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Preface

FOAM. This acronym has been used for over fifty years at Rensselaer to
designate an upper-division course entitled, Foundations of Applied Math-
ematics. This course was started by George Handelman in 1956, when he
came to Rensselaer from the Carnegie Institute of Technology. His objective
was to closely integrate mathematical and physical reasoning, and in the pro-
cess enable students to obtain a qualitative understanding of the world we
live in. FOAM was soon taken over by a young faculty member, Lee Segel.
About this time a similar course, Introduction to Applied Mathematics, was
introduced by Chia-Ch’iao Lin at the Massachusetts Institute of Technology.
Together Lin and Segel, with help from Handelman, produced one of the
landmark textbooks in applied mathematics, Mathematics Applied to De-
terministic Problems in the Natural Sciences. This was originally published
in 1974, and republished in 1988 by the Society for Industrial and Applied
Mathematics, in their Classics Series.

This textbook comes from the author teaching FOAM over the last few
years. In this sense, it is an updated version of the Lin and Segel textbook.
The objective is definitely the same, which is the construction, analysis, and
interpretation of mathematical models to help us understand the world we
live in. However, there are some significant differences. Lin and Segel, like
many recent modeling books, is based on a case study format. This means
that the mathematical ideas are introduced in the context of a particular
application. There are certainly good reasons why this is done, and one is the
immediate relevance of the mathematics. There are also disadvantages, and
one pointed out by Lin and Segel is the fragmentary nature of the develop-
ment. However, there is another, more important reason for not following a
case studies approach. Science evolves, and this means that the problems of
current interest continually change. What does not change as quickly is the
approach used to derive the relevant mathematical models, and the methods
used to analyze the models. Consequently, this book is written in such a way
as to establish the mathematical ideas underlying model development inde-
pendently of a specific application. This does not mean applications are not
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considered, they are, and connections with experiment are a staple of this
book.

The first two chapters establish some of the basic mathematical tools that
are needed. The model development starts in Chapter 3, with the study of
kinetics. The goal of this chapter is to understand how to model interacting
populations. This does not account for the spatial motion of the populations,
and this is the objective of Chapters 4 and 5. What remains is to account
for the forces in the system, and this is done in Chapter 6. The last three
chapters concern the application to specific problems and the generalization
of the material to more geometrically realistic systems. The book, as well as
the individual chapters, is written in such a way that the material becomes
more sophisticated as you progress. This provides some flexibility in how the
book is used, allowing consideration for the breadth and depth of the material
covered.

The principal objective of this book is the derivation and analysis of math-
ematical models. Consequently, after deriving a model, it is necessary to have
a way to solve the resulting mathematical problem. A few of the methods de-
veloped here are standard topics in upper-division applied math courses, and
in this sense there is some overlap with the material covered in those courses.
Examples are the Fourier and Laplace transforms, and the method of char-
acteristics. On the other hand, other methods that are used here are not
standard, and this includes perturbation approximations and similarity solu-
tions. There are also unique methods, not found in traditional textbooks, that
rely on both the mathematical and physical characteristics of the problem.

The prerequisite for this text is a lower-division course in differential equa-
tions. The implication is that you have also taken two or three semesters of
calculus, which includes some component of matrix algebra. The one topic
from calculus that is absolutely essential is Taylor’s theorem, and for this rea-
son a short summary is included in the appendix. Some of the more sophis-
ticated results from calculus, related to multidimensional integral theorems,
are not needed until Chapter 8.

To learn mathematics you must work out problems, and for this reason the
exercises in the text are important. They vary in their difficulty, and cover
most of the topics in the chapter. Some of the answers are available, and can
be found at www.holmes.rpi.edu. This web page also contains a typos list.

I would like to express my gratitude to the many students who have taken
my FOAM course at Rensselaer. They helped me immeasurably in under-
standing the subject, and provided much-needed encouragement to write this
book. It is also a pleasure to acknowledge the suggestions of John Ringland,
and his students, who read an early version of the manuscript.

Troy, New York Mark H. Holmes
March, 2009
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Chapter 1

Dimensional Analysis

1.1 Introduction

Before beginning the material on dimensional analysis, it is worth considering
a simple example that demonstrates what we are doing. One that qualifies
as simple is the situation of when a object is thrown upwards. The resulting
mathematical model for this is an equation for the height x(t) of the projectile
from the surface of the Earth at time t. This equation is determined using
Newton’s second law, F = ma, and the law of gravitation. The result is

d2x

dt2
= − gR2

(R+ x)2
, for 0 < t, (1.1)

where g is the gravitational acceleration constant and R is the radius of the
Earth. Finding the solution x of this equation requires two integrations. Each
will produce an integration constant, and we need more information to find
these constants. This is done by specifying the initial conditions. Assuming
the projectile starts at the surface with velocity v0 then the initial conditions
are as follows

x(0) = 0, (1.2)
dx

dt
(0) = v0. (1.3)

The resulting initial value problem for x consists in finding the solution of
(1.1) that satisfies (1.2) and (1.3). Mathematically, the problem is challenging
because it involves solving a second-order nonlinear differential equation. One
option for finding the solution is simply to use a computer. However, the
limitation with this is that it does not provide much insight into how the
solution depends on the terms in the equation. One of the primary objectives
of this text is to use mathematics to derive a fundamental understanding of
how and why things work the way they do, and so, we are very interested in

M.H. Holmes, Introduction to the Foundations of Applied Mathematics, 1
Texts in Applied Mathematics 56, DOI 10.1007/978-0-387-87765-5 1,
c© Springer Science+Business Media, LLC 2009
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Figure 1.1 The solution (1.5) of the projectile problem in a uniform gravitational
field.

obtaining at least an approximate solution of this problem. This is the same
point-of-view taken in most physics books and it is worth looking at how
they might address this issue. Adopting for the moment the typical Physics I
approach, in looking at the equation in (1.1) it is not unreasonable to assume
R is significantly larger than even the largest value of x. If true then we should
be able to replace the x+R term with just R. In this case the problem reduces
to solving

d2x

dt2
= −g, for 0 < t. (1.4)

Integrating and then using the two initial conditions yields

x(t) = −1
2
gt2 + v0t. (1.5)

This solution is shown schematically in Figure 1.1. We have what we wanted,
a relatively simple expression that serves as an approximation to the original
nonlinear problem. To complete the derivation we should check that the as-
sumption made in the derivation is satisfied, namely x is much smaller than
R. Now, the maximum height for (1.5) occurs when

dx

dt
= 0. (1.6)

Solving this equation yields t = v0/g and from this it follows that the maxi-
mum height is

xM =
v2
0

2g
. (1.7)

Therefore, we must require that v2/(2g) is much less than R, which we write
as v2

0/(2g) << R.
It is now time to critique the above derivation. The first criticism is that

the approach is heuristic. The reason is that even though the argument for
replacing x+R with R seems plausible, we simply ignored a particular term
in the equation. The projectile problem is not particularly complicated so
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dropping a term as we did is straightforward. However, in the real world
where problems can be quite complicated, dropping a term in one part of the
problem can lead to inconsistencies in another part. A second criticism can be
made by asking a question. Specifically, what exactly is the effect of the non-
linearity on the projectile? Our reduction replaced the nonlinear gravitational
force, which is the right-hand side of (1.1), with a uniform gravitational field
given by −g. Presumably if gravity decreases with height then the projectile
will be going higher than we would expect based on our approximation in
(1.5). It is of interest to understand quantitatively what this nonlinear effect
is and whether it might interfere with our reduction.

Based on the comments of the previous paragraph we need to make the
reduction process more systematic. The procedure that is used to simplify
the problem should enable us to know exactly what is large or small in the
problem, and it should also enable us to construct increasingly more accurate
approximations to the problem. Explaining what is involved in a systematic
reduction occurs in two steps. The first, which is the objective of this chapter,
involves the study of dimensions and how these can be used to simplify the
mathematical formulation of the problem. After this, in Chapter 2, we develop
techniques to construct accurate approximations of the resulting equations.

1.2 Examples of Dimensional Reduction

The first idea that we explore will, on the surface, seem to be rather simple,
but it is actually quite profound. It has to do with the dimensions of the
physical variables, or parameters, in a problem. To illustrate, suppose we
know that the speed s of a ball is determined by its radius r and the length
of time t it has been moving. Implicit in this statement is the assumption that
the speed does not depend on any other physical variable. In mathematical
terms we have that s = f(r, t). The function f is not specified and all we
know is that there is some expression that connects the speed with r and
t. The only possible way to combine these two quantities to produce the
dimension of speed is through their ratio r/t. For example, it is impossible
to have s = αr + βt without α and β having dimensions. This would mean
α and β are physical parameters, and we have assumed there are no others
in the problem. This observation enables us to conclude that based on the
original assumptions that the only function we can have is s = αr/t, where
α is a number.

What we are seeing in this example is that the dimensions of the variables
in the problem end up dictating the form of the function. This is very useful
information and we will spend some time exploring how to exploit this idea.
To set the stage we need to introduce some of the terminology. The first is
the concept of a fundamental dimension. As is well known, physical variables
such as force, density, and velocity can be broken down into length L, time
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Quantity Dimensions Quantity Dimensions

Acceleration LT−2 Enthalpy ML2T−2

Angle 1 Entropy ML2T−2θ−1

Angular Acceleration T−2 Gas Constant L2T−2θ−1

Angular Momentum ML2T−1 Internal Energy ML2T−2

Angular Velocity T−1 Specific Heat L2T−2θ−1

Area L2 Temperature θ

Energy, Work ML2T−2 Thermal Conductivity MLT−3θ−1

Force MLT−2 Thermal Diffusivity L2T−1

Frequency T−1 Heat Transfer
Coefficient

MT−3θ−1

Concentration L−3

Length L Capacitance M−1L−2T 4I2

Mass M Charge TI

Mass Density ML−3 Charge Density L−3TI

Momentum MLT−1 Conductivity M−1L−3T 3I2

Power ML2T−3 Electric Current
Density

L−2I

Pressure, Stress,
Elastic Modulus

ML−1T−2 Electric Current I

Surface Tension MT−2 Electric Displacement L−2TI

Time T Electric Potential ML2T−3I−1

Torque ML2T−2 Electric Field Intensity MLT−3I−1

Velocity LT−1 Inductance ML2T−2I−2

Viscosity (Dynamic) ML−1T−1 Magnetic Field
Intensity

L−1I

Viscosity (Kinematic) L2T−1 Magnetic flux L2MT−2I−1

Volume L3 Permeability MLT−2I−2

Wave Length L Permittivity M−1L−3T 4I2

Strain 1 Electric Resistance ML2T−3I−2

Table 1.1 Fundamental dimensions for commonly occurring quantities. A quantity
with a one in the dimensions column is dimensionless.

T , and mass M (see Table 1.1). Moreover, length, time, and mass are in-
dependent in the sense that one of them cannot be written in terms of the
other two. For these two reasons we will consider L, T , and M as fundamental
dimensions. For problems involving thermodynamics we will expand this list
to include temperature (θ) and for electrical problems we add current (I). In
conjunction with this, given a physical variable x we will designate the funda-
mental dimensions of x using the notation [x]. For example, [velocity] = L/T ,
[force] = ML/T 2, [g] = L/T 2, and [density] = M/L3.
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It is important to understand that nothing is being assumed about which
specific system of units is used to determine the values of the variables or
parameters. Dimensional analysis requires that the equations be independent
of the system of units. For example, both Newton’s law F = ma and the
differential equation (1.1) do not depend on the specific system one selects.
For this reason these equations are said to be dimensionally homogeneous.
If one were to specialize (1.1) to SI units and set R = 6378 km and g =
9.8 m/sec2 they would end up with an equation that is not dimensionally
homogeneous.

1.2.1 Maximum Height of a Projectile

The process of dimensional reduction will be explained by applying it to
the projectile problem To set the stage, suppose we are interested in the
maximum height xM of the projectile. Based on Newton’s second law, and
the initial conditions in (1.2) and (1.3), it is assumed that the only physical
parameters that xM depends on are g, v0, and the mass m of the projectile.
Mathematically this assumption is written as xM = f(g,m, v0). The function
f is unknown but we are going to see if the dimensions can be used to simplify
the expression. The only way to combine g, m, v0 to produce the correct
dimensions is through a product or ratio. So, our start-off hypothesis is that
there are numbers a, b, c so that

[xM ] = [mavb
0g

c]. (1.8)

Using the fundamental dimensions for these variables the above equation is
equivalent to

L = Ma(L/T )b(L/T 2)c

= MaLb+cT−b−2c. (1.9)

Equating the exponents of the respective terms in this equation we conclude

L : b+ c = 1,
T : −b− 2c = 0,
M : a = 0.

Solving these equations we obtain a = 0, b = 2, and c = −1. This means
the only way to produce the dimensions of length using m, v0, g is through
the ratio v2

0/g. Given our start-off assumption (1.8), we conclude that xM

is proportional to v2
0/g. In other words, the original assumption that xM =

f(g,m, v0) dimensionally reduces to the expression
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xM = α
v2
0

g
, (1.10)

where α is an arbitrary number. With (1.10) we have come close to obtaining
our earlier result (1.7) and have done so without solving a differential equation
or using calculus to find the maximum value. Based on this rather minimal
effort we can make the following observations:

• If the initial velocity is increased by a factor of 2 then the maximum height
will increase by a factor of 4. This observation offers an easy method for
experimentally checking on whether the original modeling assumptions are
correct.

• The constant α can be determined by running one experiment. Namely, for
a given initial velocity v0 = v̄0 we measure the maximum height xM = x̄M .
With these known values, α = gx̄M/v̄2

0 . Once this is done, the formula in
(1.10) can be used to determine xM for any v0.

The steps we have used are the basis for the method of dimensional reduction,
where an expression is simplified based on the fundamental dimensions of the
quantities involved. Given how easy it was to obtain (1.10) the method is very
attractive as an analysis tool. It does have limitations and one is that we do
not know the value of the number α. It also requires us to be able to identify
at the beginning what parameters are needed. The importance of this and
how this relies on understanding the physical laws underlying the problem
will be discussed later.

The purpose of the above example is to introduce the idea of dimensional
reduction. What it does not show is how to handle problems with several
parameters and this is the purpose of the next two examples.

1.2.2 Drag on a Sphere

In the design of automobiles, racing bicycles, and aircraft there is an overall
objective to keep the drag on the object as small as possible. It is interesting
to see what insight dimensional analysis might provide in such a situation,
but since we are beginners it will be assumed the object is very simple and
is a sphere (see Figure 1.2). The modeling assumption that is made is that
the drag force DF on the sphere depends on the radius R of the sphere, the
velocity v of the sphere, the density ρ of the air, and the dynamic viscosity µ
of the air. The latter is a measure of the resistance force of the air to motion
and we will investigate this in Chapter 8. For the moment all we need is its
fundamental dimensions and these are given in Table 1.1. In mathematical
terms the modeling assumption is

DF = f(R, v, ρ, µ), (1.11)
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(a)

(b)

Figure 1.2 Air flow around an object can be visualized using smoke. The flow around
a golf ball is shown in (a) (Brown [1971]), and around a tennis ball in (b) (Bluck
[2000]). In both cases the air is moving from left to right.

and we want to use dimensional reduction to find a simplified version of this
expression. Similar to the last example, the first question is whether we can
find numbers a, b, c, d so that

[DF ] = [Ravbρcµd]. (1.12)

Expressing these using fundamental dimensions yields

MLT−2 = La(L/T )b(M/L3)c(M/LT )d

= La+b−3c−dT−b−dM c+d.

As before we equate the respective terms and conclude

L : a+ b− 3c− d = 1,
T : −b− d = −2,
M : c+ d = 1.

(1.13)

We have four unknowns and three equations, so it is anticipated that in solv-
ing the above system of equations one of the unknowns will be undetermined.
From the T equation we have b = 2− d, and from the M equation c = 1− d.
The L equation then gives us a = 2− d. With these solutions, and based on
our assumption in (1.12), we have that
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DF = αρR2−dv2−dρ1−dµd

= αρR2v2

(
µ

Rvρ

)d

,

where α is an arbitrary number. This can be written as

DF = αρR2v2Πd, (1.14)

where
Π =

µ

Rvρ
, (1.15)

and d, α are arbitrary numbers. This is the general product solution for how
DF depends on the given variables. The quantity Π is dimensionless, and
it is an example of what is known as a dimensionless product. Physically, it
can be thought of as the ratio of the viscous force (µ) to the inertial force
(Rvρ) in the air. Calling it a product is a bit misleading as Π involves both
multiplications and divisions. Some avoid this by calling it a dimensionless
group. We will use both expressions in this book.

The formula for DF in (1.14) is not the final answer. What remains is to
determine the consequence of the arbitrary exponent d. The key observation
is that given any two sets of values for (α, d), say (α1, d1) and (α2, d2), then

DF = α1ρR
2v2Πd1 + α2ρR

2v2Πd2

= ρR2v2(α1ρΠ
d1 + α2Π

d2)

is also a solution. Extending this observation we conclude that another solu-
tion is

DF = ρR2v2(α1Π
d1 + α2Π

d2 + α3Π
d3 + · · · ), (1.16)

where d1, d2, d3, . . . are arbitrary numbers as are the coefficients α1, α2, α3, . . ..
To express this in a more compact form, note that the expression within the
parentheses in (1.16) is simply a function of Π. From this observation we
obtain the general solution, which is

DF = ρR2v2F (Π), (1.17)

where F is an arbitrary function of the dimensionless product Π. We have,
therefore, been able to use dimensional analysis to reduce (1.11), which in-
volves an unknown of four variables, down to an unknown function of one
variable. Although this is a significant improvement, the result is perhaps not
as satisfying as the one obtained for the projectile example, given in (1.10),
because we have not been able to determine F . However, there are various
ways to address this issue, and some of them will be considered below.
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Representation of Solution

Now that the derivation is complete a few comments are in order. First, it
is possible for two people to go through the above steps and come to what
looks to be very different conclusions. For example, the general solution can
also be written as

DF =
µ2

ρ
H(Π), (1.18)

where H is an arbitrary function of Π. The proof that this is equivalent to
(1.17) comes from the requirement that the two expressions must produce
the same result. In other words, it is required that

µ2

ρ
H(Π) = ρR2v2F (Π).

Solving this for H yields

H(Π) =
1
Π2

F (Π).

The fact that the right-hand side of the above equation only depends on Π
shows that (1.18) is equivalent to (1.17). As an example, if F (Π) = Π in
(1.17), then H(Π) = 1/Π in (1.18).

Another representation for the general solution is

DF = ρR2v2G(Re), (1.19)

where
Re =

Rvρ

µ
, (1.20)

and G is an arbitrary function of Re. This form is the one usually used in
fluid dynamics, where the dimensionless product Re is known as the Reynolds
number. The function G is related to the drag coefficient CD, through the
equation G = π

2 CD. Because of its importance in fluids, G has been measured
for a wide range of Reynolds numbers, producing the curve shown in Figure
1.3. To transform between the representation in (1.19), and the one in (1.17),
note Re = 1/Π. From the requirement

ρR2v2G(Re) = ρR2v2F (Π),

we obtain
G(Re) = F (1/Re).

The reason for the different representations is that there are four unknowns
in (1.12) yet only three equations. This means one of the unknowns is used
in the general solution and, as expressed in (1.14), we used d. If you were to
use one of the others then a different looking, but mathematically equivalent,
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Figure 1.3 The measured values of the function G(Re) that arises in the formula
for the drag on a sphere, as given in (1.19).

expression would be obtained. The fact that there are multiple ways to express
the solution can be used to advantage. For example, if one is interested in the
value of DF for small values of the velocity then (1.19) would be a bit easier
to use. The reason is that to investigate the case of small v it is somewhat
easier to determine what happens to G for Re near zero than to expand
F for large values of Π. For the same reason, (1.17) is easier to work with
for studying large velocities. One last comment to make is that even though
there are choices on the form of the general solution, they all have exactly
the same number of dimensionless products.

Determining F

A more challenging question concerns how to determine the function F in
(1.17). The mathematical approach would be to solve the equations for fluid
flow around a sphere and from this find F . This is an intriguing idea and
one that will be used from time to time in this book. There is, however,
another more applied approach that makes direct use of (1.17). Specifically,
a sequence of experiments is run to measure F (r) for 0 < r < ∞. To do
this a sphere with a given radius R0, and a fluid with known density ρ0 and
viscosity µ0, are selected. In this case (1.17) can be written as

F (r) =
γDF

v2
(1.21)

where γ = 1/(ρ0R
2
0) is known and fixed. The experiment consists of taking

various values of v and then measuring the resulting drag force DF on the
sphere. To illustrate, suppose our choice for the sphere and fluid give R = 1,
ρ0 = 2, and µ0 = 3. Also, suppose that running the experiment using v = 4
produces a measured drag of DF = 5. In this case r = µ0/(R0vρ0) = 3/8
and γDF /v

2 = 5/32. Our conclusion is therefore that F (3/8) = 5/32. In this
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way, picking a wide range of v values we will be able to determine the values
for the function F (r). This approach is used extensively in the real world and
the example we are considering has been a particular favorite for study. The
data determined from such experiments are shown in Figure 1.3.

A number of conclusions can be drawn from Figure 1.3. For example,
there is a range of Re values where G is approximately constant. Specifically,
if 103 < Re < 105 then G ≈ 0.7. This is the reason why in the fluid dynamics
literature you will occasionally see the statement that the drag coefficient
CD = 2

πG for a sphere has a constant value of approximately 0.44. For
other Re values, however, G is not constant. Of particular interest, is the
dependence of G for small values of Re. This corresponds to velocities v that
are very small, what is known as Stokes flow. The data in Figure 1.3 show
that G decreases linearly with Re in this region. Given that this is a log-log
plot, then this means that log(G) = a−b log(Re), or equivalently, G = α/Reb

where α = 10a. Curve fitting this function to the data in Figure 1.3 it is found
that α ≈ 17.6 and β ≈ 1.07. These are close to the exact values of α = 6π
and β = 1, which are obtained by solving the equations of motion for Stokes
flow. Inserting these values into (1.19), the conclusion is that the drag on the
sphere for small values of the Reynolds number is

DF ≈ 6πµRv. (1.22)

This is known as Stokes formula for the drag on a sphere, and we will have
use for it in Chapter 4 when studying diffusion.

Scale Models

Why all the work to find F? Well, knowing this function allows for the use of
scale model testing. To explain, suppose it is required to determine the drag
on a sphere with radius Rf for a given velocity vf when the fluid has density
ρf and viscosity µf . Based on (1.17) we have DF = ρfR

2
fv

2
fF (Πf ), where

Πf =
µf

Rfvfρf
. (1.23)

Consequently, we can determine DF if we know the value of F at Πf . Also,
suppose that this cannot be measured directly as Rf is large and our ex-
perimental equipment can only handle small spheres. We can still measure
F (Πf ) using a small value of R if we change one or more of the parameters
in such a way that the value of Πf does not change. If Rm, µm, ρm and vm

are the values used in the experiment then we want to select them so that

µm

Rmvmρm
=

µf

Rfvfρf
, (1.24)
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Figure 1.4 Scale model testing. Dimensional analysis is used in the development of
scale models used in wind tunnels. On the left there is a flight test of an F-18 model
in NASA’s 11 ft transonic wind tunnel (NASA [2008]), and on the right a wind tunnel
test of a 1:160 scale model of the Owensboro Bridge (Hsu [2009]).

or equivalently

vm =
µmRfρf

µfRmρm
vf . (1.25)

This equation relates the values for the full-scale ball (subscript f) to those
for the model used in the experiment (subscript m). As an example, suppose
we are interested in the drag on a very large sphere, say Rf = 100m, but our
equipment can only handle smaller values, say Rm = 2m. If the fluid for the
two cases is the same, so ρm = ρf and µm = µf , then according to (1.25),
in our experiment we should take vm = 50vf . If the experimental apparatus
is unable to generate velocities 50 times the value of vf then it would be
necessary to use a different fluid to reduce this multiplicative factor.

