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Notations

• R: set of real numbers.
• N: set of nonnegative integers.
• Z: set of integers.

• Ck
n =

n!
k!(n − k)!

: binomial coefficient.

• #A: cardinal number of A.
• 1A: indicator function of A.
• L2(Ω): set of square integrable function on Ω.

• ∂f(x, y)
∂x

: partial derivative of function f with respect to x.

• gradf ≡ ∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k (gradient of f).

• ∇J ≡ ∂J

∂x
+

∂J

∂y
+

∂J

∂z
(divergence of J).

• ∆f ≡ ∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
(Laplacian of f).

• EX: expectation of the random variable X.
• P(ω): probability of the event ω.
• var(X): variance of the random variable X.
• i.i.d. r.v.: independent and identically distributed random variables.
• g.c.d.: greatest common divisor.
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General introduction

1.1 Preface

Proposing a wide range of mathematical models that are currently used in life
sciences may be regarded as a challenge, and that is precisely the challenge
that we are going to take up. Of course, this panoramic study does not claim
to offer a detailed and exhaustive view of the many interactions between
mathematical models and life sciences. Some topics will not be dealt with in
this book. If they are not, it is usually because the amount of mathematical
tools has no common point with the biological application; or because the
topic is marginal, not very convincing or obsolete; or sometimes because the
required mathematics are not available yet. However, enough of what we are
not going to deal with! Let’s get on with what we are actually going to look
at.

We are proposing an introduction to mathematical models in life sciences.
Before doing maths, we first need to model, which is not an easy business.
What is a (good) model? The first purpose of a model is to highlight some
important and general phenomena. As a consequence the model must be sim-
ple, sometimes a caricature. Pluralitas non est ponenda sine necessitate1, it
will then look like a paradigm. The model must enable one to foresee the
behavior of the system it is supposed to represent, from a quantitative view-
point if possible, from a qualitative viewpoint if not. However, simplicity is
what the person in charge of modeling should constantly aim at, even if we
run the risk of losing (partially but inevitably) realism. That is the viewpoint
adopted here. We will not insist on a precise and detailed representation of
reality. We will rather offer in parallel some models (which will help under-
stand a phenomenon), and real examples (which will explain). Nevertheless,
we must not forget that this book is mathematically oriented. The discussion
on models from a biological or ecological viewpoint is drafted rather than
1 Plurality should not be assumed without necessity, William of Ockam 1285?–

1349?
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actually detailed. On the other hand, we will try to initiate the non-biologist
into biological problems and tools.

What do we want to model? “Ecology” and “biology” are very restrictive
terms; “life sciences” is wider but certainly lacks precision. Some topics are
necessary, either because of their historical interest when they are seminal
models, or because of their practical use. That is why many of the models
studied here come from demography and ecology. However, other prospects
have been considered: the theory of evolution, quantitative genetics, DNA
sequencing . . . but it is obviously a subjective choice and we abide by this
rule.

Having defined our field, which is life sciences, and our aim, which is model-
ing, we will now turn to the purely mathematical part of this book, albeit with
discernment. Indeed, the underlying biological context will certainly not be
pushed into the background in favor of mathematics. Issues that, for the math-
ematician, are of prime importance (for instance, the issue of the existence
or uniqueness of the solutions of a partial differential equation), will often be
considered as secondary by the biologist. A difficult balance between math-
ematical rigor and biological interest must therefore be found. The pursuit
of this balance may sometimes seem disconcerting to the reader; for example
theorems, which cost mathematicians significant efforts, will sometimes be
presented rapidly and without any proof. However, we will detail calculations
that, from a mathematical point of view, are much more down-to-earth but
that will help understand the underlying biological issue.

1.2 Structure of the book

Our main table of contents is quite classical and is based on the dichotomy
between determinist and stochastic models. The first part deals with deter-
minist models only. The second part deals with stochastic models and also
with the comparisons, when possible and legitimate, between those two ap-
proaches. Our aim will not be ideological or philosophical. We are not trying
to “sell” either the determinist or the stochastic model. However, we will try
to find which of the two is the most appropriate.

Problems of population management began to pave the way for population
dynamics as an object of study, especially its confrontation of paradoxical
situations that reason could not resolve. For example, why is it the decline of
fishing in the Adriatic during World War I later resulted in poorer catches and
in a relative abundance of predators? Similarly, why should the successful use
of a noxious insecticide on some forest insects have been followed afterwards
by a unprecedented rapid multiplication of those insects?

Foreseeing the effect of an action on an ecological system is not a trivial
exercise. Neither is acting on it intelligently. Such issues take on a powerful
significance nowadays because mankind has many powerful means of action
at its disposal and uses them without restriction in order to alter nature. How
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are we to save the biological treasures of our planet then? How will we manage
to extract our biological resources in an efficient and long-term way? We will
try, when possible, to introduce the reader to these topical issues through
discussions on the models we have chosen as examples.

Population dynamics is a study of complex dynamical systems. Its com-
plexity is due to the richness of relations that link any population to its
environment and to other populations. It is also due to the fact that we do
not, and will not, master the details of these interactions. The main problem
is not to be distracted from our aim by too many details but, on the contrary,
to highlight what is necessary to understand the studied phenomena. Popu-
lation dynamics rapidly leads to models that, while simple to formulate, may
be difficult to study and may display a multitude of behaviors. The first two
chapters will deal with the main themes: historical yet still topical issues (the
temporal evolution of one or several populations, interactions and co-existence
between populations, space-time distribution of these populations, age distri-
bution, and so on . . . ) or more recent issues, such as the chaotic dynamics of
insect populations, which are problematic when considering the management
of biological resources as we know it.

Population dynamics is as ancient as the study of the conflicts within a
species is recent - it is merely a matter of decades. Its sources of inspiration
generally lie in the theory of evolution, in which we deal with the co-existence
of antinomic behaviors within a population. How can one model the selective
value of a behavior? Can we use the term “model” when dealing with ethology?

The problem of the hawk and the dove is an outline of mathematical theory
on the behavior of animals, in which we try to understand how aggressive and
peaceful behaviors are both viable.

Curiously enough, the study of gender distribution within a species or,
to repeat the famous question “Why sex?”, is similar to the mathematical
apparatus of the model of conflicts. It is the game theory, though initially
stated to model economic facts. Here lies a good example of the universal
power of mathematics. The short chapter devoted to game theory will close
the study of purely determinist models.

Let us now turn our attention to the stochastic problem. Considering the
amazing complexity of living beings, some may wonder why every such model
is not stochastic. Others will deny this, only regarding the stochastic model
as a fake generalization of a determinist problem. That is why we will begin
our chapter on Markovian models with a simple but convincing example. Let
us imagine a desert island where a group of shipwrecked people (dark-haired
and fair-haired) have landed. Several generations follow and a small colony
eventually populates the island. What is the hair color of the initial ship-
wrecked people’s descendants? The determinist will answer as would Hardy
and Weinberg: the number of dark-haired and fair-haired people would re-
main unchanged. The stochastician would see that his Markov chain has been
absorbed and that the inhabitants would have the same hair color. Reality
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would prove this to be correct. However, the Markovian model does not state
what color it is. Every model has its limits . . .

Let us now travel from our desert island to Sahelian Africa. Cereals have
been cultivated there for a long time. How can one account for the fact that
man could one day domesticate cereals from wild species in an environment
that is far from adapted to agriculture? Such an example is not only interesting
from a historical point of view, it is also valid for the problem of genetically
modified organisms. How can the resettlement of genes between neighboring
populations be modeled? The domestication of pearl millet in Sahelian Africa
gives us a simple mono-allelic model where dynamical systems and Markov
chains co-exist. This will be studied thoroughly.

What is the probability of a family name disappearing? Such a simple ques-
tion, similar to those concerning genealogy, gave birth to branching processes.
A branching processes is a random family tree. Its study is not very difficult
on the whole and it will be studied thoroughly. Genealogy is a worthy subject
but its practical interest is not sufficient, in our opinion. We will apply the
branching processes to a modern technique of DNA duplication - the ques-
tion is to determine how many DNA strands were originally present. Branch-
ing processes are sometimes too restrictive to model temporal phenomena.
A short study of percolation will therefore be undertaken before studying
the spatial branching processes. Indeed, the main interest of the branching
processes seems to lie elsewhere, in an extension of such processes, those of
spatial branching. These are temporal branchings that are linked to an addi-
tional law of people dispersion.

After the first glaciation, oak trees colonized throughout Europe at high
speed. However, anyone observing such trees will notice that their acorns fall
at their very roots, except those that are taken away by birds. How can we
account for the swift progress of the oaks throughout Europe? The spatio-
temporal determinist model, based on reaction-diffusion equations, does not
enable us to account for this phenomenon in a satisfying way, whereas the
spatial branching processes, thanks to a subtle mix of large deviations and ex-
ponential growth, provide a trustworthy model for the oak colonizing process.
Who could ever predict that the survival of the species was made possible
thanks to jays?

Last but not least, let us turn to statistics. Indeed, when speaking of sto-
chastic models, one can also think of parameter estimates, confidence intervals
and hypothesis tests. It would have been possible to deal with statistics in an
appendix but that would amount to considering statistics as an ancillary sub-
ject, only of value to confirm results we already foresaw. We have intention-
ally devoted a proper chapter to statistics. One could object that statistical
methods are not models, strictly speaking. This sounds acceptable but statis-
tical methods are often necessary to account for numerous biological issues.
Hence, rather than sticking to basic but rather dull statistical problems, we
have opted for examples whose core is statistical. In this way, the likelihood
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method will be illustrated with the search for a gene on the DNA sequence,
and the likelihood theory will be applied to weevil life.

We have added three appendices: one on ordinary differential equations,
another on evolution equations and the last one on probability to make this
book an autonomous work.

A general bibliography is available at the end of the book and at the end
of each chapter a more specific bibliography can be found.

1.3 Acknowledgments
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2

Continuous-time dynamical systems

2.1 Introduction

The demography of animal species has always interested biologists. It was
especially seen as a first approach towards human demography. Demography
necessarily appeals to mathematics, even on a very basic level. In fact, it repre-
sents a natural crossroads between maths and biology. From a historical point
of view, the first models applied to demography were based on dynamical
systems. It seems logical, then, to start this book with a survey of elemen-
tary demographical models since they constitute the first step towards more
elaborate systems.

The first question to be answered concerns the evolution of a population in
time. The naive model in which reproduction and death rate are proportional
to the number of people leads to an explosion or an extinction of this pop-
ulation at an exponential rate, according to the parameters. This approach,
stated by Malthus (though earlier suggested by Euler), is unrealistic globally
speaking, at least in the long term. We will thus have to introduce a corrective
term that allows the members of an isolated population to converge towards a
constant number. The idea is to prove that there exists an ideal number such
that if the environment is not altered, the size of the population will stabilize
around this ideal number. This is what the logistic model proposes. It is a
very simple model that only depends on two parameters, which have a quite
clear biological interpretation. We will find this logistic model in many of the
models throughout the book.

When only taking the temporal evolution of a population into account,
we are led to drastic simplification. Such is the case when we suppose that
people are sexually mature as soon as they are born. It is not difficult to build
a model that accounts for the gap between birth and sexual maturity. It leads
to partial differential equations. Studying the solutions of these equations and
their qualitative behavior can be quite complicated and is out of the scope of
this book: we will only give some basic results of this theory. This is the first
illustration of what was said in the main introduction, that is to say, the model
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has to be simple, even caricatural, and realistic models are not necessarily the
best.

Is an epidemic due to a major alteration of the environment? How can
we alter the environment so as to fight against an epidemic? We will take a
well-known example, that of the spruce budworm. This model will show that a
very small alteration in the environment (here, the number of predatory birds)
can cause an epidemic. It will also show that once it has spread, coming back
to a normal situation is very difficult.

Formally speaking, the model of the spruce budworm only involves one
population. However, two other populations actually interact with the spruce
budworms: the parasitized spruces and predatory birds. This model assumes
the simplest interactions between spruces, caterpillars and birds. However, we
clearly feel that the interactions between various populations must be mod-
eled with more precision. The Lotka-Volterra model is the historical example
of a model between a population of preys and a population of predators.
While in a one population model, the size of the population converges to a
constant value, two-population models may show a different behavior: period-
ical cycles. Such cycles can be observed in nature and thus justify the model
applied to the predator-prey systems. Another commonplace interaction be-
tween populations is surveyed next because of its significance in the definition
of the concept of ecological niche. It is the competition model, in which two
populations share the same resource but with conflicting episodes.

So far we have neglected the spacewise aspect of the chosen populations.
To this end, we will first write conservation equations for populations liv-
ing both in space and time. Such equations are special partial differential
equations, called reaction-diffusion equations. See Appendix A.2 for an in-
troduction to the existence, uniqueness and boundedness of the solutions to
reaction-diffusion equations. We will devote this section mainly to a particular
mathematical aspect: traveling waves, i.e. particular solutions that evolve in
time without changing their shape. We will study the traveling waves of the
Fisher equation (in fact the spatial logistic model) from a qualitative point of
view. Traveling waves, among other things, enable one to model the geograph-
ical spreading of an epidemic and to understand how an epidemic can spread,
without any impulse, toward a precise direction. Traveling waves can be found
in nature or, rather, there are propagative phenomena in nature, which can be
modeled with traveling waves, even if their shapes is only roughly preserved
in time. There again, our purpose is not to legitimize the solution to the
reaction-diffusion equation with a maximum of veracity, but to emphasize an
existing qualitative phenomenon. The spreading of the larch bud moth along
the Alpine arc will give us an interesting illustration of traveling waves.
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2.2 Historical demographical models

2.2.1 Basic models

The most basic models deal with one single species. They provide with a
convenient starting point for more general models.

Firstly, we will study the growth of a population in terms of time and
second, its spatial repartition.

Let N(t) be the number of individuals in the species at time t. We assume
that N(t) is large enough; N(t) is a real number and not an integer. This
assumption is not problematic when N(t) is effectively huge. On the other
hand, what does N(t) small mean? Does it mean that N(t) is (mathematically)
close to zero, or that N(t) is equal to some unit? We will see that some wise
change of parameters usually allows to give a precise meaning to “N(t) small”.

The population dynamics is described by a conservation equation:

dN(t)
dt

= births − deaths + migrations .

Malthusian model

In the most basic model, there are no migrations, and births and deaths are
proportional to the population N(t).

dN(t)
dt

= φN(t) − µN(t)

= rN(t) ,

where φ and µ are positive constants. We can easily deduce that N(t) =
N(0) exp(rt) . So, if r > 0, the population grows exponentially. If r < 0, the
population decays exponentially: from a biological point of view, the species
disappears.

There is a borderline case when r = 0: population size remains constant.
This solution exists from a mathematical point of view but is unrealistic from
a biological point of view. This is why we avoid the study of such borderline
cases in this book.

Logistic model

It seems reasonable to include the effects of the environmental resistance when
the population grows in the previous model. Basically, there exists an “ideal”
population size, called the carrying capacity. Below the carrying capacity, the
population grows. Above it, it decreases. [83] proposed the logistic model :



10 2 Continuous-time dynamical systems

dN(t)
dt

= rN(t)
(

1 − N(t)
K

)
, (2.1)

where r and K (the carrying capacity) are two positive constants.
The logistic model is rather basic. However, in some cases its predictions

might be accurate: the Belgian Pierre Verhulst, 1804-1849, predicted that the
Belgian population would stabilize around 9,4 millions of inhabitants, close
to its current size (10,1 millions in 1994). However, Verhulst did not take
into account immigration, the death toll of the wars, the drop of the birth
rate . . . It might be a matter of chance that its prediction seems so good!
Thus one should avoid coarse models like the logistic model in order to make
quantitative predictions.

Time

P
op

ul
at

io
n 

si
ze

K

N0

N0

N0

K/2

Fig. 2.1. Logistic curves

The equation (2.1) has two steady points N = 0 and N = K where
dN(t)

dt
= 0 1. A linearization of (2.1) near N = 0 proves that the steady state

N = 0 is unstable. The linearization near N = K proves that the steady state
N = K is stable.

A little algebra leads to the analytic solution of (2.1):

N(t) =
N(0)K exp(rt)

K + N(0)(exp(rt) − 1)
,

and its graph is given in figure 2.1. We can check that the population converges
to K as t → +∞: K is indeed a carrying capacity.
1 See appendix A.1 for classical results on ordinary differential equations.
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2.2.2 General case

A general demographical model for one single species is an autonomous dif-

ferential equation in the form
dN(t)

dt
= f(N(t)), where f is a function of N .

The steady states are given by the solutions of the equation f(N) = 0.
Usually, 0 is a steady state since there is no spontaneous generation. Let N�

be a steady state. Let us find the behavior of the solution N(t) near N�. Set
n(t) = N(t) − N�. Assume that n is small enough and and that f is smooth
enough:

dn(t)
dt

= f (N� + n(t)) ∼ n(t)f ′ (N�) .

Therefore the behavior of the solution near N(t) = N� depends on the
sign of f ′ (N�). If f ′ (N�) < 0, N� attracts the solution N(t): N� is a stable
steady state. If f ′ (N�) > 0, the solution N(t) is ejected: N� is an unstable
steady state. The global behavior of the solution can be deduced from the
study of the stability of the steady state (cf. appendix A.1): the function N(t)
is monotonic, and the limit of N(t) is the nearest stable steady state. Several
models of this type have been studied: see the exercises.

Let us make a comment on the use of mathematical modeling for predic-
tions. An important question in Ecology deals with the vanishing of a given
species. One is tempted then to model the dynamics of a species by a differ-

ential equation
dN(t)

dt
= f(N(t)) to see whether its solution N(t) can vanish.

We immediately see that the answer is negative if f ′(0) > 0. It means that the
conclusion (“the population cannot vanish”) is contained in the mathematical
model (“f ′(0) > 0”). This example is very basic, but we always need to keep
in mind that making predictions strongly depend on the a priori assumptions
done on the model.

2.2.3 Population models with age distribution

When modeling, a first naive idea is to try to obtain a realistic model. By
realistic model, we mean a model in which no “real world assumption” has
been forgotten. Two objections can be made.

• More realistic models can lead to intricate models! And such realism (of
the models) has a cost: we cannot say anything on the models.

• There still remains hidden assumptions that have been forgotten. For in-
stance, make the following experiment in a class. Firstly, study a single
population with an autonomous differential equation. The qualitative con-
clusion is that the size of an isolated population converges to a constant. In
other words, there is no oscillation or sophisticated behavior (like chaotic
behavior) with one single species. Then ask if some hidden assumptions
have been made. Various and interesting answers are obtained, but I have
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never had the suggestion that working with continuous-time models in-
stead of discrete-time models has a dramatic influence. Then study the
discrete-time logistic model. . .

We will now study classical demographical models that lead to rather
intricate situations. A drawback of the previous demographical models is that
the age distribution has not been taken into account. For instance, babies can
procreate as soon as they are born! Therefore, assuming delays between birth
and procreation seems reasonable.

Mc Kendrick-Von Foerster equation

Let n(t, a) be the population at time t and age range a. The global population

at time t is
∫ ∞

0

n(t, a)da . Let φ(t, a) and µ(t, a) be the birth and death rates.

During an infinitesimal time dt, µ(t, a)n(t, a)dt people of age a died. The birth
rate only influences n(t, 0) (nobody is born with an age a > 0 . . .).

The conservation equation, called Mc Kendrick-Von Foerster equation, is:

dn(t, a) =
∂n

∂t
dt +

∂n

∂a
da

= −µ(t, a)n(t, a)dt

The term
∂n

∂a
da comes from the ageing of the population. Noting that

da/dt ≡ 1 (After one year, you are one year older!), n(t, a) satisfies the fol-
lowing linear partial differential equation:

∂n

∂t
+

∂n

∂a
= −µ(t, a)n . (2.2)

Now we need to specify the boundary conditions. Let n0(a) be the initial age
distribution:

n(0, a) = n0(a) . (2.3)

The other boundary condition is given by the births:

n(t, 0) =
∫ +∞

0

φ(t, a)n(t, a)da . (2.4)

We have taken +∞ as the upper limit of the age for simplicity: of course
function a → φ(t, a) is a compactly supported function.

Resolution

We indicate a general method for solving the Mc Kendrick-Von Foerster equa-
tion when the birth and death rates are independent from the time t: they
only depend on the age a.
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The operator n → ∂n

∂t
+

∂n

∂a
is a linear first-order operator and there exists

a change of variables that transforms the partial differential equation into an
ordinary differential equation. Set:{

ξ = a ,
η = t − a .

The introduction of the variable η amounts to following a generation through
the time. We then have:

∂n

∂ξ
= −µ(ξ)n .

This equation is easily solved as:

n(η, ξ) = f(η) exp

{
−
∫ ξ

0

µ

}
,

where the function f is still unknown. Let us come back to the variables (t, a):

n(t, a) = f(t − a) exp
{
−
∫ a

0

µ

}
. (2.5)

We determine the function f for negative values using the initial condition
(2.3):

n(0, a) = n0(a)

= f(−a) exp
{
−
∫ a

0

µ

}
,

so:

f(−a) = n0(a) exp
{∫ a

0

µ

}
. (2.6)

We calculate f for the positive values thanks to relation (2.4) about births.
Let:

L(a) = φ(a) exp
{
−
∫ a

0

µ

}
.

The function f , for t ≥ 0, satisfies:

f(t) =
∫ ∞

0

f(t − a)L(a)da . (2.7)

The homogeneous integral equation (2.7) can be solved using the Laplace
transform. We first work as if the Laplace transform of f were defined.
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Let:

f̂(λ) =
∫ +∞

0

e−λtf(t)dt ,

L̂(λ) =
∫ +∞

0

e−λtL(t)dt .

Then:

f̂(λ) =
∫ +∞

0

L(a) exp{−λa}
∫ +∞

0

f(t − a) exp{−λ(t − a)}dtda

=
∫ +∞

0

L(a) exp{−λa}da

∫ 0

−a

f(u) exp{−λu}du

+
∫ +∞

0

L(a) exp{−λa}da

∫ +∞

0

f(u) exp{−λu}du ,

and the Laplace transform of f is given by:

f̂(λ)(1 − L̂(λ)) =
∫ +∞

0

L(a) exp{−λa}da (2.8)∫ 0

−a

n0(−u) exp
{∫ −u

0

µ

}
exp(−λu)du .

We give some indications on the equation (2.8). Consistently with their bio-
logical interpretation, the functions φ(a) and µ(a) are compactly supported:

L ≡
∫ +∞

0

L(t)dt < ∞ .

Let us distinguish two cases.

1. L < 1. We then have 1− L̂(λ) > 0 for λ ≥ 0. The function f is determined
by (2.8).

2. L > 1. There exists at least one real number λ0 such that lim
λ→λ+

0

f̂(λ) = +∞:

f(t) is not bounded for t ≥ 0 and one can expect an explosion of
the population. Using the Dominated Convergence Theorem, we choose

K such that
∫ ∞

0

exp(−Ka)L(a)da < 1 . Let g(t) = f(t) exp(−Kt) and

H(a) = L(a) exp(−Ka). Equation (2.7) can be written as follows:

g(t) =
∫ ∞

0

g(t − a)H(a)da .

g(t) has now a Laplace transform for λ ≥ 0.
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By the same computations we obtain:

ĝ(λ)(1 − Ĥ(λ)) =
∫ +∞

0

H(a) exp{−λa}da (2.9)∫ 0

−a

n0(−u) exp
{∫ −u

0

µ

}
exp(−λu)du .

We have 1 − Ĥ(λ) > 0 for λ ≥ 0 and the function ĝ(λ) is determined by
(2.9). Let us come back to f(t) = g(t) exp(Kt). This is an indication -even
though not a proof- of an explosion of the population as t → +∞.

2.3 Pest control: the spruce budworm

The spruce budworm (Choristoneura fumiferana (Clemens)) is an insect that
damages forests in North America. The spruce budworm lives on and feeds
on needles of coniferous trees. Excessive consumption can damage and kill the
host. The budworms themselves are preyed primarily by birds, which eat many
other insects as well. Our aim is not to make precise qualitative predictions
but to see how models can be used to understand the outbreak of the spruce
budworm and to evaluate management decisions in the natural resource realm.

The simplest model ([58]) is a single species model, measuring only the
spruce budworm population N(t). The idea is the following. If there were not
any birds, the spruce budworm population could be described by a logistic
model:

dN(t)
dt

= rN(t)
(

1 − N(t)
K

)
, (2.10)

We add a predation term to take the birds into account. How to model the
predation by birds? For large values of N(t), the predation is close to its
saturation value. For small population values, as the birds eat other insects,
the predation term p(N) rapidly drops to zero. A good candidate for p(N) is
a sigmoïdal function, i.e.:

p(N) =
BN2

A2 + N2
.

The actual differential equation is:

dN(t)
dt

= rN(t)
(

1 − N(t)
K

)
− BN(t)2

A2 + N(t)2
, (2.11)

In order to analyse the model, we express it in non dimensional terms.
There are at least two reasons for doing so. Firstly, for the sake of simplicity,
we want to reduce the number of relevant parameters. Secondly, as pointed
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out above, we need to give a precise meaning to “N small”. We propose the
following change of parameters. Of course, it is not the unique possibility.

u =
N

A
, κ =

K

A
, ρ =

rA

B
, τ =

Bt

A
.

A is a parameter greater than 1, and now “u small” means u << 1. The new
equation has only two parameters, ρ and κ:

du

dt
= ρu

(
1 − u

κ

)
− u2

1 + u2
.

u = 0 is always a unstable steady state. The other steady states satisfy:

f (u; ρ, κ) = 0 , (2.12)

where

f (u; ρ, κ) = ρ
(
1 − u

κ

)
− u

1 + u2
.

A graphical resolution (cf. figure 2.2) clearly indicates that this equation
has either one solution u1, or three, denoted by u1, u2 and u3. We can easily
check that u1 and u3, when they exist, are stable steady states, and that u2,
when it exists, is an unstable steady state. For given parameters ρ and κ, the
function u converges, as τ → +∞, to:

u
u1 u2 u3 kappa

rho

Fig. 2.2. Graphical resolution of equation f (u; ρ, κ) = 0.
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• u1 if there exists one solution to equation (2.12);
• or

– u1 if u(0) ∈ (0, u2);
– u3 if u(0) ∈ (u2,+∞).

• Outbreak.
Let the parameter κ be fixed and let’s see what happens when ρ varies.
Let us give a couple (ρ, κ) such that equation f (u; ρ, κ) = 0 has three
solutions. We start from an initial condition u(0) small. The population
converges to the smallest stable steady state u1. Let us slightly increase the
parameter ρ: this corresponds for instance to a decay of the birds predation.
Assume that the equation f (u; ρ, κ) = 0 still has three solutions. The
population converges to a new steady state, that we still denote by u1

since it is qualitatively close to the previous state. Changing ρ has not had
any qualitative influence. Let us increase parameter ρ again. As long as
equation f (u; ρ, κ) = 0 has three solutions, the size of spruce budworm
population increases only weakly. There is a point when a small change
of parameter ρ leads us to the case in which equation f (u; ρ, κ) = 0 has
only one solution. This solution is now qualitatively close to the previous
steady state u3: an outbreak of the models occurs.

• Hysteresis, or “better be safe than sorry”.
Now we start from the outbreak steady state u3. How can we manage
to come back to the refuge steady state u1? Let us look at the graphi-
cal resolution again. A first idea is to reduce parameter ρ until equation
f (u; ρ, κ) = 0 has three solutions again. Unfortunately, we can check that
the population size converges to the greatest stable steady state u3 and
not to u1. The spruce budworm has not been eradicated. Our system is not
reversible: this model exhibits a hysteresis effect. To eradicate the spruce
budworm, we have to reduce parameter ρ until equation f (u; ρ, κ) = 0 has
one solution. The limiting value ρ can be read on figure 2.2 . Of course
this non-reversibility has a cost in terms of environmental management,
from both economical and ecological viewpoints.

2.3.1 Specialist and generalist predators

In our study of the spruce budworm dynamics, we introduced the predation

term p(N) =
BN(t)2

A2 + N(t)2
. Various predation terms may be considered. Usu-

ally, predators are classified into two groups.

• A generalist predator eats several kinds of preys. When a prey species
vanishes, the predator changes its strategy and prefers to eat another prey
species rather than to spend time and energy to hunt a rare prey. A way
of modeling a generalist predator is to choose a predation term p(N) such
that p′(0) = 0.
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• A specialist predator can only eat one prey species. When this species
vanishes, the predator still continues to hunt this prey. A way of modeling
this behavior is to choose a predation term p(N) such that p′(0) > 0. An
example is given in exercise 2.7.7.

2.4 Interactions in biological systems

2.4.1 Predator-Prey: Lotka-Volterra model

Model

The historical predator-prey model is due to Volterra 2. This model is usually
called Lotka-Volterra model since it has been simultaneously introduced by
Lotka (see [56, 84]). The aim is to explain why one can observe oscillating
population sizes3. One of our tasks is to understand whether the oscillations
are due to some external cause (for instance oscillations of the environment) or
are due to the internal dynamics of the species. Let us build the Lotka-Volterra
model.

• If there is no predator, the number of preys grows exponentially (Malthu-
sian dynamics);

• If there is no prey, the number of predators vanishes exponentially (Malthu-
sian dynamics);

• The number of deaths among preys is proportional to the number of “meet-
ings” between preys and predators, this number itself is proportional to
the product of the sizes of the two species.

• The growth of the size of the predators is proportional to the numbers of
deaths among the preys.

Of course these assumptions are very coarse. As usual, the aim is not to
build a realistic model, but with few relevant parameters to describe a qual-
itative behavior, i.e. periodic fluctuations. Let N(t) be the number of preys
and P (t) the number of predators. Our assumptions lead to the equations:

dN

dt
= α1N − β1N P , (2.13)

dP

dt
= −α2P + β2N P ,

where parameters α1, α2, β1 and β2 are positive.
2 Vito Volterra, 1860-1940 was interested in mathematical modeling of biological

systems after the first world war. The war had considerably reduced fishing in the
Adriatic and the relative number of predators with respect to preys had increased.
Volterra began a study of analytical models in order to explain such observations.

