste87], although it's in Cartesian coordinates. Taking the same library 
packages as in the last recipe and setting the coordinates to be Cartesian, 

> r e s t a r t : in terface(warnlevel=0) : 
> w i t h ( p l o t s ) : with(VectorCalculus): w i t h ( p l o t t o o l s ) : 

> Se tCoord ina te s ( ' ca r t e s i an ' [ x , y , z ] ) : 
consider the following vector field W. 

> W:=VectorField(<x*y,y'^2+exp(x*z''2) ,sin(x*y)>) ; 

W := X ye^ ^ {y'^ -]- e^^ ^ ))ey + sin(x^)ez 
We can easily make an informative plot of W using the f ie ldplotSd command. 

> f i e ldp lo t3d ( [W[ l ] ,W[2] ,W[3] ] ,x=- l . . l , y=0 . .2 , z=0 . .1 , 
axes=frained,arrows=THICK,orlentation=[63,47],shading=zhue); 

Figure 4.8: Arrows indicate the direction of the vector field. 
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From Figure 4.8, we can easily see that the vector lengths are changing in the 
^-direction, so we can anticipate that V • W will be nonzero. Let's check to see 
whether this is so. 

> DivW:=Del.W; 

DivW := 3y 
The divergence is indeed nonzero, increasing linearly with y. Calculating V x VT, 
we find that the curl is also nonzero. 

> CurlW:=Del&xW; 

CurlW :— {cos{xy)x — 2xze^^^ '̂ )ex - cos{xy)yey -\- {z^ e^^^ ^ — x)ez 
The example given by Stewart is to consider a volume bounded by the parabolic 
cylinder z = l — x"^ and the planes 2 = 0, ^ = 0, and ?/ + 2 = 2 and calculate the 
flux of the vector field out through the four bounding surfaces. Again, a plot is 
useful to visualize the volume that we are considering. The following command 
line creates a parabolic cylindrical surface 2 = 1 — x^ in the ranges x = —1 to 1 
and ^ = 0 to 2. 

> p l l | l : = p l o t 3 d ( l - x ^ 2 , x = - l . . l , y = 0 . . 2 ) : 
The plane z — 2 — y is plotted for x = —1 to 1 and 7/ = 1 to 2, and colored red. 

> p l l | 2 : = p l o t 3 d ( 2 - y , x = - l . . l , y = l . . 2 , s t y l e = p a t c h n o g r i d , 
color=red) : 

The PL0T3D(POLYGONS) command is used to create a planar segment in the 
2 = 0plane with vertices (-1,0,0) , (1,0,0), (1,2,0), ( -1,2,0) . 

> pl l 13: =PLGT3D(P0LYGGNS([ [ -1 ,0 ,0 ] , [ 1 , 0 , 0 ] , [ 1 , 2 , 0 ] , [ -1 ,2 ,0] ] ) ) : 
Similarly, a plot is created for a segment in the y — 0 plane. 

> pl l 14: =PL0T3D(P0LYG0NS([ [ -1 ,0 ,0 ] , [ 1 , 0 , 0 ] , [ 1 , 0 , 1 ] , [ -1 ,0 ,1] ] ) ) : 
The tex tp lo t3d command is used to add text to the three-dimensional plot, 
labeling the four surfaces involved in the integrations. 

> p l l | 5 : = t e x t p l o t 3 d ( [ [ 0 , 1 . 8 , l . l , " z = l - x ^ 2 " ] , [ 1 , 0 , 1 . 1 , " y = 0 " ] , 
[0 ,0 .45 ,1 .25 , "y=2-z" ] , [0 .45 ,1 .25 , -0 .15 , "z=0" ] ] , 
align=LEFT,color=black): 

The five plots are superimposed with the display command, 

> d i sp lay( [ seq(p l | | i , i= l . .5 ) ] , axes=NONE,sca l ing=cons t ra ined , 
l abe l s= [ "x" , "y" , "z" ] , o r i en t a t i on=[42 ,100] ) ; 

the resulting picture being shown in Figure 4.9. The volume of interest is the 
interior of the region bounded by the indicated surfaces. To directly calculate 
the net fiux of the vector field out through the four surfaces would involve some 
difl&cult surface integrals. 

A simpler procedure, suggested by Stewart, is to make use of the divergence, 
or Gauss's, theorem. The divergence of W turned out to be simpler than the 
vector field itselL Thus, the flux can be calculated by invoking the divergence 
theorem and performing the volume integral over the divergence of W. 

> FLUX : = I n t ( I n t ( I n t (DivW, y=0. .2 -z) ,z=0 . . l-x'^2) , x=- l . . 1) ; 
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y=2-z z=i.xA2 

Figure 4.9: Surfaces through which the flux of the vector field passes. 

/ / Zydydzdx 
-iJo Jo 

The value of the flux is obtained by applying the value command to Flux. 

> FLUX:=value(%); 

— ^ 
Well, Vectoria, we could look at lots of other aspects of vector calculus using 
Maple, but this should be enough for now." 

PROBLEMS: 

Problem 4-27: Gauss's law 
If E is the electric field, Gauss's law states that the net charge enclosed by a 
closed surface S is Q = CQ Jg E - dA. For E = a: e^ + y % -f 2 2: ê  use Gauss's law 
and the divergence theorem to find the charge contained in the solid hemisphere 
x'^ -\-y'^ -\r z'^ <o?, z > 0. 

Problem 4-28: Electric flux 
Consider the electric field E = ye^ Cx + y^ Cy + e^ ̂  ez. Use the divergence the
orem to calculate the electric flux out of the volume bounded by the cylindrical 
surface x'^ ~\-y^ = 9 and the planes z = 0 and z = y ~^. 

Problem 4-29: Tetrahedron 
A solid tetrahedron is bounded by the four planes x = 0, y = 0, z = 0, and 
X + y + z = l. Make a colored plot showing the four polygonal surfaces of the 
tetrahedron with labels attached. 
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4.2 Matrix Models 

A general matrix A of order m x n is given by 

a n ai2 ai3 ... ain 
a21 ^22 ^23 ••• tt2n 

A 
djk 

^ m l ^m2 ^m3 ••• (^mn 

If m = n, the matrix is square. A roii; matrix or row; vector has only one row, 
while a column matrix {column vector) has only one column. The transpose 
oi A = [ajk] is A^ = [^/ej]^ while its complex conjugate is ^* = [ci*^]- The 
Hermitian conjugate (or adjoint) matrix ^"'' is defined to be (A^)*. A square 
matrix is Hermitian if A'^ = A. Some basic matrix properties are as follows: 

• If matrices A and B are of the same order, then A^ B = [ojk ± b 

• If A is a scalar, then XA = AX = [XOjk]- The product AB {or A - B) of 
an m X n matrix A and an n x p matrix B is diH m x p matrix C, with 
matrix elements Cjk = Yyi=i ^ji ^^k-

If ^ is a nonsingular matrix (i.e., has a nonzero determinant), then the 
inverse matrix A~^ is given by [̂ 4̂ ^ ]-^/determinant (^), where [Ajk] is 
the matrix of cofactors Ajk- (The cofactor Ajk is equal to (—1)-̂ ^^ times 
the resulting determinant of A obtained by removing all the elements of 
the j th row and kth column.) It follows that AA~^ —A~^ A^I, where / 
is the unit or identity matrix with each element along its principal diagonal 
equal to 1 and all off-diagonal elements 0. 

4.2.1 Secret Message Revisited 

Always do right - this will gratify some and astonish the rest, 
Mark Twain, Message to the Young People's Society, New York City, 1901 

While waiting for Vectoria to show up the following day for a Maple session on 
matrix manipulations, Mike recalls the data matrix that he received when he 
first arrived for his summer job at the archaeological site near Machu Pichu. 
His new colleagues played a joke on him, giving Mike a square array of data al
legedly recording the location and number of artifacts in each squared-off area 
of the site. He was further informed that the rows and columns of the data 
were inadvertently interchanged and should be transposed. On plotting the 
transposed data matrix, a "secret message" was revealed. 

Until Vectoria arrives, he decides to "play around" with the secret message 
data. He loads the Linear Algebra package and sets rt able s ize to infinity 
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in the in te r face command so as to explicitly display the large (larger than 
10 X 10) matrix A that will be entered. 

> r e s t a r t : w i t h ( p l o t s ) : with(LinearAlgebra): 

> i n t e r f a c e ( r t a b l e s i z e = i n f i n i t y ) : 

The original square data matrix A is entered, 

> A : = M a t r i x ( [ [ l , 0 , l , 0 , l , l , 2 , l , 0 , 2 , l ] , [ 1 , 2 , 2 , 2 , 1 , 1 , 2 , 0 , 3 , 1 , 0 ] , 
[ 1 , 1 , 2 , 0 , 1 , 1 , 3 , 1 , 0 , 1 , 0 ] , [ 0 , 1 , 9 , 0 , 1 0 , 1 , 1 , 7 , 7 , 8 , 1 ] , 
[ 1 , 2 , 8 , 2 , 1 0 , 3 , 2 , 1 , 9 , 2 , 0 ] , [ 1 , 1 , 7 , 1 0 , 9 , 2 , 1 , 0 , 9 , 1 , 0 ] , 
[ 1 , 1 , 7 , 1 , 9 , 2 , 1 , 2 , 8 , 0 , 1 ] , [ 0 , 2 , 9 , 2 , 1 0 , 3 , 1 , 9 , 9 , 8 , 2 ] , 
[ 2 , 1 , 2 , 1 , 0 , 0 , 3 , 2 , 0 , 1 , 0 ] , [ 1 , 2 , 3 , 0 , 1 , 1 , 2 , 1 , 1 , 0 , 0 ] , 
[ 0 , 1 , 2 , 1 , 0 , 3 , 1 , 0 , 2 , 1 , 0 ] ] ) : 

and then transposed to produce the matrix B. 

> B:=Transpose(A); 

B:--

1 
0 
1 
0 
1 
1 
2 
1 
0 
2 
1 

1 
2 
2 
2 
1 
1 
2 
0 
3 
1 
0 

1 
1 
2 
0 
1 
1 
3 
1 
0 
1 
0 

0 
1 
9 
0 

10 
1 
1 
7 
7 
8 
1 

1 
2 
8 
2 

10 
3 
2 
1 
9 
2 
0 

1 
1 
7 

10 
9 
2 
1 
0 
9 
1 
0 

1 
1 
7 
1 
9 
2 
1 
2 
8 
0 
1 

0 
2 
9 
2 

10 
3 
1 
9 
9 
8 
2 

2 
1 
2 
1 
0 
0 
3 
2 
0 
1 
0 

1 
2 
3 
0 
1 
1 
2 
1 
1 
0 
0 

0 
1 
2 
1 
0 
3 
1 
0 
2 
1 
0 

It is confirmed that B has the dimension 11, 11, i.e., 11 rows and 11 columns. 

> dimension:=Dimension(B); 

dimension := 11, 11 
In some applications, it is important to be able to extract a specific matrix 
element, row, or column. Mike now extracts from B the element corresponding 
to the fourth row, sixth column, then extracts the second row, and finally the 
fifth column, which he transposes into a row to save on space. 

> element:=B[4,6]; row:=Row(B,2); col:=Transpose(Column(B,5)); 

element := 10 row := [0, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1] 
col := [1, 2, 8, 2, 10, 3, 2, 1, 9, 2, 0] 

The trace of a matrix is equal to the sum of the elements along the central diag
onal. Mike next determines the trace of B. He also calculates the determinant 
of 5 , a calculation which is trivial with Maple but very tedious to do by hand. 

> t r :=Trace(B); det:=Determinant(B); 

tr := 27 det := -100759 
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Another formidable task to do by hand is to calculate the inverse matrix B~^. 
However, this is easily accomplished with the Matrixinverse command. (Most 
of the output is artificially suppressed here.) 

> Binverse:=MatrixInverse(B); 

Binverse := 
'3451 

5927 ' 

"-3181 

5927 

"-729 

5927 ' 

16113 

100759 ' 

6580 

' 100759 

-41712 

100759 

-155 

100759 ' 

981 
' 100759 

30961 

100759 

903 
100759 ' 

-4415 

' 100759 ' 

-3557 

100759 ' 

-26548 

' 100759 ' 

43212 

' 100759 

16648 

' 100759 

22278 

100759 ' 

6565 

' 100759 

953 
100759 ' 

61571 1 

100759J 

45204 " 

' 100759 

-67601 

100759J 

As a check, the matrix B is multiplied by the inverse matrix, the output (not 
displayed here) being the expected unit matrix. 

> check:=Multiply(B,Binverse); 

In the matrix B, the outer rows and columns can be deleted without altering 
the secret message. Mike first deletes the first, second, and eleventh rows and 
then the first, second, third, ninth, tenth, and eleventh columns. 

> C:=DeleteColumn(DeleteRow(B,[1,2,11]),[1,2,3,9,10,11]); 

C := 

Seeing Vectoria enter the computer lab, Mike uses the matr ixplot command 
to graphically display the new matrix C as 3-dimensional colored boxes, each 
box colored according to its height, i.e., to the magnitude of the corresponding 
matrix element. 

> matrixplot(C,heights=histograin,style=patch,shading=zhue, 

o r i en ta t ion=[ -72 ,10] , t i ckmarks=[0 ,0 ,0 ] ) ; 
The simple message that Vectoria sees on the computer screen hides the deeper 
feeling that Mike has begun to experience whenever Vectoria is around. 

9 
0 
0 
1 
1 
7 
7 
8 

8 
2 
10 
3 
2 
1 
9 
2 

7 
10 
9 
2 
1 
0 
9 
1 

7 
1 
9 
2 
1 
2 
8 
0 

9 
2 
10 
3 
1 
9 
9 
8 

PROBLEMS: 
Problem 4-30: Matrix Operations 
Given the 4 x 4 matrix 
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2 
2 
1 
4 

1 
3 

- 2 
- 3 

- 1 
2 

- 3 
2 

4 
- 5 

2 
- 2 

A = 

(a) Confirm the dimensions of A. 

(b) Calculate the determinant of A, first mimicking a hand calculation and 
then with the Determinant command. 

(c) F indy l -^ 

(d) Calculate A^^AAAAA. 

(e) Repeat the above steps for a new matrix obtained by deleting one row 
and one column. You are free to choose which row and which column, as 
long as the resulting matrix is not singular. 

Problem 4-31: More Operations 

Consider the two square matrices, A = 

Find A-^ and B-\ Verify that {AB)^ 

Problem 4-32: Matrix Inverse 

(a) Find the inverse of the matrix A = 

1 2 
3 0 
4 5 

- 1 
2 
0 

, B = 
1 0 0 
2 1 0 
0 1 3 

B^ A^ and {AB)-'=B-'A-

(b) Check the answer by showing that A A ^ = / . 

(c) Repeat the above steps for a new matrix obtained by adding one new row 
and one new column. The choice of new matrix elements is up to you, as 
long as the new matrix is not singular. 

4.2.2 A Fishy Tale 

I'd rather have a bottle in front of me, than a frontal lobotomy, 
anonymous, observed on a sign in a seaside pub 

After joining him in the computer lab, Vectoria asks Mike to show her a simple 
illustration of solving simultaneous linear equations, using a matrix approach. 
So Mike considers the following fishy tale. 

A single fish of species 1 consumes 10 grams of food 1, 5 grams of food 2, 
and 3 grams of food 3 per day. A fish of species 2 consumes 6 grams of food 1, 
4 grams of food 2, and 2 grams of food 3 per day. Finally, a fish of species 3 
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consumes 7 grams of food 1, 3 grams of food 2, and 1 gram of food 3 per day. If 
2.304, 1.161, and 0.561 kilograms of foods 1, 2, and 3, respectively, are available 
daily, what population sizes of the three fish species will consume exactly all of 
the available food? 

To answer this question using a matrix approach, Mike begins by loading 
the Linear Algebra library package. 

> r e s t a r t : with(LinearAlgebra): 
Taking xl, x2^ and x3 to be the unknown population sizes of species 1,2, and 
3, respectively, he forms a column vector X with the population numbers as the 
matrix elements. He uses a "shorthand" syntax to enter the vector. Since the 
consumption of food is expressed in grams, the available food is also expressed 
in grams, i.e., 2304, 1161, and 561 grams of foods 1, 2, and 3 are available daily. 
Mike expresses the available food as a column matrix A. 

> X : = « x l , x 2 , x 3 » ; A:=«2304,1161,561»; 

2304 
1161 X 

xl 
x2 
x3 

Ar-
561 

Cr-

He next forms a 3 x 3 "consumption matrix" C, expressing the daily consump
tions of the three types of food by a single fish of species 1,2, and 3. The first 
column in C is the daily consumption of foods 1,2, and 3 by a single fish of 
species 1, and so on. A shorthand syntax is again used for entering the matrix. 

> C : = « 1 0 , 5 , 3 > | < 6 , 4 , 2 > | < 7 , 3 , 1 » ; #consumption matrix 

10 6 7 
5 4 3 
3 2 1 

The values of xl, x2, and x3 can be obtained by solving the matrix equation 
C X = A ioT X. The matrix equation is now entered, Mike choosing to use the 
shorthand dot product notation to perform the matrix multiplication. 

> eq:=C.X=A; 

r 10x1 +6x2 + 7x3 1 r 2304 
eq:=\ 5x1+4x2 + 3x3 = 1161 

[ 3x1 +2x2 +x3 J [ 561 
Mentally equating the Ihs and rhs of eq, row by row, one clearly has three 
simultaneous linear equations for the unknown population numbers x i , x2^ 
and x3. Although one could extract the three equations and solve them using 
the solve command, Mike takes an easier approach. He directly solves the 
matrix equation C X = A for X using the LinearSolve command. The matrix 
C is given as the first argument, the matrix A as the second argument. 

> soll:=X=LinearSolve(C,A); 

soil 
• xl • 

x2 
L x3 

= 
93 ' 
75 

132 



4.2. MATRIX MODELS 207 

So there are 93 of species 1, 75 of species 2, and 132 of species 3. Mike can derive 
exactly the same answer by using the inverse matrix C~^. To see this, mentally 
multiply the matrix equation from the left by C ~ \ so that C~^ CX = C~^ A. 
But C-^C = / , the identity matrix, and / X =- X, so X = C'^ A. Mike 
calculates X using this last result. 

> sol2:=X=MatrixInverse(C) .A; 

sol2 := 

If desired, the population numbers can be removed from the matrix format. For 
example, Mike finishes the solution of the problem by extracting the population 
number x2 of species 2 from sol2. 

> I h s ( s o l 2 ) [ 2 , 1 ] = r h s ( s o l 2 ) [ 2 , 1 ] ; 
x2 = 75 

" xl ' 
x2 
x3 

= 
93 ' 
75 

132 

PROBLEMS: 
Problem 4-33: System of Linear Equations 
Solve the following system of linear equations using the matrix approach: 

2 x 1 + 3 x 2 - 4 x 3 = 

3x1—2x2 + 5x3 = 

Xl + 4X2 — 3X3 — 

24 

Problem 4-34: Electrical Network 
The currents zi, Z2, 23, and 24 in an electrical network satisfy the following sys
tem of equations. Determine all four currents using the matrix approach. 

3zi + 2z2 — 4̂ = 65 

2 i i - Z 2 + 4 i 3 + 3^4 = 160 

- 7 i i - 4 z 2 - 2 z 4 = 23 

5zi — Z2 — 2z3 + Z4 = 3 

Problem 4-35: Birds Munch Aphids [AL79] 
Three species of birds eat aphids from different parts of trees. Species 1 feed 
half of the time on the top levels and half of the time on the middle levels of 
the trees. Species 2 feed half on the middle levels and half on the lower levels. 
Species 3 feed entirely on the lower levels. There are equal numbers of aphids 
available on the middle and lower levels, but only half this number available on 
the upper levels. What should be the relative sizes of the populations of the 
three species in order that the supply of aphids will be entirely consumed? 

Problem 4-36: KirchhofF Returns 
Solve the dc network example in Section 3.1.2 using a matrix approach. 
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4.2.3 Populat ion Waves 

It^s just a job. Grass grows, birds fly, waves pound the sand. 
I beat people up, 
Muhammad Ali, American boxer (1942-) 

Bernadelli [Ber41] has introduced a simple model of "population waves" in a 
beetle species, the natural life span of the beetles being three years. The female 
beetle has a survival rate of 1/2 in the first year of life, a survival rate of 1/3 
from the second to third years, and gives birth in the third year to an average 
of six new females before dying at the end of the third year. The contribution 
of an individual female beetle, in a probabilistic sense, to the female population 
number can be summarized in the following matrix A, 

\ 0 0 6 
A = 1/2 0 0 

[ 0 1/3 0 
The matrix element aij in A denotes the contribution that a single female of 
age j will make to the next year's female population of age i. 

(a) If there are initially 6000 female beetles in each of the three age groups 
(ages 1, 2, and 3), show that the model leads to a cyclic variation in 
population number in each age group. 

(b) Determine the eigenvalues and associated eigenvectors of A. Are any of 
these real? 

(c) If a sample of this species was needed for laboratory test purposes that 
could have a constant proportion in each age group from year to year, 
what criteria could be imposed on the initial female population to ensure 
that this would be satisfied? 

To answer these questions, Mike loads the LinearAlgebra library package and 
enters the matrix A and the initial number Â  in the three age groups. 

> restart: with(LinearAlgebra): 

> A:=«0|0|6>,<1/2|0|0>,<0|1/3|0»; N:=6000*«l, 1,1»; 

A:= 

The number of females in the three age groups n years hence is obtained by 
calculating A'^ N. Mike forms a sequence S of these population numbers for 
n = 0 to 12, and assigns the result. 

> S:=seq(P| |n=Multiply(A'^n,N) ,n=0. .12); assign(S) : 

0 
1/2 
0 

0 6 " 
0 0 
1/3 0 

N := 
6000 
6000 
6000 

S:=PO = 
' 6000 " 
6000 
6000 

, PI = 
' 36000 • 

3000 
2000 

, P2 = 
' 12000 " 
18000 
1000 

, PS = 
' 6000 ] 
6000 
6000 
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Then, for example, PI indicates that one year later there are 36000 female 
beetles of age 1, 3000 of age 2, and 2000 of age 3. The cychc variation in 
population number as n increases can be clearly seen. 

To plot the data, Mike introduces a functional operator F to form a list of 
lists of plotting points for each of the three age groups. The row number r in 
each column vector Pn must be specified. 

> F : = r - > [ s e q ( [ n , P | | n [ r , 1 ] ] , n = 0 . . 1 2 ) ] : 
Using F, the population numbers for the three age groups are now plotted, 
different colors and line styles being chosen for each curve. 

> p l o t ( [ F ( l ) , F ( 2 ) , F ( 3 ) ] , c o l o r = [ r e d , b l u e , g r e e n ] , 
l i ne s ty l e= [1,2,3] , thickness=2, tickinarks= [4 ,4 ] ) ; 

The resulting picture is shown in Figure 4.10, the population number of each 
age group being shown one, two, etc., years later. 

30000 H 

20000 

loooo H 

O 2 4 6 8 lO 12 

Figure 4.10: Cyclic variation of beetle population in the three age groups. 

The sohd curve is the number of age 1, the intermediate (dotted) curve the 
number of age 2, and the lower (dashed) curve the number of age 3. 

Next, Mike determines the eigenvalues and eigenvectors oi A. If X is an n-
element column vector, the matrix equation AX — XX has nontrivial solutions 
for X if and only if the characteristic matrix A — XI has a zero determinant. 
Expanding | ^ — A/| = 0 yields an nth-order characteristic polynomial equation 
for the eigenvalues A. Corresponding to each of the n eigenvalues will be a 
nontrivial eigenvector X. 

The characteristic matrix CM is easily generated for A, 
> CM:=CharacteristicMatrix(A,lambda); 

CM 
A 

- 1 / 2 
0 

0 
A 

- 1 / 3 

- ( 
0 
A 

as is the characteristic polynomial CP. 
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eivs : — 

> CP:=CharacteristicPolynomial(A,lambda)=0; 

CP := Â  - 1 = 0 
Then CP is solved for A, yielding only one real eigenvalue, viz., A = l . 

> eivs:=[solve(CP,lambda)]; 

' 2 2 2 2 J 
The eigenvalues can alternatively be obtained by applying the Eigenvalues 
command directly to A. The option o u t p u t = ' l i s t ' puts the eigenvalues in a 
list format. The default is a column style. 

> eivs2:=Eigenvalues(A,output='list'); 

II, - T + T/VS, -l-llV^\ eivs2 := -h\'-^^-\ 
To obtain the eigenvectors mimicking a hand calculation, the three-element 
column eigenvector X and the zero column vector are entered. 

> X : = « x l , x 2 , x 3 » : z e r o : = « 0 , 0 , 0 » : 
The eigenvector corresponding to the real eigenvalue (first entry in eivs) is 
determined to within an arbitrary constant -ti, i-

> sol:=X=LinearSolve(eval(CM,lambda=eivs[1]),zero); 

sol 

The arbitrary constant is set equal to 1 on the rhs of sol, yielding the real 
eigenvector V corresponding to A = 1. 

> V : = s u b s ( _ t [ l , l ] = l , r h s ( s o l ) ) ; 

6 

• xl ' 

x2 
x3 

= 
r 6-^1,11 

3-^1,1 

-^1,1 

V 

An easier way of simultaneously obtaining both the eigenvalues and eigenvectors 
is to apply the Eigenvectors command to A. 

> sol2:=Eigenvectors(A); 

6 6 

sol2 := 
Iy/3 

2 2 

2 2 

2 2 

1 1 1 
The column vector to the left of the comma on the rhs of sol2 gives the eigen
values, the 3 x 3 matrix on the right the corresponding eigenvectors. The first 
column in the latter gives the eigenvector corresponding to the first eigenvalue 
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(top entry in the column vector), the second column the eigenvector correspond
ing to the second eigenvalue, etc. The order of the entries varies from one run 
to the next. 

To extract the real eigenvector from sol2, the three individual columns are 
first obtained from the second entry in sol2 and put into a list. 

> vectors : = [seq(Coluiiin(sol2 [2] ,n) ,n=l . .3)] : 
The remove command is used to remove the imaginary eigenvectors from vectors. 

> V2:=remove(has ,vectors , ! ) [ ] ; 

6 
V2 := 

The answer to part (c) above is to choose the initial population for the three 
age groups to be a multiple of V2. Mike suggests that you confirm this by 
taking the initial population in the three age groups to be, e.g., 6000, 3000, and 
1000. You will observe that because A = 1, the number in each age group will 
remain the same year after year. 

PROBLEMS: 
Problem 4-37: Eigenvalues and Eigenvectors 
Determine the eigenvalues and eigenvectors for each of the following matrices: 

(a) A 
5 7 
0 4 
2 8 

(b) B = 
2 
5 
9 

- 9 
-10 
- 2 1 

5 
7 

14 

First mimic a hand calculation and then use Maple's shortcut commands. 

Problem 4-38: Diagonalization 
For each matrix in the previous problem, determine a matrix M that diagonal-
izes the matrix (i.e., puts the eigenvalues on the central diagonal with all re
maining matrix entries equal to 0). Note: The matrix M that transforms A into 
the diagonal form A2 satisfies the similarity transformation M~^ AM = A2, 
or, equivalently, AM - M A2 = 0. 

Problem 4-39: More eigenvalues and eigenvectors 
Determine the eigenvalues and eigenvectors of the following matrix: 

A^ 

1 2 3 4 5 
6 7 8 9 10 
11 12 13 12 11 
10 9 8 7 6 
5 4 3 2 1 

Does A have an inverse? Explain your answer by calculating the determinant. 

Problem 4-40: A different beetle species 
Suppose that a beetle species has a life span of four years, a female beetle in 
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the first year having a survival rate of 1/2, in the second year a survival rate 
of 1/3, and in the third year a survival rate of 1/4. On the average, a female 
beetle gives birth to four new females in the third year and to eight females in 
the fourth year, before expiring from the effort. 

(a) Construct the relevant matrix A where the entry in the ith row and j th 
column denotes the probabilistic contribution that a female of age j makes 
to the next year's female population of age i. 

(b) If there are initially 6000 female beetles in each of the four age groups 
(ages 1, 2, 3, and 4), determine the behavior of the population number in 
each age group as the number of years is made large. Plot the population 
numbers for the four age groups in the same figure. 

(c) Determine the eigenvalues and associated eigenvectors of A. Are any of 
these real? 

(d) If a sample of this species was needed for laboratory test purposes that 
could have a constant proportion in each age group from year to year, 
what criteria could be imposed on the initial female population to ensure 
that this would be satisfied? 



Chapter 5 

Linear ODE Models 
''And if you take one from three hundred and sixty-five, 
what remains? Three hundred and sixty-four, of course. ^^ 
Humpty Dumpty looked doubtful, 
"I'd rather see that done on paper," he said. 
Lewis Carroll, Through the Looking Glass (1872) 

Dynamic models for which the independent variable, e.g., the time t, is con
tinuous are governed by one or more ordinary differential equations (ODEs). 
Linear ODE models are described by ODEs that are linear in the dependent 
variable and its derivatives. An nth-order linear ODE for a dependent variable 
x{t) has the general structure 

d^ X dP' ~ X dx 
dF ^ """-'̂ ^̂  ~dF^ ^""^""'^^^^^ ""'̂ ^̂  ^ " •̂ ^̂ '̂ ^^'^^ 

where n takes on integer values. The value n = 1 produces a first-order ODE, 
77- = 2 a second-order ODE, and so on. If f{t) = 0, the ODE is said to be 
homogeneous. Otherwise, it is inhomogeneous. 

The first ODEs that science students usually encounter are those with con
stant coefficients (ao, etc., independent of f), which can be solved by assuming 
a solution to the homogeneous equation of the form x = e^^. On substituting x 
into (5.1), one obtains A"̂  -h Gn-i A^~^ H h ai A + ao = 0, which is solved for 
the n roots. Using standard methods (see, e.g., Stewart [Ste87]), a particular 
solution is then found to account for the f{t) term. 

Later in their academic careers, students are introduced to "special" ODEs 
with variable coefficients, which are solved [Boa83] using series methods, yield
ing so-called special function (Bessel, Legendre, Hermite, etc.) solutions. 

The goal of this chapter is not to teach you about the various methods for 
solving ODEs, but instead to illustrate how Maple's dsolve command can be 
used to easily accomplish the same task. Before attempting to solve a second-
order ODE (or two coupled first-order ODEs) with specified initial or boundary 
conditions, it is sometimes useful to obtain a graphical overview of the possible 
solutions by creating a phase-plane portrait, the subject of the first section. 
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5.1 Phase-Plane Portraits 
A picture may instantly present what a book could set forth 
only in a hundred pages, 
Ivan Turgeniev, Russian novelist (1818-1883) 

Consider a system of two coupled first-order ODEs of the general structure 

x^^^=P{x,yA}, y^^^^Qix,y,t), (5.2) 

where P and Q are known functions of the dependent variables x and y and, 
perhaps, the independent variable time t. For compactness, the dot notation 
is often used to denote a time derivative. In some model equations, the in
dependent variable could be a spatial variable. If P and Q do not explicitly 
depend on the independent variable, the system (5.2) is said to be autonomous. 
Otherwise, the system is referred to as being nonautonomous. 

Some models are naturally described in the standard form (5.2), while 
second-order ODE models such as those arising from Newton's second law of 
motion can be recast into that form. With x the displacement and F the force 
per unit mass, Newton's second law is of the general structure 

X = F(x,x, t). (5.3) 

Setting the velocity x equal to y, then (5.3) can be rewritten as the system 

x^y, y = F{x,y,t), (5.4) 

so in this case P = y and Q = F{x,yA). 
Whether linear or nonlinear, a graphical approach can be used to view all 

possible solutions of those ODE systems that can be put into the standard 
form (5.2) and are autonomous. This graphical procedure has proved especially 
important in the investigation of nonlinear systems, where analytical solutions 
are usually impossible to obtain. (See the Advanced Guide.) 

If Equations (5.2) do not depend explicitly on t, the independent variable 
can be eliminated by dividing one equation by the other to form the ratio 

dy_ ^ Q{x,y) 
dx P{x,y) 

Except at a stationary point where x = 0 = P and ^ = 0 = Q, this ratio represents 
the slope of the trajectory of the ODE system at an ordinary point (x, y) in 
the y versus x plane. At a stationary point, the ratio is 0/0 and the slope 
is indeterminate. The x-y plane is referred to as the phase plane and the 
trajectory as a phase-plane trajectory. For ODEs governed by Newton's second 
law, the phase plane is a plot of velocity (x) against displacement (x). 

The time evolution of any possible motion of the ODE system may be pic
tured by systematically filling the phase plane with a grid of uniformly spaced 
arrows indicating the direction of increasing time and the slope at each grid 
point. For a given set of initial conditions, the subsequent temporal evolution 
of the system can be traced out by moving from one arrow to the next and 
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drawing an appropriate line for the trajectory. Pictures created in this manner 
are called phase-plane portraits. Since an arrow at any ordinary point in the 
phase plane is tangent to the trajectory at that point, the grid of arrows is often 
referred to as the tangent field. 

Analysis of the behavior of the trajectories at ordinary points near a sta
tionary point reveals that only four types of stationary points are possible for 
linear^ autonomous ODE systems. These are referred to as focal (or spiral), 
nodal, vortex, and saddle points. The behavior of the trajectories near these 
points is schematically indicated in Figure 5.1. As t -^ CXD, the trajectories for 

Figure 5.1: Curves near a focal (F), nodal (A^), vortex {V), saddle (S) point. 

the focal and nodal points in the picture approach those points. In this case, 
they are referred to as stable focal and nodal points. For unstable focal and 
nodal points, the sense of the arrows would be reversed. 

If the location and nature of the stationary points is known, it is possible 
to sketch the phase-plane portrait by hand, even for nonlinear systems. The 
interested reader is referred, e.g., to [EMOO], where the analysis of stationary 
points is carried out. In this section, we will be content to identify the stationary 
points after we have used Maple to draw the tangent field. In the following two 
linear ODE models, all four types of stationary points will be observed. 

-'̂ For nonlinear ODE systems, additional types of stationary points are also possible. 
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5.1.1 Tenure Policy at Erehwon University 

A great many people think they are thinking when they are merely 
rearranging their prejudices. 
William James, American psychologist and philosopher (1842-1910) 

At time t, the engineering faculty of Erehwon Institute of Technology is made 
up of x{t) untenured and y{t) tenured^ professors. The engineering school has 
the following hiring and renewal policy. Each year a number of new untenured 
professors are hired equal to one-tenth of the entire engineering faculty. Also, 
one-tenth of the untenured professors are given tenure and one-tenth are turfed 
out (not given tenure) each year. Historically, for this engineering school, 5% 
or one-twentieth of the tenured professors retire or leave for other reasons each 
year. Our goal is to create a phase-plane picture that displays the temporal evo
lution of x{t) and y{t) over, say, a 30 year time span, making the undoubtedly 
dubious assumption that the above policy is maintained over this time interval. 

To plot a tangent field and make a phase-plane portrait, the DEtools pack
age, which contains the df i e l dp lo t and phasepor t ra i t commands, is loaded. 

> restart: with(DEtools): 

First, the ODE describing the rate of change of x{t) (number of untenured 
professors at time t) with time is entered.'^ The first term {{x{t) + y{t))/10) 
on the right-hand side of the eql input represents the rate of increase in x 
due to the hiring policy, the second term (—x(t)/10) the rate of decrease in x 
due to promotion to the tenured rank, and the last term {—x{t)/10) the rate 
of decrease in x due to the weeding out of unsuitable untenured professors. 
Applying the simplify command produces a simplified output, which could of 
course have been mentally done before entering the ODE. 

> e q l : = d i f f ( x ( t ) , t ) = s i m p l i f y ( ( x ( t ) + y ( t ) ) / 1 0 - x ( t ) / 1 0 - x ( t ) / 1 0 ) ; 

The next command line states the rate of change of y with time, the first 
term on the right-hand side indicating the gain in y due to promotion from 
the untenured ranks, the second term reflecting the loss due to retirement and 
other causes. 

> eq2 :=d i f f (y ( t ) , t )=x ( t ) / 10 -y ( t ) / 20 ; 

Either by inspection or by using Maple as follows. 

^Tenure is a permanent employment status granted to professors after a probationary 
period and is based on satisfactory academic accomplishments and teaching performance. It is 
intended to protect professors from dismissal, except for serious misconduct or incompetence, 
even if their views are unpopular. It does not protect them, however, against budget cuts. 

^ Since discrete time intervals for the official hiring and renewal process usually prevail 
and professor numbers are integers, this problem would be better modeled by a difference 
equation. Difference equation models are the subject of Chapter 6. 



5A. PHASE-PLANE PORTRAITS 217 

> s t a t _ p o i n t : = s o l v e ( { r h s ( e q l ) , r h s ( e q 2 ) } , { x ( t ) , y ( t ) } ) ; 

stat.point := {x{t) = 0, y{t) — 0} 
we see that the coupled first-order ODE system, which is in standard form, 
has a single stationary point at the origin. The mathematical nature of this 
stationary point can be established by creating a tangent field of arrows over a 
region that includes the origin, e.g., x = —2 to 2, y — —2 to 2. 

The tangent field for this region, which is shown in Figure 5.2, is produced 
using the df i e ldp lo t command and entering the two equations and the two 
dependent variables as separate Maple lists. The time interval is taken to be 30 
years. The d i r g r i d option specifies the number of horizontal and vertical mesh 
points to use for the arrows. The minimum is [2,2] and [20,20] is the default 
if the option is omitted. Here we have taken [ 25, 25 ] for a total of 25 x 25 = 625 
arrows in the picture. The option arrows=MEDIlJM produces full arrowheads 
rather than the default half-arrowheads. 

> d f i e l d p l o t ( [ e q l , e q 2 ] , [ x ( t ) , y ( t ) ] , t = 0 . . 3 0 , x = - 2 . . 2 , y = - 2 . . 2 , 
dirgrid=[25,25],arrows=MEDIUM); 

W W W W 
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V N V < \ W N N N 
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Figure 5.2: Tangent field for the tenure example. 

Comparing the resulting tangent field in Figure 5.2 with the earlier singular 
point pictures in Figure 5.1, we see that the origin appears to be a saddle 
point. In the first (x > 0, 7/ > 0) and third (x < 0, 2/ < 0) quadrants the 
time arrows diverge from the origin, while in the second (x < 0, ^ > 0) and 
fourth (x > 0, i/ < 0) quadrants they approach the origin. From a physical 
viewpoint, negative values of x and y are not permitted for the tenure problem, 
so we need only concern ourselves with the first quadrant. As already noted, 
in this quadrant the time arrows tend to "fiow" away from the origin. Thus, 
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no matter what nonzero initial condition is chosen in the first quadrant, the 
corresponding trajectory will move away from the origin with increasing time. 

We can choose a number of different initial conditions in the first quadrant 
and create a plot of the resulting phase-plane trajectories superimposed on the 
tangent field to create a complete phase-plane portrait. A functional operator 
f is formed to enter the values A and B of x{0) and y(0), respectively. 

> f:=(A,B)->(x(0)=A,y(0)=B): 
Using f, four different initial conditions, labeled ic I 11 to ic I |4, wih be con
sidered. For example, in i c | 11 we consider 30 untenured and 10 tenured engi
neering professors at time t = 0. 

> i d | l := f (30 ,10 ) : icI I2:=f(10,20): i c | I 3 : = f ( 4 5 , 1 0 ) : 
i d |4:=f (10,40): 

The phasepor t ra i t command is now used to create the desired phase-plane 
picture. As for the df i e ldp lo t command, the system of two equations is 
entered as a Maple list as are the dependent variables. Next appears the time 
interval ^ = 0 to 30 years and the sequence of four initial conditions entered as 
a list of lists. Since Maple will numerically solve the system as a function of 
time, a small time step of 0.2 years is entered to obtain reasonable accuracy. 
Finally, we choose a blue line color for each of the four trajectories, the default 
being an unattractive (in our opinion) shade of yellow. 

> p h a s e p o r t r a i t ( [ e q l , e q 2 ] , [ x ( t ) , y ( t ) ] , t = 0 . . 3 0 , [seq( [ i d I j ] , 
j = 1 . . 4 ) ] , s t e p s i z e = 0 . 2 , d i r g r i d = [ 2 5 , 2 5 ] , l i n e c o l o r = b l u e ) ; 
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Figure 5.3: Phase-plane portrait for the engineering faculty. 
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The result of the phasepor t ra i t command is shown in Figure 5.3. The arrows 
(with default half-arrowheads) indicate the temporal evolution of the ODE sys
tem. The solid lines depict the trajectories corresponding to the four different 
initial conditions. On Erehwon, there is a folk saying that, when translated, 
roughly parallels the Earth saying "All roads lead to Rome." No matter which 
of the four initial conditions is considered, after a sufficiently long time all 
trajectories in Figure 5.3 approach a single straight line in the phase plane. 

Although one can deduce the approximate slope of the asymptotic straight 
line from the picture, we can use the fact that the ODE system is linear and 
ask Maple to seek an analytic solution using the dsolve command. If no initial 
conditions are specified, and an analytic solution exists, the general solution 
in terms of two arbitrary constants will be produced. The values of the two 
constants are fixed by the two initial conditions on x(0) and y{0). The initial 
conditions can also be fed directly into the dsolve command line. Since, in the 
problem at hand, all the other initial conditions yield trajectories that approach 
the same straight hue, we select one representative set of initial condition, e.g., 
i d 11, and solve eql and eq2 for x{t) and y{t). 

s o l : = d s o l v e ( { e q l , e q 2 , i c | I l } , { x ( t ) , y ( t ) } ) ; 

7 r u^ L . 5 y T 7 \ ((-3+^17wx / 5 ^ \ / (3+^17) tx 

Only the analytic solution for x(t) is displayed here in the text, the form of y{t) 
being similar. If desired, the solution can be put into floating-point form by 
applying the evalf command to the last output. 

> sol :=evalf (7o); 

sol := {x{t) = 16.21267812 e(0-02807764065t) ^ 13.78732188 e^-^-i^^o^^^^oet)^ 

y{t) = 20.76481562 e(0-02807764065t) _ io.76481563e(-0-i780776406t)| 

From the output, it can be seen that both x{t) and y{t) are made up of a linear 
combination of two exponentials, one increasing with time, the other decreasing 
with time. As t ^ oc the exponentials with positive exponents will dominate 
and the ratio of y{t) to x{t) will approach a fixed number, which is equal to the 
line's slope. The slope can also be extracted by assigning the solution, 

> a s s i g n ( s o l ) : 
and taking the limit as t —> 00 of the ratio dy/dx — {dy/dt) / {dx/dt). 

> l i m i t ( d i f f ( y ( t ) , t ) / d i f f ( x ( t ) , t ) , t = i n f i n i t y ) ; 

1.280776406 
After a sufficiently long time has elapsed, the ratio of tenured to untenured 
faculty members in the Erehwon University engineering school will be 1.28, 
independent of the initial conditions chosen, provided that both x{0) and y{0) 
are not equal to zero. 

The dsolve command comes with a number of options, e.g., numeric for 
numerical solutions, lap lace for applying the Laplace transform method, etc. 
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PROBLEMS: 
Problem 5-1: Recasting into standard form 
For each of the following second-order ODEs, recast the ODE into the standard 
form (5.2) and indicate whether the system is linear or nonlinear. All coefficients 
are real and positive and primes denote derivatives with respect to x. 

(a) simple pendulum equation: ^ + 2 7 ^ + 0;̂  sin ^ = 0; 

(b) RLC circuit equation: V + {R/L) V + {l/LC) V = 0; 

(c) "hard" spring equation: x + CJQ (1 + a^x^) x = 0; 

(d) Bessel equation: x^ y" ^ xy' •^- {x'^ — p'^) y = 0; 

(e) Legendre equation: [(1 — x^) y'] -\- n{n -\- l)y = 0. 

(f) Van der Pol equation: x — e {I — x'^) x + x = 0; 

Problem 5-2: Time to reach the asymptotic line 
For each of the four initial conditions in the text, determine how long it takes for 
the corresponding trajectory to approach within 1% of the asymptotic straight 
line of slope 1.28. 

Problem 5-3: Increasing the rejection rate 
Explore the effect of increasing the rejection rate for untenured professors, i.e., 
the rate at which they are turfed out. You may want to change the time interval 
and/or the initial conditions. For example, what happens when the rejection 
rate is 30%? 

Problem 5-4: Increased rate of retirement 
Suppose that the term describing the rate of retirement (or departure) of the 
tenured professors is of the form —y{t)'^/20. 

(a) Is the resulting system of equations linear or nonlinear? Explain. 

(b) How many stationary points does the new system have and where are 
they located? 

(c) Using the df i e ldp lo t command, plot the tangent field for the new system 
over a suitable range in the first quadrant and identify the nature of the 
stationary points. 

(d) Using the phasepor t ra i t command and appropriate initial conditions, 
support the identification made in part (c). What is the long-time behav
ior of the system? 

(e) Can the new system of equations be solved analytically with the dsolve 
command for the initial condition ic I 11? 
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5.1.2 Vectoria Investigates the RLC Circuit 

The desire of knowledge, like the thirst of riches, 
increases ever with the acquisition of it, 
Laurence Sterne, Tristram Shandy (1760) 

A "bread and butter" topic [Pur85] in any intermediate course in electromag
netic theory is investigating the dynamical behavior of an electric circuit con
sisting of an initially charged capacitor C placed in series with an inductor L 
and a resistor R as shown in Figure 5.4. At time ^ = 0 a switch (not shown) 

R 

^//r 
L 

imm. 

c 

Figure 5.4: An RLC electrical circuit. 

is closed, and charge and therefore a current i begin to flow around the circuit. 
The solution of the RLC circuit problem is one of the earliest physical examples 
involving a second-order linear ODE with constant coefficients that engineering 
and physics students encounter. Although she knows that this problem can be 
solved in a straightforward manner with pen and paper, Vectoria wants to con
tinue to improve her computer algebra skills and is convinced that in applying 
her growing knowledge in this area to the RLC circuit problem she will gain a 
deeper feeling for the underlying physics. 

Since she wishes to use the symbol 7 for the damping (due to the resistor 
R) coefficient, Vectoria unprotects 7 from its Maple representation as Euler's 
constant of mathematics. 

> restart: with(plots) : unprotect(gamma): 
The DEtools and PDEtools hbrary packages are called up in order that the 
phaseportrait and dchange commands, respectively, can be used. Vectoria 
intends to use the latter command to make a convenient change of variables in 
the resulting ODE. 

> with(DEtools): with(PDEtools): 

From the definition of capacitance, the charge q on the capacitor is given by 

> q:=C*v(t); 

q:=Cv{t) 
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where v{t) is the voltage across C at time t. The instantaneous current in the 
circuit, due to the discharge of the capacitor, is i — —dq/dt. The minus sign is 
a reflection of the fact that the charge on the capacitor must initiafly decrease 
{dq/dt < 0) as charge begins to flow around the circuit. Inclusion of the minus 
sign ensures that i starts increasing for t > 0 in a positive sense. 

> i : = - d i f f ( q , t ) ; 

i : = - c ( | . ( , ) 
Applying Kirchhoff's potential rule, the sum of the potentials around the circuit 
must add to zero at any instant t. With the instantaneous current direction 
as indicated, and starting at the inductor, the potential changes across the 
inductor, resistor, and capacitor are, respectively, —L{di/dt)^ —Ri^ and v{t). 

> de :=-L*di f f ( i , t ) -R*i+v( t )=0; 

de:=LC f^v{t)]+RC f^^v{t)]^v{t) = 0 

Noting that the expression for the current was automatically substituted into 
G?e, Vectoria observes that the output is a linear second-order ODE with con
stant coefficients. To be mathematically consistent, each term in the equation 
must have exactly the same dimension. Comparing the first and third terms, 
this implies that L C has the dimension of time squared or inverse frequency 
squared. So Vectoria introduces the frequency CJQ = 1/VLC by substituting 
L — l/(cc;o C) into the differential equation de. 

> de2:=subs(L=l/(omega [0]^2*C),de); 

— v(t) 
de2:= ^ ^ \ ^RC (^ v{t)] + v{t) = 0 

u;o^ \dt J 
Vectoria wishes to transform from the original variables into a new set expressed 
in terms of the dimensionless time r, defined through the relation t = T/UJQ. 

Also setting v{t) = x(r), the variable transformation tr is as follows. 

> t r :={ t= tau /omega[0] ,v ( t )=x( tau)} ; 

tr:^<t=—, v{t) = x ( r ) 

Vectoria uses the transformation tr in the following dchange (change of vari
ables) command to express de2 in terms of the new variables. 

> de3 :=dchange( t r ,de2 , [ t au ,x ( t au ) ] ) ; 
d^ . A ^^ f d 

de3 := ( ^ ^ M 1 + ^ C i d~ "̂ ^̂ ^ J u;o + ^(r) = 0 
Now she notes that in de3 there is effectively only one parameter in the problem, 
namely the product RC LJO which is the coefficient of the second term. Labeling 
this product as 27, Vectoria substitutes R — 2^/{u;oC) in deS^ 

> de4: =subs (R=2*gainma/ (omega [0] *C), de3); 
d^ . .\ ^ ^ d 

^^^ '= ( ̂  ^W ) +27 ( ̂  ^M ) + ^M = 0 
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yielding a damped simple harmonic oscillator (SHO) equation, with 7 identified 
as the damping coefficient. Vectoria decides to create a phase-plane portrait, 
by setting dx{r)/dT == —y{r), 

> de5 :=d i f f (x ( t au ) , t au )= -y ( t au ) ; 

and substituting de5 into de4 to produce a second first-order linear ODE, de6. 

> de6:=expand(subs(de5,de4)); 
d 

: = - ( ^ 2 / ( r ) l - 2 7 2/(T) + x(r) = 0 

Since the dependent variable y is proportional to z, a phase-plane portrait show
ing y versus x is actually a picture illustrating the behavior of the current versus 
the voltage. By inspecting de5 and de6, Vectoria sees that there is a single sta
tionary point at y = 0, x = 0. 

Holding L and C fixed, she decides to investigate the effect of increasing 
the resistance R by assigning different values to the damping coefficient 7. In 
the next command line, four increasing 7 values are entered, namely 7I == 0, 
72 = 0.1, 73 = 1, and74:=2. 

> gamma I 11:=0: gammal|2:=0.1: gamma||3:=l: gamma I 14:=2: 
Vectoria creates a functional operator eq to substitute the nth 7 value into de6. 

> eq:=n->subs(gamma=gamma||n,de6): 
She also forms a phase portrait operator pp to apply the phasepor t ra i t com
mand to de5 and eq{n), the time range being r = 0 to 40. The initial condition 
is taken to be y{0) = 0 (zero initial current) and x(0) = 1. The latter condition 
corresponds to "normalizing" the voltage by dividing v{t) by its initial value 
v{0). The scene=[A,B] option is introduced with A and B to be specified. If A 
and B are chosen to be x and y, then y versus x will be displayed. The argu
ments in the scene option may also be taken to be r and x in order to produce 
a plot of x(r), or r and y to plot y{r). Since she intends to place all four 
phase-plane portraits in the same figure, Vectoria chooses to use a coarser grid 
(15 by 15) of black (rather than the default red) arrows than would be given by 
the default grid (20 by 20) in order that each tangent field can be clearly seen. 
The line color C of the phase-plane trajectory must also be specified. 

> pp := (n ,A ,B ,C) ->phasepor t r a i t ( [de5 , eq (n ) ] , [x ( t au ) ,y ( t au ) ] , 
tau=0. . 40 , [ [x (0 )= l , y (0 )=0 ] ] , s cene=[A,B] ,x=- l . . l , y= - l . . 1 , 
s teps ize=0.03,di rgr id=[15,15] , l inecolor=C, 
color=black,arrows=MEDIUM,axes=normal): 

Making use of the functional operator pp, a sequence of phase-plane portraits 
{y versus x) is created for all four 7 values and assigned. The trajectory line 
color is taken to be blue. 

> p o r t r a i t s : = s e q ( p l [ n ] = p p ( n , x , y , b l u e ) , n = l . . 4 ) : 
a s s i g n ( p o r t r a i t s ) : 

The array command is used to arrange the four phase-plane plots, p l [ l ] to 
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pi [4], in a 2 by 2 viewing format, 

> G r a p h s : = a r r a y ( l . . 2 , 1 . - 2 , [ [ p l [ l ] , p l [ 2 ] ] , [ p l [ 3 ] , p l [ 4 ] ] ] ) : 
which is displayed in Figure 5.5. 

> display(Graphs, t ic lanarks=[2,2]) ; 

ill I 
/ / / / / / ^ 
J J / //^^ 
J///^^^ 

ffll 

ill 
111 
• i. I. 
II m 

t r f t f f f 

Figure 5.5: Phase-plane portraits for an RLC electrical circuit. Top left: 7 = 0; 
top right: 7 = 0.1; bottom left: 7 = 1; bottom right: 7 = 2. 

The top left phase-plane portrait corresponds to 7 = 0, i.e., zero resistance. In 
this case, the trajectory is a closed loop with a vortex stationary point at the 
origin. The amplitude of the oscillations neither grows nor decreases with time. 

In the top right plot, 7 = 0.1, corresponding to a small nonzero resistance. 
The trajectory now spirals into a stable focal point at the origin, x decreasing 
in an oscillatory manner with time. Vectoria realizes that this focal point 
situation must correspond to the "underdamped" SHO solution discussed in 
her electromagnetics class. 

In the bottom left plot for 7 = 1, the trajectory appears to shoot directly into 
a stable nodal point at the origin, x decreasing to zero without any oscillations. 
Vectoria will shortly show that this case corresponds to "critical damping." 
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Finally, in the bottom right plot of Figure 5.5, 7 has been further increased so 
that there is definitely no overshoot of the origin before the trajectory proceeds 
to the stable nodal point. The SHO is in the "overdamped" regime. 

Vectoria now focuses on one of the four cases, namely the underdamped 
situation for 7 = 0.1. Setting i = 2 in the operator pp, Vectoria changes the 
scene option in pi [5] and pi [6] to tau,x and tau,y to produce plots of x{r) 
and y{r), respectively. She colors the curves blue and red, so that they can be 
easily distinguished on the computer screen. 

> p i [5]:=pp(2, tau,x ,blue): pi [6]:=pp(2, tau,y ,red) : 
Since the plots p i [5] and p i [6] are to be superimposed, and may not be distin
guishable if printed in black and white, Vectoria uses the textplot command 
to add the figure labels x and y. 

> pi [7 ] :=textplot ( [ [6 .1 ,0 .6 ,"x"] , [8 .6 ,0 .57 ,"y"]] ) : 
The graph that results on combining p i [5] , p i [6] , and p i [7] is displayed in 
Figure 5.6. 

> display ({pi [5] ,pl[6] ,pl [7] },tickinarks=[2,2] , 
labels=["tau"," "]); 

Figure 5.6: Damped oscillatory behavior of voltage (x) and current (y). 

The current (proportional to y) reaches its maxima at later times than the 
voltage (x) and is said to "lag the voltage." 

As in the tenure example, an analytic solution is obtainable for the voltage 
X{T) and the current because the damped SHO equation is linear with constant 
coefficients. Vectoria applies the dsolve command to de4, subject to the initial 
conditions x(0) = 1 and the time derivative of the voltage (proportional to 
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the current) equal to zero (entered as D(x)(0)=0, where D is the differential 
operator).^ 

> Voltage:=dsolve({de4,x(0)=l ,D(x)(0)=0},x( tau)) ; 

Voltage := x{r) = ^ ^^-^'^ MV-j'+M ^ ^ ( - , . ) ,,,^^/Z:fTl r) 
V - 7 ^ + 1 

For 7 < 1 (e.g., the 7 = 0.1 case), the square root y^l — 7^ is real and the 
associated damped oscillatory motion is underdamped. For 7 > 1 (e.g., 7 = 2), 
the square root y l ^ ^ T ^ is purely imaginary and the nature of the solution 
changes. This is the overdamped case. For 7 = 1, the solution collapses to one 
term, and a second independent solution must be obtained. Vectoria has left 
this critical damping case as a problem for you to solve. 

With the analytic form of x(r) known, the current is easily obtained by 
noting that 

^ = - C ^ ^ = -Cu:,^^. (5.6) 

Vectoria enters this relation, 

> Current:=-C*omega[0]*diff(rhs(Voltage), tau); 

Current := 

^ ( 7 'e(-^")sin(V^-7^ + l r ) . . . ^ ; . ^ . / ^ ^ \ 
-Cuo - e^ ^^^sm(v/-7^ + I r ) V - 7 ^ - f 1 

y V-7^ +1 / 
and simplifies the output, 

> Current :=simplify(Current) ; 

Current := C-o ^J-^^]^HV^1^1A 

obtaining the desired formula for the current. 
On completion of her Maple investigation of the RLC circuit, Vectoria feels 

pleased with her increased understanding of the underlying physics and her 
enhanced computer algebra skills. If more linear circuit elements and loops 
are added to the simple RLC circuit, she knows that she can easily extend the 
above analysis with little extra effort to handle the more complex situation. 

PROBLEMS: 
Problem 5-5: Critical damping 
Determine the complete analytic solution for the voltage and current for 7 = 1 
in the RLC circuit. 

Problem 5-6: Energy source 
A 10-V battery is added to the RLC circuit. Investigate the behavior of the 
circuit for 7 = 1 and discuss how adding the battery changes the nature of the 
solution. 

^The differential operator D is more general than diff. It can represent derivatives evalu
ated at a point and can differentiate procedures. 



5.1. PHASE-PLANE PORTRAITS 227 

Problem 5-7: A math problem 
Consider the hnear ODE system 

x = -4x-3y-{-5, y = 5x-6y-3, with x(0) = 5, y{0) = - 5 . 

(a) Create a phase-plane portrait showing the tangent field and the trajectory 
corresponding to the initial condition. 

(b) Locate and identify the stationary point. 

(c) Using appropriate scene options, plot x{t) and y{t) in the same graph. 

(d) Analytically determine x{t) and y{t). 

Problem 5-8: Erehwonian aardwolves 
Two species of Erehwonian aardwolves, genetically altered relatives of those 
found on Earth,^ are in competition for the same food supply. Initially there 
are x = 2000 gray aardwolves and y — 1600 red aardwolves, and the population 
equations are 

X — 3x — 2y, y = —2x -\-3y^ 

with time measured in units of 50 years. 

(a) Produce a tangent field plot and locate and identify the nature of the 
stationary point. 