The result in the above example is the basis of scale model testing used
in wind tunnels (see Figure 1.4). Usually these tests involve more than just
keeping one dimensionless product constant as we did in (1.24). Moreover, it
is evident in Figure 1.4 that the models look like the originals, they are just
smaller. This is the basis of geometric similarity, where the lengths of the
model are all a fraction of the original. For example, the bridge in Figure 1.4
is a 1

20 th scale model of the Owensboro Bridge. Other scalings are sometimes
used and the most common are kinematic similarity, where velocities are
scaled, and dynamic similarity, where forces are scaled.

Endnotes

One question that has not been considered so far is, how do you know to
assume that the drag force depends on the radius, velocity, density, and
dynamic viscosity? The assumption comes from knowing the laws of fluid
dynamics, and identifying the principal terms that contribute to the drag.
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For the most part, in this chapter the assumptions will be stated explicitly, as
they were in this example. Later in the text, after the basic physical laws are
developed, it will be possible to construct the assumptions directly. However,
one important observation can be made, and that is the parameters used in
the assumption should be independent. For example, even though the drag
on a sphere likely depends on the surface area and volume of the sphere it
is not necessary to include them in the list. The reason is that it is already
assumed that DF depends on the radius R and both the surface area and
volume are determined using R.

The problem of determining the drag on a sphere is one of the oldest in
fluid dynamics. Given that the subject is well over 150 years old, you would
think that whatever useful information can be derived from this particular
problem was figured out long ago. Well, apparently not, as research papers
still appear regularly on this topic. A number of them come from the sports
industry, where there is interest in the drag on soccer balls (Asai et al. [2007]),
golf balls (Smits and Ogg [2004]), tennis balls (Goodwill et al. [2004]), as well
as nonspherical-shaped balls (Mehta [1985]). Others have worked on how to
improve the data in Figure 1.3, and an example is the use of a magnetic
suspension system to hold the sphere (Sawada and Kunimasu [2004]). A more
novel idea is to drop different types of spheres down a deep mine shaft, and
then use the splash time as a means to determine the drag coefficient (Maroto
et al. [2005]). The point here is that even the most studied problems in science
and engineering still have interesting questions that remain unanswered.

1.2.3 Toppling Dominoes

Domino toppling refers to the art of setting up dominoes, and then knocking
them down. The current world record for this is 4,000,000 plus dominoes for a
team, and 300,000 plus for an individual. One of the more interesting aspects
of this activity is that as the dominoes fall it appears as if a wave is propagat-
ing along the line of dominoes. The objective of this example is to examine
what dimensional analysis might be able to tell us about the velocity of this
wave. A schematic of the situation is shown in Figure 1.5. The assumption is
that the velocity v depends on the spacing d, height h, thickness t, and the
gravitational acceleration constant g. Therefore, the modeling assumption is
v = f(d, h, t, g) and we want to use dimensional reduction to find a simplified
version of this expression. As usual, the first step is to find numbers a, b, c,
e so that

[v] = [dahbtcge].

Expressing these using fundamental dimensions yields
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LT−1 = LaLbLc(L/T 2)e

= La+b+c+eT−2e.

Equating the respective terms we obtain

L : a+ b+ c+ e = 1,
T : −2e = −1.

Solving these two equations gives us that e = 1
2 and b = 1

2 − a− c. With this
we have that

v = αdah1/2−a−ctcg1/2

= α
√
hg

(
d

h

)a(
t

h

)c

= α
√
hgΠa

1Π
c
2 , (1.26)

where α is an arbitrary number, and the two dimensionless products are

Π1 =
d

h
,

Π2 =
t

h
.

The expression in (1.26) is the general product solution. Therefore, the gen-
eral solution for how the velocity depends on the given parameters is

v =
√
hg F (Π1,Π2), (1.27)

where F is an arbitrary function of the two dimensionless products. The proof
of how (1.27) follows from (1.26) is very similar to the method used to derive
(1.17) from (1.15).

Dimensional analysis has been able to reduce the original assumption in-
volving a function of four-dimensional parameters down to one involving two
dimensionless products. This example is also informative as it demonstrates
how to obtain the general solution when more than one dimensionless product
is involved. The question remains, however, if this really applies to toppling

�

�

�

�

Figure 1.5 Schematic of top-
pling dominoes, creating a wave
that propagates with velocity v.
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Figure 1.6 Data for two different types of toppling dominoes (Stronge and Shu
[1988]). In these experiments, t = 0.12h, so the thin domino approximation is appro-
priate.

dominoes. It does, but in using this formula it is usually assumed the domi-
noes are very thin, or more specifically that t << h. This means that it is
possible to assume Π2 = 0, and (1.27) simplifies to

v =
√
hg G(Π1), (1.28)

where G is an arbitrary function. Some effort has been made to measure G,
and the measurements for two different types of dominoes are given in Figure
1.6. Although the data show that G decreases with Π1, it is approximately
constant over the range of Π1 values used in the experiments. Therefore, as
an approximation we conclude that the speed at which dominoes topple is
v ≈ 1.5

√
hg. A typical domino has h = 5 cm, which results in a velocity of

v ≈ 1 m/s. To obtain a more explicit formula for G, however, requires the
solution of a challenging mathematical problem, and an expanded discussion
of this can be found in Efthimiou and Johnson [2007].

1.2.4 Endnotes

Based on the previous examples, the benefits of using dimensional reduction
are apparent. However, a word of caution is needed here as the method gives
the impression that it is possible to derive useful information without get-
ting involved with the laws of physics or potentially difficult mathematical
problems. One consequence of this is that the method is used to comment
on situations and phenomena that are simply inappropriate (e.g., to study
psychoacoustic behavior). The method relies heavily on knowing the funda-
mental laws for the problem under study, and without this whatever conclu-
sions made using dimensional reduction are limited. For example, we earlier
considered the drag on a sphere and in the formulation of the problem we
assumed that the drag depends on the dynamic viscosity. Without knowing
the equations of motion for fluids it would not have been possible to know
that this term needed to be included or what units it might have. By not in-
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cluding it we would have concluded that d = 0 in (1.14) and instead of (1.17)
we would have DF = αρR2v2 where α is a constant. In Figure 1.3 it does
appear that DF is approximately independent of Re when 103 < Re < 105.
However, outside of this interval, DF is strongly dependent on Re, and this
means ignoring the viscosity would be a mistake. Another example illustrat-
ing the need to know the underlying physical laws arises in the projectile
problem when we included the gravitational constant. Again, this term is
essential and without some understanding of Newtonian mechanics it would
be missed completely. The point here is that dimensional reduction can be
a very effective method for simplifying complex relationships, but it is based
heavily on knowing what the underlying laws are that govern the systems
being studied.

1.3 Theoretical Foundation

The theoretical foundation for dimensional reduction is contained in the
Buckingham Pi Theorem. To derive this result assume we have a physical
quantity q that depends on physical parameters or variables p1, p2, . . . , pn.
In this context, the word physical means that the quantity is measurable.
Each can be expressed in fundamental dimensions and we will assume that
the L, T,M system is sufficient for this task. In this case we can write

[q] = L`0T t0Mm0 , (1.29)

and
[pi] = L`iT tiMmi . (1.30)

Our modeling assumption is that q = f(p1, p2, . . . , pn). To dimensionally
reduce this expression we will determine if there are numbers a1, a2, . . . , an

so that
[q] = [pa1

1 p
a2
2 · · · pan

n ]. (1.31)

Introducing (1.29) and (1.30) into the above expression, and then equating
exponents, we obtain the equations

L : `1a1 + `2a2 + · · ·+ `nan = `0,
T : t1a1 + t2a2 + · · ·+ tnan = t0,
M : m1a1 +m2a2 + · · ·+mnan = m0.

This can be expressed in matrix form as

Aa = b, (1.32)

where
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A =

 `1 `1 · · · `n
t1 t2 · · · tn
m1 m2 · · · mn

 , (1.33)

a =


a1

a2

...
an

 , b =

 `0
t0
m0

 . (1.34)

The matrix A is known as the dimension matrix. As expressed in (1.33) it
is 3 × n but if we were to have used L, T,M, θ as the fundamental system
then it would be 4× n. In other words, the number of rows in the dimension
matrix equals the number of fundamental units needed, and the number of
columns equals the number of parameters that q is assumed to depend on.

With (1.32) we have transformed the dimensional reduction question into
a linear algebra problem. To determine the consequences of this we first
consider the situation that (1.32) has no solution. In this case the assumption
that q depends on p1, p2, . . . , pn is incomplete and additional parameters are
needed. This situation motivates the following definition.

Definition 1.1. The set p1, p2, . . . , pn is dimensionally incomplete for q if
it is not possible to combine the pi’s to produce a quantity with the same
dimension as q. If it is possible, the set is dimensionally complete for q.

From this point on we will assume the pi’s are complete and there is at
least one solution of (1.32). To write down the general solution we consider
the associated homogeneous equation, namely Aa = 0. The set of solutions
of this equation form a subspace K(A), known as the kernel of A. Letting k
be the dimension of this subspace then the general solution of Aa = 0 can
be written as a = γ1a1 + γ2a2 + · · · + γkak, where a1,a2, . . . ,ak is a basis
for K(A) and γ1, γ2, . . . , γk are arbitrary. It is understood here that if k = 0
then a = 0. With this, the general solution of (1.32) can be written as

a = ap + γ1a1 + γ2a2 + · · ·+ γkak, (1.35)

where ap is any vector that satisfies (1.32) and γ1, γ2, . . . , γk are arbitrary
numbers.

Example: Drag on a Sphere

To connect the above discussion with what we did earlier consider the drag
on a sphere example. Writing (1.13) in matrix form we obtain

1 1 −3 −1
0 −1 0 −1
0 0 1 1



a
b
c
d

 =

 1
−2
1

 .
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This is the matrix equation (1.32) for this particular example. Putting this
in augmented form, and row reducing, yields the following1 1 −3 −1 1

0 −1 0 −1 −2
0 0 1 1 1

→

1 0 0 1 2
0 1 0 1 2
0 0 1 1 1

 .

From this we conclude that a = 2 − d, b = 2 − d, and c = 1 − d. To be
consistent with the notation in (1.35), set d = γ, so the solution is

a
b
c
d

 =


2
2
1
0

+ γ


−1
−1
−1
1

 ,

where γ is arbitrary. Comparing this with (1.35) we have that k = 1,

ap =


2
2
1
0

 , and a1 =


−1
−1
−1
1

 . �

It is now time to take our linear algebra conclusions and apply them to
the dimensional reduction problem. Just as the appearance of d in (1.14)
translated into the appearance of a dimensionless product in the general
solution given in (1.17), each of the γi’s in (1.35) gives rise to a dimensionless
product in the general solution for the problem we are currently studying.
To be specific, writing the ith basis vector ai in component form as

ai =


α
β
...
γ

 , (1.36)

then the corresponding dimensionless product is

Πi = pα
1 p

β
2 · · · pγ

n. (1.37)

Moreover, because the ai’s are independent vectors, the dimensionless prod-
ucts Π1,Π2, . . . ,Πk are independent.

As for the particular solution ap in (1.35), assuming it has components
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ap =


a
b
...
c

 , (1.38)

then the quantity
Q = pa

1p
b
2 · · · pc

n (1.39)

has the same dimensions as q.
Based on the conclusions of the previous two paragraphs, the general prod-

uct solution is q = αQΠκ1
1 Πκ2

2 · · ·Πκk

k , where α, κ1, κ2, . . . , κk are arbitrary
constants. From this we obtain the following theorem.

Theorem 1.1. Assuming the formula q = f(p1, p2, . . . , pn) is dimensionally
homogeneous and dimensionally complete, then it is possible to reduce it to
one of the form q = QF (Π1,Π2, . . . ,Πk), where Π1,Π2, . . . ,Πk are indepen-
dent dimensionless products of p1, p2, . . . , pn. The quantity Q is a dimensional
product of p1, p2, . . . , pn with the same dimensions as q.

According to this theorem, the original formula for q can be reduced from
a function of n variables down to one with k. The value of k, which equals
the nullity of the dimension matrix, ranges from 0 to n− 1 depending on the
given quantities p1, p2, . . . , pn. In the case that k = 0 the function F reduces
to a constant and the conclusion is that q = αQ, where α is an arbitrary
number.

The importance of this theorem is that it establishes that the process used
to reduce the drag on a sphere and toppling dominoes examples can be applied
to much more complex problems. It also provides insight into how the number
of dimensionless products is determined. There are still, however, fundamen-
tal questions left unanswered. For example, those with a more mathematical
bent might still be wondering if this result can really be true no matter how
discontinuous the original function f might be. Others might be wondering
if the fundamental units used here, particularly length and time, are really
independent. This depth of inquiry, although quite interesting, is beyond the
scope of this text. Those wishing to pursue further study of these and related
topics should consult Penrose [2007] and Bluman and Anco [2002].

1.3.1 Pattern Formation

The mechanism responsible for the colorful patterns on seashells, butterfly
wings, zebras, and the like has intrigued scientists for decades. An experiment
that has been developed to study pattern formation involves pouring chem-
icals into one end of a long tube, and then watching what happens as they
interact while moving along the tube. This apparatus is called a plug-flow
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Figure 1.7 Spatial pattern created in a plug-flow reactor (Bamforth et al. [2000]).
The tube occupies the interval 0 ≤ x ≤ 100, and starting at t = 0 the chemicals are
poured into the left end. As they flow along the tube a striped pattern develops.

reactor and the outcome of one such experiment is shown in Figure 1.7. It
was found in these experiments that patterns appear only for certain pouring
velocities v. According to what is known as the Lengyel-Epstein model, this
velocity depends on the concentration U of the chemical used in the experi-
ment, the rate k2 at which the chemicals interact, the diffusion coefficient D
of the chemicals, and a parameter k3 that has the dimensions of concentration
squared. The model is therefore assuming

v = f(U, k2, D, k3). (1.40)

From Table 1.1 we have that [v] = L/T , [U ] = 1/L3, [D] = L2/T , and [k3] =
1/L6. Also, from the Lengyel-Epstein model one finds that [k2] = L3/T .
Using dimensional reduction we require

[v] = [Uakb
2D

ckd
3 ]. (1.41)

Expressing these using fundamental dimensions yields

LT−1 = (L−3)a(L3T−1)b(L2T−1)c(L−6)d

= L−3a+3b+2c−6dT−b−c.

As before we equate the respective terms and conclude

L : −3a+ 3b+ 2c− 6d = 1
T : −b− c = −1.

These equations will enable us to express two of the unknowns in terms of
the other two. There is no unique way to do this, and one choice yields



1.3 Theoretical Foundation 21

b = −1 + 3a+ 6d and c = 2− 3a− 6d. From this it follows that the general
product solution is

v = αUak3a+6d−1
2 D2−3a−6dkd

3

= αk−1
2 D2(Uk3

2D
−3)a(k6

2D
−6k3)d.

This can be rewritten as

v = αk−1
2 D2Πa

1Π
d
2 , (1.42)

where

Π1 =
Uk3

2

D3
, (1.43)

and

Π2 =
k6
2k3

D6
. (1.44)

The dimensionless products Π1 and Π2 are independent, and this follows
from the method used to derive these expressions. Independence is also evi-
dent from the observation that Π1 and Π2 do not involve exactly the same
parameters. From this result it follows that the general form of the reduced
equation is

v = k−1
2 D2F (Π1,Π2). (1.45)

It is of interest to compare (1.45) with the exact formula obtained from
solving the differential equations coming from the Lengyel-Epstein model. It
is found that

v =
√
k2DUG(β), (1.46)

where β = k3/U
2 and G is a rather complicated square root function (Bam-

forth et al. [2000]). This result appears to differ from (1.45). To investigate
this, note that β = Π2/Π

2
1 . Equating (1.45) and (1.46) it follows that

F (Π1,Π2) =
k

3/2
2 U1/2

D3/2
G(β)

=
√
Π1G(Π2/Π

2
1 ).

Because the right-hand side is a function of only Π1 and Π2 then (1.45) does
indeed reduce to the exact result (1.46). Dimensional reduction has therefore
successfully reduced the original unknown function of four variables in (1.40)
down to one with only two variables. However, the procedure is not able to
reduce the function down to one dimensionless variable, as given in (1.46).
In this problem that level of reduction requires information only available
from the differential equations, something that dimensional arguments are
not able to discern.
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1.4 Similarity Variables

Dimensions can be used not just to reduce formulas, they can be also used
to simplify complex mathematical problems. The degree of simplification de-
pends on the parameters, and variables, in the problem. One of the more
well-known examples is the problem of finding the density u(x, t) of a chemi-
cal over the interval 0 < x <∞. In this case the density satisfies the diffusion
equation

D
∂2u

∂x2
=
∂u

∂t
, (1.47)

where the boundary conditions are

u|x=0 = u0, u|x→∞ = 0, (1.48)

and the initial condition is
u|t=0 = 0. (1.49)

The constant D is called the diffusion coefficient, and its dimensions can
be determined from the terms in the differential equation. In particular, the
dimensions of the left and right sides of (1.47) must be the same, and this
means [Duxx] = [ut]. Because [u] = M/L3 then [uxx] = [u]/L2 = M/L5

and [ut] = [u]/T = M/(TL3). From this we have [D]M/L5 = M/(TL3), and
therefore [D] = L2/T . In a similar manner, in boundary condition (1.48),
[u0] = [u] = M/L3. As a final comment, the physical assumptions underlying
the derivation of (1.47) are the subject of Chapter 4. In fact, the solution we
are about to derive is needed in Section 4.5.2 to solve the diffusion equation.

Dimensional Reduction

The conventional method for solving the diffusion equation on a semi-infinite
spatial interval is to use an integral transform, and this will be considered
in Chapter 4. It is also possible to find u using dimensional reduction. The
approach is based on the observation that the only dimensional variables, and
parameters, appearing in the problem are u, u0, D, x, and t. In other words,
it must be true that u = f(x, t,D, u0). With this we have the framework
for dimensional reduction, and the question is whether we can find numbers
a, b, c, d so that

[u] = [xatbDc(u0)d]. (1.50)

Using fundamental dimensions yields

ML−3 = LaT b(L2/T )c(M/L3)d

= La+2c−3dT b−cMd,

and then equating the respective terms gives us
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L : a+ 2c− 3d = −3,
T : b− c = 0,
M : d = 1.

(1.51)

The solution of the above system can be written as d = 1 and b = c = −a/2.
Given the assumption in (1.50), we conclude that the general product solution
is

u = αu0

(
x√
Dt

)a

.

The general solution therefore has the form

u = u0F (η), (1.52)

where
η =

x√
Dt

. (1.53)

In this case, η is called a similarity variable as it is a dimensionless product
that involves the independent variables in the problem.

When working out the drag on a sphere example, we discussed how it is
possible to derive different representations of the solution. For the current
example, when solving (1.51), instead of writing b = c = −a/2, we could
just as well state that a = −2b and c = b. In this case (1.52) is replaced
with u = u0G(ξ) where ξ = Dt/x2. Although the two representations are
equivalent, in the sense that one can be transformed into the other, it does
make a difference which one is used when deriving a similarity solution. The
reason is that we will be differentiating the solution, and (1.52) leads to much
simpler formulas than the other representation. The rule of thumb here is that
you want x in the numerator of the similarity variable. If you would like a
hands on example of why this is true, try working out the steps below using
the representation u = u0G(ξ) instead of (1.52).

Similarity Solution

Up to this point we have been using a routine dimensional reduction argu-
ment. Our result, given in (1.52), is interesting as it states that the solution
has a very specific dependence on the independent variables x and t. Namely,
u can be written as a function of a single intermediate variable η. To deter-
mine F we substitute (1.52) back into the problem and find what equation
F satisfies. With this in mind note, using the chain rule,
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∂u

∂t
= u0F

′(η)
∂η

∂t

= u0F
′(η)

(
− x

2D1/2t3/2

)
= −u0F

′(η)
η

2t
.

In a similar manner one can show that

∂2u

∂x2
= u0F

′′(η)
1
Dt

.

Substituting these into (1.47) yields

F ′′ = −1
2
ηF ′, for 0 < η <∞. (1.54)

We must also transform the boundary and initial conditions. The boundary
condition at x = 0 takes the form

F (0) = 1, (1.55)

while the condition as x→∞ and the one at t = 0 both translate into

F (∞) = 0. (1.56)

With this we have transformed a problem involving a partial differential
equation (PDE) into one with an ordinary differential equation (ODE). As
required, the resulting problem for F is only in terms of η. All of the original
dimensional quantities, including the independent variables x and t, do not
appear anywhere in the problem. This applies not just to the differential
equation, but also to the boundary and initial conditions.

The problem for F is simpler than the original diffusion problem and, by
itself, makes the use of dimensional analysis worthwhile. In this particular
problem it is so simple that it is possible to solve for F . This can be done
by letting G = F ′, so the equation takes the form G′ = − 1

2ηG. The general
solution of this is G = α exp(−η2/4). Because F ′ = G, we conclude that the
general solution is

F (η) = β + α

∫ η

0

e−s2/4ds. (1.57)

From (1.55) we have that β = 1 and from (1.56) we get

1 + α

∫ ∞

0

e−s2/4ds = 0. (1.58)

Given that
∫∞
0
e−s2/4ds =

√
π, then
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F (η) = 1− 1√
π

∫ η

0

e−s2/4ds. (1.59)

Expressions like this arise so often that they have given rise to a special
function known as the complementary error function erfc(η). This is defined
as

erfc(η) = 1− 2√
π

∫ η

0

e−r2
dr. (1.60)

Therefore, we have found that the solution of the diffusion problem is

u(x, t) = u0 erfc
(

x

2
√
Dt

)
. (1.61)

As the above example demonstrates, using similarity variables and dimen-
sional analysis provides a powerful tool for solving PDEs. It is, for example,
one of the very few methods known that can be used to solve nonlinear prob-
lems. Its limitation is that the problem must have a specific form to work. We
were able to solve the above diffusion problem because dimensional analysis
reduced the form of the solution down to a function of one variable. This
does not always happen and in such cases the method provides no insight
into how the problem can be solved. As an example, if the spatial interval in
the above diffusion problem is changed to one that is finite, so 0 < x < `,
then dimensional analysis will show that there are two independent similarity
variables. This represents no improvement as we already know it is a function
of two independent variables, so a reduction is not possible. Even with these
limitations, however, similarity variables and their use in solving differential
equations is a thriving area and a good introduction of the material can be
found in Bluman and Cole [1974].

1.5 Nondimensionalization and Scaling

Another use we will have for dimensional analysis is to transform a problem
into dimensionless form. The reason for this is that the approximation meth-
ods that are used to reduce difficult problems are based on comparisons. For
example, in the projectile problem we simplified the differential equation by
assuming that x was small compared to R. In contrast there are problems
where the variable of interest is large, or it is slow or that it is fast compared
to some other term in the problem. Whatever the comparison, it is important
to know how all of the terms in the problem compare and for this we need
the concept of scaling.
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1.5.1 Projectile Problem

The reduction of the projectile equation (1.1) was based on the assumption
that x is not very large, and so x + R could be replaced with just R. We
will routinely use arguments like this to find an approximate solution and it
is therefore essential we take more care in making such reductions. The way
this is done is by first scaling the variables in the problem using characteristic
values. The best way to explain what this means is to work out an example
and the projectile problem is an excellent place to start.

Change Variables

The first step in nondimensionalizing a problem is to introduce a change of
variables, which for the projectile problem will have the form

t = tcs,

x = xcu.