3 Several examples of oscillating population sizes can be found in the literature
(e.g. [67]), the most famous concerning snowshoe hare and Canadian lynx.
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Analytic resolution of Lotka-Volterra model

The Lotka-Volterra model can be solved analytically. The steady states of

the system (2.13), given by the equations
(

dN

dt
,
dP

dt

)
= (0, 0), are (0, 0) and

(α2/β2, α1/γ1). The change of variables x = β2/α2 N and y = β1/α1 P
transforms the systems as:

dx

dt
= α1(1 − y)x , (2.14)

dy

dt
= −α2(1 − x)y . (2.15)

The steady states are now (0, 0) and (1, 1). We eliminate the quadratic terms
of the equations. (2.14)×α2+ (2.15)×α1 gives:

α2
dx

dt
+ α1

dy

dt
= α1α2(x − y) ,

and (2.14)×α2/x+ (2.15)×α1/y gives:

α2
dx

xdt
+ α1

dy

ydt
= α1α2(x − y) .

Time is eliminated:

α2
1 − x

x
dx = −α1

1 − y

y
dy . (2.16)

Set: C = (x(0) exp(−x(0)))α2 (y(0) exp(−y(0)))α1 .
The variables of (2.16) are separated and the solution is:

(x(t) exp(−x(t)))α2 (y(t) exp(−y(t)))α1 = C . (2.17)

Now, we need to study the curve defined by (2.17). Let ∆ be an arbitrary
straight line going through the steady state (1, 1). Tedious algebra proves
that the intersection of ∆ and the curve (2.17) contains two points. The
steady point (1, 1) is in-between these two intersection points. The trajectories
of the Lotka-Volterra system are contained in the curve (2.17), they cannot
converge to a steady point (except the trivial solutions (0, 0) and (1, 1)), they
are not allowed to make an about-turn inside the curve because of the Cauchy-
Lipschitz Theorem: the functions x and y are periodic. Examples are given by
figures 2.3 and 2.4.

Average population number

We have seen that solutions to Lotka-Volterra are periodic functions. Let T
be the (unknown) period. The average number of preys (resp. predators) is
1
T

∫ T

0

x(t)dt (resp.
1
T

∫ T

0

y(t)dt). An integration of equation (2.14) gives:
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Preys Predators

Time

Population sizes

Fig. 2.3. Simultaneous evolution of the numbers of preys and predators
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Fig. 2.4. Phase trajectories of the solution to the Lotka-Volterra system

x(t) = x(0) exp
{

α1

(
t −

∫ t

0

y(u)du

)}
.

Since x(t + T ) ≡ x(t):

1
T

∫ T

0

y(t)dt = 1 .

Similarly:

1
T

∫ T

0

x(t)dt = 1 .
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The average number of preys (resp. predators) is N =
α2

β2
(resp. P =

α1

β1
).

Super-predator-predator-prey model

Now let us assume that super-predators (e.g. human hunters) are hunting
both preys and predators. This is a three levels trophic model. Let λ be the
number of super-predators and let µ (resp. η) be the way the super-predators
hunt the predators (resp. the preys). We generalize the Lotka-Volterra model:

dN

dt
= (α1 − µλ − β1P ) N ,

dP

dt
= (−α2 − ηλ + β2N) P .

There are actually two cases.

• α1 > µλ. This is a Lotka-Volterra model indeed. The average number

of preys (resp. predators) is
α2 + ηλ

β2
(resp.

α1 − µλ

β1
). As the number of

super-predators increases (that is, when λ goes from zero to the critical
value α1/µ), the number of predators decreases, but the number of preys
increases. This has been observed, for instance, with rabbits and foxes.
The concomitant hunting of rabbits and foxes leads to an explosion of
rabbits. This three levels trophic model can be generalized to multi levels
trophic models. When the number of trophic levels is odd, the population
size of the lowest level is high; when the number of trophic levels is even,
the population size of the lowest level is low4.

• α1 < µλ. We can easily check that
dN

Ndt
< α1 − µλ: the number of preys

decays exponentially. The preys disappear. Similarly, the predators will
disappear.

2.4.2 Sketch of a general predator-prey model

The Lotka-Volterra model is sometimes too coarse. It reveals the existence
of oscillations in biological systems in a very simple way, but Lotka-Volterra
has several drawbacks. Indeed, the periodic solutions of Lotka-Volterra are
only determined by the initial conditions which is rather unrealistic. More-
over we have to keep in mind that Lotka-Volterra, contrarily to a common
belief, is a marginal two-dimensional dynamical system. It is rather rare for
a two-dimensional system to admit an infinity of cycles. Moreover, a lot of
two-dimensional systems do not have periodic solutions. A huge number of
4 Plankton is at the lowest level in the trophic level. The abundance of plankton

-and therefore the color of the sea- depends on the parity on the number of trophic
levels.
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predator-prey models (or host-disease models, see exercises 2.7.16 and 2.7.17)
has been proposed. We sketch here some outlines of these models (e.g. [64, 37]).

dN(t)
dt

= N(t) f(N(t), P (t)) ,

dP (t)
dt

= P (t) g(N(t), P (t)) .

The following assumptions on functions f and g can be made.

• The birth rate of the preys is low when the predators are numerous: the
function y → f(x, y) is decreasing.

• The birth rate of preys decreases and the birth rate of predators in-
creases when both predator and prey populations grow: the function
x → f(rx, rx), with r fixed, is a decreasing function and the function
y → g(ry, ry), with r fixed, is an increasing function.

• Prey population is growing when both preys and predators are rare:
f(0, 0) > 0.

• If there is no more the predator, the number of preys is stable (no Malthu-
sian dynamics) : the function x → f(x, 0) is negative for x large.

• When the number of predators is large enough, the number of preys cannot
grow: the function y → f(x, y) is negative for y large.

• For a given number of preys, a growth of predators challenges the repro-
duction of predators: the function y → f(x, y) is decreasing.

• If there is no more prey, the predators vanish: the function y → g(0, y) is
negative.

• Few predators and many preys contribute to the reproduction of preys:
the function x → g(x, 0) is positive for x large.

The following qualitative conclusions can be drawn from the previous as-
sumptions.

• The point (0, 0) is a steady state. Its stability matrix is
(

f(0, 0) 0
0 g(0, 0)

)
.

This is a saddle-point. The extinction of the populations is impossible.
• There is at least one steady state (N�, 0) with N� > 0. Its stability matrix

is
(

N�fx(N�, 0) N�fy(N�, 0)
0 g(N�, 0)

)
. Since g(N�, 0) is non-negative, this point

is unstable: in these models, preys cannot live without predators.
• If a steady state (N�, P �) exists with N� > 0 and P � > 0, this is not a

saddle-point. Indeed, the product of the eigenvalues of the stability matrix(
N�fx(N�, P �) N�fy(N�, P �)
P �gx(N�, P �) P �gy(N�, P �)

)
is

N�P �fy(N�, P �)gx(N�, P �) and is non-negative (consider the behavior of
the functions x → f(rx, rx) and y → g(ry, ry) for r fixed). This point can
either be stable, or unstable.
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A graphical reasoning, based on the previous assumptions, shows that
there usually exists a connected, bounded domain Ω, with C1 boundary, con-
tained in {x ≥ 0, y ≥ 0} such that:

(f(x, y)g(x, y)) . n > 0

(x, y) ∈ ∂Ω ,

where n is the normal vector to ∂Ω at a point (x, y). Then, if the initial con-
dition (N(0), P (0)) belongs to Ω, the trajectory remains inside Ω. In other
words, there is no demographical explosion and only two qualitative possi-
bilities, according to the Poincaré-Bendixson Theorem5. Either the solutions
converge to a steady point, or they converge to a limit cycle. That means that
a two-species model will either stabilize (steady state case) or will be periodic
(limit cycle case). No other qualitative behavior is allowed.

When the functions f and g both depend on a parameter γ, the system
may exhibit a bifurcation when γ varies. For instance, for a given range of γ,
the trajectories may converge to a steady state, though for other values of γ,
the trajectories may converge to a limit cycle. Such an example is given in
exercise (2.7.12).

2.4.3 Competition and ecological niche

We still assume that two species share the same ecosystem, but now, none of
them is a predator of the other. These species are in competition since they
use the same single resource. Can these two species coexist or not? This leads
to the concept of ecological niche for species. The modeling is similar to the
Lotka-Volterra one and is left to the reader. A modeling based on the logistic
model is the following:

dN(t)
dt

= αN(t)
(

1 − N(t) + β1P (t)
K1

)
, (2.18)

dP (t)
dt

= αP (t)
(

1 − P (t) + β2N(t)
K2

)
.

• The birth rates are equal for the two species, but one can check that it
does not matter.

• The carrying capacities K1 and K2 are supposed to be different.
• The nuisances between the two species are measured by the constants β1

and β2. We assume 0 < β1, β2 < 1.

We do not want to investigate all the cases here. See exercise (2.7.13) for a
complete study of the competition models.

The stability matrix at point (0, 0) is αId. Steady state (0, 0) is still un-
stable. There are three cases, depending on the value of the parameters K1,
K2, β1 and β2.
5 cf. Appendix A.1
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• β2K1 > K2 and β1K2 < K1.

The stability matrix at the point (K1, 0) is
(−1 −β1

0 1 − β2K1
K2

)
. This point

is stable. Similar computations show that (0,K2) is unstable. There is no
other admissible steady state.

• β1K2 > K1 and β2K1 < K2.
Similar computations show that (K1, 0) is unstable and that (0,K2) is
stable.

• K2 > β2K1 and K1 > β1K2.
Both (K1, 0) and (0,K2) are unstable. Now there exists another admissible
steady state:

N� =
K1 − β1K2

1 − β1β2
,

P � =
K2 − β2K1

1 − β1β2
.

Its stability matrix M = (Mi,j)i,j=1,2 is given by:

M1,1 = −N�

K1
,

M1,2 = −N�β1

K1
,

M2,1 = −P �β2

K2
,

M2,2 = −P �

K2
.

The trace of M is negative and its determinant is positive, this point is
stable.

To obtain global qualitative results, graphical results (e.g. [8]) are used. For

a given point (N,P ), the signs of
dN(t)

dt
and of

dP (t)
dt

are easily obtained from
equation (2.18). We therefore roughly know the direction of the trajectory at
this point (N,P ). On figures 2.5 and 2.6, a “+” (resp. a “-”) has been added
to N or P when the function is increasing (resp. decreasing).

• Let us consider the case described by figure 2.5. A trajectory starting
from the areas (P+, N+) or (P−, N−) and that remains inside this area
is a monotonic function and has a limit. This limit can only be a stable
steady state. There is no stable steady state in the area (P+, N+). A
trajectory starting from the area (P+, N+) has to go out. The stable
steady state (K1, 0) belongs to the area (P−, N−). A trajectory starting
from the area (P−, N−) can either converge to (K1, 0), or enter in the
area (P−, N+). A trajectory starting from the area (P−, N+) cannot go
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out: indeed, the two areas (P+, N+) and (P−, N−) push the trajectory
coming from (P−, N+) back to the area (P−, N+). A trajectory starting
from the area (P−, N+) has therefore a limit, and this limit can only be
(K1, 0)6 To sum up, every trajectory converges to the point (K1, 0). There
is no coexistence between the two populations, since their ecological niches
are too close.

• Let us now consider the case described in figure 2.6. The same graphi-
cal resolution is used. A trajectory starting from the areas (N−, P+) or
(N+, P−) cannot go out since it is pushed back from the other areas. This
trajectory has a limit, and this limit can only be (N�, P �). A trajectory
starting from the areas (N+, P+) or (N−, P−) can have two behaviors:
either it stays inside its starting area, and then converges to (N�, P �), or
it enters inside one of the areas (N−, P+) or (N+, P−). To sum up, every
trajectory converges to the point (N�, P �). There is a coexistence of the
two species: the ecological niches have a non-empty intersection, but there
nevertheless is enough room for coexistence.

2.5 Reaction-diffusion equations

So far, only the temporal evolution of the populations has been considered.
The spatial evolution has been neglected. Our aim is now to introduce spatial-
temporal models and to study some simple but usual qualitative phenomena.

2.5.1 General equation

Let us now consider the diffusion of material which can be insects, cells, rabbits
and so on, in the space R

k, k = 1, 2, 3. Now the population density N is a
function N(t, x) with t ∈ R and x ∈ R

k, k = 1, 2, 3. The global population

at time t is
∫

Rk

N(t, x)dx . Let V be an arbitrary volume and let ∂V be its

boundary. Again we can write a conservation equation: the change of the
amount of material in V is equal to the rate of flow of material across ∂V plus
the material created in V :

∂

∂t

∫
V

N(t, x)dv = −
∫

∂V

Jds +
∫

V

fdv . (2.19)

In the most general framework, J and f are functions of N , t and x. Applying
the Divergence Theorem to (2.19), the last equation becomes:∫

V

(
∂N

∂t
+ ∇J − f

)
dv = 0 .

6 We have admitted that the model is well-posed: there is no negative population
size. This is left to the reader.
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As the volume V is arbitrary, the integrand must be zero:

∂N

∂t
+ ∇J = f . (2.20)

In the absence of external factors, a flow proportional to ∇N is the simplest
choice7:

J = −D∇N .

In the most general situation, D is itself a function of N and x. If we assume
D to be constant, equation (2.20) becomes:

∂N

∂t
= f + ∆N . (2.21)

Equation (2.21) 8 is not sufficient. We need to specify an initial condition
N(0, x) and a boundary condition.

An historical reaction-diffusion equation like (2.21) is the so-called Fisher
equation9 in which the birth/death function f is logistic:

∂N

∂t
= rN

(
1 − N

K

)
+ ∆N . (2.22)

2.5.2 Solution control: maximum principle

When writing a reaction-diffusion equation, the first two questions are the
following:

• Is the model well-posed? In other words, does there exist solutions, are
they positive?

• Is an explosion of the population possible?

Consider the reaction-diffusion with a vanishing boundary condition (Dirich-
let boundary condition):

∂N

∂t
= f(N) + ∆N ,

N(t, x) = 0 , x ∈ ∂Ω ,

u(0, x) = φ(x) ,

with t ∈ [0, T ] and x ∈ Ω. φ is the initial population and Ω is assumed to be
compact. Moreover we assume that f is Lipschitz:
7 An analogy with atmospheric pressure can be done.
8 See appendix A.2 for theoretical results on partial differential equations.
9 Ronald Fisher, 1890-1962, is mostly known for his statistical works, but he has

also worked on genetical and population dynamical models.
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f(x) − f(y) ≥ −C|x − y| .

Suppose that we know a sub-solution N1 and a super-solution N2. N1 and
N2 are two functions on [0, T ] × Ω that satisfy:

∂N1

∂t
− ∆N1 ≤ f(N1) ,

∂N2

∂t
− ∆N2 ≥ f(N2) ,

N2 ≥ N1 on ∂Ω ,

N2(0, x) ≥ N1(0, x) .

Let Z = e−(C+1)t(N2 − N1), where C is the Lipschitz constant of f . If N1

and N2 are bounded functions, it is rather easy to obtain a constant C. Now
suppose that N1 and N2 are twice continuously differentiable10. A little bit
of algebra proves that, if Z is negative:

∂Z

∂t
− ∆Z ≥ −Z . (2.23)

A minimum of function Z satisfy
∂Z

∂t
− ∆Z ≤ 0. Inequality (2.23) proves that

this minimum cannot be reached for a negative value of Z. It follows that
N2 − N1 is a positive function.

Let us apply this result to Fisher equation (2.22). Assume that the initial
population is less than the carrying capacity K, i.e. 0 ≤ φ ≤ K. Let N be
the solution. Function N0 ≡ 0 is a sub-solution and function NK ≡ K is a
super-solution. Solution N can be considered both as a sub-solution and super-
solution. An application of the maximum principle to the couples (N1, N2) =
(N0, N) and (N1, N2) = (N,NK) shows that 0 ≤ N ≤ K. Fisher equation is
well-posed and there is no explosion of the population.

2.5.3 Steady solution: stability

A steady solution is a solution that does not evolve anymore.

Definition 2.5.1 Steady solution.
A one-variable function N0(x) is a steady solution of the reaction-diffusion

equation (2.21) if

∆N0 + f(N0) = 0 .

10 Without this differentiability condition, the proof is more intricate. See section
A.2.5 for more general statements.
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See [28, Ch.5] for a rigorous presentation of the stability of a steady so-
lution: we will only give here an heuristic idea of the stability of a steady
solution.

Let ε(x) be a small perturbation. Let N(t, x) be the solution to the
reaction-diffusion equation (2.21) with initial condition N(0, x) = N0(x) +
ε(x). N0 is a stable steady solution if N(t, x) converges to N0 uniformly with
respect to x as t → ∞.

Suppose that f is linearizable about N0, i.e. there exists a linear operator
L such that:

f(N0 + ε) ∼ f(N0) + L ε .

Set ε(t, x) = N(t, x)−N0(x). A linearization of the reaction-diffusion equation
(2.21) leads to:

∂ε

∂t
∼ (L + ∆) ε .

If there exists β > 0 such that the real part of the eigenvalues of the operator
L + ∆ are less than −β, then the solution N0 is a steady solution.

Let us give an example. The function N(t, x) ≡ K is a steady solution
of the one-dimensional Fisher equation (2.22). Set u(t, x) = N(t, x)/K. The
Fisher equation becomes:

∂u

∂t
= ru(1 − u) ,

u(0, 0) = 1 ,

u(0, 1) = 1 .

Solution u(t, x) ≡ 1 is of course a steady solution. A linearization about u(t, x)
leads to:

∂ε

∂t
= −rε +

∂2ε

∂x2
,

ε(0, 0) = 0 ,

ε(0, 1) = 0 .

The eigenvalues of the operator ε → −rε +
∂2ε

∂x2
are −r − (π/2 + 2kπ)2, with

k integer. The steady solution 1 is stable.

2.5.4 The propagation of the Larch Bud Moth

The caterpillars of the Larch Bud Moths (Zeiraphera diniana) damage the
larches. Sexual dimorphism is marked at the adult stage: females are obese
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and therefore less moving; on the other hand, males are good flyers. So, this
species is poorly moving from a population dynamics point of view, but it is
considerably more movable from a genetic population point of view.

The Larch Bud Moths have been observed since the beginning of the XIXth
century in Engiadina (Switzerland). It has been systematically studied ([4])
from 1949 to 1976 in five areas covering around 630 km among the Alpine
arc: Lungau (Austria), Val Aurina (Italy), Engiadina (Switzerland), Goms
(Switzerland) and Névache (France). Measurements of population have been
done by counting the number of caterpillars per Bud branch: we must keep
in mind that the real data are not error-free! Experimental data are summed
up in Figures 2.7 and 2.8. Two phenomena clearly appear.

• Spatial oscillations.
Let us have a look on a given area (cf. figure 2.8). The dynamics of the
Moths is periodic, with a succession of highly elevated peaks, correspond-
ing to the crisis of the pest, and bottoms, corresponding to quiet periods.
The period between two peaks is around nine years. This typically is the
dynamics of an host-disease model: these models are mathematically close
to predator-prey models we have seen before.

• Propagation through time.
A propagation phenomenon clearly appears when looking to the spatio-
temporal repartition: the damages move slightly forward from West to
East, with a three-year period. Let us model the Alpine arc by a one-
dimensional curve. The spatial dynamics of the Moth looks like a wave
traveling along this curve. The careful study of [4] indicates that this trav-
eling wave is not due to some external factor, but is due to the internal dy-
namics of the Moth. Now our aim will be to investigate a reaction-diffusion
equation, like Fisher equation, and to see whether these equations generate
traveling waves.

2.5.5 Propagation

The aim of this section is to explain the observations and the traveling waves.
Let us consider the basic waves: the waves evolve without deformation and
with constant speed. In other words, we are looking for functions N(t, x) such
that N(t, x) ≡ N(t′, x′), as soon as x′ − x = c (t′ − t), for a given wave speed
c.

One-dimensional traveling waves

We will restrict ourselves to the one-dimensional case: the spatial variable
x is a one-dimensional variable. Take N(t, x) = N(x − ct) = N (z), where
z = x−ct is a wave variable. Denote by N ′ and N ′′ the first and second deriv-
atives of N (z). The function N(t, x) is the solution to the reaction-diffusion
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equation (2.21). Substituting the traveling wave N into (2.21), N satisfies the
ordinary differential equation:

N ′′ + cN ′ + f(N ) = 0 , (2.24)

We will study the steady state of equation (2.24). This gives qualitative
results on the traveling waves and on the wave speeds.

Set:

U = N ,

V = N ′ .

Equation (2.24) becomes:

U ′ = V , (2.25)
V ′ = −cV − f(U) .

A steady state of (2.25) is a couple (U�, 0) where U� satisfies f(U�) = 0.
Let us linearize equation (2.25) about (U�, 0). The eigenvalues satisfy:

λ2 + cλ + f ′(U�) = 0 .

We will then study these steady states as usual.
For biological reasons11, function f vanishes at 0: f(0) = 0. (0, 0) is a

steady state. When c2 < 4f ′(0), point (0, 0) is a spiral point. The traveling
wave crosses the half-plan U < 0. The population is not allowed to be negative,
these solutions have to be rejected. There is a minimal wave speed.

When functions U and V are bounded, we know from Poincaré-Bendixson
Theorem that the trajectories of (2.25) converge either to a stable steady
point, or to a limit cycle. We will see that the limit cycle is forbidden. Let us
introduce the so-called Lyapunov function L :

L =
1
2
N ′2 + F (N )

=
1
2
V 2 + F (U) ,

with

F (x) =
∫ x

0

f(u)du .

We will not make an intensive use of Lyapunov function here. An analogy
with mechanics can be done. The Lyapunov function can be viewed as the
energy of the system. A dissipative system has a decreasing energy and cannot
have any limit cycle. We can easily check that L′ = −cN ′2. Function L is
monotonic. The trajectory cannot converge to a limit cycle. To sum up, either
the trajectory of (2.25) converges to a stable steady point, or it explodes.
11 There is no spontaneous generation.
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Traveling waves for the one-dimensional Fisher equation

Let us recall that the Fisher equation is:

∂N

∂t
= rN

(
1 − N

K

)
+

∂2N

∂x2
.

A traveling wave N , with z = x − ct and N (z) = N(t, x) satisfies:

N ′′ + c N ′ + rN
(

1 − N
K

)
= 0. (2.26)

Set U(z) = N (z)/K, (2.26) becomes:

U ′′ + c U ′ + rU(1 − U) = 0 .

The steady points are (0, 0) and (1, 0).

• Point (0, 0). We reject the case c2 < 4r: it generates a stable spiral point.

When c2 > 4r, the eigenvalues are λ± =
−c ±

√
c2 − 4r

2
and are negative.

Point (0, 0) is a stable node.

• Point (1, 0). The eigenvalues are λ± =
−c ±

√
c2 + 4r

2
. λ+ is positive, λ−

is negative. Point (1, 0) is a saddle point.

The reader can check that there exists an analytical solution, starting from

1 and converging to 0, with speed c = r
5√
6
, and given by:

U(z) =
(

1 + (
√

2 − 1) exp
(

z√
6

))−2

.

According to the qualitative considerations - stability of the steady points,
no limit cycles, analytical solution - we can roughly draw the traveling waves
of the Fisher equation (cf. figure 2.9, see Exercise 2.7.19).

We should wonder whether these traveling waves can really be observed
in “real life”. Let us have an analogy with the steady point. If a steady point
is unstable, any perturbation will remove the trajectory from this point: this
point cannot be observed in “real life”. On the other hand, a small pertur-
bation has no real influence on a stable steady point. This is the same for a
traveling wave: if it is unstable, we cannot observe this solution in “real life”.
The question of stability of traveling waves is a difficult one. Let us briefly
sketch a rough way of studying this stability. (we refer to [1, 7, 49, 78] for
more general results). Assume that N� is a solution of:

∂N

∂t
= f(N) + ∆N .
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Fig. 2.9. Qualitative drawing of the traveling waves of the Fisher equation

Let ε be a small perturbation. We want N� + ε to be the solution to the same
equation. If the linearization is valid, the equation becomes:

∂ε

∂t
= εf ′(N�) + ∆ε .

The maximum principle can then be used to control the solution to this equa-
tion and therefore to decide whether the traveling wave is stable or not.
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2.7 Exercises

Exercise 2.7.1 The growth of bacteria in a Petri dish.

Let us consider the growth of a mass of bacteria in a Petri dish. The mass
grows uniformly in every direction. Only the bacteria on the surface of the
mass reproduce. Let N(t) be the number of bacteria at time t. Justify the
following model and solve it:

dN(t)
dt

= r N2/3(t) , N(0) > 0 , r > 0 .

Exercise 2.7.2 Gompertz model.

Study the one species model given by:

dN(t)
dt

= −αN(t) log
(

N(t)
K

)
,

with α,K > 0 and N(0) ≥ 0.

Exercise 2.7.3 Demographic models.

Let us consider the following model:

dN(t)
dt

= a
N(t)

α

(
1 −

(
N(t)
K

)α)
,

where a and α are positive.

1. Recognize this model when α = 1 and α → 0.
2. What is the limit of N(t) when t → ∞?
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Exercise 2.7.4 Seasonal capacity model.

A species N is subject to a seasonal periodic constraint that changes its car-
rying capacity. The proposed model is:

dN(t)
dt

= αN(t)
(

1 − N(t)
1 + β cos(γt)

K

)
,

where α > 0, K > 0, γ > 0 and 0 < β < 1.

1. Solve the equation (Hint: set y = 1/N).
2. Compare with the behavior of the logistic model:

dN(t)
dt

= αN(t)
(

1 − N(t)
K

)
.

Exercise 2.7.5 Constant-rate harvesting.

Study the logistic model with constant-rate harvesting:

dN(t)
dt

= αN(t)
(

1 − N(t)
K

)
− h ,

where α > 0, K > 0, h > 0.

Exercise 2.7.6 Optimal harvesting.

Consider the logistic model with proportional-rate harvesting:

dN(t)
dt

= αN(t)
(

1 − N(t)
K

)
− hN(t) ,

where α > 0, K > 0, h > 0. For T > 0, let YT (h) be the total yield:

YT (h) =
∫ T

0

hN(t)dt .

Compute the optimal harvesting rate hT that maximizes YT (h). What is
lim

T→+∞
hT ?

Exercise 2.7.7 Generalist versus specialist predator.

Consider the one-single species model with predation:

dN(t)
dt

= rN(t)
(

1 − N(t)
K

)
− p(N(t)) ,

where all the parameters are positive. Study the model (population outbreak,
hysteresis) with the following predation terms:

p(N) = B

(
1 − exp

(
−N2

A2

))
,

p(N) =
BN

A + N
.
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Exercise 2.7.8 Insect pest control.

Consider an insect population N(t). A method to eradicate this population
consists in introducing sterile insects n(t). These sterile insects prejudice the
reproduction of the other insects. The following model is proposed:

dN(t)
dt

=
[

aN(t)
N(t) + n(t)

− b

]
N(t) − kN(t) (N(t) + n(t)) ,

N(0) > 0 , n(0) > 0 .

The parameters a, b and k are positive.

1. We assume that the population of sterile insects is constant n(t) ≡ n.
Give a condition on n to be sure of the eradication of N(t).

2. We assume that the sterile insects are dropped once and that the dynamics
of the sterile insects is Malthusian:

dn(t)
dt

= −bn(t) .

Is the eradication of N(t) sure?
3. We assume that a part γ > 0 of the insects are born sterile:

dn(t)
dt

= γN(t) − bn(t) .

Give a condition on γ such that the only steady state is (0, 0).

Exercise 2.7.9 Particular solution of Mc Kendrick-Von Foerster equation.

Let the birth and death rates be constant. Find initial condition n0(a) such
that n(t, a) = α exp(βt) exp(−γa) is a solution of Mc Kendrick-Von Foerster
equation. Is this solution realistic?

Exercise 2.7.10 Logistic predator-prey model.

Study the steady state and their stability in the model:

dN(t)
dt

= α1N(t)
(

1 − N(t)
K

− βP (t)
)

,

dP (t)
dt

= −α2P (t) (1 − γN(t)) ,

where all the parameters are positive.

Exercise 2.7.11 Application of the Poincaré-Bendixson Theorem.

Show the existence of a limit cycle, for a > 0, in the equation:

dx(t)
dt

= ax(t) − by(t) − x(t)(x2(t) + y2(t)) ,

dy(t)
dt

= bx(t) + ay(t) − y(t)(x2(t) + y2(t)) .
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Exercise 2.7.12 Bifurcation in a predator-prey model.

Consider the predator-prey model:

dN(t)
dt

= N(t)
{

r

(
1 − N(t)

K

)
− aP (t)

b + N(t)

}
,

dP (t)
dt

= P (t)
{

c

(
1 − d

P (t)
N(t)

)}
,

where all the parameters are positive and N(0) > 0, P (0) > 0.

1. Propose a change of variables such that the new model becomes:

du

dτ
= u(1 − u) − α

uv

u + β
,

dv

dτ
= γv

(
1 − v

u

)
.

2. Show that there exists an unique steady state (u�, v�) in the quadrant
u > 0, v > 0.

3. Find the conditions on α, β, γ such that this steady state is stable.
4. What happens when the point (u�, v�) is unstable?

Exercise 2.7.13 Competition model (ctd.).

This exercise is an extension of the competition model (cf. section “Com-
petition and ecological niche”):

dN(t)
dt

= α1N(t)
(

1 − N(t) + β1P (t)
K1

)
,

dP (t)
dt

= α2P (t)
(

1 − P (t) + β2N(t)
K2

)
,

where all the parameters are positive.

1. Find the steady states and their stability.
2. Use a graphical resolution in order to find the global behavior of the

system.
3. What is the actual influence of the parameters α1 and α2?

Exercise 2.7.14 Another competition model.

Study analytically the following competition model.

dN(t)
dt

= (α1 − γ1(β1N(t) + β2P (t)))N(t) ,

dP (t)
dt

= (α2 − γ2(β1N(t) + β2P (t)))P (t) .

(Hint: eliminate the quadratic terms.)
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Exercise 2.7.15 Mutualism.

The interaction between two species is not always a competition or a predation
interaction; the interaction between two species could be to the advantage of
both species. So is mutualism.

1. The simplest model is:

dN(t)
dt

= α1N(t)(1 + β1P (t)) ,

dP (t)
dt

= α2P (t)(1 + β2N(t)) ,

where all the parameters are positive. Study the limit of (N(t), P (t)) as
t → +∞. Is this model realistic?

2. We incorporate carrying capacities for both species:

dN(t)
dt

= α1N(t)
(

1 − N(t) − β1P (t)
K1

)
,

dP (t)
dt

= α2P (t)
(

1 − P (t) − β2N(t)
K2

)
,

where all the parameters are positive. Show that the behavior of (N(t),
P (t)) as t → +∞ depends on the sign of 1 − β1β2.

Exercise 2.7.16 Rabies pest.