(b) Produce a phase-plane portrait for the time interval t = 0 to 0.6 for the 
given initial condition. 

(c) Produce a plot of y{t) for the same time interval using a suitable scene 
option. 

(d) At what time do the red aardwolves become extinct? Use the previous 
plot to obtain an approximate value. 

(e) Use the dsolve command to analytically determine x{t) and y{t). 

(f) Use the f solve command to precisely determine the time at which the 
red aardwolves go extinct. 

(g) How many gray aardwolves exist at the time of extinction? 

(h) What was the maximum number of red aardwolves and at what time did 
this occur? 

Problem 5-9: Drug exchange 
Consider the exchange of a particular prescription drug between the blood and 
the tissue of a human body. Let x be the concentration of the drug in the 
bloodstream and let y be the concentration in the body tissue. Including the 
extraction of the drug from the bloodstream by the kidneys, the relevant system 
of ODEs is 

x = ki{y-x) -px, ?/ == fe {x - y), 

with the rate constants ki and A:2, as well as p, positive. 
^An aardwolf ("earth wolf in Afrikaans) is a South African flesh-eating mammal somewhat 

like the hyena and the civet. 
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(a) Explain the structure of the various terms appearing in the coupled ODE 
system. 

(b) Taking the nominal values /ci = /c2 = 1, p = 1/2, x(0) = 1, and y{0) = 0, 
create a phase-plane portrait showing the tangent field and the trajectory 
in the phase plane. 

(c) Locate and identify the nature of the stationary point. 

(d) Confirm your identification of the stationary point by using the scene 
option to form plots of x{t) and y{t) and superimpose the two plots in 
the same picture. 

(e) Analytically solve for x{t) and y{t) for the specified initial condition. 

(f) Plot the analytical form of y{t) and compare it with the graphical solution 
by superimposing the two results in the same picture. 

Problem 5-10: Romeo and Juliet 
Steven Strogatz [Str88] [Str94] has suggested a simple linear dynamic model 
to create different scenarios for the love affair between Romeo and Juliet. In 
his model, R{t) and J{t) represent Romeo's love/hate for Juliet and Juhet's 
love/hate for Romeo, respectively, at time t. Positive values of R and J indicate 
love, while negative values indicate hate. The love affair equations take the form 

R = aR + bJ, J^cR^dJ, 

with a, 6, c, d real coefficients. For each of the following cases: 

• produce a tangent field plot using the df ie ldplot command and identify 
each stationary point; 

• produce a phase-plane portrait with the specified initial condition; 

• use the phaseportrait command and scene options to plot J{t) and R{t)] 

• use the dsolve command to derive the analytic solution; 

• discuss how the love affair evolves with time. 

(a) R = J, j ^-R-^ J, with R{0) = 1, J(0) = 0. 

(b) R = 2R + J, J = i? + 2 J, with i^(0) = 5, J(0) = - 2 . 

(c) R = J, J = R with R{0) = 5, J(0) = - 2 . 

(d) R = J, J = -R, with R{0) - 5, J(0) = - 2 . 

(e) R = 2R + J, J = - i ^ - 2 J , withi?(0) = -2,J(0) = 10. 
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5.2 First-Order ODE Models 

We have already seen Maple's ODE solver, dsolve, in action. In this and the 
following section, various interesting first- and second-order ODE models are 
analytically solved using this powerful command. 

5.2.1 There Goes Louie's Alibi 

Elementary my dear Watson, elementary. 
Attributed to Sherlock Holmes, the fictional detective created by the English 
novelist and physician. Sir Arthur Conan Doyle (1859-1930). However, the 
quotation is not found in this form in any of Doyle's books. 

A prominent elderly citizen of Metropolis was murdered in his luxurious climate-
controlled penthouse and his body was found on Monday at 6:00 p.m. The 
homicide detectives assigned to the case suspect that the hit man was Louie 
the Louse and that the murder was committed early on Monday, or perhaps 
Sunday evening. When the body was discovered the temperature of the pent
house was 20 °C (68 °F) and the temperature of the body was 23.5 °C. The 
detectives ask Pat, the police department's forensic scientist, to establish the 
time of death. Pat knows that the normal body temperature of a living per
son is 37 °C. To ascertain the approximate time of death, Pat will make use of 
Newton^s law of cooling, which he enters on his laptop computer. 

> r e s t a r t : d e : = d i f f ( T ( t ) , t ) = - k * ( T ( t ) - T s ) ; 

de:=- 4- T{t) = -k(T(t)- Ts) 
at 

The rate of cooling at time t is proportional (proportionality constant k) to the 
difference in the instantaneous temperature T{t) of the body and the ambient 
temperature Ts of the surroundings. Pat sets Ts to 20 °C, 

> Ts:=20; 

Ts := 20 
and solves Newton's law of cooling with T(0) = 23.5 °C in order to determine the 
theoretical curve that the victim's body temperature should obey as a function 
of time as it continues to cool. This assumes that the ambient temperature is 
maintained. 

> sol :=dsolve({de,T(0)=23.5}, T ( t ) ) ; 

5 0 / : - T{t) = 20+-e^-^^^ 

While the detectives are searching for clues and waiting for the fingerprint 
experts and police photographers to show up, Pat decides to determine the 
value of k by measuring the victim's body temperature every half-hour starting 
at 6:30 p.m. He manages to obtain 10 temperature measurements before the 
victim's body is removed just after 11:00 p.m., which he enters as a list. 

> t emp:=[23 .3 ,23 .1 ,23 .0 ,22 .8 ,22 .7 ,22 .6 ,22 .5 ,22 .3 ,22 .2 ,22 ,1 ] : 
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After unprotecting time from its Maple meaning, he creates a list of the times 
in hours after 6:00 p.m. at which the temperature measurements were made. 

> unprotect( t ime) : tiine: = [ s e q ( 0 . 5 * i , i = l . . 10)] ; 

time := [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0] 
In order to calculate k using the above data, Pat decides to use a least squares 
fitting routine. He rearranges the theoretical equation sol^ 

T ( t ) - 2 0 = ^ 6 - ' = ' , (5.7) 

and takes the natural logarithm of both sides, yielding 

ln(T(t) - 20) = ln(7/2) -kt. (5.8) 

If he forms ln(T — Ts) with his temperature data and plots it against the time 
data, a straight line should result with a slope —k. Pat now computes {T — Ts) 
for each of his ten temperature data points, 

> t emp2:=[seq( temp[ i ] -Ts , i= l . .10) ] ; 

temp2 := [3.3, 3.1, 3.0, 2.8, 2.7, 2.6, 2.5, 2.3, 2.2, 2.1] 
and uses the map command to apply the log to each operand of the temp2 list. 
This command generate a new list, temp3, of the ln(T — Ts) values. 

> temp3:=map(log,temp2); 

tempS := [1.193922468, 1.131402111, 1.098612289, 1.029619417, 
0.9932517730, 0.9555114450, 0.9162907319, 0.8329091229, 
0.7884573604, 0.7419373447] 

The two lists time and tem,p3 are zipped into a list of lists called points. 

> pair :=(t ime, temp3)->[t ime, tempS]; 

pair := {time, tempS) -^ [time, temp3] 

> po in t s :=z ip(pa i r , t ime , tempS) ; 

points := [[0.5, 1.193922468], [1.0, 1.131402111], [1.5, 1.098612289], 

[2.0, 1.029619417], [2.5, 0.9932517730], [3.0, 0.9555114450], 

[3.5, 0.9162907319], [4.0, 0.8329091229], [4.5, 0.7884573604], 

[5.0, 0.7419373447]] 
Pat loads the Statistics and plots packages, 

> with(Statistics): with(plots): 

and then uses the F i t command to find the best-fitting (to 10 digits) straight 
line to the points data. 

> eq :=eva l f (F i t (a* t+b , t ime , temp3, t ) ,10) ; 

eq := -0.099087534281 + 1.240682126 
To see how well the best-fitting straight line actually fits the data, Pat plots eq 
over the 5 hour measurement span. 

> Gr :=p lo t ( eq , t=0 . . 5 ) : 
He also creates a plot of points, 
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> pO: =plot ( p o i n t s , s t y l e = p o i n t , sy inbol=c irc le , syi i ibolsize=12 , 

c o l o r = b l u e ) : 
and superimposes pO and Gr with the d i s p l a y command to produce Figure 5.7. 

> d i s p l a y ( { p O , G r } , l a b e l s = [ " t " , " l o g ( T - T s ) " ] ) ; 

Figure 5.7: Best-fitting straight fine to Pa t ' s observational data . 

The best-fitting straight hue fits Pa t ' s observational da ta quite well, so he feels 
confident tha t he can obtain a good estimate of the cooling coefficient k. Its 
value is found by taking minus the coefficient of t in eq. 

> k : = - c o e f f ( e q , t ) ; 

k := 0.09908753428 

So, k ^ 0.1 hr~^ for the cooling coefficient. Wi th this parameter determined, 

Pat solves the differential equation de using an initial temperature of 37°C. 

> e q : = d s o l v e ( { d e , T ( 0 ) = 3 7 } , T ( t ) ) ; 

eq - T{t) = 
49543767150 42112202059 / _ 2477188357 tx 

1_ e^ 25000000000/ 
2477188357 ' 2477188357 

Pa t notes how Maple has converted all ffoating-point numbers to rational exact 
numbers in order to speed up the analytic ODE-solving routine. He doesn't 
particularly like this structure of the solution, however, so he converts it back 
to a 10-digit ffoating-point form,^ 

> e q : = e v a l f ( e q ) ; 

eq := T{t) = 20.00000000 + 17.00000000 e^-^-^^^^^^^^^^^^) 

and makes a plot of the exponential decrease of the body temperature for 20 

hours after death. 

> p l o t ( r h s ( e q ) , t = 0 . . 2 0 , l a b e l s = [ " t i m e " , " t e m p " ] , t i c k m a r k s = [ 3 , 5 ] ) ; 

^Alternatively, a solution in terms of floating-point numbers can be obtained by including 
the option convert_to_exact=f alse in the dsolve command. 
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Figure 5.8: Exponential decrease in body temperature after death. 

Although Pat could click on the Maple plot to find the approximate number of 
hours elapsed after death for the body to cool to 23.5 °, an analytic solution is 
more accurate. This temperature is inputted into eg, 

> T:=23.5: eq; 

23.5 = 20.00000000 + 17.00000000 e^-^-^^^^^^^^^^st) 
and, using the 24 hour time system with 18:00 corresponding to 6:00 p.m., the 
time of death would have been at (18.00 — t) hr, where t is the solution of eq. 

> Death_occiirred:=18.00-solve(eq, t) , AM^Monday.morning; 

Death-Occurred :— 2.04995757, AM -Monday-morning 
So the estimated time of death was shortly after 2:00 a.m., Monday morning. 

The detectives are not happy to hear this, since Louie the Louse appears 
to have an airtight alibi for this time period. He was observed returning to 
his apartment by neighbors at around 1:00 a.m. this Monday morning and 
apparently didn't leave after that. 

Having done all that he could do, Pat calls it a night and heads home for 
a much needed good night's sleep. However, so convinced are the detectives of 
Louie's guilt that they go back to the penthouse and seek out the manager of 
the apartment complex. Here they learn that the temperature of the penthouse 
was computer controlled and that the thermostat had been previously set to 
23 °C because it was winter and the elderly gentleman liked to be comfortably 
warm. However, this was the day that he had been about to leave for Palm 
Springs for the winter season. Thus, the thermostat had been programmed to 
linearly decrease the temperature of the penthouse from 23° to 20° between 8:30 
a.m. and 9:00 a.m. Monday morning and then hold the temperature thereafter 
at 20°. Excited by this new information, they use their cell phone to contact 
Pat, who has just managed to fall asleep, at home. 

Feeling that he isn't destined to get much sleep that night anyway, Pat 
enters the new ambient temperature data. The problem is broken into three 
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parts, first to find the temperature of the body at 9:00 a.m. Monday morning, 
then the body temperature at 8:30 a.m., and finally the time it took for the 
body to cool from 37° to the 8:30 a.m. body temperature. 

Between 9:00 a.m. Monday morning and 6:00 p.m. Monday afternoon, the 
penthouse temperature was 20 °C. Pat unassigns the value of T from the value 
23.5 it had earlier and reenters Newton's law of cooling, de. 

> u n a s s i g n ( ' T ' ) : de; 

— T{t) = -0.09908753428 T{t) + 1.981750686 
at 

The initial body temperature at 9.00 a.m. is labeled T9 and de is solved. 

> dsol:=evalf(dsolve({de,T(0)=T9}, T ( t ) ) ) ; 

dsol := T{t) = 20.00000000 + e(-0.09908753428*) ^j^g _ 20.00000000) 
Substituting the body temperature of 23.5° at 6.00 p.m. Monday and noting 
that this is 9 hours later, 

> eq:=subs({T(t )=23.5 , t=9},dsol) ; 

eq := 23.5 = 20.00000000 + ê -̂ -̂ ^̂ ^̂ '̂ ^o^̂ ) {T9 - 20.00000000) 
eq is solved for the body temperature T9. 

> T9:=solve(eq,T9); 

T9 := 28.53820483 
The body temperature at 9:00 a.m. Monday morning was about 28.5 °C. This 
temperature is then used as the final body temperature for the next time interval 
8:30 a.m. to 9:00 a.m. Monday. So that the same symbols can be used again, t, 
T5, and T are unassigned. 

> u n a s s i g n C t ' , 'Ts ' , 'T ' ) : 
Over a half-hour interval, the penthouse temperature decreased linearly from 
23° to 20°, so in this interval the ambient temperature is given by Ts — 23 —61. 

> Ts:=23-6*t; 

Ts := 23-6t 
Newton's cooling law is entered, 

> d e l : = d i f f ( T ( t ) , t ) = - k * ( T ( t ) - T s ) ; 

del := — T{t) ^ -0.09908753428 T(t) + 2.279013288 - 0.59452520571 

and is solved with the initial body temperature now labeled as T8S0. 

> dsol l :=eval f (dsolve({del ,T(0)=T830},T( t ) ) ) ; 

dsoll := T{t) = 83.55252099 - 6.000000000^ 
+ e(-0-09908753428t) ^J^^^Q _ 83.55252099) 

The final body temperature at the end of the half-hour interval, TP, is entered, 

> eq l :=subs({T( t )=T9, t=0 .5} ,dsol l ) ; 

eql :- 28.53820483 = 80.55252099 + ê -̂ -̂ ^̂ ^̂ ^̂ ^̂ ^̂ ) {T830 - 83.55252099) 



234 CHAPTER 5. LINEAR ODE MODELS 

and the body temperature T830 determined. 

> T830:=solve(eql,T830); 

T830 := 28.89631546 
The body temperature at 8:30 a.m. Monday morning was shghtly under 29 °C. 
Again unassigning the following variables, 

> u n a s s i g n C t ' , ' T s \ ' T O : 
Newton's law of cooling is solved for an ambient temperature of 23° and an 
initial body temperature at the time of death of 37°. 

> Ts:=23: 

> de2 :=d i f f (T ( t ) , t )= -k* (T( t ) -Ts ) ; 

de2 := — T{t) = -0.09908753428 T{t) + 2.279013288 
at 

> dsol2:=evalf(dsolve({de2,T(0)=37}, T(t))); 

dsol2 := T{t) = 23.00000000+ 14.00000000 e(-0-0^^08753428t) 

Substituting the new final body temperature T830, 

> eq2:=subs({T(t)=T830},dsol2); 

eq2 := 28.89631546 = 23.00000000 + 14.00000000e(-009908753428t) 

eq2 is solved for the number of hours before 8:30 a.m. that death occurred. 

> Hours.bef ore830ain: =solve (eq2, t ) ; 
Hours-heforeSSOam := 8.726926938 

The time of death was approximately 8.73 hr before 8:30 a.m. Monday. 

> Death.occurred: =12- (7o-8.5), PM_Siinday_night; 

Death.occurred := 11.77307306, PM Sunday .night 
So, the victim was murdered just before midnight on Sunday. Pat phones the 
homicide detectives and tells them that Louie's alibi is no longer a good one 
and they might want to bring him in for further questioning. 

PROBLEMS: 
Problem 5-11: Newton's law of cooling 
An object is originally 100 °C hotter than its surroundings. After 15 minutes, 
the temperature difference has fallen to 60 °C. How many minutes will it take 
the object to reach a temperature 10 °C above its surroundings? What will the 
temperature of the object be after 25 minutes? 

Problem 5-12: Infectious disease 
An infectious disease spreads slowly through a large population. The fraction 
/ of the population that has been exposed to the disease within t years of its 
introduction is given by 

/W =0.2(1-/(0) . 
If /(O) =0, determine the fraction of the population infected after t years. How 
long does it take for 75% of the population to be infected? 
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Problem 5-13: Population growth with immigration 
The growth of large populations can be modeled over short time periods by 
assuming that the population number N{t) grows continously with time at a 
rate proportional to N{t). If the birth rate is b and there is also immigration 
into the population at a constant rate r: 

(a) Write out the relevant ODE. Discuss the model. 

(b) Analytically solve the ODE for N{t). 

(c) If initially A (̂0) = 1 million people are present, and 435 thousand indi
viduals immigrate into the community in the first year, and 1.564 million 
people are present at the end of the first year, determine the birth rate b. 

(d) Determine the population number 2 years later; 10 years later. 

(e) Plot the population number over the time interval t — O to 10 years. 

(f) How would you include the death rate and emigration in the ODE? 

Problem 5-14: Pick's law 
The diffusion of a solute across a cell membrane is given by Fick^s law, which 
takes the form 

C{t)^K{Cs-C{t)). 
Here C{t) is the concentration of solute in the cell at time t, AV a constant which 
depends on the size of the cell and on the membrane properties, and Cs the 
concentration of solute outside the cell. 

(a) For analysis purposes, one can set K = 1 without loss of generality. Explain 
why this can be done. 

(b) Taking /̂  = 1 and an initial concentration C(0) = C^/lOO, analytically 
solve the ODE for C{t). 

(c) Plot the ratio C{t)/Cs over the time interval t — O to 10. 

(d) Making use of the solve command, determine how long it takes the con
centration to attain the value C5/IO. 

Problem 5-15: Population variation with emigration 
The initial population of a city is 1.1 million people. The city is growing at 5% 
per year due to births, but losing population due to emigration at the rate of 
50000 (1 + cos(7rt/5)), where t is in years. 

(a) Write out the ODE describing the city's population number N{t). 

(b) Derive the analytic form of N{t) for t > 0. 

(c) Plot the solution over the range t = 0 to 10 years. 

(d) In the plotted range, at what time is the city population a minimum? a 
maximum? 

(e) What is the city's population at t = 5 years? 
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Problem 5-16: Radioactive chains 
The nucleus of uranium 238 is unstable, decaying via a-emission into thorium 
234, which in turn /?-decays into palladium 234 and so on until the stable iso
tope lead 206 is created. Such a sequence of disintegrations is referred to as 
a radioactive chain. Let A^i(t), N2{t), A^3(t), etc., be the number of species-1, 
species-2, etc., atoms in a radioactive chain at time t. The decay rates of the 
various species can be described by the following coupled equations: 

Ni = -XiNi, N2 = XiNi - X2N2, N3 = X2N2 - X3N3, etc. 

(a) Explain the structure of these equations. 

(b) If initially Ni — N, N2 = 0, Â 3 = 0, simultaneously solve the system of 
equations to find an analytic expression for A^3(t), i.e., the number of 
species-3 atoms at time t. 

(c) Taking the nominal values Â  —1000, Ai = l, A2 = 2, and A3 = 3, plot Ns{t) 
for t = 0 to 3. 

(d) At what time is Â 3 a maximum? How many nuclei of type 3 are there 
at this time? Determine your answer by clicking on the plot to find the 
coordinates of the maximum. Check your answer analytically. 

Problem 5-17: Lead poisoning 
Batschelet, Brand, and Steiner [BBS79] have formulated a model for the inges
tion of lead, a semitoxic chemical, by the human body. For modeling purposes, 
the body is "divided" into the three "compartments," blood, tissue, and bones, 
as in the following figure. The semitoxic chemical enters the bloodstream at 

K 
blood 

/V12 

*a, 
tissue 

C2 

^ 2̂3 

w 

h, 
bones 

C3 

[K [ks 

the rate K. It is distributed within the body, passing from blood to tissue to 
bones with the rate constants shown. It is lost from compartment 1 (blood) 
in the form of urine at the rate ku and from compartment 2 (tissue) in the 
form of sweat at the rate kg. Let Ci, C2, and C3 be the concentrations of lead 
in the blood, tissue, and bones. All the exchanges between compartments are 
assumed to be linear. The chemical rate equation for Ci is 

Ci ^ K - kuCi - ki2Ci + k2iC2. 

(a) Write out the rate equations for C2 and C3. 

(b) Taking the initial concentrations to be all zero and letting i^ = 2.0 and 
ku = kg = ki2 = k2i — A;23 = ^̂ 32 = 1.0, analytically solve for the three 
concentrations. Plot Cs{t) for t = Oto 20 and discuss the result. 
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Problem 5-18: Price and supply 
An important problem in economics is the interaction between the price P and 
supply S of a given commodity as a function of time t. A simple model for this 
interaction is described by the two coupled equations 

P = I{t)-h{S-So)^ S^k2{P-Po)-
Here I{t) is the positive inflation factor, ki and k2 are positive proportionality 
coefficients, and PQ and SQ are the equilibrium price and supply, respectively. 
In the first equation, if S > 5o the supply is too large and the price tends 
to decrease, while if 5 < 5o the converse holds. In the second equation, if 
P > PQ the right-hand side of the equation is positive, corresponding to the 
manufacturer increasing his supply to take advantage of the higher price (think, 
for example, about an oil producer). If P < PQ, the right-hand side is negative 
and the supply is decreased because the price is too low. 

(a) Assuming that the inflation factor I{t) is equal to a constant a and ini
tially P(0) = Po, 5'(0) = 5o, analytically solve the system of equations for 
P{t), S{t), using the Laplace transform option, method=laplace, in the 
dsolve command. 

(b) Taking the nominal values a = 0.05, /ci = A:2 = 5o = PQ = 1, plot the price 
and supply curves in the same graph for the range t = 0 to 25. Does the 
supply curve lead or lag the price curve? 

Problem 5-19: Specified initial conditions 
Solve the following ODEs for the specified initial conditions: 

(a) X -\-5x = cos(t) -h e~*, x(0) = 1; 

(b) X = - 4 x + ?/ + 3, y = - 4 x - 4?/ + 5, x{0) = 1, ^(0) = - 1 ; 

Plot each solution over a suitable time range that includes the steady-state 
regime. In each case, estimate the time interval over which the transient lasts. 

Problem 5-20: Predator-prey interaction 
A predator (population number a:;)-prey (population number y) interaction be
tween two species is modeled by the time-dependent ODE system 

X = X -\- y, y = y — 9x. 

If the initial population numbers are x{0) = 100 and y{0) — 1000, find the 
population numbers at arbitrary time ^ > 0. Show that the prey become extinct 
after a certain time. Determine the time at which extinction takes place. Make 
a plot of the population numbers over this time interval. 

Problem 5-21: Yeast growth 
Yeast is growing in a sugar solution. If the rate of increase in the weight of yeast 
is equal to one-third of the weight already formed (when t is given in hours), 
write down the ODE describing the change in weight. If the weight is initially 
14 grams, what is the weight after 2 hours? Plot the temporal evolution of the 
weight over this time. 
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5.2.2 The Water Skier 

Just when you thought it was safe to go back in the water. 
Publicity for Jaws 2 (1978 film) 

Russell, the engineer who was transferred to Phoenix, is also an avid water 
skier and often spends the blazingly hot Arizona summer weekends up at Teddy 
Roosevelt Lake engaging in this sport. His ever-active mind speculates on what 
path a hypothetical water skier would trace out if the situation depicted in 
Figure 5.9 prevailed and on the feasibility of actually carrying out the stunt. 

x=a 

Figure 5.9: The water skier geometry. 

Initially, the water skier is at the origin and holding onto a taut, inextensible, 
rope of length a attached to a motorboat that starts at ?/ = 0 and moves at 
constant speed in the positive ^/-direction along the line x = a. The water skier 
is assumed to always point his skis toward the boat. 

To carry out the calculation, Russell goes to his computer and starts typing 
in the formulation of the problem. He first wants to see what the skier's trajec
tory looks like and then obtain an analytic solution. To carry out the former, 
a call is made to both the plots and DEtools packages. 

> restart: wi th(plots ) : with(DEtools): 
From Figure 5.9, the rope has a slope given by dy/dx = ^^a"^ — (a — x)'^/{a — x)y 
which is entered. 

> de:=diff (y(x) ,x)=sqrt(a^2-(a-x)'^2)/(a-x) ; 

d , , \ / 2 a x — x'^ 
de :-

dx 
y{x) 
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Russell notes how Maple has automatically simplified the input expression in its 
output. To plot the path, he assumes a rope length of 10 m. The x-coordinate of 
the trajectory must lie between x = 0 and x = 10. At the latter value, the slope 
will become infinite. To avoid any possible mathematical difficulty, Russell uses 
the assume command to limit the x-range between 0 and 10. Although he is 
confident that his assumptions are as entered, he checks them by asking Maple 
about the status of x. 

> a:=10: assume(0<x,x<a): about(x) ; 
Originally x, renamed x^:is assumed to be:RealRange(Open(0),Open(10)) 

The output confirms the assumed range of x. The slope equation, which is a 
first-order linear ODE, now takes the form 

> de; 

d 
y{x) = 

^/Wx 
dx 10 — X 

Before seeking an analytic solution, Russell obtains a preliminary idea of the 
nature of the path by using the DEplot command to create a plot p i of the 
trajectory and the tangent field, 

> p l :=DEplo t (de ,{y(x)} ,x=0 . . a -0 .1 ,y=0 . .40 , [ [y (0)=0] ] , s t eps ize 
=0.1,dirgrid=[25,25],arrows=MEDIUM,linecolor=blue): 

and displaying it in Figure 5.10. The skier's trajectory is the solid curve shown 
in the picture. 

> d i sp l ay (p i , l abe l s= [ "x" , "y" ] , t i ckmarks=[4 ,4 ] ) ; 

4 x 6 8 

Figure 5.10: The solid line is the path of the water skier. 
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Looking at the structure of de, Russell realizes that he could obtain the analytic 
form y{x) of the skier's trajectory by simply integrating the right-hand side of 
the equation from 0 to some value x < a. However, he decides instead to use 
the dsolve command to solve the first-order ODE de. 

> sol :=dsolve({de,y(0)=0},y(x)) ; 

sol :=y(x) = -y/x(20-x)-^ lOarctanh I , ) + 5 / 7 r 

Since he has already graphically solved the problem and knows therefore that 
the analytic solution must be real, Russell is surprised by the appearance of the 
imaginary term, 5 / TT, at the end of the output line. In an attempt to determine 
what is going on, he applies the symbolic complex evaluation command, evalc, 
to split the right-hand side of sol into real and imaginary parts. 

> Y:=eva lc ( rhs ( so l ) ) ; 

Y := - V 2 0 x - x 2 + - l n y20x 
"> , + 1 

2 \ 

'' - 1 
\ V \ / 2 0 x - x 2 

+ ( ~ T: ( 1 - signum I 1 , ) | TT -h 5 TT ) / 

The solution has been converted from an inverse trig form into a log form, 
but with the appearance of the signum function^ in the imaginary term. The 
signum function appears because the sign of the argument inside the signum 
function is not known. If the sign were such that the coefficient of I became 
- | ( 1 + l)7r 4- 57r == 0, the solution would be completely real. This must be the 
case here. 

To check this out, Russell uses the s e l ec t command to extract the imagi
nary term containing I from Y. 

> t e rm:=se l ec t (has ,Y , I ) ; 

term := \ — 1 — signum I 1 = | ) TT + 5 TT ) / 

He then evaluates term for a representative value, e.g., x = 4, from the allowed 
range 0 < x < 10. 

> Term:=eval(term,x=4); 

Term := 0 
The imaginary term is zero and may be removed from Y. This can be accom
plished by substituting term = Term into Y. 

> Y:=subs(term=Term,Y); 

^The signum function of x is defined as signum(x)= x/\x\ for x ^ 0. 
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Y :=-V20x-x^^-\n 

10 

^ 2 0 ^ 
+ 1 

10 
\W20x-x2 'J J 

The radical expression Y can be further simphfied by applying the radical 
simplification (r ads imp) command, yielding the final analytic formula for the 
skier's path. 

> skier_path:=radsimp(Y); 

/ 
skier-path -V^(20-x) + -ln 

( l0+V^(20-x)y 

The skier's path is plotted as a thick (using the option thickness=2) blue line 
over the same x range as was used in producing Figure 5.10. 

> sk ie r_p lo t :=p lo t ( sk ie r_pa th ,x=0 . . a -0 .1 , co lo r=b lue , 
th ickness=2): 

The path of the boat along the straight line x = a between ^ = 0 and 40 is 
plotted as a thick red line, 

> b o a t ^ p l o t : = p l o t ( [ [ a , 0 ] , [ a , 4 0 ] ] , s t y l e = l i n e , c o l o r = r e d , 
th ickness=2): 

and displayed along with the skier's trajectory in Figure 5.11. The water skier's 
trajectory is, of course, the same as obtained graphically with DEplot. 

> display ({boat _plo t , sk ier_plo t} ,v iew=[0. . a , 0 . .40] , 
l abe ls=["x" ,"y"] ,tickinarks=[4,4] ) ; 

4 0 T 

O 2 4 x 6 8 10 

Figure 5.11: Plot of the skier's and boat's paths. 

Having satisfied his mathematical curiosity, Russell is eager to get out of the 
Phoenix heat and onto the cool water of Roosevelt Lake. Maybe he can even 
attempt to approximately duplicate the situation depicted in the calculation. 
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PROBLEMS: 
Problem 5-22: Solving by direct integrat ion 
By directly integrating the right-hand side of the relevant ODE, derive an an
alytic real expression for the skier's trajectory and plot it. At what value of x 
does the trajectory make a 45° angle with the x-axis? 

5.2.3 Ready to Charge 

Lawyers are like rhinoceroses: thick skinned, short-sighted, 
and always ready to charge, 
David Mellor, British Conservative politician (1949-) 

The differential equation obeyed by the charge q{t) on a capacitor C connected 
in series with a resistor R and a voltage source V is 

Rq+^=V. (5.9) 

Suppose that V — A{t/T) e~'^^'^, where ^ is a positive constant and r is a 
characteristic time. Analytically, determine q{t) if the initial charge on the 
capacitor is zero. Taking R = b ohms, C = 2 farads, A = 3 volts, and r = 1 
second, plot the growth of the charge on the capacitor for t = 0 to 70 seconds. 
At what time is the charge on the capacitor a maximum? 

The analytic form of the voltage source V is entered. 

> r e s t a r t : 

> V:=A*( t / tau)*exp(- t / t au) ; 

Ate^~r) 

T 

On entering the ODE in Equation (5.9), V is automatically substituted. 

> ode:=R*diff(q(t) , t )+q(t) /C=V; 

r. f d , A q(t) Ate^~r) 
ode :^R ( — q{t) + ^ ^ -

Jt ^^ ') C T 
To solve ode, subject to the initial condition g'(0) = 0, let's first mimic the main 
steps that one would carry out in a hand calculation. Loading the DEtools 
library package, the integrating factor F for the first-order ODE is obtained. 

> with(DEtools): F:=intfactor(ode); 

With the integrating factor known, the hand calculation proceeds by multiply
ing the ODE by the integrating factor and integrating the result. This step 
is now carried out by multiplying ode by F and applying the first integral 
(f i r i n t ) command. 
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> f ir int(F*ode); 

(^-) , , e^'r + ^) A(RCT + tCR-tT)C ^^ ^ 

Using the i so la te command allows us to isolate q{t) to the left-hand side of 
the equation, thus giving us a solution with one undetermined constant _Ci. 

> so l := i so la t e (7o ,q ( t ) ) ; 

e^~r^'^'>A{RCT + tCR-tT)C 

{-T^CRY 
.CI 

sol := q{t) = 

The initial condition is applied by evaluating the rhs of sol at t = 0 and equating 
it to zero. Then one analytically solves for the constant -CI. 

> _C1:=solve(eval(rhs (sol) , t=0)=0,^Cl) ; 

ARC'r 
' {-T^CRY 

Noting that the constant is automatically substituted, the solution is obtained. 
To obtain a nice form, the result is simphfied with the exponential option. 

> simplify(sol,exp); 

, , , ê  RCT ) A(RCT + tCR-tT)C ARC^r \ ( i_) 
ait) = ^̂  \ e*̂  CRJ 
^^^ ' {-T + CRY ^ {-T + CRY 
We will now bypass all the steps above and derive the same result using the 
dsolve command. It is sometimes useful to ask Maple what steps it carried out 
in arriving at the solution. Even if the ODE is such that no analytic solution 
exists, as is often the case with nonlinear ODEs, it is instructive to know what 
methods Maple tried. The relevant information will be produced in the output 
of the dsolve command if the following inf olevel command is entered. The 
number on the right of the colon can be an integer between 1 and 5. The larger 
the number, the more information is usually provided. Here, we have taken the 
integer to be 5. 

> infolevel [dsolve] :=5: 
Using dsolve, ode is analytically solved for q{t), subject to the initial condition. 

> q ( t ) := rhs (dso lve ({ode ,q (0 )=0} ,q ( t ) ) ) ; 
Methods for first order ODEs: 
— Trying classification methods — 
trying a quadrature 
trying 1st order linear 
<— 1st order linear successful 

nit) = I '^ -^^^^A{RCr^tCR-tr)C ARC^r \ ( _ _ ^ ) 
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The solution is identical to that obtained earlier. Maple has recognized the 
ODE as being first-order and linear and has presumably solved it by standard 
techniques, such as carried out in our "hand" calculation. Now q{t) is evaluated 
with the given set of parameter values, 

> q(t) :=eval(q(t) ,{R=5,C=2,A=3,tau=l}); 

27. 
and plotted over the range t=^0 to 70. 

> p l o t ( q ( t ) , t = 0 . . 7 0 , l a b e l s = [ " t " , " q " ] ) ; 

/ 2 r_9M 
q{t):=i--ey ioi(10 + 9t) 

oV l o ) 

10 20 30 t 40 50 60 70 

Figure 5.12: Charge on the capacitor as a function of time. 

The resulting picture is shown in Figure 5.12. The charge on the capacitor 
initially builds up for about 4 seconds and then ultimately decreases to zero 
because of the presence of the resistor in the circuit. The time at which the 
maximum charge on the capacitor occurs can be more precisely obtained by set
ting dq/dt — {) and solving for the time using the floating-point solve command. 
The option telling Maple to avoid t = 0 is included. Otherwise, the answer 0 is 
obtained for T, which corresponds to a minimum, rather than a maximum of 
the curve. 

> T:=fso lveCdif f (q( t ) , t )=0 , t , avoid={t=0}) ; 

T := 4.016611586 
The maximum charge on the capacitor occurs at 4.02 seconds. 

PROBLEMS: 
Problem 5-23: Charging a capacitor 
Solve the text example again, but with a voltage source given by V - --Aitlrfe-
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Problem 5-24: Purely Math 
Obtain the general solutions of the following ODEs by (i) finding the integrating 
factor and the first integral, (ii) using the dsolve command. The primes denote 
spatial derivatives. 

(a) xy' -\- {1 - x)y = xe""; 

(b) xy' — ky = x"^ (consider k — 2 separately); 

(c) y' ~ y tan(x) = x. 

5.3 Second-Order ODE Models 

5.3.1 Shrinking the Safety Envelope 

It is always safe to learn, even from our enemies; 
seldom safe to venture to instruct, even our friends. 
C. C. Colton, English author, clergyman (1780-1832) 

In Chapter 3, the envelope of safety around an erupting volcanic mountain in 
the Cascade Range of the Pacific Northwest was calculated. Recall that Sheelo, 
a part-time National Geographic photographer, wanted to approach as close as 
possible to the eruption in a rented plane. However, the effect of air resistance 
on the ejected rocks was completely neglected. Qualitatively, the inclusion of air 
drag should shrink the envelope and allow the plane to approach more closely. 
In this section, we shall estimate how much this shrinkage would be. 

The simplest model of air drag is Stokes's law of resistance^ for which the 
drag force is given by Fd = —kmv, where /c is a positive constant, m the mass of 
the projectile, and v the velocity vector. Note that in this model the force law 
is linear in the velocity and directed in the opposite direction to the motion. In 
reality, the drag force is more complicated, and quadratic terms in the velocity 
can become important, depending on the speed. However, Stokes's law is a 
reasonable approximation [MT95] at very low speeds and also at speeds much 
greater than the speed of sound (about 340 m/s at 20°C and 1 atmosphere). 
Further, it leads to a linear ODE that is easily solved, whereas inclusion of 
quadratic terms results in a nonlinear ODE that is more formidable to deal 
with. So, since the emphasis in this chapter is on analytically solving linear 
ODEs, let's assume that Stokes's law of air drag prevails. 

> restart: wi th(plots ) : 
Then, on mentally canceling the mass from both sides, Newton's equation of 
motion in the horizontal (x) direction gives 

> x e q : = d i f f ( x ( t ) , t , t ) = - k * d i f f ( x ( t ) , t ) ; 

, e g : ^ - . ( t ) = - U - x ( t ) 



246 CHAPTER 5. LINEAR ODE MODELS 

A given rock starts out at the origin traveling at an angle 0 with respect to 
the horizontal and with an initial speed Vo. Thus the initial x-component of 
velocity is Vbcos^ and the vertical (y) component is VosinO. The dsolve 
command is used to solve xeq for x{t), subject to x(0) = 0, x(0)= Vbcos^. 

> xsol :=dsolve({xeq,x(0)=0,D(x)(0)=Vo*cos( theta)},x( t ) ) ; 

, , Vocos(l9) Vocos{0)e^-^^^ 
xsol := x{t) = ^ —^ 

A: k 
The co l l ec t command is employed to successively (note the use of a Maple 
list) collect the coefficients of cos(0), Vo, and 1/A: in the above output. 

> xsol:=collect(7o, [cos( theta) ,Vo, l /k] ) ; 

, , (l-e^-^^^)Vocos(O) 
xsol \— x(t) — 

k 
Including drag and gravity, the equation of motion in the vertical direction is 

> y e q : = d i f f ( y ( t ) , t , t ) = - k * d i f f ( y ( t ) , t ) - g ; 

which is solved, subject to ^(0) = 0, yifi)— VosinO, for y[t). 

> ysol :=dsolve({yeq,y(0)=0,D(y)(0)=Vo*sin( theta)} ,y( t ) ) ; 

(g+ Vosin((9) k) e^'^*) at g + Vosm(9) k 
ysol := y{t) = ~'-^ ^ ^ + '- ^ ^ ^ ^ 

The terms in the solution are regrouped with the following co l l ec t command. 

> ysol:=collect(*/o, [s in(theta) , V o , l / k , g ] ) ; 

( l - e ( - * * ) ) l^osin(6i) gt (I - e'^'''*'>)g 

Recall that in our earlier discussion in Chapter 3 the initial speed was taken 
to be Vo = 700 m/s and g ^ 10 m/s^, where Vo was the maximum speed of 
the rocks. Rocks of lower speed will lie inside the envelope of safety calculated 
with the maximum speed. As a representative value, the coefficient of friction is 
taken to be k = 0.01 s~^ and the total time elapsed for generating the plot taken 
to be T = 120 seconds. (More realistically, k would decrease with altitude.) 

> Vo:=700: g:=10: k :=0 .01 : T:=120: 
A uniform range of angles between 0.01 and 3.01 radians is considered for 
plotting the different possible trajectories. The graphing procedure makes use 
of the space curve command, and the 3-dimensional viewing box is oriented so 
as to show the vertical coordinate, y{t)^ versus the horizontal coordinate, x{t). 

> for i from -20 to 20 do 

> the ta :=1 .51+( i* .075) : 

> pi [i] : =spacecurve ( [rhs (xsol),rhs (ysol) ,t] , t=0. . T, axes=normal, 

labels=["x","y","t"],orientation=[-90,0],color=red); 

> end do: 
The family of parabolic trajectories is displayed in Figure 5.13. 
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> display(seq(pl[i],i=-20..20),tickmarks=[4,4,2] 

view=[-30000..30000,0..20000,0..T]); 

2 0 0 0 0 

- 3 0 0 0 0 3 0 0 0 0 

Figure 5.13: Family of parabolic trajectories when air resistance is considered. 

If this figure is compared with Figure 3.16 in Chapter 3, the envelope of safety 
has shrunk considerably, from a horizontal radius of 50 km to about 30 km and 
a maximum altitude of 17 km compared to 24 km without air resistance. Thus, 
Sheelo can fly closer to the eruption and perhaps obtain a more spectacular 
picture to grace the cover of the National Geographic magazine. If the damping 
coefficient k is larger (smaller) than the representative value used here, the 
envelope is correspondingly smaller (larger). 

The time of flight of a rock ejected at a given angle can be calculated as well 
as the speed with which the rock strikes the ground. For simplicity, the height 
of the volcano above the surrounding level land is neglected. 

The angle 6 is unassigned and then given the value 6 = 45°, or 7r/4 radians. 

> unass ign( ' theta' ) : theta:=eval f (Pi /4) : 
When the rock hits the ground again (remember that we are neglecting the 
height of the volcano), the right-hand side of ysol must be zero. 

> eq:=rhs(ysol)=0; 

eq := 149497.4747 - 149497.4747 e '̂̂ -^^^^ - 1000. ̂  = 0 
Clearly one root of the above transcendental equation is t = 0, the time at 
which the rock is ejected from the volcano. Inserting the option avoid={t=0} 
in the f solve command, the time of flight for the rock is found to be 

> T:=fsolve(eq,t ,avoid={t=0},0. .120) ; 

T := 86.63836788 
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about 87 seconds. The x-and y-components of velocity are calculated at arbi
trary time t by differentiating the right-hand side of xsol and ysol, respectively, 
with respect to time. 

> V [ x ] : = d i f f ( r h s ( x s o l ) , t ) ; V [ y ] : = d i f f ( r h s ( y s o l ) , t ) ; 

K := 494.9747468 e(-^-°i*^ 

Vy := 1494.974747 e^-°-°i*) - 1000. 

Forming the speed, JVx + ^y^ and substituting the time of flight, T, 

> Speed:=evalf(subs(t=T,sqrt(V[x]^2+V[y] ^2)))*meters/second; 

^ , 425.7455131 meters 
Speed :— ; 

second 
yields a speed of about 426 m/s when the ejected rock strikes the ground. 

PROBLEMS: 
Problem 5-25: Varying damping coefficient 
With all other parameters the same as in the text recipe, determine the max
imum height and range for k values varying in 0.01 increments from A: = 0 to 
A: = 0.1. Make a plot summarizing each set of results. 

Problem 5-26: Time of flight 
For each angle used in generating the envelope of safety, determine the time of 
flight and make a plot summarizing your results. Hold all other parameters as 
in the text recipe. 

Problem 5-27: The Paris gun 
In World War I, the Germans used a long-range gun named the "Paris gun" to 
shell the city of Paris. The muzzle velocity was 1450 m/s. If the Paris gun was 
fired at an angle of 55° to the horizontal and the drag coefficient was A: = 0.005 
s~-̂ , modify the text code (take ^ = 9.8 m/s^) to answer the following questions: 

(a) What was the horizontal range in km of a projectile fired by this gun? 

(b) To what maximum height in km did the projectile rise? 

(c) Assuming that the launch site and Paris are at the same elevation, how 
long was the projectile in the air before striking its target? 

Problem 5-28: How deep is that well? 
A stone of mass m is dropped down a deep well. The stone is heard striking 
the water 10.0 s after it is released from rest. Assume that sound travels at a 
speed of 340 m/s, and that on its way down the stone experiences a drag force 
F = —bmv, where v is the speed and 6 = 0.1 s~^. Take ^ = 9.8 m/s^. 

(a) How deep is the well? 

(b) How long does the stone take to hit the water? 

(c) Plot the stone's position and velocity over this time interval. 

(d) What is the stone's speed when it hits the water? 
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Problem 5-29: Formulas for time of flight and range 
For the text recipe, the time T that the projectile is in the air (the time of 
flight) is the solution of the transcendental equation 

^ ^ kVpsine^g _ ^.^^ 
gk 

(a) Assuming that k is sufficiently small, use an approximation procedure to 
derive the following approximate formula for the time of flight: 

2Fosin(9 / _ /cFo sin l9 

(b) Making use of part (a), show that the range is given approximately by 

^ V̂o sin(2(9) / 4 A: FQ sin (9 
R ^ 1 

^ V ^9 

Problem 5-30: Greg's falling quarter-pounder 
A careless young boy, named Greg, accidentally drops his still-wrapped quarter-
pound^ hamburger (mass m = 1/4 lb, or 113.5 g) from a restaurant balcony 
located atop one of Metropolis's taller buildings. If the viscous drag (coefficient 
k) is proportional to the velocity and the acceleration due to gravity is g: 

(a) Write out the analytical form of the ODE describing the quarter-pounder's 
height y{t) above the street after t seconds. 

(b) If the quarter-pounder falls from rest from an initial height y{0) — h 
meters above the street below, determine the height y{t) of the falling 
burger above the street level after t seconds. 

(c) li h = 100 m, the acceleration due to gravity is ^ = 9.8 m/s^, and the 
viscous drag coefficient is A: = 0.1 s~^, determine the time it takes Greg's 
quarter-pounder to hit the street. 

(d) Determine the speed of the burger when it hits the street. 

(e) Plot the height of the burger above the street as a function of time. 

Problem 5-31: Sarah the diver 
Sarah, a young girl of mass m = 30 kg, dives into an ocean lagoon from a low 
cliff, entering the water perpendicular to the smooth surface at a speed of 10 
m/s. She makes no swimming motion to ascend but instead lets the buoyant 
force of the water bring her back to the surface in 20 s. 

(a) Assuming that the drag force due to the water is given by Fdrag = —kv^ 
where v is the velocity, and that Sarah's specific gravity is 0.95, determine 
the drag coefficient k. Take ^ = 9.8 m/s^. Note: The specific gravity of a 
body is the ratio of the density of that object to that of water. According 
to Archimedes' principle, the water will exert an upward buoyant force 
equal to Sarah's weight divided by the specific gravity. 

^Technically, this usually refers to the actual meat patty before cooking. However, you 
can assume that this is the mass of the entire cooked burger with all of its fixings. 
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(b) Plot Sarah's vertical distance y{t) relative to the water surface over the 
20-second interval that she is below the surface. 

(c) Determine the time for Sarah to reach maximum depth. How long does 
it take her then to regain the surface if she makes no swimming motion? 

(d) What is the maximum depth? 

Problem 5-32: General solutions 
Use dsolve to determine the general solutions of the following second-order 
ODEs, identifying any functions in the solution that are not "elementary": 

(b) x^ --M — 6y = x^ In J:; 
ax 

(c) 0 - 2 x g + (m-l)y = O; 

(e) -j^ + y = tana;; 

( f )x20+xg- (x^ + i)2;̂ O. 

Problem 5-33: Specified initial conditions 

Use the dsolve command to find the solutions of the following time-dependent 
ODEs for the specified initial conditions: 

(a) y-5y-^6y^0, 7/(0) - 2, ^(0) = 5; 

(b) 9i/ + 6^ + ^ = 5, y{0) = 6, y{0) = 1; 

(c) 5y^2y^y = sm\t), /̂(O) = - 3 , ^(0) = 1; 

(d) y + y = 2cos\t)e-', /̂(O) = 0, ^(0) = - 2 ; 

(e) y + 2y = tcos{t)e-^-i-t'^cos{2t)e-^^, y{0) = 0, y{0) = 0. 

Plot each solution over a suitable time range that includes the steady-state 
regime. In each case, estimate the time interval over which the transient lasts. 

Problem 5-34: Third-order equations 
Determine the general solutions of the following third-order ODEs: 

<»)$ + S^ + ̂ S = «̂  + 3« + '̂  
(b) § + 3 ^ + 4 § + 2 „ = 20cosl. 

Identify the steady-state solutions, simplifying if necessary. 
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5.3.2 Frank N. Stein Is Not Heartless 

/ beheld the wretch-the miserable monster whom, I created, 
Frankenstein, Chapter 5, by Mary Shelley (1797-1851) 

Cardiology involves the study of the heart, its functions and its diseases. The 
mathematical modeling of the heart as it pumps blood through the circula
tory system has a long history, and good models can be very complex. In this 
section, we shall look at a very simple model built on mechanical principles. 

Hugo, a modern eccentric scientist, has created a ghoulish replica of a human 
that he has named Frank N. Stein, in memory of the title character in the novel 
written in 1818 by Mary Shelley. Frank is lying flat on a table that has a spring 
arrangement that allows the table to move horizontally, but not vertically. To 
get Frank's heart going, Hugo gives it a kick start with an artificially created 
lightning bolt. When the heart begins to beat, the table will undergo very 
small horizontal vibrations as a consequence of the pumping of the heart. Hugo 
realizes that these vibrations could be monitored, thus acting as a mechanical 
analogue of an electrocardiograph. By studying the vibrations of the table, 
Hugo hopes to gain information about the vibrations of Frank's heart. Now, 
before the heartless reader pokes holes in this unorthodox approach, let him or 
her be reminded that Hugo is eccentric, and anyway, it's the authors' story. 

To model the heart's pumping action, Hugo assumes that m kg of blood is 
pumped out of the heart on each vibration and y{t) is the instantaneous center 
of mass position of this mass of blood. Hugo has a mathematical background 
and knows that y can be quite generally expressed as a Fourier series, i.e., a 
superposition of harmonic waves of diflPerent frequencies and amplitudes. Taking 
the frequency of the heart to be 17, 

> r e s t a r t : w i t h ( p l o t s ) : 

Hugo writes out a Fourier sine series for y{t), keeping only two terms. 

> y ( t ) :=add(a [ i ]* s in ( i*Omega* t ) , i= l . . 2 ) ; 

y{t) := ai sin(Q t) + a2 sin(2 Q t) 
The amplitude coefficients ai , a2,. • • will be such that the first harmonic or 
fundamental contribution (subscript 1) is dominant, with higher contributions 
being progressively less important. The forcing function due to heart vibrations 
then will be of the form F{t) — m y. Letting the mass of Frank and that portion 
of the table free to vibrate be M kg, the damping coefficient 2 /3, and the natural 
frequency a;, the equation of motion of the table (plus Frank) is given by 

> de:=M*diff (x( t ) , t , t )+2*beta*dif f (x( t ) , t )+omega^2*x( t ) 

= m * d i f f ( y ( t ) , t , t ) ; 

= m{-ai sin(fi t)Q^ -A a2 sin(2 Q t) 17̂ ) 
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Hugo assumes tha t the displacement and velocity of Frank + table are zero at 
^ = 0, the instant at which Frank's heart begins to beat due to the lightning 
bolt strike. Wi th this initial condition, an analytic solution for x{t) is obtained 
by using the d s o l v e command and collecting sin and cos terms tha t appear in 
the quite formidable answer (whose exact form varies from run to run) . 

> s o l : = d s o l v e ( { d e , x ( 0 ) = 0 , D ( x ) ( 0 ) = 0 } , x ( t ) ) : 

> s o l : = c o l l e c t ( s o l , { s i n , c o s } ) ; 

2mn^ (3aicos(nt) 
sol := x{t) = 

+ 

r^4 M2 + (4/32 - 2u;2 M) ^2 + ^4 

ldmn^a2pcos{2nt) 
16^4 7^2 ^ ( _ 8 ^ 2 M + 16/?2) Q2 ^ ^4 

mn^ {u;^ - n^ M) aism{nt) 

~ n^M^ + {AP^-2cj2 M ) ^2 + ^4 

4 m ^ ^ a2 (cj^ -An'^M) s i n ( 2 ^ t ) 

~ 16 n^ M2 + ( - 8 ^ 2 M + 16/?2) ^2 ^ ^4 

_ l ^ ( ( , ^ W ^ Z M ) l ) ^ ^ 3 ^ _ ^ 2 ^ 4 ^ 3 ^ ^ ^ 2 ^ 2 a i / ? 2 ^ 4 + . . . ) 

+ l , ( - i ^ ± v S 5 ^ I ^ ) ( 3 2 ^ 6 ^ 4 ^ ^ ^ 16 f^^M^a i + • • •) 

The cos(r i t ) , cos(2r2t) , s in(Qt) , and sin(2r^t) terms make up the steady-state 
part of the solution, the transient exponential terms vanishing in the limit 
t -^ cxD. The dots in the above output indicate tha t not all the transient terms 
are shown here in the text. 

Then, Hugo inputs the following parameters: (Frank + table) mass M = 
100 kg, blood mass m==100g = 0.1kg, heartbeat frequency 2̂ = 6.3 radians per 
second (corresponding to about 60 heartbeats per minute), damping parameter 
/ ?=:250kg/s , (Frank + table) natural frequency LJ = ^3400 ^ 58.3radians/s , 
amplitude coefficient a i = 0.05 m, and a2 = 0.02 m. 

> M:=100.0: m : = 0 . 1 : 0mega :=6 .3 : b e t a : = 2 5 0 . 0 : 

o m e g a : = s q r t ( 3 4 0 0 . 0 ) ; a [ l ] : = 0 . 0 5 : a [ 2 ] : = 0 . 0 2 : 

LJ := 58.30951895 
The complete analytic solution is then given by the output of the following 
command line. The complex evaluation command helps to simplify the result, 
but again it should be noted tha t occasionally the exact form may differ from 
tha t shown here in the text. However, the resulting picture is always the same. 

> s o l : = e v a l c ( s o l ) ; 

sol := x{t) = 0.00006100932818 cos(6.31) -f 0.00001024045306 cos(12.6t) 

+ 0.00001102041515 sin(6.3t) + 0.00002027934800 sin(12.6t) 

- 0.00007124978124 e(-2-50ooooooot) cos(5.267826876t) 

- 0.00009549912424 e(-2-^oooooooot) sin(5.267826876t) 
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Hugo has the (Frank + table) system connected to a recording apparatus, which 
traces out a graph of the motion. This allows comparison of the model solu
tion with what is actually observed. The model solution is now plotted in 
Figure 5.14. 

> p l :=plo t ( rhs (so l ) , t=0 . .5 ,numpoin ts=500, th ickness=2) : 
d i s p l a y ( p l , l a b e l s = [ " t " , " x " ] ,tickinarks=[4,3] , 
v iew=[0 . .5 , -0 .0001 . .0 .0001]) ; 

O.OOOl 

-o.oooi -• 

Figure 5.14: Vibrations of the table due to Frank N. Stein's beating heart. 

A steady state is quickly achieved, and the dominant frequency in x{t) is just 
the frequency of Frank's heart. What features in the graph of x(t) are due to the 
second term in the Fourier series driving term? You can check your conclusion 
by running the code with a2—0. 

PROBLEMS: 
Problem 5-35: Frank N. Stein's heartbeat 
Investigate the influence of keeping higher-order terms in the Fourier series, 
taking numerical values of the amplitude coefliicients of your own choosing. 
Remember that the amplitudes should be substantially less than the amplitude 
of the fundamental contribution. 

Problem 5-36: It's a bumpy road ahead, Rob 
Rob, a unicyclist of mass m traveling at a constant horizontal speed v along 
a smooth road, enters a bumpy region as shown in Figure 5.15 at time t = 0. 
The spring supporting the unicycle seat has a spring constant k and the shock 
absorber introduces damping of any vertical motion of the seat. The damping 
force is proportional to the vertical velocity of the seat, the damping coefficient 
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equilibrium position 

Figure 5.15: Rob, the unicyclist, entering a bumpy road region. 

being c. The bumpy region of the road is described by a sinusoidal function 
with amplitude A and wavelength A. 

(a) Assuming that the horizontal speed is maintained in the bumpy region, 
show that the equation for the vertical displacement y{t) of the seat from 
equihbrium in this region is given by 

y-\-2^y^u;'^y == 2-fQAcos{nt) + uj'^ A 8m{ft t), 

with to — yjkjvn, Vt =2 7rt'/A, and 7 = c/(2m). 

(b) Analytically solve the ODE for y{t), given that ^(0) = 0 and 2/(0) = 0, and 
identify the steady-state and transient parts of the solution. 

(c) Given v — 1 m/s, A = 5 m, cj —10 rads/s, 7 = 1/5 s~ \ and ^ = 0.05 m, plot 
y{i) for a sufficiently long time that steady state is essentially achieved. 

(d) What is the amplitude of the vertical displacement y(i) in steady state? 

(e) How long does it take for y{t) to get within 1% of steady state? 

(f) At what speed v does the amplitude of y{i^ attain its maximum value? 

(g) Plot y(i) for this latter case and determine the maximum amplitude, 

(h) How long does it take to achieve steady state in this latter case? 



5,3. SECOND-ORDER ODE MODELS 255 

5.3.3 Halley's Comet 

Mankind is not a circle with a single center but an ellipse with 
two focal points of which facts are one and ideas the other, 
Victor Hugo, French poet, novelist, Les Misrables (1862) 

One of Isaac Newton's many great accomplishments was in applying the law of 
universal gravitation to the motion of the planets of our solar system and to 
comets. Comets are such small objects that they are not easily observed until 
they reach the inner regions of the solar system. Newton's interest in comets 
began as an undergraduate in 1664, subsided for several years, and was rekin
dled in the early 1680s by the appearance of a spectacular comet moving away 
from the sun toward the outer limits of the solar system. This comet was also 
being followed by John Flamsteed, the first Astronomer Royal, at the Royal 
Observatory at Greenwich. Flamsteed believed it to be the same less brilliant 
comet that he had observed moving toward the sun a month earlier. Evidently, 
at first Newton resisted Flamsteed's idea because he found the apparent com
plete reversal of direction of the comet difficult to understand. However, he 
finally came to the conclusion that the orbit of a comet is either hyperbolic or a 
very elongated ellipse. In the former case, the comet would make only one close 
encounter with the sun, while in the latter it would return periodically. Using 
Newton's ideas, Edmund Halley, who had also observed the comet in 1682, pre
dicted that it would return in 1758, 76 years after its previous appearance. The 
successful reappearance of the comet ensured Halley's fame and the naniing of 
the comet in his honor. Earth's last rendevouz with Halley's comet was in 1986. 