In the above formula, xc is a constant and it is a characteristic value of the
variable x. It is going to be determined using the physical parameters in
the problem, which for the projectile problem are g, R, and v0. In a similar
manner, tc is a constant that has the dimensions of time and it represents
a characteristic value of the variable t. In some problems it will be clear at
the beginning how to select xc and tc. However, it is assumed here that we
have no clue at the start what to choose and will not select them until the
problem is studied a bit more. All we know at the moment is that whatever
the choice, the new variables u, s are dimensionless. To make the change of
variables note that from the chain rule

d

dt
=
ds

dt

d

ds

=
1
tc

d

ds
, (1.62)

and
d2

dt2
=

d

dt

(
d

dt

)
=

1
t2c

d2

ds2
. (1.63)

With this the projectile equation (1.1) takes the form

1
t2c

d2

ds2
(xcu) = − gR2

(R+ xcu)2
. (1.64)

The method requires us to collect the parameters into dimensionless groups.
There is no unique way to do this, and this can cause confusion when first
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learning the procedure as there is no fixed method or answer. For example,
to nondimensionalize the denominator in (1.64) one can factor it as either
R(1 + xcu/R) or as xc(R/xc + u). The first has the benefit of enabling us to
cancel the R in the numerator. Making this choice yields

xc

gt2c

d2u

ds2
= − 1

(1 + xcu/R)2
, (1.65)

where the initial conditions (1.2), (1.3) are

u(0) = 0, (1.66)
du

ds
(0) =

tc
xc
v0. (1.67)

Find the Dimensionless Groups

Our change of variables has resulted in three dimensionless groups appearing
in the transformed problem. They are

Π1 =
xc

gt2c
, (1.68)

Π2 =
xc

R
, (1.69)

Π3 =
tcv0
xc

. (1.70)

There are a few important points that need to made here. First, the Π’s
do not involve the variables u, s and only depend on the parameters in the
problem. Second, they are dimensionless and to accomplish this it was neces-
sary to manipulate the projectile problem so the parameters end up grouped
together to form dimensionless ratios. The third, and last, point is that the
above three dimensionless groups are independent in the sense that it is not
possible to write any one of them in terms of the other two. For example, Π1

is the only one that contains the parameter g whileΠ2 is the only one contain-
ing R. It is understood that in making the statement that the three groups
are independent that xc and tc can be selected, if desired, independently of
any of the parameters in the problem.

Before deciding on how to select xc and tc, it is informative to look a lit-
tle closer at the above dimensionless groups. We begin with Π2. In physical
terms it is a measure of a typical, or characteristic, height of the projectile
compared to the radius of the Earth. In comparison, Π3 is a measure of a
typical, or characteristic, velocity xc/tc compared to the velocity the pro-
jectile starts with. Finally, the parameter group Π1 measures a typical, or
characteristic, acceleration xc/t

2
c in comparison to the acceleration due to
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gravity in a uniform field. These observations can be helpful when deciding
on how to nondimensionalize a problem as will be shown next.

Use Dimensionless Groups to Determine Scaling

It is now time to actually decide on what to take for xc and tc. There are
whole papers written on what to consider as you select these parameters,
but we will take a somewhat simpler path. For our problem we have two
parameters to determine, and we will do this by setting two of the above
dimensionless groups equal to one. What we need to do is decide on which
two to pick, and we will utilize what might be called rules of thumb.

Rule of Thumb 1 : Pick the Π’s that appear in the initial and/or boundary
conditions.

We only have initial conditions in our problem, and the only dimensionless
group involved with them is Π3. So we set Π3 = 1 and conclude

xc = v0tc. (1.71)

Rule of Thumb 2 : Pick the Π’s that appear in the reduced problem.

To use this rule it is first necessary to explain what the reduced problem is.
This comes from the earlier assumption that the object does not get very
high in comparison to the radius of the Earth, in other words, Π2 is small.
The reduced problem is the one obtained in the extreme limit of Π2 → 0.
Taking this limit in (1.65)-(1.67), and using (1.71), the reduced problem is

Π1
d2u

ds2
= −1 ,

where
u(0) = 0, and

du

ds
(0) = 1.

According to the stated rule of thumb, we set Π1 = 1, and so

xc = v2
0/g. (1.72)

This choice for xc seems reasonable based on our earlier conclusion that the
maximum height for the uniform field case is v2

0/(2g).

Combining (1.71) and (1.72), we have that xc = v2
0/g and tc = v0/g. With

this scaling then (1.65) - (1.67) take the form

d2u

ds2
= − 1

(1 + εu)2
, (1.73)
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where

u(0) = 0, (1.74)
du

ds
(0) = 1. (1.75)

The dimensionless parameter appearing in the above equation is

ε =
v2
0

gR
. (1.76)

This parameter will play a critical role in our constructing an accurate ap-
proximation of the solution of the projectile problem. This will be done in
the next chapter but for the moment recall that since R ≈ 6.4 × 106 m and
g ≈ 9.8 m/s2 then ε ≈ 1.6 × 10−8v2

0 . Consequently for baseball bats, sling
shots, BB-guns, and other everyday projectile-producing situations, where
v0 is not particularly large, the parameter ε is very small. This observation
is central to the subject of the next chapter.

Changing Your Mind

Before leaving this example it is worth commenting on the nondimension-
alization procedure by asking a question. Namely, how bad is it if different
choices would have been made for xc and tc? For example, suppose for some
reason one decides to take Π2 = 1 and Π3 = 1. The resulting projectile
problem is

ε
d2u

ds2
= − 1

(1 + u)2
, (1.77)

where u(0) = 0, du
ds (0) = 1, and ε is given in (1.76). No approximation has

been made here and therefore this problem is mathematically equivalent to
the one given in (1.73)-(1.75). Based on this, the answer to the question would
be that using this other scaling is not so bad. However, the issue is amenability
and what properties of the solution one is interested in. To explain, earlier we
considered how the solution behaves if v0 is not very large. With the scaling
that produced (1.77), small v0 translates into looking at what happens when
ε is near zero. Unfortunately, the limit of ε → 0 results in the loss of the
highest derivative in the differential equation and (1.77) reduces to 0 = −1.
How to handle such singular limits will be addressed in the next chapter
but it requires more work than is necessary for this problem. In comparison,
letting ε approach zero in (1.73) causes no such complications and for this
reason it is more amenable to the study of the small v0 limit. The point here
is that if there are particular limits, or conditions, on the parameters that it
is worth taking them into account when constructing the scaling.
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1.5.2 Weakly Nonlinear Diffusion

To explore possible extensions of the nondimensionalization procedure we
consider a well-studied problem involving nonlinear diffusion. The problem
consists of finding the concentration c(x, t) of a chemical over an interval
0 < x < `. The concentration satisfies

D
∂2c

∂x2
=
∂c

∂t
− λ(γ − c)c, (1.78)

where the boundary conditions are

c|x=0 = c|x=` = 0, (1.79)

and the initial condition is

c|t=0 = c0 sin(5πx/`). (1.80)

The nonlinear diffusion equation (1.78) is known as Fisher’s equation, and
it arises in the study of the movement of genetic traits in a population. A
common simplifying assumption made when studying this equation is that the
nonlinearity is weak, which means that the term λc2 is small in comparison
to the others in the differential equation. This assumption will be accounted
for in the nondimensionalization.

Before starting the nondimensionalization process we should look at the
fundamental dimensions of the variables and parameters in the problem.
First, c is a concentration, which corresponds to the number of molecules
per unit volume, and so [c] = L−3. The units for the diffusion coefficient D
were determined earlier, and it was found that [D] = L2/T . As for γ, the
γ − c term in the differential equation requires these two quantities to have
the same dimensions, and so [γ] = [c]. Similarly, from the differential equation
we have [λ(γ− c)c] = [∂c

∂t ], and from this it follows that [λ] = L3T−1. Finally,
from the initial condition we have that [c0] = [c]. It is important to make an
observation related to dimensions, and this will be done by asking a question:
is it possible to replace the initial condition (1.80) with c|t=0 = c0 sin(5πx)
or with c|t=0 = c0 sin(x)? The answer in both cases is no, and the reason is
that the argument of the sine function must be dimensionless. For exactly
the same reason it is not possible to use c|t=0 = c0e

x. It is possible, however,
to use c|t=0 = c0x or c|t=0 = c0x

2, although the dimensions of c0 differ from
what we found earlier.

Now, to nondimensionalize the problem we introduce the change of vari-
ables
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x = xcy, (1.81)
t = tcs, (1.82)
c = ccu. (1.83)

In this context, xc has the dimensions of length and is a characteristic value
of the variable x. Similar statements apply to tc and cc. Using the chain rule
as in (1.62) the above differential equation takes the form

Dcc
x2

c

∂2u

∂y2
=
cc
tc

∂u

∂s
− λcc(γ − ccu)u.

It is necessary to collect the parameters into dimensionless groups, and so in
the above equation we rearrange things a bit to obtain

Dtc
x2

c

∂2u

∂y2
=
∂u

∂s
− λtccc(γ/cc − u)u. (1.84)

In conjunction with this we have the boundary conditions

u|y=0 = u|y=`/xc
= 0, (1.85)

and the initial condition is

u|s=0 = (c0/cc) sin(5πxcy/`). (1.86)

The resulting dimensionless groups are

Π1 =
Dtc
x2

c

, (1.87)

Π2 = λtccc, (1.88)
Π3 = γ/cc, (1.89)
Π4 = `/xc, (1.90)
Π5 = c0/cc. (1.91)

It is important to note that the five dimensionless groups given above are
independent in the sense that it is not possible to write one of them in terms
of the other four. As before this statement is based on our ability to select,
if desired, the scaling parameters xc, tc, cc independently of each other and
the other parameters in the problem. Also, in counting the dimensionless
groups one might consider adding a sixth. Namely, in the initial condition
(1.86) there is Π6 = 5πxc/`. The reason it is not listed above is that it is
not independent of the others because Π6 = 5π/Π4. The 5π is a number and
does not play a role in determining dimensional independence.

We have three scaling parameters to specify, namely xc, tc, cc. Using Rule
of Thumb 1, the Π’s that appear in the boundary and initial conditions are
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set equal to one. In other words, we set Π4 = 1 and Π5 = 1, from which it
follows that xc = ` and cc = c0.

To use Rule of Thumb 2, we need to investigate what it means to say that
the nonlinearity is weak. The equation (1.84) is nonlinear due to the term
λtcccu

2, and the coefficient λtccc is the associated strength of the nonlinearity.
For a weakly nonlinear problem one is interested in the solution for small
values of λtccc. Taking the extreme limit we set λtccc = 0 in (1.84) to produce
the reduced equation. The only group that remains in this limit is Π1, and for
this reason this is the group we select. So, setting Π1 = 1 then we conclude
tc = `2/D.

The resulting nondimensional diffusion equation is

∂2u

∂y2
=
∂u

∂s
− ε(b− u)u, (1.92)

with boundary conditions

u(0, s) = u(1, s) = 0, (1.93)

and the initial condition

u(y, 0) = sin(5πy). (1.94)

The dimensionless parameters appearing in the above equation are ε =
λc0`

2/D and b = γ/c0. With this, weak nonlinearity corresponds to assuming
that ε is small.

1.5.3 Endnotes

As you might have noticed, the assumption of a weak nonlinearity was used in
the projectile problem, although it was stated in more physical terms. In both
examples the reduced problem, obtained setting ε = 0, is linear. It is certainly
possible that a physical problem is not weakly nonlinear but involves some
other extreme behavior. As an example, in nonlinear diffusion problems you
come across situations involving weak diffusion. What this means for (1.84) is
that Dtc/x2

c has a small value. In the extreme limit that this term is zero then
the only group that remains in the reduced problem is Π2. Setting Π2 = 1
then tc = c0/λ. With this, (1.84) becomes

ε
∂2u

∂x2
=
∂u

∂t
+ (b− u)u, (1.95)

where ε = Dc0/(λ`2) and b = γ/c0. With this, weak diffusion corresponds to
assuming that ε is small.
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For those keeping track of the rules of thumb used to nondimensionalize
a problem we have two. The first we ran across is the rule that the dimen-
sionless groups in the initial and boundary conditions are set to one. The
second rule arose when setting the dimensionless groups in the reduced prob-
lem to one. Although these can be effective rules, it is certainly possible to
find problems where another scaling should be considered, and examples are
given in Exercises 1.17 and 3.8. The overall objective in all cases is that the
nondimensionalization is based on characteristic values of the variables.

Exercises

1.1. The amount of noise permitted from the large rollers used in road con-
struction was recently limited by changes in the environmental laws. Rather
than build multiple full-sized rollers in an attempt to find one that satisfied
the new law a manufacturer decided that dimensional analysis could be used.
The assumption they made was that the frequency f of the sound coming
off the roller depends on the elastic modulus E and the density ρ of the steel
used to construct the roller as well as on the length ` of the roller.

(a) Find a dimensionally reduced form for f .
(b) In building a scale model for testing the manufacturer selected the param-

eters so that
fm

ff
=
`f
`m

√
ρfEm

ρmEf
,

where the subscript f designates full-sized and the subscript m designates
scale model. Explain why this was done.

1.2. For a pendulum that starts from rest, the period p depends on the length
` of the rod, on gravity g, on the mass m of the ball, and on the initial angle
θ0 at which the pendulum is started.

(a) Use dimensional analysis to determine the functional dependence of p on
these four quantities.

(b) For the largest pendulum ever built, the rod is 70 ft and the ball weighs
900 lbs. Assuming that θ0 = π/6 explain how to use a pendulum that fits
on your desk to determine the period of this largest pendulum.

(c) Suppose it is found that p depends linearly on θ0, with p = 0 if θ0 = 0.
What does your result in part (a) reduce to in this case?

1.3. The velocity v at which flow in a pipe will switch from laminar to tur-
bulent depends on the diameter d of the pipe as well as on the density ρ and
dynamic viscosity µ of the fluid.

(a) Find a dimensionally reduced form for v.
(b) Suppose the pipe has diameter d = 100 and for water (where ρ = 1 and

µ = 10−2) it is found that v = 0.25 . What is v for olive oil (where ρ = 1
and µ = 1)? The units here are in cgs.
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1.4. The luminosity of certain giant and supergiant stars varies in a periodic
manner. It is hypothesized that the period p depends upon the star’s average
radius r, its mass m, and the gravitational constant G.

(a) Newton’s law of gravitation asserts that the attractive force between two
bodies is proportional to the product of their masses divided by the square
of the distance between them, that is,

F =
Gm1m2

d2
,

where G is the gravitational constant. From this determine the (funda-
mental) dimensions of G.

(b) Use dimensional analysis to determine the functional dependence of p on
m, r, and G.

(c) Arthur Eddington used the theory for thermodynamic heat engines to
show that

p =
√

3π
2γGρ

,

where ρ is the average density of the star and γ is the ratio of specific
heats for stellar material. How does this differ from your result?

(d) In Figure 1.8 the data for a pulsating star are given. Explain how you
could use data like this to complete the formula you derived in part (b).

1.5. When a drop of liquid hits a wetted surface a crown formation appears,
as shown in Figure 1.9(a). It has been found that the number of points N on
the crown depends on the speed U at which the drop hits the surface, the
radius r and density ρ of the drop, and the surface tension σ of the liquid
making up the drop. How N depends on these quantities has been studied
extensively and some of the reasons why are given in Rioboo et al. [2003].

(a) Use dimensional reduction to determine the functional dependence of N
on U , r, ρ, and σ. Express your answer in terms of the Weber number
We = ρU2r/σ.
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Figure 1.8 Luminosity of a Mira type variable star, 1621+19 U Herculis (AAVSO
[2009]).
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Figure 1.9 (a) Formation of a crown when a liquid drop hits a wetted surface. (b)
The measured values of the number of points N (Hobbs and Kezweent [1967]).

(b) The value of N has been measured as a function of the initial height h of
the drop and the results are shown in Figure 1.9(b). Express your answer
in part (a) in terms of h by writing U in terms of h and g. Assume the
drop starts with zero velocity.

(c) The data in Figure 1.9(b) show a piecewise linear dependence on h, specif-
ically, N can be described as a continuous function made up of two linear
segments. Use this, and your result from part (b), to find the unknown
function in part (a). In the experiments, r = 3.6 mm, ρ = 1.1014 gm/cm3,
and σ = 50.5 dyn/cm.

(d) According to your result from part (c), what must the initial height of the
drop be to produce at least 80 points?

(e) According to your result from part (c), how many points are generated
for a drop of mercury when h = 200 cm? Assume r = 3.6 mm, ρ = 13.5
gm/cm2, and σ = 435 dyn/cm.

1.6. The frequency ω of waves on a deep ocean is found to depend on the
wavelength λ of the wave, the surface tension σ of the water, the density ρ
of the water, and gravity.

(a) Use dimensional reduction to determine the functional dependence of ω
on λ, σ, ρ, and g.

(b) In fluid dynamics it is shown that

ω =

√
gk +

σk3

ρ
,

where k = 2π/λ is the wavenumber. How does this differ from your result
in (a)?

1.7. A ball is dropped from a height h0 and it rebounds to a height hr.
The rebound height depends on the elastic modulus E, radius R, and the
mass density ρ of the ball. It also depends on the initial height h0 and the
gravitational constant g.

(a) Find a dimensionally reduced form for hr.
(b) Suppose it is found that hr depends linearly on h0, with hr = 0 if h0 = 0.

What does your formula from part (a) reduce to in this case?
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(c) Suppose the density of the ball is doubled. Use the result in (a) to explain
how to change E so the rebound height stays the same.

1.8. A ball, when released underwater, will rise towards the surface with
velocity v. This velocity depends on the density ρb and radius R of the ball,
on gravity g, and on the density ρf and kinematic viscosity ν of the water.

(a) Find a dimensionally reduced form for v.
(b) In fluid mechanics, using Stokes’ Law, it is found that

v =
2gR2(ρb − ρf )

9νρf
.

How does this differ from your result from part (a)? It is interesting to note
that this formula is used by experimentalists to determine the viscosity of
fluids. They do this by measuring the velocity in an apparatus called a
falling ball viscometer, and then solving for ν in the above formula.

1.9. In electric image tomography the objective is to determine the properties
inside an object and this is done by applying a potential U to the surface.
What is measured is the resulting electric current j on the surface. Suppose
that it is found that the electric potential u within a spherical body depends
on the object’s radius R and conductivity σ as well as depends on U and j.

(a) Find a dimensionally reduced form for u.
(b) Suppose that given a particular object that doubling the applied potential

U causes the internal potential u to increase by a factor of four. How does
this help simply your result in (a)?

(c) Suppose it is necessary to know the internal potential u when using a large
applied potential, say U = 2500V . However, for legal reasons it is required
that only applied potentials less than 250V can be used. Explain, using
your result from (a), how to legally determine the large applied potential
value.

1.10. The velocity v of water through a circular pipe depends on the pressure
difference p between the two ends of the pipe, the length ` and radius r of
the pipe, as well as on the dynamic viscosity µ and density ρ of the water.

(a) Use dimensional analysis to determine the functional dependence of v on
the above quantities.

(b) Suppose it is found that v depends linearly on p, with v = 0 if p = 0.
What does your formula from part (a) reduce to in this case?

(c) Your formula from part (b) should contain a general function of one, or
more, dimensionless products. Explain how to experimentally determine
this function. Be specific about which parameters are fixed, and which are
varied, in the experiment. Also, your experiment should vary as few of the
parameters as possible in determining this function.

1.11. In a high energy explosion there is a very rapid release of energy E
that produces an approximately spherical shock wave that expands in time
(Figure 1.10).
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Figure 1.10 Shock wave produced by a nuclear explosion, at 6 msec, 16 msec, 25
msec, and 90 msec. The width of the white bar in each figure is 100m (Brixner [2009]).

(a) Assuming the radius R of the shock wave depends on E, the length of
time t since the explosion, and the density ρ of the air, use dimensional
reduction to determine how the radius depends on these quantities. This
expression is known as the Taylor-Sedov formula.

(b) It was shown by G. I. Taylor that if E = 1J and ρ = 1 kg/m3 then
R = t2/5m/s2/5. Use this information and the result from (a) to find the
exact formula for R.

(c) Use the photographs in Figure 1.10, and your result from (b) to estimate
the energy released. The air density is ρ = 1 kg/m3.

(d) The blast wave from a supernova can be modeled using the Taylor-Sedov
formula. Explain how this can be used to estimate the date the supernova
took place, using your result from part (b). As an example, use Tycho,
which currently has a radius of about 33.2 light years, an estimated energy
of 1044J , and density ρ = 2× 10−21 kg/m3.

1.12. The vertical displacement u(x) of an elastic string of length ` satisfies
the boundary value problem

τ
d2u

dx2
+ µu = p, for 0 < x < `,

where u(0) = 0, u(`) = U . Also, p is a constant and has the dimensions of
force per length.

(a) What are the dimensions for the constants τ and µ?
(b) Show how it is possible to nondimensionalize this problem so it takes the

form
d2v

ds2
+ αv = β, for 0 < s < 1,

where v(0) = 0, v(1) = 1. Make sure to state what α, β are.

1.13. From Newton’s second law, the displacement y(t) of the mass in a mass,
spring, dashpot system satisfies

m
d2y

dt2
= Fs + Fd, for 0 < t,

where m is the mass, Fs is the restoring force in the spring, and Fd is the
damping force. To have a compete IVP we need to state the initial conditions,
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and for this problem assume

y(0) = 0,
dy

dt
(0) = v0.

(a) Suppose there is no damping, so Fd = 0, and the spring is linear, so
Fs = −ky. What are the dimensions for the spring constant k? Nondi-
mensionalize the resulting IVP. Your choice for yc and tc should result in
no dimensionless products being left in the IVP.

(b) Now, in addition to a linear spring, suppose linear damping is included,
so,

Fd = −cdy
dt
.

What are the dimensions for the damping constant c? Using the same
scaling as in part (a), nondimensionalize the IVP. Your answer should
contain a dimensionless parameter ε that measures the strength of the
damping. In particular, if c is small then ε is small. The system in this
case is said to have weak damping.

1.14. The velocity v(t) of the waves on a deep ocean satisfies the equation

dv

dt
+ kv2 = `v, for 0 < t,

where v(0) = V .
(a) What are the dimensions of the constants k, `, and V ?
(b) Assuming a weak nonlinearity, use the Rules of Thumb given in Section

1.5 to nondimensionalize this problem.

1.15. The equation for an elastic beam is

EI
∂4u

∂x4
+ ρ

∂2u

∂t2
= 0,

where the boundary conditions are u = u0 sin(ωt) and ∂u
∂x = 0 at x = 0, while

u = ∂u
∂x = 0 at x = `. Assume the initial conditions are u = 0 and ∂u

∂t = 0
at t = 0. Here E is the elastic modulus, I is the moment of inertia, and ρ
is the mass per unit length of the beam. Nondimensionalize the problem in
such a way that the resulting boundary conditions contain no nondimensional
groups.

1.16. When an end of a slender strip of paper is put into a cup of water,
because of absorption, the water rises up the paper. The density ρ of the
water along the strip satisfies the differential equation

∂ρ

∂t
+
∂J

∂x
= 0,

where J is known as the flux.
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(a) What are the dimensions of J?
(b) The flux J depends on the gravitational constant g, the strip width d,

the density gradient ∂ρ
∂x , and the surface tension σ of the water. Find a

dimensionally reduced form for J .
(c) What does your result in (b) reduce to if it is found that J depends linearly

on the density gradient, with J = 0 if ρx = 0? What is the resulting
differential equation?

(d) If the strip has length h the boundary conditions are ρ = ρ0 at x = 0 and
J = 0 at x = h. The initial condition is ρ = 0 at t = 0. With this, and
your differential equation from (c), nondimensionalize the problem for ρ
in such a way that no nondimensional groups appear in the final answer.

1.17. A thermokinetic model for the concentration u and temperature q of a
mixture consists of the following equations (Gray and Scott [1994])

du

dt
= k1 − k2ue

k3q,

dq

dt
= k4ue

k3q − k5q.

The initial conditions are u = 0 and q = 0 at t = 0.
(a) What are the dimensions of the ki’s?
(b) Explain why the rule of thumb for scaling used in the projectile problem

does not help here.
(c) Find the steady-state solution, that is, the solution of the differential equa-

tions with u′ = 0 and q′ = 0.
(d) Nondimensionalize the problem using the steady-state solution from (c) to

scale u and q. Make sure to explain how you selected the scaling for t.

1.18. The equations that account for the relativistic motion of a planet
around the sun are

d2r

dt2
− r

(
dθ

dt

)2

= −Gm
r2

+
b

r3
,

d

dt

(
r2
dθ

dt

)
= 0,

where b is a constant. Assume the initial conditions are r = r0, r′ = 0, and
θ = 0 at t = 0.