In 1979, a rabies pest, coming from East Europe, arrived in France from
the east border. Foxes were the main vehicle of the rabies.

1. We consider the foxes to be divided into two groups, infective I and sus-
ceptible S. The proposed model is:

dS(t)
dt

= r(S(t) + I(t))
(

1 − S(t)
K

)
− βS(t)I(t) ,

dI(t)
dt

= βS(t)I(t) − uI(t) ,

where all the parameters are positive.
a) Justify this model.
b) Find the stability of the steady state (S, I) = (K, 0), give conditions

on the parameters that allow an outbreak of the pest. Discuss these
conditions. You can adopt the point of view of the rabies virus! What
is your best strategy?

2. A first method to eradicate the rabies pest consist in killing the foxes, for
instance by giving a bonus to the hunters. This method is modeled by:
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dS(t)
dt

= r(S(t) + I(t))
(

1 − S(t)
K

)
− βS(t)I(t) − cS(t) ,

dI(t)
dt

= βS(t)I(t) − uI(t) − cI(t) ,

where c is the hunting parameter: hunting is done both on infective and
susceptible. Give conditions on the parameters that prevent the rabies
pest.

3. A second method to eradicate the rabies pest consist in vaccinating the
foxes. This method is modeled by:

dS(t)
dt

= r(S(t) + I(t))
(

1 − S(t)
K

)
− β(1 − v)S(t)I(t) ,

dI(t)
dt

= β(1 − v)S(t)I(t) − uI(t) ,

where v is the vaccinating parameter. Give conditions on the parameters
that prevent the rabies pest.

4. Which method do you chose?12

Exercise 2.7.17 Epidemiology model (from [45, 46, 47]).

Consider a disease that, after recovery, confers immunity. The population at
time t, denoted by N(t), is divided into three groups: the susceptible S, the
infective I and the removed group R. The global population is then N(t) =
S(t) + I(t) + R(t). The model dynamics is then:

dS(t)
dt

= −rS(t)I(t) ,

dI(t)
dt

= rS(t)I(t) − aI(t) ,

dR(t)
dt

= aI(t) ,

with initial populations S(0), I(0) positive and R(0) = 0. The parameters r
and a are positive.

1. Justify this model.
2. Show that N(t) is constant.
3. Show that the functions S, I and R are positive.
4. Show that if S(0) <

a

r
, then I(t) is a decreasing function. What is its limit

as t → +∞?
12 The chosen method was the oral vaccination of the foxes. Vaccine-impregnated

baits that looked like meatballs were dropped by airplane.
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5. We assume that S(0) >
a

r
. Let Isup = sup

t≥0
I(t) .

a) Show that there exists t0 > 0 such that I(t0) = Isup.

b) Calculate
dI(t)
dt

+
dS(t)

dt
− a

rS(t)
dS(t)

dt
.

c) Calculate Isup in terms of I(0), S(0), a and r.
6. Give a qualitative interpretation of the previous results.

Exercise 2.7.18 Spatial spread of an epidemic.

The population consists of two populations, infectives I(x, t) and susceptibles
S(x, t), x ∈ R, t ≥ 0.

1. Justify the following dispersion model:

∂

∂t
S(x, t) = −rS(x, t)I(x, t) +

∂2

∂x2
S(x, t) ,

∂

∂t
I(x, t) = rS(x, t)I(x, t) − aI(x, t) +

∂2

∂x2
I(x, t) .

2. Study the travelling waves solutions with boundary conditions:

lim
x→±∞ I(x, t) = 0 .

Show that there exists a minimal wave speed. Is such a travelling wave
allowed by the Fisher equation?

Exercise 2.7.19 Travelling waves of Fisher equation.

Consider the differential equation:

d2q

dt
+ c

dq

dt
+ f(q) = 0 ,

with f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0 and f ′′(q) < 0 for all q ∈ [0, 1].
Let:

c ≥ 2
√

f ′(0) ,

α = − 1
f ′(1)

(
−c/2 +

√
c2/4 − f ′(1)

)
,

β =
1

f ′(0)

(
c/2 −

√
c2/4 − f ′(0)

)
.

Define the domain D:

D = {(p, q) s.t. 0 ≤ q ≤ 1, −βf(q) ≤ p ≤ −αf(q)} .
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1. Check that β > α > 0.
2. Show that D is invariant under the flow:

dq

dt
= p ,

dp

dt
= −cp − f(q) .

3. Show that D contains the unstable manifold of the point (0, 1).
4. Conclude and apply to the Fisher equation.

Exercise 2.7.20 Spatial repartition of the spruce budworm (from [57]).

Consider the one-dimensional spatio-temporal model of the spruce budworm:

∂

∂t
u(x, t) = f(u(x, t)) +

∂2

∂x2
u(x, t) ,

with

f(u) = ρu
(
1 − u

κ

)
− u2

1 + u2
.

Study qualitatively the travelling waves of the model.

Exercise 2.7.21 Advection-reaction-diffusion equation.

The evolution of a population N(t, x), t > 0, x ∈ R is given by the following
equation:

∂N(t, x)
∂t

= D
∂2N(t, x)

∂x2
− k

∂N(t, x)
∂x

+ aN(t, x) ,

the parameters D, k and a are positive, the initial population is M and is
concentrated in 0.

1. Justify this model.
2. Solve the equation (Hint: take the Fourier transform of N(t, x)).
3. Study the level curve N(t, x(t)) = ct when t → ∞ and find the asymptot-

ical propagation speed of the population spreading.

Exercise 2.7.22 Delay logistic model.

1. Consider the following model:

dN(t)
dt

= N(t)(1 − N(t − T ))

where T is a positive delay constant and with initial condition:

N(t) = φ(t) , t ∈ [0, T ] .

Justify this delay model from a biological point of view.
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2. Assume that the linearization n(t) = N(t) − 1 about 1 is valid. The new
equation becomes then:

dn(t)
dt

= −n(t − T ) . (2.27)

3. Show that there exists an infinity of solutions to (2.27) of the form n(t) =
ceλt, with c being a real number and λ be a complex number. (Hint: show
that 0 is an essential singularity of the complex valued function z → e1/z

and then use the Picard Theorem.)
4. What do you think about the stability of point 1?
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Discrete-time dynamical systems

3.1 Introduction

In the previous section, devoted to continuous-time dynamical systems, we
regarded time as a continuous variable. In some biological situations, such
hypothesis is not relevant. For instance, we can think of the reproduction of
some animals or plants which only occur during a short period in the year.
In such cases, it will be more relevant to think in terms of discrete time, the
time step being equal to a year. The writing of a discrete-time dynamical
model does not put any major problem. In fact there is a kind of heuris-
tic parallel between continuous and discrete-time models. Thus a time wise
demographical population will be modeled either with an autonomous dif-
ferential equation or with a recurrent equation; a population considering age
and sexual maturity will be modeled with a Mc Kendrick-Von Foerster-type
partial derivative equation or with a discrete delay equation, . . . We could
naively believe that continuous-time and discrete-time models have the same
qualitative characteristics. We will see that it is not the case and that qual-
itative models, which seem heuristically close to the continuous models we
studied previously, display drastically different behaviors. This will constitute
the core of this chapter. We will nevertheless start with some basic reminders
on discrete recurrent equations with or without delay, but we will not linger.

Before dealing with the study of discrete-time models, let us start with
a short reminder of the qualitative characteristics of the continuous-time dy-
namical systems presented in the previous chapter. In our study of dynamical
systems in modeling an isolated population or two populations in interaction,
we saw that only three qualitative behaviors were possible because of the
Poincaré-Bendixson Theorem:

• convergence to a steady point,
• convergence to a limit cycle,
• blow-up of the number of people (this type of model is not relevant because

of it is unrealistic in the long run).
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Let us emphasize, once again that in one dimension (that of an isolated
population), a continuous-time dynamical system cannot show an oscillating
behavior. Such behaviors are very stable: except for an hypothetical prelimi-
nary behavior, the system’s course quickly stabilize around a steady point or
around a limit cycle. Except for hypothetically critical values, an alteration
of the initial characteristics of the system does not have an impact of the
resulting characteristics.

We will focus on the case of an isolated population, taking its temporal
evolution into account. Our study-case will be the discrete logistic model de-
rived from the Verhulst continuous logistic model. As its continuous cousin,
the discrete logistic model only depends on one parameter. When this parame-
ter is small, the system converges to a steady point. When it increases, there
emerges a cycle of period two, which is new when you consider the continuous
logistic equation. Thus continuous and discrete in time models behave differ-
ently. Let us go on and increase the parameter of the discrete logistic equation:
we can observe the emergence of cycles with arbitrary lengths accompanied
with sequences which densely fill an interval. Now there is no more connec-
tion with the continuous logistic model, no longer. Solutions to the discrete
logistic model display astonishing features. In particular, some solutions are
very sensitive to changes of the initial condition or to minor alterations of the
parameter. Such models are called chaotic models. What about the biologi-
cal implications of such mathematical results? Can we indeed model a real
population with such a sensitive system? Would it be more realistic to resort
to probabilistic modeling? Long-term predictions seem delicate or even im-
possible with such models. Can we accept models without predictions which
constitute the essence of a scientific approach? Such issues are significant for
the modeliser. Practically speaking, he has to choose between determinist and
random models. Hence, we need an experimental approach which enables us
to make such a discrete logistic model valid from a biological viewpoint. That
is what [16] did through the study of the dynamics of Tribolium, which we
will reproduce after the study of the discrete logistic model. [16] study a more
sophisticated model but it presents the same bridges between steady states,
cycles and chaotic behaviors. Such bridges will help make their model em-
pirically valid and will enable us to stand in favor of modeling through a
chaotic-type model.

3.2 Delay models

Let us start with the basic properties of difference equations. It is sometimes
more natural, when modeling the evolution of a population, to take into ac-
count not only the current situation, but also the past one: for instance, birth
rate does not depend on the population size Nn, but rather on the sexually
mature individuals. A way to incorporate the delay effect is to consider models
like:
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Nn+1 = f(Nn, Nn−R) , (3.1)

where R (an integer) is the delay. We will study the stability of the steady
state of these delay models.

3.2.1 Case R = 1

Equation (3.1) becomes:

Nn+1 = f(Nn, Nn−1) . (3.2)

Set Xn =
(

Nn−1

Nn

)
. Equation (3.2) can be written:

Xn+1 = F (Xn) , (3.3)

with

F

(
x
y

)
=
(

Fx(x, y)
Fy(x, y)

)
,

Fx(x, y) = y and Fy(x, y) = f(y, x) .

A steady point of (3.3) is such that X� =
(

x�

y�

)
with x� = y� and x� =

f(x�, x�). Indeed, this is a steady point of (3.2).
Let us set Σn = Xn − X� and linearize (3.3) about X�:

Σn+1 = MΣn + o(Σn) ,

with

M =

(
0 1(

∂f
∂y

)
X�

(
∂f
∂x

)
X�

)
.

The eigenvalues of M satisfies P (λ) = 0, where:

P (λ) = λ2 − λ

(
∂f

∂x

)
X�

−
(

∂f

∂y

)
X�

.

The steady point X� is stable if the modulus of the eigenvalues of M are less
than 1.
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3.2.2 General delay(R ≥ 1)

The approach is the same as for R = 1. A linearization about the steady point
is done. The steady state is stable if the modulus of the roots of

P (λ) = λR+1 − λR

(
∂f

∂x

)
X�

−
(

∂f

∂y

)
X�

(3.4)

are all less than 1. A sufficient condition of stability is given by:∣∣∣∣(∂f

∂x

)
X�

∣∣∣∣ +
∣∣∣∣(∂f

∂y

)
X�

∣∣∣∣ < 1 .

Indeed, under this condition, the polynomial P (λ) satisfies, for |λ| ≥ 1:

|P (λ)| ≥ |λ|R+1 − |λ|R
∣∣∣∣(∂f

∂x

)
X�

∣∣∣∣− ∣∣∣∣(∂f

∂y

)
X�

∣∣∣∣
≥ |λ|R

(
|λ| −

∣∣∣∣(∂f

∂x

)
X�

∣∣∣∣− ∣∣∣∣(∂f

∂y

)
X�

∣∣∣∣)
≥ 1 −

∣∣∣∣(∂f

∂x

)
X�

∣∣∣∣− ∣∣∣∣(∂f

∂y

)
X�

∣∣∣∣ ,

and the modulus of the roots of P (λ) are less than 1. Note that the value R
of the delay disappears when using this (sufficient) condition.

3.2.3 Comparison with the system without delay

Let us consider the system without delay associated with the delay model
(3.1):

Nn+1 = f(Nn, Nn) . (3.5)

The steady states of (3.1) and (3.5) are the same. A steady state of the system
without delay is stable if:∣∣∣∣(∂f

∂x

)
X�

+
(

∂f

∂y

)
X�

∣∣∣∣ < 1 . (3.6)

This condition is usually different from the condition given on the modulus
of the roots of the polynomial (3.4). It is unclear whether the introduction of
a delay stabilizes or destabilizes the models. Examples are given in exercise
(3.6.1).
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3.3 Discrete logistic model

Starting from a continuous-time model:

dN(t)
dt

= f(N(t)) ,

we introduce the “associated” discrete-time model:

N((n + 1)∆) − N(n∆)
∆

= f(N(n∆)) .

Most of the continuous-time models are based on the logistic function
f(x) = ρx

(
1 − x

κ

)
. The discrete-time logistic model is:

N((n + 1)∆) − N(n∆)
∆

= ρN(n∆)
(

1 − N(n∆)
κ

)
.

Let us make the changes of parameters: r = ρ∆ + 1, K =
κ(ρ∆ + 1)

ρ∆
and set

un =
N(n∆)

K
. We then obtain:

un+1 = run(1 − un) . (3.7)

This model have been introduced by [59] and [60] for modeling a population
dynamics. From now on, we set:

�r(x) = rx(1 − x) . (3.8)

We need to work with a positive population size: we will thus assume in the
following 0 ≤ r ≤ 4 and 0 < u0 < 1. We can easily check that the population
size remains in the interval [0, 1].

3.3.1 Steady states

The sequence (3.7) has two steady states: 0 and
r − 1

r
.

• 0 ≤ r < 1. The sequence un converges to 0.

• 1 < r < 3. The state 0 becomes unstable. The state
r − 1

r
is stable. We

check that the sequence un converges to
r − 1

r
for any initial condition

0 < u0 < 1.
• 3 < r ≤ 4. The steady states 0 and

r − 1
r

are both unstable.

We will now study the case 3 < r ≤ 4.
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3.3.2 Cycles

Consider the model where the iterative time step is 2:

un+2 = �r(�r(un))
≡ �2r(un) .

The steady states of the sequence un+2, apart from 0 and
r − 1

r
, are:

u± =
r + 1 ±

√
(r + 1)(r − 3)
2r

. (3.9)

This shows the existence of a discrete cycle of period 2: if u0 = u+, then
u2n = u+ and u2n+1 = u−. This is a first difference between continuous-time
and discrete-time models. A one-dimensional continuous-time model has no
periodic behavior; a discrete-time model can have a periodic behavior.

Definition 3.3.1 Cycles.
Consider the iterative sequence un+1 = f(un). A cycle of period m is a

sequence c0, c1, . . . , cm−1 such that:

ci = f(ci−1) ,

fm(c0) = c0 ,

f i(c0) 
= c0 for i = 1, 2, . . . , m − 1 .

Proposition 3.3.1 Stability of a cycle.

A cycle is stable if

∣∣∣∣∣
m−1∏
i=0

f ′(ci)

∣∣∣∣∣ < 1 .

Indeed, we know that the stability of the sequence un+m = fm(un) about
ci is given by the condition |(fm)′(ci)| < 1. But:

(fm)′(ci) = f ′(fm−1(ci))(fm−1)′(ci)
= f ′(ci−1)(fm−1)′(ci)

=
m−1∏
i=0

f ′(ci) .

We then check that the cycle (3.9) of period 2 of the discrete logistic map
is stable if 3 < r < 1 +

√
6 and unstable if 1 +

√
6 < r ≤ 4. We then prove the

existence of an increasing sequence rn, with rn > 3 and lim rn = rc ∼ 3, 828,
such that the associated discrete logistic map has cycles of period 2n. To every
rn, a small interval is associated, for which the cycle of period 2n is stable.
We can prove that the sequence rn satisfies:

lim
n→∞

rn − rn−1

rn+1 − rn
= δ ∼ 4.6692 . . .
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This constant δ is indeed an universal one ([22]). When r > rc, the cycles
of period 2n become unstable and cycles of period k, 2k, 4k, . . ., with k odd,
appear. Note that a general result due to Sarkovsky ([77]) ensures that the
existence of a cycle of period 3 implies the existence of cycles of period k, with
k being an arbitrary integer. The existence of a cycle of period 3 therefore
plays a key-role, for the existence of very disturbed behaviors, called chaotic
behaviors ([55]). We will study these behaviors in the particular case r = 4.

3.3.3 Chaotic behavior

In this book, we do not want to give a survey of the general ergodic theory.
We will only study the particular case:

un+1 = 4un(1 − un) .

See [15] for general results, especially on the Birkhoff’s Ergodic Theorem.
Let us write the initial condition: u0 = sin2(2πθ). We can check that

un = sin2(2n2πθ).
Let us decompose the real number θ in base 2:

θ =
∑
k≥0

εk2−k , (3.10)

the εk being 1 or 0. The sequence un becomes:

un = sin2

(
2π

∑
p>0

2−pεp+n

)
. (3.11)

When θ is a rational number, the expansion (3.10) is periodic after some rank.
Equation (3.11) shows that the sequence un is periodic after this rank. Cycles
of arbitrary periods can be built from a rational initial condition.

Two remarks can be done when starting from a rational number θ.

• Sensitivity to the initial condition. Let θ1 and θ2 be two rational numbers
such that |θ1 − θ2| ≤ 2−K with K huge, but with binary expansions that
differ after the K-th digit. The corresponding logistic maps u1

n and u2
n will

be closed at the beginning (roughly speaking for n < K), but will then
have completely different behaviors.

• Computer simulation. Let us simulate the logistic map with a computer.
The initial condition θ has to be a decimal number in base 2. The simulated
sequence un will therefore equal to 0 after some rank.

We will show that there exists a set K, which complement is negligible,
such that, if θ ∈ K, then the sequence un visits the interval [0, 1] in a dense
way. Moreover, we will give the density occupation of the sequence un.

We will first check that the sequence of functions:
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Vn(θ) =
1
n

n−1∑
k=0

exp(i2πθ2nk)

with k being an non-vanishing integer, converges in L2 to the null function

since
∫ 1

0

|Vn(θ)|2dθ =
1
n

. Then little algebra proves that there exists a con-

stant C such that
∫ 1

0

|Vn(θ)|4dθ ≤ C

n2
. Set An = {θ ∈ [0, 1], |Vn(θ)| ≥ ε} . De-

note by λ(An) the Lebesgue measure of An.

λ(An) =
∫ 1

0

1|Vn(θ)|≥εdθ

=
1
ε4

∫ 1

0

ε41|Vn(θ)|≥εdθ

≤ 1
ε4

∫ 1

0

|Vn(θ)|4dθ

≤ C

ε4n2
.

Set Bn = ∪p≥nAp . We then have lim
n→+∞λ(Bn) = 0 . There follows that

Vn(θ) → 0 (a.e.) as n → +∞. Writing sin(x) =
eix − e−ix

2i
, we can then

deduce

1
n

n−1∑
k=0

up
k →

Cp
2p

22p
(a.e.) ,

as n → ∞, and for p being an arbitrary integer. Particularly, for p = 1, it
means that there exists an average size. This average size is equal to 1/2. Set:

µ(x) ≡ 1
π
√

x(1 − x)
.

Noting that
∫ 1

0

xpµ(x)dx =
Cp

2p

22p
, Stone-Weierstrass Theorem ensures that,

for every continuous function, we have:

1
n

n−1∑
k=0

f(uk) →
∫ 1

0

f(x)µ(x)dx (a.e.) , (3.12)

as n → ∞. This convergence (3.12) is still available for indicator function
1[a,b], 0 ≤ a < b ≤ 1:

1
n

n−1∑
k=0

1[a,b](uk) →
∫ b

a

µ(x)dx (a.e.) . (3.13)
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The convergence (3.13) clearly indicates that µ is the occupation density of the
sequence un. Moreover, the convergence (3.12) ensures that there is no stable
cycle. Indeed, assume the existence of a stable cycle: c0 = sin2(2πθ0), c1 =
sin2(2πθ1), . . . , cm−1 = sin2(2πθm−1). Then there exists a small interval I (of
non-vanishing Lebesgue measure) about θ0 such that, for any initial condition
θ ∈ I, we have:

1
n

n−1∑
k=0

f(uk) → 1
m

m−1∑
i=0

f(ci) as n → ∞.

This clearly is a contradiction with (3.13).
Moreover, note that the density µ is infinite in 0 and 1. This indicates that

the population can almost vanish from time to time, but that this population
will nevertheless never completely vanish.

Remark 3.3.1 Comparison with a purely stochastic model.

Assume that the population size is driven by a purely stochastic model, say
the sequence un is an i.i.d. sequence of r.v. of probability density µ. The strong
law of large number shows that, for every function f :

1
n

n−1∑
k=0

f(uk) →
∫ 1

0

f(x)µ(x)dx (a.s.) .

This result is similar to (3.12).
The three following figures enables us to graphically understand the ap-

parition of cycles for the discrete logistic model.

3.4 Tribolium dynamics.

We have seen that an iterative discrete map, even very basic, as in the logistic
map, can lead to very complicated behaviors, especially chaotic behaviors. The
following question then arises. Is there such (mathematical) behavior in the
(biological) real world? The distinction between a chaotic determinist behavior
and a stochastic behavior seems particularly delicate to establish empirically.
Indeed, a real situation always contains uncertainties: some parameters are
unknown, some data are noisy,. . . . When the model has a stable behavior
(e.g. stable steady state or stable cycles), such uncertainties do not play a
major role. On the other hand, when the behavior is unstable (the sensitivity
to initial conditions is then essential), such uncertainties play a key-role.

[16] have elaborated an experimental protocol. This protocol is a way of
deciding whether a population dynamics is determinist (chaotic) or stochastic.
[16] have studied the dynamics of the coleopter Tribolium. There are three
stages in the life of a Tribolium: worm, chrysalis and adulthood. Not taking
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into account the errors of measures, the stochastic variability of the various
rates (births, deaths, . . . ) and the unexpected changes in the outside world,
the proposed model is the following:

Wn+1 = rAn exp(−ce,wWn − ce,aAn) , (3.14)
Pn+1 = (1 − µw)Wn ,

An+1 = Pn exp(−cc,aAn) + (1 − µa)An .

Wn represents the worms that eat; Pn represents the great worms, the worms
that do not eat, the chrysalis and the sexual immature adults; An represents
the sexually mature adults. The time unit is two weeks. This is approxima-
tively the time a Tribolium spends in stages Wn and Pn. The rate r is the
reproduction rates per adult by time unit, and without cannibalism. The rates
µw and µa are the death rates of worms and adults by time unit. The para-
meter exp(−ce,wWn − ce,aAn) models the eggs eaten by worms and adults.
The parameter exp(−cc,aAn) models the chrysalis eaten by the adults.

When the parameters r,−ce,w, ce,a, µw and µa are given (only parameter
cc,a is allowed to vary), the model (3.14) has the following behavior:

• cc,a = 0.0. One stable steady state.
• cc,a = 0.05. A stable cycle of period 8.
• cc,a = 0.25 and cc,a = 0.35. Chaotic behavior.
• cc,a = 0.423 → 0.677. Cycle of period 3 together with chaotic behavior

and stable cycles of period 8 and more.
• cc,a = 1.0. Stable cycle of period 3.
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Then [16] empirically study the evolution of Tribolium: the previous values
of parameters cc,a are tested, and they experimentally check that the observa-
tions correspond to the theoretical model. The transition steady states, cycles
and chaos is observed. It seems then reasonable to conclude that Tribolium
should have a chaotic behavior.

This experiment is a confirmation that a population driven by a small
number of parameters can behave in a very complicated way. Especially, these
fluctuations could not come from the outside world, but are resulting from the
intrinsic dynamics of the species. Moreover, an even minor change in these
parameters can dramatically modify the dynamics of this species. Last, despite
a common belief (cf. [60]), this experiment proves that a chaotic behavior does
not imply the extinction of the species.
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3.6 Exercises

Exercise 3.6.1 Delay models.

Compare the stability of the steady states in the following models:

un+1 = f(un, un−1) ,

vn+1 = f(vn, vn) ,

with f(x, y) = x exp(r(1−y)), and then f(x, y) =
rx2

1 + by2
. Parameters r and

b are positive.
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Exercise 3.6.2 Cycles of period 2.

For which values of parameter r are there cycles of order 2? Are the cycles
stable?

un+1 = un exp(r(1 − un)) .

Exercise 3.6.3 Two species model.

Determine the stability of the (possible) steady state in the model:

Nn+1 = f(Nn, Pn) ,

Pn+1 = g(Nn, Pn) ,

where f and g are positive functions.
Application: Predator-prey model with f(x, y) = rx exp(−ay) and g(x, y) =

ρx(1 − exp(αy)) where a, α, r and ρ are positive.

Exercise 3.6.4 Dispersal model (from [50]).

Let N0(x), x ∈ R be a population density: the function N0(x) is positive and
its integral is equal to N0. Let k be a positive kernel which integral is equal
to 1. Assume the following repartition of the population through time:

Nn+1(x) = ρ

∫
R

k(x − y)Nn(y)dy .

1. Justify this dispersal model.
2. Calculate the total population size at time n.
3. Can this model generate travelling waves with an accurate choice of pa-

rameter ρ and kernel k,? In other words, can we find a constant c such
that:

Nn+1(x) = Nn(x − c) ?

4. Now we assume that the kernel k and the function N0 are compactly
supported. What is the colonization speed of R by the population?

5. Now assume a periodic model::

Nn+1(x) =
∫ 2π

0

k(x − y)Nn(y)dy .

Justify this model. What is the limit of Nn(x) as n → +∞?

Exercise 3.6.5 Optimal harvesting (e.g. [12, Ch.18.3]).

Consider a population un, n ≥ 0 to be harvested. Its life cycle is described
by a set of stages (i.e. i-states, i = 1, . . . , d): un = (ui

n)i=1,...,d. We assume
the transitions between the different stages to be linear:
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un+1 = Aun ,

where A = (aij)i,j=1,...,d.
Let hi be the proportion of stage i surviving the harvest. The model be-

comes:

un+1 = HAun ,

with H = diag(h1, . . . , hd).

1. Let y be the yield of an individual in each stage. The total yield is:

Y = yt(I − H)Au .

We want to maximize the yield per individual. Show that this maximiza-
tion reduces to the linear programming problem:
Find u that maximizes

Y = yt(A − I)u ,

subject to the constraints

Au − u ≥ 0 ,

u ≥ 0 ,

(1, . . . , 1) · u = 1 .

2. Find H in terms of the optimal vector u.
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Game theory and evolution

4.1 Introduction

This section does not pretend to propose a thorough introduction to game
theory but only to give an idea of the application of simple games to the
theory of the evolution. From a historical viewpoint, the fields of application
of the game theory is economy, and it is so since the fundamental writings
of [85]. A game is a mathematical object which presents a conflict between
several subjects called players. It is up to the players to choose their strategy
in the game. From a mathematical viewpoint, the players try to make the
most of the numerous strategies. Hence the problem of an equilibrium in
the game combining each strategy of each player. The game theory needs
a significant theoretical investment in non-linear analysis, which we will not
make. You can read general books such as [3, 30, 71, 81, 87]). We will only
set the definitions of essential notions such as game, strategy and equilibrium
and we will only speak about, and not demonstrate, the Nash Theorem which
proves the existence of at least one equilibrium.

The application of the game theory to the evolution is much more recent
than its application to economy ([61]). From the point of view of evolution,
two issues are commonly dealt with: the sex-ratio and the hawk-dove model.
[23] write about the stakes of both issues from a neo-Darwinian viewpoint,
in the light of the game theory. We chose to thoroughly deal with the hawk-
dove model. The problem is as follows: when observing the behavior of some
animal species in case of internal conflict (i.e. the appropriation of a new food
resource or the conquest of a female), there are at least two behaviors. The
first one is fight: the aim is to obtain this resource at any cost, no matter
what the consequences are. Such behaviors is called the “hawk” behavior. The
second one is peace: you ’d rather lose the resource than risk a conflict. This
second behavior is called the “dove” behavior. The conflict between the two
protagonists will be modeled in terms of games: the players will stand for the
animals and the strategies will be the hawk and dove behaviors. The questions
is: how will the parameters of the game (significance of the resource and risks of
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corporal damages) make a balance possible between hawks and doves within a
population? Firstly, we will study the static aspect of the game. The dynamical
aspect is still in progress from a mathematical viewpoint. We will propose a
dynamical version of this game, which will allow an interesting parallel with
the dynamic demographical models. Finally we will propose exercises as an
extension of the game: the hawk-dove-bourgeois game.

4.2 Games, strategies and equilibria

We will first start with a formal presentation of the notions of games, strategies
and equilibria. Indeed, we will only consider non-cooperative games, and the
word “non-cooperative” will be omitted for simplicity. We consider two players
A and B. These players would model either individuals, either populations.
These two players are in competition. The aim of player A (resp. B) is to
chose a strategy x (resp. y) in a set of strategies. For convenience, we denote
by A (resp. B) the set of strategies of player A (resp. B). In the sequel we
will give examples of strategies: the celebrated hawk versus dove strategy
and in exercise 4.5.1 one of its generalization, the hawk-dove-bourgeois game.
The set A × B is the set of possible strategies. By assumption, both sets A
and B are finite, but infinite sets of strategies can be considered. The elements
(=strategies) of A and B are denoted by Ai and Bj . The players can therefore
chose between a finite number of strategies. The players A and B do not know
about the opponent’s choice.

Let us follow the classical approach. We assume that the players do not
chose their strategies, but only chose the probability of playing a strategy.
Therefore let us define the subset A of R

#A:

A = {x ∈ (R+)#A,

#A∑
1

xi = 1} .

The set A is then “embedded” in the set A: the i−th element of A is
replaced by the vector (0, . . . , 1, . . . , 0), with the 1 in i−th position.

Therefore we have obtained a continuous set A of strategies. These strate-
gies are called mixed strategies as opposed to the strategies of A that are called
pure strategies. A mixed strategy is a convex combination of pure strategies:
each weight of the convex combination can be interpreted as the probabil-
ity that the player A chose the pure strategy associated with the weight. Of
course, the same holds for B, and a set B of mixed strategies is defined for
the player B.