Vectoria is in Jennifer's classical mechanics class and has asked her to derive 
the equation for the trajectory traced out by Halley's comet using Maple's 
computer algebra system. They have already studied the "hand derivation" 
carried out in their mechanics text, Marion and Thornton [MT95]. Agreeing 
to this request, Jennifer's lecture on this topic involves executing the computer 
algebra steps on her laptop and projecting the results onto a large screen for 
the students to view. Let us eavesdrop and hsten in on Jennifer's lecture. 

"We begin by loading the plots and VectorCalculus packages, the latter being 
needed for deriving the form of the acceleration vector in polar coordinates. 

> restart: w i t h ( p l o t s ) : with(VectorCalculus): 
To derive the acceleration of a celestial object as it moves about the sun, we 
let r{t) be its radial distance from the sun at time t and 6{t) the angle that the 
radius vector makes with the X-axis. The Cartesian coordinates (X, Y) and 
polar coordinates are related as follows. 

> X:=r(t) *cos( theta( t ) ) j Y:—r(t)*sin(theta(t))j 

X := r{t) cos{e{t)) Y := r(t) sin((9(t)) 
The acceleration vector is calculated by differentiating X and Y twice with 
respect to t and applying the VectorField command in Cartesian coordinates. 

> accel: =VectorField(<dif f (X, t , t) ,dif f (Y, t , t ) > , ' car tes ian ' [x,y] ): 
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Because the Cartesian unit vectors are fixed in magnitude and direction they 
were not differentiated. The MapToBasis command is next used to transform 
or "map" the acceleration into polar unit (basis) vectors. 

> acce l :=MapToBas i s (acce l , ' po la r ' [ r , t he t a ] ) : 
The result of the above transformation is to introduce cos 6 and sin 6 terms in 
the output with no time dependence. We can rectify this situation by making 
the following substitution and simplifying the result. 

> acce l :=s impl i fy ( subs ({cos ( the ta )=cos ( the ta ( t ) ) , 
s i n ( t h e t a ) = s i n ( t h e t a ( t ) ) } , a c c e l ) ) ; 

accel:= ( ^ r ^ - r ^ ( ^ ^ w ) ' ) . . + (2 | r W | . ( . ) + rW ^ i t ) ) . . 

The acceleration vector is the standard result for polar coordinates. Now, sup
pose that the force / per unit mass exerted on the celestial object by the sun 
is entirely radial, i.e., / = f{r). Using Newton's second law, its radial and 
tangential accelerations are given by eql and eq2, respectively. 

> e q l : = a c c e l [ l ] = f ( r ) ; eq2:=accel[2]=0; 

. , ; .^ | , rW- . (« ) ( |< l ( . ) ) '= /M 

Yes, Vectoria, I see that you have your hand up. Do you have a comment on 
the derivation or a question?" 

"Why didn't you immediately specialize to the inverse square law by taking 
/ ( r ) = —K/r'^ in the gravitational force formula, where K — G M with G the 
gravitational constant and M the mass of the sun?" 

"That's a good question. By leaving the form of / ( r ) general for the mo
ment, we can use this recipe to study other radial force laws. For example, to 
account for the observed slow precession of Mercury's elliptical orbit, Einstein 
formulated an / ( r ) that has a correction term to the inverse square law. 

Any more questions? If not, let me continue with the derivation. I will 
now obtain an integral expression for 0{t) by applying the dsolve command 
to eq2 subject to the initial conditions ^(0) = 0 and ^(0) = V/A. Here r = A 
is the initial distance of the object from the sun and V is its initial tangential 
velocity. 

> eq2b:=dsolve({eq2, theta(0)=0,D(theta)(0)=V/A}, theta( t ) ) ; 

We need to eliminate dO/dt from eql, so let's substitute r(0) = A into eq2h, 
perform the time differentiation, and then substitute eq2c into eql. 

> eq2c:=dif f (subs( r (0)=A,eq2b) , t ) ; 
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> eqlb:=subs(eq2c,eql ) ; 

We now assume that an inverse square force law prevails, i.e., / ( r ) = —i^/r(t)^, 
which is automatically substituted into eqlb. 

> f ( r ) : = - K / r ( t ) ^ 2 ; eqlc:=eqlb; 

/ W •= - r r r r^ eqlc := 3:^r(t) -

eqlc is a nonlinear ODE that cannot be analytically solved for r{t). However, a 
simple closed form can be obtained for r{0) by carrying out the following pro
cedure. First a change of variables is made by setting p = dr/dt and rewriting 

d^r dp (dp\(dr\ (dp\ 

This variable change is substituted into eqlc, and we also set r{t)=r. 

> e q l d : = s u b s ( { r ( t ) = r , d i f f ( r ( t ) , t , t ) = p ( r ) * d i f f ( p ( r ) , r ) } , e q l c ) ; 

eqld := p{r) ~p{r) - —^ = - ^ 

At the initial radial distance r — A, the radial velocity dr/dt=p is taken to be 
zero, i.e., p{r = A) = 0. That is, the celestial mass is initially placed at one of its 
turning points. Then eqld is solved for p{r) subject to this initial condition. 

> sol :=dsolve({eqld ,p(A)=0},p(r ) ) ; 

, , J-A(A^V^ -2KrA-V^r^A + 2Kr^) 
sol := p{r) = ^ , 

Ar 
J-A (A^V^-2KrA-V^r'^A + 2Kr^) 

p(r) = -^ 
Ar 

Except for a possible rotation of 180° in the final picture, which of the two p{r) 
solutions is chosen is immaterial. I will select the positive square root. Since 
p — dr/dt, the ratio p/{d9/dt) is equal to dr/dO. This ratio is calculated in the 
following command fine. From the structure of the terms in p{r), it is clear 
that the parameter K has the same dimension as AV^, so for later convenience 
I will set K — AV'^/{1 -h e), where e is a dimensionless constant. Also in the 
command line, all r dependence is expressed as r(9). 

> eq3:=diff(r( theta) , theta)=subs({K=A*V^2/( l+epsi lon) , 
r ( t ) = r ( t h e t a ) , r = r ( t h e t a ) } , r h s ( s o l [ 1 ] ) / r h s ( eq2c ) ) ; 
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Then eq3 is analytically solved for r{9), assuming tha t A > 0, e > 0, and V > 0. 

> s o l 2 : = d s o l v e ( e q 3 , r ( t h e t a ) ) assuming A>0,eps i lon>0,V>0; 

sol2 := 

f -A^-A\ + Ar{e) \ ^. r. 
0 - arctan ^ ^ ] -{-.CI =0 

\A y/i-A'^e - A^ + 2Ar{e) + r{e)'^ e - r((9)2) (e -h 1 ) / 
Since an implicit solution has been generated, the i s o l a t e command is applied 
to sol2 to obtain r{9). The messy output is suppressed. 

> R : = i s o l a t e ( s o l 2 , r ( t h e t a ) ) : 

The right-hand side of R is converted to sines and cosines. 

> R:=convert(rhs(R),sincos): 

By choosing the constant _Ci in R to be 7r/2, so tha t r{0) = A^ 

> R : = s i m p l i f y ( s u b s ( _ C l = P i / 2 , R ) , s y m b o l i c ) ; 

^ . ^ -4(6 + 1) 
ecos(6>) + l 

the answer reduces to the s tandard mathematical form for an ellipse with ec
centricity e and perihelion distance A. The perihelion is the point of clos
est approach of the orbiting mass to the sun. The distance from the sun to 
the perihelion is related to the semimajor axis a of the ellipse by the relation 
A = a{l — e), which is now substi tuted into R. 

> R : = s u b s ( A = a * ( l - e p s i l o n ) , R ) ; 

^ ^ ^ a ( - 6 + l ) ( 6 - f l ) 
ecos(l9) + l 

For e = 0, we have R = a^ the equation for a circular orbit of radius a. A 
functional operator s is formed for evaluating R for different values of the 
semimajor axis and eccentricity. 

> s : = ( a O , e O ) - > e v a l ( R , { a = a O , e p s i l o n = e O } ) : 

The semimajor axis of Ear th ' s shghtly elliptical (e = 0.0167) orbit about the 
Sun is 1.495 x 10^ km, or approximately 93 million miles. If we choose to 
measure distances in units of Ear th ' s semimajor axis, then a = l for Ear th and 
a = 17.9 for Halley's comet. The semimajor axis and eccentricity values are 
now entered in order for Halley's comet, Jupiter , Saturn, Uranus, Neptune, and 
Pluto . On the scale of these outer planets, the orbits of Ear th and the inner 
planets would be quite small in the subsequent plot, so are not included. 

> a | | 0 : = 1 7 . 9 : a | | l : = 5 . 2 0 : a | | 2 : = 9 . 5 4 : a | | 3 : = 1 9 . 1 9 : 

a | | 4 : = 3 0 . 0 6 : a | | 5 : = 3 9 . 5 3 : 

> e | | 0 : = 0 . 9 6 7 : e M l : = 0 . 0 4 8 3 : e M 2 : = 0 . 0 5 6 0 : e M 3 : = 0 . 0 4 6 1 : 

e l | 4 : = 0 . 0 1 0 0 : e | | 5 : = 0 . 2 4 8 : 
The p o l a r p l o t command is used to generate the orbits of the above-mentioned 
celestial bodies, the result being shown in Figure 5.16. 
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polarplot([seq(s(a||i,e||i),i=0..5)] ,theta=0..2*Pi, 

scaling=constrained,thickness=2); 

Figure 5.16: Orbits of Halley's comet and the planets Jupiter out to Pluto. 

It should be noted that although the orbits are planar, they in fact do not all 
lie in the same plane. The elongated elhptical orbit that passes close to the sun 
at the origin and stretches out to between Neptune (second-largest orbit) and 
Pluto (largest orbit) is that of Halley's comet. 

I notice that our lecture time is up, so if you have any questions bring them 
up at the beginning of the next lecture. In the meantime, you should start 
working on the next assignment (given below) based on this recipe." 

PROBLEMS: 
Problem 5-37: Asteroid Eros 
The asteroid Eros has a semimajor axis a = 1.46 and eccentricity e = 0.22. Use 
the text file to create a plot of the orbits of Eros, Mercury (a = 0.39, e = 0.21), 
Venus (a = 0.72, e = 0.0068), Earth (a = 1.0, e = 0.017), and Mars (a = 1.52, 
6 = 0.093) in the same graph. 

Problem 5-38: Inverse cube law 
Consider an object of mass m starting at [x — R^y — 0) with velocity V in 
the positive ^/-direction and moving under the influence of an attractive central 
force whose magnitude is given by F = k/r^. Take k = amR^V^. 

(a) Derive an analytic form for the orbit. 

(b) What shape is the orbit for a = l? 

(c) Plot the orbit for a = 1.01, i? = 1, and F = 1, and time t = 0 to 9.999. 
What shape is the orbit? 
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Problem 5-39: Orbital Precession 
According to Fowles and Cassiday [FC99], orbital precession occurs for the 
motion of a mass moving in the gravitational field of an oblate spheroid of mass 
M, the equation of motion being given by 

d^f GM ( aGM^ . 

di^ r 
where c is the speed of light and a a small dimensionless constant. 

(a) Taking GM — ̂ i{^, a/c^ = 10~^, an initial radius R—\, an initial tangen
tial velocity y = l/\/IO, and the integration constant equal to zero in the 
r{d) integration, determine the analytic form of r(^) and plot the orbit. 
Your plot should look like an n-leaf clover with n to be determined. 

(b) How many orbital "leaves" occur for 1/ = 1/^/20? for y = l/\/30? 

5.3.4 Wheel of misFortune 

Praise without end the go-ahead zeal of whoever it was invented the 
wheel; but never a word for the poor soul's sake that thought ahead, 
and invented the brake. 
Howard Nemerov, American poet and novelist (1920-1991) 

Having arrived in Los Alamos on the weekend before an engineering confer
ence begins, Russell decides to spend the day mountain biking down various 
trails in the vicinity. After driving up from Phoenix, he needs the exercise 
and, more importantly, the practice, since he intends to enter the local Jemez 
Mountain Bike Challenge in late May and another bike competition later in the 
summer in Telluride, Colorado. While zooming down a winding, dusty trail he 
fails to successfully fly over a small obstacle lying across his path and wipes out. 
The good news is that he survives the fall without incurring any broken bones 
and with only minor scrapes. The bad news is that he has put a sizeable bow in 
the rim of his front wheel and has to take it into the bicycle shop for straighten
ing. Although he has had the misfortune to damage his wheel, he notes that at 
least he didn't lose the magnetic sensor attached to the spokes that measures 
his speed, distance, etc. While waiting in his motel room for his bike to be 
repaired, he flicks on the TV, but only game shows and comedy reruns are on. 
So, Russell decides to while away his time on his laptop computer by simulating 
the motion of a small, loose sensor sliding along a rotating bike spoke under 
different assumptions. Based on his own bike wheel, he takes the length L of a 
spoke to be 25 cm and the initial distance between the sensor (mass m) and the 
axis of rotation to be r = rO = 10 cm. For simplicity, he considers the wheel to 
be rotating (with 6 the angle of rotation) in the horizontal plane so the effect 
of gravity on the sensor can be ignored. 

A call is first made to the plots package and the radial (a^) and transverse 
{atr) acceleration components are entered in plane polar coordinates. 
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> restart: with(plots) : 

> a [ r ] : = d i f f ( r ( t ) , t , t ) - r ( t ) * d i f f ( t h e t a ( t ) , t ) " 2 ; 

d ' . , . fd ^ 

> a [ t r ] : = r ( t ) * d i f f ( t h e t a ( t ) , t , t ) + 2 * d i f f ( r ( t ) , t ) * d i f f ( t h e t a ( t ) , t ) ; 

a . , : = . w ( ^ < ' W ) + 2 ( i r ( , ) ) ( » 
Russell next creates a functional operator to calculate the angular coordinate 
{9 = u;t + ^at'^) of the spoke on which the sensor is located for a given time t. 
Here uj is the initial angular velocity and a the angular acceleration. 

> t h e t a : =t->omega*t+ (1/2) *alpha*t'"2: 
Applying Newton's second law in the radial direction to the sensor yields 

mar = Ffriction = -f^N, (5.11) 

with the frictional force Ffriction proportional to the normal force A ,̂ /J, being the 
coefficient of friction. But for the rotating spoke, N is related to the transverse 
acceleration atr by N = matr^ so that ar — —iJiatr, which Russell enters. 

> ode:=a[r]=-mu*a[tr]; 

ode-= -^r{t) - r{t) {uj ^ at)^ = -fi (2 ( ^ ^ W ) {UJ-i-at) + r{t) a 

If /i = 0 then the radial acceleration is zero. But since ar is made up of two 
terms (see the Ihs of ode), the radial coordinate, r, of the sensor can still change 
with time if oo and/or a is nonzero. Russell recalls solving the constant angular 
velocity case in an elementary mechanics course. To generate the relevant 
solution, he sets a — 0 and /i = 0, thus reducing ode to the form odel. 

> alpha:=0: mu:=0: odel:=ode; 

odel := -r^rit) - r{t)uj^ = 0 

Assuming that the initial condition is that the sensor is at the radial position 
rO and has no radial velocity at t = 0, 

> ic l :=r(0)=rO,D(r) (0)=0: 
odel is analytically solved with the Laplace transform option. This yields a 
trig (hyperbolic cosine) solution, rather than the default exponential form. 

> r so l :=dso lve ({ode l , i c l} , r ( t ) ,me thod=lap lace ) ; 

rsol := r{t) = rO cosh{ujt) 
Russell enters the spoke length L = 25 cm and the sensor's initial distance 
rO = 10 cm from the axis of rotation. He takes the nominal angular velocity 
a; = 0.20 s~^, and displays the radial solution. 

> L:=25: rO:=10: omega:=0.20: r s o l : = r h s ( r s o l ) ; 

rsol := 10cosh(0.20^) 
The time T it takes the sensor to move from its initial position to the rim end 
of the spoke is numerically determined, 
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> T := f so lve ( r so l=L , t , 0 . . 10 ) ; 

T := 7.833996185 
and found to be about 7.8 seconds. Using the po la rp lo t command, Russell 
plots the position of the sensor at 40 successive time steps between t = 0 and T. 
Including the option adaptive=f a l se switches off the default adaptive plotting 
scheme so the time interval between steps (circles) remains the same. 

> pp :=po l a rp lo t ( [ r so l , t he t a ( t ) , t=0 . .T ] , s t y l e=po in t , symbo l= 
circle ,adaptive=false,coords=polar ,ni impoints=40): 

The command pola rp lo t (L,color=blue) plots the rim of the wheel as a blue 
circle, the plot being superimposed with pp to produce Figure 5.17. The scaling 
is constrained so that the rim is plotted as a circle, the original shape of the 
rim before Russell wiped out. 

> display({pp,polarplot(L,color=blue)},scaling=constrained); 

Figure 5.17: Successive sensor positions for the case /i = 0, ct; = 0.2, and a = 0. 

The successive positions of the sensor are clearly seen as it spirals out from its 
initial position to the circular rim. The spokes are omitted from the plot. 

Looking at his watch, Russell wonders whether his bike rim has been straight
ened. On phoning the bike shop, he finds out that it will be another hour before 
the job is completed, so he returns to his calculation and decides to tackle the 
harder problem of a nonzero friction coefficient /i and a nonzero acceleration a. 
He unassigns these quantities along with uj and rO. Assuming that a; = 0, 

> u n a s s i g n C ' a l p h a \ ' m u ' , ' o m e g a ' , ' r O ' ) : omega:=0: 
the ODE then takes the form shown in ode2. For the zero-friction case, the 
sensor began to immediately slip at t = 0. With friction present there will be a 
time delay before the sensor begins to slide outward. Until slipping begins, the 
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radial position of the sensor will remain equal to a constant value, say k. Then 
ode2 is evaluated with this value in eq. 

> ode2:=ode; eq :=eva l (ode2 , r ( t )=k) ; 

ode2 := ( T ^ ^ W ) - r{t) a'^ t'^ = -fi (2 [-fr{t)j at^r{t)a] 

eq :— —ka^t^ = —fika 
Then eq is solved to find the initial time t — Ti dX which the bead begins to 
slip outward along the spoke. Positive and negative square root solutions are 
generated. Since the time should be positive, the argument [1] is used to pick 
out the positive square root. At the time Ti that slipping begins, the radial 
position of the sensor is rO and the radial velocity zero. These initial conditions 
are entered, 

> T i : = s o l v e ( e q , t ) [ 1 ] ; ic2:=r(Ti)=rO,D(r)(Ti)=0: 

J a Li 
Ti — ^ — ^ 

a 
and the equation of motion ode2 solved for r{i) assuming that a > 0, /i > 0. 

> r s o l 2 : =siinplif y (dsolve ({ode2, i c2} , r ( t ) ) ) 

assuming alpha>0,mu>0; 

rsol2— r{t) = rOe^~^ ""2 ^ )y^ MBessell ( J ,%2) /xBesselK( i %lj 

+BesselI Q , %2j BesselK (^, %1 j y^TTJ^ - BesselK Q , %2j /i Bessell ( i , %1 

+ BesselK Q , %2\Bessell(^, %l\ y/TTjA a^^/^) /(^^/TTJJ? 

messe lKQ, %ljBessell ( ^ , %l) +Bessel lQ, %ljBesselK Q , %lj j/i^^^ 

%1 .= %2 .= 

The answer is expressed in terms of two "special" functions, namely modified 
Bessel functions of the first kind (Bessell) and of the second kind (BesselK). If 
these functions are unfamiliar to you, you can learn more about them by high
lighting, e.g., BesselK in the computer output, then clicking on Help, and finally 
on Help on BesselK. In "standard" mathematical notation, the modified Bessel 
functions of the first and second kinds appearing in the above solution would 
be written as Ii/4{z) and ^1/4(2:), where z is one of the two subexpressions, 
%1 or %2. The subscript is referred to as the order of the Bessel function. 

For plotting purposes, Russeh takes a — 0.05 s~^ and // = 1.0. The latter 
coefficient value is approximately that for steel sliding on steel. Setting r^ = 10 
cm once again, the radial solution then is as follows. 

> alpha:=0.05: mu:=1.0: r0:=10: r s o l 2 : = r h s ( r s o l 2 ) ; 
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rsol2 := 2.364354022 e^-O-o^^oooooooot̂ +o.sooooooooo)^ (1.873897406 

Bessell (l/4,0.035355339051^) + 0.3595650184 BesselK(l/4,0.035355339051^)) 
The initial time Ti at which shpping begins is numerically determined, as well 
as the final time Tf at which the sensor reaches the rim. 

> Ti:=Ti; Tf:=fsolve(rsol2=L,t,Ti..15); 

Ti := 4.472135954 Tf := 12.97023282 
The sensor starts to slide at about 4.5 seconds after rotational motion of the 
wheel begins, reaching the rim at 13 seconds. 

To animate the motion of the sensor along a spoke, the time interval Tf — Ti 
is divided into iV = 50 equally spaced time steps and the time step size A = 
{Tf - Tz)/A/" calculated. 

> N:=50: Delta:=(Tf-Ti)/N; 

A := 0.1699619373 
The step size is 0.17 seconds. Functional operators R and Theta are formed 
to evaluate the radial and angular position of the sensor at time t= Ti -^ nA, 
where the number n of the time step must be specified. 

> R:=n->eval(rsol2, t=Ti+n*Delta): 

> Theta :=n->eval ( the ta( t ) , t=Ti+n*Del ta) : 
Russell calculates the angles, expressed in degrees, through which the spoke on 
which the sensor is located has rotated at the initial and final times. 

> s t a r t . ang l e :=eva l ( t he t a ( t ) , t=T i )*180 /eva l f (P i )*deg ree s ; 

start.angle := 28.64788974 degrees 

> end .angle :=eva l ( the ta ( t ) , t=Tf)*180/eva l f (P i )*degrees ; 

end-angle := 240.9673406 degrees 
The sensor begins to slip when the spoke has rotated through 29° and reaches 
the rim when the spoke has rotated through 241°. 

To animate the motion of the sensor from the initial time of slipping until 
it reaches the rim, the solution is converted back into rectangular coordinates. 
A functional operator F is created to plot the location of the sensor as a size 16 
black circle on the nth time step. 

> F:=n->plot( [ [R(n)*cos(Theta(n)) ,R(n)*sin(Theta(n)) ] ] , 
s tyle=point ,symbol=circle ,symbolsize=16,color=black): 

A second operator G is formed to plot the spoke on which the sensor is located 
as a thick blue line on the nth time step. 

> G:=n->plo t ( [ [0 ,0] , [L*cos(Theta(n) ) ,L*s in(Theta(n) ) ] ] , 
color=blue, thickness=2): 

The operator P superimposes the sensor on the spoke on the nth time step. The 
rim is plotted as well and the scaling is constrained. 

> P:=n->display({F(n) ,G(n) ,polarplot (L)} ,scal ing=const ra ined) : 
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Making use of the insequence=true option, the following command line pro
duces the animation. Click on the computer plot and on the start arrow in the 
tool bar to see the sensor move along the rotating spoke. 

> display(seq(P(n),n=0..N),insequence=true) ; 
Russell is pleased with how easy it was to solve this second, considerably harder, 
case and animate the results. However, he is even more pleased to learn that 
his bike is finally ready and he can zoom down the local trails once again. 

PROBLEMS: 
Problem 5-40: A more general case 
Determine the analytic solution for the motion of the sensor when cj, a, and /i 
are all not equal to zero. Plot your answer for rO = 10 cm, L = 25 cm, a; = 0.25 
s~^, a = 0.05 s~^, and fi = 0.5. What is the radial velocity of the sensor when it 
reaches the rim? and what is the total velocity? 

Problem 5-41: Modified Bessel functions 
Plot In{z), Kn{z) for a few real n values over suitable ranges of z. Calculate 
dln{z)/dz and / z^+^ Ini^) dz for arbitrary real n. 

Problem 5-42: Bessel function solutions 
Find the general solution of the following ODEs, each of which has a solution 
involving Bessel functions: (a) xy^'-3y'-\-xy = 0; (b) xy''-\-{2x-\-l) {y'-\-y) = 0; 
(c) xy" — y' — xy = 0. Identify the type and order of each Bessel function. 

Problem 5-43: Rayleigh's criterion and the Mafia boss 
An escaped convict, intent on gaining revenge on the Mafia boss who framed 
him for murder, drives into an enclosed valley in Rainbow County and is blown 
up in a booby trap. One of the inhabitants of this valley, who lives 9.60 km from 
the scene of the explosion, claims that while sitting on his verandah he saw the 
twin headlights of the vehicle come over the ridge at the entrance to the valley 
just before the explosion took place. Using the information that the distance 
between the headlights was 1.52 m, that the diameter of the pupil of the eye 
is 3 mm, and that the mean wavelength of the light emitted by the headlights 
was 5.20 X 10""'' m, Pat, the forensic scientist, has deduced that the witness is 
lying and suspects him of being the Mafia boss. Your task is to confirm Pat's 
suspicions by answering the following questions: 

(a) Light of wavelength A and incident intensity /Q on passing through a 
circular aperture of diameter a is diff'racted with an intensity distribution 
/ given by / =/o(Ji(x) /x)^ with x = 7rasin^/A. Here Ji(x) is the first-
order Bessel function of the first kind (entered as Besse l J ( l , x ) ) and the 
angle 6 is in rads. Confirm that most of the diffracted light is contained 
in the central maximum by plotting / / / Q as a function of 9 for a = 4 A. 

(b) At what angle does the first minimum in the diffraction pattern occur? 
Show that this angle satisfies a sin ^ = 1.22 A. This is a general result. 

(c) Show that light arriving from two distant small sources (the two head
lights) and passing through a small circular aperture (the pupil) cannot 
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be distinguished if the angular separation is less than A ^ = 1.22 A/a. Use 
this so-called Rayleigh^s criterion to show that the witness was lying. 

5.3.5 The Weedeater 

Ignorance is an evil weed, which dictators may cultivate among their 
dupes, but which no democracy can afford among its citizens, 
Wilham Beveridge, British economist (1879-1963) 

When Jennifer purchased her first house near the MIT campus, she discovered 
the joys of gardening, as well as more prosaic chores such as cutting and trim
ming the lawn and edging the flower beds. To carry out the latter function, 
she purchased a "weedeater," which consists of two nylon filaments that whirl 
rapidly in a circle and lop off" the grass blades. The rotational motion of a single 
filament with its accompanying small transverse vibrations reminded Jennifer 
of the following problem [Mor48], whose solution she will now present. 

A very light filament of length L and uniform mass density (mass per unit 
length) p is whirling in a horizontal circle about a pivot point (x = 0) at one 
end of the filament. Air drag is completely neglected. If the filament is slightly 
perturbed it can execute small vibrations transverse to the plane of rotation. 
What are the allowed transverse normal modes of vibration of the filament? 

Because the filament is moving in a circle, each length element dx of the 
filament experiences a centripetal force pointing toward the center of the circle. 
This force is equal to the mass [pdx] of the element times the radial distance {x) 
from the pivot point times the square of the angular frequency [u) of rotation. 
The tension T at arbitrary x along the filament is given by the sum of the forces 
on all the elements of the filament from x out to L and is now calculated. 

> restart: with(plots) : 

> T: =Int (rho*nu"2*x,x=x. . L) =int (rho*nu'^2*x,x=x. . L); 

L T := pu^ xdx 
pu^L^-x^) 

2 
Thus, the tension varies from zero at x = L to its maximum value at x = 0. 
With the form of T determined, Jennifer considers the transverse vibrations of 
the filament, these vibrations being superimposed on its horizontal rotational 
motion. Equating the transverse force, due to T, to mass times acceleration, 
the transverse displacement ip{x,t) is given by the partial differential equation 

Jennifer now enters (5.12), the tension T being automatically substituted. 

> pde :=d i f f ( rhs (T)*d i f f (ps i (x , t ) , x ) , x )=rho*d i f f (ps i (x , t ) , t , t ) ; 

pde:^ -pu'^xl—ip{x, t)W-piy^{L'^ - x^) f ^ V (̂̂ , ^V ^ ( ^t^ ^^^' ^̂  
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To obtain a normal mode of frequency cc;, '0(x, t)=X{x) cos{ujt) is assumed. 

> psi(x, t ) :=X(x)*cos(omega*t) ; 

ip{x, t) := X{x)cos{u;t) 
Then pde reduces to an ODE, which is divided by pu"^ cos(a; t) and simpHfied. 

> ode:=simplify(pde/(rho*nu' '2*cos(oiiiega*t))); 

After the information level on the dsolve command is set to 2, 

> in fo leve l [dso lve] :=2: 
a general analytic solution is sought to ode. 

> X:=rhs(dsolve(ode,X(x))) ; 
Methods for second order DDEs: 
— Trying classification methods — 

— > Trying a solution in terms of special functions: 

<— Legendre successful 

fyA^TS^-iy x\ , ^^ , . .../'Vz^^ + Su;̂  
X:= .CI LegendreP ,-\+.C2 LegendreQ . 

\ Z jy ij j \ z TJ 

A solution is obtained in terms of special functions, namely a linear combination 
of Legendre functions of the first (LegendreP) and second (LegendreQ) kinds. 
The latter diverge to oo at x = L, which is unphysical, so they are removed. 

> X:=remove(has,X,LegendreQ); 

X := .CI LegendreP ( — ^ 

For the filament, Jennifer takes L = 10 cm, or 1/10 m. Since X depends on 
the ratio cj/z/, by choosing y = l then uo can be interpreted as the "normalized" 
frequency. Since she is not interested in a general solution, Jennifer uses the 
operand command to remove the coefficient .CI from X. 

> L:=l /10: nu := l : X:=X/op(l,X); 
/ \ / l + 8a;2 I 

X := LegendreP ^, lOx 

At x = 0, X = 0, which is entered as a boundary condition. 

> bc:=subs(x=0,X)=0; 

/ v T T s ^ 1 
be := LegendreP ô  0 I — ^ 

The allowed frequencies of the normal modes are obtained by solving the bound
ary condition for to. To guide her in the numerical search, Jennifer plots the Ihs 
of be over the range cc; = 0 to 10, the resulting picture being shown in Figure 5.18. 
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> p lo t (Ihs (be) , oinega=0. . 10) ; 

Figure 5.18: The zeros determine the allowed frequencies. 

The eigenfrequencies are determined by the zeros. The lowest frequency occurs 
at ct; = 1, which yields (1/2) \ / l + 8 — 1/2 = 1 for the first argument in LegendreP. 
So, the lowest spatial mode is LegendreP(l, 10x), or in standard mathematical 
notation, Pi(lOx). This suggests that the n values on the other allowed Pn will 
also be positive integers. P2 is not possible, however, because its implies a zero 
at (J ^ 1.73, which doesn't occur in Figure 5.18. The next zero is at u; ?̂  2.45, 
corresponding to P3. This is confirmed in the following do loop where the uj2n-\-i 
are found numerically and substituted into X to yield P2n+i for n = 0,1, 2,3. 

> for n from 0 to 3 do 

> w[2*n+l]:=fsolve(op(l,X)=2*n+l,omega); 

> P[2*n+l]:=subs(omega=w[2*n+l],X); 

> end do; 

Pi := LegendreP(1.000000000, 10x) 

P3 := LegendreP(3.000000000, 10 x) 

P5 := LegendreP(5.000000000, 10x) 

P7 := LegendreP(7.000000000, 10 x) 
These frequencies agree with the observed zeros in Figure 5.18. Any one of the 
normal modes may be animated, e.g., P7 cos{w7t) by choosing n = 3. 

> n:=3: #select mode 

> animate(P[2*n+l]*cos(w[2*n+l]*t),x=0..L,t=0..10,frames=100, 

numpoints=300,thickness=2,tickmarks=[2,0]); 

wi := 1.000000000 

ws := 2.449489743 

W3 := 3.872983346 

W7 := 5.291502622 

PROBLEMS: 
Problem 5-44: Planar vibrations 
Derive the equation of motion for small vibrations in the plane of rotation. 
Determine the eigenfrequencies and normal modes. Plot the five lowest normal 
modes at t — 0 and animate one of them. 
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5.3.6 Can an Unstable Spring Find Stability? 

The law must be stable, but it must not stand still. 
Roscoe Pound, Introduction to the Philosophy of Law (1999) 

A unit mass is fastened to the origin by a linear spring whose spring con
stant is A:(t)==sin(rt)/(2 + cos(rt)), r being a positive parameter. The mass is 
constrained to move along the x-axis, subject to the initial conditions x{0) = 1 
and x{0) = 0. Our goal is to show that a critical value Vcr exists such that for 
r < Tcr, the motion is unstable (unbounded growth occurs), while for r > rcr 
the motion is stable. After r^r is found, a phase-plane trajectory will be plot
ted for r just below and just above fcr- Even though the relevant ODE (viz., 
x{t)-\-k{t) x{t) — 0) is linear in x, it does not have a closed-form analytic solution, 
so a numerical answer must be obtained for x{t). 

After the initial condition, ic , is entered an operator ode is formed to gen
erate the ODE (with k{t) substituted) for a specified r. 

> restart: ic:=x(0)=l ,D(x)(0)=0: 
> ode:=r->di f f (x ( t ) , t , t )+ ( s in (r* t ) / (2+cos (r* t ) ) )*x( t )=0; 

ode :=r ^ -r^^it) -h -—^— - j ^ = 0 
dt^ ^ ^ 2 + cos{rt) 

An operator sol is introduced to numerically solve the ODE for a given r. The 
option output=listprocedure allows us to evaluate the displacement x{t) and 
the velocity v = dx{t)/dt at an arbitrary time t. 

> so l :=r ->dso lve({ode( r ) , i c} ,x ( t ) ,numer ic ,ou tpu t= l i s tp rocedure ) : 
The operator X evaluates x{t) at t = T for a specified r. For example, X(l ,300) 

> X : = ( r , T ) - > e v a l ( x ( t ) , s o l ( r ) ) ( T ) : X(l ,300) ; 

0.461690284540523871 10^^ 
yields x(T = 300) ?̂  0.46 x 10^^ for r = l. The large number is indicative of an 
unstable solution. Using X, the log of the absolute value of x(T = 300) is plotted 

> p l o t ( [ s e q ( [ i / 2 0 0 , l n ( a b s ( X ( i / 2 0 0 , 3 0 0 ) ) ) ] , i = l . . 3 0 0 ) ] ) ; 

Figure 5.19: Vertical scale: ln(abs(j;(300))). Horizontal scale: r. 
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as a function of r up to r = 1.500 in steps of size 1/200 = 0.005. The resulting 
picture is shown in Figure 5.19. From the figure, the transition from instabihty 
to stabihty is seen to occur at rcr ~ 1.10. To confirm this interpretation, let's 
plot the trajectory of the unit mass in the phase {x{t) vs. v{t)) plane. The 
operator V evaluates the velocity v{t) = dx{t)/dt at t = T for a specified r. 

> V : = ( r , T ) - > e v a l ( d i f f ( x ( t ) , t ) , s o l ( r ) ) ( T ) : 
Then, a graphing operator gr is formed to plot x vs. v over the time range T = 0 
to 300 for a specified r. To obtain a smooth trajectory the number of plotting 
points is taken to be 1000. Graphs are then produced for r = 1.09 and r = 1.10, 
the resulting pictures being shown in Figure 5.20. 

> gr:=r->plot([X(r ,T),V(r ,T),T=0. .300],numpoints=1000, 
l a b e l s = [ x , v ] ) : 

> g r (1 .09 ) ; g r ( l . l O ) ; 

: 10000 

Figure 5.20: Left: Unstable solution for r = 1.09. Right: Stable for r = 1.10. 

For r = 1.09, the trajectory displays unbounded growth, unwinding ofi" the origin 
as time increases. For r = 1.10, a bounded oscillatory solution results. 

PROBLEMS: 
Problem 5-45: Other parameter values 
Explore the stability and nature of the solution in the text recipe for other 
values of the parameter r, in particular in the neighborhood of the downward 
spike at r = 0.38. Discuss your results. 

Problem 5-46: Other time-dependence 
Explore other time-dependence of k{t) and discuss your results. 



Chapter 6 

Difference Equation Models 
Everybody is ignorant, only on different subjects. 
Will Rogers, American humorist (1879-1935) 

If the independent variable, e.g., the time t, in a dynamic model is not con
tinuous but characterized by finite time intervals or steps, the model will be 
described by one or more difference equations. Difference equations can be 
found in many areas of science. 

For example, in a biological context, oceangoing salmon return to their 
original freshwater streams every 4 years to lay their eggs and die. The fish 
biologist might record the salmon population at each of these 4-year intervals. 
lft = 0 corresponds to the present year, =̂= 1 to one time interval (4 years here) 
later, and so on, the fish population number A^̂ +i at time t-\-1 will be related 
to the number Â^ at time t by a difference equation of the structure 

Nt+i = f{Nt), (6.1) 

where / is a mathematical function that is either created phenomenologically 
to account for the observed fish numbers or produced from first principles. For 
other animal population counts, the time interval will generally be different and 
/ could also depend on what happened two or more intervals ago. 

Similarly, in the world of physics, the experimentalist might record mea
surements at regular time intervals. In the world of finance, the Dow Jones 
industrial average and the price of stocks are recorded at the end of each trad
ing day and reported in the financial pages of the daily newspapers. All of these 
situations could be modeled by difference equations. 

As with ODEs, there exist both linear and nonlinear difference equation 
models. Linear models are those in which the equation is linear in the dependent 
variable(s). Linear models can be analytically solved with Maple, using the 
recurrence equation solve (rsolve) command. We shall demonstrate this for a 
number of first- and second-order difference equations. 

Nonlinear models, on the other hand, cannot generally be solved analytically. 
In this case, we can proceed by iterating the nonlinear difference equation using 
a do loop construction. Several interesting nonlinear models will be presented. 
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6.1 Linear Models 

A general pth-order linear difference, or recurrence, equation in the dependent 
variable x typically is of the structure 

H \-apXn = hn, (6.2) 

relating the value of x in a given generation n + p to its value p generations ear
lier. If not in this "standard" form, any difference equation can be transformed 
into it by a suitable change of the subscripts. Most commonly, science students 
encounter first- and second-order difference equations, i.e., equations with p=l 
and p = 2, viz., 

(20 Xn+1 +aiXn = hn, (^6.3) 

If hn = 0, the difference equation is said to be homogeneous. Otherwise it 
is inhomogeneous. If all of the coefficients ao , a i , . . . are constant, the stan
dard approach is to assume a solution of the form x^ = A^. For example, on 
substituting the assumed form into a second-order homogeneous equation and 
simplifying, this procedure yields the quadratic equation 

ao Â  + ai A -f a2 = 0 (6.4) 

in A, which has in general two roots Ai and A2. The general solution then is 
the linear combination Xn = A{Xi)^ + B (A2)^ with two arbitrary constants A 
and B. The two constants are determined by specifying two of the x values, for 
example, XQ and Xi. For an inhomogeneous equation, the solution will be made 
up of a particular solution to account for the extra term plus the solution to the 
homogeneous equation. Maple has a linear recurrence equation solver that can 
take care of solving linear difference equations, whether they be homogeneous 
or inhomogeneous. 

6.1.1 Those Dratted Gnats 

Float like a butterfly, sting like a bee, 
Muhammad Ali, American boxer (1942-) 

On the planet Erehwon, there exists a colony of ferocious gnats, feared because 
of their beelike sting, which live in a particularly swampy region, referred to as 
the Big Bad Bog. The normalized number Xn of gnats in the nth generation 
is governed over a limited time interval by a difference equation of the structure 

Xn+i =2xn -f n^. (6.5) 

The first term on the right-hand side represents the increase in population 
number from generation n to generation n-\-l due to the natural birth rate. In 
this case the population number would double in each generation if no predators 
were present. The n^ term represents the rapid influx (immigration) of gnats 



6.1. LINEAR MODELS 273 

into the Big Bad Bog region from other areas. The difference equation in this 
case is a first-order, hnear (x occurs only to the first power), inhomogeneous 
(because of the n^ term) equation. 

Assuming tha t the model is valid for Â  + 1 generations (with A' = 5) and 
tha t the normalized number of gnats initially is XQ = 1, 

> r e s t a r t : x [ 0 ] : = l : N:=5: 

how many gnats are there in generations one, t w o , . . . , six? 
A general approach, one tha t we will be forced to use for almost all nonlinear 

difference equation models, is to i terate the recursive relation. A do loop is 
formed, the difference equation is iterated from n = 0 to A" = 5, and the output 
gnat population numbers displayed. (To save on text space, they are placed on 
the same hue here, instead of vertically.) 

> f o r n from 0 t o N do 

> X [n+1] :=2*x[n]+n^2 ; 

> end do; 

xi := 2 X2 := 5 X3 := 14 X4 := 37 X5 := 90 XQ := 205 
Thus in the sixth generation there are 205 times as many gnats as there were 
initially. By studying the structure of the numbers, one could try to come 
up with a formula telling us what the population number Xn should be as a 
function of n. A bet ter approach is to assume tha t the solution will be of the 
structure x^ = (A)^ + ps^ where the particular solution, ps^ and A remain to be 
determined. An even bet ter approach is to let Maple do the analytical work for 
us. First, we unassign n and x, 

> u n a s s i g n C n ' , ' x O : 

and enter the difference equation. Note how parentheses (round brackets) are 
used in the following command line to enclose the generation numbers. 

> e q : = x ( n + l ) = 2 * x ( n ) + n ^ 2 ; 

eq :— x{n + 1) = 2 x{n) -h m? 

The difference equation eq is solved for x in the n th generation, using the 

recurrence equation solve ( r s o l v e ) command, given the initial condition XQ = 1. 

> x : = r s o l v e ( { e q , x ( 0 ) = l } , x ) ; 

X := 4 2^ - 1 - 2 (n + 1) ( - + l ) + n 

In this case, we can identify A = 2 in the first term of x. If there was no 
immigration, so tha t the TI? te rm was not present in eg, the solution to the 
homogeneous equation will be Xn = 2^. The factor of 4 (multiplying 2^) in the 
first term of x and the remaining terms represent the effect of immigration. 

The solution x can be simplified by applying the expand command. 

> x : = e x p a n d ( x ) ; 

X : = 4 2^ - 3 - n 2 - 2 n 

As one can see, the structure of x is a nontrivial function of n. As a check, let's 

use this analytic expression to calculate the gnat number xg. 
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> n:=6: number:=x; 

number := 205 
The formula correctly produces the same number for Xe- Now, the gnat number 
Xn could be plotted as a function of n using the already known plotting proce
dures. But let's introduce a new command structure for graphing the solution 
of linear difference equations. Again unassigning n and x, 

> u n a s s i g n C n ' , ' x ' ) : 
the linear recurrence equation (LRE) tools library package is loaded. 

> with(LREtools): 

The recurrence equation plot (REplot) command is used to generate Figure 6.1. 

> REplot(eq,x(n) , { x ( 0 ) = l } , l . .6,labels=["n" , "x"] ,tickinarks= 
[3,2],style=point,syinbol=circle,symbolsize=12,color=blue); 

200 

Figure 6.1: Number of gnats in the nth generation. 

The explosive growth of the unchecked gnat population is clearly evident. Those 
Erehwonians living on the edge of the Big Bad Bog are in for a particularly nasty 
summer season unless something is done about those dratted gnats. 

PROBLEMS: 
Problem 6-1: Classification 
For each of the following difference equations, state the order of the equation, 
identify whether the equation is linear or nonlinear, and whether it is homoge
neous or otherwise: 

(a) Xn+i + 4xn- i = l/n; (b) Xn+3 + (2/xn+2) = riXn^2; 

(c) Xn+4 + 3xn- i = (n - 2)^; (d) Xn+2 + 4x2 = 0; 

(e) Xn-i -\- sinxn = 1; (f) nXn-2 + n^ Xn-3 = 2. 
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Problem 6-2: Larger immigration 
Replace the influx term in the text recipe with n^ and execute the worksheet. 
Compare your results with the text results. 

Problem 6-3: A nonlinear gnat population model 
In the text recipe, replace the 2 Xn term with 2 x'^. Using the do loop approach, 
calculate the population numbers in generations 1 to 6, given XQ = I- Attempt 
to obtain a general analytic solution using the rso lve command. Comment on 
the results. 

Problem 6-4: Some difference equations 
Solve the following first-order diff"erence equations, identifying whether or not 
they are homogeneous: 

(a) Xni-i -n'^Xn = 0, xi = 1; 

(b) (n + 1) Xn+i -nxn = n'^, Xi := 1. 

Plot the solutions in each case over a suitable range of n. 

Problem 6-5: Puffin explosion 
A population of puffins (a type of seabird) on a northern island increases by 
20% per year by natural growth and by 20 birds per year due to immigration. 

(a) Write down the difference equation for the population number Nt after t 
years. 

(b) Use the rsolve command to find the general analytic solution. 

(c) Use the REplot command to plot the puffin population for the first 12 
years if initially there are 100 puffins. 

(d) What is the number of puffins on the island in the twelfth year? 

Problem 6-6: Erehwon swamp fever 
Each year, 1000 new cases of Erehwon swamp fever, a debilitating illness, occur 
and half of the existing cases are cured. At the end of the year 1990, there were 
1200 cases of the disease. 

(a) Write down the relevant difference equation. 

(b) Use the rsolve command to find the general analytic solution at the end 
of year n. 

(c) How many cases of swamp fever were there at the end of 2000? 

(d) Use the REplot command to plot the number of cases over the period 
1990 to 2000. 

(e) What is the equilibrium number of cases as n ^ CXD? 

(f) What if there had been 3000 cases in 1990. What is the equiUbrium 
number in this case? 
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6.1.2 Gone Fishing 

Angling may be said to be so like the mathematics 
that it can never be fully learnt, 
Isaac Walton, The Compleat Angler (1593-1683) 

As a second example of a first-order diff'erence equation, let's return to Earth 
and look at a problem of interest to fish biologists. The fish population in one 
of the Great Lakes initially consists of Â  = 1 million fish. 

> restart: with(LREtools): N:=10^6: 

The natural growth rate is such that in the absence of fishing, the fish popula
tion would increase by one-third each year. In units of 1 million fish, the linear 
difference equation describing the change in fish number x from year t to t + 1 
would be of the structure 

Xt+i -xt = -xt or Xt+i = -xt. (6.6) 

If the fish were harvested at exactly the same rate as their natural growth 
rate, the fish population would remain constant. However, suppose that cur
rent fishing regulations permit the harvesting of 350 thousand fish per year. In 
units of 1 million fish, the difference equation for the fish number would then be 

Xt-^i ^ Rxt-h (6.7) 
with R == 4/3 and h = 0.35 million fish. 

> R:=4/3: h:=0.35: 

> eq:=x(t+l)=R*x(t)-h; 
4 

eq '.= x{t^l) = -x{t) - 0 . 35 

As a summer student working for the Fisheries Department, Heather is asked 
by her supervisor to answer the following questions related to the above model: 

(a) What is the analytic formula for the normalized fish number x^? 

(b) How many years would it take before the fish population is depleted to 
less than half a million fish? 

(c) How many years would it take before the fish population in the lake is 
wiped out? 

(d) How many fish would remain in the year just before extinction? 

In addition, her supervisor asks Heather to create a point plot showing the fish 
numbers up to the year of extinction if the harvesting policy were maintained. 

Heather uses the rsolve command with x(0) = 1 million fish to solve the 
difference equation eq for x{i). 

> x := r so lve ({eq ,x (0 )= l} ,x ( t ) ) ; 

-V 
v 3 / 21 
20 20 
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By setting x — 0.5 in the f solve command, the time t for the population to 
decrease to less than 0.5 million fish, 

> h a l f _ l i f e : = f s o l v e ( x = 0 . 5 , t ) ; 

halfJife := 8.335226635 
is found to be slightly more than 8 years. Using the same command, but now 
solving for the time at which x = 0, 

> ex t inc t ion^ t ime :=f so lve (x , t ) ; 
extinctionMme := 10.58294113 

the extinction time is between 10 and 11 years. The number remaining after 
10 years is obtained by taking t = 10, using the analytic formula for x and 
multiplying the resulting number by Â  = 10^. The numerical value is rounded 
off to the nearest integer (nearest whole fish). 

> t :=10: number_after_10_years:=round(evalf(x)*N); 

number.after. 10-years := 162114 
So 162,114 fish would remain after 10 years. To create a plot over the time 
interval 0 to 10 years. Heather unassigns x and t, 

> u n a s s i g n C x ' , ' t O : 
and uses the REplot command to produce Figure 6.2. 

> REplot(eq,x(t) ,{x(0)=l},0. .10,style=POINT,syinbol=circle , 
syinbolsize=16,color=blue,labels=["year","number"], 
v iew=[0 . .10 ,0 . .1 ] , t i ckmarks=[3 ,3 ] ) ; 
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Figure 6.2: Number of fish (in millions) in the lake after t years. 

On successfully completing her task, Heather is rewarded with a fishing weekend 
on the departmental boat, which is unofficially called the Petty Bureaucrat. 
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PROBLEMS: 
Problem 6-7: Harvesting whales 
For a certain species of whale, the initial population is 1000 whales and in the 
absence of harvesting increases by 20% per year. In the first year, 100 whales 
are harvested, but it is proposed to increased this number by 25 per year (125 
harvested in the second year, 150 in the third year, and so on). 

(a) Write down the relevant difference equation. 

(b) Solve the difference equation analytically. 

(c) Use the f solve command to determine when the whale population is 500. 

(d) Make a plot of the analytic solution using the REplot command over 
a time interval that allows you to graphically answer the following two 
questions. 

(e) When does the maximum whale population occur? 

(f) If the proposed harvesting policy were maintained, in what year would 
the whale population become extinct? 

Problem 6-8: The latest news on those gnus 
A herd of rare Erehwonian gnus, initially numbering 500 animals, increases by 
10% each year due to the normal birth and death rate. If 20 gnus join the herd 
each year from other areas of Erehwon but 51'̂  leave in year t: 

(a) Write down the difference equation and solve it analytically. 

(b) Make a plot of the analytic solution using the REplot command. 

(c) In what year is the gnu population a maximum? 

(d) How many gnus are there in this year? 

(e) In what year do the gnus become extinct? 

Problem 6-9: Hunting Erehwonian bandicoots 
A population of pernicious Erehwonian bandicoots (a ratlike animal) initially 
numbers 1000 and naturally grows by 50% per year. If the population is reduced 
by hunting at the rate of 400 per year the first year, and the rate is increased 
by 12% each successive year (448 "removed" in the second year, etc.): 

(a) What is the general difference equation? 

(b) Use the rso lve command to determine the analytic solution. 

(c) Use the REplot command to plot the bandicoot population over the time 
range that the bandicoot population exists. 

(d) When does the bandicoot population reach a maximum number? 

(e) When do the bandicoots become extinct? 
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6.1.3 Fibonacci's Adam and Eve Rabbit 

Population, when unchecked, increases in a geometric ratio. 
Subsistence increases only in an arithmetical ratio. 
Thomas Malthus, English clergyman and political economist (1766-1834) 

In the year 1202, the Italian mathematician Leonardo of Pisa, more commonly 
known as Fibonacci,^ began the study of population growth by proposing and 
solving a problem posed in terms of rabbit numbers that bears his name to this 
day. Let Rn be the number of pairs of rabbits in generation n. In generation 
0, no rabbits exist {RQ = 0), but in generation 1, Adam and Eve Rabbit, the 
ultimate father and mother of all rabbits, are spontaneously created. So, Ri — l. 
Fibonacci postulated that rabbits reach breeding maturity after 1 month and 
in each subsequent month each pair produces precisely one more pair (male and 
female). How many rabbit pairs are there in the nth generation, assuming that 
none die? 

In the second month, Adam and Eve have reached maturity and produce 
one pair in the third month. Thus, i?2 = 1 and R^ — l. The new pair cannot 
breed for another month, so i?4 = 3 due solely to the efforts of Adam and Eve. 
In the fifth month, two offspring are produced so that R^ = 5, and so on. The 
numbers in the sequence 0,1,1,2,3,5, . . . are called the Fibonacci numbers. As 
the reader may verify, they satisfy the second-order (homogeneous) linear re
currence, or difference equation, 

Rn+2 = Rn+l + Rn (6-^) 
for n = 0,1,2,3, . . . and i?o = 0, i?i = 1. Although one could keep on iterating 
the difference equation, we shall seek an analytic solution. To be somewhat 
more general, let's assume that there are N isolated rabbit colonies, each with 
their own Adam and Eve, so that i^i —N. 

The LREtools library package is accessed so that REplot can be used. 

> res ta r t :wi th (LREtools ) : 
The Fibonacci difference equation is now entered, 

> eq:=R(n+2)=R(n+l)+R(n); 

eq := R(n + 2) - R(n -h 1) + R(n) 
and solved for R{n) subject to the two initial conditions /^(O) = 0 and R{1) = N. 

> sol :=rsolve({eq,R(0)=0,R(l)=N},R(n)); 

^Mi.^ .^ i-f 
sol 

5 5 
The reader should be able to identify the roots Ai and A2 as well as the co
efficients A and B in the solution of the homogeneous equation. The solution 
could be left in the above form, or if desired it can be factored. 

"Son of good nature." 
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> n u m b e r : = f a c t o r ( s o l ) ; 

VEN 

number := 

Suppose tha t there is only one (A^ = l ) colony of rabbits and we want to know 
how many rabbit pairs there would be in the 24th generation (2 years later). 

> N : = l ; n : = 2 4 ; 

TV : - 1 n : - 24 

Wi th the above input values, the number of rabbit pairs is given by 

> R a b b i t _ p a i r s :=radnorinal (number) ; 

Rabbit-pairs := 46368 
Note the use of the radnormal command, which performs normalization of 
expressions containing algebraic numbers in radical notation. Leave it off and 
see what the answer would look like. So, in the 24th generation, there would be 
about 46,000 rabbit pairs! Of course, in the real world Fibonacci's oversimplified 
model must be modified to include such factors as the natural and unnatura l 
death rates, the effects of overcrowding and depletion of food supphes, etc. 

To plot the number of rabbit pairs as a function of generation n, we must 
u n a s s i g n n so tha t it does not retain the value of 24 used above. 

> u n a s s i g n ( ' n O : 

Using the REplot command, and taking the default line style. Figure 6.3 is 

generated, showing R Yi over the range ri — 1 to 24. 

> R E p l o t ( e q , R ( n ) , { R ( 0 ) = 0 , R ( l ) = l } , l . . 2 4 , 
l a b e l s = [ " n " , " R " ] , t i c k m a r k s = [ 3 , 3 ] ) ; 

4 0 0 0 0 -I 

R 

2 0 0 0 0 \ 

O l O n 2 0 

Figure 6.3: Number of rabbit pairs generated in the n t h generation. 

Using a line style in some cases can prove a bit deceptive, so if you prefer a 
point style, add the necessary options to the REplot command. 
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Because the Fibonacci sequence appears in many different science problems, 
it should be noted that Maple also has a built-in Fibonacci number generator, 
which can be invoked by loading the combinatorial function library package 
with the fibonacci subpackage. 

> with(combinat ,fibonacci): 
For n = 24, the fibonacci command, 

> Fibonacci.number:=fibonacci(24); 

Fibonacci.number := 46368 
yields exactly the same number, 46,368, of rabbit pairs as before. 

PROBLEMS: 
Problem 6-10: Malthus's quotation 
Discuss the quotation by Thomas Malthus given at the start of this subsection, 
particularly the part about subsistence. 

Problem 6-11: General solutions 
Determine the general analytic solution of the following second-order equations: 

(a) Xn+i + 2 x ^ _ i = 1/n; 

(b) Xn+i -2xn cosh(0) + x^-i = 0. 

Problem 6-12: Specified initial conditions 
Analytically solve the following second-order difference equations, subject to 
Xo = l and Xi =2 , and plot each solution over the range n = 0 to 20. 

(a) 3 Xn+2 - 6 Xn^i + 4 Xn = 0; 

(b) 4 Xn+2 + 4 Xn+1 + X^ = 0. 

Describe the behavior of each solution as n is increased. 

Problem 6-13: Inhomogeneous equations 
Analytically solve the following inhomogeneous equations, subject to XQ = 1 and 
xi =2 , and plot each solution over the range n = 0 to 20 using a hue style. 

(a) 3 x ^ + 2 - 6 x ^ + 1 + 4 Xn = cos(n); 

(b) 4 Xn+2 + 4 Xn-\-l + Xn = n. 

Problem 6-14: Chebyshev polynomials 
The first two Chebyshev polynomials are To{x) — l and Ti(x)=x. The remain
ing polynomials for n > 2 can be found by solving the difference equation 

Tn+i(x) -2xTn{x) + Tn-i{x) = 0. 

(a) Solve the difference equation for the nth-order Chebyshev polynomial. 

(b) Explicitly determine the Chebyshev polynomials corresponding to n = 
2, 3, 4, 5. You may have to do some algebraic manipulation to obtain the 
simplest forms of the polynomials. 
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(c) Comment on using Maple here instead of doing the problem by hand. 

Problem 6-15: Population pressure 
A wild goat population is decreasing because of the limited resources available. 
If the decrease in population number between the year (n — 1) and the year n 
is one-quarter the number in the year (n — 2): 

(a) Write down the relevant difference equation for the wild goats. 

(b) Assuming that the goat number is 20,000 in year 0 and 19,500 in year 1, 
use the rsolve command to find the number in year n. 

(c) Determine the number of wild goats in year 8. 

(d) Use the REplot command to plot the number between year 0 and year 8. 

Problem 6-16: Third-order equation 
Consider the third-order linear diff'erence equation 

Xn-{-3 - 6 X„+2 + 11 Xn^l - 6 X^ == 0. 

(a) Determine the general solution of this difference equation. 

(b) Taking XQ = 1, xi = —2, and Xs = 3, plot the difference equation over the 
range n — 0 to 4. 

Problem 6-17: Flu epidemic 
It is noted by an epidemiologist that during the spread of a flu epidemic, the 
number N of new cases occurring during the nth week is equal to twice the 
number of cases that existed at the end of week (n — 2). 

(a) Write down the relevant difference equation for the flu epidemic. 

(b) Determine the general solution of the difference equation. 

(c) Determine the analytic solution when Âo = ^ i = 1-

(d) Plot the analytic solution over an appropriate time interval. 
(e) Now assume that during the nth week half the cases that existed at the 

end of the previous week are cured. You may still assume that the number 
of new cases during that week is 2Nn-2' Write down the new difference 
equation and obtain an analytic solution given that Âo = l and Ni =4 . 

Problem 6-18: Legendre polynomials 
The Legendre polynomials Pn{x) satisfy the linear difference equation 

(n + 1) P^+ i{x ) - {2n-^ l ) xPn{x )+nPn- i {x ) = 0, 

with Po(^) = l and Pi{x)=x. 
(a) Can the difference equation be solved using the rso lve command? The 

answer yes or no is insufficient. You must prove it. 