(a) What are the dimensions of r0, b?
(b) Nondimensionalize the problem. The scaling should be chosen so the only

nondimensional group appearing in the problem involves b.

1.19. Suppose you are given a dimensionless function f(Π) where Π is a
dimensionless group. Also, suppose Π = AaBbCc where A, B, C are dimen-
sional parameters and the exponents a, b, c are nonzero numbers.
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(a) Show that if f(Π) is found to be linear in A then it must be that f(Π) =
αΠ1/a + β where α, β are arbitrary numbers.

(b) What can you conclude if it is found that
√
ABf(Π) is linear in A?

(c) Suppose it is found that if A is doubled that the value of F increases by a
factor of four. Can this be used to determine F?

1.20. This problem explores some consequences of dimensional quantities.
(a) If g is the gravitational acceleration constant, explain why sin(g) and eg

make no sense.
(b) Explain why density, volume, and velocity can be used in place of length,

mass, and time as fundamental units.
(c) Explain why volume, velocity, and acceleration cannot be used in place of

length, mass, and time as fundamental units.

1.21. In quantum chromodynamics three parameters that play a central role
are the speed of light c, Planck’s constant ~, and the gravitational constant
G.

(a) Explain why it is possible to use [c], [~], [G] as fundamental units.
(b) The distance `p at which the strong, electromagnetic and weak forces be-

come equal depends on c, ~, G. Find a dimensionally reduced form for how
`p depends on these three parameters. Based on this result, if the speed
of light were to double what happens to `p?

(c) The Bohr radius a of an electron depends on ~, the electron’s charge e,
and the mass me of the electron. Find a dimensionally reduced form for a.

1.22. The speed cm at which magnetonsonic waves travel through a plasma
depends on the intensity B of the magnetic field, the permeability µ0 of free
space, and the density ρ and pressure p of the plasma.

(a) Use dimensional reduction to determine the functional dependence of cm
on B, µ0, ρ, and p.

(b) From the basic laws for plasmas it is shown that

cm =
√
V 2

A + c2s ,

where VA = B/
√
µ0ρ is the Alfven speed and cs =

√
γp/ρ is the sound

speed in the gas. In the latter expression, γ is a number. How does this
differ from your result in (a)?

1.23. In the study of the motion of particles moving along the x-axis one
comes across the problem of finding the velocity u that satisfies the nonlinear
partial differential equation

ut + uux = 0, (1.96)

where

u(x, 0) =
{

0 if x < 0
u0 if 0 < x.

(1.97)
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Assume that u0 is a positive constant. The equation (1.96) is derived in
Chapter 5, and it is known as the inviscid Burgers’ equation. It, along with
the jump condition in (1.97), form what is known as a Riemann problem.

(a) What three physical quantities does u depend on?
(b) Use dimensional reduction, and a similarity variable, to reduce this prob-

lem to a nonlinear ordinary differential equation with two boundary con-
ditions.

(c) Use the result from part (b) to solve the Riemann problem. The solution,
which is known as an expansion fan, must be continuous for t > 0.

(d) What is the solution if the initial condition (1.97) is replaced with u(x, 0) =
u0?

(e) Suppose that, rather than velocity, the variable u is displacement. Explain
why it is not possible for u to satisfy (1.96).

1.24. Consider the partial differential equation

ut +Duxxxx = 0,

where u = u0 at x = 0, u→ 0 as x→∞, and u = 0 at t = 0. Use dimensional
reduction, and a similarity variable, to reduce this problem to an ordinary
differential equation.

1.25. The equation of the concentration c, on an interval of length `, is

∂c

∂t
= D

∂2c

∂x2
+ µc,

where the boundary conditions are c(x, 0) = 0, c(0, t) = c0, and c(`, t) = 0.
(a) What are the dimensions of D, c0, and µ?
(b) Nondimensionalize the problem so it has the form

∂u

∂s
=
∂2u

∂y2
+ αu,

where the boundary conditions are u(y, 0) = 0, u(0, s) = 1, and u(1, s) = 0.

1.26. One of the standard experimental tests used in the study of fluid motion
through porous materials consists of determining the displacement u when
the material is given a constant load. The governing differential equation in
this case is

H

[
1 +

(
∂u

∂x

)3
]
∂2u

∂x2
=
∂u

∂t
.

The boundary conditions are

∂u

∂x
= −1, at x = 0,

and
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u = 0, as x→∞.

The initial condition is
u = 0, at t = 0.

(a) What are the dimensions of the constant H?
(b) Find a dimensionally reduced form for the solution and then use this to

transform the above diffusion problem into one involving a nonlinear ordi-
nary differential equation. Make sure to state what happens to the bound-
ary and initial conditions. You do not need to solve this problem.

(c) In the experiment the surface displacement u(0, t) is measured. Without
solving the problem use your results from (b) to sketch u(0, t) as a function
of t.

(d) Suppose the experimental data show that u(0, t) = 16t cm/sec. Using your
result from part (c), explain why the mathematical model is incorrect.
Also, explain why changing the differential equation to either Huxx = ut

or to H[1 + (ux)5]uxx = ut will also produce an incorrect model.

1.27. Consider the problem of solving the diffusion equation

D
∂2u

∂x2
=
∂u

∂t
,

where the boundary conditions are

u = 0, as x→ ±∞.

Instead of an initial condition, assume the solution satisfies∫ ∞

−∞
udx = γ, ∀t > 0.

(a) What are the dimensions of γ?
(b) Find a dimensionally reduced form for the solution and then use this to

transform the above diffusion equation into an ordinary differential equa-
tion. How do the boundary conditions transform? The integral condition
should be considered in the dimensional reduction but its conversion using
the similarity variable will wait until part (d).

(c) Find the solution of the problem from part (b). You can assume F ′ → 0
and ηF → 0 as η → ±∞. As a hint, you might want to look for the
expression (ηF )′ in your equation.

(d) The solution from part (c) should contain an arbitrary constant. Find its
value using the given integral condition and with this show that

u =
γ√
πDt

e−x2/(4Dt).

This is known as the fundamental, or point source, solution of the diffusion
equation.



Chapter 2

Perturbation Methods

2.1 Regular Expansions

To introduce the ideas underlying perturbation methods and asymptotic ap-
proximations, we will begin with an algebraic equation. The problem we will
consider is how to find an accurate approximation of the solution x of the
quadratic equation

x2 + 2εx− 1 = 0, (2.1)

in the case of when ε is a small positive number. The examples that follow
this one are more complex and, unlike this equation, we will not necessarily
know at the start how many solutions the equation has. A method for deter-
mining the number of real-valued solutions involves sketching the terms in
the equation. With this in mind, we rewrite the equation as x2 − 1 = −2εx.
The left- and right-hand sides of this equation are sketched in Figure 2.1.
Based on the intersection points, it is seen that there are two solutions. One
is a bit smaller than x = 1 and the other is just to the left of x = −1. Another
observation is that the number of solutions does not change as ε → 0. The
fact that the reduced problem, which is the one obtained when setting ε = 0,
has the same number of solutions as the original problem is a hallmark of
what are called regular perturbation problems.

Our goal is to derive approximations of the solutions for small ε, and for
this simple problem we have a couple of options on how to do this.

Method 1: Solve then Expand
It is an easy matter to find the solution using the quadratic formula. The
result is

x = −ε±
√

1 + ε2. (2.2)

This completes the solve phase of the process. To obtain an approximation
for the two solutions, for small ε, we first use the binomial expansion (see
Table 2.1) to obtain

M.H. Holmes, Introduction to the Foundations of Applied Mathematics, 43
Texts in Applied Mathematics 56, DOI 10.1007/978-0-387-87765-5 2,
c© Springer Science+Business Media, LLC 2009
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Figure 2.1 Sketch of the functions appearing in the quadratic equation in (2.1).

√
1 + ε2 = 1 +

1
2
ε2 − 1

8
ε4 + · · · . (2.3)

A comment needs to be made here about the equal sign in this expression.
The right hand side is an infinite series and by stating it is equal to

√
1 + ε2

it is meant that given a value of ε that the series converges to
√

1 + ε2. Said
another way, given a value of ε, the more terms that are added together in
the series the closer the sum gets to the value of

√
1 + ε2. For this to be true

it is necessary to require that ε2 < 1, but we are assuming ε is close to zero
so this is not a restriction in this problem.

Substituting (2.3) into (2.2) yields

x = −ε±
(

1 +
1
2
ε2 − 1

8
ε4 + · · ·

)
= ±1− ε± 1

2
ε2 ∓ 1

8
ε4 + · · · . (2.4)

In the last step the terms are listed in order according to their power of
ε. With this we can list various levels of approximation of the solutions, as
follows

x ≈ ±1 1 term approximation
x ≈ ±1− ε 2 term approximation
x ≈ ±1− ε± 1

2ε
2 3 term approximation.

So, we have accomplished what we set out to do, which is to derive an ap-
proximation of the solution for small ε. The procedure is straightforward but
it has a major drawback because it requires us to be able to first solve the
equation before constructing the approximation. For most problems this is
simply impossible, so we need another approach.

Method 2: Expand then Solve
This approach requires us to first state what we consider to be the general
form of the approximation for x. This requires a certain amount of experience
and a reasonable place to start is with Taylor’s theorem. We know that the
solution depends on ε, we just don’t know how. Emphasizing this dependence
by writing x(ε), then using Taylor’s theorem for ε near zero, we obtain
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f(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) +

1

3!
x3f ′′′(0) + · · ·

(a + x)γ = aγ + γxaγ−1 +
1

2
γ(γ − 1)x2aγ−2 +

1

3!
γ(γ − 1)(γ − 2)x3aγ−3 + · · ·

1

1− x
= 1 + x + x2 + x3 + · · ·

1

(1− x)2
= 1 + 2x + 3x2 + 4x3 + · · ·

1
√

1− x
= 1 +

1

2
x +

3

8
x2 +

5

16
x3 + · · ·

ex = 1 + x +
1

2
x2 +

1

3!
x3 + · · ·

ax = ex ln(a) = 1 + x ln(a) +
1

2
(x ln(a))2 +

1

3!
(x ln(a))3 + · · ·

sin(x) = x−
1

3!
x3 +

1

5!
x5 − · · ·

cos(x) = 1−
1

2
x2 +

1

4!
x4 + · · ·

sin(a + x) = sin(a) + x cos(a)−
1

2
x2 sin(a) + · · ·

cos(a + x) = cos(a)− x sin(a)−
1

2
x2 cos(a) + · · ·

ln(1 + x) = x−
1

2
x2 +

1

3
x3 + · · ·

ln(a + x) = ln(a) + ln(1 + x/a) = ln(a) +
x

a
−

1

2

(
x

a

)2
+

1

3

(
x

a

)3
+ · · ·

Table 2.1 Taylor series expansions, about x = 0, for some of the more commonly
used functions.

x(ε) = x(0) + εx′(0) +
1
2
ε2x′′(0) + · · · . (2.5)

This implies that x can be expanded using integer powers of ε. With nonlinear
equations, there is no guarantee that the powers have to be integers. An
example is the equation x2 − ε = 0. A reasonable assumption is that the
solution can be expanded in powers of ε, although not necessarily in integer
powers. For this reason we will assume that the general form of the expansion
is

x ∼ x0 + εαx1 + εβx2 + · · · . (2.6)

The values of x0, x1, x2, . . . and α, β, . . . will be determined when solving the
equation. It is assumed that the terms are listed in order according to their
power of ε, which means we assume 0 < α < β < · · · . This requirement is
known as a well-ordering assumption and we will make it every time we write
down such an expression. It is also assumed that x0, x1, x2, . . . do not depend
on ε.
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We will need to be able to identify the coefficients in an expansion and
the big O notation will be used for this. So, in (2.6) the O(εα) coefficient is
x1 and the O(εβ) coefficient is x2. For the same reason x0 is the coefficient
of the O(1) term.

You might be wondering why we don’t just assume at the start that α = 1
and β = 2. After all, this is what we found earlier using the “Solve then
Expand” approach. One reason for this has already been given, namely the
solutions of nonlinear problems do not necessarily involve integer powers and
we want a method that can handle such situations. A second reason is that
we will learn something important by having the equation tell us that α = 1.
The expansion in (2.6) is really nothing more than an educated guess. It is
quite possible that it is incorrect and it is important to see how the equation
will tell us we have made an incorrect assumption.

We will substitute (2.6) into (2.1), but before doing so note

x2 ∼ (x0 + εαx1 + εβx2 + · · · )(x0 + εαx1 + εβx2 + · · · )
∼ x2

0 + 2εαx0x1 + 2εβx0x2 + ε2αx2
1 + · · · . (2.7)

To start we will concentrate on finding the first two terms in the expansion
for x. In this case, with (2.7), (2.1) takes the form

x2
0 + 2εαx0x1 + · · ·+ 2ε(x0 + εαx1 + · · · )− 1 = 0. (2.8)

We are constructing an approximation for small ε. In letting ε → 0 in the
above equation we obtain the equation for the O(1) term.

O(1) x2
0 − 1 = 0

The solutions are x0 = ±1.

With this (2.8) reduces to

2εαx0x1 + · · ·+ 2ε(x0 + εαx1 + · · · ) = 0. (2.9)

Now, with the given values of x0 we are left with a 2εx0 term in the above
equation. There are no O(ε) terms on the right-hand side so there can be
no O(ε) terms on the left-hand side. The only term available to cancel, or
balance, out 2εx0 is 2εαx0x1, and for this to happen it is necessary that
α = 1. So, the equation has told us exactly what value this exponent must
have. This gives us the following problem.

O(ε) 2x0x1 + 2x0 = 0

The solution is x1 = −1.
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We have determined the first two terms in the expansion, but we could
easily continue and find more. For example, to find the next term note that
the equation in (2.8), using (2.7), reduces to

2εβx0x2 + ε2x2
1 + · · ·+ 2ε(εx1 + εβx2 + · · · ) = 0. (2.10)

We now have ε2x2
1 and 2ε2x1 on the left, with no O(ε2) terms on the right.

The only term available to eliminate them is 2εβx0x2 and, therefore, β = 2.
With this we obtain the equation for the O(ε2) terms in the equation.

O(ε2) 2x0x2 + x2
0 − 2x1 = 0

The solutions are x2 = ± 1
2 .

The above procedure can be used to find the successively higher order
terms in the expansion. Rather than do that it is more worthwhile to consider
what we have done to get to this point. Our conclusion is that one of the
solutions is

x ∼ 1− ε+
1
2
ε2, (2.11)

and the other is
x ∼ −1− ε− 1

2
ε2. (2.12)

These approximations hold for small ε, and for this reason they are said to
be asymptotic expansions of the solutions as ε→ 0.

The formal definition of what it means to be an asymptotic expansion
states that the difference between x and the expansion goes to zero faster
than the last term included in the expansion. For (2.11) this means that

lim
ε→0

x− (1− ε+ 1
2ε

2)
ε2

= 0.

For the same reason, x ∼ 1−ε is also an asymptotic expansion of the solution
because

lim
ε→0

x− (1− ε)
ε

= 0.

This is the basis for what is known as the limit-process definition of an
asymptotic expansion. This is important for those interested in the theoretical
foundations of the subject. For us, the critical point is that the asymptotic
expansion is determined by how the function, or solution, behaves as ε→ 0.
The definition does not say anything about what happens when more terms
are used in the expansion for a given value of ε. If we were to calculate every
term in the expansion, and produce an infinite series in the process, the fact
that it is an asymptotic expansion does not mean the series has to converge.
In fact, some of the more interesting asymptotic expansions diverge. For this
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reason it is inappropriate to use an equal sign in (2.6) and why the symbol
∼ is used instead.

2.2 How to Find a Regular Expansion

The ideas used to construct asymptotic expansions of the solutions of a
quadratic equation are easily extended to more complex problems. Exactly
how one proceeds depends on how the problem is stated, and the following
three situations are the most common.

2.2.1 Given a Specific Function

The expansion in (2.3) is an example of this situation. For these problems
Taylor’s theorem is most often used to construct the expansion, and it is not
unusual to have to use it more than once. Typical examples are used below
to illustrate how this is done.

Example 1

f(ε) = sin(eε).

This is a compound function. To find, say, a three-term expansion of this for
small ε one starts with the innermost function, which in this case is eε. To
find a three-term expansion of this we can use the Taylor expansion of ex

given in Table 2.1, because ε small is equivalent in this case to x near zero.
So, we have eε ∼ 1 + ε+ 1

2ε
2 + · · · and from this we conclude

sin(eε) ∼ sin
(

1 + ε+
1
2
ε2 + · · ·

)
.

The next observation to make is that the argument of the sine function on
the right hand side has the form sin(1+ y) where y = ε+ 1

2ε
2 + · · · is close to

zero for small ε. This means the expansion given in Table 2.1 for sin(a + x)
is applicable, where a = 1 and x = y. Using this fact we obtain
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sin(eε) ∼ sin(1 + y)

∼ sin(1) + cos(1)y − 1
2

sin(1)y2 + · · ·

∼ sin(1) + cos(1)
(
ε+

1
2
ε2 + · · ·

)
− 1

2
sin(1)

(
ε+

1
2
ε2 + · · ·

)2

+ · · ·

∼ sin(1) + ε cos(1) +
1
2
ε2 [cos(1)− sin(1)] + · · · . � (2.13)

One might argue that the above calculation is not necessary because
(2.13) can be obtained easily, and directly, from Taylor’s theorem applied
to f(ε) = sin(eε). This is correct, and it is worthwhile to have multiple meth-
ods available for constructing an expansion. However, the direct approach
only works on certain functions. It is easy to find examples when the direct
approach does not work, one is given below, and another is given in Exercise
2.2.

Example 2

f(ε) =
1

[1− cos(ε)]3
.

To find a two-term expansion of this for small ε, we start with the inner most
function, which is cos(ε). Using the Taylor expansion of cos(x) given in Table
2.1, we have

cos(ε) ∼ 1− 1
2
ε2 +

1
24
ε4 + · · · .

With this

1
1− cos(ε)

∼ 1
1
2ε

2 − 1
24ε

4 + · · ·

=
2
ε2

1
1− 1

12ε
2 + · · ·

.

The last term can be expanded using the binomial expansion, which is the
second entry in Table 2.1. In particular, with a = 1, x = − 1

12ε
2 + · · · , and

γ = −3,
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1
(1− 1

12ε
2 + · · · )3

=
(

1− 1
12
ε2 + · · ·

)−3

∼ 1− 3
(
− 1

12
ε2 + · · ·

)
+ 6

(
− 1

12
ε2 + · · ·

)2

+ · · ·

∼ 1 +
1
4
ε2 + · · · .

The resulting two-term expansion is

1
[1− cos(ε)]3

=
8
ε6

(
1 +

1
4
ε2 + · · ·

)
. �

A comment is warranted about the expansions obtained in the last two
examples. A general form of the expansion obtained in (2.13) is

f ∼ f0 + εαf1 + εβf2 + · · · , (2.14)

where 0 < α < β < · · · . In comparison, a general form of the expansion
obtained in the second example is

f ∼ εαf0 + εβf1 + εγf2 + · · · , (2.15)

where α < β < γ < · · · . The reason for pointing this out is that in the prob-
lems to follow it is necessary to guess, at the start, what form the expansion
has. Our default assumption will be (2.14). The more general version given
in (2.15) will only be used if (2.14) fails, or else there is some indication that
such a general form is necessary.

Taylor’s theorem is the most used method for expanding functions, but
this should not be interpreted that one always ends up with a power series.
An example is the function e−1/ε. Assuming it can be expanded using a power
series, so e−1/ε ∼ x0 + εx1 + ε2x2 + · · · , then the coefficients must satisfy the
following limits

x0 = lim
ε→0+

e−1/ε ,

x1 = lim
ε→0+

e−1/ε − x0

ε
,

x2 = lim
ε→0+

e−1/ε − x0 − εx1

ε2
.

Using l’Hospital’s rule one finds that each limit is zero, and so x0 = 0, x1 =
0, x2 = 0, . . .. In other words, as far as the functions 1, ε, ε2, . . . are concerned,
e−1/ε is just zero. This function certainly has rather small values but it is
not identically zero. What is happening is that e−1/ε goes to zero so quickly
that the power functions are not able to describe it other than just conclude
the function is zero. In this case e−1/ε is said to be transcendentally small
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Figure 2.2 Sketch of the functions appearing in the transcendental equation in
(2.16).

relative to the power functions. Even so, Taylor’s theorem can be used with
such functions and an example is

√
1 + e−1/ε. Given the small value of e−1/ε

then we can think of the function as
√

1 + y where y is close to zero. Using
Taylor’s theorem,

√
1 + y ∼ 1 + 1

2y −
1
8y

2 + · · · and from this we conclude√
1 + e−1/ε ∼ 1 + 1

2e
−1/ε − 1

8e
−2/ε + · · · . This result shows that the appro-

priate scale functions in this case are not power functions but the functions
1, e−1/ε, e−2/ε, e−3/ε, . . ..

2.2.2 Given an Algebraic or Transcendental Equation

The idea here is that we are given an algebraic or transcendental equation and
we want to construct an approximation for the solution(s). This is exactly
what we did for the quadratic equation example (2.1). To use the method on
a slightly more difficult problem consider solving

x3 + ε2ex − 1 + ε3 = 0. (2.16)

Our goal is to derive a two-term approximation of the solution. It is recom-
mended that the first step in the construction is to assess how many solutions
there are and, if possible, their approximate location. The reason for this is
that we will have to guess the form of the expansion and any information
we might have about the solution can be helpful. With this in mind the
functions involved in this equation are sketched in Figure 2.2. There is one
real-valued solution that is located slightly to the left of x = 1 for small val-
ues of ε. In other words, the expansion for the solution should not start out
as x ∼ εx0 + · · · because this would be assuming that the solution goes to
zero as ε→ 0. Similarly, we should not assume x ∼ 1

εx0 + · · · as the solution
does not become unbounded as ε → 0. For this reason we will assume that
the appropriate expansion has the form

x ∼ x0 + εαx1 + · · · . (2.17)
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This is going to be substituted into (2.16) and this requires us to expand ex.
Using (2.17), and Table 2.1,

ex ∼ ex0+εαx1+···

= ex0eεαx1+···.

Setting y = εαx1 + · · · , and noting that y is close to zero for small ε, then

ex ∼ ex0ey

= ex0

(
1 + y +

1
2
y2 + · · ·

)
= ex0

(
1 + (εαx1 + · · · ) +

1
2
(εαx1 + · · · )2 + · · ·

)
= ex0 (1 + εαx1 + · · · ) .

Using the binomial expansion, given in Table 2.1, and (2.17) we also have
that

x3 ∼ x3
0 + 3εαx2

0x1 + · · · .

With this, the original equation given in (2.16) takes the form

x3
0 + 3εαx2

0x1 + · · ·+ ε2ex0 (1 + εαx1 + · · · )− 1 + ε3 = 0. (2.18)

The first problem to solve is obtained by simply setting ε = 0, which gives
us the following O(1) problem.

O(1) x3
0 − 1 = 0

The real-valued solution is x0 = 1. With this, the next term in (2.18)
that must be considered is ε2ex0 . Given that there are no ε2 terms on
the right-hand side of the equation then one of the other terms on the
left must balance with ε2ex0 . The only one available is 3εαx2

0x1, and
for this to happen we get α = 2. This gives us the following problem.

O(ε2) 3x2
0x1 + ex0 = 0

The solution is x1 = − 1
3e.

We have therefore found that a two-term expansion of the solution is

x ∼ 1− 1
3
ε2e+ · · · . (2.19)

This expansion is plotted in Figure 2.3 along with the numerical solution.
The asymptotic nature of the approximation is evident as ε→ 0.