A game is then defined by a function f from A×B to R
2, called a utility

function. The function f associates each pair (x, y) ∈ A×B of (pure) strategies
with a pair (fA(x, y), fB(x, y)) ∈ R

2. fA(x, y) represents the “profit” of player
A if he plays the strategy x with his opponent B playing the strategy y.



4.2 Games, strategies and equilibria 61

Function f is then defined on the sets A and B by bi-linearization. Let x = (xi)
and y = (yj) be mixed strategies of A × B.

Then:

fA(x, y) =
#A, #B∑

i,j=1

xiyjfA(Ai, Bj) ,

fB(x, y) =
#A, #B∑

i,j=1

xiyjfB(Ai, Bj) .

Of course the behaviors of players A and B result from the utility function.
Player A choses strategy x� that maximizes his profit, but he still ignores the
strategy of player B. In other words, player A choses a strategy x� in the set

{x� ∈ A, fA(x�, y) = max
x∈A

fA(x, y)} .

Similarly, player B choses a strategy y� in the set

{y� ∈ B, fB(x, y�) = max
y∈B

fB(x, y)} .

Player B also ignores the strategy of A. The question is now to know whether
there exists a pair of strategies (x�, y�) satisfying the previous conditions.
Such a pair is called a Nash equilibrium of the game. A pair of strategies
(x�, y�) is a Nash equilibrium of the game iff:

fA(x�, y�) = max
x∈A

fA(x, y�) ,

fB(x�, y�) = max
y∈B

fB(x�, y) .

The question of the existence of a Nash equilibrium is a difficult question.
It relies on the Brouwer fixed point Theorem. We will therefore admit the
results without any proof. Indeed, we will give results on Nash equilibrium in
a more general setup than those used in the examples. These results can be
particularly used when the number of strategies becomes infinite.

The sets A and B are convex and compact. The functions fA and fB are
continuous. We are in a particular case of the general Nash Theorem ([87],[3,
Ch.12]).

Theorem 4.2.1 Nash Theorem.
Assume that the functions x → fA(x, y) and y → fB(x, y) are concave1,

then the game has at least one Nash equilibrium.
1 In our examples, this condition is still satisfied.
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4.3 Hawks and doves

4.3.1 Equilibria

We will consider an animal population with infinite size. These animals are
in competition for a resource, for instance food. Inside this population, two
behaviors coexist: a behavior H (for hawks) and a behavior D (for doves).
The meetings between hawks and doves are characterized as follows.

1. When two doves meet, they fairly share the resource R.
2. When a hawk and a dove meet, the hawk brings the resource R without

fight.
3. When two hawks meet, they fight together. This induces damages P and

each hawk bring only half of the resource R minus the damages P .

We assume that the resource R and the damages P are of the same kind.
These two quantities are of different kind through this means that they have
been converted in terms of selective value. Let G(., .) be the “profit” of a
meeting. Depending of the kind of meeting, this profit is given by:

G(H,H) =
R − P

2
,

G(H,D) = R ,

G(D,H) = 0 ,

G(D,D) =
R

2
.

This is a game with pure strategies: the hawk strategy and the dove strat-
egy. Let λ be the proportion of doves in the population. This game can be
viewed as a two-player-game: λ is the probability for a player to adopt the
dove strategy. With the previous notation, the utility function f = (fA, fB)
becomes:

fA(H,H) = fB(H,H)
= G(H,H) ,

fA(H,D) = fB(D,H)
= G(H,D) ,

fA(D,H) = fB(H,D)
= G(D,H) ,

fA(D,D) = fB(D,D)
= G(D,D) .

Let us now investigate the Nash equilibrium of this game. Let us compute
max
x∈A

fA(x, y) . The strategy x is a mixed strategy and can be written x =

λC + (1 − λ)F . We then deduce:
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max
x∈A

fA(x, y) = max(fA(D, y), fA(H, y)) .

The strategy y is also a mixed strategy: y = λ′D + (1 − λ′)H . So:

max
x∈A

fA(x, y) = max
(

λ′R
2

, λ′R + (1 − λ′)
R − P

2

)
.

Two cases must be distinguished: when the damage P is greater than the
resource R, and when the damage P is less than the resource R.

• Case R > P .
We have fA(H, y) > fA(D, y) and:

max
x∈A

fA(x, y) = fA(H, y) .

Because of the symmetry between the functions fA and fB, the equilibrium
(x�, y�) satisfies x� = y�. We are looking for an x� such that:

fA(x�, x�) = fA(H,x�) .

Set x� = λ�D + (1 − λ�)H.

fA(x�, x�) = fA(H,x�)
= λ�fA(D,x�) + (1 − λ�)fA(H,x�) .

We can deduce λ� = 0. The strategy hawk-hawk is the Nash equilibrium
of the game.

• Case R < P .
We have just seen that if max

x∈A
fA(x, y) equals fA(H, y), then λ� = 0. It fol-

lows max
x∈A

fA(x, y) = max
(

R − P

2
, 0
)

. We can deduce that max
x∈A

fA(x, y)

equals fA(D, y) in the case R < P . We have to solve:

fA(D,x�) = fA(H,x�) . (4.1)

The frequency λ� defined by the equation (4.1) is a frequency that makes
the balance between the profits of hawks and doves. This frequency is given
by:

λ� = 1 − R

P
.

The Nash equilibrium leads to a proportion 1 − R

P
of doves and a propor-

tion
R

P
of hawks. The game theory modeling explains the coexistence of

the two behaviors when the hawk’s strategy is too costly.
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4.3.2 Dynamical aspect

When a game has an equilibrium, the question of its stability arises. For in-
stance, what happens if some immigrants or mutants arrive? Let us study
the stability of the hawk-dove game. By stability, we mean stability in time.
For this purpose, we need a reproduction model of the population. We can as-
sume, even if it is unrealistic, the most simple reproduction model: the asexual
reproduction model. Moreover, we want an expected number of descendants
per individual, that is consistent with the hawk-dove game.

Let λn be the frequency of doves in the population at time n. A dove has
an expected profit given by:

Gn(D) = λnG(D,D) + (1 − λn)G(D,H) .

A hawk has an expected profit given by:

Gn(H) = λnG(H,D) + (1 − λn)G(H,H) .

We assume that the reproduction is proportional to the profit:

λn+1 = λn
Gn(D)

λnGn(D) + (1 − λn)Gn(H)
. (4.2)

The steady states of the sequence λn are the solutions of:

λ� = λ� G�(D)
λ�G�(D) + (1 − λ�)G�(H)

.

The two solutions are λ� = 0 and λ� = 1 − R

P
. The second solution is admis-

sible iff R < P . The steady states of the sequence λn are the Nash equilibrium
of the game. The equation (4.2) can be written:

λn+1 = h(λn) ,

where

h(x) =
Rx2

Rx2 + 2Rx(1 − x) + (R − P )(1 − x)2
.

Let us study the stability of the steady states of the sequence λn.

1. Neighborhood of λ� = 0.
A Taylor expansion leads to:

λn+1 ∼ λ2
n

R

R − P
.

a) If R > P , λn → 0+ as n → +∞ and the state λ� = 0 is stable.
b) If R < P , λn → 0− as n → +∞ and the model is not admissible for

populations having a small number of doves.
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2. Neighborhood of λ� = 1 − R

P
.

We check that h′(λ�) = 2λ� − 1. The steady state λ� is stable.

When R > P , the state λ� = 0 is stable, one says that the strategy hawk-
hawk is an ESS, where ESS stands for Evolutionary Stable Strategy. When

R < P , the state λ� = 1 − R

P
is stable, one says that the mixed strategy is an

ESS. These strategies are the unique ESS’s of the game.
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4.5 Exercises

Exercise 4.5.1 Hawks, doves and bourgeois.

Let us consider the hawk-dove game with a third possible strategy B: the
bourgeois strategy. A bourgeois behaves like a hawk if he think he was first,
else he behaves like a dove. The meeting of a bourgeois with an individual are
modeled as follows:

1. When two bourgeois meet, they do not fight. One of them (the first ar-
rived) takes the resource.

2. When a bourgeois meet a dove, they do not fight. If the bourgeois was
first, he takes the resource. If not (the dove was first), the dove takes the
resource.

3. When a bourgeois meets a hawk, he behaves like a hawk if he was first,
else he behaves like a dove.

1. Give the utility function of the game.
2. Study the Nash equilibrium in terms of the resource R and damages P .
3. Propose a reproduction model associated with the game.
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Exercise 4.5.2 Absent-minded driver.

Two cars arrive at a crossroads. If the two cars stop, the profit of the drivers
is null. If the two drivers do not stop, the profit is negative (accident!) and
huge. If one driver stops and the other doesn’t, those who stops has a small
negative profit and the other has a small positive profit. Model and study this
game.

Exercise 4.5.3 Prisoner’s dilemma.

Two suspects of a crime are arrested by the police. The police do not have
enough evidence to convict either of them unless one of the suspects confesses.
The police detain the suspects in individual cells and explain the consequences
of their potential actions. If neither prisoner confesses, both are sentenced to
one year in prison. If both confess, they will be imprisoned for six years. If only
one of the confesses, then that prisoner will be released immediately while the
other will be sentenced to nine years in prison. Model and study the game.
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Markov chains and diffusions

5.1 Introduction

When faced with a concrete situation, the modeliser will have to ask himself
this very important question: better a determinist model or a random one? So
far we favored the determinist one, but there was no ideological bias. From now
on, this book will be devoted to random model. We do not aim at questioning
the nature of hazard in life sciences but we intend to account for phenomena
which are better answered for thanks to a stochastic model than a determinist
one.

This section will be devoted to dynamical random models and, partic-
ularly, to one of their sub-classes, the Markov1 chains. The Markov chains
model dynamical random phenomena in which the past only intervenes in the
last moment of the chain. It is called random phenomena with short memory.
When the Markov chain occurs in a finite or countable cardinal state-space,
the study of the chain does not require any important mathematical invest-
ment, that is why we will start with such a case.

However, the study of Markov chains is undoubtedly tiresome to a certain
extent, but we cannot avoid it. As soon as we have mentioned the definitions
and first properties of the Markov chains, we will study the issue of geneti-
cal drift. In 1908, G. Hardy, a British mathematician, and W. Weinberg, a
German physician, established that an isolated population living under rea-
sonable conditions (that is, without mutation or selection due to an external
factor, or immigration) has a constant genetical composition in time. Their
basic proof lies on a determinist model of reproduction with two alleles. We
considered the same biological assumptions, minus the fact that reproduction
is now considered as random. So, we can model our isolated population with a
Markov chain in which one of the two alleles always ends up vanishing, hence
the term genetical drift that was applied to this model.
1 Andrei Markov, 1856-1922, Russian probabilist.
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Both models -determinist and stochastic- lead to contradictory conclu-
sions. The stochastic model seems closer to the biological reality in this case
and genetical drift is undoubtedly a seminal case which justifies the introduc-
tion of stochastic model.

Dynamical determinist systems offer two aspects: one is continuous-time,
the other discrete-time. Similarly the random dynamical systems accept a
continuous-time and a discrete-time pattern. The study of Markov continuous-
time chain is much more delicate than the study of discrete-time processes and
we will only go through it. We will start the study of continuous-time Markov
processes with a building of the Brownian motion based on a random walk. Of
course, such random walks will be modeled with a discrete-time Markov chain
and the Brownian motion will be obtained as the double-renormalizations of
the random walk, both in time and space. Incidentally, let us recall that the
origins of the Brownian motion were found in the observations R. Brown2 did
in 1827: he discovered the unorganized motion (which bears his name) of very
small particles in suspension in fluids. It must be the oldest model of a biolog-
ical phenomena via a continuous-time random process. Let us not get carried
along too far, though, since it will take almost a century before the Brownian
motion is built with method as a mathematical object. Such construction of
the Brownian motion will help us tackling the diffusion processes. Diffusion
processes -as stochastic differential equations, but we will not mention them-
belong to a large field of probability theory, which we will not be analyzed
in detail. We will just give the features of the diffusion processes and precise
some basic properties belonging to these stochastic processes.

Lastly we will use a whole concrete example: that of the domestication of
pearl millet, due to [52] (see [20] for a survey on domestication, and more!).
Its goal is to understand how cereals were domesticated in spite of other wild
or hybrid species. Such model will enable us to go through the two types of
dynamical approaches we met and will make us once again wonder about the
use of the introduction of the stochastic factor in a model. We will use the
determinist model with a differential system and then a stochastic model with
a Markov chain. Finally, we will roughly approximate the Markov chain with a
diffusion process and see that some parameters in the Markov chain (here the
invariant measure of the Markov chain), which seem impossible to obtain via
a direct calculation, can be approximately known thanks to the underlying
diffusion processes. To conclude, we will provide each sub-chapter with the
bibliography necessary to study the subject more thoroughly.

5.2 Definitions and first properties

We first consider discrete-time and discrete-state Markov chains Xn, n ∈ N:
Xn has only a finite or countable number of possible values of a set S. See
[29] for basic results on Markov chains and [62] for more general results.
2 Robert Brown, 1773-1858, Scottish botanist.
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5.2.1 Markov property

Definition 5.2.1 Markov property.
A random sequence Xn, n ≥ 0, with values in a finite or countable state

space S satisfies the Markov property if:

P(Xn+1 = xn+1|X0 = x0, . . . , Xn = xn) = P(Xn+1 = xn+1|Xn = xn) .

The sequence Xn is then called a Markov chain.

The transition probability associated with a Markov chain is the sequence
of all the probabilities of moving from a state to another:

P(Xn+1 = x|Xn = y) x, y ∈ S .

A Markov chain is homogeneous if its transition probabilities do not depend
on time. We then denote:

P (y, x) = P(Xn+1 = x|Xn = y)
= P(X1 = x|X0 = y) .

We only study homogeneous Markov chains and the term “homogeneous” will
be omitted.

The transition probability clearly satisfies:

P (x, y) ≥ 0 ∀(x, y) ∈ S2 ,∑
y∈S

P (x, y) = 1 ∀x ∈ S .

The initial distribution of the Markov chain is the distribution π0 of X0:

π0(x) = P(X0 = x) .

The initial distribution and the transition probability entirely characterizes
the Markov chain.

The joint distribution of X0, . . . , Xn can be recursively computed by Bayes
formula:

P(X0 = x0, X1 = x1) = P(X0 = x0)P(X1 = x1|X0 = x0)
= π0(x0)P (x0, x1) ,

and

P(X0 = x0, . . . , Xn = xn) = π0(x0)P (x0, x1) . . . P (xn−1, xn) .
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The joint distribution of Xn+1, . . . , Xn+m conditionally to Xn can be similarly
computed:

P(Xn+1 = xn+1, . . . , Xn+m = xn+m|Xn = xn) = P (xn, xn+1) . . .

. . . P (xn+m−1, xn+m) .

The probability Pm(x, y) of moving from the state x to the state y in m steps
is therefore given by:

Pm(x, y) =
∑

y1∈S,...,ym∈S
P (x, y1)P (y1, y2) . . . P (ym, y) .

Therefore, the sequence of probability Pm satisfies the Chapman-Kolmogorov
equations:

Pn+m(x, y) =
∑
z∈S

Pn(x, z)Pm(z, y) .

Especially:

P(Xn = x) =
∑
y∈S

π0(y)Pn(y, x) . (5.1)

5.2.2 Return time

An essential definition for understanding Markov chain is the return time into
a subset of the state space S.

Definition 5.2.2 Return time.
Let A be a subset of the state space S. The return time to A is the random

variable defined by:

TA = inf{n ≥ 1, Xn ∈ A} .

By convention, when the sequence Xn never return to A, we set TA = +∞.
When the set A is a singleton set {x}, we set TA = Tx.

Some states are “killing” the Markov chain, they are called absorbing
states.

Definition 5.2.3 Absorbing states.
A state x of the state space S is absorbing if P (x, x) = 1.

5.2.3 Finite state space

When the state space S is finite, the study of Markov chains can be done in
a matricial framework.
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Definition 5.2.4 Transition matrix.
The transition matrix is the matrix P = (P (x, y)), (x, y) ∈ S2 .

Let #S = s. Denote by π0 the vector (π0(1), . . . , π0(s)) and by πn the
vector (P(Xn = 1), . . . ,P(Xn = s)), n ≥ 1. The relationship (5.1) becomes:

πn = π0P
n .

5.2.4 State classification

Let us come back to the general framework: the state space S is finite or
countable. For (x, y) ∈ S2, denote:

ρx,y = P(Ty < ∞|X0 = x) .

ρx,y represents the probability that the Markov chain starting from the state
x reaches the state y in a finite time.

Definition 5.2.5 Recurrent and transient states.
A state y is recurrent if ρy,y = 1. A state y is transient if 0 ≤ ρy,y < 1.

If the state y is absorbing, P(Ty = 1|X0 = y) is equal to 1 and ρy,y = 1.
An absorbing state is therefore recurrent!

Let N(y) be the random number of times, possibly infinite, that the
Markov chain takes the value y:

N(y) =
∑
n≥1

1Xn=y .

We then have:

P(N(y) ≥ 1|X0 = x) = P(Ty < ∞|X0 = x)
= ρx,y .

By induction:

P(N(y) ≥ m|X0 = x) = ρx,yρm−1
y,y .

And, since:

P(N(y) = m|X0 = x0) = P(N(y) ≥ m|X0 = x)
−P(N(y) ≥ m + 1|X0 = x) ,

we can deduce:

P(N(y) = m|X0 = x0) = ρx,yρm−1
y,y (1 − ρy,y) .

This leads to the following fundamental Theorem.
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Theorem 5.2.1 Number of visits.

1. If the state y is transient:

E(N(y)|X0 = x) =
ρx,y

1 − ρy,y
.

Starting from any state x, the number of visits in the state y will be (a.s.)
finite.

2. If the state y is recurrent:
a)

P(N(y) = ∞|X0 = y) = 1 ,

and

E(N(y)|X0 = y) = ∞ .

Starting from the state y, the Markov chain returns an (a.s.) infinite
number of times in y.

b)

P(N(y) = ∞|X0 = x) = P(Ty < ∞|X0 = x)
= ρx,y .

c) if ρx,y = 0, then:

E(N(y)|X0 = x) = 0 .

If the state x does not communicate with the state y, and if the Markov
chain starts from the state x, the chain cannot return in y, although
this state y is recurrent.

d) if ρx,y > 0, then:

E(N(y)|X0 = x) = ∞ .

If the state x communicates with the state y, and if the Markov chain
starts from the state x, the chain returns an infinite number of time
in y.

5.3 Subset classification

The recurrence of a state passes on to other states. In other words, recurrence
classes are equivalence classes.

Lemma 5.3.1 Recurrence.
Let x be a recurrence state. Assume that ρx,y > 0. Then the state y itself

is recurrent and ρx,y = ρy,x = 1.



5.4 Genetical drift 73

The irreducibility of a Markov chain is an essential concept.

Definition 5.3.1 Irreducibility.

1. A subset C of the state space S is irreducible if ρx,y > 0 for all (x, y) ∈ C2.
2. A Markov chain is irreducible if S is irreducible.

Definition 5.3.2 Closed set.
A subset C of the state space S is closed if ρx,y = 0 for all x ∈ C, y /∈ C.

In other words, a Markov chain cannot escape from a closed subset.

Corollary 5.3.1 Let C be a closed irreducible subset of the state space S,
which states are recurrent. Then, for all (x, y) ∈ C2:

ρx,y = 1 ,

P(N(y) = ∞|X0 = x) = 1 ,

E(N(y)|X0 = x) = ∞ .

Lemma 5.3.2 Characterization of finite closed irreducible subsets.
Let C be a finite closed irreducible subset of the state space S. Every state

of C is recurrent.

5.4 Genetical drift

5.4.1 Modeling

We will consider here an haploid modeling of stochastic reproduction, without
mutation, selection or immigration. The population is therefore isolated. The
genetical size of the population is assumed to be constant and equal to 2N
genes. There exist two types of genes: type a and type A. At generation 0,
there exists a given number X0 (0 < X0 < 2N) of a-genes. The drawing of
genes from a generation to the next one follows a binomial distribution. The
children immediately replace the parents. Let Xn be the number of a-genes
at generation n. The number of genes A is equal to 2N − Xn. The sequence
Xn is a Markov chain with transition probability:

P(Xn+1 = k|Xn = j) = P (j, k)

= Ck
2N

(
j

2N

)k (2N − j

2N

)2N−k

j, k = 0, . . . , 2N .

The sequence Xn is an homogeneous discrete-time Markov chain with finite
state space {0, 1, . . . , 2N}.
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5.4.2 Expectation

Little algebra shows that this Markov chain has a constant expectation. Firstly
compute the conditional expectation:

E(Xn+1|Xn = j) =
2N∑
k=0

kP (j, k)

=
2N∑
k=0

kCk
2N

(
j

2N

)k (2N − j

2N

)2N−k

= j .

So that:

EXn+1 = E(E(Xn+1|Xn))

=
2N∑
j=0

P(Xn = j)E(Xn+1|Xn = j)

=
2N∑
j=0

P(Xn = j)j

= EXn

= EX0 .

The expectation is therefore constant and is given by the initial condition.
This agrees with the Hardy-Weinberg law: the genotype frequencies is stable.
If one confuses the Markov chain and its expectation, one can deduce that an
isolated population does not evolve. We will see that this conclusion is wrong.

5.4.3 Asymptotical behavior

Let us study how the communication between the states of this Markov chain
works. Two types of states exist.

• The states {1, 2, . . . , 2N − 1}.
Genes a and A coexist. Starting from any state of {1, 2, . . . , 2N − 1}, one
can go to any state of {1, 2, . . . , 2N − 1} in one step since the transition
matrix coefficients P (j, k) are positive.

• The states 0 and 2N .
One of the genes has disappeared. These two states are absorbing: if Xn =
0 (resp. 2N) then Xn+p = 0 (resp. 2N) for all p ≥ 0. Moreover, any state
of {1, 2, . . . , 2N − 1} can lead to the states 0 or 2N in one step.

Starting from any state of {1, 2, . . . , 2N − 1}, one can go to the states 0
or 2N in one step. The states 0 and 2N are absorbing: the chain Xn cannot
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return to its initial state. The states {1, 2, . . . , 2N − 1} are transient. The
states 0 and 2N are recurrent. Using Theorem 5.2.1, we see that the chain
Xn only returns a finite number of time in the subset {1, 2, . . . , 2N − 1}. It
reaches therefore either the state 0, either the state 2N in a finite time. One
of the two genes a or A disappears. This very simple modeling3 shows that an
isolated population looses its genetical variability: the Hardy-Weinberg law
fails.

5.5 Invariant measure

A crucial question arises: what is the limiting behavior of the Markov chain
(Xn) as n → +∞? Is there any stabilization of the chain? Some convergence
to an invariant measure?

Definition 5.5.1 Invariant measure.
A probability π on the state space S is an invariant measure if:∑

x∈S
π(x)P (x, y) = π(y) ∀y ∈ S .

By induction, one satisfies that, if π is an invariant measure,∑
x∈S

π(x)Pn(x, y) = π(y) ∀y ∈ S .

If X0 follows an invariant distribution π, so is Xn:

P(Xn = y) = π(y) ∀y ∈ S .

Reciprocally, let us assume that the distribution of Xn does not depend
on the time n. Then the initial distribution π0 satisfies:

π0(y) = P(X0 = y)
= P(X1 = y)

=
∑
x∈S

π0(x)P (x, y) ,

and π0 is an invariant measure.
3 This modeling is very simple but leads to numerous applications. Usually, a pop-

ulation cannot be isolated during a long period. Therefore, the extinction due to
the genetical drift is unlikely when the population size is huge. It follows that
the larger the population size, the greater the genetical variability. The popula-
tion size is usually proportional to the area. The genetical variability is roughly
speaking a power function of the area (indeed there are various estimates of this
power). It follows that small isolated islands have a poor genetical variability.
Similarly, the amazonian deforestation will reduce the genetical variability.
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Set:

Nn(y) =
n∑

k=1

1Xk=y ,

m(y) = E(Ty|X0 = y) .

Nn(y) is the number of visits at y until time n, while m(y) is the expectation
of the return time at time n with initial condition y.

Theorem 5.5.1 Law of large number.
Let y be a recurrent state. Then:

lim
n→+∞

Nn(y)
n

=
1Ty<∞
m(y)

(a.s.) ,

lim
n→+∞

E(Nn(x)|X0 = y)
n

=
ρx,y

m(y)
.

Corollary 5.5.1
Let C be a closed irreducible subset of the state space S with recurrent

states. Then, for all (x, y) ∈ C2:

lim
n→+∞

E(Nn(x)|X0 = y)
n

=
1

m(y)
,

and, if X0 ∈ C, for all y ∈ C:

lim
n→+∞

Nn(y)
n

=
1

m(y)
.

Now we need to classify the recurrent states.

Definition 5.5.2 Null recurrent, positive recurrent states.
A recurrent state y is null recurrent if m(y) = ∞.
A recurrent state y is positive recurrent if m(y) < ∞.

Lemma 5.5.1 Positive recurrent states.

1. If x is a positive recurrent state, and if ρx,y > 0, then y is a positive
recurrent state.

2. Let C be a closed irreducible finite subset of the state space S. Then all
the elements of C are positive recurrent.

5.5.1 Existence and uniqueness of the invariant measure

Lemma 5.5.2
Let π be an invariant measure.If the state x is transient or null recurrent,

then π(x) = 0.
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Theorem 5.5.2 Existence and uniqueness of the invariant measure.
An irreducible positive recurrent chain has a unique invariant measure

given by:

π(x) =
1

m(x)
x ∈ S .

Corollary 5.5.2
An irreducible Markov chain with a finite state space has a unique invariant

measure.

Corollary 5.5.3 Consider an irreducible, positive recurrent chain with in-
variant measure π. Then, for all x ∈ S:

lim
n→+∞

Nn(x)
n

= π(x) .

5.5.2 Aperiodic chain

We just have seen that, for an irreducible, positive recurrent chain with an
invariant measure, and for all (x, y) ∈ S2:

lim
n→+∞

1
n

n∑
k=1

P k(x, y) = π(y) .

We will now see more powerful results for aperiodic chains. We first need to
define the periodicity of a state.

Definition 5.5.3 Periodicity of a state.
The period dx of a state x is defined by:

dx = g.c.d.{n ≥ 1, Pn(x, x) > 0} .

We can deduce the following properties of the period:

• If P (x, x) is positive, the period of x is 1.
• Let x and y two states such that ρx,y > 0, then x and y have the same

period.
• The states of an irreducible chain have the same period. This period is

called the period of the chain.

Definition 5.5.4
An irreducible chain is called an aperiodic chain if its period is 1.

An aperiodic, irreducible, positive recurrent chain converges to its invariant
measure for every initial condition.
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Theorem 5.5.3 Convergence to the invariant measure for an aperiodic chain.
Consider an aperiodic, irreducible, positive recurrent chain with invariant

measure π. Then, for all, (x, y) ∈ S2:

lim
n→+∞Pn(x, y) = π(y) .

This introduction to Markov chains will be illustrated in the section “the
domestication of pearl millet”; this section will provide with a more substantial
application of Markov chains than the basic example of the genetical drift.

5.6 Continuous-time

The continuous-time framework is much more delicate than the discrete-time
one. Firstly, we will give the construction of the Brownian motion and of the
diffusion processes. Secondly, we will give a sketch of the approximation of
a Markov chain by a diffusion process. These notions will then be re-used
in the section “the domestication of pearl millet”. See [43] for an elementary
presentation of the following results, to [34, 32, 68] for more general results
on diffusion processes and stochastic differential equations, and to [48] for
questions related to the moving from discrete-time to continuous-time.

5.6.1 A construction of Brownian motion

We start by a fundamental example that illustrates what will be done later.
Let Xn, n ≥ 0 be a Markov chain on the integers defined by the transition

probability:

X0 = 0 ,

P(Xn+1 = i + 1|Xn = i) =
1
2

,

P(Xn+1 = i − 1|Xn = i) =
1
2

.

This Markov chain models the simplest random walk. Let ε be the one-step
increment:

εn = Xn − Xn−1 .

The εn are an i.i.d. sequence of r.v. with distribution:

P(εn = 1) =
1
2

,

P(εn = −1) =
1
2

.

The idea is to perform a double renormalization, one in time, the other in
space. Let us therefore define the sequence Wn

t , n ≥ 0, t ∈ [0, 1]:
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Wn
t =

1√
n

X[nt]

=
1√
n

[nt]∑
k=1

εk .

The time renormalization factor is 1/n, the space renormalization factor is
1/
√

n. We check that the Wn
t are centered. Wn

t can be written:

Wn
t =

√
t

1√
nt

[nt]∑
k=1

εk .

The Central Limit Theorem shows that, for any given t, as n → +∞, Wn
t

converges to a centered Gaussian variable with variance t. The increments of
process Wn

t become, for t′ > t:

Wn
t′ − Wn

t =
√

t′ − t
1√

n(t′ − t)

[nt′]∑
k=[nt]

εk .

The Central Limit Theorem shows that, for any given (t, t′), as n → +∞, the
increment Wn

t′ −Wn
t converges to a centered Gaussian variable with variance

t′− t. Similarly we check that for t1 < t2 < t3 < t4, the increments Wn
t4 −Wn

t3
and Wn

t2 − Wn
t1 are independent. The rigorous construction of the Brownian

motion requires convergence results on stochastic processes that we will omit.
We can nevertheless give the main idea. The Brownian motion is defined as
the limit of the process Wn

t as n → +∞. The Brownian motion Wt on [0, 1]
satisfies the following properties:

• W0 = 0.
• EWt = 0.
• EW 2

t = t.
• E(Wt′ − Wt)2 = |t′ − t|.
The Brownian motion has thus been introduced as the limit of a discrete-time
Markov chain with a countable state space.

5.6.2 Diffusion processes

Markov processes

This construction of the Brownian motion can be generalized. Firstly, we
want to know what the limiting process of a Markov chain could be. So we
introduce the diffusion processes on R. We favor a heuristic approach rather
than a rigorous and formal approach.

Let X(t), t ≥ 0 a real-valued stochastic process. We assume that for every
time 0 ≤ t1 < t2 < . . . < tk, the vector (X(t1), X(t2), . . . , X(tk)) has a
probability density p(t1, x1; t2, x2; . . . ; tk, xk).
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Definition 5.6.1 Markov process.
X is a Markov process if, for every Borelian set B ⊂ R and tk+1 > tk:

P(X(tk+1) ∈ B|X(t1) = x1, X(t2) = x2, . . . , X(tk) = xk)

= P(X(tk+1) ∈ B|X(tk) = xk) .