(b) Using the solve command and a do loop construction, determine the 
Legendre polynomials for n = 2, 3, . . . , 10. 
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6.1.4 How Red Is Your Blood? 

/ have nothing to offer but blood, toil, tears and sweat, 
Winston Churchill, wartime speech in the British House of Commons (1940) 

In Mathematical Models in Biology^ the mathematical biologist Leah Edelstein-
Keshet [EK88] presents a simple difference equation model describing the num
ber of red blood cells (RBCs) circulating in the blood. Since the RBCs carry 
oxygen throughout the body, their number must remain more or less constant. 

> r e s t a r t : w i t h ( p l o t s ) : 
Let Rn be the number of RBCs present in the blood on day n. The number 
Rn-\-i present on day n + 1 will depend on two factors, the rate at which they 
are removed by the spleen and the rate at which they are produced by the bone 
marrow. If / is the fraction of RBCs removed by the spleen and Mn the number 
produced by the marrow on day n, then Rn-\-i is given by eql. 

> eql:=R(n+l)=(l-f)*R(n)+M(n); 

eql := R{n + 1) = (1 - / ) R{n) + M{n) 
If 7, which we now unprotect, is the number of RBCs produced per number 
lost, 

> unprotect(gamma): 
then the number of RBCs produced by the marrow on day n + 1 is 

> eq2:=M(n+l)=gamma*f*R(n); 

eq2 := M{n-\-l) =-f f R{n) 
Here, we have a system of two first-order linear difference equations. By letting 
n ^ n + 1 in eql and substituting eq2, the system could be replaced by the 
second-order difference equation, 

Rn-^2 - ( ! - / ) Rn+l +lfRn^ (6.9) 
Although, based on our experience with the Fibonacci equation. Equation (6.9) 
is readily solvable with Maple, let's work with the first-order system instead. 
The two coupled first-order equations are entered as a Maple set and solved 
for the set of two unknowns Rn and Mn- To avoid a lengthy page-consuming 
display, the output has been suppressed. 

> sol :=rsolve({eql ,eq2},{R(n) ,M(n)}): 
We shall only display the RBC number or count, Rn, on day n. To do this, the 
solution (sol) is assigned so that Rn is given in terms of R{0) and M(0), the 
initial conditions on day zero. 

> a s s i g n ( s o l ) : RBC:=R(n); 

i ? 5 C : = - 2 7 / ( - % 3 R ( 0 ) + %3/R(0)+%3R(0)^%I-2%3M(0)+%2R(0) 

- % 2 / R ( 0 ) + %2R(0)y%I-f2%2M(0)) / (V%l(- l + / - \ / % l ) ( - l + / + y % l ) ) 

% l : = l - 2 / + / 2 + 4 7 / % 2 : = f ^^^ r-^ %3 - ^ ^^^ 
- i+ /+v%i / V-i+/-v%i 
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To see what the comphcated appearing solution gives, let's take the following 
nominal values. 

> R(0):=1: M(0):=1: f : = l / 2 : gainina:=l: N:=15: 
Ro = l and MQ = 1 could represent the normalized values of those quantities. 
We have assumed that / = 1/2, so that one-half of the RBCs are removed by 
the spleen. To attain a fixed level of RBCs, 7 was set equal to one, so that the 
number of RBCs produced equals the number lost. The RBC number will be 
plotted up to day 15. The formula for the RBC count can then be simplified 
to yield the following compact result: 

> RBC:=simplify(RBC); 

" ~ ^ 3 
RBC : -

For plotting purposes, the sequence command is used to make a list of lists for 
the N -}-l plotting points. 

> p lot t ing_points :=[seq([n ,RBC],n=0. .N)] : 
The graph is formed, but not displayed. To guide the reader's eye, the plotting 
points are joined by straight blue lines. 

> Graph :=p lo t (p lo t t ing_po in t s , s ty le= l ine ,co lo r=b lue) : 
The variation in the RBC count is now displayed in Figure 6.4. 

> display(Graph,view=[0. .N,0. .2] , labels=["n","RBC"], 
t ickmarks=[3,3]) ; 

2 i 

R B C 

O 1 0 1 5 

Figure 6.4: Red blood cell (RBC) count on day n. 

After a transient period, the RBC count settles down to the constant value 
1.33. If 7 is not equal to one, the RBC count will either increase for 7 > 1 or 
decrease for 7 < 1. The reader can experiment with diff'erent parameter values. 

According to Edelstein-Keshet, the description of RBC production can be 
made more accurate by treating the time as continuous, i.e., introducing an 
ODE model, and including a time delay. 
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PROBLEMS: 
Problem 6-19: Solving the second-order RBC equation 
Taking f — 1/2 and all other parameters as in the text, analytically solve the 
equivalent second-order RBC equation for the RBC number and plot the result. 

Problem 6-20: Blood CO2 
According to Edelstein-Keshet, there is a steady production of CO2 in the blood 
that results from the basal metabolic rate. On the other hand, CO2 is lost by 
way of the lungs at a ventilation rate controlled by CO2-sensitive chemorecep-
tors in the brain stem. In suitably normalized units, an oversimplified model 
yields the following equation for the blood CO2 concentration Cn at time n: 

C'n+i — Cn + aCji-i — Tn^ 

where m is the constant production rate of CO2 and a is a positive parameter. 

(a) Determine the general analytic solution of the diflPerence equation. Iden
tify the particular solution. 

(b) Determine the behavior of the solution for 4a < 1 and 4a > 1, taking 
initial conditions and parameter values of your own choice. Plot repre
sentative solutions for both cases. If a is large enough, show that the 
oscillations may increase in magnitude. 

Problem 6-21: System of equations 
Find the analytic solution of the following coupled difference equations, 

with xo = —3 and ^o = 0- Plot the solutions over a suitable range of n. 

6.1.5 Fermi-Pasta-Ulam Is Not a Spaghetti Western 

/ wouldn^t say when you've see one Western you've seen the lot; 
but when you've seen the lot you get the feeling you've seen one, 
Katherine Whitehorn, English journalist (1928-) 

Heather, who is enrolled in an undergraduate science program with the intention 
of going on to medical school, has been reading a popularized account of some 
historical developments in nonlinear dynamics that involve concepts beyond her 
current mathematical background. Her older mathematician sister, Jennifer, 
does not have any lectures to give this afternoon, so Heather drops into her 
sister's office and asks her to explain one of the topics that she has been reading 
about, namely the Fermi-Pasta-Ulam problem. 

"Well," says Jennifer, "the mathematical details of this topic are quite in
volved, but as I recall, it basically involves the exchange of energy between the 
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normal modes of a one-dimensional atomic lattice due to the inclusion of nonlin-
earities in the force law between the atoms. It was thought that, consistent with 
the zeroth law of thermodynamics, the energy exchange would ultimately lead 
to an equipartition of energy between the modes in a time-average sense. Enrico 
Fermi, the Nobel physics laureate, and his collaborators used the MANIAC I 
computer at Los Alamos to attempt to verify this conjecture numerically. Much 
to their surprise, the atomic system that they were simulating did not approach 
equilibrium, and their goal was to understand what was going on. I can see by 
the frown on your face that something about my explanation is bothering you." 

"I am afraid that you lost me right at the beginning. I am not even sure 
what a normal mode is. Even though I have taken a number of physics and 
math courses, my premed program has concentrated more on biochemistry and 
biology," replies Heather. 

"OK, I will tell you something about the normail modes of vibration in a 
one-dimensional atomic lattice governed by a linear force law. I could carry out 
the relevant derivation of the normal modes by hand, but I would also like to 
show you how a computer algebra system can save you a lot of work in this 
problem. But first a little bit of history. According to the classical mechanics 
text by Marion and Thornton [MT95], a mathematically similar problem was 
first studied as early as 1687 by that intellectual giant of his time (indeed of any 
time), Isaac Newton. Newton considered the small vibrations of an elastic string 
loaded with regularly spaced identical particles. The problem was again pursued 
by John Bernoulli and his son Daniel, beginning around 1727. In fact, out of 
this investigation came the formulation of the principle of linear superposition 
by Daniel in 1753. So you can see that the vibrational problem that Fermi, 
Pasta, and Ulam studied in the 1950s has a long and illustrious history behind 
it. Before you can begin to really understand the Fermi-Pasta-Ulam problem, 
you first have to know what happens in an atomic lattice modeled by linear 
interactions of the atoms with their nearest neighbors. 

Consider the following oversimplified model of a one-dimensional solid made 
up of atoms all of the same type. The atoms, each of mass m, are regularly 
spaced an equilibrium distance d apart as shown in Figure 6.5. The complicated 

Figure 6.5: The one-dimensional atomic lattice. 

electrical forces holding the solid together are approximated by identical linear 
springs between each of the atoms. The electrical forces drop rapidly with 
distance, so it is a good approximation to assume that a given atom interacts 
only with its neighbors. The restoring force, when an atom is displaced by 



6.1. LINEAR MODELS 287 

a small amount x from equilibrium, is assumed to be given by Hooke's law, 
F = —Kx^ where K is the spring constant. The linear array of atoms shown 
in the figure is numbered from k = 0 to k = n -{- 1. The end atoms, k = 0 
and n -h 1, are pinned so that they cannot move, thus leaving n atoms, i.e., 
those from /c = 1 to n, to vibrate. The general vibrational motion will be a 
linear superposition of longitudinal and transverse oscillations. For the former, 
the atoms vibrate back and forth along the direction of the chain, while for 
the latter they oscillate perpendicularly to the chain direction. We shall only 
explicitly consider longitudinal vibrations in our development, but the results 
for transverse oscillations are of a similar mathematical structure. 

Consider the kth atom (A: = 1, 2, . . . , n), which has two nearest neighbors, 
A;—1 and k-\-l. Let Xk, Xk-i, and Xk-\-i be their displacements from equilibrium. 
The net force on atom k will depend on the displacement of atom k-\-l relative 
to k and on the displacement of atom k relative to A: —1. If Xk-\-i > Xk, there 
will be a force contribution to the right in the figure. On the other hand, if 
Xk > ^fc-i, there will be a force contribution to the left. Thus, Newton's second 
law yields the following equation of motion for the kth atom, 

K (xfc+i -Xk) - K {xk - Xk-i) = mxk, (6.10) 
or, on setting K = K/m and rearranging, 

K,{xk-i - 2xk -\-Xk-\-i) = Xk, /c = 1, 2, . . . , n. (6.11) 
To determine the displacement of the kth atom from equilibrium, we assume 
a solution to this differential-difference equation of the form Xk = a^ cos(cc;t), 
where ak is the amplitude and u the frequency. Since k can be any one of 
n atoms, this solution corresponds to all n atoms vibrating with the same 
frequency UJ. This special solution is referred to as a normal mode of oscillation. 
Actually, Heather, we shall find that for n vibrating atoms, n diff'erent normal 
mode solutions are possible each with a diff'erent characteristic frequency, oui. 
These frequencies, with i = l, 2, . . . , n, are referred to as the eigenfrequencies. 
The normal modes are important because any motion of the chain will simply be 
a hnear superposition of normal modes, the exact mixture of modes depending 
on how the n atoms of the chain are excited at time t = 0. With our assumed 
solution. Equation (6.11) reduces to the second-order hnear difference equation 

—Kak-i + 2Kak — K.CLk-^1 — LJ^ ak = Xak, /c = 1, 2, . . . , n, (6.12) 

connecting the n amplitudes. Starting with A: = 1, and remembering that 
^0 = <̂ n+i = 0, since the end atoms are not allowed to move, the recurrence 
relation yields the following set of n equations: 

2K,ai — hia2 = Xai, 

-Kai -\-2K,a2 - t^as = Xa2, /g -Ĵ N̂ 

—Kaji-i -h 2/^an = Attn-



288 CHAPTER 6. DIFFERENCE EQUATION MODELS 

Although we could solve this system of equations directly, it is more convenient 
(particularly for large n) and probably more instructive for me to express this 
coupled set in the following matrix form, 

AV =^XIV, (6.14) 

where A is an n by n matrix, V a column vector with the a^ as the elements, 
/ the identity matrix, and A is referred to as the eigenvalue. You have covered 
matrices, haven't you?" 

"Yes, I have taken a linear algebra course, so even though I am somewhat 
rusty I am following your explanation." 

"OK, let me continue. After constructing the forms of A and F , we shall 
determine the eigenfrequencies and normal modes of vibration. A call is made 
to the Linear Algebra package. For the sake of definiteness, let's take n = 6, i.e., 
6 atoms will be allowed to oscillate. I will animate the third mode (M = 3). 

> r e s t a r t : w i t h ( p l o t s ) : with(LinearAlgebra): n:=6: M:=3: 
The column vector V is formed, but not displayed. 

> V:=<seq(a[k] ,k=l . .n)>: 
The tridiagonal matrix A is created using the BandMatrix command. Each 
entry of the central diagonal is equal to 2 K, while the entries on the first sub-
diagonals adjacent to the central diagonal are —K. All other entries are 0. The 
1 in the command indicates that there is one subdiagonal and n is the matrix 
size ( 6 x 6 here). 

kapp 

2K 

— K 

0 
0 
0 
0 

)a ,2*kappa 

— K 

2K 

— K 

0 
0 
0 

0 
— K 

2K 

— K 

0 
0 

, -kappa] 

0 
0 

— K 

2K 

— K 

0 

0 
0 
0 

— K 

2K 

— K 

, l , n 

0 
0 
0 
0 

— K 

2K 

A:= 

By calculating the matrix equation AV = XIV, using the shorthand dot nota
tion, we regain Equation (6.13) for n = 6, confirming our matrix formulation. 

> eq:=A . V=(lambda*IdentityMatrix(n)) . V; 

2 Kai — Ka2 
-Kai ~{-2Ka2 — Ka^ 
—K a2 + 2 Ka^ — Ka4 
-Kas + 2Ka4 — Ka^ 
-K a4 -i- 2 K a^ — K a^ 

—Ka^ + 2Kae 
To obtain numerical values for the eigenfrequencies, we shall choose a nominal 
value for K, namely K = 1.0. The decimal zero is included to express the 
eigenfrequencies in floating-point form. 

> kappa:=1.0: 

eq 

Aai 1 

Aa2 
Xas 
Xa4 
A as 

_ Xae _ 
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Then, the eigenvalues of A can be determined using the Eigenvalues command. 
The output is expressed as a hst, and the hst entries are ordered from the 
smallest to the highest by applying the sor t command. 

> lambda:=sor t (Eigenvalues(A,output= ' l is t O ) ; 

A := [0.1980622642, 0.7530203963, 1.554958132, 2.445041868, 3.246979604, 

3.801937736] 
The eigenfrequencies are calculated using the following map command, which 
applies the square root to each operand of A. 

> omega:=map(sqrt,lambda); 

uj := [0.4450418679, 0.8677674782, 1.246979604, 1.563662965, 1.801937736, 
1.949855824] 

As I told you earlier, for n = 6 vibrating atoms there are six different eigen
frequencies. A normal mode solution will be associated with each frequency. 
All six normal modes are now obtained using the following do loop, which runs 
from i = l to n. 

> for i from 1 to n do 
Equation (6.12) is entered for the ith eigenvalue. 

> eq[i]:=-kappa*a(k-l)+2*kappa*a(k)-kappa*a(k+l)=lambda[i]*a(k): 
Setting the ampUtudes at the end of the chain to be zero, the recurrence relation 
can be solved for the kth amplitude using the rso lve command, 

> s o l [ i ] : = r s o l v e ( { e q [ i ] , a ( 0 ) = 0 , a ( n + l ) = 0 } , a ( k ) ) ; 
and the do loop ended. 

> end do: 
The following command line will produce all the normal modes. Specifically, 
using a "nested" pair of sequence commands, the displacement of the atoms 
/c = 1, 2, . . . , n are generated for each normal mode i = 1, 2, . . . , n at time t. 
The radnormal and evalf commands help to simplify the results (not displayed 
here because of the length). Since it turns out that the displacements are all 
expressed as a multiple of the displacement a^, we can divide this arbitrary 
scale factor out. 

> nms :=eva l f ( seq( [ seq( radnormal ( so l [ i ] / a (n ) ) ,k= l . .n ) ] 
* c o s ( o m e g a [ i ] * t ) , i = l . . n ) ) ; 

I will select only a particular normal mode, say the third one (M = 3). We can 
change the M value at the beginning of the recipe if we want to examine some 
other normal mode. 

> mode:=nms[M]; 

mode := [1.000000000, 0.4450418677, -0.8019377359, -0.8019377357, 

0.4450418680, 1.] cos(1.246979604t) 
The above list gives the amplitude for atoms 1 to n = 6 in the linear chain for 
the third normal mode. The list is multiplied by a cosine function with the 
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appropriate eigenfrequency present. To animate the third normal mode, I will 
separate the atoms by an equilibrium spacing d. The spacing will be taken to 
be 4 times the maximum amplitude in the list. To accomplish this the remove 
command is used to first remove the cosine term from mode. Inclusion of the 
term [] also removes the list brackets. The maximum amplitude is obtained by 
applying the max command, and the number is then multiplied by 4. 

> d:=4*max(remove(has,mode,cos)[]); 

d := 4.000000000 
The equilibrium horizontal coordinates of the atoms are then obtained. 

> equi lpos: = [seq(k*d,k=l. .n)] : 
The Sca t te rP lo t command will be used to plot the atomic positions, so the 
Statistics library package is loaded. 

> with(Statistics): 

An operator gr is formed to plot the atoms as size-20 circles. The lists h and v 
of horizontal and vertical coordinates, and the color c, must be specified. 

> g r := (h ,v , c ) ->d i sp lay(Sca t t e rP lo t (h ,v , symbol=c i rc l e , 
symbolsize=20),color=c): 

Using gr, the stationary end atoms are plotted as red circles. 

> g r l : = g r ( [ 0 , ( n + l ) * d ] , [ 0 , 0 ] , r e d ) : #end atoms 
Let's animate the normal mode for T = 50 time units, and create A/'= 200 time 
frames. The time step size then is equal to T/N — 1/4: time units. 

> T:=50: N:=200: step:=T/N; 

1 
step := -

An operator gr2 is created to plot the internal mobile atoms as blue circles on 
the zth time step. 

> gr2 := i ->gr (equi lpos+eval (mode , t=s tep*i ) , [ seq(0 ,k=l . .n ) ] , 
b l ue ) : 

Still another operator, pi , will be used to superimpose graphs of the stationary 
end atoms and the internal mobile atoms on the ith time step. 

> p l : = i - > d i s p l a y ( { g r l , g r 2 ( i ) } ) : 
Using the insequence=true option, the display command will produce an 
animation of the normal modes. I will also remove the coordinate axes. 

> d i sp lay(seq(p l ( i ) , i=0 . .N) , insequence=t rue ,axes=none) ; 
Finally let's execute the above command line, click on the computer plot and 
on the start arrow, and see what the motion of the atoms looks like for the 
third normal mode. What do you think of my animation?" 

"That's pretty impressive, Jennifer." 
"If you want, it might be a good idea to experiment with different numbers 

of atoms and different normal modes to get a good feeling for what is going on. 
However, before you do so, let me return to your original question about the 
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Fermi-Pasta-Ulam problem. If the displacements x of the atoms from equilib
rium are not small, but still symmetric about x = 0, the force law can be taken 
of the form F = —Kx — fSx^^ with /? > 0. Why are nonlinear terms required, 
you might ask? If the force law is linear (/? = 0), then we have seen that normal 
modes occur. If a particular normal mode is excited, all of the energy remains 
in that normal mode. To exchange energy between normal modes some sort of 
coupling between the modes must be present. Nonlinear contributions to the 
force law can provide this coupling. Unfortunately, this leads to coupled nonlin
ear differential-difference equations, so the problem can no longer be handled 
analytically. We would have to resort to numerical simulation. Do you still 
want me to pursue this problem for you?" 

"Thanks a lot for your help, Jennifer, but I think I will pass on that. It 
would be beyond my mathematical background, and further, all this thinking 
has tired me out and made me hungry! Let's go to the Pizza Palace and get 
something to eat. I'm treating today." 

PROBLEMS: 
Problem 6-22: First variations on the text example 
Animate all the other normal modes for the text recipe and discuss the observed 
behavior of the mobile atoms. 

Problem 6-23: Second variation on the text example 
Using the text recipe, investigate the normal modes for atomic chains of different 
lengths and discuss your results. 

Problem 6-24: Transverse vibrations 
Modify the text recipe to handle transverse vibrations of the mobile atoms. 

Problem 6-25: Vibrations of the CO2 molecule 
The carbon dioxide (CO2) molecule is a hnear symmetric array of three atoms 
with the carbon (C) atom located between the two oxygen (O) atoms. Let 
the spring constant between the C atom and either of its O neighbors be K, 
the mass of an oxygen atom be m, and the mass of the C atom be M. All 
three atoms are free to vibrate away from equilibrium along the atomic chain 
direction. 

(a) Modify the text program and show that the eigenfrequencies are ĉ i = 0, 
cc;2 — v^5 ^^d Us = \/n -h 2n', where K. = K/m and K,' — K/M. 

(b) Calculate the frequency ratio 00^1^2 for CO2, for which m / M = 16/12. 

(c) Solve the relevant equations for the amplitudes and plot each normal mode 
for a set of representative times and then animate the normal modes. 
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6.2 Nonlinear Models 

... a study of very simple nonlinear difference equations... should be 
part of high school or elementary college mathematics courses. They 
would enrich the intuition of students who are currently nurtured on 
a diet of almost exclusively linear problems, 
R. M. May and G. F. Oster, mathematical biologists (1976) 

With the above quotation of May and Oster in mind, we think that we would 
be remiss if we didn't provide you with at least a small sampling of first- and 
second-order nonlinear difference equations. For almost all nonlinear difference 
equations of physical interest, the rsolve and REplot commands are of no 
help. Analytic solutions generally are not obtainable and we must resort to a 
do loop procedure to systematically generate numerical solutions that can be 
plotted. In this section, the examples will range from population growth, to the 
mechanics of a bouncing ball, to a discussion of chaos and the outbreak of war. 

6.2.1 Competi t ion for Available Resources 

We will now discuss in a little more detail the Struggle for Existence, 
Charles Darwin, Enghsh naturalist (1809-1882) 

Ecology [BHT90] is the scientific study of the distribution and abundance of 
biological organisms due to their interactions with each other and their en
vironment. Interspecific competition is the competition for existence between 
different species, while intraspecific competition refers to the competition be
tween members of a single species due to a finite supply of available resources 
(e.g., food). Difference equations can be used to model both interspecific and 
intraspecific competition for species characterized by discrete breeding seasons. 
In this and the following subsection, we shall look at two models of intraspecific 
competition.that have been much studied in the biology and mathematics liter
ature. The first model is due to Maynard-Smith and Slatkin [MSS73], [MS74] 
and will be referred to from now on as the MSS model. 

To understand the origin of the MSS model, let us first consider the situation 
in which the net reproductive rate i? of a single species is constant with respect 
to time. This rate coefficient takes into account the births of new individuals 
minus the deaths of existing ones. If factors such as immigration and harvesting 
can be ignored, the number density Â^ at time t for the species satisfies the 
linear difference equation 

Nt^i=RNu (6.15) 

with t = 0, 1, 2 , . . . time units. This first-order equation is easily solved by 
iterating. If Âo is the population at t = 0, then at t = 1, Â i = RNQ^ at 
t = 2, N2 — RNi = R^ TVo, and so on. Thus, the solution at arbitrary time t is 
Nt=^R^ NQ. The same analytic answer follows on applying Maple. 
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Loading the requisite library packages and setting the initial condition to 
be N{0) = No^ the difference equation eql is solved with the rsolve command. 

> r e s t a r t : with(LREtools): w i t h ( p l o t s ) : ic:=N(0)=N[0]: 

> eql:=N(t+l)=R*N(t); 

eql :=N{t + l)=RN{t) 

> N_ t := r so lve ({eq l , i c} ,N( t ) ) ; 

NJ-.^NoR^ 
If R > 1, the population will grow for f > 0 because births exceed deaths, 
whereas if jR < 1 it will decrease. The plotting operator p i uses the REplot 
command to create plots of the growth curves over the time range t = 0 to 5 
for R — 0.5 i, given A (̂0) = 10. If we take i = 1, 2, 3, the growth curves will 
correspond to i? = 0.5, 1, and 1.5. Each curve will have a different line style, 
i = l generating a solid curve, i = 2 a dotted curve, and i = 3 a, dashed line. 

> pl :=i ->REplot(subs(R=0.5*i ,eql ) ,N(t ) ,{N(0)=10},0 . .5 , 
co lo r=b lue , th i ckness=2 , l ines ty le= i ) : 

Using the t e x t p l o t command, the values R = 0.5, 1, 1.5 will be added to the 
resulting picture. 

> p l 4 : = t e x t p l o t ( [ [ 2 . 7 , 4 0 , " R = l . 5 " ] , [ 2 . 7 , 1 5 , " R = l " ] , 
[2 .7 ,5 , "R=0.5"] ] ) : 

Using the sequence command, graphs are generated for z = 1, 2, 3, which are 
superimposed on pl4 with the display command. The resulting picture is shown 
in Figure 6.6. 

> d i s p l a y ( { s e q ( p l ( i ) , i = l . . 3 ) , p l 4 } , l a b e l s = [ " t " , " N " ] ) ; 
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Figure 6.6: Population growth curves for three different R values. 
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For R = 1.5, the population number grows rapidly, whereas for R — 0.5 the 
population curve decays quickly to zero, since deaths exceed births. The value 
R—\ corresponds to zero net growth. 

This linear population model does not take into account any competition 
between its members for available resources, so the growth increases indefinitely 
for any i? > 1. However, as the growing population puts more and more pres
sure on the usually finite resources, the rate coefficient may begin to decrease 
with time due to intraspecific competition. The constant JR, which applies when 
no competition is present, must be replaced with a number-density-dependent 
coefficient R{Nt), so that the governing equation is of the form 

Nt^, = R{Nt) Nt. (6.16) 

Different choices of mathematical structure for R{Nt) lead to different models. 
Nonlinear models occur when R{Nt) depends explicitly on Nt. One such model 
is the MSS model, which has been successfully applied to intraspecific compe
tition in beetle populations and certain other biological species. In the MSS 
model, R{Nt) is taken to be of the form 

R{Nt) 
R 

(6.17) 
l + {aNt)^' 

where R is the reproductive rate with no competition, and a and b are positive 
parameters which can be determined by experimental observation. 

To understand the origin of this form of R{Nt), assume i^ > 1 and look at 
the ratio Nt/Nt^i = l/R{Nt). In Figure 6.7, we have taken iVt/A^t+i as the 
vertical axis and Nt as the horizontal axis. A horizontal line is drawn in the 
figure at a height corresponding to Nt^i=Nt, i.e., at a height 1. 

N [ t ] / N [ t + 1 ] 

Figure 6.7: First step in "building" the MSS model. 
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When the population size is very small, i.e., Â^ virtually zero, the competition 
is negligible, so R{Nt) will be equal to R. Thus, the intercept point A on the 
vertical axis has a value equal to 1/R. As the population number Nf increases, 
the effect of competition is to make R{Nt) decrease or its reciprocal increase. 
The simplest phenomenological model ^or 1 /R{Nt) is a. straight-line model, i.e., 
write l/R{Nt) = {l/R){l + aNt), with 1/R the intercept value and a/R the 
slope. Then Nt/Nt-\-i — 1 /R{Nt) will intersect the horizontal line at some point 
B, the corresponding value of Nt being labeled C. The value of Nt for which 
the population number Nt stays fixed (A t̂+i = A t̂) is called the carrying ca
pacity of that population. From Figure 6.7, the slope of the straight line is 
a/R={l — 1/R)/C, so that the straight-line model yields 

^^' ^-'- ~ •-{R-l)/C. (6.18) Ni t+i with a-
1 + aTVt' 

But using a straight line turns out to be quite limiting in the description of ex
perimentally observed intraspecific competition. Maynard-Smith and Slatkin's 
model results on replacing the straight-Hne model l/R{Nt) — {l/R){l + aNt) 
with the curve l/R{Nt) = {l/R){l + {aNt)^), with 6 > 0 and a=: (i? - 1)/C. 
Figure 6.8 shows three representative curves generated for the MSS model for 

1 N[t] 2 3 

Figure 6.8: Determining the carrying capacity for 6 = 0.5, 1, and 5. 

i^=1.5, C = l, and therefore a = 0.5. The curves correspond to choosing 6 = 5, 
1, and 0.5. The horizontal fine Nt/Nt^i = 1 is also drawn. The value of Nt 
where each curve intersects the horizontal line is the carrying capacity for that 
b value. For 6 = 1 , which is the straight-line model, the carrying capacity is 
Nt = l^ i.e., the input value of C. For 6 = 5, the carrying capacity is larger than 
C, having the value Nt = 1.74, while for 6 = 0.5, the carrying capacity is less 
than C. 
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Taking the same initial condition as before, we can try to solve the MSS 
difference equation, Nt^i = RNt/{l + {aNt)^), using the rso lve command. 

> eq2:=N(t+l)=R*N(t)/(l+(a*N(t)) '^b); 

> r so lve ({eq2 , i c} ,N( t ) ) ; 

Maple cannot solve the nonlinear difference equation eq2. Of course, analytic 
forms can be generated at different times using an iterative approach. For 
example, let's take the total time to be T = 5 and N{0)=No still. 

> T:=5: N(0):=N[0]: 
The recurrence relation is iterated. 

> for t from 0 to T do 

> N(t+l) :=R*N(t) / ( l+(a*N(t) )^b) ; 

> end do; 

RNo 
N(l ) 

l + (aA^( \b 

N ( 2 ) : = ^ ' " • 

(' + ( ° ^ » « ( I + ( T ^ ^ ) ' 
In the output, only the expressions for Ni and Â2 ^^^ shown here in the text, 
those for Ns to NQ becoming increasingly lengthier. To go to even longer times is 
not very useful since the formulas are not compact or very revealing. It is better 
to pick some specific parameter values and plot the output. For comparison 
purposes with the linear model A t̂+i =RNt, we shall take Âo = 10 and jR = 1.5. 
Recall that for this R value, the population number in the hnear model grew 
indefinitely. For the MSS model, we also take C = 1, 6 = 5, and a total of 30 
time steps. The value of a is calculated, using the relation a={R— l)/C. 

> N[0]:=10: R:=1.5: C:=l: a :=(R-l) /C; b:=5: Total:=30: 
a :=0.5 

The calculated value of a in the nonlinear model is 0.5. In the following do loop, 
the MSS equation is iterated and the triplet of numbers [ t+1 , N[t] , N[t+1]] 
formed into a plotting point pt at each time step t. 

> for t from 0 to Total do 

> N[t+1] :=R*N[t] /( l+(a*N[t])^b); 

> pt [t+1] : = [ t+1, N [t] , N [t+1] ] ; 

> end do: 
For viewing convenience, the plotting points are joined by straight lines us
ing the spacecurve command to create a three-dimensional plot that can be 
rotated. Choosing or ien ta t ion=[-90 ,0] allows us to view Nt versus time. 
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> spacecurve([seq(pt [ j+1] , j=0 . .Tota l ) ] ,axes=boxed, 
t i ckmarks=[3 ,3 ,3] , labe ls=[" t ime" ,"NEt]" , "N[ t+1]"] , 
co lo r=red , th ickness=2 ,or ien ta t ion=[ -90 ,0 ] ) ; 

The result is shown on the left of Figure 6.9. In this example, the population 

10 . 20 25 30 
t ime 

N[t] 

Figure 6.9: Solution of the MSS competition model for i?=1.5, a = 0.5, b = 5. 

nearly dies away before recovering and settling down to a constant value of 
Nt. The behavior is in sharp contrast to that in the linear model for the 
same parameter values. If the three-dimensional viewing box is rotated so that 
o r i en ta t ion=[0 ,90] , then a plot of A^̂ +i versus Nt results as shown on the 
right of Figure 6.9. In the language of mathematics, this plot represents a 
mapping of Â^ into A t̂+i as t advances. The first-order difference equation 
relating A t̂+i to Â^ is called a one-dimensional nonlinear map. For this map, 
we see a trajectory start at the point NQ = 10, Â i = 0.004798464491 and evolve 
with time toward the fixed^ or stationary, point (located in the upper left-hand 
corner of Figure 6.9) corresponding to A^̂ +i = Nt = N^. The numerical value 
of the nonzero fixed point N* is readily found with the f solve command. The 
option avoid is used so that we do not obtain the trivial solution X = 0. 

> fixed_pt:=f solve (X=R*X/(l+(a*X)'^b),X,avoid={X=0}); 
fixed.pt := 1.741101127 

From our earlier discussion, the fixed point Â^ = ^ * ~ T'̂ 4 is identified as the 
carrying capacity of the population for the chosen parameter values. The pop
ulation evolves toward a steady-state situation at the fixed point where births 
are balanced by deaths. According to Begon, Harper, and Townsend [BHT90], 
the MSS model has proven quite successful in accounting for the observed in-
traspecific competition between beetles such as Stegohium panaceum, Triholium 
confusum^ Triholeum castaneum, and the winter moth Operophtera brumata. In 
the laboratory experiments the parameters R, C, and b were chosen using the 
least squares procedure discussed in Chapter 2 to give best fits to the data. 
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PROBLEMS: 
Problem 6-26: Carrying capacity 
For the MSS model, with R= 1.5 and C = 1, what is the carrying capacity for 
6 = 0.5? Run the Maple file for this situation and discuss the results. 

Problem 6-27: Nonlinear growth 
Attempt to find an analytic solution to the following nonlinear growth equation 
using the rso lve command: 

Nt^,=Nt/{l + ^tf. 

Determine the form of the analytic solution by iterating the growth equation. 

Problem 6-28: Population growth 1 
A population grows according to the nonlinear difference equation 

Xt^i = {R~aXt-bXf)Xt. 

(a) Given that R=1.5, a -0 .003 , 6 = 0.00002, and XQ = 10, plot Xt versus t 
up to T — lb years. Determine the fixed point (steady state) by: 
(i) clicking on the last point in the plot; 
(ii) examining the plotting points output; 
(iii) setting X^+i =Xt = X* in the equation and solving for X*. 

(b) Make a three-dimensional plot using the spacecurve option. 

Problem 6-29: Logistic model 
For a population of size P , the birth rate during the next year (i.e., the number 
of births as a fraction of the population) is equal to (0.7 — 0.00005 P) and the 
death rate per year is (0.2 -h 0.00015 P) . The change in population number will 
be equal to the number of births minus the number of deaths. 

(a) Write down the difference equation for the growth of this population. This 
difference equation is an example of a logistic model. 

(b) Plot the population number P as a function of year for P(0) = 1000 and 
determine the numerical value of the fixed point. 

(c) At what minimum time will the population number be within 1% of the 
steady-state value? 

(d) Repeat parts (b) and (c) for P(0)=4000 and P(0) = 6000. 

Problem 6-30: Logistic model 2 
For a population of size P , the birth and death rates during a 1 year period are 
equal to (0.5 - 0.0005 P) and (0.2 + 0.0005 P) , respectively 

(a) Write down the difference equation for the growth of this population. 

(b) Plot the population number P as a function of year for a positive P(0) of 
your choice and determine the numerical value of the fixed point. 
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Problem 6-31: Analytically solvable nonlinear difference equation 
Making use of the rsolve command, show that the nonhnear growth equation 

Nt+i (1 + Nt) = Nt 
has an analytic solution. Plot the solution for Âo — 10- Relate the growth 
equation to the MSS model discussed in the text. 

Problem 6-32: Adding t ex t to Maple plots 
As demonstrated a number of times in the text, the t e x t p l o t command can 
be used to add text to a Maple plot. Guided by these examples, generate 
Figures 6.7 and 6.8. 

6.2.2 The Logistic Map and Cobweb Diagrams 

The map appears to us more real than the land, 
T. E. Lawrence, English soldier and writer (1888-1935) 

As a simple model of intraspecific competition in mathematical biology, which 
displays extraordinarily complex and interesting behavior, Robert May [May76] 
championed the introduction of the now famous logistic model of population 
growth into elementary mathematics courses. If Nn is the number in genera
tion n, the number A^n+i in the next generation is given in this model by 

A^n+i = ( l + r - ^ 7 V , ) Nn, (6.19) 

where r is the real, positive growth coefficient and k is also a positive constant. 
If r = 0, then A^n+i = Â n and no change in population number takes place 
from one generation to the next. The nonlinear term involving k is included to 
reduce the rate of growth due to overcrowding, limited resources, etc. In the 
limit that /c —> oo, the nonlinear term vanishes and the familiar linear difference 
equation Nn-\.i=RNn results, with i? = 1 + r. 

As part of an assignment for a nonlinear dynamics course that he is tak
ing from Jennifer, Mike is developing a Maple worksheet that investigates the 
behavior of the logistic model. He loads some necessary library packages, 

> r e s t a r t : w i t h ( p l o t s ) : w i t h ( S t a t i s t i c s ) : 
and decides to put the logistic equation (6.19) into a simpler form. For finite 
values of /c, Mike realizes that the parameter k can be scaled out of the equation. 
To accomplish this, he introduces a new dependent variable Xn through the 
following operator N. 

> N:=n->(1+r)*k*x[n]/r: 
The logistic equation (6.19) is entered, the dependent variable transformation 
being automatically implemented. 

> eq:=N(n+l)=(l+r-(r /k)*N(n))*N(n); 

_ (1 •i-r)kxn^i _ (1 + r - ( l 4 - r ) x n ) ( l -\-r)kxn 
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Then, multiplying eq by the factor r/(/c (1 + r)), 

> eq2:=r*eq/(k*(1+r)) ; 

eq2 := Xn+i = (1 -f r - (1 + r) Xn) Xn 
substituting r = a — 1 in eq2, 

> eq3:=subs(r=a- l ,eq2) ; 

eq3 := x^+i = {a- aXn)xn 
and collecting coefficients of a in eĝ *̂, 

> logistic_map:=collect(eq3,a); 

logistic.map := Xn-\-i = (1 — Xn) Xn a 
yields the "standard" mathematical form of the logistic difference equation. 
Only a single parameter, a, remains. For analysis purposes, Mike has read that 
mathematicians usually restrict the range of a to be 0 < a < 4 and the input 
value XQ to be between 0 and 1. This ensures that the variable x will always 
remain between 0 and 1, no matter how many iterations N are performed. With 
these restrictions, the nonlinear difference equation model is then referred to as 
the logistic map. 

Mike begins by choosing some typical numbers in the "allowed" ranges, 
taking a = 3.2 and XQ = 0.1. For later typing convenience, he decides to label 
the input value XQ as b. The logistic map, being nonlinear, does not have an 
analytic solution, so must be solved iteratively. He considers Â  = 119 iterations, 

> a:=3.2: N:=119: x [ 0 ] : = 0 . 1 : b :=x[0] : 
and uses the arrow operator to create the right-hand side of the logistic equation. 
The name F is assigned to the operation, 

> F:=x->a*x*(l-x): 
and the logistic map x^+i =F{xn) iterated with a do loop. 

> for n from 0 to N do 

> x[n+l] :=F(x[n]) ; 

> end do: 
Initially Mike had a semicolon on the end do command to see what the output 
numbers look like, but he has since replaced the semicolon with a colon to 
suppress the output. Knowing that Jennifer isn't going to want to look at a 
list of numbers, he decides to make a nice plot instead. To accomplish this, 
he places the Xn values and the n values into separate lists, and employs the 
Sca t t e rP lo t command, with the numerical points represented by blue circles. 

> xpo in t s :=[seq(x[n] ,n=0 . .N) ] : 

> npoin ts : = [seq(in,m=0. .N)] : 

> d i sp lay(Sca t te rp lo t (npoin t s ,xpo in t s , sy inbol=c i rc le , 
l abe l s=["n" , "x [n ]" ] , t i ckmarks=[3 ,3 ] ) , co lo r=b lue ) ; 

At the instant that the plot (reproduced in Figure 6.10) appears on the screen, 
Vectoria wanders into the computer lab where he is working. 

"That's a nice picture, Mike. What does it represent?" 
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Figure 6.10: A period-two solution to the logistic map. 

"I'm looking at the logistic map for a particular parameter value and this is the 
output. After a brief transient period, the solution settles down into a steady-
state regime, oscillating between the two horizontal branches of points shown 
in the figure. The variable x takes on the values x ^ 0.799 and x ^ 0.513, 
returning to the same value every time n increases by two. Since the repeat 
period is two generations, this is an example of a period-two solution." 

"You have chosen a = 3.2. What happens if you change the a value?" 
"As we can easily verify by executing the do loop again, taking a < 3.0 

produces a graph of Xn versus n in which the steady-state regime consists of 
a single horizontal line of points, i.e., the same value of x occurs in every 
generation. This is referred to as a period-one solution. 

Referring to the paper by May, period two prevails up to a = 3.449490..., 
then period four (four horizontal fines will be plotted) up to a = 3.544090..., 
period eight up to a = 3.564407..., and so on. Irregular or chaotic behavior 
occurs when a passes through the value a — 3.569946 . . . Notice how the ranges, 
or windows, of a values grow smaller and smaller as the periodicity increases 
toward the chaotic limit. This makes the discovery of higher-order periodicity 
a numerical challenge. At still larger a values, below a = 4, the steady-state 
response is characterized by windows of periodicity and chaos." 

"Mike, I have seen what are called cobweb diagrams for nonlinear difference 
equations. Can you create a cobweb diagram for the logistic map?" 

"Yes I can. A cobweb diagram is not only visually pleasing but it can 
geometrically reveal how the change in periodicity takes place as a is increased. 
I will have to tell you a bit about the stability of fixed or stationary points of 
the logistic map as I enter the relevant code. 

Let's first form f = F{x). 
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> f : = F ( x ) ; 

f :=3.2x{l-x) 

The possible period-one stat ionary points correspond to the solutions of / = x, 

which are found on applying the s o l v e command. 

> f _ f i x e d ^ p o i n t s : = s o l v e ( f = x ) ; 

f.fixed.points := 0., 0.6875000000 
There are two potential period-one fixed points, at x = 0 and x = 0.6875. But 
for a = 3.2, we have observed tha t period two occurs, not period one. So these 
fixed points must be "unstable," since the system is not "attracted" to either 
of these x values for large N. 

Since period two corresponds to iterating twice before returning the same 
value, the fixed points for period two are obtained by solving F{F{x)) = F^'^\x) 
= x. We can create F^^^(x) using the function composition operator @. 

> g : = ( F O F ) ( x ) ; 

g := 10.24X (1 - x) (1 - 3.2x (1 - x)) 
Notice how x in / has been replaced with 3.2 x (1 — x) , thus producing g. Since 
two applications of F are applied in producing ^, it is referred to as the second 
iterate map. In this language, / is the first iterate map^ while three applications 
of F produce the third iterate map, and so on. The fixed points of the second 
iterate map are found by solving g — x for x, 

> g _ f i x e d _ p o i n t s : = s o l v e ( g = x , x ) ; 

g^fixed.points := 0., 0.5130445095, 0.6875000000, 0.7994554905 
yielding four possible period-two fixed points. Two of these points have values 
identical with those obtained for / = x. Since we observed tha t the logistic 
map evolved toward the remaining two (x = 0.513 and x = 0.799) fixed points, 
the latter must be "stable" fixed points for period two. Similarly, one could 
find the possible stat ionary points for higher-order periodicity by repeatedly 
applying the function composition operator to F, setting the result equal to x, 
and solving. Maple has no difficulty in analytically generating a function of 
a function of a function, as witnessed in the following command line, where 
F^^\x) is produced. 

> h:=(F@F@F)(x); 

/ i : = 3 2 . 7 6 8 x ( l - x ) ( l - 3 . 2 x ( l - x ) ) ( l - 1 0 . 2 4 x ( l - x ) ( l - 3 . 2 x ( l - x ) ) ) 
Since only period two is observed for a = 3.2, again the fixed points correspond
ing to higher-order periodicity, such as those generated for the third iterate map 
on setting h — x, must be unstable." 

"Mike, what is the mathematical criterion for stability here?" 
"Oh, tha t ' s fairly easy to explain. Consider the general first-order map 

Xn^l = F{Xn) (6.20) 

and label a possible fixed point as x*. If one s tar ts with some initial value, 
xo = X* + 6, close to X* (i.e., e small), the system will evolve toward x* as n 
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increases if the fixed point is stable and away from it if it is unstable. Since e 
is small, a single iteration of the x equation gives us, on Taylor expanding and 
keeping first order in e: 

x,=F{x*+e)=Fix*) + e(^] = x* + {xo - x*) ( ^ ) , (6.21) 

SO that 

\xi - x * | = \{xo - x * ) | f — (6.22) 

If \{dF/dx)^.\ < 1, i.e., the magnitude of the slope of F{x) at the fixed point 
is less than one, then the iteration reduces the "distance" from the fixed point. 
Repeated iterations in this case eventually reduce the distance to zero, and the 
fixed point is stable. Conversely, the distance from the fixed point grows when 
the magnitude of the slope exceeds one, and the fixed point is unstable. This 
argument can be generalized to higher-order iterates, F^^^(x), F^^^(x), etc." 

"OK, Mike, that was easy to understand. Can you use the above criterion 
in the context of a cobweb diagram?" 

"Sure. Let's continue our Maple recipe, still with a = 3.2. I will produce a 
cobweb diagram for you by superimposing a number of plots. In the following 
plot command fine p i I 11, the first iterate map / is graphed as a thick red line. 

> p i I I l : = p l o t ( f , x = 0 . . l , y = 0 . . l , s t y l e = l i n e , t h i c k n e s s = 2 , 
color=red) : 

The second plot graphs the second iterate map ^ as a green dashed line. 

> p i I 12 :=p lo t (g ,x=0 . . 1 . 6 , y=0 . . 1 . 6 , s t y l e= l i ne , l i ne s ty l e=3 , 
thickness=2,color=green): 

Next we draw a thick 45° line, y — x, coloring it black. 

> p i I | 3 : = p l o t ( x , x = 0 . . l , y = 0 . . l , s t y l e = l i n e , t h i c k n e s s = 2 , 
color=black): 

A vertical blue line at x = 6 = XQ, spanning the range ^ = 0 to ^ = F(6), is 
produced. 

> p i I | 4 : = p l o t ( [ [ b , 0 ] , [ b , F ( b ) ] ] , s t y l e = l i n e , c o l o r = b l u e ) : 
Using the repeated function composition operator @@, the following command 
line calculates repeated applications of the function F , given an initial value 
h = 0.1. The truncation operator t runc is used to stop the iterations at the 
integer value 20. We can change this value if we wish. 

> p t s := [ seq( (FOO( t runc( ( i+2) /4 ) ) ) (b ) ,1=1 . .80) ] : 
The points p t s are connected by straight lines with the po in tp lo t command. 

> p i I 1 5 : = p o i n t p l o t ( p t s , s t y l e = l i n e , v i e w = [ 0 . . 1 , 0 . . 1 ] , 
color=blue): 

Finally, the sixth plot adds labels in suitable locations to the various curves. 

> p i I | 6 := t ex tp lo t ( [ [ . 2 , . 84 , "y=g" ] , [ .45, .37, ••y=x"] , 
[ . 85 , .3 , "y=f" ] , [ . 65 , .85 , "cobweb"] ] ) : 

All six graphs are superimposed, producing Figure 6.11." 
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> display({seqCplI|i,i=l..6)},view=[0..1,0..1], 

tickmarks=[3,3],labels=["x","y"]); 

Figure 6.11: Cobweb diagram for a period-two plot. 

"I can certainly see why it's called a cobweb diagram, but how do we inter
pret this picture?" 

"In the iteration process, we have started at x = 6 = 0.1. In the first iteration, 
F{x = b) is calculated, which geometrically corresponds to moving upward along 
the vertical blue line at x = 6 to the parabola y — f. The resultant x value will 
be the new input for the second iteration. The new input value is produced by 
moving horizontally along the attached blue line to the black y = x line. The 
second iteration then carries the system vertically to the y = f line. Repeating 
this process, the trajectory winds in a cobweb fashion onto the heavy rectangle. 
This rectangle intersects the second iterate map y — gdii two locations at which 
the slope of g is less than 45°, i.e., below the y = x fine. These two locations 
are the two stable stationary points that the period-two solution cycles between 
in steady state. The curve y = g intersects y = x dX four locations, including 
the origin. At the other two intersection points, the slope of g is higher than 
the y = x line, so these two points are unstable. Similarly, the two intersection 
points of the first iterate map / with y — x have slopes whose magnitudes 
are greater than one, so the two possible stationary points for period one are 
unstable. Period one does not occur here." 

"Mike, I can certainly see that the cobweb diagram is a useful visual tool 
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for determining the stability of the stationary points and geometrically under
standing how the logistic map evolves for different values of the parameter a. 
However, it's late on a Friday afternoon and you promised that we would meet 
the gang down at the Waddling Duck Pub. So why don't you save your file and 
let's be off." 

PROBLEMS: 
Problem 6-33: Periods 4 and 8 
Taking XQ =0 .1 , confirm that period four occurs for a = 3.5 and period eight 
for a = 3.56 in the logistic map. First do this by making a plot of Xn versus n. 
Second, try the cobweb diagram approach. Discuss your results. 

Problem 6-34: Function composition operator 
Directly evaluate (tan @ sin @ sin @ cos) (0.6). Confirm your answer by evaluat
ing tan(sin(sin(cos(0.6)))). 

Problem 6-35: Period? 
Taking xo= 0.1 and making a suitable plot, determine the periodicity of the 
logistic map solution for a = 3.83. Up to what value of n does the transient part 
of the solution persist? 

Problem 6-36: a = 3.8 
Taking XQ = 0.2 and a = 3.8 in the logistic map, create a plot of Xn versus n 
as well as a cobweb diagram. What is the probable nature of the solution? 
Explain. 

Problem 6-37: Eighth iterate map 
Use the function composition operator to generate the eighth iterate map of 
the logistic function / = 3.5x(l — x). Expand the result and determine the 
order of the highest-order polynomial in the expansion. Comment on doing 
this calculation by hand. 

Problem 6-38: Feigenbaum constant 
For the logistic map, suppose that period-2^ (fc = l, 2, . . .) solutions are "born" 
8it a = ak' Feigenbaum [Fei78] was able to show that as k approaches infinity, the 
ratio 5k = {ak — ak-i)/{ak-j-i — a^) approaches the constant value (5 = 4.6692 . . . 
This limiting value is called the Feigenbaum constant. Given ai = 3.000000, 
a2 = 3.449490, a^ = 3.544090, 04 = 3.564407, 05 = 3.568759, as = 3.569692, 
ay = 3.569891, and as = 3.569934, calculate the sequence of 6k for A: = 2, 3, . . . , 7. 
Discuss your results in terms of loss of digits accuracy. Obtaining more digits 
is difficult for higher k, because the transient time gets longer and longer, so 
the number of iterations has to be greatly increased. The Feigenbaum constant 
is usually evaluated by alternative means. The Feigenbaum constant turns out 
to be a "universal constant," being obtained for any map characterized by a 
function / that is smooth, concave downward, and having a single maximum. 

Problem 6-39: Onset of epileptic seizures 
According to Glass (1995), a simple nonhnear difference equation that models 
the onset of epileptic seizures is 
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xt+i = 4Cx? - 6Cx? + (1 + 2C)xt , 

where Xt is the fraction of neurons of a large neural network that fire at time t 
and C is a positive constant. 

(a) Determine the fixed points x* of this difference equation. 

(b) Determine the stability of these fixed points and the C value at which 
they all become unstable. 

(c) Determine the fixed points x** corresponding to Xt+2=^t = ^** and the 
C value at which they all lose their stability. 

(d) Take xo-0 .45 and the following values (7 = 1.5, 2.1, 2.5, 3.0, 3.3, 4.0. In 
each case solve the model equation for t running from 0 to Â  = 500 and 
create a three-dimensional plot of t versus Nt versus A^̂ +i- Determine the 
periodicity in each case and relate the results to those in parts (a) to (c). 
Relate the results to the idea that increasing the value for C leads to the 
onset of uncontrolled neuron firings characteristic of an epileptic seizure. 

6.2.3 The Bouncing Ball Art Gallery 

It's pretty, but is it Art? 
Rudyard Kipling, Nobel laureate in literature (1907) 

On their way to a concert at the MIT Music Academy, Colleen and Sheelo bump 
into Vectoria, who is shopping for a present for Mike's birthday. Sheelo, who 
is into computer-generated art, suggests that Vectoria contact Jennifer to see 
whether she can come up with an artistic piece that is not only art but arises 

V 
n 

m 

'n\\ 

perfectly ela 

\ / K+1 
V = A sin(co t) 

Figure 6.12: A schematic of the bouncing ball geometry. 
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from either physics or mathematics or both. After meeting with Vectoria, 
Jennifer came up with an artistic "masterpiece" from the "bouncing ball art 
gallery." With Jennifer's permission, we shall now provide the interested reader 
with the recipe for producing this work of physics-generated modern art. 

A perfectly elastic ball bounces vertically on a horizontal vibrating plate 
(see Figure 6.12) whose vertical velocity is given hy Vp = A sm{ujt). Jennifer 
lets Vn be the velocity of the ball prior to the nth bounce at time tn, '^n+i the 
velocity prior to bounce (n -f-1) at ^n+i, and so on. For simplicity, she neglects 
the vertical displacement of the plate relative to the path traveled by the ball 
as well as air resistance. The velocity of the plate at time tn is entered. 

> res ta r t : 
> Vp:=A*sin(omega*t[n]); 

Vp := Asm{ujtn) 
When the elastic ball strikes the plate, it experiences a change of velocity of 
amount 2Vp. If v^ is the velocity of the ball just before the nth bounce, its 
velocity just before bounce (n + 1) is given by the difference equation 

> vel_eq:=v[n+1]=v[n]+2*Vp; 

veLeq := Vn-\-i = Vn -\- 2 A sm{LO tn) 
For convenience, Jennifer sets outn = On in the velocity equation. 

> vel_eq:=subs(omega*t[n]=theta[n],%); 

veLeq :— Vn-\-i = t'n + 2Asm{0n) 
This equation relates the change in velocity on successive bounces to the phase 
6. Since two variables are involved, a second equation is needed relating the 
velocity and the phase. The change in phase on successive bounces is given by 

> phase_eq:=theta[n+1]=theta[n]+omega*T[n+1]; 

phase.eq := 6>n+i ^ On -f u;Tn+i 
where T^+i = /̂ n+i ~ tn is the time interval between bounces n and n -h 1. 
To calculate T^+i in terms of t'n+i? Jennifer uses one of Newton's kinematic 
equations, d = UQ t-h(l/2) at^, where d is the displacement after time t when the 
initial velocity is UQ and the acceleration is a. Setting d=^0^ uo = Vn-\-i, a = —g, 
where g is the acceleration due to gravity, and ^^T^+i, this kinematic relation 
yields T^+i =2f^+ i /^ , which is automatically substituted into phase.eq. 

> T[n+1]:=2*v[n+l]/g; phase.eq; 

J-n+l •— ^ t/n+1 — "n ^ 
9 9 

To simplify the phase equation, Jennifer substitutes 2ijJVn+i/9 = Vn+i-
> phase.eq:=subs(2*omega*v[n+1]/g=V[n+1],%); 

phase.eq := On-^i = On + K + i 
Of course, if v is rescaled to V in one equation, it must also be rescaled in the 
other. So, the velocity equation is rescaled in the next few lines. 

> vel.eq:=expand(2*oinega*vel_eq/g); 
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veLeq := 2 = 2 \ 
9 9 9 

> ve l . eq : =subs ({2*omega*v [n+1] /g=V [n+1] ,2*omega*v [n] /g=V [n] },%); 

veLeq := Ki+i = K H 

Replacing Au A/g with X, yields the final form of the velocity equation. 

> vel_eq:=subs(omega=K*g/(4*A),vel_eq); 

veLeq := l/^+i = Ki + i^sin(^n) 
For the reader's benefit, Jennifer has informed us that coupled equations iden
tical in structure to those for V and 0 arise in many other physical contexts, 
e.g., for the relativistic motion of an electron in a microton accelerator as well 
as in stellerator setups used in plasma fusion experiments [Jac90]. 

The two coupled first-order nonlinear difference equations that Jennifer has 
derived represent an example of a two-dimensional nonlinear map. This map 
cannot be solved analytically, but must be attacked using a do loop procedure. 
The range of the dependent variables depends on the physical context being 
considered, the bouncing ball, the microton accelerator, or whatever. Mathe
maticians like Jennifer define the standard map as a map of the above structure 
with both variables limited to a finite range, usually chosen to be 0 to 1. For 
the bouncing ball, the phase can be kept in the range 0 to 2 7r or, by setting 
On = '^TTyn^ iu the y range 0 to 1. This can be accomplished by the mathe
matical operation embodied in the Maple command Y[n+1] :=frac(y [n+1]):, 
which subtracts the integer part from yn-\-i- That is to say, if y has the value 
3.1, the frac command removes the integer 3, thus giving the value 0.1 to y. 
For convenience, Jennifer also sets Ki = 2 TT x^ but does not limit the range of 
X to be between 0 and 1, since this is unphysical for the bouncing ball. 

Keeping in mind that the derivation made an approximation in neglecting 
the vertical displacement of the plate relative to the flight of the ball, so regions 
of slightly unphysical behavior can occur, Jennifer has provided the following 
code to explore the physics of the bouncing ball. If the reader wants to obtain 
the mathematician's standard map, simply add the frac command at the point 
indicated by the appropriate comment. 

> r e s t a r t : w i t h ( p l o t s ) : Digi ts :=15: 

> x[0] :=0 .6 : y [ 0 ] : = 0 . 1 : K:=0.5: N:=1000: p :=eva l f (P i ) : 

> for n from 0 to N do 

> x[n+l]:=x[n]+K/(2*p)*sin(2*p*y[n]); 

> y[n+l] :=y[n]+x[n]+K/(2*p)*sin(2*p*y[n]); 

> t [n+ l ] :=n+l ; #keep t rack of the bounce time 

> X[n+1]:=x[n+l]; #add frac if des i red 

> Y[n+1] :=f rac(y[n+l ] ) ; 

> p t [n] : = [X[n+l] ,Y[n+l] , t [ n+ l ] ] ; 

> end do: 
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The plotting points are now created and plotted using the seq and pointplotSd 
commands and joined together with lines. 