The procedure used to find x0 and x1 can be continued without difficulty
to find the higher-order terms x2, x3, etc. It is also very easy to extend
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Figure 2.3 Comparison between the numerical solution of (2.16) and the asymptotic
expansion (2.19).

the procedure to find the complex-valued solutions. What might not have
been noticed is that not all of the terms in the original equation contribute
to the approximation of the solution in (2.19). Namely, the ε3 term does
not contribute and the reason is that we have only computed the expansion
through ε2. In fact, if ε3 were to be replaced with ε4 or sin(ε3) the expansion
in (2.19) still holds. It would not hold, however, if ε3 were to be changed to
ε or cos(ε).

2.2.3 Given an Initial Value Problem

The next stage in the development is to apply regular expansions to problems
involving differential equations. We will work out two examples, the first
involves a single equation, and the second a system.

Example 1

The projectile problem furnishes an excellent example. Using (1.65) - (1.67)
the problem to solve is

d2x

dt2
= − 1

(1 + εx)2
, for 0 < t, (2.20)

where

x(0) = 0, (2.21)
dx

dt
(0) = 1. (2.22)

It is important to note that we are using the nondimensional problem and
not the original given in (1.65) - (1.67). The use of an asymptotic expan-
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sion is predicated on one or more parameters taking on an extreme value.
In the projectile problem the assumption is that the initial velocity v0 is
small. As we saw in the last chapter, the solution depends on the parameters
through a combination of products, both dimensional and nondimensional.
Consequently, the study of small v0 is actually a study of what happens when
the parameter group containing v0 takes on an extreme value. Based on the
scaling we used the specific limit is ε→ 0.

The procedure for constructing the expansion will mimic what was done
earlier. We start by stating what we believe to be the appropriate form for
the expansion. Generalizing (2.6), our assumption is

x ∼ x0(t) + εαx1(t) + · · · . (2.23)

The expansion is suppose to identify how the solution depends on ε. The
terms in the expansion can, and almost inevitability will, depend on the
other variables and parameters in the problem. For the projectile problem this
means that each term in the expansion depends on time and this dependence
is included in (2.23).

In preparation for substituting (2.23) into (2.20) note

1
(1 + εx)2

= 1− 2εx+ 3ε2x2 + · · ·

∼ 1− 2ε(x0 + εαx1 + · · · ) + 3ε2(x0 + · · · )2 + · · ·
= 1− 2εx0 + · · · .

With this, the differential equation (2.20) becomes

x′′0 + εαx′′1 + · · · = −1 + 2εx0 + · · · . (2.24)

It is critical that the initial conditions are also included, and for these we
have

x0(0) + εαx1(0) + · · · = 0, (2.25)
x′0(0) + εαx′1(0) + · · · = 1. (2.26)

As usual we break the above equations down into problems depending on the
power of ε.

O(1) x′′0 = −1
x0(0) = 0, x′0(0) = 1

The solution of this problem is x0 = t(1 − 1
2 t). With this the next

highest term left in (2.24) is 2εx0. The term available to balance with
this is εαx′′1 , and from this we conclude α = 1. This gives us the
following problem.
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O(ε) x′′1 = 2x0

x1(0) = 0, x′1(0) = 0

The solution of this problem is x1 = 1
12 t

3(4− t).

We have therefore found that a two-term expansion of the solution is

x ∼ t(1− 1
2
t) +

1
12
εt3(4− t) + · · · . (2.27)

This rather simple-looking expression is a two-term asymptotic expansion of
the nonlinear projectile problem. Physically, the first term, t(1 − 1

2 t), gives
the displacement of the projectile for a uniform gravitational field, and is the
nondimensional version of (1.5). The second term, εt3(4− t)/12, gives us the
correction due to the nonlinear gravitational field.

To determine how well we have done in approximating the solution, a
comparison is shown in Figure 2.4 for ε = 0.1 and ε = 0.01. It is seen that
the one-term approximation, x ∼ t(1 − 1

2 t), produces a reasonably accurate
approximation for ε = 0.01, but not when ε = 0.1. In contrast, the two-
term approximation (2.27) does very well for both values. To put this into
perspective, if the object’s initial velocity is the speed of sound then ε ≈ 0.002,
while if it is equal to the Earth’s escape velocity then ε ≈ 2. Figure 2.4 shows
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Figure 2.4 Comparison between the numerical solution of the projectile problem
and the asymptotic expansion (2.27). In the upper graph ε = 0.1, and in the lower
graph ε = 0.01. In both graphs the curves for the exact solution and two-term expan-
sion are almost indistinguishable.
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that at subsonic velocities the uniform gravitational field approximation is
adequate. If the initial velocity is a bit larger, more than three times the
speed of sound, then the nonlinear correction is needed. Finally, we expect
the approximation to improve as ε gets closer to zero, and the graphs in
Figure 2.4 are consistent with that expectation. �

Example 2

The ideas used to find an approximation for a single equation are easily
extended to systems. As an example, consider the thermokinetic model of
Exercise 1.17. In nondimensional variables, the equations are

du

dt
= 1− ueε(q−1), (2.28)

dq

dt
= ueε(q−1) − q. (2.29)

The initial conditions are u(0) = q(0) = 0. We are assuming here that the
nonlinearity is weak, which means that ε is small. Also, to simplify the prob-
lem, the other parameters that appear in the nondimensionalization have
been set to one.

Generalizing (2.23), we expand both functions using our usual assumption,
which is that

u ∼ u0(t) + εu1(t) + · · · ,
q ∼ q0(t) + εq1(t) + · · · .

In writing down the above expansions, it is assumed that the second terms
in the expansions are O(ε), rather than O(εα). This is done to simplify the
calculations to follow.

Before substituting the expansions into the differential equations, note
that

eε(q−1) ∼ 1 + ε(q − 1) +
1
2
ε2(q − 1)2 + · · ·

∼ 1 + ε(q0 + εq1 + · · · − 1) +
1
2
ε2(q0 + εq1 + · · · − 1)2 + · · ·

∼ 1 + ε(q0 − 1) + · · · ,

and

ueε(q−1) ∼ (u0 + εu1 + · · · )[1 + ε(q0 − 1) + · · · ]
∼ u0 + ε [u0(q0 − 1) + u1] + · · · .

With this, (2.28), (2.29) take the form
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u′0 + εu′1 + · · · = 1− u0 − ε (u0(q0 − 1) + u1) + · · · ,
q′0 + εq′1 + · · · = u0 − q0 + ε (u0(q0 − 1) + u1 − q1) + · · · .

As usual we break the above equations down into problems depending on the
power of ε.

O(1) u′0 = 1− u0

q′0 = u0 − q0

The solution of this problem that satisfies the initial conditions u0(0) =
q0(0) = 0 is u0 = 1− e−t, and q0 = 1− (1 + t)e−t.

O(ε) u′1 = −u1 − u0(q0 − 1)
q′1 = −q1 + u1 + u0(q0 − 1)

The initial conditions are u1(0) = q1(0) = 0. The equation for u1 is
first order, and the solution can be found using an integrating factor.
Once u1 is determined then the q1 equation can be solved using an
integrating factor. Carrying out the calculation one finds that u1 =
1
2 (t2 +2t− 4)e−t +(2+ t)e−2t, q1 = 1

6 (t3− 18t+30)e−t− (2t+5)e−2t.

We have therefore found that a two-term expansion of the solution is

u(t) ∼ 1− e−t + ε

(
1
2
(t2 + 2t− 4)e−t + (2 + t)e−2t

)
, (2.30)

q(t) ∼ 1− (1 + t)e−t + ε

(
1
6
(t3 − 18t+ 30)e−t − (2t+ 5)e−2t

)
. (2.31)

A comparison of the numerical solution for q(t), and the above asymptotic
approximation for q(t) is shown in Figure 2.5 for ε = 0.1. It is seen that
even the one-term approximation, q ∼ 1− (1 + t)e−t, produces a reasonably
accurate approximation, while the two-term approximation is indistinguish-
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Figure 2.5 Comparison between the numerical solution for q(t), and the asymptotic
expansion (2.31). In the calculation, ε = 0.1.
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Figure 2.6 Sketch of the functions appearing in the quadratic equation in (2.32).

able from the numerical solution. The approximations for u(t), which are not
shown, are also as accurate. �

2.3 Introduction to Singular Perturbations

All of the equations considered up to this point produce regular expansions.
This means, roughly, that the expansions can be found without having to
transform the problem. We now turn our attention to those that are not
regular, what are known as singular perturbation problems. The first example
considered is the quadratic equation

εx2 + 2x− 1 = 0. (2.32)

A tip-off that this is singular is that ε multiplies the highest-order term in the
equation. Setting ε = 0 drops the order down to linear, and this has dramatic
effects on the number and types of solutions.

The best place to begin is to sketch the functions in the equation to get
an idea of the number and location of the solutions. This is done in Figure
2.6, which shows that there are two real-valued solutions. One is close to
x = 1

2 and for this reason it is expected that an expansion of the form
x ∼ x0 + εαx1 + · · · will work. The second solution is far to the left on
the negative x-axis, and the smaller ε the farther to the left it is located.
Consequently, we should not be shocked later when we find that the expansion
for this solution has the form x ∼ 1

εx0 + · · · , where x0 is negative.
We start out as if this were a regular perturbation problem and assume

the solutions can be expanded as

x ∼ x0 + εαx1 + · · · . (2.33)

Substituting this into (2.32) we obtain

ε(x2
0 + 2εαx0x1 + · · · ) + 2(x0 + εαx1 + · · · )− 1 = 0. (2.34)

Equating like powers of ε produces the following problems.



2.3 Introduction to Singular Perturbations 59

O(1) 2x0 − 1 = 0

The solution is x0 = 1
2 . With this, to balance the term ε2x2

0 we take
α = 1. This gives us the following problem.

O(ε2) x2
0 + 2x1 = 0

The solution is x1 = − 1
8 .

We therefore have
x ∼ 1

2
− 1

8
ε+ · · · . (2.35)

This expansion is consistent with the conclusions we derived earlier from
Figure 2.6 for one of the solutions. It is also apparent that no matter how
many terms we calculate in the expansion (2.33) we will not obtain the second
solution.

The failure of the regular expansion to find all of the solutions is typical of
a singular perturbation problem. The method used to remedy the situation
is to introduce a scaling transformation. Specifically, we will change variables
and let

x̄ =
x

εγ
. (2.36)

With this, (2.32) takes the form

ε1+2γ x̄2 + 2εγ x̄− 1 = 0. (2.37)
¬  ®

The reason for not finding two solutions earlier was that the quadratic term
was lost when ε = 0. Given the fact that this term is why there are two
solutions in the first place we need to determine how to keep it in the equation
as ε → 0. In other words, term ¬ in (2.37) must balance with one of the
other terms and this must be the first problem solved as ε→ 0. For example,
suppose we assume the balance is between terms ¬ and ®, while term  is
of higher or equal order. For this to occur, we need O(ε1+2γ) = O(1) and
this would mean γ = − 1

2 . With this ¬, ® = O(1) and  = O(ε−1/2). This
result is inconsistent with our original assumption that  is higher order.
Therefore, the balance must be with another term. This type of argument is
central to singular problems and we will use a table format to present the
steps used to determine the correct balance.

Balance Condition on γ Consistency Check Conclusion

¬ ∼ ® with
 higher order

1 + 2γ = 0
⇒ γ = −1/2

¬, ® = O(ε)
and  = O(ε−1/2)

Inconsistent
with balance

¬ ∼  with
® higher order

1 + 2γ = γ
⇒ γ = −1

¬,  = O(ε−1)
and ® = O(1)

Consistent
with balance
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Based on the above analysis, γ = −1 and with this the equation takes the
form

x̄2 + 2x̄− ε = 0. (2.38)

With this we assume our usual expansion, which is

x̄ ∼ x̄0 + εαx̄1 + · · · . (2.39)

The equation in this case becomes

x̄2
0 + 2εαx̄0x̄1 + · · ·+ 2(x̄0 + εαx̄1 + · · · )− ε = 0. (2.40)

This gives us the following problems.

O(1) x̄2
0 + 2x̄0 = 0

The solutions are x̄0 = −2 and x̄0 = 0. With this, to balance the −ε
term in (2.40), we take α = 1. This gives us the following problem.

O(ε) 2x̄0x̄1 + 2x̄1 − 1 = 0

If x̄0 = −2 then x̄1 = − 1
2 , while if x̄1 = 0 then x̄1 = 1

2 .

It might appear that we have somehow produced three solutions, the one in
(2.35) along with the two found above. However, it is not hard to show that
the solution corresponding to x̄0 = 0 is the same one that was found earlier
using a regular expansion. Consequently, the sought-after second solution is

x ∼ 1
ε
(−2− 1

2
ε+ · · · ). (2.41)

The procedure used to derive this result contained many of the ideas we
used to find regular expansions. The most significant difference is the in-
troduction of a scaled variable, (2.36), and the subsequent balancing used
to determine how the highest-order term participates in the problem. As we
will see shortly, these will play a critical role when analyzing similar problems
involving differential equations.

2.4 Introduction to Boundary Layers

As our introductory example of a singular perturbation problem involving a
differential equation we will consider solving

εy′′ + 2y′ + 2y = 0, for 0 < x < 1, (2.42)

where the boundary conditions are
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Figure 2.7 Graph of the exact solution of the boundary value problem (2.42)-(2.44),
for various values of ε. Note the appearance of the boundary layer near x = 0 as ε
decreases.

y(0) = 0, (2.43)

and
y(1) = 1. (2.44)

This is a boundary value problem and it has the telltale signs of a singu-
lar perturbation problem. Namely, ε is multiplying the highest derivative so
setting ε = 0 results in a lower order problem.

This problem has been selected as the introductory problem because it can
be solved exactly, and we will be able to use this to evaluate the accuracy
of our approximations. To find the exact solution one assumes y = erx and
from the differential equation concludes that r± = (−1 ±

√
1− 2ε)/ε. With

this the general solution is y = c1e
r+x + c2e

r−x. Imposing the two boundary
conditions one finds that

y =
er+x − er−x

er+ − er−
. (2.45)

This function is plotted in Figure 2.7, for various values of ε. It is seen that
as ε deceases the solution starts to show a rapid transition in the region near
x = 0. Also, if you look at the graphs you will notice that the rapid change
takes place over a spatial interval that has a length about equal to the size
of ε. The reason for making this observation is that our approximation will
consist of two pieces, one for x near zero and the other that applies to the
rest of the interval. The fact that we end up having to split the interval is
not unexpected given what is occurring in Figure 2.7.

Step 1. Outer Solution
The first step is simply to use a regular expansion and see what results.
Similar to what we did with the earlier projectile problem, it is assumed

y ∼ y0(x) + εy1(x) + · · · . (2.46)
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Introducing this into (2.42) we obtain

ε(y′′0 + εy′′1 + · · · ) + 2(y′0 + εy′1 + · · · ) + 2(y0 + εy1 + · · · ) = 0, (2.47)

where
y0(0) + εy1(0) + · · · = 0, (2.48)

and
y0(1) + εy1(1) + · · · = 1. (2.49)

Proceeding in the usual manner yields the following problems.

O(1) 2y′0 + 2y0 = 0
y0(0) = 0, y0(1) = 1

The general solution of the differential equation is y0 = ae−x, where
a is an arbitrary constant. This is where the singular nature of the
problem starts to have an affect. We have one constant but there are
two boundary conditions. Can we satisfy at least one of them? For
some problems the answer is no, and we will consider such an example
later. For this problem we can and we need to determine which one.
To help with this decision, the solution is sketched in Figure 2.8 in the
case of when a > 0 and when a < 0. The two boundary conditions are
also shown in the figure. It is apparent that of the two possibilities, the
a > 0 curve is the only one capable of satisfying one of the boundary
conditions, and it is the one at x = 1. Assuming this is the case then
a = e and y0(x) = e1−x.

O(ε) y′′0 + 2y′1 + 2y1 = 0
y1(1) = 0

Note that only the boundary condition at x = 1 is listed here as this
is the only one we believe this expansion is capable of satisfying. The
general solution of the differential equation is y1 = (b − x/2)e1−x,
where b is an arbitrary constant. With the given boundary condition
we obtain y1(x) = (1− x)e1−x/2.

Our regular expansion has yielded

y ∼ e1−x + · · · . (2.50)

Only the first term has been included here as this is all we are going to deter-
mine in this example. The second term was calculated earlier to demonstrate
that it is easy to find, and also to show that including the second term does
not help us satisfy the boundary condition at x = 0. It is this fact that will
require us to scale the problem and this brings us to the next step.
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Step 2. Inner, or Boundary Layer, Solution
We will now construct an approximation of the solution in the neighborhood
of x = 0, which corresponds to the interval where the function undergoes a
rapid increase as shown in Figure 2.7. Given its location, the approximation
is called the boundary layer solution. It is also known as an inner solution,
and correspondingly, the approximation in (2.50) is the outer solution. The
width of this layer shrinks as ε → 0, so we must make a change of vari-
ables to account for this. With this in mind we introduce the boundary layer
coordinate

x̄ =
x

εγ
. (2.51)

The exact value of γ will be determined shortly but we already have some
inkling what it might be. We saw in Figure 2.7 that the rapid change in the
solution near x = 0 takes place over an interval that has width of about ε.
So, it should not be too surprising that we will find that γ = 1. In any case,
using the chain rule

d

dx
=
dx̄

dx

d

dx̄
=

1
εγ

d

dx̄
, (2.52)

and
d2

dx2
=

1
ε2γ

d2

dx̄2
. (2.53)

We will designate the solution as Y (x̄) when using x̄ as the independent
variable. With this the differential equation becomes

ε1−2γY ′′ + 2ε−γY ′ + 2Y = 0. (2.54)
¬  ®

We determine γ by balancing the terms in the above equation. Our goal is
for the highest derivative to remain in the equation as ε → 0. This gives us
the following two possibilities.

�
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Figure 2.8 Sketch of the possible form of the outer solution y0 = aex, depending
on the sign of a. Also shown are the two given boundary conditions.
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Balance Condition on γ Consistency Check Conclusion

¬ ∼ ® with
 higher-order

1− 2γ = 0
⇒ γ = 1/2

¬, ® = O(1)
and  = O(ε−1/2)

Inconsistent
with balance

¬ ∼  with
® higher-order

1− 2γ = −γ
⇒ γ = 1

¬,  = O(ε−1)
and ® = O(1)

Consistent
with balance

Based on the above analysis we take γ = 1 and with this the differential
equation takes the form

Y ′′ + 2Y ′ + 2εY = 0. (2.55)

Assuming Y (x̄) ∼ Y0(x̄) + · · · the differential equation becomes

(Y ′′
0 + · · · ) + 2(Y ′

0 + · · · ) + 2ε(Y0 + · · · ) = 0, (2.56)

and from this we obtain the following problem.

O(1) Y ′′
0 + 2Y ′

0 = 0
Y0(0) = 0

Note that the boundary condition at x = 0 has been included here
but not the one at x = 1. The reason is that we are building an
approximation of the solution in the immediate vicinity of x = 0 and
it is incorrect to assume it can satisfy the condition at the other end
of the interval. Now, the general solution of the differential equation is
Y0 = A+Be−2x̄, where A, B are arbitrary constants. With the given
boundary condition this reduces to Y0 = A(1− e−2x̄).

The approximation of the solution in the boundary layer is

Y (x̄) ∼ A(1− e−2x̄) + · · · . (2.57)

We will determine A by connecting this result with the approximation we
have for the outer region, and this brings us to the next step.

Step 3. Matching
We have made several assumptions about the solution and it is now time
to prove that they are correct. To explain what this means, our approxima-
tion consists of two different expansions, and each applies to a different part
of the interval. The situation we find ourselves in is sketched in Figure 2.9.
This indicates that when coming out of the boundary layer the approxima-
tion in (2.57) approaches a constant value A. Similarly, the outer solution
approaches a constant value, e, as it enters the boundary layer. There is a
transition region, what is usually called an overlap domain, where the two
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Figure 2.9 Graph of the inner approximation (2.57), and the outer approximation
(2.50), before matching.

approximations are both constant. Given that they are approximations of the
same function then we need to require that the inner and outer expansions
are equal in this region. In more mathematical terms, the requirement we
will impose on these two expansions is

lim
x̄→∞

Y0 = lim
x→0

y0. (2.58)

This is called the matching condition. With this we conclude A = e and
the resulting functions are plotted in Figure 2.10 for ε = 10−4. The overlap
domain is clearly seen in this figure.

Step 4. Composite Expansion
The approximation of the solution we have comes in two pieces, one that
applies near x = 0 and another that works everywhere else. Because neither
can be used over the entire interval we say that they are not uniformly valid
for 0 ≤ x ≤ 1. The question we consider now is whether we can combine them
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Figure 2.10 Graph of the inner approximation (2.57), and the outer approximation
(2.50), after matching in the particular case of when ε = 10−4. Note the overlap
region where the two approximations produce, approximately, the same result.
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in some way to produce a uniform approximation, that is, one that works over
the entire interval. The position we are in is summarized in Figure 2.11. The
inner and outer solutions are constant outside the region where they are used
to approximate the solution, and the constant is the same for both solutions.
The value of the constant can be written as either y0(0) or as Y0(∞), and the
fact that they are equal is a consequence of the matching condition (2.58).
This observation can be used to construct a uniform approximation. Namely,
we just add the approximations together and then subtract the constant. The
result is

y ∼ y0(x) + Y0(x̄)− y0(0)

= e1−x − e1−2x/ε. (2.59)

This function is known as a composite expansion and it is valid for 0 ≤ x ≤ 1.
To demonstrate its effectiveness it is plotted in Figure 2.12 along with the
exact solution for ε = 10−1 and for ε = 10−2. It is evident from this figure
that we have constructed a relatively simple expression that is a very good
approximation of the solution over the entire interval.

2.4.1 Endnotes

One of the characteristics of a boundary layer is that its width goes to zero
as ε → 0, yet the change in the solution across the layer does not go to
zero. This type of behavior occurs in a wide variety of problems, although
the terminology changes depending on the application and particular type
of problem. For example, there are problems where the jump occurs in the
interval 0 < x < 1, a situation known as an interior layer. They are also not
limited to BVPs and arise in IVPs, PDEs, etc. A example of this is shown in
Figure 2.13. The boundary layer is the thin white region on the surface of the
object. In this layer the air velocity changes rapidly, from zero on the object

!!

"~""

"~#" #"$#

""$#

%&!'

Figure 2.11 Sketch of the inner and outer regions and the values of the approxima-
tions in those regions.
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Figure 2.12 Graph of the exact solution (2.45) and composite approximation (2.59)
for two values of ε.

to the large value in the outer flow. The parabolic curve that appears to be
attached to the front of the object is a shock wave. The pressure undergoes
a rapid change across the shock, and for this reason it is an example of an
interior layer. The presence of a boundary layer is an issue when finding the
numerical solution. As an example, Figure 2.14 shows the grid system used
to solve the equations for the air flow over an object, in this case an airplane.
The presence of a boundary layer necessitates the use of a large number of
grid points near the surface, which greatly adds to the computational effort
needed to solve the problem.

Another important comment to make concerns the existence of a boundary
layer in the solution. In particular, an ε multiplying the highest derivative
is not a guarantee of a boundary, or interior, layer. A simple example is
εy′′ + y = 0, for which the general solution is y = a sin(x/

√
ε) + b cos(x/

√
ε).

In this case, instead of containing a rapidly decaying exponential function

Figure 2.13 Image of high speed
flow, from left to right, over a fixed,
wedge-shaped object. The thin white
region on the surface of the object
is the boundary layer. The parabolic
curve is a shock wave, a topic which is
studied in Chapter 5.
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Figure 2.14 Grid refinement needed
near the boundary to numerically calcu-
late the air flow over an airplane (Stein-
brenner and Abelanet [2007]).

that is characteristic of a boundary layer, the solution consists of rapidly
varying oscillatory functions. The approximation method most often used
in such situations is known as the WKB method. We will only scratch the
surface of this subject, and a more extensive study of this can be found in
Holmes [1995].