This definition of continuous-time Markov processes is indeed similar to
the definition of discrete-time Markov processes. It is therefore natural to
introduce the transition probability P (s, x, t, B):

P (s, x, t, B) = P(X(t) ∈ B|X(s) = x)

=
∫

B

p(s, x; t, y)dy ,

with s < t. The function p(s, x; t, y) is the transition probability density. It
describes the infinitesimal probability for the Markov process to move from
the state x to the state y.

A Markov process is stationary if its transition probability density
p(s, x; t, y) only depends on the difference t− s. We have seen that the incre-
ments Wt − Ws of the Brownian motion follow a Gaussian distribution with
variance |t− s|. The transition probability density of the Brownian motion is
then:

p(s, x; t, y) =
1√

2π(t − s)
exp

(
− (y − x)2

2(t − s)

)
.

Diffusions

A Markov process with transition probability density p(s, x; t, y) is a diffusion
if it satisfies the three following properties:

1.

lim
t↓s

∫
|y−x|>ε

p(s, x; t, y)dy = 0 ,

2.

lim
t↓s

1
t − s

∫
|y−x|<ε

(y − x)p(s, x; t, y)dy = a(s, x) ,

3.

lim
t↓s

1
t − s

∫
|y−x|<ε

(y − x)2p(s, x; t, y)dy = b(s, x) .
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The first condition involves the continuity (in probability) of the sample
paths of the diffusion. The function a(s, x), defined by the second condition, is
the drift of the diffusion. The function b(s, x), defined by the third condition,
is the diffusion coefficient of the diffusion. We can deduce from these three
conditions that a diffusion satisfies:

a(s, x) = lim
t↓s

1
t − s

E(X(t) − X(s)|X(s) = x) , (5.2)

b(s, x) = lim
t↓s

1
t − s

E((X(t) − X(s))2|X(s) = x) .

The functions a(s, x) and b(s, x) are consequently called the infinitesimal mo-
ments of the diffusion. For practical purposes, the relationships (5.2) charac-
terize the functions a(s, x) and b(s, x). Immediate computations prove that the
infinitesimal moments of the Brownian motion are a(s, x) ≡ 0 and b(s, x) ≡ 1.

Example 5.6.1 Ornstein-Uhlenbeck diffusion.
The Ornstein-Uhlenbeck diffusion models a randomly excited oscillator. Its

transition probability density p(s, x; t, y) is given by:

p(s, x; t, y) =
1√

2π(1 − exp(−2(t − s)))
exp

(
− (y − x exp(−(t − s)))2

2(1 − exp(−2(t − s)))

)
.

We left as an exercise to check that its infinitesimal moments are a(s, x) = −x
and b(s, x) = 2.

Fig. 5.1. Sample paths of Ornstein-Uhlenbeck diffusion

Itô formula

Let X(t) be a diffusion with infinitesimal moments a(x) and b(x). Let f be
a twice continuously differentiable determinist function. We want to perform
the change of variables Y (t) = f(X(t)), and to know what the infinitesimal
moments are, when they exist, of Y (t). We give a heuristic computation of the
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change of variables formula, called Itô formula that can be rigorously done.
Let us now compute the infinitesimal moments of process Y (t).

E(Y (t + h) − Y (t)|Y (t)) = E(f(X(t + h)) − f(X(t))|f(X(t)))
∼ E((X(t + h) − X(t))f ′(X(t))

+
1
2
(X(t + h) − X(t))2f ′′(X(t))|f(X(t)))

∼ hf ′(X(t))a(X(t)) +
h

2
f ′′(X(t))b(X(t))

One mainly needs to understand the necessity of performing a second order
expansion for the infinitesimal expectation of Y .

E((Y (t + h) − Y (t))2|Y (t)) = E((f(X(t + h)) − f(X(t)))2|f(X(t)))
∼ hf ′2(X(t))b(X(t)) .

Proposition 5.6.1 Itô formula.
The infinitesimal moments A and B of process Y (t) = f(X(t)) are given

by:

A(y) = a(x)f ′(x) +
1
2
b(x)f ′′(x) ,

B(y) = b(x)f ′2(x) ,

where y = f(x).

Example 5.6.2
Let X(t) = µ + W (t), where W (t) is a Brownian motion. Let Y (t) =

exp(X(t)). We obtain:

A(y) =
1
2

exp(x) + µ exp(x)

= (1/2 + µ)y ,

and

B(y) = exp(2x)
= y2 .

5.6.3 Diffusion approximation

It is sometimes useful to make the transition from discrete-time to continuous-
time framework, and reciprocally. In the determinist framework, this corre-
sponds for instance to the discretization of a differential equation. We then
obtain a difference equation. When studying the discrete logistic model, we
have seen, how difficult this transition from discrete-time to continuous-time
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can be. In the stochastic framework, this transition is just as difficult. One
can for instance discretize a diffusion into a Markov chain, or, starting from a
Markov chain, look for a diffusion that approximates this chain in a sense still
to be defined. This has been outlined for the Brownian motion: a Brownian
motion has been build from a random walk via a renormalization, both in
time and space.

Now our aim is to generalize what has been done for the Brownian mo-
tion. Nevertheless, we will not give rigorous results4. We only give a heuristic
approach.

Let XN be a sequence of real-valued Markov chain. Assume that there
exists a sequence of positive real number hN converging to zero as N → +∞
and such that:

E(XN
n+1 − XN

n |XN
n = x) ∼ hNa(x) ,

E((XN
n+1 − XN

n )2|XN
n = x) ∼ hNb(x) .

A time renormalization is performed:

XN (t) = XN[
t

hN

] .

Under additional technical conditions, one proves the convergence in distri-
bution of the sequence of renormalized processes XN (t) to a diffusion X(t)
with infinitesimal moments a(x) and b(x). We will now describe such an ap-
proximation of a Markov chain by a diffusion.

5.7 The domestication of pearl millet

Despite very different appearances5, domestic plants and wild plants only dif-
fer from a few genes. They belong to the same biological species, since their
hybrids are fertile. The cultivated varieties are characterized by a domestica-
tion syndrome; especially -and above all for cereals- by the sessility 6 of the
corns. This sessility characteristic is spontaneously selected by the farmer.
But the question of the fixation of the corns remains, since domestic and wild
plants cross permanently (e.g. [72]).

[52] have studied the example of the African pearl millet 7 in Sahelian
Africa. Until the sixties, the crop of pearl millet was characterized by:
4 We will refer to rigorous results in the Bibliography given at the beginning of the

chapter.
5 For instance, teosinte (Zea mexicana) has a very different appearance from maize

(Zea maïs): several stalks, ears that look like a classical graminee. Teosinte and
maize were first classified in different genera. Indeed, teosinte is the wild ancestor
of maize.

6 The corns are permanently attached, and not scattered, which is essential for a
plant that is to be harvested.

7 Latin name: Pennisetun americanum!



84 5 Markov chains and diffusions

1. fields of small area (several-acre-wide fields),
2. a very weak density (some plants per m2),
3. a turn-over within several years (peanut, pearl millet, five years of fallow),
4. scattered fields,
5. omnipresence of wild pearl millet.

The plants and the ears of wild, hybrid and domestic millet can be distin-
guished via their morphology. There is no in situ conservation of hybrid or
domestic plants. The genetical transfer from domestic plants to wild plants
are negligible.

5.7.1 Determinist modeling

[52] consider a biallelic locus. A is the wild allele and a the domestic one. The
farmer sows its fields with seeds harvested on plants of domestic genotype
(aa). Thus, these seeds have a genotype aa or Aa. Let Xn and Yn be the
frequencies of these genotypes at year n. Before the blooming time, the farmer
eliminates a given proportion v (0 ≤ v ≤ 1) of hybrids. The frequencies after
the flowering time become:

X ′
n =

Xn

1 − vYn
,

Y ′
n =

(1 − v)Yn

1 − vYn
.

For plants (a, a), from which seeds will be harvested, the fecundation takes
place:

• by autofecundation with frequency α,
• by allofecundation by the wild population with frequency m, else by the

domestic plants by panmixia.

Frequencies (a, a) and (a, A) of year n + 1 are given by:

Xn+1 = α + (1 − α)(1 − m)
(

X ′
n +

1
2
Y ′

n

)
,

Yn+1 = (1 − α)m + (1 − α)(1 − m)
Y ′

n

2
.

For Yn:

Yn+1 = (1 − α)F (m, v, Yn) ,

with

F (m, v, y) = m +
(1 − m)(1 − α)y

2(1 − vy)
.
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An elementary study of function F shows that there exists a unique steady
state Y∞, that depends on parameters α, m and v and that is a solution to:

Y∞ = (1 − α)F (m, v, Y∞) ,

This steady state is stable. The sequence Yn converges to Y∞ as n → +∞.
We can check that:

• Y∞ is a decreasing function of α,
• Y∞ is a increasing function of m,
• Y∞ is a decreasing function of v.

We can notice that the influence of the hybrids counter-selection done by
the farmer is weak. A domestic plant that mostly reproduces by autofecunda-
tion has an advantage. The means of cultivation favors the autofecundation
all the more so since the contaminated flux m is strong: autofecundation is
part of the domestication syndrome.

5.7.2 Stochastic modeling

Among the parameters of the determinist modeling, v has no real influence.
In the sequel we consider v as constant. The parameter α is important8, but
is not intrinsically random. On the other hand, it is commonly accepted that
m varies in an unpredictable way from year to year. Moreover, there exist
uncertainties due to sexual reproduction. We will successively consider the
effects of such uncertainties.

Fluctuation of the flux of wild pollen

Let us now consider a varying flux mn of pollen. The mn, n ≥ 0, are a
sequence of i.i.d. r.v. The modeling becomes:

Yn+1 = Fmn+1(Yn) ,

with

Fm(y) = (1 − α)
(

m +
(1 − m)(1 − v)y

2(1 − vy)

)
.

The sequence Yn is therefore a Markov chain. We assume that the mn have
a common density supported by [a, b] ⊂ [0, 1]. The convergence of the de-
terminist modeling and the increasing of the steady state (still denoted by
Y∞) in terms of m show that the chain Yn is (a.s.) absorbed by the inter-
val [Y∞(a), Y∞(b)]. This chain takes its values in a sub-interval of R. This
framework is slightly different from the previous one, but the same notions
8 Parameter α can lead to a game theory modeling. We will not study it, though.
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remain. This chain is irreducible, recurrent and aperiodic. It has a unique
invariant measure. We cannot analytically give its invariant measure, which
characterizes the permanent behavior of the chain. So let us note that:

E(Yn+1 − Yn|Yn = y) = E(Fmn+1(y)) − y

= Fµ(y) − y ,

var(Yn+1 − Yn|Yn = y) = var(Fmn+1(y))
= (1 − α)2(1 − β(y))2σ2 ,

where µ is the expectation of the mn, σ2 their variance and:

β(y) =
(1 − v)y
2(1 − vy)

.

[52] introduce a new process depending on a parameter ε. This parameter is
intended to converge to 0:

Y ε
n+1 = Y ε

n + ε
(
(1 − α)Fmn+1(Y

ε
n ) − Y ε

n

)
.

For ε = 1, this process Y ε
n is equal to the process Yn. The conditional moments

of Y ε
n satisfy:

E(Y ε
n+1 − Y ε

n |Y ε
n = y) = ε(Fµ(y) − y) , (5.3)

var(Y ε
n+1 − Y ε

n |Y ε
n = y) = ε2(1 − α)2(1 − β(y))2σ2 . (5.4)

We can then check that, as ε → 0, Y ε
n converges to Ŷ∞ = Y∞(µ). Let:

V ε
n =

1
ε
(Y ε

n − Ŷ∞) .

The conditional moments of V ε
n are deduced from (5.3). This proves the con-

vergence of V ε
n to an Ornstein-Uhlenbeck diffusion, which infinitesimal mo-

ments are −F ′
µ(Ŷ∞)y and (1−α)(1− β(Ŷ∞))σ. The invariant measure of the

Ornstein-Uhlenbeck diffusion is a Gaussian centered distribution with vari-
ance:

Σ2 = σ2 (1 − vŶ∞)2

4(1 − v)(1 − µ)
.

We then deduce a rough approximation9 to the invariant measure of Yn. It is
roughly a Gaussian distribution with expectation Ŷ∞ and variance Σ2.
9 This approximation is rough since it has been obtained with ε → 0 though the

process Yn corresponds to ε = 1.
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Fluctuations due to sexual reproduction

The population size is now constant and equal to N . Each individual
produces a huge number of gametes and seeds. The genotypic frequencies in
the seed stock are therefore equal to those of the determinist modeling. We
need to take into account the randomness of the stock sampling. This modeling
is similar to the one studied in the section “the genetical drift”. The sequence
Y N

n is a Markov chain defined by its transition probabilities:

P(Y N
n+1 =

k

N
|Y N

n = y) = Ck
NF k(y)(1 − F (y))N−k .

The state space of this chain Y N
n is finite. This is an irreducible, recurrent

and aperiodic chain, except for the pathological values of the parameters. The
conditional expectation is the solution of the determinist modeling. There
exists an invariant measure. The distribution of the chain converges to this
invariant measure. This is the equivalent of the steady state Y∞ of the de-
terminist modeling. Once again, this invariant measure cannot be computed.
The conditional moments Y N

n are given by:

E(Y N
n+1 − Y N

n |Y N
n = y) = F (y) − y ,

var(Y N
n+1 − Y N

n |Y N
n = y) =

F (y)(1 − F (y))
N

.

We use the fact that the process (Y N
n )n converges to Y∞ as the population

size N goes to infinity. Consider the normalized process:

V N
n =

√
N(Y N

n − Y∞) .

Its conditional moments are given by:

AN (y) = E(V N
n+1 − V N

n |V N
n = y)

=
√

N

(
F (Y∞ +

v√
N

) − (Y∞ +
v√
N

)
)

,

BN (y) = var(V N
n+1 − V N

n |V N
n = y)

= F (Y∞ +
v√
N

)
(

1 − F (Y∞ +
v√
N

)
)

.

An expansion of order 1, justified since BN (v) is bounded, leads to:

AN (y) = −(1 − F ′(Y∞))y + o

(
1√
N

)
,

BN (y) = Y∞(1 − Y∞) + o

(
1√
N

)
.
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In view of these moments, a natural idea is to approximate the process
V N

n by an Ornstein-Uhlenbeck diffusion. Indeed, the Ornstein-Uhlenbeck dif-
fusion with parameter −(1−F ′(Y∞))y and Y∞(1− Y∞), and which invariant

measure is a centered Gaussian distribution with variance
Y∞(1 − Y∞)

2(1 − F ′(Y∞))
,

approximates the process V N
n ([52]).
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5.9 Exercises

Exercise 5.9.1 Binary Markov chain.

Consider the Markov chain Xn defined on {0, 1} by the transition probability:

P(Xn+1 = 0|Xn = 0) = p ,

P(Xn+1 = 1|Xn = 0) = 1 − p ,

P(Xn+1 = 0|Xn = 1) = q ,

P(Xn+1 = 1|Xn = 1) = 1 − q .
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1. Characterize this chain (recurrence, irreducibility,. . .).
2. Compute P(Ti = n|X0 = 0), i = 0, 1.
3. Compute the invariant measure.

Exercise 5.9.2 Invariant measure of the Ornstein-Uhlenbeck diffusion.

The transition probability density of the Ornstein-Uhlenbeck diffusion X(t)
is given by:

p(s, x; t, y) =
1√

2π(1 − exp(−2(t − s)))
exp

(
− (y − x exp(−(t − s)))2

2(1 − exp(−2(t − s)))

)
.

Show that if X(0) is a centered Gaussian variable with variance 1, then X(t)
is a centered Gaussian process with covariance EX(t)X(s) = exp(−|t − s|) .

Exercise 5.9.3 Genetical drift (Section 5.4 ctd.).

For all integer n, compute the variance of Xn. Interpret the results.

Exercise 5.9.4 Birth and Death Markov chain.

A random time is said to be an exponential time of parameter α > 0 if it has
a density p(t) = αe−αt, t ≥ 0.

Consider a random sequence (Xt)t≥0 defined on the integers by using the
following rules. Assume the sequence Xt to be in the state i at time t. Two
independant exponential times Di and Bi with parameter αi and µi are run.
If Di > Bi, Xt jumps to i − 1 at time t + Di. If Di < Bi, Xt jumps to i + 1
at time t + Bi.

1. Let T be an exponential time. Show that, for t, s > 0:

P(T > t + s|T > s) = P(T > t) .

2. Show that the sequence (Xt)t≥0 is a Markov chain.
3. Show that the transition probabilities of (Xt)t≥0 satisfy:

Ph(i, i + 1) = αih + o(h) ,

Ph(i, i − 1) = µih + o(h) ,

Ph(i, i) = 1 − (αi + µi)h + o(h) .

4. Show the backward and forward Kolmogorov equations:

∂

∂t
Pt(i, j) = αiPt(i + 1, j) + µiPt(i − 1, j) − (αi − µi)Pt(i, j) ,

∂

∂t
Pt(i, j) = αj−1Pt(i, j − 1) + µj+1Pt(i, j + 1) − (αj − µj)Pt(i, j) .

5. Solve the forward Kolmogorov equation when (Xt)t≥0 is a pure birth chain
(i.e. µi = 0 for all i).
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Exercise 5.9.5 Jukes-Cantor model (from [39]).

We model the DNA sequence by a Markov chain. The state space S is a four-
element set, built up with the four nucleotides A,C,G, T that form DNA. Let
pi,j the probability that the base i mutates to become the base j. We assume
that all possible nucleotides substitutions are equally likely. Let α be the rate
of substitution. The transition matrix P becomes:⎛⎜⎜⎝

1 − α α/3 α/3 α/3
α/3 1 − α α/3 α/3
α/3 α/3 1 − α α/3
α/3 α/3 α/3 1 − α

⎞⎟⎟⎠
1. Show that Pn is equal to:

⎛⎜⎜⎝
an bn bn bn

bn an bn bn

bn bn an bn

bn bn bn an

⎞⎟⎟⎠
with

an = 1/4 + 3/4(1 − 4α/3)n ,

bn = 1/4 − 1/4(1 − 4α/3)n .

2. What is the invariant measure of this chain?
3. Consider two DNA sequences having the same ancestor. The time n since

this ancestor exists is unknown. Let p be the fraction of sites that differ
between the two sequences. Justify the following estimate of n:

n̂ =
log(1 − 4p/3)
log(1 − 4α/3)

.

Exercise 5.9.6 Word counts in a DNA sequence (from [73]).

Consider a stationary Markov chain on a finite state space S, with transi-
tion matrix P = (P (x, y)), (x, y) ∈ S2. Assume P (x, y) > 0, ∀(x, y) ∈ S2.

1. Show that there exists a unique invariant measure µ. We can now assume
that the initial distribution of the chain is µ.

2. We observe a sample path X1, . . . , Xn of the chain. The number of occur-
rences of the word xy is defined by:

N(xy) =
n∑

i=2

1{Xi−1=x; Xi=y} .

Show that the likelihood L(P,X1, . . . , Xn) of the sequence X1, . . . , Xn is:

L(P,X1, . . . , Xn) = µ(X1)
∏

(x,y)∈S2

P (y, x)N(xy) .
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3. Deduce that the likelihood estimate of the P (x, y) is:

P̂ (x, y) =
N(yx)∑

y∈S N(yx)
.

(Hint: if x/y = x′/y′, then x/y = x′/y′ = (x + x′)/(y + y′)!).
4. Let W = w1, . . . , wh be a word of length h. Let

N(W ) =
n∑

i=h

1{Xi−h+1=w1,...,Xi=wh}

be the number of occurrences of the word W in the sequence X1, . . . , Xn.
Compute EN(W ).

5. Propose an estimate of the invariant measure µ based on the law of large
number.

6. Propose an estimate of EN(W ).
7. Application. We model the DNA sequence by a Markov chain. The state

space S is a four-element set, built up with the four nucleotides A,C,G, T
that form DNA. We consider the DNA of E.coli, constituted of n =
4638858 nucleotides. We are looking for the word Chi= GCTGGTGG10.
This word has been observed 499 times, though the estimate of EN(Chi)
is 70. What should be established in order to claim that the word Chi of
E.coli has a significantly high frequency?

10 Chi=Cross-over Hotspot Instigator.
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Random arborescent models

6.1 Introduction

The study of family trees and especially the passing on of family names were
at the origin of branching processes. In their temporal form, such processes
can model a random family tree. What is more interesting is usually the size of
the various generations and frequently asked questions concern the probability
for the tree to come to an end and, if not, its evolution. A branching tree is a
Markov chain. Nevertheless, it seems more judicious to have an independent
approach to branching processes, which we will have here. Since the results
are easily obtained, we included the demonstration or part of it in most of
the cases. Apart from their applications to genealogy and demography, the
branching processes can model numerous phenomena, for instance nuclear
fission in physics. We will propose a recent application to a modern technique
of duplication of DNA: the Polymerase Chain Reaction. We will then extend
the previous modeling from trees to lattices: a short section is devoted to
percolation.

Time branching processes have a space extension of the utmost interest if
we want to model the diffusion of a population. Indeed, as we will see, the
classical model of a diffusion (as studied in section 2.5) does not show satis-
factory enough the phenomena of a quick diffusion such as the spreading of an
epidemic or the colonization of a wasteland by an expanding population. The
reaction-diffusion equations model the transfer through a fixed borderline but
are unsuited for a moving borderline. Space branching processes allow a more
specific model. A space branching process is composed of two ingredients: a
time branching process and a law on the spreading of individuals. We will
speak for the case of a super-critical time branching process without extinc-
tion, meaning that the size of population will exponentially grow. The law
of dispersion allows more subtle models. Indeed, it will produce rare events
called “large deviations” in the theory of probability. Such rare events cause
high values of dispersion. They can be rare, but the exponential growth of the
population will make them more and more numerous, though. Consequently,
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the space branching process will colonize the land very quickly. We will then
give a recent application of such results concerning the oak tree in Europe
after the last glaciation. We will explicitly propose a comparison between
models via reaction-diffusion equations and space branching processes, based
on numerous simulations.

6.2 Temporal branching processes

Branching processes model stochastic genealogical trees, starting, by conven-
tion, from a unique ancestor. In the simplest form, this genealogical tree is
defined iteratively.

Definition 6.2.1 Galton-Watson process1.

• In the first generation n = 0, the unique ancestor died after a given life
time and simultaneously has k children with probability pk.

• At the n-th generation, all the individuals died after the same life time as
the common ancestor, and each of them has simultaneously and indepen-
dently from the others k children with probability pk.

A Galton-Watson process is then the stochastic sequence of the population
size, generation after generation. The size is denoted by Zn, n ≥ 0. Clearly, the
distribution of the Galton-Watson process is entirely defined by the discrete
probability pk, k ≥ 0.

From now on, we will only consider non-trivial processes: there will always
exist a couple of integers k, k′, such that pk and pk′ are non-null. We left as an
exercise the case p0 +p1 = 1. Indeed, this case requires a particular treatment
and has not any real biological application. Moreover, we can assume from
now on that: ∑

k≥0

k2 pk < ∞ .

This condition is always satisfied in biological applications.
A Galton-Watson process can be defined as a Markov chain. Let p∗ i

j be
the distribution obtained by the convolution of the offspring distribution:

p∗ i
j =

∑
k1+...+ki=j

pk1 . . . pki
.

1 For equity, these processes should be called Bienaymé-Galton-Watson processes,
since Bienaymé (1796-1878), in 1845, was the first to give a correct proof on the
extinction probability; the work of Galton (1822-1911) and Watson (1827-1903)
are dated back to 1874.
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Definition 6.2.2 Another (equivalent) definition of the Galton-Watson
process.

A Galton-Watson process is a Markov chain on positive integers which
transition probability is given by:

Q(i, j) = P {Zn+1 = j |Zn = i} =
{

p∗ i
j if i 
= 0 ,

δ0j else.

Fig. 6.1. Galton-Watson process with four generations

6.2.1 Probability generating function

The probability generating function of the process is given by:

φ(s) =
+∞∑
k=0

pksk, ∀s ∈ [0, 1] .

The probability generating function of the population size Zn at generation
n is obtained via the following Lemma.

Lemma 6.2.1
Let ξi, i ≥ 1 be a sequence of i.i.d. positive r.v., with common generating

function φ. Let Y be an r.v. on positive integers, independent from the sequence
ξi, i ≥ 1, with probability generating function ψ. The probability generating

function of the sum Z =
Y∑

i=1

ξi is given by E
(
sZ

)
= ψ ◦ φ(s), for s ∈ [0 , 1].
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Proof

E(sZ) = E(E(sZ |Y ))
= E((E(sξ1))Y )
= E(φ(s)Y )
= ψ ◦ φ(s) .

We can then apply this Lemma to the random sum Zn =
Zn−1∑
i=1

ξi, where

ξi is the number of children of the i-th individual of generation n − 1. This
leads to the probability generating function of Zn: E

(
sZn

)
= φZn

(s) = φn(s),
where φn = φ ◦ φ ◦ . . . ◦ φ, n times.

Let:

m = φ′(1)
= EZ1 ,

and

σ2 = φ′′ (1) + φ′ (1) − φ′ (1)2

= var(Z1) .

We can recursively deduce the expectation and variance of Zn:

E (Zn) = mn ,

var (Zn) =
{

σ2mn−1 mn−1
m−1 if m 
= 1 ,

nσ2 else.

6.2.2 Extinction probability

When the population size vanishes, then the future population sizes are always
zero. In other words, the event {Zn = 0} implies {Zn+1 = 0} and the sequence
of events {Zn+1 = 0} is increasing. The event extinction of the population is
equal to {∃n , Zn = 0} or lim supn {Zn = 0}.

We know that:

P
{

lim sup
n

{Zn = 0}
}

= lim
n→∞P {Zn = 0} .

Moreover, since Zn is a r.v. on positive integer:

P{Zn = 0} = φn(0) .

This leads to the following Proposition.
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Proposition 6.2.1 Extinction probability.
If the expectation m of the process is less or equal than 1, the population

vanishes with probability 1.
If the expectation m of the process is greater than 1, the extinction proba-

bility q of the process is the unique solution of the equation φ(s) = s, s ∈ [0, 1).

Proof
Firstly note that:

φ′(s) =
∑
k≥1

kpksk−1 ,

φ′′(s) =
∑
k≥2

k(k − 1)pksk−2 .

The function φ is increasing, and strictly convex. Note that φ(0) = p0 > 0. By
induction, we check that the sequence φn(0) is increasing, bounded by 1. It
converges to a limit q satisfying q = φ(q). Let u > 0 such that u = φ(u). Then
φ(0) = p0 < φ(u) = u, and, by induction, φn+1(0) = φ ◦φn(0) < φ(u) = u. So
q ≤ u and q is the smallest positive root of the equation s = φ(s).

Since φ is convex, continuous with φ(0) > 0 and φ(1) = 1, the curve
s → φ(s) cuts the line y = x in at most two points, one of them being (1, 1).

Assume that there exists q ∈ (0, 1) such that q = φ(q). Then q = lim
n→+∞φn(0)

and φ(q) − q = 0, φ(1) − 1 = 0. Rolle’s Theorem applied to φ(x) − x shows
the existence of y ∈]q, 1[ such that φ′(y) = 1. Since φ is strictly convex,
φ′(1) = m > 1.

If φ′(1) = m ≤ 1, then φ′(s) < 1 for s < 1. So
∫ 1

s

φ′(s)ds = 1 − φ(s) <

1−s, and φ(s) > s for s < 1: the equation φ(s) = s has not any root on (0, 1).

1 (1; 1)

1

ϕ(s)

q

p0

Fig. 6.2. Probability generating function: super-critical case
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1 (1; 1)

1

ϕ(s)

s

p0

Fig. 6.3. Probability generating function: sub-critical case

6.2.3 Different types of processes

The results on expectation, variance and extinction probability lead to share
the Galton-Watson processes into three groups.

• m > 1: super-critical processes.
• m = 1: critical processes.
• m < 1: sub-critical processes.

We will now investigate the asymptotical behavior of such processes.

Critical processes

This process vanishes with probability 1. Its expectation is equal to 1, and
its variance linearly grows to infinity. This is a highly unstable process.

Proposition 6.2.2 Asymptotical behavior of critical processes.
Let Zn, n ≥ 0 be a Galton-Watson process with expectation m = 1. Then:

(i) lim
n→∞nP {Zn > 0} =

2
σ2

,

(ii) lim
n→∞E (Zn/n |Zn > 0) =

σ2

2
,

(iii) lim
n→∞P {Zn/n ≤ u |Zn > 0} = 1 − exp−2u

σ2
, u ≥ 0 .

The proof of this Proposition relies on the following technical Lemma.

Lemma 6.2.2

lim
n→∞

1
n

(
1

1 − φn(s)
− 1

1 − s

)
=

σ2

2
,

uniformly on [0, 1[.
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Proof of Lemma 6.2.2
Let 0 ≤ s < 1. A Taylor expansion around 1 gives:

φ(s) = s +
σ2

2
(1 − s)2 + ε(s)(1 − s)2 ,

with lim
s→1−

ε(s) = 0 .

1
1 − φ(s)

− 1
1 − s

=
φ(s) − s

(1 − φ(s))(1 − s)

=
σ2

2 (1 − s)2 + ε(s)(1 − s)2

(1 − φ(s))(1 − s)

=
1 − s

1 − φ(s)
(σ2/2 + ε(s))

= σ2/2 + δ(s) ,

with lim
s→1−

δ(s) = 0 . Successive iterations lead to:

1
n

{
1

1 − φn(s)
− 1

1 − s

}
=

1
n

n−1∑
j=0

{
1

1 − φ ◦ φj(s)
− 1

1 − φj(s)

}

= σ2/2 +
1
n

n−1∑
j=0

δ ◦ φj(s) .

Since φn(0) ≤ φn(s) ≤ 1 and since φn(0) converges to 1 as n → +∞, the
convergence of φn(s) to 1 is uniform and Lemma 6.2.2 is proved.

♦
We will now use this Lemma to prove the Proposition 6.2.2.