> p l o t p o i n t s : = [seq(pt[ j ] , j=N-500. .N)] : 

> pointplotSd(plotpoints ,s ty le=l ine ,axes=boxed, t ickinarks= 
[2 ,2 ,2 ] ,o r i en ta t ion=[ -90 ,0 ] , l abe l s=["X" ,"Y" ,"T"3) ; 

0.6 X 0 .65 

Figure 6.13: Velocity vs. phase, a masterpiece from the bouncing ball art gallery. 

Two-dimensional maps that are properly oriented can display esthetically pleas
ing pictures traced out by the system's trajectory. One possible masterpiece 
that Mike might like is illustrated in Figure 6.13, where the X-Y plane has 
been selected. The black and white reproduction shown here in the text does 
not do justice to the spectrum of bluish colors observed in the actual computer 
plot when the zoom magnification is set at 200%. This particular picture is 
very delicate, however. If the viewing box is rotated even slightly the picture 
turns "ugly." Of course, the terms "beautiful" and "ugly" are subjective and 
depend on the prejudices of the viewer. See whether you can find other pa
rameters and orientations that generate what you feel to be interesting, or even 
beautiful, masterpieces of computer-generated art. Start your own collection of 
masterpieces for the bouncing ball art gallery. 

PROBLEMS: 
Problem 6-40: Other masterpieces 
Use the bouncing ball code with parameters of your own choosing to obtain five 
visually distinct masterpieces to add to the bouncing ball art gallery. You may 
wish to choose your own color options instead of accepting the default color as 
was done in the text recipe. 
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Problem 6-41: Other functional forms 
In the text recipe, replace the sine function with the cosine function and see 
what the resulting picture looks like at a zoom magnification of 200%. Try 
different color options until you find the picture that most appeals to you. 
Problem 6-42: Frac command 
Taking Dig i ts : =20:, evaluate each of the following numbers and then apply 
the frac, trunc, and round operators to each 20-digit number: 

(a) the tangent of 120°; 

(b) 123.456 raised to the fifth power. 

6.2.4 Onset of Chaos: A Model for the Outbreak of War 

"LeVs fight till six, and then have dinner, ^^ said Tweedledum, 
Lewis Carroll, Alice^s Adventures in Wonderland (1865) 

In a thought-provoking series of articles appearing in the journal Nature [Sap84] 
and a research text entitled Chaos Theory in the Social Sciences [KE96], Alvin 
Saperstein has created a number of interesting phenomenological nonlinear 
models involving the arms race between nations or groups of nations. He views 
the threshold of war as being signaled by the breakdown of predictability and 
control and the onset of unpredictability and chaos. Although nonlinear dy
namical models are deterministic, they can display regions of parameter space 
where small perturbations or changes in the initial conditions produce large 
changes in the outcome. Since the initial conditions are never precisely known, 
predictability is lost and the solution to the underlying equations is chaotic. 
This is in contrast to the nonchaotic regime, in which a reasonable estimate of 
present conditions allows one to confidently predict the future. As a historical 
example of the extreme sensitivity in the chaotic regime to small perturbations, 
Saperstein cites the single assassination of the Archduke Francis Ferdinand at 
Sarajevo in 1917, which led to the great slaughter of World War I. 

To understand the essence of his ideas, let's first look at an early Saperstein 
model of the arms race. The key dependent variable in the model is the de
votion of a nation to arms spending. Devotion is defined as the ratio of arms 
expenditures to the gross national product (GNP) of that nation in a given 
budget cycle. Clearly the devotion can take on only values between 0 and 1. 
As a concrete example. Table 6.1 shows the devotion of a number of European 
countries in the mid-1930s, countries that were soon to be engaged in World 
War II. It should be noted that obtaining data in hindsight is much easier than 
trying to get accurate data at a time of impending conflict, a time when nations 
are not about to divulge how much they are spending on arms. 

Saperstein's first model was a bilateral one, involving the arms competition 
between two nations. This is clearly an oversimplification for the situation in 
the 1930s, when several major countries were involved and alliances were being 
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Table 6.1: Fraction of arms expenditures to GNP prior to World War II. 

Year 

1934 
1935 
1936 
1937 

France 

0.0276 
0.0293 
0.0194 
0.0248 

Germany 

0.0104 
0.0125 

Italy 

0.0443 
0.0461 
0.0298 
0.0359 

United Kingdom 

0.0202 
0.0240 
0.0296 
0.0454 

U.S.S.R. 

0.0501 
0.0552 
0.0781 
0.0947 

formed. However, the model is a good starting point for understanding Saper-
stein's ideas. So consider two nations X and Y that are engaged in an arms 
race and take Xn and yn to be their devotions in budget cycle n. Since larger n 
corresponds to a later budget cycle, n plays the role of the time variable. It is 
not unreasonable to assume that the devotion of nation X in budget cycle n+1 is 
proportional to F 's devotion in the previous budget cycle n, and vice versa, i.e., 

Xn+i oc yn, and ^/n+i oc Xn. (6.23) 

As a further refinement, it is assumed that if X's rival Y has such a high devo
tion that y ' s resources are stretched to the breaking point in the previous year 
and no more resources are available, then X's devotion may be decreased (and 
vice versa). Saperstein's arms race model then consists of the following coupled 
nonlinear difference equations: 

Xn-^i =4ayn{l-yn)^ Fa{yn yn+i -=4.bxn (1 - Xn) = Fi,{yn), (6.24) 

where the parameters a and b are to be determined from existing data, e.g., from 
Table 6.1. Consider, for example, France {X) and Germany (Y) and take 1934 
to correspond to n = 0 and 1935 to n = 1. Then, from Table 6.1, XQ — 0.0276, 
7/0 = 0.0104, xi = 0.0293, and yi = 0.0125, so that a = xi/(4?/o (1 - yo)) = 
0.712 and b = ^i/(4xo (1 — XQ)) = 0.116. Table 6.2 shows the various a and b 
values calculated in a similar manner from the data of Table 6.1. With a and b 
known. Equations (6.24) can be solved iteratively for larger n using a do loop. 

Table 6.2: Bilateral arms race model parameters a and b. 

Nations 

France-Germany 
France-Italy 

UK-Germany 
UK-Italy 

USSR-Germany 
USSR-Italy 

Input Years 

1934-35 
1936-37 
1934-35 
1934-35 
1934-35 
1936-37 

a 

0.712 
0.214 
0.582 
0.142 
1.34 
0.819 

b 

0.116 
0.472 
0.158 
0.582 
0.0657 
0.125 
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Before we discuss the specific application of Saperstein's bilateral model to 
the data of Tables 6.1 and 6.2, some preliminary general analysis is in order. 
First, let's eliminate one of the devotion variables from Equations (6.24). By 
changing n to n + 1 in the first equation and then using the second, we have 

^n+2 = 4a^n+i (1 - ?/n+i) = I6abxn (1 - Xn) (1 " 46x^ (1 - x^)), (6.25) 

or, in more compact functional notation, 

^ n + 2 = FaiVn^rl) = ^a(i^fe(^n)) = Fab{Xn). (6.26) 

To create the operator Fab{x) with Maple, the arrow notation is used to define 
the functions Fa and F^. 

> restart: wi th(plots ) : 

> Fa:=x->4*a*x*(l-x); Fb:=x->4*b*x*(l-x); 

Fa := X-^ Aax {1 — x) Fb := x ^ 4bx {1 — x) 

Using the function composition operator, then Fab{x) is formed. 

> Fab:=Fa@Fb: Fab(x); 

Wabx {1 - x) {I - 4bx {1 - x)) 
The output is of the same structure as the right-hand side of Equation (6.25). 
Having formed Fab{x)^ we can use it like any other function. For example, the 
analytic derivative of Fab{x) is needed shortly in order to determine the stability 
of the fixed points. By forming an operator d to calculate the derivative of an 
arbitrary function F(x), the derivative of Fab{x) is obtained in dl. 

> d:=F->diff(F(x),x): dl:=d(Fab); 

dl — 16ab{l - x) {1 - 4bx {I - x)) - I6abx {1 - 4bx {1 - x)) 
+ 1 6 a 6 x ( l - x) ( -4 6(1 - x) + 4 6x) 

Rather than obtain an equation for x alone, we could just as easily have derived 
the corresponding equation for y. It takes the form 

yn^2 - FbiFaiVn)) = FbaiVn) • (6.27) 

Since for each Xn there is a corresponding y^ we will concentrate on the Xn 
equation. Equation (6.26) connects x values that are two time steps apart, i.e., 
the values Xn are mapped into Xn+2- Similarly Xji c a n be mapped into Xn+4, 
i.e., X values four time steps apart are connected, by applying Fab twice: 

Xn-^4 = Fab{Xn^2) = Fab{Fab{Xn)) = F2ab{Xn)- (6.28) 

Again, Maple can be used to analytically calculate F2ab{x) and its derivative 
d2. The very lengthy output of the latter has been suppressed here in the text. 

> F2ab:=Fab@Fab: F2ab(x); d2:=d(F2ab); 

256a'^ b'^ X {1 - x) {1 - Abx {1 - x)) {I - 16abx {1 - x) {1 - Abx {1 - x))) 

{1 - GAb'^ ax {I - x) {1 - Abx {1 - x)) {1 - 16abx {I - x) {1 - 4bx {1 - x)))) 

By forming F2ab®F2ab[x), x̂ _̂ 8 is connected to x„, and so on. 
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Let's first look at the mapping Xn-\-2 = Fab{xn)- The fixed points x* of this 
mapping relation correspond to Xn+2'=^n = ^*- So x* is the solution of 

X* = Fab(x*) = 16a?>x* (1 - X*) (1 - 46x* (1 - x*)), (6.29) 

which may be numerically solved for specific values of a and b. For example, 
let's first take a — 0.8 and b = 0.4, with 15-digit accuracy. We shall hold a fixed 
in the subsequent analysis and change the value of b (thus, the comment). 

> Digi ts :=15: a :=0.8: b :=0.4: #adjust b 
We form an operator s o i l to solve the general fixed-point equation F{x) = x. 

> so l l :=F->[so lve(F(x)=x ,x) ] : 
The remove command is used to remove any unphysical complex answers, con
taining I, that may occur in s o i l . F must be specified. 

> sol2:=F->remove(has,soil(F),!)[]: 

The slope operator substitutes the ith answer in sol2(F) into the derivative 
or slope s. Note that F , z, and s must be given. 

> s l o p e : = ( F , i , s ) - > s u b s ( x = s o l 2 ( F ) [ i ] , s ) : 
Taking F — Fah in sol2, 

> Sol :=[so l2(Fab) ] ; #adjust F 

Sol := [0., 0.708211494730374] 
we find that there are two fixed points of Xn-\-2—^n^ viz., x* = 0 and 0.708. To 
obtain the fixed points of Xn-\-4=Xn^ Fab raust be replaced with F2ab-

The corresponding derivatives of Fab{x) (the slopes) at the above fixed 
points are calculated. (To obtain the derivatives of F2ab{x) at the fixed points 
of Xn-\-4 = Xn^ oue must replace Fab with F2ab and dl with d2.) 

> S l o p e s : = s e q ( s l o p e ( F a b , i , d l ) , i = l . . n o p s ( S o l ) ) ; #adjust F,d 

Slopes := 5.12, -0.722193896757209 
The first fixed point at x* = 0 has a slope of 5.12, which is greater than 1, so this 
fixed point is unstable. The second fixed point at x* =0.708 has a slope whose 
magnitude is less than one and is therefore stable. On iteration of the model 
equations, the system will evolve toward the single stable fixed point x* = .708. 

To confirm this conclusion, let's take, e.g., xo = 0.01, ?/o = 0.05, and iterate 
the model equations Â  = 150 times. 

> x [0] :=0 .01 : y[0] :=0.05: N:=150: pt [0] : = [0,y[0] ,x[0]] : 

> for n from 0 to N do 

> x[n+l] :=Fa(y[n]) ; y [n+1] :=Fb(x[n] ) ; 

> p t [n] : = [n+l,y[n+l] ,x[n+l]] ; 

> end do: 
An operator pp, making use of pointplotSd, is formed to plot the points gener
ated in the do loop. A line style is chosen and an orientation to view x^ versus 
t. Rotate the plot on the computer screen to view i/n versus t. 

> pp:=v->pointplot3d(v,axes=boxed,s tyle=l ine,color=red, 
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t i ckmarks=[3 ,4 ,4 ] , l abe l s= [ " f ' , "y" , "x" ] , 
v iew=[O. .N, 0 . . 1 , 0 . . 1 ] , o r i e n t a t i o n = [ - 9 0 , 9 0 ] ) : 

Forming a sequence of pt [n] from n = 0 to Â  and applying the operator pp 

> pp ( [ seq (p t [n ] ,n=0 . .N) ] ) ; 
generates the picture shown on the left of Figure 6.14. After a short transient 
time, X evolves toward the constant solution x = 0.708 (confirmed by looking at 
the output of the do loop) as predicted by the stability analysis. 

Figure 6.14: Devotion of nation X versus time t. Left: 6 = 0.4. Right: 6 = 0.86 

With a held fixed, let's increase b. The location of the nonzero fixed point 
changes as does the slope of Fab at that fixed point. When b is increased above 
about 0.85, the magnitude of the slope of Fab increases to greater than one and 
this fixed point also becomes unstable. To confirm this, change b to 0.86 in the 
recipe. The fixed points of Xn-\-2 — ^n then are at x* = 0 and x* '^ 0.427 with 
corresponding slopes of about 11 and —1.1. Since both slopes have magnitudes 
larger than one, both fixed points are unstable. What happens then? 

One must examine the fixed points of x^+4 = Xn- Changing Fab to F2ab 
and dl to d2 at the appropriate places indicated by the comments in the recipe 
yields the fixed points 0, 0.390, 0.427, and 0.476 with slopes 121, 0.59, 1.21, 
and 0.59, respectively. So, for b — 0.86, Xn+4 = Xn has four fixed points, only 
two of which are stable, namely x* =0.390 and 0.476. The two unstable fixed 
points are the same as for Fabix) because Flab obviously contains Fab- For 
large enough times (budget cycles), the system will oscillate between the two 
stable fixed points. Again this can be confirmed by iterating the equations 
in the recipe and plotting the resulting curve, which is shown on the right of 
Figure 6.14. For large enough t (or n), the system oscillates between the two 
stable fixed points, a "period doubling" having occurred. 

The period-doubling behavior displayed in the figure is consistent with the 
stability analysis. Again the future evolution of the system is quite predictable, 
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since it keeps on repeating the periodic pattern. 
As the reader may verify, when b is increased to 0.885 all the fixed points of 

F2ab become unstable and it turns out that a higher-period solution emerges. 
Between 6 = 0.885 and 0.90, a sequence of further period doubhng occurs until at 
6 = 0.90 one obtains a picture (not shown here, so you may want to execute the 
recipe) in which there is no apparent periodic pattern and the solution is chaotic. 
Using the stability approach just outlined, Saperstein was able to numerically 
find a curve relating the parameters a and b at which predictable periodic 
behavior is lost and chaos sets in. For example, from the above discussion, a 
point on the threshold curve is a = 0.80 and b ^ 0.90. 

For these latter parameter values and the input devotions a::o = 0-01 ^nd 
2/0 = 0.05 that we have been using, the difference equations yield xi = 0.1520 
and yi =0.03564. In other words, to get such a large a and 6, nation X has noted 
that nation Y spent five times as much as it did on arms in the previous budget 
cycle and has increased its own arms spending fifteenfold in the next budget. 
Nation Y has actually cut back slightly, but too late to prevent instability. 

What about the real data for the European countries in the 1930s? Using a 
and b values generated in the same manner as in Table 6.2, Saperstein concluded 
that the USSR-Germany arms race was already in the chaotic regime and the 
France-Germany and Italian-Soviet races were close to the threshold curve. 
World War II broke out shortly thereafter. Of course this calculation is done 
far after the historical time, and it is much easier to account for events in 
hindsight than to accurately predict the future. 

A weakness of the bilateral model is clearly that when more than two coun
tries are involved, as was the case in the 1930s, the model should be generalized 
to include more countries. Saperstein created a three-nation model that is a 
straightforward generalization of the bilateral one. Taking the devotion of the 
third country to be z, Saperstein's model equations are 

Xn+i = 4 a ? / ^ ( l - y n ) + 4 e z n ( l - ^n), 

yn-\-l^^bXn{l-Xn)-\-^eCZn{l-Zn), 

Zn+1 = 4 e X n ( l -Xn) + 4 e C 7 / ^ ( l - T / n ) , 

with two additional parameters e and c. The stability analysis for three coupled 
nonlinear difference equations is much more involved, and no attempt will be 
made to carry it out here. However, the generalization of the do loop for the 
bilateral model to the new tripolar model is trivial. Forming the function G, 

> G:=x->4*epsilon*x*(l-x); 

G := X -^ 4 £ x ( l - x) 
and keeping all parameters and initial conditions as in the bilateral model with 
6 = 0.86, we take e = 0.2, c = 0.2, and zo = 0.02. 

> z [0] :=0 .02: eps i lon :=0 .2 : c :=0.2: 
Executing the following do loop for the tripolar model equations, 

> for n from 0 to N do 
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> x[n+l] :=Fa(y[n])+G(z[n]); 
> y[n+l] :=Fb(x[ii])+c*G(z[n]); 
> z[n+l] :=G(x[n])+c*G(y[n]); 
> pt2[n] : = [ii,y[n] ,x[n]] ; 
> end do: 

and plotting the points, 

> pp( [ seq(p t2 [n ] ,n=0 . .N) ] ) ; 
will yield a chaotic solution for b = 0.86, rather than the periodic solution 
that occurred in the two-nations case. Including the third nation lowers the 
threshold curve, and chaos results instead. Inclusion of more countries leads to 
a greater chance of instability. Saperstein applied the comparison of the two 
nation and three-nation models to modern times and concluded that a tripolar 
world is more dangerous than a bipolar one. The latter was the situation when 
the world arms race was dominated by the United States and the Soviet Union. 

PROBLEMS: 
Problem 6-43: Bipolar model 
Find the approximate threshold curve in the a-b plane for the onset of chaos. 

Problem 6-44: Tripolar model 
With all other parameter values the same, what is the approximate c value at 
which there is a change from periodicity to chaos? Explore the tripolar model 
for other values of e and c. If nonchaotic, determine the periodicity. 
Problem 6-45: Periodic cycles of disease 
Anderson and May [AM82] have developed a difference equation model for the 
spread of disease that illustrates how periodic cycles of infection may arise in 
a given population. Let the basic unit of time t be the average time interval 
for infection and let Ct and St be the number of disease cases and number of 
susceptible people at time t. The Anderson-May model assumes: 

• the number of new cases C^+i at time t + 1 is some fraction f of Ct x St'-, 
• a case lasts for only one time unit; 
• the susceptible number St is increased at each time interval by a fixed 

number of births B ^ 0 and decreased by the number of new cases; 
• individuals who recover from the disease are immune. 

(a) Derive the difference equations corresponding to these assumptions. De
termine the fixed point(s) of the model. 

(b) Anderson and May state that in a third-world country typically B = 36 
(births per 1000 people) and f — Sx 10~^. Evaluate the fixed point(s). 

(c) By solving the model equations, show that a small deviation away from 
the fixed point(s) results in a periodic cycle of disease incidence. Take the 
parameter values of part (b) and the initial values 5*0 = 33300 and CQ = 20. 



Part III 

THE DESSERTS 

It^s food too fine for angels; yet come, take 
And eat thy fill! IVs Heaven^s sugar cake. 

Edward Taylor, English poet (1664-1729) 

Part of the secret of success in life is to eat 
what you like and let the food fight it out inside. 

Mark Twain, American humorist (1835-1910) 

You won^t need to follow recipes 
when we^ve taught you how to cook. 

Richard and George, your CAS chefs 



Chapter 7 

Monte Carlo Methods 
Man can believe the impossible, but can never believe the improbable. 
Oscar Wilde, Anglo-Irish writer (1854-1900) 

The real strength of computer algebra systems compared to programming lan
guages such as Fortran and C is in the ability to carry out symbolic computation 
and, where desired, easily plot out or even animate the resulting solution for 
specified parameter values. We would be remiss, however, if we didn't show 
that CASs can also prove quite useful in carrying out numerical simulations. 

In this chapter we shall deal with a wide variety of Monte Carlo simula
tions, such as the random walk of a perfume molecule and the random-number 
evaluation of multidimensional integrals, that make use of a random-number 
generator. A random-number generator produces random numbers, integer or 
otherwise, over a specified range. Using the "best available" random-number 
generator is a concern of the serious scientific researcher, but Maple's built-in 
random number "procedure"^ will suffice for our purposes. 

The methods that rely on random-number generators are referred to as 
Monte Carlo methods, Monte Carlo being the gambling resort in Monaco where 
roulette and other games of chance are the featured attraction. The name 
Monte Carlo was introduced [KW86] by scientists working on the development 
of the atomic bomb at Los Alamos in the 1940s. The diff'usion of fission-
inducing neutrons can be simulated with a random-walk approach. Random-
walk examples are the featured attraction in the next section. In presenting the 
numerical simulation recipes, we have tried to write programs whose structures 
are reasonably eflScient in terms of time of execution, yet transparent to science 
and engineering readers who are not experts in computer programming. Writing 
the most efficient program is something of an art form, and if you feel that you 
can improve some of the recipes please feel free to do so. 

Every Monte Carlo recipe in this chapter will start with the command 
randomize ( ) . This will set the random number "seed" to a value based on 
the computer system clock. 

^A pseudorandom sequence is produced, rather than truly random numbers. 
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> restart: randomize(); 
1120586799 

The above output is the seed number. Note that since randomize() depends 
on the system clock, the same seed can be obtained if not enough time elapses 
between two consecutive calls to randomize(). Since the specific seed number 
is usually of no interest to us, in our recipes we will suppress the output of 
randomize( ). 

The command rand( ) yields a random 12-digit nonnegative integer. 

> r:=rand(); 
r := 575717670493 

A fractional random number between 0 and 1 is obtained by dividing r by 10^^, 

> r2:=r/10^12; 
575717670493 

r2 := 
1000000000000 

which can be put into (10-digit) floating-point form. 

> r3:=evalf (7o); 
r3 := 0.5757176705 

If it is desired to produce random integer numbers over a specified range, for 
example from 1 to 6 to simulate the outcomes produced by the rolling of an 
unbiased die, the command rand(l . .6) is entered. This generates the relevent 
random-integer procedure. 

> r4:=rand( l . .6 ) : 
Then, using r 4 ( ) in the following sequence command, 24 random numbers 
(assigned the name rn) between 1 and 6 are produced, simulating the rolling 
of a die. The numbers are put into a list format for statistical manipulation. 

> rn: = [ s e q ( r 4 ( ) , i = l . .24)] ; 

rn := [5, 5, 1, 3, 3, 5, 5, 3, 4, 4, 5, 4, 4, 1, 3, 3, 6, 5, 6, 2, 3, 6, 5, 2] 
After the Statistics library package is loaded, the Tally command is used to 
tally the number of times each random number rn turned up. 

> w i t h ( S t a t i s t i c s ) : Ta l l y ( rn ) ; 

[1 = 2, 2 = 2, 3 = 6, 5 - 7, 4 = 4, 6 = 3] 

In this particular run, the numbers 1 and 2 each occurred twice, the number 3 
occurred 6 times, the number 5 occurred 7 times, and so on. The number of 
occurrences will vary from one run to the next. 

In the recipes that follow, we will use variations on the above command 
structures, as well as introduce other statistical commands, to suit the specific 
aims of our files. 

PROBLEMS: 
Problem 7-1: Another range 
Create a command structure that produces 10,000 random integers between 1 
and 9. Tally the number of times each integer occurs. 
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Problem 7-2: Random negative decimal numbers 
Create a command structure that produces random decimal numbers between 
—0.9 and —0.1. Then generate a sequence of 50 random numbers in this range. 

7.1 Random Walks 

In 1827, Robert Brown [Bro28a], [Bro28b], an Enghsh botanist, observed that 
the httle grains of plant pollen he was studying under a microscope were motile 
in their suspending liquid. At first he thought these strange erratic dancing 
movements were self-induced, i.e., the particles were alive. However, after notic
ing that the same phenomena occurred in boiled water and in the water trapped 
inside crystals that were millions of years old, he ruled out biological causes. 
Brown was never able to explain this stochastic motion, now known as Brow-
nian motion. The first person to present the explanation that the movements 
were due to the bombardment of the suspending liquid's molecules was Delsaux 
(1877), but the first precise measurements were made by Gouy [Gou88]. 

Early in the twentieth century a number of scientists conducted important 
research on Brownian motion, the foremost being Albert Einstein. Einstein 
published five papers (May, December 1905, 1906, 1907, 1908), giving math
ematical explanations for Brownian movement in terms of the concept of a 
"random walk." A three-dimensional random walk of a particle is shown in 
Figure 7.1. We shall see how such a picture is produced shortly. 

Figure 7.1: A three-dimensional random walk. 
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Einstein's papers are collected and published in a wonderful book,^ which 
is highly recommended to the reader. In this collection of papers, the famous 
Einstein equation for the root mean square displacement dx of bombarded par
ticles of radius r suspended in a fluid of viscosity rj in the direction of the x-axis 
in a time interval t, viz., 

d, ̂ ^(^)^.LJ—?^ ^ J-^kT, (7.1) 
y STTTjr Na y 6 7rr]r 

appears for the first time. Here, enclosing x^ in "angle brackets," i.e., (x^), 
indicates a statistical average over x^, T is the absolute temperature, R is the 
ideal gas constant (8.31 J/(mol-K)), Â ^ is Avogadro's number (the number of 
molecules in 1 mole), and k is Boltzmann's constant (1.38 x 10~^^ J/K). 

The historical importance of Brownian motion cannot be overstated. The 
mathematical explanation of Brownian motion provided the culminating proof 
of the existence of atoms. Up to this time there were still scientists who doubted 
the existence of atoms. Einstein's publications explained the phenomenon of 
Brownian motion and suggested methods that could be used to make the elusive 
and invisible Cheshire cat of chemistry—the molecule—visible to all that wished 
to look. Even if Einstein had not produced his other two 1905 papers dealing 
with the photoelectric effect and the theory of special relativity, this work on 
Brownian motion would have established his reputation as a physicist of the 
first rank. 

The French chemist Jean Perrin was able to duplicate Brownian motion in 
colloidal suspensions. Perrin was able to show that the jiggling particles obeyed 
the equipartition of energy theorem. He used Einstein's equation to make the 
first reasonable estimate of Avogadro's number (Â ^ = 6.85 x 10̂ *̂  atoms per 
mole) [Sea58] and one of the first determinations of Boltzmann's constant. 

Random walks at the molecular level are the basis for the physical process 
of diffusion. A localized concentration of a fragrant perfume will spread or 
diffuse in air due to the random walk of each perfume molecule as it bounces 
off air molecules. Even if the speeds of the diffusing molecules are high between 
collisions, the average distance of the molecules from the starting point after 
many collisions is considerably less than would be anticipated on the basis 
of speed alone because of the convoluted paths that the molecules travel. If 
a diffusing molecule had a constant speed and a fixed time interval between 
collisions, it can be shown that after n collisions the average distance traveled 
would be proportional to ^/n. This is considerably less than the distance the 
molecule would travel along a straight line without suffering collisions. In this 
latter case, the distance would be proportional to the elapsed time, which scales 
linearly with n. 

^If you wish to explore the mathematics behind Brownian motion, you can do no better 
than start with this easily readable collection, entitled Investigation on the Theory of the 
Brownian Movement [Ein56]. As a bonus, there is an appendix that provides a short history 
and a list of the players involved in this drama. You are also directed to volume I of the 
famous Feynman trilogy, Lectures on Physics [FLS64], for a discussion of random walks. 
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To simulate a random walk problem with a computer, a random-number 
generator is used to produce random changes in direction of the diffusing par
ticle. How this works will be illustrated with several simple examples, ranging 
from one- to three-dimensional motion. 

PROBLEMS: 
Problem 7-3: Estimating Avogadro's numiber 
This problem illustrates the underlying method used by Perrin to estimate 
Avogadro's number. Figure 7.2 shows the successive positions at 30 second 

Figure 7.2: A random walk in two dimensions. 

intervals of a small particle of radius r = 0.1 /im suspended in a water solution 
(viscosity r; = 1.00 x lO""^ N-s/m^) held at a temperature of 20 °C. In the figure, 
a distance of 1.0 cm corresponds to 1.0 //m. 

(a) Measure the distance in cm of each of the first 10 steps. Using the scale 
factor, convert the measured distances into fim. 

(b) Calculate the mean-square average distance (c?̂ ) by squaring each dis
tance, summing the squares, and dividing by the 10 measurements. 

(c) Calculate dx using (x^) = {(P)/2. Justify this relationship. 

(d) Use Equation (7.1) to estimate Avogadro's number Na. 
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(e) Check your answer by using the steps from 5 to 15, 10 to 20, or any other 
combination that you wish. Are all the values consistent? Average over 
the estimates and compare with the known value of Na. 

Problem 7-4: Einstein's estimate 
In his May 1905 paper, Einstein made an estimate of what dx should be in 1 
second and in 1 minute for particles of diameter 1 fim suspended in water held 
at 17 °C. At this temperature, the viscosity of water is rj = 1.35 x 10~^ N-s/m^. 
Use Einstein's formula (7.1) to estimate d^ for t = 1 s; for t = 1 min. 

7.1.1 The Soccer Fan's Drunken Walk 

Some people think football is a matter of life and death ... 
/ can assure them it is much more serious than that. 
Bill Shankly, former British football club manager (1914-1981) 

When coauthor Richard was a postdoctoral fellow many eons ago, he spent 
a year carrying out theoretical calculations on the migration of electrons in a 
solid at the University of Liverpool in England. On Saturday afternoons, he 
would migrate to the local soccer (football, to the rest of the world outside 
North America) pitch to watch Liverpool, who were one of the premier soc
cer teams in the world at that time, play Manchester United and other fabled 
English and European soccer teams. At that time the stadium, which held 
some 50 to 60 thousand fans, had seats for only a small fraction of the crowd. 
Being a student, Richard would pay the minimum entry fee and stand with 
thousands of others in the ramped and cramped end zone, referred to as the 
Kop. The fans were jammed in like sardines and occasionally someone would 
faint and his or her body would be passed over the heads of the crowd down to 
the waiting St. John's ambulance people, who were ever present on the side
lines of the field. Leaving the game was equally hazardous, since one had to 
squeeze through narrow exits and down steep stairs, trying to avoid falling and 
therefore being trampled by the surging crowd. Once out on the street, the 
constabulary mounted on horses tried to direct the crowd in an orderly fashion 
away from the stadium. Often, it was mayhem! The boisterous fans then would 
retire to their favorite local pub and relive the exciting moments of the soccer 
match, the pitch of the arguments increasing as the beer mugs were drained. 
The migration of some of the inebriated fans to their nearby homes was almost 
that of a random walk or, should we perhaps say, a random stagger. 

The simplest random-walk problem is the one-dimensional drunkard's walk, 
which is idealized as follows. Starting at the origin (the pub door), Xo = 0, the 
drunken soccer fan is allowed to make either a step of length L to the right or 
to the left along the narrow street with equal probability. That is to say, the 
probability of a step to the left is p=~ and, of course, a probability of ^ to the 
right. Thus, for example, after the first step, the fan's position would be either 
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X i = X o + L — L or X i = X o — L = —L. Similarly, after the n t h step, the fan's 
position would be either Xn~\-i = Xn -h L or X^+i = Xn — L. The question is, 
what is the fan's location after n — N steps? The answer will depend on the 
sequence of random plus and minus steps generated. Statistically, however, the 
average displacement of the fan from the pub door would average out to zero. 
The root mean square displacement D , however, will not average out to zero, 
but instead will be given by D = y/N L after Â  steps. The argument leading to 
this latter expression is as follows. 

After the n t h step, the displacement squared is either X^^^ — {Xn + LY — 
X2 + 2 X n L + L 2 , or Xl^^ = {X^ - L)^ = X^ - 2 X ^ L + L^. We add the 
two possible results and assume tha t for equal probabilities for movement to 
the right or to the left, the plus and minus contributions will cancel on the 
average. Then, on dividing the sum by two, and using angle brackets to denote 
the statistical average, we obtain {X\j^^ — (X^) + L^. But for n = 0, we 
have (Xf) - (X2) + L2 - L^, for n = l, ( X | ) = (Xf) + L^ = 2L^, and 
by induction, ( X ^ ) = N L^. The root mean square (rms) distance then is 
D = A / ( X ^ ) = \fN L. The argument leading to Z) oc \fN is, however, a 
statistical one and the actual root mean square distance may differ at a given 
Â  value from the theoretical prediction for a particular random walk. 

Using a random-number generator, let 's now simulate the one-dimensional 
random walk and look at the actual behavior of the root mean square distance 
i^ as a function of N. The plots and Statistics packages are loaded because we 
shall be using the d i s p l a y and S c a t t e r P l o t commands. 

> r e s t a r t : w i t h ( p l o t s ) : w i t h ( S t a t i s t i c s ) : 

To obtain a good statistical average, we shall average over the random walks 
of many fans, so the displacement variable will have two subscripts, one (n) to 
keep track of which step has been executed for a given fan, the other (/c) to keep 
track of which fan it is. The subscript k is referred to as the "trial" number. 

For the /cth fan, the displacement algorithm will be writ ten in the form 

Xji-^x^k — Xn^k + d (7.2) 

with d taking on the value dl = -\-L or d2 — —L. This corresponds to equal-size 
steps to the right and to the left. A random number will be generated on each 
step for the k\h fan. If this number lies between 0 and p, then dl is selected, 
while if it is between p and 1, then d2 is chosen. For our example, we take p = ^, 
so that there is an equal probability of a step to the right or to the left. The 
alteration of the code to handle unequal step sizes and unequal probabilities is 
clearly easy to implement. The step size is taken to be L —1 length unit. 

> L : = l ; d l :=L; d2:=~L; p : = l / 2 ; 

L := 1 dl :=! d2 := - 1 p := -

The maximum number of steps is taken to be X = 50, and 1500 fans (trials) 
are considered. If you have sufficient speed and memory on your computer, you 
may want to increase the number of steps. Fewer trials, on the other hand, will 
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in general lead to a less-accurate statistical average. 

> N:=50: t r i a l s :=1500 : 
The call randomize ( ) , which is now entered, resets the random number seed 
according to the system clock. On each step, a new random integer will be 
generated in the specified range. If this command line is not entered, the same 
seed will be used each time the program is run and one will not obtain a new 
set of random numbers. If desired, you can omit this line and check that this 
is the case. 

> randomize() : 
To gauge the efficiency of a numerical simulation, the beginning time and ending 
time to execute the major portion, or all, of a program can be recorded. The 
command time( ) returns the total CPU time in seconds used since the start 
of the Maple session. 

> begin_t ime:=t ime() ; 

begiri-time :— 5.047 
Thus, in this case 5 seconds have elapsed since the authors started this particular 
Maple session. Now, we present the heart of the code, which involves two do 
loops. The first, or "outer," loop will iterate over the number k of fans. 

> for k from 1 to t r i a l s do 
Each fan is positioned at step n = 0 at the origin (the pub door, say). 

> X[0,k]:=0; 
The second, or "inner," do loop is now applied to the displacement of the kth 
fan, who undergoes a maximum number of iV = 50 steps. 

> for n from 0 to N do 
To create a random fractional number between 0 and 1, the r and( ) command 
with no argument specified is first used to produce a random 12-digit nonneg-
ative number, and then this number is divided by 10^^. If the random number 
is less than or equal to p, then d=dl is chosen. Otherwise, d—d2 is selected. 
This is accomplished through the following conditional "if.. .then" statement. 

> if rand()/10^12<=p then d:=dl e l se d:=d2 end if; 
Equation (7.2) is entered, 

> X[n+l,k] :=X[n,k]+d; 
and the inner do loop ended. 

> end do: 
In the outer loop, the sequence of X^ ^ from n = 0 to n = Â  is formed into a 
Maple list and labeled as 5^, a list being produced for each fan. 

> S[k] : = [seq((X[n,k]^2) ,n=0. .N)] ; 

> end do: 
On completion of the outer loop, we might have wished to insert one or more 
additional command lines somewhere inside the loops without typing the do 
loop structure over again. To insert a command line inside a loop, place the 
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cursor at the start (just after Maple prompt >) of the next command Hne fol
lowing the desired point of insertion of the new line. Then click on the left 
keyboard arrow to move the cursor to the left of > and then press Enter. This 
process will insert a blank command line above the cursor. 

We now add up all the lists Sk and divide by the number of fans (trials) to 
give us a list of average mean square displacements, each entry corresponding 
to a different n value up to n = A .̂ 

> P t s : = e v a l f ( a d d ( S [ k ] , k = l . . t r i a l s ) / t r i a l s ) : 
The map command is used to take the square root of each entry in the list 
Pts . The new list, labeled Pts2, now contains the (average) root mean square 
displacements, D, for different total numbers of steps. 

> Pts2:=inap(sqr t ,Pts) : 
A list of the step numbers from n = 0 to n = Â  is formed. 

> n_coords:=[seq(n,n=0. .N)] : 
All that remains is to plot the data. How much CPU time has the calculation 
taken? By asking for the end_time, 

> end_time:=time( ) ; 

end-time := 7.290 
and subtracting begin_time from this number, 

> elapsed_time:=end_time-begin_time; 

elapsed-time :— 2.243 
we see that a total of about 2 seconds of CPU time has elapsed. The CPU 
time can be used as a benchmark against which any attempts to improve the 
efficiency of a given program on the same computer can be compared. The 
CPU times quoted in this chapter were obtained with a 3 GHz Pentium IV 
personal computer. We have tried to keep the CPU times of most of the recipes 
short, but be warned that some of the problems require considerably longer 
CPU times to obtain accurate statistical results. In these cases you might wish 
to "play" with the recipes in order to make them run faster. 

A graph of the numerical points is now created with the Sca t t e rP lo t com
mand, but not displayed. A point style is chosen, the numerical points being 
represented by size-14 circles. 

> gr1 :=Sca t te rP lo t (n_coords ,P ts2 , s ty le=poin t , 
symbol=circle,symbolsize=14): 

The theoretically predicted behavior of D as a function of the step number, 
which was derived earlier, is plotted as a thick blue line. 

> gr2 :=plo t (L*sqr t (x) ,x=0. .N,color=blue , th ickness=2) : 
The two graphs are superimposed with the display command, 

> display({gr l ,gr2}, t ickniarks=[3,3] , labels=["N", "D"] ) ; 
the result being shown in Figure 7.3. 
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Figure 7.3: Root mean square distance D versus number of steps N. Solid line: 
theoretical prediction. Circles: numerical points. 

The numerical simulation data are clearly in excellent agreement with the the
oretically derived formula D = L y/N. 

Of course, for an actual inebriated soccer fan, the step sizes to the right 
and to the left will undoubtedly be unequal, as will the probabilities. Further, 
the random walk will not normally be confined to one dimension, so the model 
must be modified to take these various factors into account. Our goal is not 
to make a lifelong study of the random stagger of inebriated soccer fans, so 
we leave these aspects for the interested reader to explore. An example of a 
two-dimensional random walk with unequal probabilities in different directions 
is given in a different context in the next story. 

PROBLEMS: 
Problem 7-5: Unequal probabilities 
Suppose that in the text recipe the probability p of a step to the right is three 
times the probability g of a step to the left, all step sizes being exactly the 
same. It can be shown, using statistical arguments, that more generally, 

D = ^{p-qyN^+ApqN. 

Confirm D by superimposing it on a plot of the numerical simulation data. 

Problem 7-6: Different L values 
Confirm that the (average) rms distance correctly scales with L as well as A .̂ 

Problem 7-7: Number of trials 
In the text recipe, about how many trials are needed to obtain D to approxi
mately 5% accuracy for Â  = 9 steps? for Â  = 49 steps? 
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Problem 7-8: Unequal step sizes 
Suppose for the drunken soccer fans in the text recipe that dl—2L and d2 = L, 
ah other parameters being the same. 

(a) Numerically determine the average displacement {X{N)), which will now 
be nonzero, and plot the result. 

(b) Numerically determine the average mean square displacement {X{N)'^) 
and plot the result. 

(c) Calculate y/{X{n)'^) - {X{N)y and plot the result. What does this 
quantity represent? 

7.1.2 Blowin' in the Wind 

How many times must a man look up, Before he can see the sky? 
Yes W how many ears must one man have, Before he can hear 
people cry?,., The answer, my friend, is hlowin^ in the wind, ... 
Bob Dylan, American folk singer and songwriter (1941-) 

In 1962 Bob Dylan composed the popular folk song "Blowin' in the Wind," 
whose powerful lyrics and stirring tune became identified with the civil rights 
movement in the United States. In 1964 the well-known trio Peter, Paul, and 
Mary received "Grammy Awards" for their recording of this song. 

In this section, recalling the swirling events of his childhood and inspired 
by the lyrics of Dylan's song, Russell (the engineer) decides to simulate the 
random walk of a raindrop falling from a rain cloud and being buffeted by the 
swirling winds of Rainbow County. 

> restart: wi th(plots ) : 
The bottom of the rain cloud is taken to be 1 km, or h — 1000 meters, above 
the ground. For simplicity, each random step (displacement) of the raindrop 
will be chosen to be of the same length, say, d=l meter. The reader can, of 
course, change the value of d if so desired to see what efl̂ ect step size has on the 
raindrop's trajectory. 

> h:=1000: d := l : 
In Rainbow County, the prevailing wind tends to gust from the west, but due to 
its swirling nature it occasionally reverses direction at different altitudes. Rus
sell treats the random-walk problem as two-dimensional, taking the horizontal 
direction to be labeled as x, the vertical direction as y. The origin (x = 0, t/ = 0) 
is chosen at a point on the ground directly below the initial position (x = 0, 
y = h) of the raindrop in the cloud. Positive x corresponds to being east of the 
initial position, negative x to the west. The extension of the model calculation 
to include north and south gusts is easy to implement. 

On a given step, Russell assumes that the probability of the particle mov
ing vertically upward a distance d due to an updraft is 0.1, of falling vertically 
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downward is 0.7, of being blown to the right (wind from the west) is 0.15, 
and of being blown to the left (wind from the east) is 0.05. The position of 
the raindrop at step n+1 is related to its position at the nth step by the relations 

Xn+l = ^ n + ai, yn^l = ^n + ^i , (7-3) 

with i taking on the values 1, 2, 3, 4. On each of the n steps, a random number 
r lying between 0 and 1 is generated. If r < pi = 0.1, then i = 1 is chosen; 
otherwise, if r < p2 = 0.8, then i = 2 is selected; otherwise, if r < 7̂3 = 0.95, 
then i = 3 is chosen; otherwise, z = 4 is selected. The values of the a ,̂ bi^ and 
Pi are now entered. 

> a [ l ] : = 0 : a[2] :=0: a[3] :=d: a[4] :=-d: 

> b [ l ] :=d : b[2] :=-d: b[3] :=0: b[4] :=0: 

> p [ l ] : = 0 . 1 : p [2 ] :=0 .8 : p[3] :=0.95: 
If, for example, the random number r — 0.55 is generated on a given step n, 
then the coordinates of the raindrop on the next step are x^+i =Xn -\- CL2=Xn^ 
Un+i —yn^b2 — yn — d. In this step, the raindrop falls vertically a distance d. 

Since Russell has chosen d^l and /i=1000, it wih take at least 1000 steps 
for a raindrop to strike the ground, because there are small, but not negligible, 
probabilities of horizontal and even upward displacement. In this run, Russell 
allows the calculation to proceed to a maximum of TV = 2000 steps. The input 
coordinates (XQ = 0, y^ — h) of the raindrop, as it leaves the bottom of the cloud, 
are entered separately and as a list. 

> N:=2000; x[0] :=0: y[0] :=h: pnt [0] : = [x[0] ,y [0]] ; 

N := 2000 pnt^ := [0, 1000] 
The random number seed is set, and the starting time for the body of the 
program recorded, but not displayed. 

> randomize() : begin_time:=time() : 
The zeroth step is entered, 

> n:=0: 
and the conditional loop begins. Russell would like to know how many steps 
it takes on a given numerical run for the raindrop to strike the ground, this 
number varying from one run to the next. To find the total number of steps 
and also stop the program when the raindrop hits the ground, he inserts a 
conditional while statement. The iteration of the do loop will continue only 
while n < N and y-n > 0. 

> while (n<=N and y[n]>=0) do 
A random number, expressed in decimal form, is generated between 0 and 1, 

> r :=evalf (rand()/10'^12); 
and the "if then" probability statement is entered, 

> if r<p[ l ] then i : = l e l i f r<p[2] then i:=2 
e l i f r<p[3] then i :=3 e l se i :=4 end if; 

as well as Equation (7.3). 

> x[n+l] :=x[n]+a[i] ; y [n+1] :=y [n]+b[i] ; 
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The raindrop coordinates on step n + 1 are formed into a list, 

> pnt[n+l] : = [x[n+l] ,y[n+l]] ; 
and the value of n incremented by one. 

> n:=n+l; 

> end do: 
On completion of the do loop, the total number of steps for the raindrop to 
strike the ground, the final vertical position (which should he y — 0) and its 
horizontal displacement are displayed. 

> Tota l_s teps :=n- l ; Ve r t i c a l_pos i t i on :=y [n - l ] ; 
Horizontal_displacement: =x [n-1] ; 

TotaLsteps := 1697 Vertical.position := 0 Horizontal-displacement :— 181 
For this particular run, it took 1697 steps for the raindrop to hit the ground, 
its final horizontal position being 181 m to the right (to the east) of its initial 
horizontal position when it left the cloud. That the raindrop would likely land 
to the east was expected on probabilistic grounds. 

The end time is recorded, and the elapsed CPU time (in s) evaluated. 

> end_t ime:=t ime( ) : 

> elapsed_time:=7o-begin_time; 

elapsed .time := 0.100 
This calculation took only a fraction of a second to execute. 

Feeling rather whimsical and, maybe, slightly nostalgic for the innocence of 
his lost youth, Russell decides to use the polygonplot command to pictorially 
create the bottom portion of the rain cloud. Making use of s tyle=patch and 
an appropriate shade of blue, a graph of the cloud is formed. 

> gr 1: =polygonplot ( [ [-500,1000] , [500,1000] , [500,1050] , 
[-500,1050]],style=patch,color=COLOR(RGB,0.2,0.3,0.6)): 

The proportions of red (R), green (G), and blue (B) are controlled through the 
numerical values inserted into the color command. The reader who prefers a 
different-colored cloud can adjust the numbers according to his or her taste. 
The next command line creates a graph of the raindrop's trajectory, the ran
dom steps being represented as straight-line segments, all of equal length. The 
raindrop is assigned the same color as the cloud from which it originated. In 
actuality, this may not be a realistic thing to do, so once again feel free to 
choose your own color scheme. 

> g r 2 : = p o i n t p l o t ( [ s e q C p n t [ j ] , j = 0 . . T o t a l . s t e p s ) ] , 
style=line,color=COLOR(RGB,0.2,0.3,0.6)): #raindrop 

Making use of the display command, the falling raindrop and the rain cloud 
are shown in Figure 7.4. To keep the scaling in the horizontal and vertical 
directions the same, Russell uses the scal ing=constrained plot option. 

> display({gr l ,gr2},axes=boxed,scal ing=constra ined, 
view=[-500. .500,0. .1050] , labels=["x" , "y"] , t ickinarks=[3,4]) ; 
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0 -400 -200 0 X 200 400 

Figure 7.4: Random walk of the falling, wind-buffeted raindrop. 

The curious reader might wonder what it was in Bob Dylan's song that triggered 
Russell to indulge in his raindropmodel calculation. When asked this question, 
Russell declined to be specific but was heard to reply enigmatically, "The answer 
my friend, is blowin' in the wind." 

PROBLEMS: 
Problem 7-9: Calculating averages 
By averaging over a large number of numerical runs, determine the average 
number (n) of steps it takes the raindrop to hit the ground and the average 
horizontal displacement D. How do (n) and D depend on h? 

Problem 7-10: Different wind velocities 
In the text calculation, the displacement was taken to be the same on each 
step whether due to a downdraft, updraft, or a sidedraft. Explore the effect of 
unequal displacements due to different wind velocities in different directions. 

Problem 7-11: Three-dimensional motion 
Alter the recipe to allow for three-dimensional motion of the falling raindrop 
and create a three-dimensional plot of the raindrop's trajectory. Alter the 
probabilities to values that you think are reasonable. 

Problem 7-12: A rain-buffeted skyscraper 
In the text recipe, make the following modifications: 

(a) Using the polygonplot command, create a graph of a solidly colored 
skyscraper 800 meters high and occupying the region between x = 150 and 
500 meters. Color the skyscraper brown by taking the color combination 
(RGB, 0.5,0.5,0.3). Include this graph in the d isplay command. 
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(b) Modify the while statement to terminate the program when a raindrop 
strikes the skyscraper, 

(c) Record and display the vertical height above the ground at which the 
raindrop hits the skyscraper. 

(d) By averaging over a large number of numerical runs, determine the average 
height above the ground at which the raindrop hits the skyscraper. 

(e) What percentage of raindrops make it all the way to the ground without 
hitting the skyscraper? 

7.1.3 Flight of Penelope Jitter Bug 

Of all the thirty-six alternatives, running away is best. 
Chinese proverb 

In a certain computer fantasy game, Penelope Jitter Bug is being pursued by 
that odious reptile, Snide Lee Lizard. To avoid capture, Penelope is allowed 
to move erratically on a three-dimensional rectangular lattice. The rules are 
that she can move randomly in the x-, y- and z-directions with a possible step 
of -M, 0, or —1 in each direction. Thus, if Penelope starts out at the origin, 
(x = 0, 1/ = 0, 2; = 0), after the first step she could end up at (0,0,0), i.e., she 
could fake Snide Lee out and not move at all, or Penelope could end up at one of 
26 other neighboring positions, e.g., (1,0,0), (0, -1 ,0 ) , (1, -1 ,1 ) , etc. Maple's 
random-number generator will be used to randomly select 1, 0, or —1 for each 
of the X, y, and z steps. 

> r e s t a r t : w i t h ( p l o t s ) : 
The starting point is the origin, which is labeled s tep I |0, and n = 1000 time 
steps are considered. The random number seed is set, 

> s t e p i | 0 : = [ 0 , 0 , 0 ] : n:=1000: randomize() : 
and the starting time recorded. 

> begin:=time( ) : 
A do loop repeats the calculation n times. 

> for i from 0 to n-1 do 
The r a n d ( - l . . 1) command allows the values - 1 , 0 , +1 to be randomly gener
ated for each of the x, ?/, and z steps. 

> x s t e p : = r a n d ( - l . . 1 ) ; 

> y s t e p : = r a n d ( - l . . 1 ) ; 

> z s t e p : = r a n d ( - l . . 1 ) : 
The triplet, xstepC ), ys tep( ), zs tep( ) of random numbers is then added to 
the coordinates of s tep I I i to give the new coordinates at s tep I I (i+1). 

> stepI I (i+1) :=s tep | I i+[xs tep( ) ,ys tep( ) , z s tep( )] ; 

> end do: 
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> cpu_time : = (time ( ) -begin) *seconds; 

cpuMme := 0.461 seconds 
On completion of the do loop, which took only a fraction of a second to com
plete, the random path traced out by Penelope Jitter Bug is plotted using the 
pointplotSd command, with the sequence of steps connected by hues of length 
0, 1, A/2, or y/3. To avoid possible confusion, a boxed set of axes is chosen. 

> p l :=pointplot3d([seqCstepI | i , i=0. .n)] ,axes=boxed,style=l ine, 
tickmarks=[3,3,3],labels= ["x","y","z"]): 

To find the x-, ?/-, and ^-coordinates of the last step, step I In is selected, 

> las t :=step | In; 

last := [-23, 19, 8] 
and the op command used. 

> x :=op( l , l a s t ) ; y :=op(2 , las t ) ; z :=op(3 , las t ) ; 

X := - 2 3 y:=19 z := S 
Thus, for this particular run Penelope ends up at x = —23, y — 19, and z = 8 
after 1000 steps. The distance from the origin is y/{-23)'^ -h (19)2 + (8)2 = 30.9, 
which is not that far from y/n — VTOOO = 31.6. Of course, this was only one 
run, the coordinates of the last step varying from one run to the next. However, 
by generalizing the theoretical argument given in the one-dimensional soccer fan 
story, we could have predicted that the average rms distance also scales in three 
dimensions with the square root of n. 

Before displaying Penelope's random walk, textplot3d is used to add the 
words "start" (colored red) and "end" (colored blue) to the graph. 

> t t :=textplot3d([0 ,0 ,0 ,"start"] ,co lor=red): 

> tt2:=textplot3d([x,y,z ,"end"],color=blue) : 

Figure 7.5: Random walk of Penelope Jitter Bug. 
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Finally, with the display command and constrained scaling, 

> d i s p l a y ( { p i , t t , t t 2 } , s c a l i n g = c o n s t r a i n e d ) ; 
the erratic path of Penelope Jitter Bug is revealed in Figure 7.5. Each time 
the code is run, the reader will observe a different path traced out by Penelope 
Jitter Bug, with a different set of final coordinates after n steps. 

PROBLEMS: 
Problem 7-13: Scaling of average distance with n 
By carrying out a number of numerical runs for each n value, determine the 
average final distance {d) as a function of n and make a plot of your results. 
What functional form gives a good fit to your data? What can you conclude? 

Problem 7-14: Penelope really starts jittering 
Suppose that Penelope Jitter Bug can move randomly in the x-, y-, and z-
directions with a possible step of +2, +1 , 0, —1, —2 in each direction. If Pene
lope starts at the origin, how many neighboring positions are possible after the 
first step? What step lengths are possible? Explore the text file for this situa
tion and try to compare the observed behavior with that which occurred when 
the possible steps were +1 , 0, —1. 

7.1.4 Tha t Meandering Perfume Molecule 

/ cannot talk with civet in the room, 
A fine puss-gentleman that's all perfume. 
William Cowper, English poet (1731-1800) 

In the previous recipe, Penelope Jitter Bug was confined to moving along a 
three-dimensional rectangular grid or lattice. In contrast, a diffusing perfume 
molecule, such as the malodorous one referred to by William Cowper, can move 
in any angular direction in three-dimensional space. 

To describe its motion, it is necessary in our model calculation to intro
duce spherical polar coordinates. In this coordinate system, two angles must 
be specified, the angles 6 and 0 of the displacement (magnitude r) with respect 
to the z-and x-axes, respectively. The relation of spherical coordinates to the 
Cartesian coordinates x, y, z is given by 

X — r sin 0 cos 0, y = r sin 0 sin 0, z = r cos ̂ , (7-4) 
where, by convention, 6 ranges from 0 to TT and (p from 0 to 27r radians. 

The average distance that the perfume molecule travels between collisions 
with the surrounding air molecules is called the mean free path. At standard 
temperature (0°C) and pressure (1 atmosphere), the mean free path is on the 
order of 10~^ meters. 

> restart: wi th(plots ) : 
For simplicity, in our simulation let's take r = l, corresponding to the perfume 
molecule traveling one mean free path between each collision. The molecule is 
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started at the origin and will be allowed to undergo n = 1000 random steps. 
The numerical value of n is calculated and labeled for future use as p. 

> stepMO: = [0,0,0] : r : = l : p:=evalf (Pi) : n:=1000: randomize() : 
The starting time is recorded, 

> St a r t _t ime:=t ime( ) : 
and a do loop used to generate the n positions of the perfume molecule during 
its random walk. 

> for i from 0 to n-1 do 
For the angular part of the random walk, a uniform angular distribution is re
quired. In spherical polar coordinates, the volume element is given by 

dV = r^ sin 9 d0 d(j) dr = sin 9 d9 d(p dr, (7.5) 

since r = 1 here. The angular part of dV is sin 9 d9 dcj) — —d(cos 9) d(j) = —dg d(j)^ 
where g = cos^. Since any volume element one mean free path away is equally 
likely after a collision, a uniform distribution is desired for (j) and g. To create 
a random decimal number for 0 in the range 0 to 27r, the following command 
line, labeled phi step, is entered. 

> phistep:=2.0*p*rand( )/10'^12: 
The variable g will vary from —1 to +1 for ^ = TT to 0. The following command 
line therefore produces a random decimal number in the range ^ = — 1 to 1. 

> gstep:=-l+2.0*rand( )/10'^12: 
Noting that sin^ = \ / l — cos^ 9 — y^l — g'^, and using Equation (7.4), we will 
determine the x, ^, and z steps using the relations 

X = r cos(/) v 1 — 5f2, ^ = r sin0 V 1 — ^^, z = rg, (7.6) 

which are now entered. 

> xs tep:=r*cos(phis tep)*sqr t ( l -gstep ' '2) : 

> ys tep :=r*s in (ph i s t ep )*sqr t ( l -gs tep ' ' 2 ) : 

> zs tep:=r*gs tep: 

The coordinates of the perfume molecule at step (i + 1) are determined. 

> s tep I I ( i + 1 ) : = s t e p | I i + [ x s t e p , y s t e p , z s t e p ] ; 

> end do: 
On completion of the do loop, the perfume molecule's x- y-, and ^-coordinates 
are determined for the last (nth) step, 

> l a s t : = s t e p | I n : 

> x : = o p ( l , l a s t ) ; y : = o p ( 2 , l a s t ) ; z : = o p ( 3 , l a s t ) ; 

X := 9.373913264 y := -17.39656991 z := -25.78312563 

and the molecule's distance R — yx^ + y ^ + ^ from the starting point 

> R:=sqrt(x'^2+y'^2+z'^2) ; 

R := 32.48508061 
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calculated. For this particular run, the perfume molecule has moved approxi
mately 32 mean free paths from its starting point at the origin. The end time 
is recorded, and the CPU time for the run found to be less than a second. 

> end_t ime:=t ime( ) : 

> CPU_time:=end_time-start_time; 

CPU.time := 0.561 
The sequence of 1000 steps is plotted in three dimensions and the points joined 
by straight-line segments. 

> p l :=po in tp lo t3d ( [ seqCs tep I | i , i=0 . . n ) ] , axes=boxed , s ty l e= l ine , 
t ickmarks=[3 ,3 ,3] , labe ls= [ "x" , "y" , "z" ] ) : 

The word "start" is placed at the origin, and the word "end" at (a:, i/, z). 

> tt:=textplot3d([0,0,0,"start"],color=red): 

> tt2:=textplot3d([x,y,z,"end"],color=blue): 

The display command is used with constrained scaling to superimpose the plots. 