2.5 Multiple Boundary Layers

As a second boundary layer example we will consider the boundary value
problem

ε2y′′ + εxy′ − y = −ex, for 0 < x < 1, (2.60)

where the boundary conditions are

y(0) = 2, (2.61)

and
y(1) = 1. (2.62)

When given a problem with a small parameter it is worthwhile to quickly
check to see what might happen when ε = 0. Setting ε = 0 in (2.60), we lose
all the derivative terms and simply end up with y = ex. This function is in-
capable of satisfying either boundary condition, so we will find two boundary
layers for this solution, one at each end of the interval. This is one of the rea-
sons for considering this particular equation. Another is that it has variable
coefficients and it is worth working out an example to see how to handle such
situations. The procedure used to construct an asymptotic approximation of
the solution will follow the steps we used in the last example, and for this
reason there will be fewer explanations of what is being done.

Step 1. Outer Solution
Assuming y ∼ y0(x) + εy1(x) + · · · one finds from the differential equation
that y0 = ex. As stated above, this cannot satisfy either boundary condition,
and this brings us to the next step.
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Steps 2 and 3. Boundary Layer Solutions and Matching
Given that there is a layer at each end we need to split this step into two
parts.

a) Layer at x = 0. In this region we will denote the solution as Y (x̄). The
boundary coordinate is the same as before. Setting x̄ = x/εγ and using the
formulas in (2.52), (2.53) the differential equation (2.60) becomes

ε2−2γY ′′ + εx̄Y ′ − Y = −eεγ x̄. (2.63)
¬  ® ¯

We will balance the terms in the usual manner but note that terms ® and ¯
are the same order. This is because eεγ x̄ ∼ 1+ εγ x̄+ · · · . Consequently, when
deciding on what balance we need in (2.63), term ¯ will not be considered.

Balance Condition on γ Consistency Check Conclusion

¬ ∼  with
® higher-order

2− 2γ = 1
⇒ γ = 1/2

¬,  = O(ε)
and ® = O(1)

Inconsistent
with balance

¬ ∼ ® with
 higher-order

2− 2γ = 0
⇒ γ = 1

¬, ® = O(1)
and  = O(ε)

Consistent
with balance

Consequently, with γ = 1, the differential equation becomes

Y ′′ + εx̄Y ′ − Y = −eεx̄. (2.64)

Assuming Y (x̄) ∼ Y0(x̄) + · · · we obtain the following problem to solve.

O(1) Y ′′
0 − Y0 = −1
Y0(0) = 2

The general solution of the differential equation is Y0 = 1 + Aex̄ +
Be−x̄, where A, B are arbitrary constants. With the given boundary
condition this reduces to Y0 = 1 +Aex̄ + (1−A)e−x̄.

As before, this boundary layer solution must match with the outer solution
calculated earlier. The requirement is

lim
x̄→∞

Y0 = lim
x→0

y0. (2.65)

Given that limx̄→∞ ex̄ = ∞, for Y0 to be able to match with the outer solution
we must set A = 0. With this our first term approximation in this boundary
layer is

Y0(x̄) = 1 + e−x̄. (2.66)
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b) Layer at x = 1. In this region we will denote the solution as Ỹ (x̃). The
boundary layer in this case is located at x = 1, and so the coordinate will be
centered at this point. In particular, we let

x̃ =
x− 1
εγ

. (2.67)

The differentiation formulas are similar to those in (2.52), (2.53). Also, we
have that x = 1 + εγ x̃. With this the differential equation (2.60) becomes

ε2−2γ Ỹ ′′ + ε1−γ(1 + εγ x̃)Ỹ ′ − Ỹ = −e1+εγ x̃. (2.68)
¬  ® ¯

Similar to what happened earlier, terms ® and ¯ are the same order, so term
¯ will not be considered in the balancing.

Balance Condition on γ Consistency Check Conclusion

¬ ∼ ® with
 higher-order

2− 2γ = 0
⇒ γ = 1

¬, ® = O(1)
and  = O(1)

Consistent
with balance

Consequently, with γ = 1, the differential equation becomes

Ỹ ′′ + (1 + εx̃)Ỹ ′ − Ỹ = −e1+εx̃. (2.69)

Assuming Ỹ (x̃) ∼ Ỹ0(x̃) + · · · we obtain the following problem to solve.

O(1) Ỹ ′′
0 + Ỹ ′

0 − Ỹ0 = −e
Ỹ0(0) = 1

In the boundary condition, Ỹ0 is evaluated at x̃ = 0 because x = 1
corresponds to x̃ = 0. The general solution of the differential equation
is Ỹ0 = e + Aer+x̃ + Ber−x̃, where r± = (−1 ±

√
5)/2 and A, B are

arbitrary constants. With the given boundary condition this reduces
to Ỹ0 = e+Aer+x̃ + (1− e−A)er−x̃.

This boundary layer solution must match with the outer solution calculated
earlier. The requirement is

lim
x̃→−∞

Ỹ0 = lim
x→1

y0. (2.70)

This expression appears different from the one used earlier for the layer at
x = 0. The reason is that the position of the layer has changed, but the
matching principle is the same. Namely, for the approximations to match it
is necessary that when you come out of the boundary layer into the outer
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Figure 2.15 Sketch of the three regions and the values of the approximations in
those regions.

region (i.e., x̃ → −∞) that you get the same value as when you enter the
boundary layer from the outer region (i.e., x → 1). Given that r+ > 0 and
r− < 0 then limx̃→−∞ er−x̃ = ∞ and limx̃→−∞ er+x̃ = 0. For Ỹ0 to be able
to match with the outer solution we must set 1 − e − A = 0. With this our
first term approximation in this boundary layer is

Ỹ0(x̃) = e+ (1− e)er+x̃. (2.71)

Step 4. Composite
In a similar manner as in the last example, it is possible to combine the three
approximations we have derived to produce a uniform approximation. The
situation is shown schematically in Figure 2.15. It is seen that in each region
the two approximations not associated with that region add to 1 + e. This
means we simply add the three approximations together and subtract 1 + e.
In other words,

y ∼ y0(x) + Y0(x̄) + Ỹ0(x̃)− y0(0)− y0(1)

= ex + e−x/ε + (1− e)er+(x−1)/ε. (2.72)

This function is a composite expansion of the solution and it is valid for
0 ≤ x ≤ 1. To demonstrate its effectiveness the composite approximation is
plotted in Figure 2.16 along with the numerical solution for ε = 10−1 and
for ε = 10−2. The approximations are not very accurate for ε = 10−1, but
this is not unexpected given that ε is not particularly small. In contrast, for
ε = 10−2 the composite approximation is quite good over the entire interval,
and it is expected to get even better for smaller values of ε.
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2.6 Multiple Scales and Two-Timing

As the last two examples have demonstrated, the presence of a boundary layer
limits the region over which an approximation can be used. Said another way,
the inner and outer approximations are not uniformly valid over the entire
interval. The tell-tale sign that this is going to happen is that when ε = 0
the highest derivative in the problem is lost. However, the lack of uniformity
can occur in other ways and one investigated here relates to changes in the
solution as a function of time. It is easier to explain what happens by working
out a typical example. For this we use the pendulum problem. Letting θ(t)
be the angular deflection made by the pendulum, as shown in Figure 2.17,
the problem is

θ′′ + sin(θ) = 0, (2.73)

where
θ(0) = ε, (2.74)

and
θ′(0) = 0. (2.75)

The equation of motion (2.73) comes from Newton’s second law, F = ma,
where the external forcing F is gravity. It is assumed the initial angle is small,
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Figure 2.16 Graph of the numerical solution of the boundary value problem (2.60)-
(2.62) and the composite approximation of the solution (2.72). In the upper plot
ε = 10−1 and in the lower plot ε = 10−2.
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Figure 2.17 Pendulum example.

and this is the reason for the initial condition (2.74). It is also assumed that
the pendulum starts from rest, so the initial velocity (2.75) is zero.

Although the problem is difficult to solve we have at least some idea of what
the solution looks like because of everyday experience with a pendulum (e.g.,
watching a grandfather clock or using a swing). Starting out with the given
initial conditions, the pendulum should simply oscillate back and forth. A real
pendulum will eventually stop due to damping, but we have not included this
in the model so our pendulum should go forever.

The fact that the small parameter is in the initial condition, and not in
the differential equation, is a bit different from what we had in the last two
examples but we are still able to use our usual approximation methods. The
appropriate expansion in this case is

θ(t) ∼ ε(θ0(t) + εαθ1(t) + · · · ). (2.76)

The ε multiplying the series is there because of the initial condition. If we
did not have it, and tried θ = θ0 + εαθ1 + · · · , we would find that θ0 = 0 and
α = 1. The assumption in (2.76) is made simply to avoid all the work to find
that the first term in the expansion is just zero. Before substituting (2.76)
into the problem recall sin(x) = x− 1

6x
3 + · · · when x is close to zero. This

means, because the θ in (2.76) is close to zero,

sin(θ) ∼ sin(ε(θ0 + εαθ1 + · · · ))

∼ (εθ0 + εα+1θ1 + · · · )− 1
6
(εθ0 + · · · )3 + · · ·

∼ εθ0 + εα+1θ1 −
1
6
ε3θ30 + · · · . (2.77)

With this the equation of motion (2.73) becomes

εθ′′0 + εα+1θ′′1 + · · ·+ εθ0 + εα+1θ1 −
1
6
ε3θ30 + · · · = 0, (2.78)

and the initial conditions are

εθ0(0) + εα+1θ1(0) + · · · = ε, (2.79)

and
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Figure 2.18 Graph of the numerical solution of the pendulum problem (2.60)-(2.62)
and the first term in the regular perturbation approximation (2.76). Shown are the
solutions over the entire time interval, as well as a close up of the solutions near
t = 200. In the calculation ε = 1

3 and both solutions have been divided by ε = 1
3 .

εθ′0(0) + εα+1θ′1(0) + · · · = 0. (2.80)

Proceeding in the usual manner yields the following problem.

O(ε) θ′′0 + θ0 = 0
θ0(0) = 1, θ′0(0) = 0

The general solution of the differential equation is θ0 = a cos(t) +
b sin(t), where a, b are arbitrary constants. It is possible to write this
solution in the more compact form θ0 = A cos(t+B), where A,B are
arbitrary constants. As will be explained later, there is a reason for
why the latter form is preferred in this problem. With this, and the
initial conditions, it is found that θ0 = cos(t).

The plot of the one-term approximation, θ ∼ ε cos(t), and the numerical
solution are shown in Figure 2.18. The asymptotic approximation describes
the solution accurately at the start, and reproduces the amplitude very well
over the entire time interval. What it has trouble with is matching the phase
and this is evident in the lower plot in Figure 2.18. One additional comment
to make is the value for ε used in Figure 2.18 is not particularly small, so
getting an approximation that is not very accurate is no surprise. However,
if a smaller value is used the same difficulty arises. The difference is that the
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first term approximation works over a longer time interval but eventually the
phase error seen in Figure 2.18 occurs.

In looking to correct the approximation to reduce the phase error we cal-
culate the second term in the expansion. With the given θ0 there is an ε3θ30
term in (2.78). To balance this we use the θ1 term in the expansion and this
requires α = 2. With this we have the following problem to solve.

O(ε3) θ′′1 + θ1 = 1
6θ

3
0

θ1(0) = 0, θ′1(0) = 0

The method of undetermined coefficients can be used to find a par-
ticular solution of this equation. This requires the identity cos3(t) =
1
4 (3 cos(t) + 3 cos(3t)), in which case the differential equation becomes

θ′′1 + θ1 =
1
24

(3 cos(t) + 3 cos(3t)). (2.81)

With this the general solution is found to be θ1 = a cos(t) + b sin(t)−
1
16 t sin(t), where a, b are arbitrary constants. From the initial condi-
tions this reduces to θ1 = − 1

16 t sin(t).

The plot of the two term approximation,

θ ∼ ε cos(t)− 1
16
ε3t sin(t), (2.82)

and the numerical solution is shown in Figure 2.19. It is clear from this
that we have been less than successful in improving the approximation. The
culprit here is the t sin(t) term. As time increases its contribution grows, and
it eventually gets as large as the first term in the expansion. Because of this it
is called a secular term, and it causes the expansion not to be uniformly valid
for 0 ≤ t <∞. This problem would not occur if time were limited to a finite
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Figure 2.19 Graph of the numerical solution of the pendulum problem (2.60)-(2.62)
and the regular perturbation approximation (2.72). In the calculation ε = 1

3 and the

solution has been divided by ε = 1
3 .
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interval, as happened in the projectile problem. However, for the pendulum
there is no limit on time and this means the expansion is restricted to when
it can be used. One last comment to make concerns how this term ended up
in the expansion in the first place. In the differential equation for θ1, given
in (2.81), the right hand side contains cos(t) and this is a solution of the
associated homogeneous equation. It is this term that produces the t sin(t)
in the expansion and it is this term we would like to prevent from appearing
in the problem.

What is happening is that there is a slow change in the solution that
the first term approximation is unable to describe. In effect there are two
time scales acting in this problem. One is the basic period of oscillation, as
seen in Figure 2.18, and the other is a slow time scale over which the phase
changes. Our approximation method will be based on this observation. We
will explicitly assume there are two concurrent time scales, given as

t1 = t, (2.83)
t2 = εγt. (2.84)

The value of γ is not known yet, and we will let the problem tell us the
value as we construct the approximation. Based on this assumption it is not
surprising that the method is called two-timing, or the method of multiple
scales.

To illustrate the idea underlying two-timing, consider the function

u = e−3εt sin(5t).

This consists of an oscillatory function, with a slowly decaying amplitude.
This can be written using the two-timing variables as

u = e−3t2 sin(5t1),

where γ = 1.
The change of variables in (2.83), (2.84) is reminiscent of the boundary

layer problems in the previous section. The difference here is that we are
not separating the time axis into separate regions but, rather, using two time
scales together. As we will see, this has a profound effect on how we construct
the approximation.

To determine how the change of variables affects the time derivative, we
have, using the chain rule,

d

dt
=
dt1
dt

∂

∂t1
+
dt2
dt

∂

∂t2

=
∂

∂t1
+ εγ

∂

∂t2
. (2.85)

The second derivative is
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d2

dt2
=
(
∂

∂t1
+ εγ

∂

∂t2

)(
∂

∂t1
+ εγ

∂

∂t2

)
=

∂2

∂t21
+ 2εγ

∂2

∂t1∂t2
+ ε2γ ∂

2

∂t22
. (2.86)

The steps used to construct an asymptotic approximation of the solution
will closely follow what we did earlier. It should be kept in mind during the
derivation that the sole reason for introducing t2 is to prevent a secular term
from appearing in the second term.

With the introduction of a second time variable, the expansion is assumed
to have the form

θ ∼ ε(θ0(t1, t2) + εαθ1(t1, t2) + · · · ). (2.87)

The only difference between this and the regular expansion (2.76) used earlier
is that the terms are allowed to depend on both time variables. When this is
substituted into the differential equation we obtain an expression similar to
(2.78), except the time derivatives are given in (2.85) and (2.86). Specifically,
we get

ε
∂2

∂t21
θ0 + εα+1 ∂

2

∂t21
θ1 + 2εγ+1 ∂2

∂t1∂t2
θ0 + · · ·+ εθ0 + εα+1θ1 −

1
6
ε3θ30 + · · · = 0,

(2.88)
and the initial conditions are

εθ0(0, 0) + εα+1θ1(0, 0) + · · · = ε, (2.89)

and

ε
∂

∂t1
θ0(0, 0) + εα+1 ∂

∂t1
θ1(0, 0) + εγ+1 ∂

∂t2
θ0(0, 0) + · · · = 0. (2.90)

Proceeding in the usual manner yields the following problem.

O(ε) ∂2

∂t21
θ0 + θ0 = 0

θ0(0, 0) = 1, ∂
∂t1
θ0(0, 0) = 0

The general solution of the differential equation is θ0 = A(t2) cos(t1 +
B(t2)), where A,B are arbitrary functions of t2. The effects of the
second time variable are seen in this solution, because the coefficients
are now functions of the second time variable. To satisfy the initial
conditions we need A(0) cos(B(0)) = 1 and A(0) sin(B(0)) = 0. From
this we have that A(0) = 1 and B(0) = 0.

In the differential equation (2.88), with the O(ε) terms out of the way, the
next term to consider is ε3θ30. The only terms we have available to balance
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with this have order εα+1 and εγ+1. To determine which terms to use we can
use a balance argument, similar to what was done for boundary layers. It is
found that both terms are needed and this means α+1 = γ+1 = 3. This is an
example of a distinguished balance. A somewhat different way to say this is,
the more components of the equation you can include in the approximation
the better. In any case, our conclusion is that α = γ = 2 and this yields the
next problem to solve.

O(ε3) ∂2

∂t21
θ1 + θ1 + 2 ∂2

∂t1∂t2
θ0 = 1

6θ
3
0

θ1(0, 0) = 0, ∂
∂t1
θ1(0, 0) + ∂

∂t2
θ0(0, 0) = 0

The method of undetermined coefficients can be used to find a par-
ticular solution. To be able to do this we first substitute the solu-
tion for θ0 into the differential equation and then use the identity
cos3(t) = 1

4 (3 cos(t) + 3 cos(3t)). The result is

θ′′1 + θ1 =
1
24

[3 cos(t1 +B) + 3 cos(3(t1 +B))]

+2A′ sin(t1 +B) + 2AB′ cos(t1 +B).
(2.91)

We are at a similar point to what occurred using a regular expan-
sion, as given in (2.81). As before, the right-hand side of the differ-
ential equation contains functions that are solutions of the associated
homogeneous equation, namely, cos(t1 + B) and sin(t1 + B). If they
are allowed to remain they will produce a solution containing either
t1 cos(t1 +B) or t1 sin(t1 +B). Either one will cause a secular term in
the expansion and for this reason we will select A and B to prevent
this from happening. To lose sin(t1 + B) we take A′ = 0 and to elim-
inate cos(t1 + B) we take 2AB′ = − 1

8 . With the earlier determined
initial conditions A(0) = 1 and B(0) = 0, we conclude that A = 1 and
B = −t2/16.

In the above analysis we never actually determined θ1. It is enough to know
that the problem for θ1 will not result in a secular term in the expansion. We
did find A and B, and with them the expansion is

θ ∼ ε cos(t− ε2t/16) + · · · . (2.92)

To investigate the accuracy of this approximation, it is plotted in Figure 2.20
using the same values as for Figure 2.19. Clearly we have improved the first
term approximation, and now do well with both amplitude and phase.
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Figure 2.20 Graph of the numerical solution of the pendulum problem (2.60)-(2.62)
and the multiple scale approximation (2.92). Shown are the solutions over the entire
time interval, as well as a close up of the solutions near t = 200. In the calculation
ε = 1

3 and the solution has been divided by ε = 1
3 .

Exercises

2.1. Assuming f ∼ a1ε
α + a2ε

β + · · · find α, β (with α < β), and nonzero
a1, a2, for the following:

(a) f = esin(ε).
(b) f =

√
1 + cos(ε).

(c) f = 1/
√

sin(ε).
(d) f = 1/(1− eε).
(e) f = sin(

√
1 + εx), for 0 ≤ x ≤ 1.

(f) f = ε exp(
√
ε+ εx), for 0 ≤ x ≤ 1.

2.2. Let f(ε) = sin(eε).
(a) According to Taylor’s theorem, f(ε) = f(0)+εf ′(0)+ 1

2ε
2f ′′(0)+· · · . Show

that this gives (2.13).
(b) Explain why the formula used in part (a) can not be used to find an

expansion of f(ε) = sin(e
√

ε). Also, show that the method used to derive
(2.13) still works, and derive the expansion.

2.3. Consider the equation

x2 + (1− 4ε)x−
√

1 + 4ε = 0.
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(a) Sketch the functions in this equation and then use this to explain why
there two real-valued solutions.

(b) Find a two-term asymptotic expansion, for small ε, of each solution.

2.4. Consider the equation
ln(x) = εx.

(a) Sketch the functions in this equation and then use this to explain why
there are two real-valued solutions.

(b) Find a two-term asymptotic expansion, for small ε, of the solution near
x = 1.

2.5. Consider the equation
xex = ε.

(a) Sketch the functions in this equation and then use this to explain why
there is one real-valued solution.

(b) Find a two-term asymptotic expansion, for small ε, of the solution.

2.6. Consider the equation
x3 = εe−x.

(a) Sketch the functions in this equation and then use this to explain why
there is one real-valued solution.

(b) Find a two-term asymptotic expansion, for small ε, of the solution.

2.7. Consider the equation

sin(x+ ε) = x.

(a) Sketch the functions in this equation and then use this to explain why
there is one real-valued solution.

(b) Find a two-term asymptotic expansion, for small ε, of the solution.

2.8. Consider the equation
x3

1 + x
= ε.

(a) Sketch the functions in this equation and then use this to explain why there
is only one real-valued solution and describe where it is located for small
values of ε. Use this to explain why you might want to use an expansion
of the form x ∼ εαx0 + εβx1 + · · · rather than the one in (2.17).

(b) Find a two-term asymptotic expansion, for small ε, of each solution.

2.9. Consider the equation

x(x+ 2) = ε(x− 1).
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(a) Sketch the functions in this equation and then use this to explain why
there are two real-valued solutions and describe where they are located for
small values of ε.

(b) Find a two-term asymptotic expansion, for small ε, of each solution.

2.10. Consider the equation

x(x− 1)(x+ 2) = εex.

(a) Sketch the functions in this equation. Use this to explain why there are
three real-valued solutions, and describe where they are located for small
values of ε. Use this to explain why you might want to use an expansion
of the form x ∼ εαx0 + εβx1 + · · · for one of the solutions, while (2.17)
should work for the other two.

(b) Find a two-term asymptotic expansion, for small ε, of each solution.

2.11. Consider the equation εx4 − x− 1 = 0.
(a) Sketch the functions in this equation and then use this to explain why there

are only two real-valued solutions to this equation and describe where they
are located for small values of ε.

(b) Find a two-term asymptotic expansion, for small ε, of each solution.

2.12. Consider the equation

1
1 + x2

= εx2.

(a) Sketch the functions in this equation and then use this to explain why
there are two real-valued solutions and describe where they are located for
small values of ε. Use this to explain why an expansion of the form given
in (2.17) is not a good idea.

(b) Find a two-term asymptotic expansion, for small ε, of the solutions.

2.13. Find a two-term expansion of the solution of

dv

dt
+ εv2 + v = 0, for 0 < t,

where v(0) = 1.

2.14. The projectile problem that includes air resistance is

d2x

dt2
+
dx

dt
= − 1

(1 + εx)2
,

where x(0) = 0, and dx
dt (0) = 1. For small ε, find a two-term expansion of the

solution.
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2.15. Air resistance is known to depend nonlinearly on velocity, and the
dependence is often assumed to be quadratic. Assuming gravity is constant,
the equations of motion are

d2y

dt2
= −εdy

dt

√(
dx

dt

)2

+
(
dy

dt

)2

,

d2x

dt2
= −1− ε

dx

dt

√(
dx

dt

)2

+
(
dy

dt

)2

.

Here x is the vertical elevation of the object, and y is its horizontal location.
The initial conditions are x(0) = y(0) = 0, and dx

dt (0) = dy
dt (0) = 1. The

assumption is that air resistance is weak, and so ε is small and positive.
(a) For small ε, find the first terms in the expansions for x and y.
(b) Find the second terms in the expansions for x and y.

2.16. Consider the nonlinear boundary value problem

d

dx

(
yx

1 + εy2
x

)
− y = 0, for 0 < x < 1,

where y(0) = 1 and y(1) = e−1. This type of nonlinearity arises in elasticity,
a topic taken up in Chapter 6.

(a) Explain why a boundary layer is not expected in the problem, and a regular
expansion should work.

(b) For small ε, find a two-term expansion of the solution.

2.17. The Friedrichs’ (1942) model problem for a boundary layer in a viscous
fluid is

εy′′ = a− y′, for 0 < x < 1,

where y(0) = 0 and y(1) = 1 and a is a given positive constant.
(a) After finding a first term of the inner and outer expansions, derive a com-

posite expansion of the solution.
(b) Taking a = 1, plot the exact and composite solutions, on the same axes, for

ε = 10−1. Do the same thing for ε = 10−2 and for ε = 10−3. Comment on
the effectiveness, or non-effectiveness, of the expansion in approximating
the solution.