P {Zn > 0} = 1 − φn(0). We know that 1 − φn(0) behaves like
2

nσ2
, this

leads to (i).
Using Bayes formula we express E (Zn |Zn > 0) in terms of E (Zn) :

E (Zn |Zn > 0) =
E (Zn)

P {Zn > 0} ,

this leads to (ii).
Finally, the proof of the convergence in distribution of (iii) comes from the

convergence of the Laplace transform of Zn/n, conditionally to non-extinction.
Indeed, using Bayes formula, we have:

E (exp (−tZn/n |Zn > 0)) =
φn(exp−t/n) − φn(0)

1 − φn(0)
,

for t ≥ 0. Its limit is
1

1 + tσ2/2
, which is the Laplace transform of(

1 − exp−2u

σ2

)
.



100 6 Random arborescent models

Sub-critical processes

This process vanishes with probability 1. Its expectation and variance decays
exponentially to 0. We accept the following results; their proof is not difficult,
but rather tedious and without any interest for our purpose.

Theorem 6.2.1 Asymptotical behavior of sub-critical processes.
There exists a constant C > 0 such that:

lim
n→+∞m−nP(Zn > 0) = C .

Super-critical processes

This process vanishes with probability q < 1. Its expectation and variance
grow exponentially to infinity. We prove that this process can either vanish,
or explode.

Theorem 6.2.2 Explosion of super-critical processes.

P(Zn → +∞) = 1 − q ,

where q is the extinction probability of the process Zn.

Proof
Recall that φ′(q) < 1. We obtain by induction:

φ′
n(q) = (φ′(q))n .

Let k and n be two integers.

P(1 ≤ Zn ≤ k) =
k∑

j=1

P(Zn = j)

≤
k∑

j=1

P(Zn = j)
j qj−1

qk

=
φ′

n(q)
qk

=
(φ′(q))n

qk
.

It follows that: ∑
n≥1

P(1 ≤ Zn ≤ k) < ∞ ,

and we conclude with Borel-Cantelli Lemma.
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The asymptotical behavior of Zn is given by the following result.

Theorem 6.2.3 Limiting distribution of
Zn

mn
.

There exists a r.v. W with expectation equal to 1 and variance equal to
σ2

m(m − 1)
such that

Zn

mn
converges in L2 and a.s.to W as n → +∞. W

satisfies P(W = 0) = q, where q is the extinction probability.

Proof
Set Fn = σ(Z1, . . . , Zn). Then:

E(Zn|Fn−1) = mZn−1 .

The sequence
Zn

mn
is a martingale and E

Z2
n

m2n
≤ σ2

m(m − 1)
. The convergence

of
Zn

mn
to a r.v. W follows from Theorem A.3.42.

Let us now show that P(W = 0) = q. Firstly, if Zn → 0, then W = 0.
Now consider the opposite.

P
(

Zn

mn
→ 0|Z1 = k

)
=
(
P
(

Zn

mn
→ 0

))k

.

Set π = P(W = 0). We deduce:

π =
∑
k≥0

πkP(Z1 = k)

= φ(π) .

Since m > 1, π is different from 1 and therefore π = q.
♦
For super-critical processes, the extinction probability q is equal to 0 iff

p0 = 0. We will admit a Central Limit Theorem and a law of the iterated
logarithm in the case p0 = 0, which will be useful later.

Remark 6.2.1
The Harris transform (cf. [2, Ch.I.12]) is a way of transforming a super-

critical process with non-null extinction probability into a super-critical process
with vanishing extinction probability. So, we can work with super-critical
processes with vanishing extinction probability without any loss of generality.

Theorem 6.2.4 Central Limit Theorem for super-critical processes.

Assume p0 = 0. Then the variable
Zn − mnW√

Zn

converges in distribution,

as n → +∞ to a Gaussian centered variable with variance
σ2

m2 − m
.

2 cf. appendix A.3.
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The proof of Theorem 6.2.4 relies on the decomposition of Zn − mnW
into a sum of Zn i.i.d. sub-random variables. Similarly, we obtain a law of the
iterated logarithm.

Theorem 6.2.5 Law of the iterated logarithm for super-critical processes.
Assume p0 = 0. Then:

P{ω, lim sup
n→+∞

Zn − mnW√
Znσ log log Zn

= 1} = 1 .

6.2.4 Maximum likelihood estimation of the expectation

The parameter m is a very important one, because the behavior of the process
strongly depends on the value of such a parameter. Using the observations of
the sizes of the population until the n-th generation, we can estimate the
expectation m. We will estimate the expectation m using the maximum like-
lihood framework.

The parameter m doesn’t give an exhaustive description of the distribution
of the process. We need the distribution pk, k ≥ 0. The observation of the
size is not sufficient to estimate the distribution pk , k ≥ 0. We will work
as follows. Firstly, we will assume that we know the number of individuals
having k sons for each generation from 0 to the n-th: let Zjk be the number
of individuals of generation j having k sons. The observations enable us to
estimate the distribution of the process. Since the expectation m is simply
obtained thanks to this distribution, we can deduce an estimate of m. We will
then remark that this estimate of m only involves the sizes of the population.

Indeed, conditionally to Zj , the Zjk have a multinomial distribution:

P {Zj0 = zj0, Zj1 = zj1, . . . , Zjk = zjk, . . . |Zj = zj } =

zj !
∞∏

k=0

zjk!

∞∏
k=0

pk
zjk1{ ∞∑

k=0

zjk = zj

} .

Since Zj =
∞∑

k=0

kZ(j−1) k, the likelihood becomes:

V ({pk}) =
1!∏
z0k!

∏
pk

z0k
(
∑

kz0k)!∏
z1k!

∏
pk

z1k . . .

(∑
kz(n−1) k

)
!∏

znk!

∏
pk

znk .

Taking the logarithm, we obtain:

LogV ({pk}) = f(z00, z01, . . .)

+
∞∑

k=0

⎛⎝ n∑
j=0

zjk

⎞⎠ log pk , (6.1)
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where f(z00, z01, . . .) doesn’t involve the {pk}. Consequently we therefore will
not take it into account for maximizing the likelihood.

Let {πk , k ≥ 0} and {pk , k ≥ 0} be two probability distributions. Jensen
inequality shows that:∑

k≥0

πkLogpk −
∑
k≥0

πkLogπk =
∑
k≥0

πkLog
pk

πk

≤ Log
∑
k≥0

pk = 0 .

So: ∑
k≥0

πkLogpk ≤
∑
k≥0

πkLogπk . (6.2)

We obtain the maximum likelihood estimate of the pk, using both (6.1)
and (6.2)

p̂k,n =

∑n
j=0 Zjk∑∞

k=0

(∑n
j=0 Zjk

) .

The estimate of m is then:

m̂n =
∞∑

k=0

kp̂kn =
Y(n+1) − 1

Yn
. (6.3)

As mentioned before, we can estimate the expectation m from the sizes of
the population. This estimate is consistent.

Theorem 6.2.6 Consistency of the maximum likelihood estimate.
Conditionally to the non-extinction of the process, the estimate m̂n con-

verges a.s. to m as n → +∞.

Proof of Theorem 6.2.6

Lemma 6.2.3

Let ak, k ≥ 0 be a sequence of positive real numbers such that lim
n→+∞

n∑
k=0

ak =

+∞ . Let xn be a real sequence converging to x as n → +∞. Then the

sequence

(
n∑

k=0

ak

)−1 n∑
k=0

akxk converges to x as n → +∞.

♦
Since

Zn

mn
converges a.s. to W :∑n

k=0 mk
(

Zk

mk − W
)∑n

k=0 mk
→ 0 (a.s.) .
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Then:
Yn∑n

k=0 mk
→ W (a.s.) .

It follows that: m−nYn → mW/(m − 1) a.s. Because of Theorem 6.2.3, we
work conditionally to W > 0: this shows the consistency of m̂n.

Nota-bene : See [2, 25, 36] for general results on temporal branching
processes.

6.3 Polymerase Chain Reaction

The Polymerase Chain Reaction (in short PCR) is an in vitro enzymatic am-
plification tool (cf. [63]). Kary B. Mullis was awarded the 1993 Nobel Prize
for chemistry for PCR. Starting from a small number of identical DNA se-
quences (the “primer”), the PCR starts at each primer and copies the sequence
of that strand. Within a short time, exact replicas of the target sequence have
been produced. The PCR was given a lot of media coverage with the movie
“Jurassic Park”: a good piece of amber was found containing an insect full of
dinosaur blood, the blood cells would have to be separated from the insect’s
cells. The PCR replicates the DNA enough times to recover the dinosaurs.
Just do it! More seriously, part of DNA sequences from a 140 millions years
old weevil have been replicated by PCR.

There are three basic steps in PCR.

1. Denaturation. Firstly, the target genetic material must be denatured. The
strands of its helix must be unwound and separated by heating to 90-96oC.

2. Hybridization. The second step is hybridization, in which the primers bind
to their complementary bases on the now single-stranded DNA.

3. Synthesis. The third step is DNA synthesis. The polymerase reads a tem-
plate strand. Then the polymerase matches it with complementary nu-
cleotides. Two new helixes are obtained in place of the first, each composed
of one of the original strands plus its newly assembled complementary
strand.

When the steps work properly, the number of DNA sequences is multiplied
by 2. But sometimes one step fails. The strands are not affected. Then a nat-
ural approach ([65], [66]) consists in modeling the PCR by a Galton-Watson
process. Assume that there are N0 primers. The number of primers varies
between some units to thousands of them. Each of the primers is considered
as the ancestor of a Galton-Watson process with probability distribution p1 =
1− p, p2 = p and pk = 0 for k 
= 1, 2. p is the success probability of the PCR.
This probability p is positive, the Galton-Watson process is super-critical,
with expectation m = 1+p, variance σ2 = p(1−p) = (m−1)(2−m) and van-
ishing extinction probability. The average number Zn of DNA sequences after
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n PCR is N0m
n. For biological reasons 3, it is sometimes useful to know N0, or

at least its order of magnitude. In the previous we have seen how to estimate
(cf. estimate m̂n defined in (6.3)) the expectation from the observations of the
sizes of the populations. Unfortunately, the estimation of N0 is an ill-posed
problem. Indeed, N0 is not identifiable. Take two processes, one starting from
one ancestor (N0 = 1), the second starting with two ancestors (N0 = 2). With
probability p, the first population size Z1 of the first process will be 2. With
probability (1− p)2, the first population size Z1 of the second process will be
2. The two probabilities associated with these two processes are not orthogo-
nal: N0 is not identifiable. Nevertheless, [35] proposes the following estimate
of N0:

N̂0n =
Zn

m̂n
.

As n → +∞, [35], using Theorem 6.2.3 and Theorem 6.2.5, show that
N̂0n converges (a.s.) to a variable WN0 . The N0 Galton-Watson processes
starting from the N0 ancestors have the same distribution. The variable N̂0n

is the sum of N0 i.i.d. variables Wi. The relative error
N̂0n − N0

N0
converges

(a.s.) to
1

N0

N0∑
i=1

(Wi − 1) The variable
1

N0

N0∑
i=1

(Wi − 1) is centered with vari-

ance
1

N0

1 − p

1 + p
. This variance can be very small. For instance, if the success

probability of the PCR is 80% (i.e. p = 0.8), the variance
1 − p

1 + p
is about 0.11

Consequently, we can estimate the order of magnitude of N0, even if N0 is
not identifiable.

6.4 Percolation

As a first example, let us consider a forest, in which all the trees are arranged
on the vertices of a large (ideally infinite) square grid. Suppose that a tree
will become infected with a disease with probability 0 < p < 1 if one of its
neighbours is infected. Will the pest spread everywhere in the forest, or will
the pest stop of its own? The same question arises with forest fire. A fire
starts at one or several places in the forest. When a tree burns, its neighbours
will burn with probability 0 < p < 1. Will the fire destroy all the forest or
only parts of it? Let us give another example. Consider a human population,
with relationships between individuals. People having relationships will be
considered as neighbours. Assume that these individuals and relationships
3 For instance, if the DNA comes from a sick person, we should be interested in

knowing the part of contaminated DNA.
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can be reasonably modeled by Z
d, where the dimension d indeed measures

the number of neighbours. An infectious disease, like AIDS, spreads into the
population. Each neighbour of an infectives can be infected with probability
0 < p < 1. Will the pest stop of its own? In the case of AIDS, the probability
p can reasonably be linked with the number of safe sexual relations. How the
pest does evolve when p varies? Percolation theory was first introduced by
[11] as a mathematical answer to these questions. Let Z

d be the d-dimensional
lattice and let 0 ≤ p ≤ 1. For each x ∈ Z

d, there are 2d edges linking x to
each of its nearest neighbours. I.i.d. Bernoulli trials are done on the edges of
Z

d. An edge is open with probability p and closed otherwise, independently
of the other edges. There is an open path between x and y if there exists
a sequence x0 = x, x1, x2, . . . , xn−1, xn = y such that the xi−1 and xi are
nearest neighbours and the edges xi−1 − xi are open. For a given point x,
let C(x) be the set of y such that there exists an open path from x to y.
C(x) is called the open cluster of x. Since our percolation model is translation
invariant, the distribution of C(x) is independent of x. Let us define:

θ(p) = P(|C(x)| = ∞) .

One clearly gets θ(0) = 0 and θ(1) = 1. The critical value of percolation on
Z

d is defined by:

pc(d) = sup{0 ≤ p ≤ 1, θ(p) = 0} .

Our first question is to know whether |C(x)| is infinite or not. A second
one is to know if there exists an infinite open cluster in Z

d somewhere. The
answers to these questions are given by the following Theorem (cf. [24, 79]).
Their proofs are postponed for exercise 6.8.7.

Theorem 6.4.1 Percolation.

1. The critical value of percolation is non trivial: 0 < pc(d) < 1.
2. If p < pc(d), then θ(p) = 0. If p > pc(d), then θ(p) > 0.
3. If p > pc(d), there exists an infinite open cluster somewhere in Z

d with
probability one.

Moreover, one can prove (cf. [24]) that pc(2) = 1/2. The value of pc(d), d > 2
is still unknown. Very few is known on function θ(p). Let us just mention that
function θ(p) is increasing and continuous for pc(d) < p ≤ 1.

The answer to our question (will the pest/fire spread or stop on its own) is
binary. Either parameter p is less than the critical value, and the pest/fire will
stop; either it is more than the critical value, and the pest/fire will spread. It
has important implications in terms of management. Indeed, if one has some
control on the parameter p, decreasing this parameter will not have any real
influence until it stays over the critical value, and suddenly, when crossing the
critical value, the spread of pest/fire is stopped.
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6.5 Spatial branching processes

Spatial branching processes model the spatial repartition of a random tree;
this tree being described by a temporal branching process. The random tree
spreads in R

k, k = 1, 2, 3. In the easiest form, with k = 1, a spatial Galton-
Watson process is described recursively.

Definition 6.5.1 Spatial Galton-Watson process.

• In the first generation n = 0, the unique ancestor died after a given life
time and simultaneously has k children with probability pk. This ancestor
is located at the origin of R.

• At the n-th generation, all the individuals died after the same life time as
the common ancestor,and each of them, simultaneously and independently
from the others, has k children with probability pk. The location of the
k sons is distributed independently from the other individuals of the n-th
generation with a dispersion distribution µ. This distribution µ is constant
through time.

The spatial Galton-Watson process is driven by the offspring distribution
(pk), k ∈ N and by the dispersion distribution µ. From now on, we assume
that the Galton-Watson process is super-critical i.e.

∑
k≥1

kpk > 1.

Let us define some parameters on this process.

• The expectation of the Galton-Watson process:

m =
∑
k≥1

kpk .

• The log Laplace transform of the dispersion distribution:

Lµ(z) = log
∫

R

exp(tz)µ(dt) .

• The Cramér transform of the dispersion distribution:

hµ(x) = sup
z∈R

(xz − Lµ(z)) .

• The “compensated” Cramér transform of the spatial Galton-Watson
process:

h(x) = hµ(x) − log m .

Since the Galton-Watson process is super-critical (log m > 0), note that
the function h can reach the negative values.
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6.5.1 Asymptotical behavior

Let us start with an expectation approach. We have seen that the average size
of the population is mn. The location of an individual of the n-th generation
is the result of a sum of n i.i.d. r.v. of distribution µ. Let I = [a, b] be an
interval such that Eµ /∈ I: for instance, we can chose I such that Eµ < a < b.
The order of magnitude of the probability that an individual from the n-th
generation belongs to the interval [na, nb] is exp(−nhµ(a)) (see the Chernoff
Theorem 4). The expected number of individuals of generation n that belong
to the interval [na, nb] is of order mn exp(−nhµ(a)) = exp(−nh(a)). This
heuristic computation shows that the presence or absence of individuals in
a given area depends on the sign of the “compensated” Cramér transform.
Indeed, when the “compensated” Cramér transform is positive, the expected
number of individuals of generation n being in the interval [na, nb] exponen-
tially decays to 0. When the “compensated” Cramér transform is negative, the
expected number of individuals of generation n being in the interval [na, nb]
exponentially grows to +∞. The borderline, that is the area where the “com-
pensated” Cramér transform is vanishing, defines the colonization border of
the Galton-Watson process.

Let ξn be the point process generated by the spatial Galton-Watson process
at generation n: for every B ⊂ R, ξn(B) is the (random) number of individuals
in B. The idea is to normalize this point process ξn through a small parameter
ε. So, let us define the ε-normalization of ξn

ξε
t (B) = ξ[ t

ε ]

(
B

ε

)
,

where [x] is the integer part of x and
B

ε
is the ε-dilation of the set {x ∈

R/∃y ∈ B, εx = y}.
Let Iε be the interval [−εη, εη], with 0 < η < 1. As ε → 0, and looking for

the expectation, we have:

ξε
t (x + Iε) = ξ[ t

ε ]

(
x + Iε

ε

)
∼ exp

(
− t

ε
h
(x

t

))
,

and

ε log ξε
t (x + Iε) ∼ −th

(x

t

)
.

The following Theorem, due to [5], rigorously gives the results we have only
outlined in expectation.
4 cf. Appendix A.3
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Theorem 6.5.1 Asymptotical behavior of a spatial Galton-Watson process.
Let Iε be a sequence of centered interval which length satisfies |Iε| → 0 and

|Iε|/ε → ∞ as ε → 0. Then, as ε → 0 we have:

• If h(x/t) < 0, and conditionally to the non-extinction of the Galton-
Watson process,

ε log ξε
t (x + Iε) → −th(x/t) (a.s.) .

• If h(x/t) > 0, there exists a.s. ε0 such that ε < ε0 implies ξε
t (x + Iε) = 0.

What are the speeds of colonization of the real line by a Galton-Watson
process? The Theorem (6.5.1) shows that these colonization speeds are the
solutions to the equation h(c) = 0. These colonization speeds both depend
on the expectation and the Cramér transform of the dispersion distribution.
The entire distribution µ is required to study the colonization speed, but only
the expectation of the offspring distribution is required. In the section “the
colonization of Europe by oaks”, we will see an application of this Theorem.

Set:

α(t, x) = −th(x/t) .

By Theorem (6.5.1), the function α(t, x) represents a limiting ε-log density.
We can check that:

∂α(t, x)
∂t

= −h(x/t) + (x/t)h′(x/t)

∂α(t, x)
∂x

= −h′(x/t) .

Set:

L(z) = Lµ(z) − log m .

Standard properties of Cramér transform (e.g. [18]) implies the following link
between h(x) and L(x) :

h(x) = xh′(x) − L(h′(x)) .

The function α(t, x) thus satisfies the partial differential equation
(cf. [53], [76]):

∂α(t, x)
∂t

= L

(
−∂α(t, x)

∂x

)
.

Note that this partial differential equation is not a reaction-diffusion equa-
tion, but is a hyperbolic one. We therefore have the feeling that the modeling
by a Galton-Watson process is not equivalent to a modeling by a reaction-
diffusion equation.
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6.6 The colonization of Europe by oaks

After the last glaciation, Europe was re-colonized by oaks. These oaks have
remained in refuge areas in Spain, Italy and the Balkans. Oaks then spread to
Northern Europe. The post-glaciation colonization by the oaks is estimated
([54]) thanks to palynological data. Palynological analyses are done with core
samples. These core samples are extracted from media which are favorable
to pollen conservation: lakeside sediments, peat bogs. Such analyses include
carbon-dating and estimate of pollen counts. Isopollen maps have been estab-
lished. A rough history of colonization can be drawn. The oaks spread at a
speed of about 50 to 500 meters a year. An oak is sexually mature after about
ten years. The spread speed of the oaks is high. But, most of the acorns fall
near the trunk. How to explain the high speed of the oaks in the process?

6.6.1 Back to reaction-diffusion equations

The standard determinist model for diffusion (cf. section (2.5)) is usually
based on reaction-diffusion equation. We want to model the spread speed,
not to obtain a realistic model for areas already occupied by oaks. We allow
a Malthusian dynamics (no limit for the growth). The standard reaction-
diffusion equation is (e.g. [69, 70]):

∂N(t, x)
∂t

= D
∂2N(t, x)

∂x2
− v

∂N(t, x)
∂x

+ rN(t, x) , (6.4)

N(t, x) is the local density of oaks at time t, r is the reproduction rate,
v is an advection parameter (for instance the wind) and D is the diffusivity.
If, at time 0, the population size is M and is concentrated at the origin, the
solution of this equation is:

N(t, x) =
M

2
√

πDt
exp

(
rt − (x − vt)2

4Dt

)
.

Let us study the spread speed of the level set N(t, x(t)) = ct as t → +∞.
The two functions x±(t) that define the level sets satisfy:

lim
t→∞

x±(t)
t

= v ± 2
√

rD .

The asymptotical speeds are c± = v ± 2
√

rD. For oaks, as indicated by
the simulations in the next section, the usual parameters D, r and v lead to
colonization speeds less important than the observed speeds.
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6.6.2 Comparison with the stochastic model

Let us now model the oak spread by a spatial Galton-Watson process. Firstly
we have to chose an offspring distribution. Only the expectation is important.
We want to compare this model to the model (6.4), so we set log m = r.
Secondly, we have to chose a dispersion distribution µ.

Let us start with a Gaussian distribution µ = N (θ, σ2). Its Cramér trans-
form is:

hµ(x) =
(x − θ)2

2σ2
.

An application of Theorem (6.5.1) shows that the colonization speeds are:

c± = θ ±
√

2rσ2 .

The same colonization speeds, at least in order of magnitude, as for the
reaction-diffusion model (6.4), are obtained if we assume the following equiv-
alence between the parameters:

r = log m ,

v = θ ,

D = σ2/2 .

Let us come back to the biological model. If we assume the dispersion to
be Gaussian, we implicitly assume that the dispersion of the acorns is due
to a unique factor, for instance the wind. Acorns are heavy, and wind has no
real influence. The offspring distribution is almost centered and with a very
small variance. But, one can observe that a minority of acorns are carried far
away from the oak by animals, and especially by jays. A single jay scatters
about 4600 acorns a year and at least 5 to 6% of a oak’s acorns are scat-
tered. A jay can carry several acorns but the acorns are buried separately. It
seems that jays choose transition zones of vegetation to bury acorns: this is
favorable for germination. The carrying distance varies from about a hundred
meters to several kilometers. The maximal observed carrying distance is eight
kilometers. We will therefore model the dispersion by a mixing of two dis-
tributions. The first distribution concerns most of the acorns, and is a short
range distribution. The second distribution concerns a minority of acorns, but
it is a long range distribution. This second distribution dramatically modifies
the Cramér transform: the probability of large deviations increases. It follows
that the colonization speed (cf. Theorem (6.5.1)) dramatically changes too.
The simulations done by [82] indicates that the order of magnitude of the
simulated speeds is the same as the observed speeds.
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value mixing mixing mixing Dirac mixing Dirac
of σ2 Gaussian Gaussian Gaussian Gaussian

(D.A.) (S.A.) (D.A.) (S.A.)
10 7.94 23.38 7.28 23.35
20 14.90 46.71 14.56 46.70
30 22.01 70.06 21.84 70.05
40 29.29 93.41 29.12 93.40
50 36.53 116.75 36.39 116.75
60 43.79 140.10 43.67 140.10
70 51.05 163.45 50.95 163.45
80 58.32 186.80 58.23 186.80
90 65.59 210.15 65.51 210.15
100 72.86 233.50 72.79 233.50

value Gaussian Laplace mixing
of σ2 (S.A.) (S.A.) Laplace

(S.A.)
10 21.55 29.54 37.1
20 43.10 59.09 75.02
30 64.66 88.63 112.51
40 86.21 118.18 150.01
50 107.76 147.72 187.50
60 129.31 177.27 225.00
70 150.86 206.81 262.50
80 172.41 236.36 299.00
90 193.97 265.90 337.49
100 215.52 295.45 374.99

The mixing has been done with rates of 95% and 5%. D.A stands for
Determinist Approach (i.e. reaction-diffusion model with the equivalence r =
log m, v = Eµ and D = 1/2var(µ)). S.A. stands for Stochastic Approach: a
spatial Galton-Watson process has been used.
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6.8 Exercises

Exercise 6.8.1 Cell division.

After a given period, a cell either splits into two cells with probability 0 <
p < 1, or dies without any descendant.

1. Show that this cell division can be modeled by a Galton-Watson process.
2. For which value of p is the process sub-critical, critical or super-critical?

What is the extinction probability?
3. Propose an estimate of the extinction probability based on the population

sizes Zj , 1 ≤ j ≤ n. Is this estimate consistent as n → +∞?

Exercise 6.8.2 Percolation tree and fractal spread.

Some objects or phenomena, including leaves of plants, spreading of bacteria,
soil water dynamics, are fractals and can be modeled by random trees. First
consider a determinist dyadic tree: there is a unique ancestor, and each indi-
viduals has two sons, not less not more. The individuals are coded with 0 or
1 as follows:

• The ancestor is coded with 1.
• If an individual is coded with 0, its two sons are coded with 0.
• If an individual is coded with 1, its two sons are independent and follow a

Bernoulli trial of parameter p, 0 < p < 1.

1. a) Give the condition on p for having an infinite number of 1.
b) What is the average number of 1 at the n-th generation?
c) Propose an estimate of p based on the observations of the number of

1 over the n-th first generation.
2. Assume now p > 1/2. Let 0 ≤ x ≤ 1. The dyadic expansion of x is a

sequence of 0 and 1: there exists a natural one-to-one correspondence φ
between the determinist dyadic tree and [0, 1]. Let B(1) be the (random)
set of the branches whose all the knots are coded by 1. The set C(1) =
φ(B(1)) is a (random) subset of [0, 1]. Let Nδ be the smallest number of
sets of lengths at most δ > 0 which can cover C(1). Define, when it exists:
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dimB(C(1)) = lim
δ→0+

log Nδ

− log δ
.

dimB is called the box dimension (e.g.[21]). Show that either dimB(C(1))
= 0 or dimB(C(1)) = log2(2p) (a.s.). (nb: the Hausdorff dimension of C(1)
can be computed and is equal to the box dimension, cf. [27]).

3. Generalize the model to higher dimensions.

Exercise 6.8.3 Linear fractional process.

Consider the Galton-Watson process defined by the offspring distribution pk =

bpk−1, k ≥ 1 and p0 =
1 − b − p

1 − p
, with b > 0 and 0 < p < 1.

1. What is the expectation of the process m? What is the extinction proba-
bility q?

2. Let φ be the probability generating function. Show that:

1 − p

1 − pq
=

1
m

.

Deduce that:

φ(s) − q

φ(s) − 1
=

1
m

s − q

s − 1
,

φn(s) − q

φn(s) − 1
=

1
mn

s − q

s − 1
,

and give the analytical form of φn(s).

Exercise 6.8.4 Total progeny.

Let Zn be a sub-critical Galton-Watson with expectation m < 1. The progeny
until generation n is defined by:

Yn =
n∑

k=0

Zk .

The total progeny is defined by:

Y∞ =
+∞∑
k=0

Zk .

1. Show that Y∞ is (a.s.) finite.
2. Let ψn(s) = E(sYn) be the probability generating function of Yn. Show

that ψn(s) satisfies the recursive relation:

ψn(s) = s φ ◦ ψn−1(s) .
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3. Calculate EYn and var(Yn).
4. Show that the probability generating function ψ∞(s) = E(sY∞) of Y∞

satisfies:

ψ∞(s) = s φ ◦ ψ∞(s) . (6.5)

5. Show that the equation (6.5) has an unique solution.
6. Calculate the expectation and variance of Y∞.
7. What is the distribution of Y∞ for the cell division and for the linear

fractional process?

Exercise 6.8.5 Hitting time.

Let Zn be a super-critical Galton-Watson process with expectation m > 1.
The hitting time of the level k is defined by:

vk = inf
n≥0

{Zn ≥ k} ,

with the convention inf ∅ = +∞.

1. Show that, for vk < ∞:

Zvk−1

mvk
<

k

mvk
≤ Zvk

mvk
.

2. Let W be the (a.s.) limit of
Zn

mn
as n → +∞. Show that, conditionally to

the non-extinction of the process, we have:

lim sup
k→+∞

(vk − logm(k)) ≤ 1 − logm(W ) (a.s.) ,

lim inf
k→+∞

(vk − logm(k)) ≥ − logm(W ) (a.s.) .

Exercise 6.8.6 A continuous-time Galton-Watson process.

A random time is said to be an exponential time of parameter α > 0 if it
has a density p(t) = αe−αt, t ≥ 0.

After an exponential time of parameter α, the first individual dies and
simultaneously has k children with probability pk. Each individual evolves
like the first one and independently of the others. Let Zt be the number of
individuals at time t ≥ 0. We assume 0 < p0 + p1 < 1 and m =

∑
k≥0

kpk < ∞ .

1. Let T be an exponential time. Show that, for t, s > 0:

P(T > t + s|T > s) = P(T > t) .
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2. Let Yk be the number of descendants of individual k, for 1 ≤ k ≤ Zn−1,
after one unit time. Check that:

Zn =
Zn−1∑
k=0

Yk .

3. Show that Zn is a discrete-time Galton-Watson process.
4. Show that:

∂

∂t
EZt = α(m − 1)EZt .

(Hint: use the Chapman-Kolmogorov equation).
5. Show that EZ1 = EY1 = eα(m−1) .
6. Show that P(Zt > 0,∀t ≥ 0) > 0 iff m > 1.

Exercise 6.8.7 Percolation (proofs of Theorem 6.4.1).

1. Prove that the function p → θ(p) is increasing.
2. We first work with d = 2. Prove that if p < pc(2) then θ(p) = 0 and if

p > pc(2) then θ(p) > 0.
3. Let N(n) the number of open self avoiding paths of length n starting at

the origin of Z
2. Prove that EN(n) ≤ 4pn3n−1 .

4. Prove that θ(p) ≤ P(N(n) ≥ 1).
5. Prove that P(N(n) ≥ 1) ≤ EN(n).
6. Prove that pc(2) ≥ 1/3.
7. Let Z̃2 be the dual graph of Z

2:

Z̃2 = {x + (1/2, 1/2), x ∈ Z
2} .