> display({pi,tt,tt2},scaling=constrained); 

Figure 7.6: Three-dimensional random walk of the perfume molecule. 

The random walk of the perfume molecule for this particular run is shown in 
Figure 7.6. The path traced out by the molecule and the distance r from the 
origin will vary from one run to the next. The viewing box can be rotated so 
that the path and labels may be viewed from different perspectives. 

PROBLEMS: 
Problem 7-15: Neutron diffusion 
The diffusion of neutrons through the lead shielding wall of an atomic reactor 
can be simulated in a similar manner to the meandering perfume molecule. 
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Assume for simplicity that each neutron enters one of the two walls of a planar 
lead slab perpendicularly and travels one mean free path (mfp) inside the slab 
before suffering its first collision with a lead atom. The neutron is then scattered 
1 mfp in a random direction before suffering its second collision, where it is 
scattered 1 mfp in a random direction once again, and so on. Suppose that 
each neutron can withstand only 10 such collisions. If the slab is 3 mfp thick, 
what proportion of entering neutrons will be able to escape through the opposite 
wall? Does your answer make intuitive sense? Explain. How thick should the 
slab be to reduce the proportion to about 1%? 

7.2 Monte Carlo Integration 

Another important application of the Monte Carlo random-number generator 
approach is to the evaluation of two-and three-dimensional integrals with com
plicated or irregular boundaries and to still higher-dimensional integrals that 
can arise in such areas as statistical mechanics. Monte Carlo techniques are 
used when more conventional numerical techniques are either difficult or al
most impossible to apply. 

However, to illustrate the Monte Carlo integration method, the recipes and 
problems of this section deal mainly with one-dimensional integrals so that the 
answer can be compared with the result obtained using standard numerical 
techniques. To evaluate the one-dimensional integral 

/ = / f{x)dx (7.7) 
J a 

using a Monte Carlo method, we note that the area under the curve f{x) be
tween x — a and x = b can be written as 

/ 
J a 

b 

f{x)dx = {b-a){f), (7.8) 

where (/) is the average value of f{x). But if we are able to generate a uniform 
distribution of Xi between x = a and x — b with a random-number generator, 
then each f{xi) can be evaluated, and the average is 

The Monte Carlo estimate of the integral will then be given by 

I = f fix) dx = ^ ^ ^ f2 /(^^)' (^-10) 

the accuracy of the numerical value depending on the size of the number n. 
As with the random walk examples, for large n it can be shown that there 

is a distribution of Monte Carlo values for the integral centered at the correct 
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answer, the width of the distribution decreasing as l/y/n. Comparing this er
ror with that for the standard integration rules, the Monte Carlo method is 
really not competitive for one-dimensional integrals. Very much larger n values 
have to be used in the Monte Carlo method to attain similar accuracy to that 
attained by, for example, Simpson's rule, which has an error proportional to 
1/n^. However, the Monte Carlo integration error turns out to be independent 
of the dimensionality d of the integral, whereas the error in, say, Simpson's 
rule when generalized to d dimensions is 1/n^^^. In this case, the Monte Carlo 
method would become more accurate for dimensions higher than d = S. You 
might snort that you are not likely to run into integrals with such a high dimen
sionality. If you are a physics major you might! According to deVries [DeV94], 
integrals similar to the 9-dimensional integral (with integrations over all space) 

dax day daz dbx dby dbz dcx dcy dcz z'? 11 ^ 

(a + b) -c 

appear in the study of electron plasmas. The Monte Carlo random-number 
method can be used to give an approximate estimate of the value of this integral 
while Simpson's rule, for example, is not feasible. 

Before demonstrating the Monte Carlo integration technique, we should 
remind the reader of some of the common numerical methods for evaluating 
one-dimensional definite integrals. This is done in the following recipe. 

7.2.1 Numerical Integration Methods 

An effective human being is a whole that is greater 
than the sum of its parts, 
Ida P. Rolf, American biochemist, (1896-1979) 

Consider a definite integral of the general structure I = J f{x)dx. To in
tegrate / by standard numerical techniques, the integration range a to 6 is 
divided into n equal intervals Ax — {b — a)/n. Then the points in the a to 6 
range are labeled as x̂  = XQ + z Ax with XQ = a and x^ = b. Three elementary 
numerical integration formulas, or "rules", which make use of different linear 
combinations of the /(x^), are 

n - l 

In — 2 . fi^i) ^^5 rectangular. 

/ . = ! 

i=0 
n-l ] 

Ax, trapezoidal. 2 
f{xo)+2Y,f{^^) + f{Xn) (7.12) 

In = l [f{xo) + 4 / ( x i ) + 2 / ( x 2 ) + 4 / ( x 3 ) + ' ' ' 

+ 2/(xn-2) + 4 / (xn- i ) + f{xn)] Ax, Simpsou. 

For Simpson's rule the number of intervals n must be even. It can be shown 
that for the rectangular, trapezoidal, and Simpson's numerical integration for-
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mulas, the error (difference between the exact and approximate answers) has 
(approximately) a 1/n, 1/n^, and 1/n^ dependence, respectively [GT96]. 

As a specific example we shall integrate 1 = J^ e~^ dx using the trapezoidal 
rule and determine the dependence of the error on n using the least squares 
fitting method. The following recipe can also be used to study other numerical 
integration formulas, such as Simpson's rule. 

Maple's default numerical integration algorithm is the Clenshaw-Curtis 
quadrature, which is discussed in standard scientific computing texts, for ex
ample [Hea02]. However, other numerical integration methods can be invoked 
by loading the Student library package, with the Calculusl subpackage. To 
perform a least squares fit for the error, the statistical package is also loaded. 

> r e s t a r t : wi th(S tudent [Calcu lus l ] ) : w i t h ( S t a t i s t i c s ) : 
The following line will allow us to select the method M employed in the recipe. 
If you wish to use Simpson's rule, change the entry t rapezoid to simpson. 

> al ias(M=trapezoid): #can change method 
The integrand is entered, 

> f :=exp(-x"2); 

and the exact value obtained for the integration range x = 0 to 1. 

> Exac t := in t ( f , x=0 . . 1 ) ; 

Exact \— - erf(l) y ^ 

The answer is just the error function evaluated at x = 1, multiplied by y/T^/2. 
The answer is now expressed in floating-point form, for later comparison. 

> eval f (Exact ) ; 
0.7468241330 

The Approximate I nt command can be used to apply a particular numerical 
integration method M. A functional operator is created to apply this command, 
the number n of partitions to be specified. Various output options are available. 
The entry sum allows the formal sum to be produced in the output. Other 
output options are available. 

> Approx:=n->ApproximateInt(f,x=0..l,method=M,partition=n, 

output=sum): 
For example, the trapezoidal value of the integral is obtained for n = l. 

> Approx(1)=evalf(Approx(1)); 

i(^^(e(-^^)+e(-(^-^)^)]^^^ 6839397205 

The diff'erence between the trapezoidal and exact values is quite large in this 
case. The error can be reduced by increasing n. We will now determine how 
the error varies with n for our integral. From our preliminary remarks, the 
error should be approximately given by a power law of the form Error = /cn^. 
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with k a constant and h — —2 for the trapezoidal rule. Leaving the value of 
h undetermined for the moment, taking the natural logarithm of both sides of 
the Error yields In(Error) = a + h ln(n), with a ~ \ii{k). So, if we plot the log of 
the Error vs. the log of n, a straight line should result with slope h. The value 
of b can then be obtained by finding the best least-squares straight-line fit. 

To implement this, we first calculate ln(n) for, say, n = 1 to 10. The sequence 
of numbers is put into a Maple list X. 

> X : = [ s e q ( e v a l f ( l n ( n ) ) , n = l . . 1 0 ) ] : 
The log of the absolute value of the error divided by the exact numerical value 
is then calculated in Y for the same range of n. 

> Y:=[seq(eva l f ( ln ( (abs(Exac t -Approx(n) ) ) /Exac t ) ) ,n=l . .10) ] : 
For plotting purposes, the ith entry from each list is joined in XY into a list of 
plotting points [X^,F^], with i = l to 10. 

> XY: = [ s e q ( [ X [ i ] , Y [ i ] ] , i = 1 . . 1 0 ) ] : 
XY is plotted using a point style, the points being represented by size-14 circles. 

> gr1:=plot(XY,style=point,symbol=circle,synibolsize=14): 
The best-fitting straight line, y — a-\-hx, to the numerical points is obtained. 

> y:=Fit(a+b*x,X,Y,x); 

y := -2.48139844277759636 - 2.00933145352970399x 
The slope, which is the coefficient of x in ?/, is very close to the expected value 
of —2. The error does indeed seem to scale like l/n? for the trapezoidal rule. 
Then y is plotted as a blue line over the range from the minimum value in the 
X list to the maximum value. 

> gr2:=plot(y,x=min(X[]) . .max(X[]) ,color=blue) : 
The graphs are superimposed, the resulting picture being shown in Figure 7.7. 

> p l o t s [ d i s p l a y ] ( { g r l , g r 2 } , l a b e l s = [ " l o g ( n ) " , " l o g ( E r r o r ) " ] ) ; 

0 0.5 log(n) 1.5 2 

Figure 7.7: Circles: logs of the Error values. Solid: least squares formula F. 
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The straight hne fits the numerical points extremely well. The values of b and 
a are now extracted (evaluated to 10 digits) from y. 

> b :=eva l f (coef f (y ,x ) ,10) ; a:=remove(has,y,x); 

b := -2.009331454 a := -2.481398443 
The error as a function of n is given by e^ n^, which is now calculated, 

> Error:=exp(a)*n^b; 

0.08362619731 
hiTTOT : = 

^2.009331454 

completing our recipe. 

PROBLEMS: 
Problem 7-16: Simpson's rule 
Rerun the text recipe, but now using Simpson's rule. How does the derived 
power law for the Error compare with the theoretically expected result, 1/n^? 
Quantify your answer to this question by calculating the standard deviation. 

Problem 7-17: Trapezoidal rule 
Evaluate the following integrals using the trapezoidal rule. 

nl /•7r/2 

(a) / = / e-^ ' dx- (b) / = / sm[x^) dx. 
Jo Jo 

Determine the analytic form of each integral and then apply the floating-point 
evaluation to the outputs. What value of n is required using the trapezoidal 
rule to obtain four-figure agreement with each of the above answers? Confirm 
the 1/n^ power law for the error. (Hint: Choose the n range carefully.) 

Problem 7-18: Comparison of trapezoidal and Simpson's rules 
Consider the integral I = J^ \nxdx. 

(a) Analytically evaluate the integral and also give the decimal value. 

(b) Evaluate the integral with the trapezoidal rule, using a sufficiently large 
n to give five-decimal agreement with the exact answer. 

(c) Evaluate the integral with Simpson's rule, using a sufficiently large n to 
give five-decimal agreement with the exact answer. 

(d) Relate your answers to the error discussion in the text. 

Problem 7-19: Viscous drag on a boat 
A toy boat of mass m = 10 kg, initially moving through the water with speed 
v{0) = 10 m/s, is subjected to a viscous drag Fdrag = ~'^ V^ newtons. 

(a) Write out the integral expression for the time t it takes the boat to slow 
down to a speed v{t). 

(b) Calculate the exact time for the boat to slow down to 5 m/s. 

(c) Taking Av = 0.25, estimate the time in (b) using the trapezoidal rule. 

(d) Taking Av = 0.25, estimate the time in (b) using Simpson's rule. 
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(e) Calculate the percentage differences between the exact and approximate 
answers for each case. 

Problem 7-20: How long is that track? 
A race car completes one lap of a track in 84 seconds. Using a radar gun, the 
speed of the car is measured in m/s at 6-second intervals and the results are 
given in Table 7.1. Plot the speed versus time, joining the data points with 
lines. Use Simpson's rule to estimate the length of the race track. 

Table 7.1: Time and speed data for the race-car problem. 

Time 

Speed 

Time 

Speed 

0 

37.2 

48 

29.7 

6 

40.2 

54 

25.5 

12 

44.4 

60 

23.4 

18 

46.8 

66 

26.7 

24 

44.1 

72 

31.2 

30 

39.9 

78 

34.8 

36 

36.3 

84 

36.9 

42 

32.7 

Problem 7-21: Disk brakes 
To simulate the temperature characteristics of disk brakes, Secrist and 

Figure 7.8: Geometry for the disk brake problem. 

Hornbeck [SH76] numerically calculated the area-averaged lining temperature 
(T) of the brake pad, where (T) is given by the equation 

rrn I rrn 
(T) / \{r)repdr / f \epdr, 

Jn I hi 
where r̂  — 9.4 cm and To = 14.6 cm are the inner and outer radius at which 
pad-disk contact takes place (see Figure 7.8), Q^ = 0.705 radians is the angle 
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subtended by the brake pad, and T{r) is the temperature in degrees Celsius of 
the pad at radius r cm. Table 7.2 gives T as a function of r. 

Table 7.2: Disk brake data. 

r 

T 

9.4 

338 

9.9 

423 

10.4 

474 

10.9 

506 

11.5 

557 

12.0 

573 

12.5 

619 

13.0 

622 

13.5 

651 

14.1 

661 

14.6 

671 

(a) Plot T{r), joining the data points with straight lines. 

(b) Use Simpson's rule to calculate (T). 

7.2.2 Wait and Buy Later! 

The buyer needs a hundred eyes, the seller not one, 
George Herbert, English poet and clergyman (1593-1633) 

As the reader is undoubtedly aware, new computer models are initially priced 
high and then their price tends to drop substantially as even newer models with 
faster chips come on stream. The patient computer buyer, who doesn't try to be 
the first to have the latest model, can often find some good bargains by waiting 
until the price is right. From the computer company's viewpoint, their revenue, 
and therefore their profit, per computer is greater at the beginning of the sales 
campaign than some months later. In this hypothetical example, we look at 
the total revenue generated by the DALE computer company, which has intro
duced its new computer with the revolutionary Hexium chip by OUTEL. The 
price of such a computer is initially $2000, but as more units are sold and the 
competition from rivals increases, the price is dropped by the manufacturer. 
If q is the quantity of computers sold (^ = 1 equals 1 million computers) and 
p=l corresponds to the initial price, thep~q relationship is found to be given by 

J9 = e~^^•^ (7.13) 

The total normalized revenue for the first one million computers sold will just 
be the area under the p{q) curve between q — 0 and q = l^ i.e., equal to the 
integral JQ p{q) dq. This integral doesn't have an analytic solution. It can, of 
course, be evaluated numerically using standard methods, but it is instructive 
to show how the area can be estimated using the Monte Carlo approach. 

The plots library package is loaded, and the endpoints a = 0 and b = 1.0 
of the integration range are entered, the latter being given in decimal form to 
force Maple to numerically evaluate the integral. 

> restart: wi th(plots ) : 

> a:=0: b:=1.0: 
The price function is now entered. 
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> p:=exp(~q'^2.3); 
and plotted as a thick black line. 

> p lo t1 :=p lo t (p ,q=a . .b ,co lo r=b lack , th ickness=2) : 
The area below the curve is filled with a green hue, 

> p lo t2 :=p lo t (p ,q=a . . b , co lo r=g reen , f i l l ed= t rue ) : 
and the resulting shaded p versus q curve displayed in Figure 7.9. 

> d i sp l ay ({p lo t l , p lo t2} , l abe l s= [ "q" , "p" ] , t i ckmarks=[3 ,4 ] ) ; 

O 0 .2 0 . 4 q 0 . 6 0 .8 1 

Figure 7.9: Price (p) versus quantity (q) of Hexium computers sold. 

The shaded area under the normalized price curve is equal to the total nor
malized revenue generated by the sale of the first 1 million Hexium computers. 
The area is first evaluated numerically with Maple's default numerical integra
tor and labeled as EXV to denote the "exact" value as opposed to the Monte 
Carlo value (MCF), which we will be generating next. 

> EXV:=int(p,q=a..b); 

EXV := 0.7686600683 
The "exact" value of the integral is 0.76866 . . . Knowing this number will allow 
us to determine the error in our Monte Carlo estimate. 

Now we make a Monte Carlo estimate of the normalized area between 
q — a = 0 and q = b=l using the expression 

p(q)dq=^-^^^J2P^q,) (7.14) 
n ^—^ 

2 = 1 

and generating a uniform distribution of qi between g = 0 and q = 1 with a 
random-number generator. The random-seed call is invoked. 

> randomize() : 
A total of n = 1600 random numbers are generated in each experiment and 10 
experiments carried out. The beginning time for the double do loop is recorded. 

> n:=1600: Expts:=10: begin:=time( ) : 

J a 
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In the outer do loop, which runs over the total number of experiments, 

> for j from 1 to Expts do 

we set the sum of all the prices, sump, equal to zero. 

> sump:=0: 
In the inner do loop, the sum YA=iPi^i) ^̂  calculated for each experiment, 
where qi is a random number between 0 and 1. 

> for i from 1 to n do 

> sump:=sump+exp(-(evalf (rand()/10'^12)) '^2.3); 

> end do: 
To calculate the Monte Carlo value, MCV, of the integral in the jth experiment, 
sump is multiplied by {b — a)/n and the outer loop ended. 

> MCV[j]:=(b-a)*sump/n; 

> end do: 
The Statistics package is loaded so that a mean and standard deviation can be 
calculated for the Monte Carlo estimates obtained from the different numerical 
experiments. 

> w i t h ( S t a t i s t i c s ) : 
The Monte Carlo estimates of the integral value generated by each experiment 
are put into a list format and displayed. 

> data :=[seq(MCV[j] , j=l . .Expts) ] ; 

data := [0.7679573881, 0.7655670588, 0.7669357200, 0.7748553394, 
0.7671948456, 0.7635738425, 0.7699460706, 0.7763241906, 
0.7680766425, 0.7627424581] 

The mean Monte Carlo value (MCV) of the integral, averaged over the 10 ex
periments, will be given by 

Expts 

This average is calculated for the data list using the Mean command. 

> <MCV>:=Mean(data); 

(MCV) := 0.7683173556 
The mean Monte Carlo value of the integral obtained here is 0.7683, which 
compares favorably with the "exact" value of 0.7687 calculated earlier. The 
total CPU time in seconds for the iterative procedure is now determined, 

> cpu_time: = (time( )-begin)*seconds; 

cpuMme := i.926 seconds 
and is found to be about 5 seconds. As with the Monte Carlo estimates them
selves, this CPU time varies slightly from one run to the next. The percent 
deviation of the Monte Carlo estimate from the exact value 

> PercentDeviation:=100*(<MCV>-EXV)/EXV; 
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PercentDeviation := -0.04458572965 
is about 0.04%, on the low side. The standard deviation of the 10 Monte Carlo 
experiments will be given by the standard deviation 

Expts 

a = ViMCV^) - {MCV)\ where {MCV^) ^ ^ , Y. i^^V^f. 
3 = 1 

Applying the StandardDeviation command to the data list 

> Sigma:=StandardDeviation(data); 

G : - 0.004171430781 
yields a ^ 0.0042. In the following command lines, the Monte Carlo value for 
the integral, the Monte Carlo value plus and minus one sigma (one standard 
deviation), and the exact value of the integral are summarized. 

> MC_value:=<MCV>; MC_value_plus_one_stand_dev:=<MCV>+sigma; 
MC_valuejninus_one_stand_dev:=<MCV>-sigma; Exact .value :=EXV; 

MC^value := 0.7683173556 
MC.value-plus.one stand-dev := 0.7724887864 

MC.value.minus-one.stand.dev := 0.7641459248 
Exact.value := 0.7686600683 

According to standard statistical theory, which assumes that the data are dis
tributed normally (see, for example, Gould and Tobochnik [GT96]), a single 
Monte Carlo measurement has a 68% chance of being within one standard de
viation of the "true" mean and a 95% chance of being within two standard 
deviations of the mean. Examine the rather short data list to determine how 
many of the 10 Monte Carlo estimates for this particular run lie within one a 
of the mean value and within 2 a. On your own computer, you should increase 
the number of experiments and see what results you get for this recipe. 

Since our Monte Carlo estimate of the integral value is quite close to the 
exact value, the Monte Carlo estimate of the total revenue obtained from selling 
the first 1 million computers is also very close to the exact estimate of the total 
revenue. The exact estimate of the total revenue is 

> Total_revenue:=EXV*2000*10^6; 

Total.revenue := 0.153732013710^° 
i.e., about 1537 million dollars. 

PROBLEMS: 
Problem 7-22: DALE revenue 
Assuming that the p-q relation given in the text prevails: 

(a) Plot the integrand p{q) over the range ^ = 0 to 2 with the area under the 
curve shaded red. 

(b) Calculate the "exact" numerical value of the integral over this range. 

(c) Taking n = 1600 and 10 experiments, calculate the mean value and thus 
make a Monte Carlo estimate of the integral over this range. 
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(d) Calculate the standard deviation of the Monte Carlo estimates. 

(e) Discuss the accuracy of your Monte Carlo mean value. 

(f) What is the Monte Carlo estimated total revenue from the sale of the first 
two million computers? 

P rob lem 7-23: Monte Carlo integrat ion 
Use the Monte Carlo integration approach with reasonably large n and a rea
sonably large number of experiments to evaluate the integral 

= 4 / \ / l - x^ dx. 
Jo 

By what percentage does the mean value of the experiments differ from the exact 
value of the integral? What is the standard deviation for your experiments? 

P rob lem 7-24: 6-dimensional integral 
By generating random numbers in the interval 0 to 1 in groups of six, evalu
ate the following 6-dimensional integral and investigate how fast your answer 
converges to the exact value as the number of trials is increased. 

r-l pi rl rl />! rl 
/ / / / / / dudvdwdxdydz. 

Jo Jo Jo Jo Jo Jo l + u-\-v + w-\-x-\-y + z 

7.2.3 Wait and Buy Later! The Sequel 

Nowadays people know the price of everything 
and the value of nothing. 
Oscar Wilde, Anglo-Irish Writer (1854-1900) 

In the previous subsection, the total revenue generated by the DALE computer 
company from the sale of its first million computers containing the revolution
ary Hexium chip was estimated using the Monte Carlo approach. In normalized 

2.3 

units, the pricing function was taken to be p{q) = e~^ , where q = l corre
sponded to one milhon computers and p = 1 to two thousand dollars. The 
total revenue for the first million computers is the area under the price curve 
between ^ = 0 and g = 1, i.e., given by the integral I = JQ P{Q) dq. The Monte 
Carlo estimate of / was found to be in reasonable agreement with the "exact" 
numerical result obtained using Maple's numerical integrator, but would take 
considerably longer to carry out if greater accuracy were desired. Although the 
Monte Carlo approach is not meant as a serious competitor to standard numeri
cal techniques for calculating 1-dimensional integrals, the question does arise as 
to how the Monte Carlo approach can either be speeded up while maintaining 
the same accuracy, or alternatively be made more accurate for approximately 
the same CPU time. Such considerations can become important when it is de
sired, for example, to numerically evaluate a multidimensional integral with a 
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complicated boundary where the Monte Carlo approach may be the only viable 
method to use. One important approach to dealing with these issues is to make 
use of so-called importance sampling, which is now discussed. 

One chooses a function, called the importance sampling function, that re
sembles the integrand of the integral being considered and that can be easily 
integrated analytically. For example, in the present case we might select the 

2.3 

function u{q) = e~^, which qualitatively resembles p{q) = e~^ . Then, the 
integral / is rewritten as 

1= f^-^Mq)dq. (7.16) 

But q — — \xiu, so that / becomes 

I = - du= / du. (7.17) 
Ji n 7i/e ^ 

The same Monte Carlo approach as in the last story can be used, but now with 
a new integrand and a new sampling range. The new integrand will display less 
variation with u than the old integrand did with q and as a consequence fewer 
sampling points, i.e., fewer values of n, can be used to obtain approximately 
the same accuracy as before. Smaller n leads to a faster CPU time. 

To illustrate the method, the above computer sales example is solved again, 
the Monte Carlo procedure borrowing heavily from the last algorithm. The 
plots and Student [Calculusl] packages are loaded, 

> restart: with(plots) : with(Student[Calculusl]): 
and the interval endpoints a and 6, 

> a:=0: b : = l : 
_^2.3 

and the normalized price function p — e ^ are entered. 
> p:=exp(-q'^2.3) : 

The inert form is used to display the integral to be evaluated. 
> Integral :=Int(p ,q=a . .b) ; 

Integral 
Jo 

Contained within the Student [Calculusl] package are "rule" commands for 
changing the integration variable and limits. We change from the old inte
gration variable q to the new variable u, using the transformation e~^ = u. 

> Integral2:=Rule[change,exp(-q)=u](Integral); 

f' f 2 3, r'-'' e(-(-in(^))'-') 
Integral2 := e^'^ ' ) dq = 

Jo Ji u 

The limits in the new integral are then "flipped." 

> Integrals:=Rule[f l ip](Integral2); 

Integrals := / ev ^ ) dq = du 

du 
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As expected, the resulting integral on the rhs of Integrals is the same as in 
Equation (7.17). The double minus sign on the rhs of Integrals can be removed 
by applying the expand command. 

> IntegraM:=expand(rhs(Integrals)); 

Integral4 :— / -r,—, , XXOQX— du 

The Integrand command, also part of the Student[Calculusl] package, allows 
us to extract the integrand, labeled P , of the above integral. 

> P:=Integrand(Integral4); 

1 
P:= 

^ii-Hu)?-') u 
The new limits on the integral are labeled as anew and bnew. 

> anew:=evalf(exp(-l)) ; bnew:=1.0; 

anew := .3678794412 bnew := 1.0 
The curve P is plotted as a thick black line between u—anew and hnew^ 

> plot1:=plot(P ,u=anew . .bnew ,color=black ,thickness=2): 
and the region below the curve filled in with an aquamarine color. 

> plot2:=plot(P,u=anew..bnew,color=aquamarine,f i l led=true): 
The new integrand P is displayed in Figure 7.10. 

> d i sp l ay ({p lo t l , p lo t2} , l abe l s= ["q" , "P" ] ,tickinarks=[3,3] ) ; 

00.4 0 .6 u 0 .8 1 

Figure 7.10: Variation of new integrand P with u. 

If this plot is compared with Figure 7.9, it is seen that P{u) shows less variation 
with u than p{q) did with q. Of course, the area under the P{u) curve between 
u = 1/e and u = 1, and therefore the value of the integral, should be the same 
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as the area under the original p{q) curve between ^ = 0 and 1. As a check, the 
"exact" value is numerically obtained for the new form of the integral. 

> EXV:=evalf(Integral4); 

EXV := 0.7686600683 
As the reader can readily check, the answer in the output is identical to the 
exact numerical value of the integral previously obtained, as it should be. Now 
the Monte Carlo estimate of the integral expressed in its new form is carried 
out, the random number seed being set according to the computer clock. 

> randomize() : 
Previously, 10 numerical experiments, each with n = 1600, were carried out. 
Here we will consider 20 experiments but with only n — 400 in each experiment. 
The CPU time will again be monitored on the same PC as that used in the 
earlier Monte Carlo integral calculation so a fair comparison of the running 
time can be made. The double do loop structure that follows is similar to that 
previously used, except for minor modifications related to the fact that our 
integrand and the range are different. 

> n:=400: Expts:=20: begin:=time( ) : 

> for j from 1 to Expts do 

> sump:=0; 

> for i from 1 to n do 

A random number u lying between anew and hnew is created. 

> u: =anew+(bnew-anew)*rand( )/10"12; 

The new integrand is used in the next command line. 

> sump:=sump+P 

> end do: 

> MCV[j]:=sump*(bnew-anew)/n; 

> end do: 

The statistical package is loaded, 

> w i t h ( S t a t i s t i c s ) : 
and the list of 20 Monte Carlo estimates displayed. 

> data :=[seq(MCV[j] , j=l . .Expts) ] ; 

data := [0.7670788498, 0.7682175292, 0.7623540762, 0.7673922182, 
0.7691164685, 0.7684995240, 0.7680226728, 0.7685383508, 
0.7692022982, 0.7714850918, 0.7708542478, 0.7675425145, 
0.7670399112, 0.7722572638, 0.7682834112, 0.7700104492, 
0.7670294725, 0.7688806968, 0.7715536368, 0.7725692748] 

The mean value of the Monte Carlo estimates is calculated 

> <MCV>:=Mean(data); 

(MCV) := 0.7687963980 
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and found to be 0.76880, quite close to the exact value, 0.76866. The elapsed 
CPU time is about 3 seconds, compared to roughly 5 seconds earlier. 

> cpu_time: = (time( )-begin) *seconds; 

cpuMme := 3.195 seconds 
The percent deviation of the mean Monte Carlo value from the exact value 

> PercentDeviation:=100*(<MCV>-EXV)/EXV; 

PercentDeviation := 0.01773601955 
is about 0.02%. The standard deviation 

> Sigma:=StandardDeviation(data); 

a := .002264761800 
is cr ?̂  0.0023, about one-half of the standard deviation previously obtained. So, 
in this example importance sampling has reduced the CPU time and increased 
the accuracy of the Monte Carlo estimate. 

Again, a summary of the main results is presented, giving the Monte Carlo 
and exact estimates of the integral and the integral values corresponding to plus 
and minus one a from the Monte Carlo estimate. 

> MC_value:=<MCV>; MC_value_plus_one_stand_dev:=<MCV>+sigma; 
MC_value_minus_one_stand_dev:=<MCV>-sigma; Exact_value:=EXV; 

MC-value := 0.7687963980 
MC-Value-plus-one-Stand-dev := 0.7710611598 

MC-Value-minus-One-Stand-dev :— 0.7665316362 
Exact-value := 0.7686600683 

In the data list, 15 of the 20 Monte Carlo estimates, or 75%, lie within the 
one-cr bounds, consistent with what would be expected from statistical theory. 

PROBLEMS: 
Problem 7-25: Monte Carlo estimate of integral value 
Consider the integral 

x^/^e-^ dx. I 
Jo (a) Analytically evaluate / and then express the result in floating-point form. 

(b) Make a Monte Carlo estimate of / without using importance sampling. 

(c) Make a Monte Carlo estimate of / using the importance sampling function 
(integration variable transformation) u{x) = e~^. 

(d) Compare and discuss the various numerical values of / . 

Problem 7-26: Another Monte Carlo estimate 
Consider the integral 

/ = / -T;—^—TT- dx r 1 
JQ X2 + CC 

(a) Can I be evaluated analytically, i.e., in closed form? 
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(b) Numerically evaluate / . 

(c) Make a Monte Carlo estimate of / without using importance sampling. 

(d) Make Monte Carlo estimates of / using the importance sampling function 
u{x) — e"^^ and choosing different values of the parameter a. 

(e) Determine the value of a, to two digits, that minimizes the standard 
deviation in the Monte Carlo estimate. 

7.2.4 Est imating TT 

God does not play dice with the universe, 
Albert Einstein objected to the random element at the heart of modern 
quantum mechanics. 

Probably the oldest documented application of the Monte Carlo technique is 
due to Comte de Buffon in 1773. Buffon considered the problem of randomly 
throwing a needle of length L onto a horizontal plane ruled with straight par
allel lines a distance D^ greater than L, apart. He was able to demonstrate 
mathematically, and verify experimentally, that the probability P of the needle 
intersecting a line is given by P — 2L/{TI D). In principle one could carry out 
the needle experiment, repeatedly throwing the needle a very large number of 
times in a random manner, to deduce the value of TT if it were not known by 
other means. However, this approach is not very practical or very accurate. 

Instead of following Buffon's method, we shall estimate TT by considering a 
circle of radius R inscribed inside a square of sides of length 2 R. The ratio 
of the area of the circle to the area of the square is TT R'^/{2R)'^ = 7r/4. Now 
imagine repeatedly throwing a dart randomly at the square and assume that 
you never miss. Sometimes the dart will land inside the circle, other times not, 
the probability of landing inside being the ratio of areas. By measuring the ratio 
of hits inside the circle to the total number of darts thrown and multiplying the 
result by 4, an estimate of n is possible. Instead of actually throwing darts one 
can again use a random-number generator, this time to produce random x, y 
coordinates inside the square. 

This dart-throwing technique is useful for measuring the area or volume of a 
region 1Z that has a complicated or irregular boundary, a problem that might be 
quite difficult to solve by more standard numerical techniques. Simply enclose 
the region IZ with a larger region S whose area or volume is known. Randomly 
throw darts at the region S and record the fraction of darts that land inside IZ. 
Multiplying the area or volume of S by this fraction will give the area or volume 
of IZ. The same approach can also be applied to calculating other quantities 
associated with 7Z such as, e.g., the center of mass coordinates. 

The recipe for estimating TT begins by setting the random-number seed. 

> restart: rcindomize( ) : 
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The variable number will be used to tell us how many times the random coor
dinate is inside the circle. We start this number at zero at the beginning of the 
numerical run. The number N of random coordinates generated is taken to be 
fairly large, namely Â  = 100,000, and only one experiment will be performed. 

> startnumber:=0; number:=startnumber; N:=100000; 

startnumber := 0 number := 0 N :— 100000 
The starting time is recorded prior to the beginning of the do loop. 

> begin:=t ime() : 

> for j from 1 to N do 
Instead of working with a whole circle, it suffices to consider a quarter-circle of 
radius i^ = 1.0 inscribed inside a square with sides of length R. The ratio of 
the quarter-circle's area to that of the square is still 7r/4. The range of both 
the X and y coordinates will be from 0 to 1. Recall that the command rand( ) 
with no argument specified will generate a random positive 12-digit number. 
The X (and similarly for y) random-number coordinate can be kept between 0 
and 1 by dividing the rand( ) operator by 10^^ and multiplying by 1.0 to give 
a decimal result. 

> x:=1.0*rand() /10^12; 

> y:=1.0*rand() /10^12; 
li x^ -\- y^ < 1, i.e., the square of the circle's radius is less than one, we count 
it as a "hit" inside the quarter-circle, and each time this occurs the value of 
number is incremented by one. If the radius is greater than or equal to one, the 
contribution does not get counted. 

> if x^2+y^2<l then 

> number:=number+1; 

> end if; 

> end do: 

When the do loop is completed, the ratio of number to Â  will be a Monte Carlo 
estimate of 7r/4. Thus, the Monte Carlo estimate of TT, labeled pie, will be 4 
times this ratio. 

> pie:=4.0*number/N; 

pie := 3.140600000 
For this run, the value of pie is very close to the "exact" (numerical) value 
(EXV) of TT, which is now determined. 

> EXV:=evalf(Pi); 

EXV 1=3.141592654 
The percentage error is easily calculated, 

> percent_error:=(1-pie/EXV)*100; 

percent.error := .03159716 
and the Monte Carlo estimate is found to differ from the exact result by a little 
over 0.03%. The accuracy can, of course, be increased by increasing Â  and 
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considering a large number of experiments. On a PC, the CPU time involved 
can become quite substantial. For the present single experiment, the CPU time 

> cpu_time: = (time ( ) -begin) *seconds; 

cpu-time :— 4.547 seconds 
was about 5 seconds. 

The interested reader might like to apply the techniques of this section to 
estimate the volume of a 4-dimensional hypersphere in the following problem. 

PROBLEMS: 
Problem 7-27: Volume of a 4-dimiensional hypersphere 
By suitably modifying the Monte Carlo program for estimating TT, estimate the 
volume of a 4-dimensional hypersphere of unit radius. Hint: The interior of the 
hypersphere is defined by the condition xf -{- X2 + xl -\- xl < 1. Enclose the 
hypersphere within a 4-dimensional box with sides 2 units in length. Use the 
random-number generator and calculate the fraction of random numbers inside 
the box that lie inside the hypersphere. Multiply this fraction by the volume of 
the box to obtain the volume of the hypersphere. For your estimate, take 10^ 
trials in each experiment and average the volume estimate over 10 experiments. 
Compare your estimate with the exact value. 

Problem 7-28: Error variation with trial number 
Modify the text program to keep track of the estimated numerical value VN of TT 
as a function of the number of trials N. Consider a large number of exeriments 
for each N. Make a log-log plot of the difference |VA^ - 7r| as a function of N. 
What is the approximate dependence of the error on N for very large A ?̂ 

Problem 7-29: Take me out to the ball game 
A major league baseball player has a "300" batting average. That is to say, 
he averages 300 hits for each 1000 times at bat. Assuming that he comes to 
bat 4 times a game, what are his chances of getting 0, 1, 2, 3, 4 hits? Make 
use of a random-number generator, assume that a season is 150 games long, 
and average your results over 5 seasons. Compare the answers you obtain with 
what would be predicted by elementary probability theory. (See Section 7.3.) 

7.2.5 Chariot of Fire and Destruction 

An archaeologist is the best husband any woman can have: 
the older she gets, the more interested he is in her. 
Agatha Christie, British Mystery Writer (1891-1976) 

Leaving Vectoria behind to work in the MIT physics department, Mike has 
had the good fortune to land a summer job with an archaeological dig in a 
remote area of Asia. While excavating around the shattered battlements of an 
ancient city, the archaeologists unearth the remnants of what appears to be a 
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siege tower. A siege tower is a medieval engine of war for storming operations, 
consisting of a tower on wheels having several platforms. The lowest platform 
was generally occupied by a battering ram, with the highest platform contain
ing archers with flaming arrows and armed soldiers with scaling ladders. A 
massive segment, originally of toroidal shape with major radius 4 meters and 
minor radius 2 meters, is uncovered among the siege tower remains. 

Being a mathematics major, Mike was able to deduce that the segment is a 
piece of a torus bounded by the intersection of two planes. Specifically, he finds 
that its shape is defined by the three inequalities 

z'^ + (y/^^T^ - s) < 1, x > l , y>-3. (7.18) 

To create a 3-dimensional plot of the shape, Mike loads the plottools package. 

> restart: with(plottools): 

He uses the semitorus command to create a 3-dimensional semitorus centered 
at [0, 0, 0], with a meridian of radius 1 meter and a distance from the center 
of the meridian to the center of the semitorus of 3 meters. The angular range 
spans TV radians. 

> segment :=semi to rus ( [0 ,0 ,0 ] ,0 . .P i ,1 ,3 ) : 
By choosing an appropriate view in the following p l o t s [display] command,^ 
the segment is effectively cut by the two desired intersecting planes. 

> p lo t s [d i sp lay] (segment , sca l ing=cons t ra ined ,s ty le=patch , 
o r i en ta t ion=[0 , -179 .99 ] , axes=norma l ,v i ew=[ -3 . . 4 ,1 . . 4 , -1 . . 1 ] , 
t i ckmarks=[3 ,2 ,2 ] , l abe l s=["y" , "x" , "z" ] ) ; 

Figure 7.11: The toroidal segment. 

•^This shorthand syntax is equivalent to first loading the plots package before using the 
display command. 
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The toroidal segment, which appears to be made of bolted and shaped oak 
planks, is displayed in Figure 7.11. When the viewing box is rotated, the 
segment looks like a portion of a great wheel, but it seems much too big, even 
for a massive siege tower. Was it some other part of the siege tower or did it have 
some other altogether different purpose? While the great archaeological minds 
stew over this question, Mike passes the time thinking about some mathematical 
and physical aspects of the toroidal artifact. If the density p of oak is known, can 
the mass of the segment be estimated solely from its shape? Further, can the 
location of the center of mass also be determined without actually performing 
an experimental measurement? 

For a 3-dimensional object, the mass m would be given in Cartesian coor
dinates by the volume integral 

m = p dv = pdxdydz, 

while the three center of mass coordinates are defined by 

ĉm = / X pdxdydz/m, y^^ ~ / y pdxdydz/m, z^,^ = / z pdxdydz/m. 

Because of the nature of the boundaries involved here, it is not a trivial task 
to perform the necessary integrations. A Monte Carlo approach, however, is 
relatively easy to implement. One can think of the toroidal segment as being 
enclosed by a rectangular box stretching from x = l t o 4 , ? / = —3to4 , and 
2; = —1 to 1. The basic idea is to generate random coordinates (triplets of 
numbers) inside the box. If the coordinates lie inside the toroidal segment, 
then the contribution to the mass or the center of mass is counted, otherwise 
not. The answers are determined by the fraction of the total generated points 
inside the box that lie inside the toroid. 

Before implementing this numerical procedure, Mike decides to use an an
alytic approach to put some upper and lower bounds on his Monte Carlo esti
mates of the toroidal mass and center of mass coordinates. First, he considers 
a full half-torus defined by 

z^-h i^/x'^ ^y'^ - 3 ) < 1, 2 ;>0 , 2 / > - 4 . 

The mass of the half-torus will be larger than the mass of the toroidal segment, 
while Xcm should be less for the half-torus than for the segment. By symmetry, 
one would also expect that /̂cm = ĉm = 0 for the half-torus. 

Assuming that the density p is constant, the z integration from 

Z = - J l - ( V ^ 2 ^ l / 2 - 3 ) ' to Z=Jl- ( V ^ 2 ^ 2 / 2 - 3 ) ' 

in the mass integral is easily done, yielding a 2-dimensional integral / , 

/ = / / 2 P A / I - Ux^^y^-sY dxdy= f j 2 p^Jl - {r-?>Y rdrdO, 

where, in the last step, the polar coordinates r and 0 have been introduced. For 
the half-torus, the radial coordinate will range from the inner radius r = 2 to the 
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outer radius r = 4 and Mike takes the angular range to be from 9 = —Q = —7T/2 

to 6 = 7r/2. He sets f = 2 y/l — {r — 3)^ and, by consulting a handbook, finds 
that the density of oak is p = 750 kg/m*^. 

> f : = 2 * s q r t ( l - ( r - 3 ) ^ 2 ) ; rho:=750; Theta:=Pi /2; 
TT 

/ : = 2 V - 8 - r 2 + 6 r p := 750 © •= 2 

The double integration is carried out. 

> t o t a lmass := In t ( In t ( rho* f* r , r=2 . . 4 ) , t he t a= -The t a . .The t a ) ; 

- / . ; / 
totalmass:= / / 1500 VS - r'^ + 6rr dr d0 

2 - 2 

To evaluate the inert form of the integral, the value command is applied 

> totalmass:=value(%); 

totalmass := 2250 TT̂  
which can be converted into a decimal form. 

> totalmass:=evalf(%); 

totalmass := 22206.60991 
The half-torus has a mass of 22,207 kg, or about 22 metric tons. Since the 
toroidal segment is clearly larger than a quarter-torus, Mike expects his numer
ical estimate of its mass to lie somewhere between 11 and 22 tons. Next, he 
determines the center of mass coordinates of the half-torus. First he decides to 
check whether ycm = 0. Setting y — r sin 6 in polar coordinates, the y coordinate 
of the center of mass is evaluated 

> y[cm] := In t ( In t ( rho*f* r*s i i i ( the ta )* r , r=2 . .4) , 
the ta=-The ta . .The ta ) / to ta lmass ; 

— 4 

ycm 1=0.00004503163716 P ^ j 1500 VS - r^ -h 6 r r^ sin(6>) dr dO 

> y[cm]:=value(y[cm]); 

ycm := 0. 
and is found to be indeed equal to zero. What about x^^l Since x = rcos^, the 
integral for x^^ is given by 

> x [cm] := In t ( In t ( rho*f* r*cos ( the t a )* r , r=2 . .4 ) , 
the ta=-The ta . .The ta ) / to ta lmass ; 

— 4 

Xcm 1=0.00004503163716 j^j 1500 V - 8 - r2 -h 6 r r^ cos(l9) dr dO 

which when numerically evaluated yields 

> X[cm]:=evalf(value(x[cm])); 
Xcm := 1.962910964 

ĉm ^ 1-96 m. As the reader may easily verify by changing the angular limits to 
range from 0 = —7r/4 to ^ = 7r/4, for a quarter-torus x^^ ^ 2.78 m. So the Monte 
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Carlo estimate of x^m for the toroidal segment should lie somewhere between 
these limits. 

Having obtained some lower and upper bounds on his numerical estimates, 
Mike now carries out a Monte Carlo calculation of the total mass, x^^, /̂cm? 9,nd 
Zem- The random seed call is made and the density entered once again because 
the worksheet has been restarted. 

> r e s t a r t : randomize() : rho:=750: 
Using the defining integrals, the mass and x, y, and z center of mass moments 
per unit volume are incremented point by point starting with zero values. 

> s tar tmass:=0: mass:=startmass: 

> xmoment:=0: jmioment:=0: zmoment:=0: 
The volume of the rectangular box is also given 

> vol :=2.0*3.0*7.0: #torus i s ins ide t h i s volume 
as well as the total number of random points A .̂ 

> N:=25000: 
The starting time, before commencement of the do loop, is recorded. 

> begin:=time( ) : 
Mimicking the procedure for the random walk of the perfume molecule, the 
command line X := l+3.0*rand( )/10"12: below generates random decimal 
numbers in the range x = 1 to 4. Similar command lines are inserted for the 
y and z directions. Next a conditional "if then" statement is included, which 
increments the mass and the center of mass moments if the random point falls 
inside the toroidal segment enclosed by the box. 

> for j from 1 to N do 

> x:=l+3.0*rand()/10^12: 

> y:=-3+7.0*rand()/10^12: 

> z:=-l+2.0*rand()/10^12: 

> if z^2+(sqrt(x'^2+y^2)-3)'^2<l then 

> mas s:=mas s+rho; 

> xmoment:=xmoment+x*rho; 

> ymoment: =3rmoment+y*rho; 

> zmoment:=zmoment+z*rho; 

> end if; 

> end do: 

Since the calculated mass of the toroid is per unit volume and represents the 
sum total of the contribution from each random number generated inside the 
toroid, the total mass is simply the volume of the box times the mass divided 
by the total number of points. 

> totalmass:=vol*mass/N; 

totalmass := 16605.54000 
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Thus the mass of the toroidal segment is about 16^ thousand kilograms, or 
161 metric tons. This value lies roughly midway between the lower and upper 
bounds calculated above, so it makes sense. The value of x^^ is now calculated 

> x[cm] : = (vol*xmoinent/N)/totalmass; 
Xcm := 2.410563299 

and found to be 2.41 m, again lying appropriately between the previously cal
culated bounds. Because the toroidal segment has a small portion removed 
between y = —3 and —4 (see the figure), thus destroying the symmetry in the 
^/-direction, Mike anticipates that y^^ should lie slightly above zero. 

> y[cm] : = (vol*ymoinent/N)/totalmass; 

ycm •= 0.1932795233 
He finds that y^^ ^ 0.19 m. Finally, as a partial check on the accuracy, Mike 
calculates z^^ which theoretically should be equal to zero on symmetry grounds. 

> z[cm]:=(vol*zmoment/N)/totalmass; 
Zcm := 0.0009712943084 

The value of z^^ is quite close to zero, giving Mike some confidence in his 
estimated values. Of course, the estimated values will vary slightly from one run 
to the next, and an averaging procedure over many runs could be implemented. 

> cpu_time: = ( t ime()-begin)*seconds; 

cpu-time := 3.254: secondd 

The CPU time for this run was about 3 seconds. 
In this example, Mike took the density of the toroidal segment to be con

stant. If necessary, it is easy to insert a variable density expression inside the 
do loop and carry out the Monte Carlo estimates. In this case, the importance 
sampling technique discussed earlier could prove quite useful. 

PROBLEMS: 
Problem 7-30: Placing the center of mass 
Using style=wiref rame and textplotSd, place the labeled center of mass at 
the proper location of the toroidal segment. 

Problem 7-31: A different shape 
Suppose that the region corresponding to x greater than 3 is missing from the 
toroidal segment in the text recipe. 

(a) Create a 3-dimensional plot of the new segment. 

(b) Use the Monte Carlo approach of the recipe to estimate the segment's 
volume and locate its center of mass. 

(c) Place the labeled center of mass (represented by a colored circle) on the 
3-dimensional plot of part (a). 
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7.3 Probability Distributions 

7.3.1 Of Nuts and Bolts and Hospital Beds Too 

Statistical thinking will one day be as necessary for 
efficient citizenship as the ability to read and write. 
H. G. Wells, English novelist, historian, and sociologist (1866-1946) 

Recall that Colleen, the manager of the ladies' leisure section of the Glitz 
department store was able to successfully model cumulative sales numbers for 
bikini swimsuits with the logistic curve. Because of her business graduate back
ground, and her success in improving sales numbers in her section and keeping 
inventory costs down with such statistical approaches as that employed for the 
swimsuits, she has been promoted to head the store's statistical analysis divi
sion. It's not long before Mel, the head of hardware, approaches her with an 
interesting statistical question related to his department. 

"Colleen," Mel begins, "in our hardware section, we have a kit available for 
assembling a garden shed. The shed is quite stylish but there is a problem. The 
construction of the shed calls for the use of 10 nut and bolt sets, but the quality 
of the hardware available from the supplier is such that only 80% of the nut 
and bolt sets are functional. I could change suppliers, but the current supplier 
has agreed to include a few extra nut and bolt sets in the kit, I would like to 
know how many nut and bolt sets should we insist that the supplier include in 
each kit in order that 95% of the kits have enough functional nut and bolt sets? 
Obviously, the number must be greater than 10 and I could guess at what it 
should be, but I would rather have a more precise estimate. Can you help me?" 

"I think so," Colleen replies. "This is a classic example of what is known 
in statistical analysis as a Bernoulli"^ trial. If one picks any nut and bolt set 
at random, there are only two mutually exclusive outcomes. Either the nut 
and bolt set is OK (functional) or it is not (nonfunctional). Based on a large 
number of nut and bolt sets, the probability of a set being OK is determined 
to be p —0.8, while the chance of the set being defective is q = l — p = 0.2. 

Assuming that each trial is independent, that the probability is the same on 
each trial, and that there are only two possible outcomes on each trial, it can 
be shown [AL79] that the probability Pn of having n functional nut and bolt 
sets (or number of heads for the flipped coin) out of a total Â  sets is given by 
the binomial probability distribution, 

Pn = Cj^p-q^--, where C„^ = ^, ^ ^ l ^^, (7.19) 

is the binomial coefficient Although I could grind out an answer with a pocket 
calculator, I have the Maple system on my computer that will make our work 
much easier. First I will load the plots and Statistics packages into the work
sheet and record the starting time for our code. 

'̂  Jacob Bernoulli was an eighteenth-century Swiss mathematician. 
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> restart: with(plots): with(Statistics): 

> begin:=time() : 

As you said, Mel, since p = 0.8 < 1, the total number Â  of nut and bolt sets that 
should be included in each kit should clearly be larger than 10. My strategy is 
to increase Â  from 10 by successive integers until the sum of the probabilities 
from 10 to iV is greater than 0.95." 

After a few minutes of trial and error. Colleen finds that Â  = 16 will suffice. 
"OK, Mel, I will show you what happens for 7V = 16. I will enter this value and 
the probability p = 0.80 of obtaining a functioning set into the program. 

> N:=16: p:=0.80: 
The following functional operator will generate the binomial probability distri
bution (7.19) for a specified value of n. 

> P:=n->Probabil i tyFunction(Binomial(N,p),n): 
Making use of P, we can add the probabilities Pn from n = 10 to n = A^=16. 

> add(P(n),n=10..N); 
0.9733426686 

If 16 sets are included in each kit, there is a 97% probability that 10 or more 
sets will be functional. If only A^=: 15 sets are included, this probability drops 
to 94^%. So, I would recommend that you insist that the supplier include 16 
nut and bolt sets in each kit, or he should improve his quality control. 

I should point out that the same answer can be obtained using the cu
mulative distribution function command,^ CDF, and subtracting the cumulative 
probability up to n = 9 from that for n = Â  = 16. 

> CDF(Binomial(N,p),N)-CDF(Binomial(N,p),9); 

0.9733426685 
Before you go, Mel, you might be interested in what the binomial distribution 
of probabilities looks like for your problem. Let's form the sequence of n values 
and corresponding Pn into two separate lists. 

> number:=[seq(n,n=0..N)]: prob:=[seq(P(n) ,n=0. .N)] : 
Given any two lists LI and L2, we can create a functional operator SP to apply 
the Sca t t e rP lo t command to the two lists. 

> SP:=(L1,L2)->Scat terPlot(LI ,L2,s tyle=point ,symbol=circle , 
symbols ize=14, labels=["n" ,"P"] , t ickmarks=[4,3]) : 

Then, entering 

> SP(number,prob); 
produces the following picture (see Figure 7.12) on the computer screen. 

Note how the probability remains essentially equal to zero up to n = 7, 
peaks at n = 13, and has dropped back toward zero at n = 16. Because the 
value of p is not equal to one-half here, as it would be for a flipped coin, the 
binomial distribution is not symmetric around its maximum. If you have any 
other statistical questions, don't hesitate to contact me." 

^The "long form" of this command is CiunulativeDistributionFunction. 
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Figure 7.12: Probability P that n nut and bolt sets are functional. 

"Thanks for your help, Colleen," Mel replies, "let me treat you to a coffee 
down in the cafeteria." 

While sipping her cappuccino with Mel, who is glancing at last night's sports 
scores in the Metropolis Daily News, Colleen peruses the business section. There 
is an article about the severe budget constraints that are confronting local 
hospital administrators and the consequent reduction of numbers of available 
beds, even in emergency wards. On returning to her office after the coffee break 
and motivated by her success with the nuts and bolts problem, she considers 
the following possible hospital scenario. 

Suppose that the probability of a patient staying more than 24 hours in an 
emergency ward, and thus requiring a bed, is p = 0.32. On a certain day a 
total of Â  = 60 patients are admitted to the emergency award. The hospital 
administrator has proposed to keep 20 beds open. What is the probabihty that 
at most 20 of these patients will stay more than 24 hours and require a bed? 

Again, this is an example of a Bernoulli trial, there being only two possible 
outcomes. There is a 32% chance that a patient will have to stay more than 
24 hours and a 68% probability that the patient will not. So, again the bino
mial probability distribution should apply. Rather than start a new worksheet. 
Colleen unassigns the values of Â  and p in the worksheet that she used for the 
nuts and bolts example and enters the new values Â  = 60 and p = 0.32. 

> N:='N': p : = ' p ' : N:=60: p:=0.32: 
Colleen decides to first plot the probabilities, forming new lists for n and P^ 

> number2:=[seq(n,n=0..N)]: prob2:=[seq(P(n) ,n=0. .N)] : 
and applying the scatter plot command to these lists. 

> pll:=SP(number2,prob2): p l l ; 
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Figure 7.13: Probability that n patients will stay more than 24 hours. 

The resulting picture, reproduced in Figure 7.13, shows the probability that n 
emergency patients will stay more than 24 hours in the hospital. 

Even though p is again substantially different from 1/2, the binomial dis
tribution in this case appears to be more symmetrical than in the previous 
example. This is because the new value of Â  is quite a bit larger than the value 
it had in the garden shed example. As N is made very large and if the mean 
value N p is large, it can be shown [MW70] that the binomial distribution ap
proaches the continuous symmetric normal (Gaussian) probability distribution 
p(x), where 

p{x) = . ^ g-(̂ -(x))V(2â )̂  ^.^j^ ^^^ ^ ;Vp, a = VNp{l-p), 

v2 7rcr2 
being the mean value of x and standard deviation, respectively. 

Before checking how good an approximation p{x) is to the binomial distri
bution for this example. Colleen calculates the cumulative probability up to 
and including n = 20. 

> CDF(Binomial(N,p),20); 

0.6457478779 
The probability of at most 20 patients staying more than 24 hours is about 
64^%. So, the probability that more than 20 beds would be required is 35^%. 

To check how good an approximation the normal distribution is here, Colleen 
calculates the mean value of x for the normal curve and the standard deviation. 

> <x>:=N*p; Sigma:=sqrt(N*p*(1-p)); 

(x) := 19.20 a := 3.613308733 
She finds that {x) =19 .2 and a ^3.6. The mean value of the normal curve 
distribution is very slightly higher than the n = 19 value at which the maximum 



7.3. PROBABILITY DISTRIBUTIONS 365 

in the binomial distribution occurs. The mean number of patients to be hospi-
tahzed is sUghtly less than the number of beds tha t the administrator wants to 
leave open. For the normal distribution, there is a 68% probability of x lying 
within one s tandard deviation of the mean, i.e., in the range (x) — a = 15.6 to 
(x) -\- a = 22.8 for the present example. 

Colleen next forms a functional operator P2 to plot the normal distribu
tion p{x) as a function oi X = x. She uses the "short form," PDF, of the 
P r o b a b i l i t y D e n s i t y F u n c t i o n command. 

> P2:=X->PDF(Normal(<x>,Sigma),X): 

The normal probability distribution is plotted as a blue curve, but not displayed. 

> p l 2 : = p l o t ( P 2 ( X ) , X = 0 . . N , c o l o r = b l u e ) : 

Colleen wishes to show the locations of the mean, (x), and of {x) ibcr. She forms 
a graphing function Gr to plot a green, dashed ( l i n e s t y l e = 3 ) , vertical line at 
the horizontal coordinate A. 

> G r : = A - > p l o t ( [ [ A , 0 ] , [ A , 0 . 1 2 ] ] , l i n e s t y l e = 3 , c o l o r = g r e e n ) : 

Using Gr with A= (x), A— (x) — cr, and A= (x) -\- a and superimposing these 

three graphs on p l l and p l 2 generates Figure 7.14. 

> d i s p l a y ( p l l , p l 2 , G r ( < x > ) , G r ( < x > - s i g m a ) , G r ( < x > + s i g m a ) , 

l a b e l s = [ " x " , " P " ] ) ; 

O.lH 

0 .05 

Figure 7.14: Superposition of normal probability density curve on binomial 
distribution data . Vertical lines are at the mean (x) and at (x) ± a. 

The continuous normal probability distribution does quite a good job of fitting 
the discrete da ta points obtained from the exact binomial distribution. As a 
further check on the accuracy of the normal curve. Colleen calculates the prob-
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ability of no more than 20 patients being hospitalized for more than 24 hours 
using the short form of the CumulativeDistributionFunction command. 

> CDF(Normal(<x>,Sigma),20.5); 

0.640494561237072046 
Note that Colleen took x to be 20.5 here, rather than 20. This is because the bi
nomial probability P^, which is defined only at integer values, is approximately 
the area under the continuous normal curve between n — 1/2 and n + 1/2. The 
normal curve estimate of the cumulative probability, 64%, is in good agreement 
with the exact result of 64^% obtained earlier for the binomial distribution. 

Although it wasn't really necessary to introduce the normal distribution 
in this hospital example. Colleen knows from her college statistics course that 
the occurrence of the normal or Gaussian distribution is much more universal 
in statistical analysis than merely being just a large-A^ approximation to the 
binomial distribution. A wide variety of phenomena in nature approximately 
obey a normal distribution for large N, independent of the particular underlying 
probability distribution. 