(c) Suppose you assume the boundary layer is at the other end of the interval.
Show that the resulting first term approximations from the inner and outer
regions do not match.

2.18. Given that the boundary layer is at x = 0, find a composite expansion
of

εy′′ + 3y′ − y4 = 0, for 0 < x < 1,

where y(0) = 1 and y(1) = 1.
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2.19. Given that the boundary layer is at x = 0, find a composite expansion
of

ε2y′′ + y′ + εy = x, for 0 < x < 1,

where y(0) = 1 and y(1) = 1.

2.20. Find a composite expansion of

εy′′ + y′ − y = 0, for 0 < x < 1,

where y(0) = 0, y(1) = −1.

2.21. Find a composite expansion of

εy′′ + 2y′ − y3 = 0, for 0 < x < 1,

where y(0) = 0 and y(1) = 1.

2.22. Find a composite expansion of

εy′′ + y′ + εy = 0, for 0 < x < 1,

where y(0) = 1, y(1) = 2.

2.23. Given that the boundary layer is at x = 1, find a composite expansion
of

εy′′ − 3y′ − y4 = 0, for 0 < x < 1,

where y(0) = 1 and y(1) = 1.

2.24. Find a composite expansion of

εy′′ − 1
2
y′ − xy = 0, for 0 < x < 1,

where y(0) = 1 and y(1) = 1.

2.25. Find a composite expansion of

εy′′ − (2− x2)y = −1, for 0 < x < 1,

where y(0) = 0, y(1) = 2.

2.26. Find a composite expansion of

εy′′ − (1 + x)y = 2, for 0 < x < 1,

where y(0) = 0, y(1) = 0.

2.27. As found in Exercise 1.13, the equation for a weakly damped oscillator
is

y′′ + εy′ + y = 0, for 0 < t,

where y(0) = 1 and y(0) = 0.
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(a) For small ε, find a two-term regular expansion of the solution.
(b) Explain why the expansion in (a) is not well-ordered for 0 ≤ t <∞. What

requirement is needed on t so it is well-ordered?
(c) Use two-timing to construct a better approximation to the solution.

2.28. The weakly nonlinear Duffing equation is

y′′ + y′ + εy3 = 0, for 0 < t,

where y(0) = 0 and y′(0) = 1.
(a) For small ε, find a two-term regular expansion of the solution.
(b) Explain why the expansion in (a) is not well-ordered for 0 ≤ t <∞. What

requirement is needed on t so it is well-ordered?
(c) Use two-timing to construct a better approximation to the solution.

2.29. This problem derives additional information from the projectile prob-
lem.

(a) Let tM be the time at which the projectile reaches its maximum height.
Given that the solution depends on ε, it follows that tM depends on ε.
Use (2.27) to find a two-term expansion of tM for small ε. What is the
resulting two-term expansion for the maximum height xM?

(b) Let tE be the time at which the projectile hits the ground. Given that the
solution depends on ε, it follows that tE depends on ε. Use (2.27) to find
a two-term expansion of tE for small ε.

(c) Based on your results from parts (a) and (b), describe the effects of the
nonlinear gravitational field on the motion of the projectile.

2.30. In the study of reactions of chemical mixtures one comes across the
following problem

d2y

dx2
= −εey, for 0 < x < 1,

where y(0) = y(1) = 0. This is known as Bratu’s equation, and it illustrates
some of the difficulties one faces when solving nonlinear equations.

(a) Explain why a boundary layer is not expected in the problem and find the
first two terms in a regular expansion of the solution.

(b) The function

y = −2 ln
[
cosh(β(1− 2x))

cosh(β)

]
,

where β satisfies

cosh(β) = 2β

√
2
ε
, (2.93)

is a solution of the Bratu problem. By sketching the functions in (2.93),
as functions of β, explain why there is an ε0 where if 0 < ε < ε0 then there
are exactly two solutions, while if ε0 < ε then there are no solutions.
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(c) Comment on the conclusion drawn from part (b) and your result in part
(a). Explain why the regular expansion does not fail in a manner found in
a boundary layer problem but that it is still not adequate for this problem.



Chapter 3

Kinetics

3.1 Introduction

We now investigate how to model, and analyze, the interactions of multi-
ple species and how these interactions produce changes in their populations.
Examples of such problems are below.

3.1.1 Radioactive Decay

A radioactive isotope is unstable, and will decay by emitting a particle, trans-
forming into another isotope. As an example, tritium 3H1 is a radioactive
form of hydrogen that occurs when cosmic rays interact with the atmosphere.
It decays by emitting an electron e and antineutrino ν to produce a stable
helium isotope 3He2. The conventional way to express this conversion is

3H1 → 3He2 + e+ ν. (3.1)

The assumption used to model such situations is that the rate of decrease
in the amount of radioactive isotope is proportional to the amount currently
present. To translate this into mathematical terms let N(t) designate the
amount of the radioactive material present at time t. In this case we obtain
the rate equation

dN

dt
= −kN, for 0 < t, (3.2)

where
N(0) = N0. (3.3)

In the above equation k is the proportionality constant and is assumed to be
positive.

M.H. Holmes, Introduction to the Foundations of Applied Mathematics, 87
Texts in Applied Mathematics 56, DOI 10.1007/978-0-387-87765-5 3,
c© Springer Science+Business Media, LLC 2009
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3.1.2 Predator-Prey

This involves two species and a typical situation is a population of predators,
wolves, which survives by eating another species, rabbits. To write down a
model for their interaction, let R(t) and W (t) denote the number of rabbits
and wolves, respectively. In this case, we have

dR

dt
= aR− bRW, (3.4)

dW

dt
= −cW + dRW. (3.5)

In the above equations a, b, c, d are proportionality constants. To obtain the
first equation, it has been assumed that the population of rabbits, with wolves
absent, increases at a rate proportional to their current population (aR).
When the wolves are present it is assumed the rabbit population decreases
at a rate proportional to both populations (−bRW ). Similarly, for the sec-
ond equation, the number of wolves, with rabbits absent, decreases at a rate
proportional to their current population (−cW ), but increases at a rate pro-
portional to both the rabbit and wolf populations when rabbits are available
(dRW ). To complete the formulation we need the initial concentrations, given
as R(0) = R0,W (0) = W0.

3.1.3 Epidemic Model

Epidemics, such as the black death and cholera, have come and gone through-
out human history. Given the catastrophic nature of these events there is a
long history of scientific study trying to predict how and why they occur. One
of particular prominence is the Kermack-McKendrick model for epidemics.
This assumes the population can be separated into three groups. One is the
population S(t) of those susceptible to the disease, another is the population
I(t) that is ill, and the third is the population R(t) of individuals that have
recovered. A model that accounts for the susceptible group getting sick, the
subsequent increase in the ill population, and the eventual increase in the
recovered population is the following set of equations

dS

dt
= −k1SI, (3.6)

dI

dt
= −k2I + k1SI, (3.7)

dR

dt
= k2I, (3.8)
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Figure 3.1 Sample domain illustrating assumptions underlying the Law of Mass
Action, where two species combine to form a third.

where S(0) = S0, I(0) = I0, R(0) = R0. In the above equations k1, k2 are
proportionality constants. Given the three groups, and the letters used to
designate them, this is an example of what is known as a SIR model in
mathematical epidemiology. This model does not account for births or deaths,
and for this reason the total population stays constant. This can be seen in
the above equations because

dS

dt
+
dI

dt
+
dR

dt
= 0,

or in other words d
dt (S + I + R) = 0. The fact that S + I + R is constant

is an example of a conservation law, and these will play a prominent role in
this chapter.

3.2 Kinetic Equations

The common thread in the above examples is that one or more species com-
bine, or transform, to form new or additional species. This is a situation
common in chemistry and we will extend the theory developed in chemical
kinetics to describe interacting populations or species. The main result is the
Law of Mass Action and to motivate how it is derived consider a region con-
taining a large number of two species, labeled as A and B. A small portion
of this region is shown in Figure 3.1. As indicated in the figure, both species
are assumed to be distributed throughout the region. It is also assumed that
they are in motion, and when an A and B come into contact they combine
to form a new species C. The C’s are shown in the figure with an A and B
stuck together. The symbolism for this is

A+B → C. (3.9)

The question is, can we use this information to determine the concentrations
of the three species? The reaction in (3.9) states that one A and one B
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are used to construct one C. This means that the rate of change of the
concentrations of A and B are the same, and they are the negative of the
change in C. In other words,

dA

dt
=
dB

dt
= −dC

dt
. (3.10)

In the above expressions there is a mild case of notation abuse in the sense
that we are letting A, B, and C also designate the concentrations of the
respective species. This dual usage of having the letters designate individual
molecules as in (3.9) and concentrations as in (3.10) is common in kinetics
and should not cause problems in the development.

The equalities in (3.10) can be rewritten as

dA

dt
= −r, (3.11)

dB

dt
= −r, (3.12)

dC

dt
= r, (3.13)

where r is known as the rate of the reaction. Now, r depends on the collision
frequency of A and B, and this means it depends on the concentrations of A
and B. Also, if there are no A’s, or if there are no B’s, then the rate is zero.
We are therefore assuming that r = r(A,B), where r(A, 0) = r(0, B) = 0. To
obtain a first term approximation of this function we use Taylor’s theorem
to obtain

r = r00 + r10A+ r01B + r20A
2 + r11AB + r02B

2 + · · · .

In this expression

r00 = r(0, 0),

r10 =
∂r

∂A
(0, 0), r01 =

∂r

∂B
(0, 0),

r20 =
1
2
∂2r

∂A2
(0, 0), r02 =

1
2
∂2r

∂B2
(0, 0).

All of these terms are zero. For example, because r(A, 0) = 0 it follows that

∂r

∂A
(A, 0) = 0 and

∂2r

∂A2
(A, 0) = 0.

Similarly, because r(0, B) = 0, it follows that r01 = r02 = 0. What is not
necessarily zero is the mixed derivative term

r11 =
∂2r

∂A∂B
(0, 0).
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Therefore, the first nonzero term in the Taylor series is r11AB, and from this
we have

r = kAB, (3.14)

where k is known as the rate constant. This expression, along with the rate
equations in (3.11)-(3.13), is the Law of Mass Action as applied to the reaction
in (3.9). This will be generalized to more complicated reactions in the next
section. Before doing so it is of interest to note what happens if A and B are
the same species. In this case (3.9) becomes 2A → C and (3.14) takes the
form r = kA2. Also, we no longer have an equation for B, but because two
A’s are now lost every time a C is produced then (3.11) becomes A′ = −2r.
The equation for C stays the same. This shows that the coefficients in the
reaction play a role in both the formula for r as well as in the rates for the
respective species in the reaction.

3.2.1 The Law of Mass Action

To state the general form of the Law of Mass Action certain terms need to be
defined. For this we generalize the above example and consider the reaction

αA+ βB → γC + δD. (3.15)

The coefficients α, β, γ, δ are nonnegative constants known as the stoichio-
metric coefficients for the reaction. In effect, this reaction states that α of the
A’s combine with β of the B’s to form γ of the C’s and δ of the D’s. Said this
way, the implication is that the stoichiometric coefficients are integers. The
fact is that they generally are, although we will not make this assumption
explicitly. The species on the left, A and B, are the reactants and those on
the right, C and D, are the products for this particular reaction. The order
of the reaction is the total number of reactants, which in this case is α+ β.

The Law of Mass Action, which will be given shortly, states that the rate
r of the reaction in (3.15) is

r = kAαBβ , (3.16)

where k is the rate constant or the reaction rate coefficient. In writing down
this formula the notation has been corrupted a bit. As happened in the earlier
example, we started off letting A,B designate the reactants but in the rate
formula (3.16) these same letters have been used to designate their concen-
trations.

We are now is position to state the assumptions underlying the Law of
Mass Action.

Definition 3.1. The Law of Mass Action consists of the following three as-
sumptions:



92 3 Kinetics

1. The rate, r, of the reaction is proportional to the product of the reactant
concentrations, with each concentration raised to the power equal to its
respective stoichiometric coefficient.

2. The rate of change of the concentration of each species in the reaction is
the product of its stoichiometric coefficient with the rate of the reaction,
adjusted for sign (+ if product and − if reactant).

3. For a system of reactions, the rates add.

To illustrate, consider the reaction in (3.15). Part 1 of the definition is simply
the formula (3.16) put into words. As for Part 2, the rate of change dA

dt is
equal to −αr, while dC

dt is equal to γr. Combining this information, from the
Law of Mass Action the kinetic equations for the concentrations are

dA

dt
= −αr

= −αkAαBβ , (3.17)
dB

dt
= −βkAαBβ ,

dC

dt
= γkAαBβ ,

dD

dt
= δkAαBβ .

To complete the formulation, it is assumed that the initial concentrations are
known, and so, A(0) = A0, B(0) = B0, C(0) = C0, D(0) = D0 are given.

The specific units of the terms in the above equations depend on the appli-
cation. For example, if the species are chemicals then concentration, using SI
units, is measured in moles per decimeter (mol/dm3). It is not unusual, how-
ever, to find that when using liquids that concentrations are measured using
molarity (M) where 1M = 6.02 × 1023 molecules per liter. In applications
involving gases the units that are often used are moles per cubic centimeter.
If the application involves populations then population density (e.g., num-
ber per area) is used. Whatever the application, the units for the rate con-
stant depend on the specific reaction. This can be seen from (3.17) because
[A′] = [k][AαBβ ]. If A and B are concentrations then [k] = T−1L3(α+β−1).
Consequently, the units for the rate coefficient for A + B → C are different
than they are for the reaction A+ 2B → C.

3.2.2 Conservation Laws

We have produced four equations for the four species involved in the example
reaction in (3.15). Although they are not particularly easy to solve there
is one significant simplification we are able to make. To explain what this
is, note that it is possible to combine the first two equations to produce
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zero on the right-hand side. Specifically, d
dt (βA − αB) = 0 and this means

βA− αB = constant. Using the stated initial conditions it follows that

βA− αB = βA0 − αB0. (3.18)

In a similar manner, by combining the C and A equations we obtain

γA− αC = γA0 − αC0, (3.19)

and from the D and A equations

δA− αD = δA0 − αD0. (3.20)

The equations (3.18)-(3.20) are conservation laws. These will play an essential
role in our study of kinetic equations, so it is important to define exactly what
this means.

Definition 3.2. Given species A,B,C, . . . , Z and numbers a, b, c, . . . , z then
aA+ bB + cC + · · ·+ zZ is said to be conserved if

d

dt
(aA+ bB + cC + · · ·+ zZ) = 0. (3.21)

It is required that at least one of the numbers a, b, c, . . . , z is nonzero, and
(3.21) holds irrespective of the values for the initial conditions and rate con-
stants. The corresponding conservation law is aA + bB + cC + · · · + zZ =
constant.

One particularly useful application of conservation laws is to reduce the
number of equations that need to be solved. For example, we have

B = B0 + β(A−A0)/α, (3.22)
C = C0 + γ(A0 −A)/α, (3.23)
D = D0 + δ(A0 −A)/α. (3.24)

Therefore, once we know A we will then be able to determine the other three
concentrations. The equation for A now takes the form

dA

dt
= −αkAα(a+ bA)β , (3.25)

where a = B0 − bA0 and b = β/α. This is still a formidable equation but we
only have to deal with one rather than four as was originally stated.

One thing to keep in mind when looking for conservation laws is that they
are not unique. For example, because d

dt (βA−αB) = 0 and d
dt (γA−αC) = 0

then given any two numbers x, y we have that d
dt [x(βA−αB)+y(γA−αC)] =

0. Therefore, x(βA−αB)+y(γA−αC) = constant is a conservation law. The
objective is not to find all possible combinations but, rather, the minimum
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number from which all others can be found. Most of the reactions considered
in this book are simple enough that it will be evident what the minimum
number is. It is possible, however, to develop a theory for determining this
number and this will be discussed in Section 3.3.

3.2.3 Steady-States

In addition to the conservation laws we will also be interested in the steady-
state solutions. To be a steady-state the concentration must be constant and
it must satisfy the kinetic equations. From (3.25) there are two steady-states,
one is A = 0 and the second is A = −a/b. The corresponding steady-state
values for the other species in the reaction are determined from (3.22)-(3.24).
The one restriction we impose is that the concentrations are non-negative.
Because of this, if a ≥ 0 then the only one physically relevant steady-state
solution of (3.25) is A = 0.

3.2.4 Examples

1. Consider the reaction A→ 2C. The rate of the reaction is r = kA, and so,
the kinetic equations are

dA

dt
= −kA,

dC

dt
= 2kA.

The reaction is first order, and the conservation law is obtained by noting
d
dt (2A+C) = 0. From this it follows that C = C0 + 2A0 − 2A. Also, there is
only one possible steady-state for this system, which is A = 0, C = C0 +2A0.
It is worth noting that this steady-state can be obtained directly from the
reaction. Namely, if one starts out with A0 molecules of A and each of these
is transformed into two molecules of C then the reaction will continue until
A is exhausted, so A = 0, and the amount of C has increased by 2A0. �

2. If the reaction is A + B → 3C then the rate is r = kAB and the kinetic
equations are
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dA

dt
= −kAB, (3.26)

dB

dt
= −kAB, (3.27)

dC

dt
= 3kAB. (3.28)

The reaction is second order. To find the conservation laws, note that (3.26)
and (3.27) can be subtracted to yield dA

dt −
dB
dt = 0. Writing this as d

dt (A−B) =
0, it follows that A − B = A0 − B0. Similarly, (3.26) and (3.28) can be
combined to yield d

dt (3A + C) = 0, from which it follows that 3A + C =
3A0 +C0. The conclusion is that B = B0 +A−A0 and C = C0 + 3(A0−A).
The resulting reduced equation is therefore

dA

dt
= −kA(B0 −A0 +A).

This is known as the logistic equation and it can be solved using separation
of variables. The steady-states are A = 0 and A = B0 − A0. The latter is
physically relevant only if B0 − A0 ≥ 0. As before the steady-states are ev-
ident directly from the reaction. Because A and B combine to form three
molecules of C then the reaction will continue until you run out of either A
or B. If it is A then A = 0, B = B0−A0, C = C0 + 3A0 while if it is B then
B = 0, A = A0 −B0, C = C0 + 3B0. �

3. As a third example we consider a system of three reactions given as

A 
 C +D, (3.29)
A+B → 2A+ C. (3.30)

We need to explain exactly what is written here. First, (3.29) is a compact
way to write A→ C+D and C+D → A. In this case the reaction is said to be
reversible. Each gets its own rate constant and we will use k1 for the first and
k−1 for the second. Secondly, (3.30) is an example of an autocatalytic reaction
because A is being used to produce more of itself (i.e., there is more A at the
end of the reaction even though it is one of the reactants). We will use k2 for
its rate constant. The corresponding rates are r1 = k1A, r−1 = k−1CD, and
r2 = k2AB. Now, the Law of Mass Action applies to each reaction and the
rates are added to construct the kinetic equation for each species (Part 3 of
Definition 3.1). For example, the kinetic equation for A is

dA

dt
= −r1 + r−1 − r2 + 2r2

= −k1A+ k−1CD − k2AB + 2k2AB

= −k1A+ k−1CD + k2AB.
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Note that for the reaction in (3.30), A is treated as both a reactant (−r2)
and a product (+2r2) as specified by the reaction. In a similar manner the
kinetic equations for the other species are

dB

dt
= −k2AB, (3.31)

dC

dt
= k1A− k−1CD, (3.32)

dD

dt
= k1A− k−1CD. (3.33)

The useful conservation laws in this case are d
dt (A+B +C) = 0 and d

dt (C −
D) = 0. From this we get B = B0 +A0 +C0−A−C and D = D0 +C −C0.
This enables us to reduce the system to the two equations

dA

dt
= k−1C(β + C) + k2A(α−A− C), (3.34)

dC

dt
= k1A− k−1C(β + C), (3.35)

where α = −k1/k2 + B0 + A0 + C0 and β = D0 − C0. Finding the possible
steady-states is an interesting exercise for these reactions. From (3.31) we
have that for a steady-state either A = 0 or B = 0. For example, if A = 0
then from (3.32) we have either C = 0 or D = 0. For the case of C = 0, from
the conservation laws, we get B = B0 +A0 +C0 and D = D0 −C0. One can
calculate the other solutions in the same way. What is interesting is that the
reactions paint a slightly different picture. The two reactions in (3.29) are no
help in finding the steady-states as A simply converts back and forth with C
and D. The reaction in (3.30), however, will stop when B is exhausted. In
fact, B = 0 is the only apparent species with a steady-state as there is no
reason for the two reactions in (3.29) to stop. The fact that the reactions give
us a different conclusion from what we derived from the differential equations
has to do with stability. The differential equations give all mathematically
possible steady-states irrespective of whether they can be achieved physically.
The reactions contain this information by the way they are stated, although
they are limited in what they can tell us (e.g., what happens to the other
concentrations). What is needed is to introduce the mathematical tools to
study stability and this will be done later in the chapter. �

3.2.5 End Notes

It was stated that the coefficient k in the rate of a reaction is constant.
In reality, k can depend on the conditions under which the reaction takes
place. For example, the rate of a chemical reaction depends strongly on the
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temperature. The most widely used assumption concerning this dependence
is the Arrhenius equation, which states

k = k0e
−E/RT ,

where k0, E, R are parameters and T is temperature measured in Kelvin
units. The complication here is that chemical reactions can release, or absorb,
heat, and for this reason the temperature can change as the reaction proceeds.
It is assumed in this text that the reactions take place in a medium that allows
for maintaining a constant temperature.

As a second comment, one might conclude from the physical interpreta-
tion of (3.15) that a reaction involving three reactants is rare as it requires
three molecules to collide simultaneously. However, it is quite common to
find models that contain reactions involving three or more reactants. It is
also not unusual to find models with fractional coefficients. This is one of
the reasons for introducing the idea of an elementary reaction. These are
reactions in which the molecular steps are exactly as stated in the reaction
statement. In this case the stoichiometric coefficients equal the number of
molecules involved in the reaction. In chemical applications all elementary
reactions are either first- or second-order. The fact is, however, that for most
reactions the elementary steps are not known. There are multiple reasons for
this, but typically it is due to the small concentrations and short life times
of the intermediate species, which makes measuring them difficult. Conse-
quently, non-elementary reactions are used and they should be thought of as
an approximation of the actual reaction mechanism.

Finally, even though the Law of Mass Action is based on a collection of
physically motivated assumptions, the formulation is heuristic. For example,
in explaining the dependence of the reaction rate in (3.14) on the species
concentrations, we introduced the idea of collision frequency. The fact is that
two molecules do not necessarily combine when colliding, and the actual event
depends on the collision energy, collision angle, etc. This has led to research
into using molecular dynamics to derive the Law of Mass Action from more
fundamental principles. This is outside the scope of this textbook and those
interested should consult Houston [2006] or Henriksen and Hansen [2008].

3.3 General Mathematical Formulation

For the general form of the schemes considered here we assume there are n re-
actions involving m distinct species X1, X2, . . . , Xm. The scheme is composed
of a set of reactions of the form

m∑
i=1

αijXi →
m∑

i=1

βijXi for j = 1, 2, . . . , n. (3.36)
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In this setting a species can appear as just a reactant, so βij = 0, or as just
a product, so αij = 0, or both. Also, the stoichiometric coefficients αij , βij

are assumed to be non-negative, with at least one of the α’s and one of the
β’s nonzero in each reaction. The reaction rate rj for the jth reaction is

rj = kj

m∏
i=1

X
αij

i , (3.37)

where kj is the rate constant for the jth reaction. With this, the kinetic
equation for the time evolution of the concentration of Xi is

d

dt
Xi =

n∑
j=1

(βij − αij) rj . (3.38)

This can be written in matrix form as follows,

d

dt
X = Sr, (3.39)

where X = (X1, X2, . . . , Xm)T is the vector of concentrations and r =
(r1, r2, . . . , rn)T is the rate vector. The m × n matrix S is called the stoi-
chiometric matrix and Sij = βij − αij .