An edge ã of the dual Z̃2 is open (resp. closed) if it crosses an open (resp.
closed) edge of Z

2. A circuit is a path that ends at its starting point. Let
An be the event “there exists a closed circuit of length n surrounding the
origin of the dual”. Show that:

{|C(0)| < ∞} =
⋃
n≥1

An ,

and that:

P{|C(0)| < ∞} ≤
∑
n≥1

P(An) .

8. Show that:

P{|C(0)| < ∞} ≤
∑
n≥1

n3n−1(1 − p)n .
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9. Show that: pc(2) ≤ 11 +
√

13
18

.

10. Now consider the same problem in Z
d, d ≥ 2.

Show that: pc(d) ≥ pc(d + 1) > 0.

Exercise 6.8.8 A cellular automaton ([80], [79, Ch. V]).

Consider a cellular automaton on Z
2. Let p be in (0, 1]. At time 0, for each

site x ∈ Z
2, we set a 1 with probability p and a 0 with probability 1− p. The

system evolves according to the following determinist rules. If there is a 1 at
site x at time n, then we set a 1 at site x at time n + 1. If there is a 0 at site
x at time n and if at least one neighbor in each of the orthogonal direction
is a 1, then we set a 1 at site x at time n + 1, else we set a 0. Consider for
instance the following configuration at time n:

1
0 1 .

At time n + 1, this configuration becomes:

1
1 1 .

We want to know what is the probability that all the sites of Z
2 will

eventually be occupied by 1.

1. Let Sk be the square whose center is 0 and whose sides has length 2k. Let
Ek be the event “each side of Sk has at least one 1 at time 0 that is not
on one of the vertices of the square”. Show that:

P(Ek) = 1 − (1 − (1 − p)2k−1)4 .

2. Let E =
⋂
k≥0

Ek . Show that P(E) > 0.

3. Show that the event E implies that all the sites of Z
2 will eventually be

occupied by 1.
4. Show that the probability that all the sites of Z

2 will eventually be occu-
pied by 1 is indeed 1 (Hint: use a zero-one law).
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Statistics

7.1 Introduction

Are statistics a mathematical model of a biological phenomenon? Or else are
they mere tools in the approach of the modeliser? Statistics undoubtedly often
play the role of an ancillary subject. However, it seemed to us that, in some
models, statistics were at the core of the problem: they do not model the
phenomenon but nothing interesting can be said about such a phenomenon
without statistics. Thus we devote a whole chapter to the subject, and not a
mere appendix.

What are statistics? Firstly, it is an estimate of parameters1. The most
common method of estimation lies on the notion of likelihood associated with
a model and observations. Parameters will be estimated thanks to the most
realistic values as compared to the underlying model. We will then give a
significant example coming from quantitative genetics: how to locate a major
gene- the Quantitative Trait Loci (in short QTL)- on the DNA strand with
the help of genetical markers. To do so, we will build a plausible probabilistic
model of genetic crossing-overs. Observations will be constituted via genetical
markers. The method of maximum likelihood will then give an approximate
location of the QTL on the DNA strand. Once this estimate known, it gives
rise to a series of issues:

• Is this approximate location reliable? How precise is it? How to give a
confidence interval about such estimate?

• Is an estimate any better than any other one?
• When the presence of QTL remains hypothetical, is it possible to test its

existence or its non-existence?

Such questions will help us study the theory of likelihood: nature of the es-
timate, convergence rate, Cramér-Rao bound, hypothesis tests. We will see
1 Indeed we will only deal with parametric statistics: the parameters to be estimated

are finite-dimensional. We will not speak about the functional cases, i.e., the case
of infinite-dimensional parameters.
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there are answers to such questions but only from an asymptotical viewpoint,
i.e. when the number of observations grows to infinity. The location of QTL is
very delicate and we suggest a look at the bibliography for writings concerning
its study. However, we will give a thorough example based on the life cycle
of the weevil which will enable us to apply the results seen in the theoretical
study of the likelihood.

7.2 Maximum Likelihood Estimate

7.2.1 Statistical model

In this book, we do not want to give a systematic lecture on statistics. We
only want to provide with a sketch on standard tools of parametric statistics.
More advanced results of statistics may be found in the bibliography given at
the end of the chapter.

A statistical model is given by a measurable space (X ,B(X )) and a family
of probability P = (Pθ)θ∈Θ. X is the space of observations. Θ is the set of
possible values of parameter θ.

A statistical model is said to be dominated if there exists a sigma-finite
measure f , called the dominating measure, such that, for all θ ∈ Θ, Pθ is
dominated by f . In others words, the probability Pθ admits a density with
respect to f . The density f will often be the Lebesgue measure.

We will only consider the case of n-sample: a n-sample is a sequence of
i.i.d. r.v. X1, . . . , Xn. This is an important restriction: especially, we do not
have a look to correlated observations.

As pointed out in the introduction, we only considered parametric models.

Definition 7.2.1 Parametric model.
The set of possible parameters Θ is a subset of Rk.

Example 7.2.1
Consider a n-sample of Gaussian r.v. of expectation m and variance σ2.

The parameter θ = (m,σ2) ∈ R
2 is of course finite-dimensional. This is a

parametric model.

7.2.2 Estimation by likelihood maximum

One of the main aims of statistics is to estimate the (unknown) true value θ0

of the parameter, or a function g(θ0) of the parameter. From an abstract point
of view, an estimate of θ0 (resp. g(θ0)) is a measurable function from X to Θ
(resp. g (Θ)). Of course we expect the estimate to be close to the (unknown)
true value of the parameter and that this estimate will get closer and closer
as the number of observations grows.

Let Θ be the set of parameters. We consider the parametric case: Θ ⊂ R
k.

We observe a n-sample X1, . . . , Xn of probability distribution Pθ0 , θ0 ∈ Θ.
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The true value θ0 is unknown. The model is dominated by a measure f . Let
fθ be the density with respect to f :

fθ =
dPθ

df
.

The density of the n-sample X1, . . . , Xn is:
n∏

i=1

fθ0(xi) .

The likelihood is defined by:

Ln(θ, (Xi)1≤i≤n) =
n∏

i=1

fθ(Xi) .

This is a function of θ and of the n-sample X1, . . . , Xn.
The idea is to choose the parameter θ that makes the observations the

most likely. When it exists, a maximum likelihood estimate θ̂n is defined by:

θ̂n = Argmaxθ∈ΘLn(θ, (Xi)1≤i≤n) .

The function θ → Ln(θ, (Xi)1≤i≤n) should have more than one maximum.
Nevertheless, one usually speaks about the maximum likelihood estimate.

Example 7.2.2
Let X1, . . . , Xn be a n-sample of Gaussian r.v. N (m0, σ

2
0). Set θ0 =

(m0, σ
2
0). The model is dominated by the Lebesgue measure. The likelihood

is given by:

Ln(θ, (Xi)1≤i≤n) =
1

(2π)n/2σn
exp

{
− 1

2σ2

n∑
i=1

(Xi − m)2
}

.

To maximize the likelihood or its logarithm ln(θ, (Xi)1≤i≤n) is equivalent:

ln(θ, (Xi)1≤i≤n) = Log(Ln(θ))

= −n

2
Log(2π) − nLog(σ) − 1

2σ2

n∑
i=1

(Xi − m)2 .

We can then easily compute the maximum likelihood estimate:

m̂n = X

=
1
n

n∑
i=1

Xi ,

σ̂2
n =

1
n

n∑
i=1

(Xi − X)2 .
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7.3 Localization of QTL

7.3.1 Some genetics

Firstly we will give a short glossary on genetics. See [86] for more sophisticated
definitions and results on genetics. An individual has chromosomes in his cells
that are the medium of his genetical inheritance. A chromosome is constituted
of a sequence of genes, each of them standing at a permanent location on this
chromosome. This location is called the locus of the gene. A gene can exist with
various expressions, called alleles. At a given locus on a chromosome, there
exists a unique gene “chosen” among the possible alleles. We consider the case
of an eukaryote diploid species with sexual reproduction: the chromosomes
appear by pairs (of homologous chromosomes), one coming from each parent.
Two homologous chromosomes have the same genes, but not necessarily the
same alleles. An individual is homozygote for a given gene if it has two copies
of the same allele at a locus. Else, it is heterozygote.

The gametes only contain one chromosome from each pair (the fusion of
two gametes leads to a complete individual). But the chromosomes of the
gametes are not the copy of one of the parental homologous chromosomes. In-
deed, when created, chromosomes are subject to breaking and repairing that
lead to exchanges of homologous parts. So, a chromosome of a gamete is a
unique mosaic, coming from the concatenation of successive fragments copied
on one of the parental homologous chromosomes. This process is the recom-
bination, leading to the genetical variability. The change-points are called
crossing-overs. The farther away two loci are, the most important is the prob-
ability that a crossing-over occurs in between. If the number of crossing-overs
between two loci is odd, we can say that they have recombined.

Now we need a model for this process. We assume the crossing-overs to
be distributed following a Poisson process of intensity 1 (e.g. [26]). This im-
plies that the number of crossing-overs between two loci follows a Poisson
distribution whose parameter is the length of the interval, that the num-
ber of crossing-overs occurring in disjoint intervals are independent random
variables, and that the lengths between two successive crossing-overs are ex-
ponential random variables with parameter 1. Moreover we assume the genet-
ical transmission to be Mendelian: a gene of a gamete is a copy of one of the
parental gene with probability 1/2.

A trait specified by a unique co-dominant gene, i.e. such that each combi-
nation of alleles on this gene can be identified on this gene, is called a marker.
A marker gives information on the genetical inheritance of an individual at a
given locus.

We are interested in studying a quantitative trait y (fruit size, dairy output
. . .). We want to know whether the variation of this trait is due, at least partly,
to a gene, whose unknown location is called Quantitative Trait Locus (in short
QTL). We assume that a sequence of markers Mi, i = 1, . . . , n is known, and
that their location is known without errors. The idea ([51]) is to map the QTL
by looking for markers that are linked to this QTL.
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In the most favorable situation, we are faced with lines (a line is a set
of identical individuals that are homozygote at every locus: lines are stable
by sexual reproduction). Lines are commonly used in plant improvements,
but also with some animals ( all the same we manage to produce males and
females, which makes sexual reproduction easier. . . ). Crosses are used to lo-
calize QTL. The simplest cross consists in crossing two lines A and B; that
leads to hybrids, all identical. We then cross the hybrids with one of the par-
ents, say A. The individuals born from this cross have the same chromosomes
of type A and another, coming from the hybrid, that consists in a mosaic of
types A and B. The QTL is then localized, when it exists, with this second
generation.

7.3.2 QTL Likelihood

Let us fix a point on the chromosome. We want to know whether the QTL
can reasonably be located at this point. The Poissonian assumption done on
the crossing-overs is essential. Indeed, the QTL distribution conditionally to
the state of the markers only depends on the adjacent markers Mi and Mi+1

and does not depend on the other markers because of the independence of the
jumps of the Poisson process. Let ∆ be the distance between two adjacent
markers and let r be the distance between the expected location of the QTL
from the left-sided marker Mi. We need to know the probability that the
allele of the QTL is A or B knowing that the adjacent markers are A or B.
For instance, let us compute the probability that the QTL is A knowing that
the adjacent markers are A and A. The adjacent markers are A and A: the
number of crossing-overs on the interval [Mi,Mi+1] is even. The QTL is A:
the number of crossing-overs on each sub-intervals [Mi, QTL] and [QTL,Mi+1]
is even. The probability of having an even number of crossing-overs on the
interval [Mi, QTL] is

∑
n≥0

exp(−r)
r2n

(2n)!
= 1/2(1 + exp(−2r)) .

The Bayes formula then gives:

P(QTL = A|Mi = A & Mi+1 = A)

=
1 + exp(−2r) + exp(−2(∆ − r)) + exp(−2∆)

2(1 + exp(−2∆))
.

We now assume that the qualitative observed trait follows a Gaussian
distribution with expectation µA and variance σ2 if the QTL is A and a
Gaussian distribution with expectation µB and variance σ2 if the QTL is B.
We observe a p-sample of individuals where the qualitative trait is observed.
The likelihood of this p-sample is given by:
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Lp(y) =

p∏
i=1

φ(µA, σ2)P(QTL = A|Mi,Mi+1)φ(µB , σ2)P(QTL = B|Mi,Mi+1) ,

where φ is the Gaussian density.
This likelihood can be computed at any point on the chromosome. The

estimate of the QTL location is the point that maximizes the likelihood.
Several questions then arise. Can we trust this location? Is our likelihood

estimate the best estimate? Can we test the existence or non-existence of this
QTL2? We will answer these questions in the following section. Let us just
indicate that the answer is usually only asymptotical. In the QTL framework,
the answer is diasymptotical ([51]): as the number p of observed individuals
increases and as the distance between two adjacent markers decreases.

7.4 Asymptotical study of the likelihood

7.4.1 Consistency of the maximum likelihood estimate

The first expected property of an estimate is that this estimate converges to
the true value of the parameter as the number of observations grows.

Consider a n-sample with likelihood Ln(θ, (Xi)1≤i≤n). Using the law

of large numbers, we can prove that − 1
n

log Ln(θ, (Xi)1≤i≤n) converges to
K(Pθ0 ,Pθ), where K(Pθ0 ,Pθ) is the Kullback information of the distribu-
tions Pθ0 and Pθ:

K(Pθ0 ,Pθ) =
∫

dPθ0

df
log

dPθ0
df

dPθ

df

df

=
∫

fθ0 log
fθ0

fθ
.

The consistency of the likelihood estimate is given by the following results
(cf. [19]).
2 This question of testing the existence can be crucial. Indeed, the likelihood is a

continuous function and still has a maximum. So, there always exists a likelihood
estimate for the QTL, but this does not involve the existence of a QTL. We
do not want to go into details (see [38]), but we have to point out that some
excesses may occur. For instance, when using the QTL method, or any similar
method of inverse genetic, one should wonder whether the gene of criminality or
homosexuality exists. The existence of an estimate of the location of such a gene
will not necessarily imply the existence of this gene.
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Theorem 7.4.1 Consistency of the likelihood estimate .
Consider a n-sample with distribution Pθ0 . Assume that the parametric

model Pθ, θ ∈ Θ is dominated by a sigma-finite measure f . Assume that the
model is identifiable: K(Pθ0 ,Pθ) = 0 iff θ = θ0. Assume that the set Θ of

parameters is compact. Let fθ(x) =
dPθ

df
. Assume that the family of functions

θ → Logfθ(x) is equicontinuous. Then every sequence of likelihood estimates
converges in Pθ0-probability to θ0 as n → +∞.

For practical purposes, one first needs to verify that the model is identi-
fiable. Indeed this is a sine qua non condition. Then, one needs to check the
equicontinuity of the family of the log-density Logfθ.

7.4.2 Rate of convergence of estimates

We have just seen general results (cf. Theorem 7.4.1) that ensure the con-
sistency of likelihood estimates. Now the following question arises: what is
the rate of convergence of the estimates to the true value of the parameter?
We first need to give a precise meaning to the heuristic idea of rate of con-
vergence. The comparison of these rates then allows to rank the estimates.
Usually (but this is not the only way), the rate of convergence is measured
through the mean square error of the estimate. We will see that there exists
a lower bound for the mean square error of estimates, and that, for regular
parametric models, this bound is asymptotically reached by the likelihood
estimate.

Definition 7.4.1 Regular model.
Consider a parametric model Pθ0 , θ0 ∈ Θ ⊂ R

k dominated by a sigma-
finite measure f . This model is regular at point θ0 if:

1. θ0 is an interior point of Θ.

2. The likelihood function fθ =
dPθ

df
is twice continuously differentiable in a

neighborhood of θ0.
3. gradLogfθ is a centered squared integrable r.v. for Pθ0 . Let us define:

Ii,j(θ0) = Eθ0

(
∂

∂θi
Logfθ0

∂

∂θj
Logfθ0

)
= −Eθ0

(
∂2

∂θi∂θj
Logfθ0

)
.

The matrix I(θ0) = (Ii,j(θ0))1≤i,j≤k is called the Fisher information ma-
trix at point θ0.

4. I(θ0) is invertible.

The following Theorem gives a lower bound for the rate of convergence of
estimates.
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Theorem 7.4.2 Cramér-Rao inequality.
Consider a regular model at point θ0 and let θ̃n be an estimate of θ0.
Assume gradE(Logfθ θ̃n) = Egrad(Logfθ θ̃n) . Then:

Eθ0(θ̃n − Eθ0 θ̃n)2 ≥ tgradEθ0 θ̃n
I−1(θ0)

n
gradEθ0 θ̃n .

Essentially, Cramér-Rao inequality tells us that, for regular models, we cannot
estimate the parameters with a greater rate than

√
n.

Definition 7.4.2 Unbiased estimate.
An estimate θ̃n is unbiased if its expectation is equal to the true value of

the parameter: Eθ0(θ̃n) = θ0.

Definition 7.4.3 Efficient estimate.
An unbiased estimate is efficient if its rate of convergence reaches the

Cramér-Rao inequality.

In the one-dimensional case, the Cramér-Rao bound for an unbiased esti-

mate is Eθ0(θ̃n − θ0)2 ≥ I−1(θ0)
n

. As a matter of fact, this is a lower bound
of the variance of estimates.

Theorem 7.4.3 Asymptotical efficiency.
Consider a regular model at point θ0, with likelihood fθ0 and Fisher in-

formation I(θ0). Assume the existence of a neighborhood V0 of θ0 and of a
squared integrable r.v. h such that for all θ ∈ V0:∣∣∣∣ ∂2

∂θi∂θj
Logfθ(x)

∣∣∣∣ ≤ h(x) .

If θ̂n is a consistent likelihood estimate,
√

n(θ̂n − θ0) converges in distribution
to a centered Gaussian variable N (0, I−1(θ0)) as n → +∞.

We say that the likelihood estimate is asymptotically efficient . Let us
recall that Theorem 7.4.3 leads to asymptotical confidence areas. Let R be a

subset of Rk. As n → +∞, P(
√

n(θ̂n − θ0) ∈ R) converges to
∫

R

Φ(I−1(θ0)),

where Φ(I−1(θ0)) is the density probability of a centered Gaussian variable of
variance I−1(θ0). This leads to confidence areas for θ0.

The following Lemma leads to the estimate of a function g(θ0) from the
estimate of θ0.

Lemma 7.4.1
Assume the same conditions as for Theorem 7.4.3. Let g be a twice con-

tinuous differentiable function in a neighborhood of θ0, which second order
derivatives are bounded on this neighborhood. Let Jg be the Jacobian matrix
of g. Then, as n → +∞,

√
n(g(θ̂n) − g(θ0)) converges in distribution to a

centered Gaussian variable N (0,Jg(θ0)I−1(θ0)Jg(θ0)t).
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7.4.3 Likelihood ratio test

We now investigate the question of testing the value of an (unknown) para-
meter. The aim is to decide whether the parameter belongs to a given region
or not. The true parameter θ0 belongs to a subset Θ ⊂ R

k. A (binary) test
is a partition of Θ into two subsets Θ0 and Θ1. The subsets Θ0 and Θ1 are
called the null hypothesis H0 and the alternative hypothesis H1. In view of
the observations, the question is now to decide whether the true parameter
θ0 belongs to Θ0 or Θ1. Let us first begin with a rather abstract definition of
tests. Let X = (X1, . . . , Xn) be the observations. A test of H0 against H1 is
defined by an acceptance region R such that:

• if X ∈ R, H0 is rejected,
• if X /∈ R, H0 is accepted.

The level of the test, or error of first kind, is defined by:

α = sup
Θ0

Pθ0(X ∈ R) .

α controls the probability of rejecting H0 incorrectly.
The power of the test is defined by:

sup
Θ1

Pθ0(X ∈ R) .

The error of second kind is 1 minus the power. It controls the probability
of incorrectly accepting H0. For a given level α, one looks for a test with a
maximal power. We will not investigate this question in this book. At this
stage, the two hypothesis H0 and H1 have not any symmetric roles, not any
more.

Theorem 7.4.4 Likelihood ratio.
Consider a n-sample satisfying assumptions of Theorem 7.4.3. Let

ln(θ, (Xi)1≤i≤n) be the log-likelihood. Let θ̂n be a likelihood estimate. Then,
ln(θ̂n, (Xi)1≤i≤n) − ln(θ0, (Xi)1≤i≤n) converges in distribution, as n → +∞,

to
1
2
χ2(k), where χ2(k) is a Chi-square distribution with k degrees of freedom.

The likelihood ratio test is built from this Theorem. This test is of course
asymptotical. If one wants to test H0 = ”θ0 = θ�” against H1 = ”θ0 
= θ�”,
for a given known value θ�, the acceptance region of H0 with asymptotical
level α is:

ln(θ̂n, (Xi)1≤i≤n) − ln(θ�, (Xi)1≤i≤n) ≤ 1
2
χ2

α(k) .
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7.5 The weevil life

Now we will present an example with “real world data”. This example re-
quires standard results on regression models, and we refer to [31] for more
sophisticated results.

We will describe and model some of the experiments done in the forties by
S. Utida in order to study the dynamics of a weevil population Callosobruchus
chinensis (cf. [75]). These experiments emphasize the effect of the population
density as an intrinsic regulation mechanism of a population growth.

7.5.1 Some elements about the weevil life cycle

A weevil mainly eats stock corns. The sex ratio is 1:1. The mating occurs in
the day following the emergence of adulthood (transition from worm to adult
stage). The laying period is about one week, the exact duration depends on
humidity and air pressure. Each female lays one egg a time. The egg sticks to
the corn surface thanks to a gel secreted by the female. During the hatching,
the individual comes into the corn; it pierces the corn surface.

7.5.2 Experimental device and results

The experimenter keeps the enclosures with constant temperature and humid-
ity. He puts a given quantity of corns (about 20 grams) and a given number
of adults couples, being just after the emergence of adulthood. He repeats the
experiments for a variable number of couples. He counts the number of adults
coming from the initial couples after a complete life cycle.

The results of two of these experiments are given in figure 7.1.

7.5.3 Model

For a given number x of couples of first generation, we get a random number Y
of second generation adults. Y is written as a sum of its expectation, function
of x, and of a centered r.v. ε: Y = f(x) + ε. Firstly we want to precise the
shape of f .

We assume that the female potential for reproduction is equal to r0, and
that it decreases of a factor k (k < 1) each time she meets a female. If she
meets k females, we assume the potential for reproduction to be r0 kp. In
order to evaluate the average number of females met by a given female, we
use the following statistical model. The weevil females spread on the corns
are modeled by a Poisson point process on R

2.

Let us recall that, for an homogeneous Poisson point process on R
2 with

parameter θ, the number of points lying in a subset B of R
2 is a Poisson r.v.

with parameter θ λ(B), where λ(B) is the Lebesgue measure of B. Let N(B)
be this random number of points:
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Fig. 7.1. Utida’s example : graph of the observations. ∆: first experiment; �:
second experiment.

P {N(B) = m} = exp(−θ λ(B))
(θ λ(B))m

m!
.

Moreover, if B and C are two disjoint subsets of R
2, N(B) and N(C) are two

independent Poisson r.v. with parameters θ λ(B) and θ λ(C).

We assume that the potential for reproduction of a female localized in u,
is not weakened if she has the use on an area contained in a circle S(u, ρ),
centered in u, with radius ρ. The number of females in competition is given by
the number of points lying in the same circle centered in u and with radius 2ρ
(Two circles with same radius are disjoint iff the distance between their centers
is less than 2ρ.). Therefore, we assume that the potential for reproduction ru

of a female localized in u is equal to r0k
(N [S(u,2ρ)]−1). Its expectation is:

E (ru) = r0

∞∑
m=0

kmP {N [S(u, 2ρ)] = m + 1 |N [{u}] = 1} .

But,

P {N [S(u, 2ρ)] = m + 1 |N [{u}] = 1} = P {N [S(u, 2ρ)] = m}

since we can consider, even if it is not completely correct, that:
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P {N [S(u, 2ρ)] = m + 1 |N [{u}] = 1} =

lim
η→0

P {N [S(u, 2ρ)] = m + 1 |N [S(u, η)] = 1} .

This result comes from an application of the Bayes formula and of the
independence property of the number of points lying in two disjoint areas. We
then obtain: E (ru) = r0 exp (−θs(1 − k)), with s = λ (S(u, 2ρ)). θs is clearly
proportional to the number of females of first generation x.

A reasonable choice of function f(x) is therefore given by:

f(x) = bx exp (−cx) .

We have done the assumption that every meeting of females weakens the
potential for reproduction. This is also restrictive. We decide to model the
potential for reproduction of a female of first generation by

E (Y )
x

= b exp (−cxa) ,

where a < 1 is a softening parameter and a > 1 is an hardening parameter.
Alternative choices, that we will justify later, are:

E (Y )
x

=
b

(1 + cx)a ,

or
f(x) =

bx

(1 + cx)a .

7.5.4 Statistical model

Firstly we work with the following model for the regression function f :

Y = bx exp (−cxa) + ε ,

where

• Y is the observed size of adults of second generation;
• x is the (known) number of couples of first generation;
• bx exp (−cxa) is the expectation of Y , it is called the regression function;
• The errors are modeled by ε. There are several causes of errors: measure-

ment errors, variability of the parameters, . . . We assume the variance of
ε to be finite.

• a, b, c and σ2 are the unknown parameters of the model.

Such a model Y = f(x, β) + ε, is called a regression model.
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7.5.5 Data analysis

Now we can analyze the Utida’s data. The aim is still to study the influence
of the population density on its fertility. We reproduce here some of the data
we will study.

x Y exp. r
1 1 77.5 I 6
2 2 136.2 I 6
3 4 240.4 I 5
4 8 356.0 I 5
5 16 505.6 I 4
6 24 643.2 I 4
7 32 700.8 I 3
8 48 720.0 I 3
9 64 710.4 I 3

10 96 748.8 I 2
11 128 666.0 I 1
12 192 614.4 I 3
13 256 588.8 I 3
14 384 153.6 I 2
15 1 65.2 IV 10
16 2 126.6 IV 10
17 4 250.0 IV 10
18 8 428.0 IV 10
19 16 630.4 IV 10
20 24 789.6 IV 10
21 32 857.6 IV 10
22 48 888.0 IV 10
23 64 915.2 IV 10
24 96 854.4 IV 10
25 128 742.4 IV 10
26 192 729.6 IV 10
27 256 742.4 IV 10
28 384 537.6 IV 3

Two experiments are summed up in this table. These experiments have
been lead with different conditions of temperature and humidity (see column
exp.). The number of couples of first generation is written in column x. The
number of repetitions done with the same number of couples of first generation
is written in column r. The expectation of the number of individuals of second
generation coming from the same number of couples of first generation is
written in column Y.
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Our model is the following:

Yi = bI exp
(
−cIxaI

i

)
+ εi/

√
ri i = 1, 2, . . . , 14 ;

Yi = bIV exp
(
−cIV xaIV

i

)
+ εi/

√
ri i = 15, . . . , 28 .

We assume the εi to be centered Gaussian r.v.’s of unknown variance σ2
0 .

Set βI =
(
aI , bI , cI

)T and βIV =
(
aIV , bIV , cIV

)T . Denote by f (x, β) the
regression function. The log-likelihood becomes:

log �
(
Y(28) ; βI , βIV , σ2

)
= −14 log 2π − 14 log σ2 − 1

2

28∑
i=1

ri

− 1
2σ2

(
14∑

i=1

ri

(
Yi − f(xi, β

I)
)2

+
28∑

i=15

ri

(
Yi − f(xi, β

IV )
)2)

.

The estimates of the parameters are the following:

Value Standard deviation
a_I 0,4396142 0,06661562
b_I 107,9336619 36,11258990
c_I 0,3540468 0,15559931
a_IV 0,3641156 0,03266205
b_IV 187,7486624 43,88373682
c_IV 0,5704058 0,13092695

sigma**2 : 16933

log likelihood :-152,306

We assume that a I=a IV and c I=c IV. So the estimates of the regression
function are:

Value Standard deviation
a_I 0,3797325 0,03022036
b_I 141,2225300 28,22369967
c_I 0,5156475 0,10788360
a_IV 0,3797325 0,03022036
b_IV 172,5173688 34,66189179
c_IV 0,5156475 0,10788360

sigma**2 : 18041

log likelihood : -153,188
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Fig. 7.2. Utida’s example: data are fitted by two curves. ∆: first experiment; �:
second experiment.

Let us choose an asymptotical level of 0, 05. The test statistics SRV =
2 × (−152, 306 + 153, 188) = 1, 764 has to be compared with v0,95 = 5.99 for
χ2(2) distribution with two degrees of freedom. We accept such hypothesis.

Parameter b is indeed influenced by the experimental conditions. For this
purpose we test the hypothesis ∆θ0 = (0 0 0)T , with

∆ =

⎛⎝1 0 0 −1 0 0 0
0 1 0 0 −1 0 0
0 0 1 0 0 −1 0

⎞⎠ .

The log likelihood is 162,064, and the test statistics SRV = 2× (−152, 306
+162, 064) = 19, 516 has to be compared, with the same asymptotical level of
0.05, to v0,95 = 7.81 with a χ2(3) distribution with three degrees of freedom.
We reject such hypothesis (equality of the curves).
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Fig. 7.3. Utida’s example : the data are fitted by regression models with the same
parameters a and c.
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7.7 Exercises

Exercise 7.7.1 Mendel’s peas (e.g. [17]).

Since phenotypes are governed by dominant genes, we expect the following
proportion for the four types of peas:

• Round and Yellow: 9/16,
• Round and green: 3/16,
• Angular and Yellow: 3/16,
• Angular and green: 1/16.

Now, Mendel obtained the following data by his experiment:

Phenotype Observed frequency
Round and Yellow 315
Round and Green 108
Angular and Yellow 101
Angular and Green 32



7.7 Exercises 135

Do you accept Mendel’s law?

Exercise 7.7.2 Student and Fisher-Snedecor tests.

Let X1, X2, . . . , Xn be a sequence of i.i.d. Gaussian r.v. of unknown expecta-
tion m and unknown variance σ2. Let m� and σ� be two given values.

1. Propose and study a test of H0 = “m ≤ m� “ against H1 =”m > m�”
(Hint: use Theorem A.4.1).

2. Propose and study a test of H0 = “σ ≤ σ�” against H1 =”σ > σ�” (Hint:
use Theorem A.4.1).

Exercise 7.7.3 Comparison of the expectations in a Gaussian model.