Finally, Colleen notes that the total CPU time for the complete code 

> cpu_time : = (time ( ) -beg in ) *seconds; 

cpu-time :— 0.210 seconds 

took only a fraction of a second. 

PROBLEMS: 
Problem 7-32: Boys or girls 
If the chance of having a boy in any birth averages out to about 521% for the 
population of Erehwon as a whole, what proportion of families with six children 
on Erehwon would be expected to have: (a) Three boys and three girls? 
(b) Six boys and no girls? (c) Four boys or more and no girls? 

Problem 7-33: One smart parrot 
Polly parrot is trained to touch, on command, one of two levers, A or B. The 
probability of touching lever A is 75%. If Polly's responses to the commands 
given in different trials are independent, what is the probability that out of 5 
tries, Polly touches lever A 3 or 4 times? Plot the probability distribution. 

Problem 7-34: Chance of being left-handed 
In the large city of Metropolis, it is known that 12% of the people are left-
handed. If 500 citizens are selected from Metropolis, what is the probability 
that there are at most 45 of them who are left-handed. You may assume a 
normal distribution. Plot the probability distribution, indicating the mean and 
the standard deviation on the graph. 

Problem 7-35: Lung disease 
In a large population of smokers, it is found that 20% have some sort of lung 
disease. A sample of 400 smokers is taken from this population and tested for 
lung disease. Assuming that the normal probability distribution p{x) prevails: 
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(a) Calculate the mean number (x) of smokers in this sample who have a lung 
disease. Calculate the standard deviation a. 

(b) Plot p{x) with {x) and (x) ib a superimposed. 

(c) Calculate the probability that (i) at least 100 smokers have a lung disease; 
(ii) at least 70 but not more than 95 smokers have a lung disease; (iii) at 
most 75 smokers have a lung disease. 

7.3.2 The Ice Wines of Rainbow County 

When asked what wine he liked to drink, he replied, 
''That which belongs to another." 
Diogenes Laertius, Greek philosopher (c. A.D. 200) 

When not on special photographic assignments for the National Geographic 
magazine, Sheelo sells a vintage ice wine produced in her uncle's vineyard lo
cated along the Columbia River in Rainbow County. Ice wine is produced from 
a small fraction of the total grape crop that has been left unpicked and exposed 
to the first frosts of fall, to increase the sugar content of the grapes. For Sheelo, 
selling the quite expensive, limited quantity, ice wine is strictly a hobby, rather 
than a business, since she sells only five bottles on average each week to close 
friends and neighbors. To be safe, each Monday she ensures that her stock of 
this wine is eight bottles. On a recent occasion, however, she had no bottles 
left by the end of the week and ended up disappointing a customer. 

Although she could simply add several more bottles at the beginning of the 
week to avoid this problem, she is curious as to what the probability of running 
out actually is with a stock of eight bottles. Further, how many bottles should 
she start the week with to reduce the probability of running out to about 1%? 
This is assuming that her business does not grow and the average number of 
bottles sold per week remains at five. To answer these questions, Sheelo consults 
her sister Colleen, who has developed a strong interest in applying statistical 
distributions to practical situations. Colleen points out that Sheelo's ice wine 
questions can be answered by assuming that a Poisson distribution applies. 

"What is a Poisson distribution," Sheelo asks, "and under what circum
stances does such a distribution occur?" 

"Since you are not a mathematician, I won't go into the mathematical as
pects of statistical distributions. Instead, let me explain by giving you a simple 
example of a Poisson distribution," Colleen replies. "Suppose that the police 
are trying to catch speeders by placing a photo radar unit at a certain point 
adjacent to the south Metropolis freeway. Because most motorists are aware of 
the radar unit's location, only a handful of the thousands of motorists passing 
the unit each week receive a ticket. They were either daydreaming, talking on 
their cell phones, or just tourists. Relative to the large number N of motorists, 
the mean number A of tickets issued each week, averaged over a number of 
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P{n) = — e - \ (7.20) 

weeks, is small. In this case, the probability P{n) of n tickets being issued in 
any week is given by the Poisson distribution 

TIT" 
Similarly, in your case the mean number of bottles, namely five, that you sell 
each week is small relative to the large number of people that you know who 
could be potential customers. 

To answer your question, let's explore the problem on the computer. The 
Poisson distribution (7.20) is entered. 

> res ta r t : 

> PD:=lambda''n*exp(-lambda)/n! ; 

n! 
It's instructive to first check some features of the Poisson distribution for N = 
00. The total probability should sum up to one, which we now confirm. 

> "Total probabi l i ty"=sum(PD,n=0. . inf in i ty) ; 

"Total probability" = 1 
We can also check that the mean value {n) = Yln=o^ ^ P{n) is equal to A. 

> <n>:=suin(n*PD,n=0. . i n f i n i t y ) ; 

(n) := A 
To get a feeling for the "width" of the Poisson probability distribution, which is 
a measure of the spread in n values around the mean, we can calculate the root 
mean square deviation, a = >/(n^) —(n)^, with (n^) = X ^ ^ o ^^ P{^)- Let's first 
calculate (n^), 

> <n'^2>:=sum(n'^2*PD,n=0. . i n f i n i t y ) ; 

(n2}:=A(A + l) 
and then use this result and that for (n) to determine a. 

> sigma:=sqrt(<n"2>-<n>"2); 

Loading the Statistics and plots library packages, which will be needed shortly, 
I will now set A = 5, the mean number of bottles sold per week, and the possible 
number n of bottles sold per week will be allowed to range up to Â  = 16. You 
may object to the fact that this value of N is not terribly large, but as I will 
show you, taking N larger will not alter the results appreciably. 

> w i t h ( S t a t i s t i c s ) : wi th(p lo ts ) : lainbda:=5: N:=16: 
To see this, let's compare the values of the total probability, (n), and a for 
N= oo and Â  = 16. For N = oo, the mean value of n and the root mean square 
deviation take on the following values. 

> <n> [ in f in i ty ] :=lainbda; sigma [ in f in i ty ] :=evalf(sigma) ; 

(n)oo := 5 (Too := 2.236067977 
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Although we could use PD to calculate the corresponding values for N = 16^ 
an alternative way is to form the following functional operator P to evaluate 
the Poisson distribution for a given x value. By default, the probability func
tion is computed using exact arithmetic. To compute the probability function 
numerically, the numeric option is included here. 

> P:=x->Probabil i tyFunction(Poisson(lambda),x,numeric): 
Using P , we now calculate the total probability TP, the mean (n), and a. 

> TP:=add(P(n),n=0..N); <n>:=add(n*P(n),n=0..N); 
Sigma:=sqrt(add(n^2*P(n) ,n=0. .N)-<n>^2); 

TP := 0.9999801308 (n) := 4.999654959 a := 2.235497461 
All three values are extremely close to those for Â  = 00, confirming what I said 
earlier. I will work with the Â  = 16 values from now on. 

The probability of selling exactly n bottles of ice wine is determined for n 
ranging from 0 to A .̂ 

> Prob:=seq(P(n),n=0. .N); 

Prob := 0.006737946999, 0.03368973500, 0.08422433749, 0.1403738958, 
0.1754673698, 0.1754673698, 0.1462228081, 0.1044448629, 
0.06527803935, 0.03626557742, 0.01813278870, 0.008242176687, 
0.003434240286, 0.001320861649, 0.0004717363030, 
0.0001572454343, 0.00004913919822 

The first entry in the hst is the probabihty (0.0067 or 0.67%) of selling zero 
bottles, the second entry is the probability (about 3%) of selling exactly one 
bottle, and so on. The probability of selling, e.g., exactly eight bottles could 
be obtained by similarly inspecting the above list, or by entering Prob [9], or 
by simply calculating P(8) directly as is done in the next line. 

> " P r o b a b i l i l i t y of s e l l i n g exact ly 8 bo t t l e s"=P(8) ; 

"Probabihhty of selhng exactly 8 bottles" = 0.06527803935 
The probability of selling exactly eight bottles is about 0.065, or 6^%. 

An operator Grl is formed to plot a point yl as a size-12 blue circle. 

> Grl:=A->pointplot(A,symbol=circle,symbolsize=12,color=blue, 
t ickmarks=[3,3]) : 

A second graphing operator Gr2 is created to plot a dashed ( l inestyle=3), 
green, vertical line at the horizontal coordinate C. 

> Gr2:=C->plot([ [C ,0 ] , [C ,0 .17] ] , l ines ty le=3 ,co lo r=green) : 
Grl and Gr2 are used in the following command line. The first entry in the 
Maple set plots P{n) for integer values from n — 0 to N, while the second, 
third, and fourth entries plot dashed vertical green lines at (n), (n) + cr, and 
(n) — a. The four graphs are superimposed with the display command, 

> display({Grl({seq([n,P(n)],n=0..N)}),Gr2(<n>),Gr2(<n>+sigma), 
Gr2(<n>-sigma)},view=[0. .14,0 . .0 .2] , labels=["n","P"] ) ; 

the resulting picture being shown in Figure 7.15. 
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Figure 7.15: Poisson probability P of selling exactly n bottles of ice wine. 

The locations of (n), (n) + a, and (n) — a are indicated by the dashed lines. 
Notice how the Poisson distribution is asymmetric around the mean at n = 5 
and has a relatively long tail for n values above the mean. 

We can calculate the cumulative probability (CP) of selling n or fewer bot
tles of wine in a given week by forming the following functional operator CP. 
The short form of the CumulativeDistributionFunction command is used. 

> CP:=x->CDF(Poisson(lambda),x,numeric): 
The cumulative probability CP is then plotted using CP, 

> d isp lay(Gr l ({seq([n ,CP(n)] ,n=0. .N)}) , labe ls=["n" ,"CP"]) ; 
the result being shown on the left of Figure 7.16. 
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Figure 7.16: Left: CP vs. n. Right: Probability of selhng more than n bottles. 

In Figure 7.15, the range (n) ib a spans the integer values from n = 3 to 7. 
Using the cumulative probability operator CP, the probability of selling 3 to 7 
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bottles of wine is seen to be equal to the difference CP(7)-CP(2). 

> "Probability of selling 3 to 7 bottles"=CP(7)-CP(2); 

"Probability of selling 3 to 7 bottles" = 0.7419763103 
The probability is 0.74 or 74% that you will sell a number of bottles in this 
range. Now let's answer your original questions by calculating the probability 
of selling more than n bottles in a week. This probability is simply obtained by 
forming 1 — CP. This new probability distribution is now plotted, the resulting 
picture being shown on the right of Figure 7.16. 

> d i sp lay(Gr l ({seq( [n , l -CP(n) ] ,n=0 . .N)}) , l abe l s=["n" , "1-CP"] ) ; 
The probability distribution drops rapidly to zero at large n. The probability 
of selling more than 8 bottles is 

> "Probabi l i ty of s e l l i n g more than 8 bo t t l es"=l -CP(8) ; 

"Probability of selhng more than 8 bottles" = 0.0680936308 
about 0.068, i.e., about 7%. So the chance is fairly small that a potential 
customer will be disappointed if you stock eight bottles at the beginning of each 
week. However, you said that it did happen to you recently, so let's increase 
the number. By increasing the number to ten bottles, 

> "Probabi l i ty of s e l l i n g more than 10 bot t les"=l-CP(10) ; 

"Probability of selling more than 10 bottles" = 0.0136952678 
your chances of running out drops to about 1%. So, I would recommend that 
you stock up with 10 or 11 bottles at the beginning of each week, unless you 
contemplate expanding your wine business." 

"Thanks, Colleen, I will do that. With my National Geographic assignments, 
I am pretty busy at times and not looking to increase my business, particularly 
since my uncle has only a limited supply that he can send to me. And the supply 
varies from year to year, depending on the timing, duration, and severity of the 
frosts along the Columbia River gorge. But it would be nice not to disappoint 
my regular customers. Most of these are close friends who really enjoy this 
unique ice wine. Say, I don't believe that you have tasted this wine yet. How 
about joining me and splitting a bottle before you go. It's the least I can do 
for all the help you have given me." 

PROBLEMS: 
Problem 7-36: Typographical errors 
Assume that typographical errors, committed by an anonymous author in writ
ing the first draft of a textbook on symbolic computation, occur completely at 
random. Suppose that the book of 600 pages contains 600 such errors. Assum
ing that the Poisson distribution holds: 

(a) Calculate the probabihty that a page contains no errors. 

(b) Create a plot of the probability distribution spanning the range from zero 
to five errors on a page. Is the plot symmetric or asymmetric? 
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(c) Given the above range, calculate a for the probability distribution. By 
what percentage does a differ from aoo? 

(d) Create a new graph showing not only the probability distribution, but the 
mean and the mean ib a. 

(e) Calculate the probability that a page contains at least three errors. 

(f) Create a plot of the probability that a page contains at least n errors, 
with n = 0 to 5. 

Problem 7-37: Alpha decay 
The emission of a particles by a radioactive source during some time interval 
can be described by a Poisson distribution [Rei65]. Suppose that for a particular 
source, the mean number of disintegrations per minute is 24. One disintegration 
corresponds to the emission of one a particle. For a time interval of 10 s: 

(a) What is the mean number of a particles emitted? 

(b) What is the probability of emitting two a particles? five a particles? 

(c) Plot the probability of observing n alpha particles for n = 0 to 10. 

(d) Calculate the width of the probability distribution, and place the width 
and mean on the same graph as the probabilities. 

(e) Calculate the probability that at least eight a particles are emitted. 

(f) Create a plot of the cumulative probability. 

(g) Create a plot of the probability of observing at least n alpha particles, 
wi thn = 0 to 10. 

7.4 Monte Carlo Statistical Distributions 

7.4.1 Estimating e 

Not everything that can be counted, counts. 
Not everything that counts, can be counted, 
Albert Einstein, Nobel laureate in physics (1879-1955) 

The numerical value of e can be determined with a number of different Monte 
Carlo approaches, one of the most efficient according to Mohazzabi [Moh98] be
ing the random number equivalent of the dart method. Consider a dartboard 
that has been divided into R equal-size regions. We randomly throw N darts at 
the board and assume that we never miss the board. (Ha! Ha!) On any given 
throw the probability p that a dart lands in a given region is p — 1/R. The 
probability of missing this region is q = 1—p. Since there are only two mutually 
exclusive outcomes (hit or miss) on a given throw, the probability P{n) of find
ing n darts in a given region after N throws is given by the binomial distribution 

P(n) = C ^ p ^ ^ ^ - ^ , with C^ =N\/{n\{N-n)\). (7.21) 
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Thus the probability of finding an empty region is 

P ( 0 ) = C P % ^ = <Z^ = ( 1 - P ) ^ . (7.22) 

Suppose that we can make p = l/N^ so that 

Now, the exponential function e~^ is given by the hmit 

e - - = hm f l - ^ ) " ^ , (7.24) 

so that 

e-^ - - = hm (l-^] . (7.25) 
N-^oo \ N ^ 

Thus, for sufficiently large N^ P{0) gives an estimate of 1/e. How do we make 
p — 1/N? For the binomial distribution, the mean, or expectation, value of n 
is given by (n) = pN. If we take the number of darts thrown equal to the 
number of regions, i.e., N =^ R, then the mean number of darts hitting a region 
must be (n) = 1 = pN, so that p = 1/N as desired. 

So the recipe to estimate the value of e is to randomly throw Â  darts at a 
dartboard divided into N equally sized regions, where N is taken to be very 
large. If A (̂0) is the number of empty cells, where no dart has struck, then 

1 ^ iV(0) ^ N 

Since it turns out that Â  must be very large to get a reasonable estimate of 
e and it is difficult to really throw darts randomly, we turn to a Monte Carlo 
computer approach that simulates the dart throwing. We can number the 
regions by integer values from 1 to A .̂ A random-number generator is used 
to generate Â  random numbers in this range. A number n in this random 
sequence of numbers corresponds to hitting region n with a dart. By counting 
the number A'(O) of regions that were not hit, the value of e ^ N/N{0) can 
be determined. To improve the estimate, the numerical experiment will be 
repeated a number of times and an average value of e calculated. 

We begin the recipe by loading the Statistics and plots library packages. 

> r e s t a r t : w i t h ( S t a t i s t i c s ) : w i t h ( p l o t s ) : begin:=time( ) : 
Suppose that in each experiment, the number of darts thrown, which is equal to 
the number of regions, is taken to be A" = 5000 and 600 experiments are carried 
out. This is equivalent to throwing three million darts! Depending on the speed 
and memory of your PC, you may have to adjust these input values. Decreasing 
Â  leads to a poorer estimate of e for a given experiment. For statistical analysis 
purposes, histograms of the data will be created, the 600 values of e being 
divided into 12 equally spaced bins. For a large number of experiments, the 
binomial distribution can be replaced by the normal distribution, which will be 
used here. The call randomize ( ) sets the random-number seed. 
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> N:=5000: Expts:=600: bins:=12: randomize() : 
The do loop, which now begins, runs from j = l to 600 here. 

> for j from 1 to Expts do 
For each experiment, a random integer is generated in the range 1 to Â  = 5000. 

> r : = r a n d ( l . . N ) : 
By using the sequence^ command and summing over k from 1 to A ,̂ a hst of N 
random integers in the desired range is produced for the j th experiment. The 
Tally command is apphed to count the number of occurrences of each integer. 
The number of operands is then determined by applying the nops command. 
Subtracting the resulting number from Â  finally determines the number of 
missing regions (missing integers). 

> Miss ingCj] :=N-nops(Tal ly( [seq( r ( ) ,k=l . .N)] ) ) : 
The value of e is then calculated for the j th experiment. 

> e . e s t ima te [ j ] :=eva l f (N/Miss ing[ j ] ) : 

> end do: 

Ending the do loop, the 600 estimates of e are put into a data list. 

> d a t a : = [ s e q ( e _ e s t i m a t e [ j ] , j = l . . E x p t s ) ] : 

The mean value of e is calculated and compared with the exact numerical value. 

> <e>:=Mean(data); exac t_e :=eva l f (exp( l ) ) ; 

(e) := 2.719467815 exact.e := 2.718281828 
The percentage deviation of the Monte Carlo mean, (e), from the exact e value 
is determined and found to be 0.04% for this particular run. 

> PercentDeviation:=100*(<e>-exact_e)/exact_e; 

PercentDeviation := 0.04363002349 

Next, the standard deviation, a = \/{e^) — (e)^, is calculated, 

> sigma:=StandardDeviation(data); 

G := 0.03269196410 
yielding a ^ 0.033. 

For large N and a large number of experiments, the distribution of e esti
mates will be approximated by the normal (Gaussian) probability distribution. 

p(x) = e-(̂ -̂ ^>) /̂ ^̂  V ^ 2 7 ^ . 

For the normal distribution there is a 68% chance of finding an e value within 
one (7 of the mean and a 95% chance of finding an e value within two a. 

We shall plot the Monte Carlo e value estimates as histograms and superim
pose the normal distribution in the same graph as well as locate the positions 
of (e) and (e) d= a. First, we extract the minimum (a) and maximum (6) Monte 

^The seq command is more efficient than using a do loop. Using seq, the cpu time increases 
Unearly with the length of the sequence, but increctses quadratically for the do loop. 
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Carlo e values from the data list. The width J of a histogram bin is equal to 
the range b — a divided by the number of bins. 

> a :=min(data[] ) ; b:=max(data[]) ; d e l t a : = ( b - a ) / b i n s ; 

a := 2.624671916 b := 2.818489290 3 := 0.01615144783 
An operator for calculating the histogram bin boundaries is formed. 

> X:=i->a+del ta*( i -1) : 
The Ta l ly ln to command is used to determine the number of estimated e values 
in the data list that lie within each histogram bin. 

> data2:=TallyInto(data,[seq(x(i)..x(i+l),i=l..bins)]): 

An operator for calculating the normalized height (normalized so the area under 
the complete histogram curve is 1) of the ith histogram is created. 

> y : = i - > o p ( [ i , 2 ] , d a t a 2 ) / ( E x p t s * d e l t a ) : 
An operator is formed to plot the ith histogram (colored cyan), 

> p : = i - > p o l y g o n p l o t ( [ [ x ( i ) , 0 ] , [ x ( i ) , y ( i ) ] , [ x ( i + l ) , y ( i ) ] , 
[ x ( i+ l ) , 0 ] ] , co lo r=cyan) : 

which is used to generate the complete histogram plot. 

> h : = d i s p l a y ( s e q ( p ( i ) , i = l . . b i n s ) ) : 
The normal probability distribution is plotted over the range a to b. 

> pp:=plot(PDF(Normal(<e>,sigma),x),x=a..b, 
colour=red, thickness=3): 

A functional operator Gr is formed to plot a thick red vertical line of height 12 
at the horizontal coordinate x. 

> Gr:=x->plot( [ [x ,0 ] , [x ,12 ] ] , s ty l e= l ine , co lo r=red , th i ckness=3) : 
Entering the following command line produces Figure 7.17, 

> display({h,pp,Gr(<e>) ,Gr(<e>-sigma) ,Gr(<e>-»-sigma)}, 
tickinarks= [3 ,3 ] ) ; 
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Figure 7.17: Comparison of Monte Carlo histogram with normal distribution. 
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containing the histogram plot, the normal distribution (solid curve), and vertical 
lines at (e), (e) — cr, and (e) + cr. 

If the number of experiments is increased, the width of the histogram bins 
can be decreased. The width of the probability distribution, as measured by 
the standard deviation a, will decrease {a scaling as 1/\/N) as the number N 
of darts thrown in each experiment is increased. 

> cpu.time: = (time ( )-begin)*seconds; 

cpu-time := 10.336 seconds 

The CPU time for this run was about 10 seconds. 

PROBLEMS: 
Problem 7-38: Scaling of a with increasing Â  
Holding all other parameters the same as in the text recipe, double the number 
Â  of darts to 10,000 and then to 20,000. How does the width of the probability 
distribution, as measured by cr, scale as the number N is doubled? Depending 
on the speed of your computer, this calculation may take considerable CPU 
time. 

7.4.2 Vapor Deposition 

They [atoms] move in the void and catching each other up jostle 
together, and some recoil in any direction that may chance, 
and others become entangled with one another in various degrees 
according to the symmetry of their shapes and sizes and positions 
and order, and they remain together and thus the coming into being 
of composite things is effected. 
Simphcius, De Caelo, 242, 15 (490-560) 

While Mike is off on his archaeological dig, Vectoria is in the process of learning 
about various probability distributions as part of her summer job in the MIT 
physics department. While thumbing through the first chapter of Reif's statis
tical physics text [Rei65], she encounters a reference to the Poisson probability 
distribution as well as several related problems. She reads that the Poisson 
distribution is a limiting case of the binomial probability distribution, 

Pn= , , . f ' „ P " ( 1 - P ) " ^ - " - (7.27) 
n! [N - n)\ 

Here P^ is the probability that an event characterized by a probability p occurs 
n times in N trials. The Poisson distribution results in the limit that p ^ 0 
{p is small), N -^ oo {N is large compared to n), and the product Np = X 
remains finite. In (7.27), 

Jj/^^ = Af (AT - 1) (iV - 2) • • • (iV - n + 1) -> iV", 
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So in this limit, Equation (7.27) reduces to the Poisson probability distribution 

Pn = ^ e - \ (7.28) 

The quantity X = Np is equal to the mean number of events/ 
Vectoria has studied the Monte Carlo examples presented earlier and decides 

to perform a numerical simulation whose inspiration is based on a Poisson 
distribution question mentioned in Reif. The problem is one involving the 
evaporation of metal atoms from a hot filament in vacuum. The emitted metal 
atoms are incident on a quartz plate located some distance away and form a 
thin metal film on the plate. The quartz plate is held at a sufficiently low 
temperature that any incident metal atom sticks at the place of contact with 
the plate and doesn't migrate away from this contact point. It is assumed that 
the metal atoms are equally likely to hit any region of the plate. The vapor 
deposition of thin metallic films on various substrates is of great interest to the 
material scientists in the lab where she is working. 

In the problem, Vectoria is asked to answer a number of relevant questions. 
If 6 is the diameter of the metal atom and one considers a substrate area element 
of size &̂ , show that the number of metal atoms piled up on this area should 
be distributed according to a Poisson distribution. If enough metal atoms are 
evaporated to form a film of mean thickness corresponding to 6 atomic layers: 

(a) What fraction of the substrate is not covered by metal at all? 

(b) What fraction is covered by metal layers three atoms thick? 

(c) What fraction is covered by metal layers six atoms thick? 

Vectoria's self-appointed task is to carry out a simple Monte Carlo simulation 
of the vapor deposition process, answer the above questions, and compare the 
experimental (numerical) results with the theoretical (statistical) predictions. 

The plots and statistical packages are loaded. 

> r e s t a r t : w i t h ( p l o t s ) : w i t h ( S t a t i s t i c s ) : 
Vectoria assumes for the sake of definiteness that there are Nl = 20 thousand 
possible substrate sites on which an emitted metal atom can land. Since any 
site is equally probable, the probability of landing on a given site is p—l/Nl — 
1/20000. Enough atoms are evaporated to form a film of mean thickness corre
sponding to L —6 atomic layers. The total number of atoms emitted, therefore, 
is N — Nl L = 120,000 atoms. The mean number of layers is \—pN — ̂ . 

> Nl:=20000: L:=6: p := l /Nl ; N:=N1*L; lambda:=p*N; 

^^=20500 ^ ^ - ^ ~ '••=' 
The starting time is recorded, and the random-number seed is entered. 

^Recall the ice wine story. 
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> beg in := t ime( ) : randomize() : 
The count number Ci (number of atoms on site i) is initialized to zero for each 
of the Nl = 20 thousand possible target sites. 

> for i from 1 to Nl do; c [ i ] : = 0 ; end do: 
In the following do loop, random numbers between 1 and Nl =20 thousand are 
generated for N = 120 thousand atoms. These atoms can land randomly on any 
one of the possible target sites. Each time an atom lands on a given site, the 
count number of atoms on that site is increased by one. 

> r n : = r a n d ( l . . N l ) : 
> for i from 1 to N do; 
> r : = r n ( ) ; 
> c [ r ] :=c[ r ]+ l ; 
> end do: 

The count number for each of the Nl target sites is formed into a list and sorted 
so the count numbers are in ascending order. The maximum count number M 
in the data list is extracted. 

> d a t a : = s o r t ( [ s e q ( c [ i ] , i = l . . N l ) ] ) : M:=max(data[]); 

M := 19 
The Tally command is used to tally or count the number of sites that have 
received a given number of atoms. 

> da ta2 :=Tal ly(da ta ) ; 

data2 := [0 = 47, 1 = 301, 2 = 908, 3 = 1774, 5 = 3161, 4 = 2706, 7 = 2801, 
6 = 3150, 10 = 818, 11 = 426, 8 = 2131, 9 = 1379, 15 = 21, 14 = 45, 
13 = 105, 12 = 212, 16 = 11, 17 = 3, 19 = 1] 

The first entry "0 = 47" in data2 informs Vectoria that 47 sites received zero 
atoms, the second entry that 301 sites received one atom, etc. The maximum 
number, M = 19 atoms, was achieved on one site. The fraction of sites receiving 
zero atoms, one atom, two atoms, etc., is calculated and put into a list. 

> l i s t l : = [ s e q ( n o p s ( s e l e c t ( h a s , d a t a , i ) ) / N l , i = 0 . . M ) ] ; 

47 301 227 887 1353 3161 63 2801 2131 
listl :— 

20000' 20000' 5000' 10000' 10000' 20000' 400' 20000' 20000' 

1379 409 213 53 21 9 21 11 ^ n ^ 
20000' 10000'10000' 5000' 4000' 4000' 20000' 20000' 20000' ' 20000j 

A list of count numbers up to the maximum number M is formed. 
> l i s t 2 : = [ s e q ( i , i = 0 . . M ) ] : 

The Sca t te rP lo t command is used to plot the Monte Carlo experimental data, 
the data point coordinates being given in the two lists, listl and list2. 

> p l o t l : = d i s p l a y ( S c a t t e r P l o t ( l i s t 2 , l i s t l , s y m b o l = c i r c l e , 
symbolsize=12),color=red): 

The following functional operator calculates the numerical value of the Poisson 
probability, with A = 6, for a given n. 
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> P:=n->Probabil i tyFunction(Poisson(lambda),n,numeric): 
Using P, a list of the Poisson probabilities from n = 0 to M is produced. 

> l i s t3 := [ seq (P(n ) ,n=0 . .M)] ; 

lists := [0.002478752177, 0.01487251306, 0.04461753919, 0.08923507837,...] 

To make a comparison with the Monte Carlo results, Vectoria creates a plot of 
the theoretical values predicted by the Poisson statistical distribution, choosing 
to represent the theoretical points graphically with blue crosses. 

> p l o t 2 : = d i s p l a y ( S c a t t e r P l o t ( l i s t 2 , l i s t s , s y m b o l = c r o s s , 
S3nnbolsize=12),color=blue): 

The experimental (Monte Carlo) points are superimposed on the same graph 
as the theoretical (Poisson distribution) points, 

> display ({plot 1 ,plot2} , labels= ["n" , "f "] ); 
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Figure 7.18: Fraction / of sites receiving n atoms during vapor deposition. 
Circles: Monte Carlo. Crosses: Poisson formula. 

the resulting picture being displayed in Figure 7.18. The experimental results 
are in excellent agreement with what would be expected on the basis of statis
tical theory. 

Vectoria is now in a position to answer the questions about layer coverage 
on the substrate sites. Although she could click on the computer graph to get 
approximate values, more precise answers follow from looking at the various lists 
that have been generated. From listl she finds that experimentally the fraction 
of sites receiving zero atoms, three atoms, and six atoms is 47/20000, 887/10000, 
and 63/400, or about 0.24%, 8.9%, and 15.8%. From listS, she notes that the 
Poisson distribution predicts 0.25%, 8.9%, and 16.1%. Vectoria is pleased with 
how easy it has been to simulate the experiment suggested by Reif's problem 
and even more pleased with how well the Monte Carlo experimental results are 
accounted for by the theoretical Poisson distribution. 
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> cpu.t ime: = (time( )-begin) *seconds; 

cpu-time := 1.212 seconds 
She further notes that the elapsed CPU time was only about 1 second for the 
vapor deposition simulation. Looking at her watch to see what time it actually 
is, she realizes that Mike is supposed to phone shortly, which will round off 
what has been a good day. 

PROBLEMS: 
Problem 7-39: Alpha decay 
A radioactive source emits a particles during a time interval T. Now imagine 
that T is divided into many very small time intervals AT. Since a particles 
are emitted at random times, the probability of a disintegration occurring in a 
particular AT is independent of the probability of a disintegration in another 
small time interval. If AT is sufficiently short, the probability of more than one 
disintegration in AT is negligible. Thus if p is the probability of a disintegration 
in AT, then the probability of no disintegration is 1 —p. Thus each time interval 
AT will be an independent Bernoulli trial and there will be Â  = T /AT trials 
during the time T. 

(a) For a particular radioactive source, the mean number of disintegrations 
per minute is 24. Assuming that a Poisson distribution prevails, what is 
the probability of n counts occurring in a 10-second time interval? For n, 
choose a range of integers from 0 to 8. 

(b) Carry out a Monte Carlo simulation of the a decay in part (a). 

(c) Plot the experimental and theoretical values for the probabilities of n 
counts occurring in the 10-second time interval in the same graph, and 
discuss the accuracy of your simulation. 



Chapter 8 

Fractal Patterns 
Art is the imposing of a pattern on experience, and our aesthetic 
enjoyment is recognition of the pattern. 
Alfred North Whitehead, Enghsh philosopher and mathematician (1861-1945) 

Patterns pervade the natural world as well as the world of the intellect. In 
the biological realm, we are quite aware that when we mentally visualize a ze
bra we probably first think of its most prominent feature, its stripes. When 
we look at certain butterflies, it is usually the colorful markings on the wings 
that grab our attention. If we study magnified ice crystals, our interest is cap
tivated by the richness and regularity of the patterns displayed. If we go into 
a wallpaper store to shop for our home, we can be overwhelmed by the artistic 
choices available. If we listen to a piece by Beethoven we are struck by the 
musical tapestry that one of the world's greatest composers has woven. If we 
talk to a scientist we will soon find that his or her goal in life is usually to 
discover (impose?) some underlying pattern to the phenomena under investiga
tion. Clearly, patterns are important in many different ways. As a consequence, 
the scientific study of pattern formation is a very large field, and any attempt 
to systematically cover the topic is far beyond the aim or scope of this text. 

Therefore, we have asked our MIT mathematics faculty friend Jennifer 
whether she could provide us with some recipes that produce artistic mas
terpieces of mathematical pattern formation based on some common theme. 
She has graciously agreed and has elected to show us a few examples of so-
called fractal patterns. A fractal structure is characterized by a noninteger 
(fractal) dimension^ the usual concept of dimension (which is limited to integer 
values) being extended to describe geometric objects with jagged boundaries 
(e.g., clouds, coastlines, ferns), planar objects with holes in them, and so on. 

How is a fractal dimension defined? The reader undoubtedly knows that 
a point has zero dimension, a smooth, continuous, line has one dimension, a 
filled-in planar object has two dimensions, and so on. When one has patterns 
with jagged boundaries or made up of lines and planar objects with holes in 
them, one can generalize the concept of dimension to describe such geometrical 
objects. There are several different ways [PC89] of doing this, but one simple 
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definition of fractal dimension is the so-called capacity dimension^ Dc 
To mathematically develop a formula for calculating Dc, first consider a 

continuous straight line (or more generally a smooth curve) of length L as 
shown in Figure 8.1. This line is covered by N{e) one-dimensional segments, 

N(e) L 

8 = L 

A A A 
8 

A 

• • • w L/3 

L/9 

etc. 

Figure 8.1: Covering a line of length L with line segments of length e. 

each of length e, the segment boundaries being indicated by dots. On the top 
fine, e = L and N{e) = 1. At the next level, let's arbitrarily divide the line into 
three segments. In this case, e — L/3 and N{e) = 3 = L/e. Quite generally, 
for any line subdivided in the same manner, N{e) — L/s. 

Next, consider a two-dimensional square of side L, as shown in Figure 8.2. 
The square is covered with identical boxes of side e and again N{e), the number 

8 = L / 3 
N(E) = 9 

8 = L / 9 
N(E) = 81 

Figure 8.2: Covering a square of side L with boxes of side e. 

of boxes needed to fill the square, is determined. In this case, N{e) = L^/e^. 
In three dimensions, one clearly obtains N{£) — L^ je^ and, generalizing, in 
D-dimensions, N{e) — L^le^. Taking the logarithm and solving for D yields 

lnL + ln( l /e) ' 
As 5 ^ 0, then ln(l/e) ^ InL and the capacity dimension is defined by 

lnA^(£:) 
Dc = lim 

e -o ln( l /£) • 

(8.1) 

(8.2) 
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So, Dc agrees with the "normal" concept of dimension for the examples above 
involving continuous lines, planar objects, etc. 

Let us now return to Figure 8.1 and throw away the middle third at each 
step as in Figure 8.3. Taking L = 1 for simplicity, let's count the number of 

e = L=l 
8 m 
1 1 

e=l/3 c 
• 1 • • 1/3 2 

1/9 4 
e = 1/9 e 
• — • •— t 

etc. 

Figure 8.3: The Cantor set. 

line segments N{e) needed to cover the unit interval, i.e., the empty segments 
are not counted. On the fcth step, e = (1/3)^ and N{s) = 2^, thus yielding a 
capacity dimension 

Dc = lim (In 2^/ In 3^) = In 2/ In 3 - 0.6309 • • •. (8.3) 

The segmented line with gaps in Figure 8.3 is referred to as a Cantor set With a 
capacity dimension Dc ~ 0.63, it has a fractal dimension intermediate between 
a point (zero dimensions) and a continuous line (one dimension). The Cantor 
set has a fractal dimension, which makes intuitive sense, since it is "more" than 
a point but not quite a solid line. 

Now let's see what fractal patterns Jennifer has created for us. 

PROBLEMS: 
Problem 8-1: The Koch triadic curve 
Consider a line of length 1 unit. Instead of throwing away the middle third as 
in the Cantor set, form an equilateral triangle in the middle third. Each line 
segment has length e = l / 3 . Repeat the process with each new segment in step 

L = l 

8=1/3 
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1 to produce step 2. Each segment now has length 1/9. Repeating this process 
indefinitely, determine DQ- Does your answer make intuitive sense? Explain. 

Problem 8-2: The middle-half Cantor set 
The Cantor set is also known as the middle-third Cantor set, since on each 
step the middle third of each remaining line segment is thrown away. In the 
middle-half Cantor set, the line is initially divided into quarters and the inner 
two quarters (the middle half) are thrown away. If this action is repeated 
indefinitely with the remaining line segments, what is the capacity dimension 
of the middle-half Cantor set? If you compare this dimension with that for the 
middle-third Cantor set, does your answer make intuitive sense? Explain. 

8.1 Difference Equations 

8.1.1 Wallpaper for the Mind 

Either that wallpaper goes, or I do, 
Oscar Wilde (1854-1900), last words as he lay dying in a drab hotel room 

In the September 1986 issue of the magazine Scientific American the cover 
featured intricate computer-generated designs which were referred to as "Wall
paper for the Mind." An example of such a wallpaper pattern is that generated 
by the following pair of coupled nonlinear difference equations: 

Xn+l = ?/n - s ignUm(Xn) V\^^n " c | , ^ n + l = a - Xn, (8.4) 

where the signum function is defined by 

signum(x) — x/\x\, for x < 0 and x > 0. 

Thus signum(a:) is a step function, equal to —1 for x < 0 and -hi for x > 0. 
A delicate and pretty lace pattern occurs for the parameter values a — 

3.14, b = 0.3, c = 0.3 and the initial values x(0) = y{0) = 0.2. The p l o t s 
and p l o t t o o l s packages are loaded. The latter is needed because the r o t a t e 
command will be applied to the graph. 

> r e s t a r t : w i t h ( p l o t s ) : w i t h ( p l o t t o o l s ) : 
How much CPU time is used is important in some examples of pattern forma
tion, so the beginning time is recorded. 

> begin:=t ime() : 
The initial values, 

> x [0] :=0 .2 : y[0] :=0.2: 
and the parameter values are entered. 

> a:=3.14: b :=0 .3 : c :=0 .3 : N:=30000: 
To obtain a wallpaper design with considerable detail, Â  = 30 thousand itera
tions will be carried out. 
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The difference equations are then iterated from n = 0 to N. 

> for n from 0 to N do 

> x[n+l] :=y[n]-signiim(x[n] )*sqr t (abs(b*x[n] -c) ) ; 

> y[n+l] :=a-x[n] ; 

> end do: 
The sequence command produces a Hst of Hsts for the plotting points. 

> p lo tpo in t s := [ seq ( [x [n+ l ] , y [n+ l ] ] , n=0 . .N) ] : 
The po in tp lo t command is used to create the basic wahpaper design, 

> pi:=pointplot(plotpoints,symbol=POINT): 
which is rotated through —7r/4 radians, and displayed, 

> p l 2 : = r o t a t e ( p i , - P i / 4 ) : 

> display(pl2,axes=boxed, t ickinarks=[0,0] ,color=red, 
sca l ing=const ra ined) ; 

producing the wallpaper pattern in Figure 8.4. 

• • • • • • • • . . ' \ . : * ; = 
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Figure 8.4: A wallpaper design. 

The CPU time is about 7 seconds on a 3 GHz personal computer. 

> cpu. t ime:=(t ime()-begin)*seconds; 

cpu.time := 7.162 seconds 
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PROBLEMS: 
Problem 8-3: Different parameter values 
Explore the nonlinear map given in the text for other values of the parameters 
and see whether you can find any other suitable wallpaper patterns. 

Problem 8-4: Altering the model 
Keeping all parameter values the same as in the text recipe, explore the effect 
of altering the model. For example, you might insert a factor of 2 in front of 
the signum function, or take the absolute value of Xn in the y equation, or try 
some other form. When executing a new model for the first time it is a good 
idea to reduce the Â  value so that you do not tie your PC up in the do loop. 

8.1.2 Sierpinski's Fractal Gasket 

Great fleas have little fleas upon their backs to bite 'em. 
And little fleas have lesser fleas, and so ad infinitum. 
And the great fleas,., in turn, have greater fleas to go on; 
While these again have greater still... and so on, 
Augustus De Morgan, Enghsh mathematician (1806-1871) 

Difference equations are useful for generating patterns that mimic those ob
served in nature, e.g., the triangular array seen on the conus seashell. As an 
illustrative example of a triangular design, Jennifer will now consider the follow
ing numerical simulation, which reproduces a pattern commonly referred to as 
Sierpinski ^s gasket It involves still another use of the random-number generator 
discussed in Chapter 7. Because the dynamics involve a random, or stochastic^ 
component, the difference equations in this example are not deterministic. 

A call is made to the plots package and the random-number seed initialized. 

> restart: with(plots) : randomizeO: begin :=time(): 
Jennifer enters three points (planar coordinates (A[2],5[i]) with i — 0,1,2) 
that lie at the vertices of an equilateral triangle whose sides are of length 2. 

> A[0]:=0: B[0]:=0: A[ l ] := l : B[l]:=1.732: A[2] :=2: B[2] :=0: 
Starting at, say, the origin x[0] =?/[0]=0, the following two-dimensional map 

x [ n - h l ] = x [ n ] + £ ( A [ i ] - x [ n ] ) , y[n ^ \] ^ y[n] ^ e {B[i] - y[n]), (8.5) 

with 0 < £ < 1, is iterated N times. Jennifer takes Â  = 4000 and £: = 0.5. On 
each step, a random-number generator will be used to randomly select from 
among the values 0, 1, and 2 for the index i. 

> x[0]:=0: y[0]:=0: epsilon:=0.5: N:=4000: r2:=rand(0. .2) : 
The do loop, 

> for n from 0 to N do 
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begins with r2( ) for randomly selecting the values 0, 1, and 2 for the index i. 

> s e l : = r 2 ( ) : 
The two-dimensional map is inserted into the do loop, 

> X[n+1]:=x[n]+epsi lon*(A[sel]-x[n]) : 

> y[n+1] :=y[n]+epsi lon*(B[sel ] -y[n]) : 

and a point plot formed, the points being represented by diamonds. 

> p i [n] : =pointplot ([x [n+1] , y [n+1] ] , s3niibol=diainond) : 

> end do: 
The entire sequence of 4000 points is displayed in a single graph. 

> d i sp l ay ( seq (p l [ j ] , j=0. .N) ,tickinarks=[3,2] , labels=["x" , "y"] , 
sca l ing=const ra ined) ; 

O^ 1 x 2 

Figure 8.5: Dynamical generation of Sierpinski's gasket. 

Figure 8.5 is a numerical simulation of a geometrical pattern known as Sierpin
ski's gasket. The CPU time to produce this pattern is about 3 seconds. 

> cpu_time:=(time()-begin)*seconds; 

cpuJime := 2.914: seconds 
Sierpinski's gasket is traditionally created by carrying out the following geo

metrical construction. Consider an upright, black equilateral triangle. Remove 
an inverted equilateral triangle inscribed inside the black triangle with vertex 
points bisecting the sides of the black triangle. One will now have an inverted 
white triangle with three smaller upright black triangles adjacent to its three 
sides. Then, repeat this superposition process inside each of the three new black 
triangles, and so on. 
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Although this geometrical procedure can be easily carried out by hand, it 
soon becomes tedious as one goes to finer and finer scale. Therefore we have 
asked Jennifer to develop a computer algebra recipe that will do the job. 

Here is her recipe. To make the computer plot more picturesque, Jennifer 
has colored the triangles, replacing black with blue, and white with red. She 
has also used the process of superposition of triangles, rather than removal. 

The p l o t s and p l o t t o o l s library packages are loaded. The latter is needed 
in order to use the Maple commands scale and t r a n s l a t e . The value of N 
determines how many times the construction process is to be repeated. 

> restart: with(plots): with(plottools): N:=5: 

The vertex coordinates of the original upright triangle are specified, 

> v0: = [ [ 0 , 0 ] , [ l , 1 . 7 3 2 ] , [ 2 , 0 ] ] : 
and a solid blue triangle with these vertices created with polygonplot. 

> pO:=polygonplot(vO,color=blue): 

The vertex coordinates of the inscribed inverted triangle are given, 

> v l : = [ [ l / 2 , 0 . 8 6 6 ] , [ 1 . 5 , 0 . 8 6 6 ] , [ 1 , 0 ] ] : 
and this triangle is plotted with a solid red color. 

> p i :=polygonplo t (v l ,co lor=red) : 
The first step of the Sierpinski gasket construction can be now accomplished 
by superimposing the inverted red triangle on top of the upright blue triangle 
using the following display command. In Figure 8.6, black corresponds to blue 
and white to red. Note that the plots pi and pO are placed in a list and that 
the order of the entries is important. If the order is reversed, the larger black 
(blue) triangle will completely cover the inverted white (red) triangle. 

> d isp lay( [pi,pO] ,tick]iiarks=[4,2] , sca l ing=cons t ra ined) ; 

0 0.5 1 1.5 2 

Figure 8.6: First step in constructing Sierpinski's gasket. 

The above first step mimics a hand calculation. Now Jennifer automates the 
remainder of the gasket construction. The following scaling operator S will 
produce scaled-down replicas of the central inverted red triangle when /c, which 
takes on positive integer values, is specified. The scale factor is 1/2^. So, e.g., 
/c = l generates a red triangle one-half the size of the central red triangle. 
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> S: =k->scale (p i , 1/2'^k, l/2^k) : 
The vertex operator V is used to reduce the coordinate values of the vertices of 
the original upright blue triangle by a factor 2^, where /c is a positive integer. 

> V:=k~>map(x->x/2'^k,v0) : 
Now an appropriate number of scaled-down replicas of the central inverted red 
triangle must be generated on each step and translated to the right locations. 
An operator P is formed to do this for a specified positive integer k. 

> P : = k - > s e q ( t r a n s l a t e ( S ( k ) , T | | k [ j ] [ ] ) , j = l - - S ^ k ) : 
For k = 1, three half-sized (since one has S( l ) ) rephcas of the original in
verted red triangle will be translated to the appropriate locations determined 
by T| 11 [j] [ ] , with j = 1, 2, 3. For each j value, two numbers are given that 
specify the translations in the horizontal and vertical directions. These num
bers stih have to be determined. For k = 2, 3, etc., 3^ = 9 quarter-sized, 3^ = 27 
one-eighth-sized, etc., replicas will be translated to their proper positions. 

Taking the initial translation of the three vertices to be zero, 

> T | | 0 : = [ [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ] : 

the following do loop determines the translations of the replicas. 

> for k from 0 to N do 

> Tl I (k+1) : = [seq(seq(T| | (k) [j]+V(k+l) [n] , j = l . .S-^k) ,n=l . .3)] : 

> end do: 
Using P, all the plots are superimposed to produce Sierpinski's gasket. 

> d i sp lay( [seq(P(k) ,k=l . .N) ,p l ,pO] , t i ckmarks=[3 ,2] , 
sca l ing=const ra ined) ; 

1 2 

Figure 8.7: Geometrical formation of Sierpinski's gasket. 
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A black-and-white version of the colorful computer picture is shown in Fig
ure 8.7. Clearly, the numerical simulation mimics the geometrical procedure. 
"So what!" the reader might exclaim. Mathematical biologists, in trying to 
understand the microscopic origin of macroscopic patterns such as the spots on 
a leopard, the stripes on a zebra, or the spiral array of triangles on a conus 
seashell, postulate dynamical rules involving either difference or differential 
equations that they hope will ultimately lead to deeper understanding. 

Mathematicians, such as Jennifer, are also interested in patterns such as 
Sierpinski's gasket, because it has a fractal structure, i.e., has a noninteger 
dimension. In the black-and-white version, the white regions can be regarded 
as holes in a black background. What is the dimension of this gasket? Here 
£ - ( 1 / 2 ) ^ and N{e) = 3^, so that in the limit /c ^ oo, Dc = ln3 / ln2 ?̂  1.585. 
Because of the white triangular holes, the black-and-white Sierpinski gasket has 
a "dimension" intermediate to those of a smooth black line and a solid black 
triangle. Once again, this result makes intuitive sense. 

Finally, Jennifer wants to point out that the Cantor set and Sierpinski's 
gasket are also referred to as self-similar fractals, since the basic geometric 
pattern in each case is repeated indefinitely on a finer and finer scale as N is 
increased. Not all fractal patterns are self-similar. 

PROBLEMS: 
Problem 8-5: Another pattern 
In the dynamical simulation recipe: 

(a) Input the following vertex points: 
A[0]=0, B[0] = 10, A[l] = 20, B[l] = 10, A[2] = 15, B[2] = 17.33, 
A[3] = 5, 5 [3 ] -17 .33 , A[4] = 15, B[4]=0, A[5] = 5, B[5]=0 , 
A[6] = 10, J B [ 6 ] - 1 0 . 

Take e = 0.8, replace 2 with 6 in the rand command, and set N = 2000. 
What is the symmetry of the resultant pattern on executing the new 
recipe? 

(b) Experiment with different values of e and different integers in the rand 
command in part (a). 

Problem 8-6: Sierpinski's carpet 
A black square with sides of unit length is divided into nine smaller equal squares 
and the central square is colored white. Then this process is repeated for each of 
the eight remaining black squares, and so on. Create a recipe that geometrically 
produces the Sierpinski "carpet" that results after at least five such iterations. 
Determine the fractal dimension of Sierpinski's carpet and comment on whether 
the answer makes intuitive sense. Is the carpet a self-similar fractal? 
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8.1.3 Barnsley's Fern 

All the effects of nature are only the mathematical 
consequences of a small number of immutable laws. 
Pierre Simon Laplace, French astronomer and mathematician (1749-1827) 

Another example of using a finite difference algorithm to produce a picture that 
resembles a real-life pattern is due to the mathematician Michael Barnsley, 
who pioneered the use of simple sets of equations to generate fractal ferns. 
By producing a random number r between 0 and 1, and iterating the two-
dimensional piecewise map 

^n+l5 Vn^l)--

f (0, 0.16?/n), 0 . 0 0 < r < 0 . 0 1 , 
(0.2Xn - 0.262/n, 0.23x„ + 0.22^^ + 0.2), 0.01 <r< 0.08, 
{-O.lbxn -f 0.28?/n, 0.26xn + 0.242/n + 0.2), 0.08< r< 0.15, 

[(0.85xn + 0.04yn, -0.04xn + 0.85 2/n + 0.2), 0 . 1 5 < r < 1.00, 

a fern is "created" that resembles the black spleenwort {Asplenium adiantum-
nigrum). Still other pictures of ferns can be produced that bear a close resem
blance to actual species occurring in nature by changing the coefficient values. 

These ferns are all characterized by having fractal boundaries. The fractal 
dimension of a given fern can be estimated by recalling that the capacity di
mension Dc is defined in the limit as e ^ 0 through the relation 

InN{e) = Dc Hl/e) + Dc InL ~ Dc ln6 + b, {S.6) 

where S — 1/e and 6 is a constant. This is the equation of a straight line if 
\nN{e) is plotted as a function of In (5, with slope Dc and intercept b. 

To apply Equation (8.6), a box-counting approach is used as follows. First, 
the algorithm is iterated a large number of times to produce the fern. The 
two-dimensional picture then is covered with a reasonably fine grid of squares, 
each square being of length e along a side. Then the number of squares that 
have one or more data points inside are counted, giving us N{e) for a given 
6 value. The process is then repeated with finer and finer grids. Ideally, one 
could proceed by successively halving the value of e a large number of times, 
but this may not be practical on a PC, where there is usually a limitation to 
the total number of points that it is feasible to generate in a reasonable length 
of time. 

Calculating InA^ for each 6 value, a least squares routine similar to that 
employed in Chapter 2 is then used to find the best-fitting straight line to the 
data points. From Equation (8.6) the slope of this line then yields Dc-

Jennifer will now produce Barnsley's fern for us and estimate its fractal 
dimension. Calls are made to the plots and Statistics packages. The latter is 
required so that the best-fitting straight line to the data points can be found. 

> restart: wi th(plots ) : w i t h ( S t a t i s t i c s ) : 
Since the symbol D will be used to represent the fractal dimension, it is necessary 
to unprotect the symbol from its Maple meaning as the differential operator. 
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> unprotect(D): begin:=time(): 

To make the programming of the algorithm a Httle neater, the given piecewise 
relation is writ ten as 

Xn+i =^a[i]xn + b[i]yn + e[i], y ^ + i = c[i]xn + d[i]yn-\- f[i], 

where the first branch of the piecewise map corresponds to i = 1 and is selected 

if the random number r is less than p[ 1 ] = 0 . 0 1 , the second branch corresponds 

to i = 2, and so on. The various coefficients are now specified: 

> a [ l ] : = 0 : a [ 2 ] : = 0 . 2 : a [ 3 ] : = - 0 . 1 5 : a [ 4 ] : = 0 . 8 5 : 

> b [ l ] : = 0 : b [ 2 ] : = - 0 . 2 6 : b [3 ] : = 0 . 2 8 : b [4 ] : = 0 . 0 4 : 

> c [ l ] : = 0 : c [ 2 ] : = 0 . 2 3 : c [ 3 ] : = 0 . 2 6 : c [ 4 ] : = - 0 . 0 4 : 

> d [ l ] : = 0 . 1 6 : d [ 2 ] : = 0 . 2 2 : d [ 3 ] : = 0 . 2 4 : d [ 4 ] : = 0 . 8 5 : 

> e [1] : =0: e [2] : =0: e [3] : =0: e [4] : =0: 

> f [ l ] : = 0 : f [ 2 ] : = 0 . 2 : f [ 3 ] : = 0 . 2 : f [ 4 ] : = 0 . 2 : 

> p [ l ] : = 0 . 0 1 : p [ 2 ] : = 0 . 0 8 : p [ 3 ] : = 0 . 1 5 : 

Jennifer takes xo = yo = 0 as the start ing coordinates and will carry out Â  = 10 
thousand iterations. 

> N:=10000: x [ 0 ] : = 0 : y [ 0 ] : = 0 : 

The randomize () command sets the random number seed for the random-
number generator. 

> r a n d o m i z e ( ) : 

Making use of the random-number generator command, the map is iterated. 

> f o r n from 0 t o N do 

> r [ n ] := rand ( ) /10 ' ^12 ; #random number between 0 and 1 

> i f r [ n ] < p [ l ] t h e n i : = l e l i f r [ n ] < p [ 2 ] t h e n i : = 2 

e l i f r [ n ] < p [ 3 ] t h e n i : = 3 e l s e i : = 4 end i f ; 

> X [n+1] : =a [ i ] *x [n] +b [ i ] *y [n] +e [ i ] ; 

> y [n+1] : =c [ i ] *x [n] +d [ i ] *y [n] +f [ i ] ; 

> p n t [ n + l ] : = [x [n+ l ] , y [ n + l ] ] ; 

> end do : 

A plot of the fractal fern is created but not shown. The options view and 
s c a l i n g = c o n s t r a i n e d are used to keep the picture correctly proportioned. 

> p : = p o i n t p l o t ( [ s e q C p n t [ n ] , n = l . . N ) ] , s y m b o l = p o i n t , 

l a b e l s = [ " x " , " y " ] , t i c k m a r k s = [ 3 , 3 ] , s c a l i n g = c o n s t r a i n e d , 
a x e s = b o x e d , v i e w = [ - 0 . 7 5 . . 0 . 7 5 , 0 . . 1 . 5 ] , c o l o r = g r e e n ) : 

A grid of identical square boxes is to be superimposed on top of the fractal fern 
graph p. The total number T of boxes along each side of the picture is taken 
to be, for example, T = 6. In this case, 6 x 6 = 36 boxes are created. From 
the view command, the fractal fern picture generated in the above p o i n t p l o t 
command line is square with length 3/2 along each side. Thus, each of the 36 
grid boxes has an edge of length e = 3 / ( 2 T ) = 1/4, so tha t 6 — l/e=^4. 
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> T:=6: epsi lon:=3/(2*T); d e l t a : = l / e p s i l o n ; 

1 
e := 5:= A 

The polygonplot command is used in a double sequence to generate the square 
grid. By increasing T, a finer grid can be produced. But remember that N 
should also be increased, thus leading to longer CPU times. 

> gr :=seq(seq(polygonplo t ( [ [ -0 .75+eps i lon*i ,eps i lon*j ] , [ -0 .75 
+eps i l on* ( i+ l ) , eps i l on* j ] , [ -0 .75+eps i lon* ( i+ l ) , eps i l on* 
( j+1) ] , [ -0 .75+eps i lon* i , eps i lon* ( j+ l ) ] ] ) , i=0 . .T ) , j=0 . .T ) : 

Using the display command, Figure 8.8 is produced showing Barnsley's fern 
with the square grid superimposed. 

> display({p,gr}); cpu_time:=(time()-begin)*seconds; 

cpu-time := 1.231 seconds 

Figure 8.8: Barnsley's fractal fern with a square grid superimposed. 

Careful examination of the figure reveals that 15 boxes contain one or more 
points. So, one data point entry will be [In 4.0, In 15.0], the decimal point being 
added so that the output will be expressed in decimal form. Adding the zero 
after the decimal point does not indicate some mysterious increase in accuracy. 

Altering the grid size by setting T = 9, 12, 15, so that (5 = 6, 8, and 10, 
Jennifer has found that N{£) = 27, 39, and 58, respectively. With these values, 
she forms two Maple lists of the logarithms of the 6 and N{e), 

> l n _ d e l t a : = [ l n ( 4 . 0 ) , l n ( 6 . 0 ) , l n ( 8 . 0 ) , l n ( 1 0 . 0 ) ] ; 

' In.delta := [1.386294361, 1.791759469, 2.079441542, 2.302585093] 

> ln_number: = [ ln (15 .0 ) , ln (27 .0 ) , l i i (39 .0 ) , ln (58 .0) ] ; 

In.number := [2.708050201, 3.295836866, 3.663561646, 4.060443011] 
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The least squares F i t command generates the best-fitting straight fine to the 
data points. 

> eq:=Fit(a*X+b,ln_delta,ln_number,X); 

eq := 0.689694523072140518 + 1.45092551362301392X 
To show how well the straight line fits the data, the data points are plotted 
along with eq, and displayed in Figure 8.9. 