Let X1, X2, . . . , Xn be a sequence of Gaussian i.i.d. r.v. with unknown
expectation m1 and unknown variance σ2 and let Y1, Y2, . . . , Ym be a sequence
of Gaussian i.i.d. r.v. with unknown expectation m2 and unknown variance
σ2. We assume the r.v. X1, X2, . . . , Xn and Y1, Y2, . . . , Ym to be independent.
Set:

X =
1
n

n∑
i=1

Xi , Y =
1
m

m∑
i=1

Yi ,

S2
X =

1
n − 1

n∑
i=1

(Xi − X)2 , S2
Y =

1
m − 1

m∑
i=1

(Yi − Y )2 .

1. Let:

Z =

√
n + m − 2
1/n + 1/m

X − Y√
(n − 1)S2

X + (m − 1)S2
Y

.

What is the probability distribution of Z ?
2. Propose a test of H0 =“m1 = m2” against H1 =“m1 
= m2”.

Exercise 7.7.4 Distance estimate in a Gaussian model.

Let Yi = (Y1,i, Y2,i), i = 1, . . . , n be a n-sample of Gaussian vectors with
expectation EY = (m1,m2) and with unknown covariance matrix. Let d =√

m2
1 + m2

2 be the distance to the origin. Assume d > 0. Propose an estimate
of d and give an asymptotical confidence interval.

Exercise 7.7.5 Fisher information of a Bernoulli distribution.

Let X1, . . . , Xn be a n-sample of Bernoulli distribution of parameter
0 < θ < 1.

1. Compute the Fisher information.
2. Let X be the empirical expectation of X1, . . . , Xn. Is this estimate effi-

cient?
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Exercise 7.7.6 Non-uniqueness of likelihood estimates.

Let X1, . . . , Xn be a n-sample of distribution density p(x) = Ce−|x−θ|.

1. Compute C.
2. Is the likelihood estimate of θ unique?

Exercise 7.7.7 Integral approximation.

Let X1, . . . , Xn be an n-sample of a uniform distribution on A ⊂ R
k. Let φ

be a continuous function from A to R.

1. Set Yi = φ(Xi). Compute EYi.

2. Let Sn =
1
n

n∑
i=1

Yi . What is the limit of Sn as n → +∞? Give an asymp-

totical confidence interval on
∫

A

φ based on Sn as n → +∞.

3. Compare with the estimate given by a Riemann sum.

Exercise 7.7.8 Uniform distribution.

Let X1, . . . , Xn be an n-sample of uniform distribution on [0, θ0]. θ0 is un-
known.

1. Compute the likelihood estimate θ̂n. Prove that this estimate is biased.

2. Set θ̃n =
n + 1

n
θ̂n. Compute var(θ̃n). Is there a contradiction with the

Cramér-Rao inequality?
3. Compute var(X). Compare with var(θ̃n).

Exercise 7.7.9 Uniform distribution (ctd.).

Let X1, . . . , Xn be a n-sample of uniform distribution on [θ1, θ2]. θ1 ≥ 0 is
unknown and θ2 is known. Propose and study a test H0 = ”θ1 = 0” against
H1 = ”θ1 > 0”.

Exercise 7.7.10 Exponential models.

Let f be a sigma-finite measure and T a random vector of R
k Consider the

set Θ ⊂ R
k of θ such that exp < θ, T > is f -integrable. Define:

ψ(θ) = Log

∫
exp < θ, T > df ,

for θ ∈ Θ.

1. Check that the measure Pθ = exp(−ψ(θ)+ < θ, T >)f is a probability
distribution. Let Eθ be the associated expectation.

2. Show that:

gradψ(θ) = Eθ(T ) ,

∂2ψ

∂θi∂θj
= covθ(Ti, Tj) .
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3. Compute the Fisher information matrix.
4. Compute the Kullback information between two distributions with para-

meters θ1 and θ2. Make a Taylor expansion of order 2 and compare with
the Fisher information.

5. Show that the following distributions define exponential models: binomial
distributions, Poisson distributions, exponential distributions, Gaussian
distributions.

Exercise 7.7.11 Sequence alignment (from [40], [41]).

Consider a finite set A = {a1, . . . , ar}. Classical biological examples are the
nucleotides (r = 4), the amino acids (r = 20), and the codons (r = 61).
Consider a probability distribution p = {p1, . . . , pr}. A random sequence S is
sampled independently from A with probability p. We associate with each ai

a score si. We require at least one score to be positive and the expected score

E =
r∑
1

pisi to be negative.

1. Show that if the scores are of a likelihood-type (i.e. si = log qi/pi , qi ≥ 0,
r∑
1

qi = 1), then E ≤ 0 holds automatically.

2. Show that there exists a unique λ� > 0 such that:
r∑
1

pie
λ�si = 1 .

3. a) Let Xi, i = 1, . . . , n be n i.i.d. exponential random variables with

parameter λ. Set Y = max
i=1,...,n

Xi . Find lim
n→+∞P

(
Y − log n

λ
≤ x

)
.

b) Let M(n) be the segment of the sequence S with greatest additive
score. This segment is usually called the maximal segment score. The
study of the distribution of M(n) is intricate (the previous question
on the asymptotic distribution of Y is only a rough indication on the
behavior of M(n)). One can prove (see [40, 41] for details and proofs)
that there exists a constant K� such that:

lim
n→+∞P

(
M(n) − log n

λ�
≤ x

)
= exp

(
−K�e−λ�x

)
.

Consider now two sequences S and S′ of sizes n and n′ sampled from A
with probabilities p and p′. Let M be the high maximal subalignment
score between the two sequences S and S′. Let α (0 < α < 1) be a
given level. Let x� such that:

exp(−K� exp(−λ�x�)) = α .

Why can we say that any alignment of segments from two sequences

has an high score (of level α) if M exceed
log(nn′)

λ�
+ x�?
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Exercise 7.7.12 Herbivore-plankton model.

1. Consider an aquatic herbivorous population eating phyto-plankton. Let
P (t) (resp. H(t)) the biomass at time t. The relationships are modeled
by:

dP (t)
dt

= rP (t)
(

(K − P (t)) − BH(t)
C + P (t)

)
,

dH(t)
dt

= DH(t)
(

P (t)
C + P (t)

− AH(t)
)

.

Show that there exists a steady state in the quadrant x > 0, y > 0 and that
this steady state can be stable or unstable according to the parameters.

2. We want to estimate the parameters A and C . The experimenter can
keep the biomass of phyto-plankton constant while some herbivores are
introduced in the experimental pool. The system then evolves into its
steady state. The biomass Q of herbivores is measured. The experiments
are done in independent pools. In the i-th pool, a biomass mi is kept and
a biomass Qi of herbivores is measured. Consider the model:

Qi =
mi

A(C + mi)
+ εi , i = 1, . . . , n ,

where the εi are centered Gaussian i.i.d. r.v. with unknown variance.
a) Justify this model.
b) Why do we need n ≥ 3?
c) Write the likelihood equations.

Exercise 7.7.13 Estimate for differential equations.

Let f be a C1 function. Consider the differential equation:

dx(t)
dt

= f(x(t)) ,

with initial condition x(0). Let x� such that f(x�) = 0 and f ′(x�) < 0. Let
x(t) be a solution such that:

lim
t→+∞x(t) = x� .

The yn, n ≥ 0 are observed:

yn = x(n) + εn .

The εn are centered second-order i.i.d. r.v. The following estimate of x� is
proposed:

x̂n =
1
n

n∑
k=1

yn .
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1. What is the (a.s.) limit of x̂n as n → +∞?
2. What is the limiting distribution of

√
n(x̂n − x�) as n → +∞?

Exercise 7.7.14 Censored data.

Consider a population that can either die after an accident, or a disease.
If an individual dies after a disease, the age i when dying is modeled by
the r.v. Xi. If an individual dies after an accident, the age i when dying is
modeled by the r.v. Ci. To sum up, an individual dies at an age modeled by
the r.v. Ti = inf(Xi, Ci). We assume that the individuals are independent and
identically distributed.

1. Set δi = 1Xi≤Ci
. What does δi mean?

2. Assume that the variables Xi and Ci admit densities:

P (Xi ≥ x) =
∫ +∞

x

fX(u)du ,

P (Ci ≥ x) =
∫ +∞

x

fC(u)du .

Set

λX(x) =
fX(x)∫ +∞

x
fX(u)du

,

λC(x) =
fC(x)∫ +∞

x
fC(u)du

.

What is the meaning of λX and λC?
3. From now on, we assume the function λX(x) (resp. λC(x)) to be constant

and equal to λX (resp. λC). What are the distributions of Xi, Ci and Ti?
4. We estimate λX by:

λ̂X =
∑n

i=1 δi∑n
i=1 δiTi

.

Why? Is this estimate consistent?
5. Then we propose:

λ̃X =
∑n

i=1 δi∑n
i=1 Ti

.

Is this estimate consistent? What is your own conclusion?
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Appendices

A.1 Ordinary differential equations

Let I be an interval of the form [t0, T ], [t0, T ) or [t0,+∞). Let f be a con-
tinuous function from Rm into Rm and let y0 ∈ Rm. We are looking for a
continuous differentiable function y, defined from I into Rm, such that, for
every t ∈ I:

y′(t) = f(y(t)) , (A.1)
y(t0) = y0 .

The equation (A.1) is a first order differential equation. Let us recall that
a p-order equation like

z(p)(t) = φ(z(t), z′(t), . . . , z(p−1)(t)) ,

is amenable into a first order equation like (A.1) by the transformation y1(t) =
z(t), y2(t) = z′(t), . . ., yp(t) = z(p−1)(t).

Theorem A.1.1 Cauchy-Lipschitz.
If the function f satisfies the Lipschitz condition:

|f(y) − f(z)| ≤ L|y − z| ,

for all (y, z) ∈ R2m, then the problem (A.1) has a unique solution.

Definition A.1.1 Trajectory. A trajectory is the set {y(t), t ∈ I}, where y is
a solution of (A.1).

Definition A.1.2 Stability.
Let I = [t0,+∞[. A solution ψ of (A.1) is called a stable solution if, for

all ε > 0, there exists δ > 0 such that, for any solution φ of (A.1) satisfying:

|φ(t0) − ψ(t0)| ≤ δ ,
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we have, for all t ≥ t0,

|φ(t) − ψ(t)| ≤ ε .

Moreover if we have lim
t→+∞ |φ(t) − ψ(t)| = 0, then we say that the solution ψ

is asymptotically stable.

We are interested in the steady states, defined by:

f(y�) = 0 .

The problem (A.1) with initial condition y(t0) = y� admits the solution y(t) ≡
y�. Therefore, we will speak, with a minor abuse of language, of the stability
of y�.

The following results concern the stability of the solution near a steady
state y�. Without loss of generality, we will assume that y� = 0.

A.1.1 Stability when m = 1

Assume that (A.1) takes the form:

y′(t) = ay(t) + g(y(t)) ,

where g(y) = O(|y|1+ε), ε > 0, as y → 0. Then:

1. a > 0. 0 is unstable.
2. a < 0. 0 is asymptotically stable.

A.1.2 Global behavior when m = 1

Let us consider the ordinary differential equation:

y′(t) = f(y(t)) ,

with initial condition y(t0) = y0. The qualitative study of the trajectory is
done the following way.

1. Assume f(y0) < 0. Denote, when it exists, y� = sup{y ≤ y0, f(y) = 0}.
The trajectory coming from y0 cannot come back to y0; this is forbidden by
the Cauchy-Lipschitz Theorem that ensures the uniqueness of the solution.
For the same reason, the trajectory is not allowed to cross the point y�.
The trajectory remains into the interval [y�, y0]. On this interval [y�, y0],
the function f is negative. The derivative of the function y is therefore
negative. Function y is decreasing and bounded. Function y converges to
a limit as t → +∞. This limit has to be a steady point. If y� does not
exist, we show that the trajectory converges to −∞ as t → +∞ with the
same arguments.
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2. Assume f(y0) > 0. The same arguments prove that the trajectory con-
verges, as t → +∞, to the smallest zero of function f that is greater than
y0, when it exists. Else, the trajectory converges as t → +∞ to +∞.

3. Assume f(y0) = 0. This is a steady point and the trajectory remains on
this point.

Especially, an oscillating or asymptotically oscillating behavior is not possible
in one dimension.

A.1.3 Stability when m = 2

Local behavior of a linear system.

Consider the linear system:

y′
1 = ay1 + by2 , (A.2)

y′
2 = cy1 + dy2 .

Let A be the matrix
(

a b
c d

)
. This matrix is usually called the stability

matrix. Assume det(A) 
= 0. Let λ, µ the eigenvalues of A. These eigenvalues
can be real or complex numbers. If λ = α + iβ (α, β real numbers, β 
= 0) is a
complex number, then µ = α − iβ is the other eigenvalue. There exists a real
non-singular matrix T such that J = TAT−1 has one of the following forms:

J =
(

λ 0
0 λ

)
λ 
= 0 (A.3)

J =
(

λ 0
0 µ

)
µ < λ < 0 or 0 < µ < λ (A.4)

J =
(

λ 0
γ λ

)
λ 
= 0, γ > 0 (A.5)

J =
(

λ 0
0 µ

)
λ < 0 < µ (A.6)

J =
(

α β
−β α

)
α 
= 0, β 
= 0 (A.7)

J =
(

0 β
−β 0

)
β 
= 0 . (A.8)

The local behavior near (0, 0) and the usual terminology are given by the
following figures.

1. Case A.3
a) λ < 0.
b) λ > 0.
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Fig. A.1. Stable proper node

Fig. A.2. Unstable proper node

Fig. A.3. Stable node

2. Case A.4
a) µ < λ < 0.
b) 0 < µ < λ.

Fig. A.4. Unstable node
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3. Case A.5
a) λ < 0.

Fig. A.5. Stable improper node

b) λ > 0.

Fig. A.6. Unstable improper node

4. Case A.6.

Fig. A.7. Saddle point

5. Case A.7
a) α < 0, β < 0.
b) α > 0, β < 0.

6. Case A.8
a) β < 0.
b) β > 0.
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Fig. A.8. Stable spiral

Fig. A.9. Unstable spiral

Fig. A.10. Elliptic fixed point

Fig. A.11. Elliptic fixed point

Local behavior of a non-linear system

Consider the non-linear system:

y′
1 = ay1 + by2 + g1(y1, y2) , (A.9)

y′
2 = cy1 + dy2 + g2(y1, y2) .
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Set r =
√

y2
1 + y2

2 . Assume the existence of ε > 0 such that, near (0, 0), we

have g1(y1, y2) = O(r1+ε), g2(y1, y2) = O(r1+ε) and such that
∂g1

∂y2
and

∂g2

∂y1

exist and are continuous on a neighborhood of (0, 0).
The local behavior of the non-linear system (A.9) can be deduced from

the local behavior of the associated linear system (A.2).

1. A node for A.2 remains a node for A.9 and keeps the same stability.
2. A proper node for A.2 remains a proper node for A.9 and keeps the same

stability.
3. An elliptic fixed point for A.2 becomes an elliptic fixed point or a node

(stable or unstable) for A.9.
4. If A.2 is an unstable improper node, then every trajectory of A.9 converges

(or keeps away from) to the origin with an angle of 0, π/2, π or 3π/2 with
the axis of x; the stability is kept.

5. If A.2 is a saddle point, then there exists a trajectory converging to the
origin with an angle of 0, one converging to the origin with angle of π, the
other keeping away from the origin.

A.1.4 Global behavior when m = 2

So far, we only considered the local behavior of the differential equations near
the steady state. These behaviors have been given when m = 2, but can be
easily generalized when m > 2. We will now give some global properties. We
must keep in mind that these global properties are not available when m > 2
anymore.

Consider the following system:

y′
1 = f1(y1, y2) ,

y′
2 = f2(y1, y2) .

Assume that f = (f1, f2) is defined and continuous on an open bounded
domain D of R2. Recall that a point y� such that f(y�) = 0 is called a steady
state and that a point such that f(y�) 
= 0 is called a regular point.

Definition A.1.3 Limit point.
A point Q is a limit point of the trajectory C if there exists a sequence tn,

with lim
n→+∞ tn = +∞, such that (y1(tn), y2(tn)) converges to Q as n → +∞.

The set of limit points Q of C is denoted by L(C).

Theorem A.1.2 Poincaré-Bendixson.
Assume C to be contained in a closed subset K ⊂ D. If L(C) only contains

regular points, then

1. either C = L(C) and C is a periodic trajectory;
2. either L(C) is a periodic trajectory. We say then that C is a limit cycle.
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Theorem A.1.3 Classification of limit trajectories.
Assume C being contained in a closed subset K ⊂ D. Assume that D only

contains a finite number of steady states, then:

1. either L(C) is reduced to a unique steady point, and C converges to this
steady point as t → +∞;

2. either L(C) is a periodic trajectory;
3. either L(C) contains a finite number of steady states and a set of trajec-

tories, each of them converging to a steady state as t → +∞.

Nota-bene : See [14] or [33] for a general theory on ordinary differential
equations.

A.2 Evolution equations

The study of partial differential equations highly exceeds the outline of this
book. The aim of this appendix is only to give some general ideas on evolution
equation like the Fisher equation. For instance we refer to [10] for questions
related to functional analysis, to [74] for numerical approximations, and [13],
[28] and [44] for general results.

A.2.1 General problem

Our aim is to find a function u(t, x) from [0, T ] × Ω into R, such that:

⎧⎨⎩
∂u
∂t = Au + f(t, x, u) , t ∈ [0, T ], x ∈ Ω ,
u(t, x) = 0, t ∈ [0, T ], x ∈ ∂Ω ,
u(0, x) = φ(x) ,

(A.10)

where Ω is an open bounded domain of R
N 1, with a “smooth” boundary2,

A an operator and φ a “smooth” function 3.

We will give the main outline when A is the Laplacian A ≡ ∆ =
N∑

i=1

∂2

∂x2
i

.

Equation (A.10) is then called reaction-diffusion equation.

A.2.2 Homogeneous linear problem

Let us start with some classical results on finite dimensional system of differ-
ential equations:

1 Assuming Ω bounded is not an actual limitation.
2 for instance C1 piecewise.
3 For instance continuous and vanishing on ∂Ω.
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d−→u
dt = M−→u ,
−→u (0) = −→u0 ,

(A.11)

where M is a matrix.
We can define the matrix exponential by writing the solution of (A.11)

with the form
−−→
u(t) = exp(tM)−→u0 . Then the matrix exponential satisfies

d

dt
exp(tM) = M exp(tM) .

Consider equation (A.10) without the right side:

⎧⎨⎩
∂u
∂t = Au , t > 0, x ∈ Ω ,
u(t, x) = 0, t > 0, x ∈ ∂Ω ,
u(0, x) = φ(x) .

(A.12)

With suitable conditions on the operator A, satisfied by the Laplacian4,
we prove the existence and uniqueness 5 of (A.12). This solution is a global
one with respect to t since the problem is a linear one.

Following the analogy with the matrix exponential, we can write the expo-
nential operator as the solution of (A.12). The solution of (A.12) then becomes

u = exp(tA)φ . The exponential operator satisfies
d

dt
exp(tA) = A exp(tA) .

In the case of the Laplacian, denote by (ei)i≥1 a Hilbert basis of L2(Ω)
where the ei are eigenfunctions of −∆ that vanish on ∂Ω:{

−∆ei = λiei on Ω ,
ei = 0 on ∂Ω .

The eigenvalues (λi)i≥1 are positive. Denote by <, > the inner product of
L2(Ω).

We are looking for solutions of the form:

u(t, x) =
∑
i≥1

ai(t)ei(x) .

We can easily deduce ai(t) = ai(0) exp(−λit). The constants ai(0) are fixed
by the relation φ(x) =

∑
i≥1

ai(0)ei(x) , i.e. ai(0) =< φ, ei > . The solution of

(A.12) can therefore be written:

u(t, x) =
∑
i≥1

ai(0) exp(−λit)ei(x) . (A.13)

We can use the exponential operator, so (A.13) becomes:

u = exp(t∆)φ .

4 One can for instance prove that −A is a self-adjoint maximal monoton operator
(e.g. [10, Ch.7]).

5 Clearly, for a rigorous presentation, one needs to specify to which functional space
the solution belongs.
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A.2.3 Non-homogeneous linear problem

Consider equation (A.10) when the right side is independent of u:

⎧⎨⎩
∂u
∂t = Au + f(t, x) , t ∈ [0, T ], x ∈ Ω ,
u(t, x) = 0, t ∈ [0, T ], x ∈ ∂Ω ,
u(0, x) = φ(x) .

(A.14)

A method which is similar to the method of variation of parameters for
ordinary differential equations, even technically more difficult, allows to ex-
hibit a solution (that will be unique for the same reasons as previously). In
the case of the Laplacian, as one can check it formally, this solution becomes:

u(t, x) =
∑
i≥1

ai(0) exp(−λit)ei(x) (A.15)

+
∑
i≥1

∫ t

0

< f, ei > exp(−λi(t − s))ds ei(x) .

Using et∆, (A.15) becomes:

u = exp(t∆)φ +
∫ t

0

exp((t − s)∆)f(s, x)ds .

A.2.4 Back to the general problem

Function f is now depending on function u. From (A.15), we introduce the
operator T :

T u =
∑
i≥1

ai(0) exp(−λit)ei(x)

+
∑
i≥1

∫ t

0

< f, ei > exp(−λi(t − s))ds ei(x) . (A.16)

Using notation exp(t∆), (A.16) becomes:

T u = exp(t∆)φ +
∫ t

0

exp((t − s)∆)f(s, x, u(s, x))ds ,

where function f is defined by (A.10) and depends on u. If f is locally Lip-
schitz, the operator T , for T small enough, is a contraction. A fixed point
Theorem in Banach spaces ensures the existence of an unique solution of
T u = u, that is of (A.10). Of course this solution is local with respect to time.
A global control on f (e.g. [28, Ch.3]) transforms this local solution into a
global one; a linear growth of f is sufficient.
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A.2.5 Maximum principle

Let us come back to the linear homogeneous problem (A.12). If φ ∈ L2(Ω),
we have the essential inequalities (e.g. [10, Ch. X.2]) for the solution u(t, x)
of (A.12):

min(0, inf
Ω

φ) ≤ u(t, x) ≤ max(0, sup
Ω

φ) .

Especially if the initial condition φ is positive and bounded, then the so-
lution of (A.12) remains positive and does not explode.

Note that the maximum principle is valid for more general evolution equa-
tions (e.g. [28, Ch.3]).

A.3 Probability

A.3.1 Inequalities

Let X be a real random variable (in short r.v.) We have the following inequal-
ities.

1. Markov inequality. .
Let α > 0 and ε > 0. If E|X|α < ∞, then:

P(|X| ≥ ε) ≤ 1
εα

E|X|α .

2. Bienaymé-Tchebicheff inequality .
Let ε > 0. If var(X) < ∞, then:

P(|X − EX| ≥ ε) ≤ 1
ε2

var(X) .

3. Jensen inequality .
Let φ be a convex function from R into R. If EX < ∞ and Eφ(X) < ∞,
then:

φ(EX) ≤ Eφ(X) .

4. Hölder inequality .

Let p and q such that p > 1, q > 1 and
1
p

+
1
q

= 1 .

If E|X|p < ∞ and E|X|q < ∞, then:

E|XY | ≤ (E|X|p)
1
p (E|X|q)

1
q .

Cauchy-Schwarz inequality corresponds to the case p = q = 2.
5. Cramér inequality.

Assume that the Laplace transform t → E(exp(tX)) is defined on a neigh-
borhood of 0. Then, for all x > EX:

P(X ≥ x) ≤ inf
t

(exp(−xt)E(exp(tX))) .
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A.3.2 Convergences

Let X be a real r.v. and Xn, n ≥ 0 a sequence of real r.v. The following type
of convergences can be defined as n → +∞:

1. Almost sure convergence (in short a.s.).

Xn → X (a.s.) ⇔ P(ω, Xn(ω) → X(ω)) = 1
⇔ ∀ε > 0, P(lim sup |Xn − X| > ε) = 0 .

2. Convergence in probability.

Xn → X (P) ⇔ ∀ε > 0, limP(|Xn − X| > ε) = 0 .

3. Convergence in distribution. We assume that P(X = x) = 0 for all x.

Xn → X (L) ⇔ ∀x, limP(Xn < x) = P(X < x) .

4. Convergence Lp (p ≥ 1).

Xn → X (Lp) ⇔ limE|Xn − X|p = 0 .

These convergences are related to each other the following way:

• A.s. convergence implies convergence in probability.
• Convergence Lp implies convergence Lq for p ≥ q ≥ 1.
• Convergence Lp, p ≥ 1, implies convergence in probability.
• Convergence in probability implies convergence in distribution.

Lemma A.3.1 Borel-Cantelli Lemma.
Let An, n ≥ 0 be a sequence of events.
If
∑
n≥0

P(An) < ∞ then P(lim sup An) = 0.

A.3.3 Zero-one law

Let X1, X2, . . . , Xn, . . . be a sequence of independent r.v. Let Ap be the sigma-
algebra generated by (Xn)n≥p. Let A∞ =

⋂
p≥1

Ap. Then, for all F ∈ A∞,

P(F ) = 0 or P(F ) = 1.

A.3.4 Independent random variables

Let X1, X2, . . . , Xn, . . . be a sequence of real independent and identically dis-
tributed (in short i.i.d.) r.v.

Theorem A.3.1 Strong law of large numbers.

If E|X1| < ∞, then, as n → +∞,
1
n

n∑
i=1

Xi converges (a.s.) to EX1.
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Theorem A.3.2 Central Limit Theorem.

If EX2
1 < ∞, then, as n → +∞,

√
n

(
1
n

n∑
i=1

Xi − EX1

)
converges in

distribution to a centered Gaussian r.v. with variance var(X1).

Now assume that the Laplace transform of X1 is defined on a neighborhoud
of 0. Define the Cramér transform h(x) of X1:

h(x) = inf
t

(log E(exp(tX1)) − xt) .

Theorem A.3.3 Large deviations (Chernoff).
Let x > EX1. Then, as n → +∞:

lim
n

1
n

log P

(
n∑

i=1

Xi ≥ nx

)
= h(x) .

A.3.5 Discrete-time martingales

Definition A.3.1 Martingale.
Let X1, X2, . . . be a sequence of real r.v. defined on a probability space

(Ω,A,P). Let F1,F2, . . . be an increasing sequence of sigma-algebras of A.
The process (Xn)n≥1 is called a martingale (with respect to the sequence Fn)
if the three following conditions are valid:

1. E|Xn| < +∞ for all n ≥ 1.
2. Xn is Fn-measurable for all n ≥ 1.
3. E(Xn+1|Fn) = Xn for all n ≥ 1.

Theorem A.3.4 Convergence of martingales.
If sup

n≥1
EX2

n < +∞, then Xn converges in L2 and a.s. to a squared inte-

grable r.v. as n → +∞.

Nota-bene : See [6], [9] and [42, 43] for general results in probability.

A.4 Statistics

A.4.1 Gaussian samples

Theorem A.4.1 Gaussian samples.
Let X1, . . . , Xn be a n-sample of Gaussian r.v. with expectation m and

variance σ2. Let X =
1
n

n∑
i=1

Xi be the empirical expectation and

S2 =
1

n − 1

n∑
i=1

(Xi − X)2 be the empirical variance. Then X and S2 are in-

dependent and:
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√
n

X − m

σ
∼ N (0, 1) ,

1
σ2

n∑
i=1

(Xi − m)2 ∼ χ2(n) ,

1
σ2

n∑
i=1

(Xi − X)2 ∼ χ2(n − 1) ,

√
n

(X − m)
S

∼ t(n − 1) ,

where χ2(n) is the Chi-square distribution with n degrees of freedom and t(n)
is the Student distribution with n degrees of freedom.

A.4.2 Chi-square tests

Chi-square test for goodness of fit

Let X be a r.v. taking values in the set {1, . . . , k} and with probability
distribution p = p(1), . . . , p(k). We want to test H0 = “the distribution of X
is p� = p�(1), . . . , p�(k)” against H1 “the distribution of X is different from
p�”. Let X1, . . . , Xn be a n-sample of r.v. having the probability distribution

p = p(1), . . . , p(k). Let Ni =
n∑

j=1

1Xj=i and p̂n(i) =
Ni

n
. Set:

χ2
n(p�, p̂n) = n

k∑
i=1

(p�(i) − p̂n(i))2

p�(i)
.

Theorem A.4.2 Chi-square test for goodness of fit.
The sequence χ2

n(p, p̂n) converges in distribution, as n → +∞, to a χ2(k−
1).

The acceptance region of H0 with asymptotical level α is:

χ2
n(p�, p̂n) ≤ χ2

α(k − 1) .

Chi-square test of independence

Let X and Y be two r.v. taking values in the sets {1, . . . , k} and {1, . . . , l}.
Let p = {p(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ l} be the probability distribution of
(X,Y ). We want to test H0 = “X and Y are independent” against H1 = “X
and Y are not independent”. Let (Xi, Yi)1≤i≤n be a n-sample of r.v. having
the probability distribution p = {p(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ l}. Let Ni,j



A.4 Statistics 155

be the number of observations of (i, j) in the sequence (Xm, Ym)1≤m≤n. Let

p̂n(i, j) =
Ni,j

n
and p̃n(i, j) =

NiNj

n2
. Set:

χ2
n(p̃n, p̂n) = n

k,l∑
i,j=1

(p̂n(i, j) − p̃n(i, j))2

p̃n(i, j)
.

Theorem A.4.3 Chi-square test of independence.
The sequence χ2

n(p̃n, p̂n) converges in distribution, as n → +∞, to a
χ2((k − 1)(l − 1)).

The acceptance region of H0 with asymptotical level α is:

χ2
n(p̃n, p̂n) ≤ χ2

α(k − 1, l − 1) .

Chi-square test of symmetry

Let us take the same notations with k = l. Now we want to test H0 = “the
distributions p(i, j) and p(j, i) are identical” against H1 = “the distributions
p(i, j) and p(j, i) are different”. Set:

χ2(p̂n) = n

k∑
i,j=1

(p̂n(i, j) − p̂n(j, i))2

p̂n(i, j)
.

Theorem A.4.4 Chi-square test of symmetry.
The sequence χ2(p̂n) converges in distribution, as n → +∞, to a

χ2

(
k(k − 1)

2

)
.

The acceptance region of H0 with asymptotical level α is:

χ2
n(p̂n) ≤ χ2

α

(
k(k − 1)

2

)
.
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