> gr2 :=Scat te rPlo t ( ln_del ta , ln_number , s ty le=poin t , 
symbol=CIRCLE,syinbolsize=14) : 

> g r 3 : = p l o t ( e q , x = l . . 2 . 5 ) : 

> d isp lay({gr2 ,gr3} , t ickmarks=[2 ,2] , 
labels=[" ln_del ta" , "Injiumber"] ) ; 

ln_number 

1 ln_delta ^ 

Figure 8.9: Slope of least squares straight line yields a fractal dimension. 

Although ideally, the range of data points should be extended to smaller values 
of e to obtain a more accurate answer, Jennifer can see that the least squares 
line does a good job of fitting the data points obtained. The slope of the straight 
line yields an estimate of the fractal dimension D^. By taking the coefficient of 
X in eq, 

> D[C]:=evalf(coeff(eq,X),3); 

Dc := 1.45 
Jennifer finds that Dc ~ 1.45 for Barnsley's fern. 

PROBLEMS: 
Problem 8-7: An impressionist's tree 
In the world of art, impressionism refers to a painting style developed by Manet, 
Monet, Renoir, Degas, Pissarro, etc. The chief aim of their works was to re
produce only the immediate and overall impression made by the subject on 
the artist, without much attention to detail. By iterating the following map. 
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and selecting the appropriate branch on each iteration according to the random 
number generated between 0 and 1, you will become a computer artist of the 
impressionistic school: 

{Xn+l, 2/n+l)=< 

f (0.05 x„, 0.60 y„), 0 . 0 < r < 0 . 1 , 
(0.05x„,-0.502/„ +1.0), 0 . 1 < r < 0 . 2 , 
(0.46x„ -O.lbyn, 0.39a;„ + 0.38?/„+0.60), 0.2 < r < 0.4, 
(0.47a;„-0.15j/„, 0.17a;„ + 0.42y„ + 1.1), 0.4 < r < 0.6, 
(0.43x„ + 0.282/„, -0.25x„ + 0.45y„ + 1.0), 0.6 < r < 0.8, 

[ {0.42Xn +0.26yn, -0.35a;„ + 0.31 y„ + 0.70), 0.8 < r < 1.0. 

Take (xo = 0.5, j/o=0) and Af =25,000. 

Problem 8-8: Fishbone fern 
Taking TV = 10,000 and a;[0] = y[0] = 0, estimate the fractal dimension of the 
fishbone fern generated by replacing the parameters in Barnsley's fern with the 
following values: 

a [ l ] = 0 , 
b[l]=0, 
c [ l ] = 0 , 
d [ l ] = 0 . 2 5 , 
e[ l ] = 0. 

a[2] =0.95, 
6 [2]= 0.002, 
c[2] = -0.002, 
d[2] =0.93, 
e[2] = -0.002, 

a[3] =0.035, 
6[3] = -0 .11 , 
c[3] =0.27, 
d[3] =0 .01 , 
e[3l = -0.05, 

/[I] = -0.4, /[2]=0.5, 

a[4] = -0.04; 
6[4]=0.11; 
c[4] =0.27; 
(i[4]=0.01; 
e[4]= 0.047; 

p[l] = 0.02, p[2] = 0.86, p[3] = 0.93. 
/ [3 ] = 0.005, / [ 4 ] = 0 . 0 6 ; 

Problem 8-9: Cyclosorus fern 
Taking x[0] = y[0] = 0 and as large an N value as possible, estimate the frac
tal dimension of the Cyclosorus fern generated by replacing the parameters in 
Barnsley's fern with the following values: 

a[l]=0, 
6[1]=0, 
c[l]=0, 
d[l]=0.25, 
e[l]=0, 
/[I] = -0.4, 
p[l]=0.02, 

a[2] 
b[2] 
c[2] 
d[2] 
e\2] 

= 0.95, 
= 0.005, 
= -0.005, 
= 0.93, 
= -0.002, 

/ [ 2 ] = 0 . 5 , 
p [2]=0 .86 . 

a[3] = 0.035, 
b[3] = -0.2, 
c[3]=0.16, 
d[3]=0.04 , 
e[3] = -0.09, 
/ [ 3 ] = 0 . 0 2 , 
p[3] = 0.93. 

a[4] = -0.04; 
6[4]=0.2 ; 
c[4] =0.16; 
d[4]=0.04; 
e[4] =0.083; 
/ [ 4 ] = 0 . 1 2 ; 

Problem 8-10: Dissecting the fern 
For Barnsley's fern, determine what each branch of the piecewise algorithm 
contributes to the overall fractal picture. 
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8.1.4 Douady's Rabbit and Other Fauna and Flora 

Predictions of the future are never anything but projections of present 
automatic processes and procedures,,, 
Hannah Arendt, political philosopher (1906-1975) 

One of the best-known two-dimensional maps is due to the mathematician 
Benoit Mandelbrot. The Mandelbrot map is obtained by iterating the equation 

Zn+i =zl-hc, (8.7) 

where z = x -\- iy is a, complex variable and c = p-\-iq is a, complex constant. 
Separating (8.7) into real and imaginary parts yields the two-dimensional map 

Xn^i = xl - yl-i-p, yn^i=2xnyn + q- (8.8) 

If a particular set of values is chosen for p and q and Â  iterations are carried out, 
where N is large, the iterated x, y values either diverge to infinity or converge 
to a small finite value of x^, yn- For concreteness, Jennifer takes p= —0.12, 
g :=-0 .74 , and TV-25. 

> r e s t a r t : b e g i n : = t i m e 0 : 

> p : = - 0 . 1 2 : q : = - 0 . 7 4 : N:=25: 

To carry out the iteration of the Mandelbrot map, Jennifer defines a Maple 
procedure to which she gives the name JULIA. Gaston Julia was a French math
ematician who studied the structure of the complicated boundaries generated 
between the regions of convergence and divergence. In his honor, the sets of 
points lying on such boundaries are now called Julia sets. The procedure begins 
with the command p r o c ( x , y ) and terminates with end p roc . When values of 
X and y are specified, the procedure will carry out A' = 25 iterations according 
to the prescribed algorithm. 

> JULIA:=proc(x ,y) 

Within the body of the procedure, new local variables X, Y and a copy of X , 
labeled COPY_X, are introduced. Local variables have meaning only inside the 
procedure. X and Y are obtained by evaluating the input values x and y. 

> l o c a l X,Y,COPY_X; 

> X : = e v a l f ( x ) : Y : = e v a l f ( y ) : 

If the radius squared, i.e., X^ -h F ^ , exceeds 4, it is assumed tha t the values of 
X , Y are going to diverge. Therefore, a w h i l e condition is introduced into the 
do loop tha t allows iterations of the two-dimensional map as long as the radius 
squared is less t han or equal to 4. The copy of X is carried out first and used 
in the evaluation of Y. Can you see why this is necessary? 

> t o N w h i l e X'^2+Y'^2<=4 do 

> COPY_X:=X: X:=X^2-Y^2+p: Y:=2*C0PY_X*Y+q: 

> end do : 
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On completion of the do loop, Jennifer inserts an if . . then, . e l se statement 
to assign the value 1 to regions of divergence (i.e., when X'^ + F^ > 4) and 0 
to regions of convergence. 

> if X^2+Y^2>4 then 1 e l se 0 end i f : 

> end proc: 
If specific X and y values are now given, then the Julia function defined by the 
above procedure is evaluated. For example, 

> JULIA(0,0); JULIA(1,0); 
0 1 

so that the input point (0,0) converges while the point (1,0) diverges. 
The Julia function is now plotted for the range j ; = —1.2 to 1.2, y=—1.2 to 

1.2 and the three-dimensional plot oriented to be viewed from above. 

> p lo t3d ( JULIA, -1 .2 . . 1 .2 , -1 .2 . . 1 .2 ,g r id=[150 ,150] ,o r i en t a t ion 
=[-90,0] ,scal ing=constra ined,s tyle=patchnogrid ,shading=zhue, 
l ightmodel=l ight3) ; 

Figure 8.10: Douady's rabbit. 

The boundary between the two regions (black on a white background here in the 
text) can be clearly seen in Figure 8.10. The points on the boundary form the 
Julia set for the Mandelbrot map. If you mentally rotate the Julia set slightly, 
and have a good imagination,^ you may be able to see Douady's "rabbit." 
The complicated boundary formed by the Julia set is another example of a 
fractal structure. Other geometrically interesting Julia sets can be generated 
for appropriate choices of p and q. 

> cpu_time:=(time()-begin)*seconds; 

cpuMme := 0.711 seconds 

^The kind of imagination needed to see animal shapes in clouds and in Rorschach tests 
administered by psychologists. 
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The CPU time for the JuHa procedure was less than a second. 
Instead of choosing a particular p and q and sweeping through x and y 

values, one can do the opposite, i.e., choose a particular x, y, e.g., the origin, 
and systematically sweep through different p and q values. This procedure, 
which Jennifer produces below, generates the Mandelbrot set of points. 

> r e s t a r t : N:=25: begin:=t ime() : 

> MANDELBROT:=proc(p,q) 

> loca l z ,n ; 
In the following two command lines, Jennifer starts with x = y = (} and n = 0. 

> z:=evalf(p+I*q); n:=0; 
Again, a radius of |z| = 2 units is used as the boundary between diverging and 
converging z — x -\-iy values. 

> to N while abs(z)<2 do 

> z:=z"2+(p+I*q); n:=n+l; 

> end do: 

> n; end proc: 

A three-dimensional plot is now created with p = — 1 . 5 t o l , g = — I t o l , 
and the output n values being the third axis. Points that escape rapidly to 
infinity will be characterized by small n values while points that escape slowly 
to infinity or not at all (i.e., attracted to a fixed point at finite x, y) will have 
large n values. The orientation chosen in the plotSd structure shows the p-q 
plane, but the figure can be rotated to show the three-dimensional character. 
The zhue shading is used to color the different output n values. 

> plot3d(MANDELBROT,-1.5..1,-1..1,grid=[100,100] , 
or ienta t ion=[-90,0] , s ty le=patchnogr id ,shading=zhue) ; 

Figure 8.11: Mandelbrot set. 
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The resulting picture is shown in Figure 8.11. Does your imagination suggest 
a possible flora or fauna name for the outline of this region? 

The CPU time for the Mandelbrot procedure 

> cpu_time:=(time()-begin)*seconds; 

cpuMme := 0.200 seconds 
is even shorter than for the Julia procedure. 

Here are a few problems involving the Mandelbrot map that Jennifer has 
created for you to try. She suggests that you adjust the shading and lighting 
to your own taste. 

PROBLEMS: 
Problem 8-11: The San Marco attractor 
Generate the so-called San Marco attractor^ which results from taking p = 
—0.75, q = 0 in the Juha set procedure. 

Problem 8-12: The octopus 
Generate the "octopus,'' which results from taking p = 0.27334, q = 0.00742 in 
the Julia procedure. Take Â  = 100 and both x and y varying from —1.1 to 1.1. 

Problem 8-13: Other Julia sets 
Generate the Julia sets corresponding to: 

(a) p=-l, q = 0; (b) p -0 .32 , q = 0M3. 

Problem 8-14: Comiplex Julia input 
Reformulate the Julia procedure with complex numbers and explore the recipe. 

Problem 8-15: Different scales 
Explore the Julia and Mandelbrot sets at different scales For example, plot the 
Mandelbrot set in the range x = —1.5 to —1.3, y——0.1 to 0.1. 

Problem 8-16: The fern 
In the Mandelbrot set procedure, generate a fernlike object by taking p = 
-0.745385 to -0.745468, q - 0.112979 to 0.113039, N = 200, and \z\ < 10. 

Problem 8-17: Variations on the Mandelbrot set 
In the Mandelbrot set procedure, create new figures by taking: 

(a) Zn+i = 4 + c; (b) Zn^i = z^^c; 

(c) Zn^x = 4 + c; (d) Zn+i = — ^ -h c. 
V ^ Z^ 

Adjust the viewing scale and orientation to include the entire figure and to give 
the "best" work of art. 

Problem 8-18: The Beauty of Fractals 
Go to your college library and obtain a copy of The Beauty of Fractals, by Peit-
gen and Richter. [PR86] See how many of the figures therein you can generate. 
Tables of the parameter values and viewing ranges can be found at the end of 
that text. 
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8.1.5 The Rings of Saturn 

It is marvelous indeed to watch on television the rings of Saturn 
close; and to speculate on what we may yet find at galaxy's edge. 
Gore Vidal, U.S. novelist (1925-) 

As an example of pattern formation in nature, Jennifer will now consider a 
difference equation model that produces planar planetary rings qualitatively 
similar to those for Saturn. Saturn's nearly planar rings are shown in the 
NASA photograph reproduced in Figure 8.12. Although Saturn's rings span 

Figure 8.12: Saturn's rings with the Cassini gap clearly evident. 

Table 8.1: Classification of Saturn's rings. 

Ring 

D 
C 
B 

Cassini gap 
A 
F 
G 
E 

Distance 
(10^ km) 

66.9 
74.7 
92.0 

122.2 
140.2 
170.0 
181.0 

Width 
(10^ km) 

7.6 
17.3 
25.6 

14.6 
0.5 
5.0 

302.0 

Mass 
(kg) 

? 

1.1x10^^ 
2.8x10^^ 

6.2x10^^ 
? 

1x10^ ? 
? 

more than 250,000 km in diameter, they are very thin, some rings being only 
tens of meters thick. The particles making up the rings are composed primarily 
of water ice, but may include ice-coated rocks. The particles range in size 
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from centimeters to several meters, with a few kilometer size rocks likely. The 
historical designation of the more prominent rings is given in Table 8.1. The 
data is extracted from the NASA web site (nssdc.gsfc.nasa.gov). The distances 
are from Saturn's center to the ring's inner edge. The large gap between the A 
and B rings is called the Cassini gap, named after Cassini, who observed the 
rings and discovered several of Saturn's moons in the late 1600s. The gaps are 
not entirely empty and there are further variations within the rings. 

In addition to the rings, Saturn has 34 named moons and 13 unamed satel
lites. Table 8.2 lists the inner seven and several of the outer named moons. 
Note that although many of the moons were discovered long ago, the very 

Table 8.2: Some of Saturn's moons. 

Moon 

Pan 
Atlas 

Prometheus 
Pandora 

Epimetheus 
Janus 
Mimas 

Titan 
Hyperion 
lapetus 
Phoebe 

Distance 
(10^ km) 

134 
138 
139 
142 
151 
151 
186 

1222 
1481 
3561 
12952 

Radius 
(km) 

10 
19x17x14 
74x50x34 
55x44x31 
69x55x55 
97x95x77 

209x196x191 

2575 
185x140x113 

718 
115x110x105 

Density 
(kg/m3) 

630 
630 
630 
630 
600 
650 
1140 

1881 
1500 
1020 
1300 

Discoverer 
(date) 

Showalter (1990) 
Terrile (1980) 
Collins (1980) 
Collins (1980) 
Walker (1980) 
Dollfus (1966) 

Herschel (1789) 

Huygens (1655) 
Bond (1848) 

Cassini (1671) 
Pickering (1898) 

inner moons, which are small in radius, were observed only in very recent times. 
Probably because of its larger mass compared to the other inner moons, Mimas^ 
plays an important role in the organization of Saturn's inner rings. Mimas, in 
itself, is an interesting moon. Figure 8.13 shows a NASA photograph of Mimas 
that is dominated by the Herschel impact crater 130 km across, which is about 
one-third of Mimas's diameter. From the length of the shadow cast by the 
central peak inside the crater, one can deduce that the crater walls are about 5 
km high and the central peak rises 6 km from the crater floor, parts of which are 
10 km deep. From Table 8.2, Mimas is seen to have a density of 1140 kg/m^, 
indicating that it is composed mainly of ice with only a small amount of rock. 

There are theoretical reasons, first suggested by the French scientist Edouard 
Roche in 1848, for thinking that there is an inner limiting radius, inside of which 
moons cannot exist for any planet. He argued that within a critical distance 
from a planet's center, now called the Roche limits any orbiting moon would 
break up because the tidal force on the moon due to the planet would be larger 

•^Mimas was one of the Titans slain by Hercules. 
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Figure 8.13: Mimas. 

than the gravitational force holding the moon together. The moon would be 
shredded into smaller particles such as those found in the inner rings of Saturn. 

Jennifer will first derive the formula for the Roche limit for a small rigid 
satellite moon of mass m, radius a, density ps orbiting at a distance r ^ a from 
the center of a planet of mass M, radius i?, and density pp. She will then use 
the formula to estimate the "rigid Roche limit" for the moon Pan. 

First, the mathematical form of the tidal force must be determined. Con
sider two identical "test" masses (mass p) located at distances r and r — a 
from the planet's center. The test mass that is closer to the planet will feel a 
stronger planetary pull than the mass that is further away. The tidal force Ft is 
the difference between the planetary forces on the two masses. Using Newton's 
law of gravitation, Ft is given by 

> r e s t a r t : 

> F [t] : =G*M*mu/ ( r -a ) ^2-G*M*inu/r^2; 

GMp GMp 
Ft:= 

[r — ay r̂  
where G is the gravitational constant. Since a <^r, Ft can be Taylor expanded 
about a = 0 to second order and the "order of term removed. 

> F [ t ] : = t a y l o r ( F [ t ] , a = 0 , 2 ) ; 

2GMp 

> F[ t ] :=convert(%,polynom); 

a + 0(a2) 

Ft:= 
2GM pa 
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The tidal force varies as 1/r^. Now, the gravitational force Fg exerted by the 
satellite on a single test mass /x at its surface is 

> F[g]:=G*m*mu/a^2; 

rg := ^— 

If the tidal and gravitational forces on this test mass balance, the mass will not 
be "ripped" off the satellite. The value of r at which this occurs is the Roche 
limit. Equating the tidal and gravitational forces yields the balance equation. 

> balance_eq:=F[t]=F[g]; 

, , 2GMLia Gm/j. 
balance-eq := = —-— 

Assuming that both the planet and satellite are spherical, their masses are 
related to their densities by M = (4/3) TT B? pp and m = (4/3) TT a^ p^. 

> M:=4*Pi*R'^3*rho[p]/3; m:=4*Pi*a^3*rho[s]/3; 
4 4 

M := -TTR^ Pp m:= -Tra^ ps 
Knowing that the mass relations will be automatically substituted into the 
balance equation, Jennifer uses the i s o l a t e command to isolate r^, the cube 
of the Roche limit, to the Ihs of the balance equation. 

> so l := i so l a t e (ba l ance_eq , r "3 ) ; 

o 2R pp 
sol := r'^ = -̂̂  

Ps 
The Roche limit for a rigid satellite then follows on taking the cube root of the 
rhs of sol and simplifying with the assumption that R> 0. 

> Roche( r ig id) :=s impl i fy ( rhs (so l ) " (1 /3) ) assuming R>0; 

Roche{rigid) := 2^^!^^ R ( ^ 

To estimate the rigid Roche limit for Pan, the following parameter values are 
entered: pp = 687 kg/m^, ps = 630 kg/m^, and R = 60.4 thousand km. 

> pars:=rho[p]=687,rho[s]=630,R=60.4: 
Then the rigid Roche limit for Pan is numerically evaluated, 

> Roche( r ig id) :=eval f (eva l (Roche( r ig id) ,{pars}) ) ; 

Roche{rigid) := 78.32835390 
and found to be about 78 thousand km, well within Pan's orbital radius of 134 
thousand km. However, this derivation assumed that the satellite is rigid. 

For a fluid satellite, the tidal force causes the satellite to be deformed from 
its spherical shape, being elongated in the direction of the planet. If the satellite 
is tidally locked and deformed into a prolate spheroid, the "fluid Roche limit" 
is (see en.wikipedia.org/wiki/Roche_limit) given approximately by 

> Roche(f luid) :=2.423*R*(rho[p] / rho[s])"(1/3) ; 

^ . \ ( V 3 ) 
Rocheifluid) := 2.423 i? ( ^ 
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Taking the same parameter values as before, the fluid Roche hmit is evaluated, 

> Roche(fluid):=evalf(eval(Roche(fluid),{pars})); 

Roche{fluid) := 150.6361065 
and found to be about 151 thousand km, somewhat higher than Pan's actual 
orbital radius. Undoubtedly, Pan is neither perfectly rigid nor perfectly fluid. 

Now Jennifer will consider a nonlinear difference equation model that qual
itatively produces the rings of Saturn. This model was developed by Froyland 
[Fro92] and discussed by Gould and Tobochnik [GT96]. Letting a be the radial 
distance of Mimas from Saturn's center, r„ the radial distance of a ring particle 
from Saturn's center after the nth revolution, and 9n the angular position of 
a ring particle with respect to Mimas after n revolutions, the coupled model 
equations are of the form 

— ) , r n + i = 2 r n - r n - i - ^ / ° ^ " , , (8.9) 

with A a positive parameter that remains to be estimated. 
To understand the structure of Equations (8.9), Jennifer will now briefly 

discuss their physical origin. Her arguments are a combination of fundamen
tal physical principles and some "hand-waving." With so many other moons 
present, the detailed calculation of the entire banded ring structure is quite 
complicated and beyond the scope of this text. In the model there are two ma
jor influences on the ring particles: the dominant effect of Saturn's gravitational 
force and the perturbing influence of Mimas. The effect of Saturn is included 
as follows. Each time Mimas completes an orbit of radius a with period T^, it 
undergoes an angular change of 2 TT radians. If T^ is the period for any other 
satellite object on its nth revolution, the angle 0 that the object makes with 
respect to Mimas on revolution n + 1 will be given"̂  by 

^ n + l = ^ n + 2 7 r ( r , / T n ) . (8.10) 

But Kepler's third law for planetary orbits states that the period T of an object 
orbiting a planet of mass Mp in a circular^ orbit of radius r is given by 

Letting Vn be the distance of a ring particle from Saturn's center after n revo
lutions, the angular equation in (8.9) immediately follows on using the square 
root of (8.11) to calculate the ratio Tfj/Tn-

The effect of Mimas is to perturb the radial distance r of a ring particle, 
causing the distance to change from one orbit to the next. By Newton's second 
law, a particle's radial acceleration will be given by 

f = ^ , (8.12) 
m 

•̂ To within a term 2 7rn, whose omission doesn't affect the results. 
^For an elUptical orbit, the radius is replaced in the third law with the semimajor axis. 
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where Fr is the radial component of the gravitational force between Mimas and 
the particle of mass m. Jennifer approximates r{t) by 

'^'^" {Air ' ^ ̂  ^ 
where At is a short time interval at t. This result is easily confirmed by Taylor 
expanding the numerator of the rhs of (8.13) to order (At)^. 

Averaging over one complete period T^ of Mimas, she replaces Equation (8.13) 
with (r^+i ~2rn + rn-i)l{T^)^ and evaluates the right-hand side of (8.12) at 
the end of the nth revolution. With these approximations, Equation (8.12) 
reduces to 

r n + i - 2 r n + r ^ - i =/(rn,6>^), (8.14) 

with the radial force function / ( r „ , ^ î) = ^^ ^ri'^m ^ n ) / ^ still to be established. 
According to Gould and Tobochnik, the form of f{rn,On) is very compli

cated, particularly if the perturbing effects of other moons are also included. 
Following their lead, Jennifer assumes that / is given by 

[Vn - cry 

with 
\2 _ A ^2 _ 3 ^^cr A = GM,{T,y^47r'a'j^, (8.16) 

Ms being the mass of Saturn, and the angular dependence g{On) still not spec
ified. However, by symmetry, the function g should be an even function of 
On- For simplicity, rather than detailed realism, Gould and Tobochnik take the 
angular dependence to be given by f̂ = cos(0^), thus resulting in the radial 
equation of (8.9). 

Jennifer is not entirely happy with this angular form but does note that the 
cosine term can undergo a sign change when 9n varies, the effect being to pull 
particles in (a "bunching" effect) toward Mimas when they are nearby and to 
push particles away from Mimas's orbit when they are on the opposite side of 
Saturn. This latter scenario would perhaps reflect the weak gravitational effect 
of Mimas and a stronger influence of other moons neglected in the analysis. 

Noting that Saturn has a mass Mg = 5.68 x 10^^ kg and expressing radial dis
tances rn in thousands of kilometers, Jennifer estimates that A^ 17. However, 
since the approximation of the force law is very crude, Gould and Tobochnik 
suggest that there is considerable latitude in choosing the value of A. 

Jennifer will now iterate the basic difference equations (8.9) and use them 
to plot the resulting planar ring structure superimposed on a colored sphere 
to represent Saturn. The sphere will be produced with the sphere command 
contained in the plottools library package. 

> restart: with(plots) : wi th(plot too ls ) : begin :=time0 : 
Equations (8.9) are entered, with TT being numerically evaluated so that a con
ditional "if then" statement contained in the recipe will work. 
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> eq l := the ta[n+1]=the ta[n]+2*eval f (P i )*(s igma/ r [n] )^(3 /2) ; 

eql := 6>n+i = On + 6.283185308 
a ^ ^'^'^ 

> eq2:=r[n+1]=2*r[n] - r [n-1] -A*cos( the ta[n] ) / ( r [n] -s igma)"2; 

Since eq2 is a second-order difference equation, both ro and ri must be inputted. 
The initial orbital radii of the particles must, of course, lie outside the surface 
of Saturn. In the following simulation, Ns + 1 = 21 input radii are chosen, and 
Â  = 4000 iterations are performed for each of these initial particle orbital radii. 

> N:=4000: Ns:=20: #N poin ts per r a d i a l s tep Ns 
The orbital radius (cr = 185.7 thousand km) of Mimas is entered and the propor
tionality constant A in eq2 taken to be A = 15. How the ring structure changes 
with A is left as a problem. 

> sigma:=185.7: A:=15: #radius of Mimas and force coef f ic ien t 
The smallest input orbital radius for the particles in the following do loop is 
taken to be rs = 70.0 thousand km, which lies outside the 60.4 thousand km 
radius of Saturn. The count parameter c, which is set to zero initially, counts 
the number of output graphs obtained. 

> r s :=70 .0 : c:=0: #smallest radius and count i n i t i a l i z a t i o n 
The following outer do loop is iterated from 0 to Ns. 

> for j from 0 to Ns do 
The input orbital radii VQ are incremented in steps of 5 thousand km, from 70 
thousand km out to a maximum of 70 + 5 x 20 = 170 thousand km, the latter 
being well inside Mimas's orbital radius. As input values for the radial and 
angle variables, Jennifer sets ri=ro and ^o = 0- For each j value, the iteration 
parameter n is reset to n = 0. 

> r [0] :=rs+5*j: r [ l ] : = r [ 0 ] ; t h e t a [0] :=0; n:=0; 
Then 9i is equal to the right-hand side of eql. 

> t h e t a [ 1 ] : = r h s ( e q l ) ; 
A second inner do loop iterates n from 1 to TV as long as the orbital radius lies 
outside Saturn and remains less than 5 x 70 = 350 thousand km from Saturn's 
center. The upper cutoff is included to prevent numerical overflow if a particle 
escapes from the vicinity of Saturn and its moons. 

> for n from 1 to N while r[n]>60.4 and r[n]<5*rs do 
The Cartesian coordinates x^ = r^ cos{9n), yn = ̂ n sin(^n) of a particle after the 
nth iteration are calculated. 

> x[n] :=r[n]*cos ( the ta [n] ) ; y [n] :=r[n] * s in ( t he t a [n] ) ; 
Then ^^+1 and Tn+i on step n-\-1 are determined and the inner loop ended. 

> the t a [n+1] := rhs (eq l ) ; r [n+1] :=rhs(eq2) ; 

> end do: 
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Only those particles that do not wander outside the specified range before 
the total number Â  of iterations is completed are to be counted and their 
coordinates graphed as 3-dimensional colored points. The three random number 
commands in the COLOR option generate random decimal numbers between 0 
and 1, which set the fraction of red (R), green (G), and blue (B) in the color 
coding. This coloring scheme generates a very pretty ring pattern. 

> if n>N then gr [c]:=pointplot3d({seq( [x[ i ] ,y [ i ] ,0] , i = l . .N-1)}, 
color=COLOR(RGB,randO 710^12,randO 710^12,rand()/10^12), 
symbol=point): 

The count number is increased by 1, the conditional statement ended, and the 
outer do loop completed. 

> c:=c+l end i f : 

> end do: 

A colored sphere (shaded in the z direction) of radius 60.4 thousand km is 
plotted to represent Saturn. The style option patchnogrid removes the default 
grid that would otherwise appear on the sphere's surface. 

> gr [0]:=sphere( [0 ,0 ,0] ,60 .4 , shading=z ,s ty le=patchnogr id) : 
Saturn and its vividly colored banded ring structure are then displayed with 
constrained scaling. A particular orientation has been chosen for the resulting 
three-dimensional picture, which can be rotated on the computer screen by 
dragging with the mouse. The "magnify" comment suggests that the reader 
should increase the magnification, say to 200 percent, in the tool bar. 

> d i s p l a y ( s e q ( g r [ i ] , i = 0 . . c - 1 ) , s c a l i n g = c o n s t r a i n e d , 

or ien ta t ion=[-20 ,55] , shading=z) ; #magnify 
On excuting the above command line, a picture similar to that on the cover of 
this text will result. Finally, the CPU time is recorded. 

> cpu^time:=(time()-begin)*seconds; 

cpu-time := 88.688 seconds 
Given the various approximations and assumptions made in obtaining the model 
equations, Jennifer strongly emphasizes that the model is intended to show how 
the ring particles could be organized into a ring pattern with gaps, rather than 
being an accurate predictor of Saturn's actual detailed ring pattern. 

PROBLEMS: Problem 8-19: DifFerent ring structure 
Plot the banded ring structure for the rings of Saturn taking A = 150 and 1500. 
Explore other values for the parameters and ranges. 

Problem 8-20: Other angular dependencies 
Investigate whether banded ring structures are produced for other simple an
gular dependencies, e.g., sin^, cos^(^), cos^ ^, sin^ ^. Discuss your results. 
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8.2 Cellular Automata 

Complex patterns can be produced on square cellular lattices by postulating 
simple rules governing the evolution of some initial configuration of "live" (or 
"excited") and "dead" (or "quiescent") cells. Such dynamical systems are called 
cellular automata and were first investigated by John Von Neumann and Stan 
Ulam, and some years later by Stephen Wolfram [W0I86] [Wol02]. With dead 
cells assigned the value 0 and live cells the value 1, the l i s t d e n s i t y p l o t com
mand can be used to produce a black (corresponding to zero) and white (cor
responding to one) pattern generated by application of a given rule. 

Jennifer will now provide two cellular automata recipes, the first for creat
ing a geometric pattern reminiscent of that seen on Navaho rugs, the second 
commonly referred to as the one out of eight rule. The mathematically inclined 
reader is referred to E. At lee Jackson's text [Jac90] for many more examples of 
cellular automata and a discussion of their classification and properties. 

8.2.1 A Navaho Rug Design 

It is here in mathematics that the artist has the fullest scope 
of his imagination, 
Havelock Ellis, English psychologist, scientist, and author (1859-1939) 

After hiking down into the Grand Canyon, coauthor Richard stopped some
time later at the Cameron Trading Post to refuel his weary body with a large, 
mouth-watering Navaho taco. In the gift shop outside the restaurant, an elderly 
Navaho woman was observed to be weaving an intricate geometric-patterned 
rug on a large loom. Starting with the bottom row, she progressed slowly up
ward row by row, creating a complex geometrical design that probably had been 
handed down from generation to generation in her family. 

Motivated by this rug-weaving episode, we have asked Jennifer to mathe
matically "weave" a geometric pattern, given some initial configuration of black 
(dead) and white (live) cells on the first row. We have left the choice of rule 
for proceeding from row to row up to her, but have asked her to keep the rule 
simple and use the same rule on all rows. 

Jennifer begins by first loading the Linear Algebra and plots packages, 

> r e s t a r t : with(LinearAlgebra): w i t h ( p l o t s ) : 
and takes the starting row of the pattern to be Â  = 100 cells long. 

> N:=100: b e g i n : = t i m e 0 : 
To create the initial row, first a list of Â  zeros is entered, the zeros being colored 
black in the final pattern. This list is assigned the name initialization. 

> i n i t i a l i z a t i o n : = [ s e q ( 0 , i = l . . N ) ] : 
So that some sort of pattern may be generated, some of the black cells in 
initialization must be converted to ones, so that they will be ultimately colored 
white. To accomplish this, Jennifer uses the arrow operator to indicate that 
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the value 1 is to be assigned to cell {N/2 + r). For example, since Â  = 100, then 
the command r h s ( c ( l ) ) 

> c:=r->N/2+r=l; c e l l [ l h s ( c ( l ) ) ] : = r h s ( c ( l ) ) ; 

c : = r - ^ — - H - r = l cell^i := 1 

tells us that cell 51 is to be colored white. To achieve the conversion of se
lected cells from black to white, the subsop function is used to replace specified 
operands in initialization with the new values 1. For example, in rowo below, 
Jennifer enters c ( - l ) and c ( l ) in order to replace the zeros in cells 49 and 51 
with ones. 

> r o w [ 0 ] : = s u b s o p ( c ( - l ) , c ( l ) , i n i t i a l i z a t i o n ) : 
To generate the second and subsequent rows, a simple rule is introduced for 
proceeding from one row to the next. Using the following arrow operator, 

> s:=i->op(i,row[j-l]); 

s := i ^ op(i, rowj-i) 
the zth operand of the (j — 1) row will be given by s{i). The s{i) can take 
on only the values 0 and 1. The color of the ith element in the j t h row is 
determined by forming the function 

F = s ( z - l ) + 5(z) + s(z-hl), 

i.e., the sum of the s values for the three nearest neighbors in the previous row. 
Altering this function F will generate a different rule and in general a different 
pattern. 

> F:=s(i- l )+s(i)+s(i+l) ; 

F := op(i — 1, rowj-i) + op(^, rowj-i) + op{i -\- 1, rowj-i) 
If the sum F is zero, the zth element of the j th row will be zero and therefore 
black. If the sum is one, the zth element will be colored white. To keep the sum 
always equal to zero or one for every element, the modulo-2 (mod 2) condition is 
imposed on F in the following do loop. The number of cells in each subsequent 
row is kept the same as in the initial row by including a zero at both ends of 
each new list (row) that is generated. To avoid difficulties at the "edges" of the 
rug (ends of each list), the do loop is terminated at N/2 — 5 (45 here). 

> for j from 1 to N/2-5 do 

> rowEj]:=[0,seq(F mod 2 , i = 2 . . N - 1 ) , 0 ] ; 

> end do: 
A matrix Ml is formed with the sequence of rows from 0 to A /̂2 — 5, a total of 
46 rows here. 

> Ml :=Matr ix( [seq( row[i ] , i=0 . .N/2-5) ] ) : 
To make a symmetric Navaho rug, a second matrix M2 is created with the same 
rows placed in reverse order. 

> M2:=Matr ix([seq(row[N/2-5-i] , i=0. .N/2-5)]) : 
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The two matrices are joined together in the following command line to form a 
92 X 100 matrix M. 

> M:=<M1,M2>: 
The geometrical pattern of the rug is then revealed using the l i s t dens i t y p l o t 
command with constrained scaling and no coordinate axes. 

> l istdensityplot(M,scaling=constrained,axes=NONE); 

Figure 8.14: A Navaho rug design. 

The geometrical pattern shown in Figure 8.14 is somewhat reminiscent of Sier-
pinski's gasket and is clearly fractal in nature. Note that in the picture the 
"rows" are actually running vertically. To orient the rug with the rows running 
horizontally, the t ranspose command should be applied to the matrix M. By 
changing the rule (i.e., the function F) and initial configuration (the input row), 
other "rug patterns" can be generated in a matter of seconds, 

> cpu_time:=(time()-begin)*seconds; 

cpuMme :— 1.262 seconds 
considerably less time than the many days it takes to produce a Navaho rug by 
hand in real life. 

Although the pattern that was produced in Figure 8.14 is two-dimensional 
in appearance, it is actually a simple example of one-dimensional cellular au
tomaton growth, growing in one direction only, row by row. In the following 
recipe, Jennifer will present an example of two-dimensional cellular automaton 
growth. 
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PROBLEMS: 
Problem 8-21: Changing mod 
Explore the effect on the pattern in the text recipe of the values of mod. 

Problem 8-22: Another geometric pattern 
In the text recipe, generate another interesting pattern by making the following 
changes. In row[0], take cells corresponding to c ( - l ) , c ( l ) , and c(2) to be 
white (the remainder black) and use the function F = s{i — 1) + s{i + 1) mod 2. 
How does this pattern compare with that in the text example? 

Problem 8-23: More nearest-neighbor contributions 
By considering various configurations for the input row, explore the patterns 
generated by the function F = Xlr=-2 ^(^ + ^) inc)d 2. Take N as large as 
possible and be careful to not let the pattern reach the edges. 

8.2.2 The One out of Eight Rule 

Rules are not necessarily sacred, principles are, 
Franklin D. Roosevelt, U.S. president (1882-1945) 

Jennifer now considers a square lattice of "length" L = 61 cells by 61 cells and 
assumes that initially only one central cell (square) is alive, all other cells being 
dead. Dead cells are brought to life according to the one out of eight rule^ which 
states that a cell comes alive if exactly one of its eight immediate neighbors is 
alive. Otherwise it remains unchanged. As in the last example, live cells are 
assigned the value 1 and dead cells the value 0, thus allowing the pattern of live 
cells after a certain number of steps to be plotted as white squares on a black 
background using the l i s t d e n s i t y p l o t command. 

i-lj-l 

ij-l 

i+l,j-l 

i-lj 

i j 

i+l,j 

i-l,j+l 

iJ+1 

i+lJ+1 

Figure 8.15: Immediate neighbors of cell (2, j ) . 
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With the given size of lattice, Jennifer wih now determine the pattern of hve 
cells after N = 29 steps, i.e., 29 applications of the rule. To formulate the 
algorithm, consider Figure 8.15, which shows a representative cell (i, j ) in row 
i and column j and its eight immediate neighbors. To avoid difficulties at the 
edges of the L x L lattice, both i and j are allowed to range only from 2 to 
L — 1. For the same reasons, L must be increased if N is made larger. 

Since matrices are to be used, a call is made to the LinearAlgebra package. 
The plots package is also invoked, since a list density plot is to be made. 

> r e s t a r t : with(LinearAlgebra): w i t h ( p l o t s ) : begin:=t ime() : 
The lattice "length" L — 61 and number Â  = 29 steps are entered. 

> L:=61: N:=29: 
On each step a new L x L matrix is to be created from the old one. The 
matrices New and Old are first initialized using the arrow command to have all 
matrix elements equal to zero. This may be checked by replacing the colons with 
semicolons in the following two command lines. The zero values will correspond 
to dead cells. The original (old) live cell is placed at 2 = 31, j = 31 and assigned 
the value 1. Any live cells created from dead cells by the one out of eight rule 
will also be given the value 1. 

> New:=Matrix(L,L,( i , j ) ->0): 

> 01d:=Matr ix(L,L, ( i , j ) ->0) : 01d[31,31]:=1: 
Jennifer's code involves three do loops, the "outer" loop to increase the step 
number from k = l to N, the inner two loops to run over i and j from 2 to L — 1 
for a given k value. 

N do 

L-1 do 

L-1 do 
She sets the number n of nearest neighbors that are initially alive to 0. 

> n:=0; 
The following command line checks the eight nearest neighbors to cell (z, j ) and 
adds up the number that are alive in the old matrix. For example, if n = 3 then 
three nearest neighbors are alive. 

> n :=n+01d[ i+ l , j - l ]+01d[ i+ l , j ]+01d[ i+ l , j+ l ]+01d[ i , j - l ] 
+ 0 1 d [ i , j + l ] + 0 1 d [ i - l , j - l ] + 0 1 d [ i - l , j ] + 0 1 d [ i - l , j + l ] ; 

For a given (z, j ) value, n could in principle have one of the values 0,1, 2, . . . , 8. 
If n is exactly equal to 1, the cell (i, j ) in the new matrix is assigned the value 
1 (i.e., is alive); otherwise, it is assigned its old value. In the latter case, if it 
was dead it remains dead, and if it was alive it is still alive, 

> if n=l then New[ i , j ] := l ; e l se N e w [ i , j ] : = 0 1 d [ i , j ] ; end if; 

> end do; end do; 
On completion of the i and j do loops, the new matrix elements are used to 
form the old matrix for the next iteration of the outer loop. 

> 01d:=Matr ix(L,L, ( i , j ) ->New[i , j ] ) ; 
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> end do; 
With the Â  iterations completed, Jennifer graphs the pattern in Figure 8.16. 

> listdensityplot(Old); 
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Figure 8.16: Pattern generated by the one out of eight rule after 29 steps. 

> cpu.time:=(time()-begin)*seconds; 

cpuMme := 1.172 seconds 
As the cellular automata rules are changed, many interesting patterns can be 
generated. Try the problems that follow or try to invent your own rules. 

PROBLEMS: 
Problem 8-24: Four live cells 
Using the 1 out of 8 rule determine the pattern that evolves after 29 steps if 
there are initially 4 live cells located at (30,25), (30,35), (25,30), and (35,30). 
Note: Adjust L so that the boundary of the lattice is not reached. 

Problem 8-25: Great grandma's lace 
Modify the 1 out of 8 rule to a 2 out of 8 rule and determine the lacy patterns, 
reminiscent of those fashionable in great grandma's era, that evolve after 29 
steps if the following initial conditions prevail: 

(a) cells (30,30) and (31,31) are initially alive; 

(b) cells (29,30), (30,30), (31,30), and (32,30) are initially alive. 
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8.3 Strange At tractors 

Jennifer will conclude this ail-too brief excursion into the world of fractal pat
terns with an example of a strange attractor solution of a system of three coupled 
nonlinear ODEs. When plotted in the 3-dimensional phase space, the trajectory 
is attracted to a localized region where it traces out a chaotic fractal pattern, 
a behavior that when first observed was regarded as "strange." 

8.3.1 Lorenz's Butterfly 

Does the flap of a butterfly ^s wings in Brazil set off a tornado in Texas ? 
E. N. Lorenz, subtitle of his famous conference paper on predictability (1917-) 

In 1963, Edward Lorenz pubhshed a classic paper [Lor63] on the practicability 
of very-long-range weather forecasting. Starting with the Navier-Stokes equa
tions, a set of nonlinear partial differential equations (PDEs) used to describe 
fluid flow, Lorenz attempted to model thermally driven convection in the earth's 
atmosphere. In his model, the earth's atmosphere is treated as a flat fluid layer 
that is heated from below by the surface of the earth, which absorbs sunlight 
and is cooled from above due to the radiation of heat from the atmosphere into 
outer space. Lorenz managed to approximate the original set of PDEs by the 
following coupled nonlinear ODE system: 

x = a{y-x), y — rx - y — X z, z = xy ~bz. (8-1'̂ ) 

Here x is proportional to the convective velocity, y to the temperature difference 
between ascending and descending flows, and z to the mean convective heat 
flow. The positive coefficients a and r are the Prandtl and reduced Rayleigh 
numbers, respectively, and 6 > 0 is related to the wave number. 

On attempting to solve this set of equations numerically, Lorenz discovered 
that very small changes in initial conditions could lead to dramatically different 
long-term behavior of the numerical solutions. One day he tried to continue a 
computer calculation for the equations, starting with the (x, y, z) values that 
occured partway through an earlier numerical run. Much to his surprise, he 
found that after a short time his numerical plots became distinctly different 
from those previously obtained. He traced the problem down to the fact that 
in the new run he had entered the input {x^y^z) values to fewer decimal places 
than in the original data. In effect, Lorenz had slightly changed the initial 
conditions at the point where the second numerical run began. Lorenz found 
that this sensitivity to initial conditions was a general feature of nonlinear 
systems displaying irregular, or chaotic, oscillations. 

Although Lorenz's model was a drastic oversimplification of the convective 
behavior of the Earth's atmosphere, he realized the implications for long-range 
weather forecasting. In his 1963 article, he stated, 

"When our results... are applied to the atmosphere... they indicate that pre
diction of the sufficiently distant future is impossible by any method, unless 
the present conditions are known exactly. In view of the inevitable inaccuracy 
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and incompleteness of weather observations, precise very long-range forecasting 
would seem to be nonexistent ^' 

In the popular literature, this phenomenon is referred to as the butterfly 
effect. Although a hyperbolic overstatement, the mere beating of an unknown 
butterfly's wings deep in the Amazon jungle could change the initial conditions 
and thus the very long-range weather patterns. 

Jennifer will now show us a very famous strange attractor solution of the 
Lorenz model equations, the attractor resembling the wings of a butterfly. First, 
she loads the DEtools library package, because it contains the DEplotSd com
mand, which is a generalization to three dimensions of the phasepor t ra i t 
command encountered in Chapter 5. 

> restart: with(DEtools): 

The initial condition is taken to be a:(0) = 2, y{0) — 5, z{0) = 5, and the 
coefficients r==28, 6 = 8/3, cr = 10. The total time is r = 1 0 0 time units. 

> ic :=x(0)=2,y(0)=5,z(0)=5: 

> r :=28: b :=8/3 : sigma:=10: T:=100: 

The system of three coupled ODEs is now entered, 

> o d e s : = d i f f ( x ( t ) , t ) = s i g m a * ( y ( t ) - x ( t ) ) , d i f f ( y ( t ) , t ) 

= r * x ( t ) - y ( t ) - x ( t ) * z ( t ) , d i f f ( z ( t ) , t ) = x ( t ) * y ( t ) - b * z ( t ) : 
and the numerical solution plotted with the DEplotSd command. Using the 

> D E p l o t S d ( [ o d e s ] , [ x ( t ) , y ( t ) , z ( t ) ] , t = 0 . . T , [ [ i c ] ] , 
s teps ize=0.02, scene= [x, y, z] , axes=f ramed,tickinarks= [S, S, S] , 
o r len ta t ion=[-65 ,74] , shading=zhue , th ickness=l ) ; 

scene=[x,y,z] option generates the phase space trajectory shown on the left 
of Figure 8.17. The two vividly colored lobes, which resemble the wings of a 

401 

20 

X 10 -20 

Figure 8.17: Left: Lorenz's butterfly. Right: Corresponding chaotic x{t). 
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butterfly, are actually located in different planes, which can be confirmed by 
rotating the 3-dimensional viewing box. The behavior of, say, x versus t can 
be observed by changing the scene option to [ t , x , y ] and the orientation to 
[-90,0]. The resulting picture is shown on the right of Figure 8.17. The time 
sequence does not repeat, although over certain time intervals it sometimes 
looks like it might. The sensitivity of the chaotic solution to very slight changes 
in initial conditions is left for the reader to explore as a problem. 

If a plane, oriented perpendicular to the plane of a given wing, is drawn 
through the wing, a pattern reminiscent of the previously discussed Cantor set 
results. Lorenz determined that the three-dimensional butterfly attract or has 
a fractal dimension Dc = 2.06 it 0.01, which is closer to two than to three. 

PROBLEMS: 
Problem 8-26: Sensitivity to initial conditions 
Take x{0) = 2.0001 in the text recipe with all other parameters the same and 
superimpose the new solution on that for x(0) = 2.0. Does your plot support 
the idea that the asymptotic solution is sensitive to initial conditions? 

Problem 8-27: Varying r 
Explore how the solution of the Lorenz system changes as r is varied. 

Problem 8-28: Rossler's strange attractor 
Taking a = 0.2, 6 = 0.2, c = 5.7, show that Rossler's ODE system [Ro76] 

x{t) = ~y — z, y{t) = X -\- ay, z{t) = b-\- z{x — c), 

has a strange attractor. Take x(0) = l, y{0) = 0, 2;(0) = 0 and a time of 200. 

Epilogue 

Now this is not the end. It is not even the beginning of the end. 
But it is, perhapsy the end of the beginning. 
Winston Churchill, wartime speech (1942) 

Now we must reluctantly end this introductory computer algebra guide to the 
mathematical models of science. We trust that you have enjoyed the diverse 
selection of intellectually delicious recipes that have been presented, as well as 
the "stories" that accompanied them. But to echo Winston Churchill, this is 
not really the end of our survey of the mathematical models of science, just the 
end of the beginning. The recipes and stories continue in Computer Algebra 
Recipes: An Advanced Guide to the Mathematical Models of Sci
ence with Jennifer, Mike, Vectoria, and their friends exploring a wide variety 
of interesting linear and nonlinear ODE and PDE models. On their behalf, we 
invite you to join us there. 

Richard and George, Your CAS chefs 
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randO, 320 

randomizeO, 103, 320, 326 

rectcingle, 63 

remove, 211, 267, 290 

restart, 6, 23 

rhs, 154 

rotate, 385 

round, 8, 86, 290 

rsolve, 273, 277 

rtablesize=infinity, 46 

rtablesize, 203 

scale, 389 

scaling=constrained, 50 

scene, 223 

select, 240 

semitorus, 356 

seq, 19, 49, 84 

shading=xyz, 49, 60 

shading=zgreyscale, 50, 191 

shading=zhue, 47, 191 

shading=z, 168 

shortpathtree, 34 

signum, 385 

simplify(symbolic), 175 

simplify, 6, 138 

sin, 56, 138, 153, 184 

sol[], 147 

sort, 289, 378 

spacecurve,124, 181, 246, 297 

sphere, 407 

spherical[r,theta,phi] , 194 

stepsize, 218, 223 

style=hidden, 192 

style=patchcontour, 190 

style=patchnogrid, 108 

style=patch, 47, 49, 331 

style=point, 37, 43 

subsop, 409 
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subs, 27 
syinbol=box, 17, 37 
symbol=circle, 23, 62 
symbol=cross, 19 
symbolsize, 17, 19, 37 
tau, 222 
t ay lo r , 25 
textplotSd, 168 
t ex tp lo t , 63, 144, 164, 186 
the ta , 138, 153 
th ickness , 19 
tickmarks, 7, 17, 25 
t i m e O , 326 
t i t l e , 25, 101, 144 
t r a n s l a t e , 389 
trunc, 303 
type, 105 
unapply, 74 
unassign, 139, 150, 233 
unprotect , 23, 221, 230 
value, 165 
view, 17 
warnlevel=0, 19 
weights, 32 
while, 330, 406 
with(DEtools), 216, 221, 242 
with(LREtools), 274, 276 
with(LinearAlgebra), 46, 49 
with(PDEtools), 221 
w i t h ( S t a t i s t i c s ) , 16, 23, 68 
withCStudent[Calculusl] ), 340 
with(VectorCalculus), 49, 174 
with(combinat , f ibonacci) , 281 
with(networks), 32 
wi th (p lo t s ) , 19, 20, 23 
wi th (p lo t too l s ) ,63 , 163, 174 
zip, 37, 72, 230 

matrix 
add/subtract/multiply, 202 
adjoint, 202 
characteristic, 209 
characteristic polynomial, 209 
cofactors, 202 
complex conjugate, 202 
consumption, 206 

determinant of, 202 
diagonalization, 211 
eigenvalue/eigenvector, 209 
Hermitian, 202 
Hermitian conjugate, 202 
identity, 207 
inverse, 202 
joining, 104 
nonsingular, 202 
principal diagonal, 202 
row/column, 202 
shorthand syntax, 206 
solving linear equations, 207 
square, 202 
transpose, 202 
tridiagonal, 288 
unit, 202 

maxima/minima, 51 
mean free path, 335 
Metropolis, 16 
microton accelerator, 308 
Mimas, 401 
minimizing travel time, 31 
MIT, 22 
model 

aardwolves, 227 
Anderson-May, 316 
arms race, 310 
bactericide, 86 
bandicoots, 278 
Barnsley's fern, 391 
birds munch aphids, 207 
blood alcohol level, 86 
blood CO2, 285 
bombs versus schools, 122 
bouncing ball, 306 
brainteaser, 187 
bumpy road, 253 
capacitor charging, 242 
CO2 vibration, 291 
competition, 292 
DALE computer, 344, 348 
dating game, 103 
dimensional scaling, 40 
diver, 249 
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Douady's rabbit, 396 
Dow Jones, 91 
drug exchange, 227 
drunkard's walk, 324 
economics, 142 
electric circuit, 130 
envelope of safety, 148 
epileptic seizures, 305 
erosion, 59 
exponential, 84 
falling burger, 249 
falling raindrop, 329 
Fibonacci, 279 
Pick's law, 235 
fir tree yield, 38 
fish population, 276 
flu epidemic, 282 

fly, 179 
gnat, 272 
gnus, 278 
goat population, 282 
gravitational acceleration, 98 
Halley's comet, 255 
heart rate, 77 
ice wine, 367 
inclined ladder, 136 
infectious disease, 234 
Intel processor chip, 87 
Khrushchev's purge, 86 
lace, 413 
lead poisoning, 236 
logistic, 88, 299 
Lorenz's butterfly, 414 
matrix, 202 
Maynard-Smith/Slatkin, 294 
Monte Carlo TT, 353 
Navaho rug, 408 
Newton's law of cooling, 229 
normal mode, 285 
nuts and bolts, 361 
one of eight rule, 411 
orbital precession, 260 
Penelope Jitter Bug, 333 
perfume diffusion, 335 
population growth, 235 

power law, 36, 77 
predator-prey, 237 
price and supply, 237 
puffin explosion, 275 
pursuit, 238 
pyramid, 156 
Rossler, 416 
rainbow, 152 
real estate, 107 
red blood cell, 283 
RLC circuit, 221 
Romeo and Juliet, 228 
rotating wheel, 260 
safety envelope, 245 
Saturn's rings, 400 
Senate renewal, 84 
ship huh, 162 
Sierpinski gasket, 386 
ski hih, 49 
standard map, 309 
straight-line, 73 
swamp fever, 275 
swimsuit, 102 
tripolar arms race, 315 
tug of war, 127 
vapor deposition, 376 
vibrating heart, 251 
wallpaper pattern, 384 
water skier, 238 
weedeater, 266 
well depth, 248 
whale harvesting, 278 
wheel, 355 
yeast growth, 237 

model equations, 15, 65, 106 
modulus, 133 
moment of a force, 138 
moment of inertia, 171 
Monte Carlo dart method, 353, 372 
Moore's law, 87 
multiple regression, 106 

Newton's coohng law, 40, 229 
Newton's gravitation law, 99 
Newton's method, 126 
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Newton's resistance law, 24 
Newton's second law, 24, 99 
Newton, Isaac, 152, 286 
Noah's ark, 162 
normal distribution, 364 
normal modes, 61, 266, 286 

ODE 
autonomous/nonautonomous, 214 
damped SHO, 223 
overdamped SHO, 225 
steady-state solution, 252 
transient solution, 252 
underdamped SHO, 224 

Ohm's law, 130 
open surface, 195 
Operophtera brumata, 297 
optical path length, 155 
order of, 25 
outbreak of war, 310 

parabolic cylinder, 200 
parabolic trajectory, 148 
paraboloid, 168 
parallelepiped volume, 176, 179 
Paris gun, 248 
partial derivative, 51 
periheUon, 258 
period four, 301 
period one, 301 
period two, 301 
permittivity, 140, 190 
Perrin, Jean, 322 
phase, 307 
phase angle, 133 
phase plane, 214 
phase-plane portrait, 223 
phase-plane trajectory, 214 
Physics of Sports^ 22 
piecewise function, 157 
piecewise linear, 19 
planets, 258 
Poisson distribution, 367, 376 
polar form, 133 
polar plot, 182 

polio epidemic, 90 
potential function, 191 
power law, 24, 40 
purchasing power, 16, 17, 69 
Pyramid, Great, 156 

radial field, 193 
radioactive chain, 236 
rainbow, 152 
raindrop, 153 
random walk, 319, 321, 324 

perfume molecule, 335 
three-dimensional, 332 

random-number generator, 319, 333 
range, 249 
Rayleigh's criterion, 266 
real estate appraisal, 107 
rectangular table, 46 
red blood cells, 283 
refractive index, 152 
regression analysis, 69, 106 
relative velocity, 186 
resistance, 131 
revenue curve, 147 
Richter scale, 127 
right-hand rule, 173 
RLC circuit, 221 
Roche hmit, 401 
Roche, Edouard, 401 
rocket flight, 162 
root mean square deviation, 368 
root mean square distance, 324 
rotation of Earth, 99 
rotational equilibrium, 138 
rowing times, 39 
rule of 72, 129 

Saperstein, Alvin, 310 
Saturn's moons, 401 
scaling, 39, 40, 77, 81 
self-similar, 390 
semilog plot, 84 
semimajor axis, 258 
semitorus, 356 
sequoias, 45 
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sewage treatment plant, 143 
siege tower, 356 
Sierpinski's carpet, 390 
Sierpinski's gasket, 386 
signum function, 240 
simple harmonic motion, 62 
simple interest, 30 
simple pendulum equation, 220 
skeletal bone weight, 43 
SnelPs law, 35, 152, 185 
soccer, 324 
solid tetrahedron, 172 
Spanish flu epidemic, 21 
spherical polar coordinates, 194, 335 
spleen/bone marrow, 283 
stability, 168 
standard deviation, 70, 94, 107, 374 
standard temperature/pressure, 335 
static equilibrium, 137 
static friction, coefficient of, 137 
Statistical Abstract of the U.S., 16 
steady state, 297 
Stegobium panaceum, 297 
stellerator, 308 
stochastic, 321, 386 
stock market, 91, 92 
Stokes's resistance law, 27, 245 
Stokes's theorem, 195 
strange at tract or, 414 
surface integral, 195 
suspension bridge, 140 
Swift, Jonathan, 41 

tangent field, 215, 217 
Taylor expansion, 27 
tenure, 216 
terminal velocity, 24 
tetrahedron, 201 
Theodoric of Freiburg, 152 
tidal force, 401 
time of flight, 249 
toroid, 356, 357 
torque, 178 
transcendental equation, 128, 185 

trial number, 325 
triathlon, 184 
Tribolium confusum/castaneum, 297 
tripolar arms race, 315 
turning points, 29 

Ulam, Stan, 408 
unit vector, 51, 178 
uplift, 61 
utility function, 127,, 128 

Van der Pol equation, 220 
Van der Waals equation, 55 
vapor deposition, 377 
vector 

acceleration, 180 
angle between two, 178, 179 
coplanar, 178 
cross (vector) product, 173 
displacement, 184 
dot product, 173 
field, 173 
identity, 179 
position, 180 
sum, 173, 174 
velocity, 180 

velocity field, 195 
visible spectrum, 154 
visual hallucination patterns, 48 
volcanic eruption, 148 
Von Neumann, John, 408 
vortex point, 224 

wave 
dispersion, 58 
longitudinal/transverse, 56 
standing, 56 
train, 59 
traveling, 57 

Wolfram, Stephen, 408 
world record, 83, 97 

zero circulation, 191 
zeroth law of thermodynamics, 286 