Example

For the reactions

X1 → X2,

X2 → X1 +X3,

the stoichiometric matrix is

S =

−1 1
1 −1
0 1

 ,

and the rate vector is

r =
(
k1X1

k2X2

)
.

The resulting matrix problem is

d

dt

X1

X2

X3

 =

−1 1
1 −1
0 1

(k1X1

k2X2

)
.
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This is the matrix equation given in (3.39) for this particular example. �

A conservation law for the general reaction scheme in (3.36) satisfies

d

dt
(a1X1 + a2X2 + . . .+ amXm) = 0,

where the aj ’s are constants that will be determined later. Integrating this
equation we obtain

a1X1 + a2X2 + . . .+ amXm = a1X10 + a2X20 + . . .+ amXm0,

where Xj0 is the initial concentration of Xj . It is convenient to express this
in vector form, which is

a ·X = a ·X0, (3.40)

where a = (a1, . . . , am)T and X0 = (X10, X20, . . . , Xm0)T . To determine
the vector a, multiply (3.39) by a to obtain a · X′ = a · Sr. Given that
a ·X′ = (a ·X)′ and a ·Sr = r ·ST a, then a conservation law corresponds to
r ·ST a = 0. As stated earlier, a conservation law is independent of the values
of the rate constants. Therefore, the vector a must satisfy

ST a = 0. (3.41)

Written this way, finding the conservation laws has been reduced to a linear
algebra problem.

Recall the set of all solutions of (3.41) from a subspace known as the
kernel, or null space, of ST . Let K(ST ) designate this subspace. If K(ST )
contains only the zero vector, so a = 0 is the only solution of (3.41), then
there are no conservation laws. Assuming there are nonzero solutions then let
{a1,a2, . . . ,ak} be a basis for K(ST ). Each basis vector produces a conser-
vation law of the form in (3.40), and it is independent of the laws obtained
from the other basis vectors. What this means is that the conservation law
obtained using, say, a1 cannot be obtained by combining the conservation
laws obtained using a2,a3, . . . ,ak. Moreover, because these vectors form a
basis, given any conservation law we are able to write it in terms of the
laws obtained from basis vectors. These observations are summarized in the
following result.

Theorem 3.1. The number of independent conservation laws of the system
(3.36) is equal to the nullity of ST , and the basis vectors of the kernel of ST

correspond to the independent conservation laws of the system.

To be specific, if (3.41) has only the zero solution then there are no conser-
vation laws. Otherwise, a complete set of conservation laws is

ai ·X = ai ·X0, for i = 1, 2, . . . , k, (3.42)
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Figure 3.2 The steps in the Michaelis-Menten mechanism, where an enzyme, E,
assists S in transforming into P .

where X0 = (X10, X20, . . . , Xm0)T are the initial concentrations and the vec-
tors {a1,a2, . . . ,ak} form a basis of the kernel of ST . The benefit of this
is that each independent conservation law can be used to eliminate one of
the differential equations in (3.39). In schemes only involving a few reac-
tions it is not necessary to use this result as one can usually just look at
the equations and determine the independent conservation laws. However,
for systems containing many equations the above result is very useful as it
provides a systematic method for reducing the problem.

Example: cont’d

In the previous example, (3.41) takes the form

(
−1 1 0

1 −1 1

)a1

a2

a3

 =

0
0
0

 .

Forming the augmented matrix and row reducing yields the following(
−1 1 0 0

1 −1 1 0

)
→
(
−1 1 0 0

0 0 1 0

)
. (3.43)

The solution is a3 = 0 and a2 = a1. Consequently, the kernel has dimension
one and a basis is a1 = (1, 1, 0)T . The corresponding conservation law is
X1 +X2 = X10 +X20. �

3.4 Michaelis-Menten Kinetics

Many chemical and biological systems depend on enzymes to catalyze one
or more of their component reactions. Often the exact mechanisms are not
well understood and can involve very complicated pathways with multiple
enzymes and other catalysts. A relatively simple description of the mechanism
is provided by the Michaelis-Menten model, in which the reaction involves an
enzyme binding to a substrate that subsequently reacts to form a new product
molecule. A schematic of the steps involved is shown in Figure 3.2. This is
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now considered the prototype example for an enzyme-catalyzed reaction, and
the specific steps in the reaction are as follows

S + E 
 C, (3.44)
C → P + E. (3.45)

In this reaction, S is the substance that is transformed by the reaction, E
is an enzyme that facilitates the conversion, C is an intermediate complex,
and P is the final product produced by the reaction. Using the Law of Mass
Action, the resulting kinetic equations are

dS

dt
= −k1SE + k−1C, (3.46)

dE

dt
= −k1SE + k−1C + k2C, (3.47)

dC

dt
= k1SE − k−1C − k2C, (3.48)

dP

dt
= k2C. (3.49)

For initial conditions, it is assumed that we start with S and E and no
complex or product. In other words,

S(0) = S0, E(0) = E0, C(0) = 0, P (0) = 0. (3.50)

Two useful conservation laws for this reaction are d
dt (E + C) = 0 and

d
dt (S+C +P ) = 0. Using the stated initial conditions, the conservation laws
give us that E = E0 −C and P = S0 − S −C. Therefore, we can reduce the
reactions to the two equations

dS

dt
= −k1E0S + (k−1 + k1S)C, (3.51)

dC

dt
= k1E0S − (k2 + k−1 + k1S)C. (3.52)

Even though we have reduced the original system down to two equations,
it is still not clear how to solve the problem or what properties the solution
has. There are different ways to proceed and, as in many problems, the choice
depends on one’s interests and background. We will consider three, one using
numerical methods, one based on rates of the reactions, and then one using
perturbation expansions.

As a historical note, the steps involved in the reaction were used by Brown
[1902] to describe the hydrolysis of sucrose. The equations were later analyzed
by Michaelis and Menten [1913]. As it turns out, the hydrolysis of sucrose
produces two simpler sugars, glucose and fructose. The enzyme in this case
is invertase, also known as β-fructofuranosidase, and the structure of this
molecule is shown in Figure 3.3. It is clear from this figure that the represen-
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Figure 3.3 The three-dimensional struc-
ture of the enzyme invertase (Verhaest
et al. [2006]).

tation in Figure 3.2 is simplistic, but it still provides an effective description
of the overall reaction. What happens in these reactions is that invertase at-
taches itself to the sucrose and splits, or cleaves, the sugar into two smaller
molecules. There are two product molecules, not one as indicated in Figure
3.2, but this has minimal effect on the resulting reaction scheme. It is also
worth noting that the discovery of this particular reaction represents the be-
ginning of enzyme kinetics as a scientific discipline, and for this reason it has
become one of the standard examples in biochemistry courses. It also has
commercial applications. The splitting of sucrose into simpler sugars is called
inversion, and the mixture produced is called inverted sugar. Apparently,
according to The Sugar Association, inverted sugar is sweeter than regular
sugar and this has useful applications in the food business.

3.4.1 Numerical Solution

Solving the problem numerically is straightforward, and one only has to de-
cide on what parameter values to use. We will use values that come from
a model of the transport of P-glycoprotein (Tran et al. [2005]). They found
that k1 = 109 M−1s−1, k−1 = 7.5×105 s−1, k2 = 103 s−1, E0 = 10−5 M, and
S0 = 100E0. The resulting solution curves are shown in Figure 3.4. One of
the interesting aspects of this experiment is that the amount of E is small in
comparison to the initial concentration of S. This is typical because enzymes
are usually very effective catalysts, and this is why they are usually present
in relatively small concentrations. A second interesting feature of the solution
is that both C and E change relatively quickly, within the first few microsec-
onds of the experiment. For example, as shown in the top plot of Figure 3.4,
C starts at zero but increases up to approximately 0.56. In the lower plot
of Figure 3.4, this change in C is not evident, and it appears that C simply
starts out at t = 0 with a value of 0.56. This is the type of behavior that
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would be expected if there were a boundary layer, although in this problem
because we are looking at the time variable it is more appropriate to refer to
this as an initial layer. To take advantage of this we need to first nondimen-
sionalize the problem and then make use of our asymptotic approximation
tools.

Given the numerical results in Figure 3.4 it is worth going back to the
original equations (3.46)-(3.49) and calculating the steady-state solutions.
These are found by assuming the concentrations are constant. One finds that
the only solution is S = 0, C = 0, E = E0, P = S0. This is the solution seen
in Figure 3.4 as t → ∞. Said another way, the reactions are such that the
original concentration of S is transformed into P , and once this is complete
E is returned to its original concentration. This is the essence of a catalytic
reaction.

3.4.2 Quasi-Steady-State Approximation

The rapid changes in the initial values of C and E were evident to the exper-
imentalists who studied this reaction scheme. The physical reasoning usually
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Figure 3.4 Numerical solution of (3.46)-(3.49) using parameter values for the trans-
port of P-glycoprotein (Tran et al. [2005]). Shown are s = S/S0, c = C/E0, and
e = E/E0. The upper plot shows the solution curves during the first few moments of
the experiment, while the lower plot shows the same curves over a longer time period.
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given is that, assuming the concentration of S is not too small, the enzyme
is so efficient that whenever an E becomes free that it immediately attaches
itself to an S to form another complex C. The implication is that the concen-
tration of C changes so quickly in response to the values of the other species
that it immediately satisfies its steady-state equation. This is the basis of
what is known as a quasi-steady-state assumption (QSSA), an idea first pro-
posed by Briggs and Haldane [1928]. The argument made is that the time
interval over which C ′(t) 6= 0 is very small and the equations can be replaced
with

dS

dt
= −k1E0S + (k−1 + k1S)C, (3.53)

0 = k1E0S − (k2 + k−1 + k1S)C. (3.54)

Solving the last equation for C yields

C =
k1E0S

k2 + k−1 + k1S
. (3.55)

To put this approximation in the context of the transport of P-glycoprotein,
as given in Figure 3.4, it is seen that the concentration of S changes on a
time scale of seconds. This is why S appears to be constant in the upper
plot. In comparison, C changes on a much faster time scale, measured in
microseconds. This means C adjusts to the value of S so quickly, moving
to what it assumes is the steady-state, that its value is determined by the
formula in (3.55). The exception to this statement is what happens at the
very beginning of the experiment, where C must undergo a jump to be able
to satisfy (3.55).

Mathematically one should be a bit skeptical with this approximation. For
one, the formula in (3.55) does not satisfy the given initial condition for C.
For another, because S is time-dependent, C in (3.55) clearly depends on t,
and this does not appear to be consistent with the assumption used to derive
this result. These questions will be addressed once the perturbation solution
is derived. For the moment we will assume all is well and in this case the
equation for S, given in (3.53), can be written as

dS

dt
= − vMS

KM + S
. (3.56)

In this equation vM = k2E0, and KM is the Michaelis constant given as

KM =
k−1 + k2

k1
. (3.57)

Experimentalists use (3.56) to determine vM = k2E0 and KM by measuring
S′ at t = 0. The specifics of how this is done are explored in Exercise 3.19.
As it turns out, experimental studies that determine all three rate constants
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are not common. There are technical, and mathematical, challenges in deter-
mining these constants, and an indication of what is involved can be found
in Tran et al. [2005].

One of the questions that arises when measuring vM and KM is how it
is possible to use the initial values of the concentrations. This appears to be
a contradiction to the earlier assumption that enough time has passed so a
quasi-steady-state has been reached. It should be pointed out that there are
good reasons for using the initial values. One is that S is known at t = 0.
Another is that the model assumes the reaction (3.45) is not reversible. In
most applications it is, although the rate of the reverse reaction is so slow that
it is not included. Using the values at the beginning minimizes the influence of
this reaction on the measurements. This still leaves unresolved the apparent
inconsistency in the assumptions, and for this we use a more mathematical
argument.

3.4.3 Perturbation Approach

The QSSA is one of the standard methods used by biophysicists, and mathe-
maticians, to reduce a reaction scheme. As pointed out in the derivation there
are several mathematical questions concerning the consistency of the assump-
tions and for this reason we now consider a perturbation approximation. The
underlying hypothesis in the analysis is that it takes very little enzyme to
convert S to P . In other words, it is assumed that E0 is much smaller than S0.

Nondimensionalization
The first step in analyzing the solution is to nondimensionalize the problem.
For S we use its initial condition S(0) = S0 and set S = S0s, where s is the
nondimensional version of S. The initial condition for C is not much help
here, but the conservation law E + C = E0 is because it indicates that the
concentration of C can range up to E0. Based on this observation, we take
C = E0c, where c is the nondimensional version of C. It is not clear what
to use for the time variable, and so we simply set t = tcτ , where τ is the
nondimensionalized time variable. Introducing these into (3.51), (3.52) and
cleaning things up a bit, produces the equations

1
tck1E0

ds

dτ
= −s+ (µ+ s)c, (3.58)

1
tck1S0

dc

dτ
= s− (κ+ s)c, (3.59)

where µ = k−1/(k1S0) and κ = (k−1 + k2)/(k1S0). We are left with two
dimensionless groups that involve tc, and one of them will be set to one to
determine tc. The conventional choice is to use the group in (3.58), and with
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this tc = 1/(k1E0). In this case the Michaelis-Menten problem becomes

ds

dτ
= −s+ (µ+ s)c, (3.60)

ε
dc

dτ
= s− (κ+ s)c, (3.61)

where
s(0) = 1, c(0) = 0, (3.62)

and
ε =

E0

S0
. (3.63)

We are assuming ε is small, and because it is multiplying the highest deriva-
tive in (3.61) we have a singular perturbation problem. For this reason it
should be no surprise that we will find that the function c has a layer, at
t = 0, where it undergoes a rapid transition. A consequence of this is that
c quickly reaches what is called a quasi-steady-state and for all intents and
purposes s − (κ + s)c = 0. Models containing fast dynamics, which in this
case is the c equation, and slow dynamics, the s equation, are common in
applications. In this way, the Michaelis-Menten system serves as a prototype
enzymatic reaction as well as a prototype fast-slow dynamical system. Ex-
actly how this happens, and what to do about the initial condition for c, will
be derived using a perturbation argument.

The equations in (3.60), (3.61) are a relatively straightforward perturba-
tion problem. We will concentrate on deriving the first term in the approxi-
mation and the first step is the outer expansion.

Outer Expansion
The appropriate expansions are s ∼ s0 + εs1 + · · · and c ∼ c0 + εc1 + · · · .
Inserting these into (3.60),(3.61) and collecting the order O(1) terms we get

ds0
dτ

= −s0 + (µ+ s0)c0, (3.64)

0 = s0 − (κ+ s0)c0. (3.65)

Solving (3.65) for c0 and substituting the result into (3.64) gives us

ds0
dτ

= − λs0
κ+ s0

, (3.66)

where λ = k2/(k1S0). Separating variables, and integrating, leads us to the
following solution

κ ln(s0) + s0 = −λτ +A, (3.67)

c0 =
s0

κ+ s0
, (3.68)
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where A is a constant of integration that will be determined later when the
layers are matched. The implicit nature of the solution in (3.67) is typical
when solving nonlinear differential equations. It is possible to simplify this
expression using what is known as the Lambert W function, however (3.67)
is sufficient for what we have in mind.

Inner Expansion
The initial layer coordinate is τ̄ = τ/ε and in this region we will designate
the solutions as s̄ and c̄. The problem is therefore

ds̄

dτ̄
= ε(−s̄+ (µ+ s̄)c̄), (3.69)

dc̄

dτ̄
= s̄− (κ+ s̄)c̄, (3.70)

where
s̄(0) = 1, c̄(0) = 0. (3.71)

The appropriate expansions in this case are s̄ ∼ s̄0 + εs̄1 + · · · and c̄ ∼
c̄0 + εc̄1 + · · · . Inserting these into (3.69), (3.70) and collecting the first-order
terms we get

ds̄0
dτ̄

= 0,

dc̄0
dτ̄

= s̄0 − (κ+ s̄0)c̄0,

where
s̄0 = 1, c̄0(0) = 0.

Solving these equations gives us

s̄0 = 1, (3.72)

c̄0 =
1

1 + κ

(
1− e−(1+κ)τ̄

)
. (3.73)

The solution for s̄ indicates that, at least to first-order, it does not have an
initial layer structure and is constant in this region. The variable c̄ on the
other hand does depend on the initial layer coordinate and this is consistent
with our earlier numerical experiments.

Matching and Composite Expansion
The idea underlying matching is the same as used in the previous chapter,
namely the solution coming out of the inner layer is the same as the solution
going into the inner layer. Mathematically, the requirements are
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lim
τ̄→∞

s̄0 = lim
τ→0

s0, (3.74)

lim
τ̄→∞

c̄0 = lim
τ→0

c0. (3.75)

From (3.72) and (3.74) we conclude that s0(0) = 1. It is not hard to show
that in this case (3.75) is satisfied, and we have that A = 1 in (3.67).

The only remaining task is to construct a composite expansion. This is
done by adding the inner and outer solutions and then subtracting their
common part. In other words, s ∼ s0(τ) + s̄0(τ̄) − s0(0) and c ∼ c0(τ) +
c̄0(τ̄)− c0(0). The conclusion is that

s ∼ s0(τ), (3.76)

c ∼ s0
κ+ s0

− 1
1 + κ

e−(1+κ)τ/ε, (3.77)

where s0 is found by solving

κ ln(s0) + s0 = −λτ + 1. (3.78)

Analysis of Solution
Although a simple closed form expression for s0 is not available it is still
possible to describe its basic behavior. First, from (3.66) we know it is
monotone decreasing. For small values of τ , we have from (3.78) that
s0 ≈ s0(0)+s′0(0)τ = 1−λτ/(1+κ). In other words, it starts off by decreasing
linearly with slope −λ/(1+κ). For large τ values we have that κ ln(s0) ≈ −λτ ,
and so, s0 ≈ e−λτ/κ. Therefore, s0 decays exponentially to zero for large τ ,
with a relaxation time constant κ/λ. Based on this information it is an easy
matter to sketch the function.

It is also not difficult to solve the s0 equation using, for example, New-
ton’s method. The resulting composite approximation for c(τ) is shown in
Figure 3.5 using the parameter values from the model of the transport of
P-glycoprotein (Tran et al. [2005]). Also given is the solution obtained from
solving the original equations (3.51), (3.52) numerically. The agreement is
so good that it is difficult to distinguish between the numerical and com-
posite solutions. This agreement is not limited to the P-glycoprotein val-
ues, and to demonstrate this another comparison is given in Figure 3.6 with
k1 = 1.75× 1011 M−1s−1 and the other values the same as before. This par-
ticular choice was made as it also demonstrates an interesting behavior in the
solution of the Michaelis-Menten equations. Namely, it appears that there is a
transition layer in the solution as k1 increases, located in the general vicinity
of τ = 1.8×105. With the composite approximations it is easy to explain this
behavior. Because κ is very small, we have from (3.77) that c ≈ 1 outside the
initial layer until s drops down to the value of κ. In the previous paragraph
we know that the linear decrease in s can be approximated as s ≈ 1 − λτ .
Setting this equal to κ and solving we find that τ ≈ 1/λ. With the given
parameter values this gives us τ ≈ 1.75× 105, which is very close to what is
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Figure 3.5 The solution for c(τ) obtained from solving the equations numerically,
and from the composite approximation in (3.77), (3.78). The curves are so close it is
difficult to distinguish between them. The parameter values are the same as used for
Figure 3.4.

seen in Figure 3.6.

Connection with QSSA
It is informative to return to the assumptions underlying the quasi-steady-
state assumption (3.53), (3.54). In the outer region, in dimensional coordi-
nates, the equations (3.64), (3.65) become

dS

dt
= −k1E0S + (k−1 + k1S)C,

0 = k1E0S − (k2 + k−1 + k1S)C.

These are identical to those used in the quasi-steady-state assumption. In
other words, QSSA is effectively equivalent to using an outer approxima-
tion of the solution. The actual justification for this type of reduction is the
perturbation analysis carried out earlier.

Another observation concerns the resulting equation for S, which takes
the form

dS

dt
= − k1k2E0S

k2 + k−1 + k1S
.

What is of interest here is that this equation contains a rational function
of the variables rather than the power functions expected from the Law of
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Mass Action. The reason for mentioning this is that one finds models where
the equations are rational functions and it is questionable whether they are
derivable from mass action. This example demonstrates it is possible although
determining this in general can be difficult. An example of this situation is
given in the next section.

The composite approximation also suggests a possible modification of the
analysis. The exponential dependence in (3.77) indicates that the approxima-
tion in the inner region holds not just for small ε, but also when κ is large. In
contrast, we saw in Figure 3.6 that small values of κ can lead to the appear-
ance of what looks to be a transition layer. To investigate these possibilities it
is necessary to modify the nondimensionalization or the expansions used for
the solution. This type of post-analysis of the expansion to gain insight into
perhaps a better approximation is not uncommon, particularly for difficult
problems where it is not clear at the beginning what scales should be used.
An analysis of this type related to the Michaelis-Menten equations can be
found in Segel and Slemrod [1989].
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Figure 3.6 The solution of (3.60), (3.61) obtained from solving the equations nu-
merically, and from the composite approximation in (3.77). The parameter values are
the same as used for Figure 3.4 except k1 = 1.75× 1011 M−1s−1.
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3.5 Assorted Applications

Most of the time using the Law of Mass Action is routine. Given one or more
reactions the law is used to write down the kinetics equations without a great
deal of trouble. In this section we consider variations of this situation that
are not uncommon yet require a bit more thinking. In each case the issue is
whether or not the situation under consideration is consistent with the Law
of Mass Action in addition to other requirements imposed on the system.

3.5.1 Elementary and Nonelementary Reactions

The stoichiometric coefficients of most reactions are determined experimen-
tally. As an example, suppose it is known that a product P is produced when
two chemicals, A and B, are mixed together. The usual empirical-based as-
sumption is that the rate of formation has the form r = kAαBβ , and the
exponents and rate constant are determined by curve fitting this expression
to the experimental measurements of r. Inevitably, such curve fits produce
fractional values for α and β. This is partly due to the inherent error in the
procedure, both experimental as well as numerical. It is also due to the fact
that the r used in the curve fit is really an assumption about the overall rate
of the reaction and not a statement about the actual sequence of molecular
events through which A and B combine to form P . For example, H2 and
Br2 combine to form hydrogen bromide, HBr. Curve fitting the rate function
r = kHα

2 Brβ
2 to the data it is found that α = 1 and β = 1/2. Clearly, this

cannot be associated with an elementary reaction, and this begs the question
as to just how such an exponent can occur.

To address this question, consider the rather simple looking reaction

A+ 2X → P. (3.79)

This gives rise to the kinetic equation

dA

dt
= −kAX2. (3.80)

There are equations for the other species but for what we have in mind the
above equation is enough. From a physical standpoint this type of reaction is
highly unlikely, and the reason is that it requires one A and two X’s to come
together simultaneously to form the product P . In the real world, reactions
are either unary, as in radioactive decay, or binary. The reaction in (3.79) is
tertiary because it involves three reactant molecules.

As an example of this situation, one might attempt to explain the forma-
tion of water by writing 2H+O → H2O. This is incorrect because the actual
mechanism consists of a large number of intermediate reactions. It is common
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that the sequence of elementary steps that constitute a reaction scheme is
not known, and based on experimental evidence the formation of the product
appears to consist of only a single reaction involving three or more reactants
as in (3.79). This can happen, for example, if the amount of the intermedi-
ate species formed is very small and escapes detection, or if the speed with
which the intermediate species are created and destroyed makes them diffi-
cult to detect. What we are going to consider here is, given a nonelementary
reaction, is it possible to construct, at least mathematically, a sequence of
elementary reactions that effectively accomplish the same task. By elemen-
tary we mean reactions that only involve one or two reactant molecules. It
is understood that the expansion into elementary reactions is not necessar-
ily unique and there are possibly multiple ways to do this. Rather, we are
interested in whether it can be done at all.

As a first attempt to expand (3.79) into elementary reactions, it is not
unreasonable to assume that a molecule of A combines with X to form an
intermediate complex Z, and then Z combines with another X to form P . In
reaction form this becomes

A+X → Z, (3.81)
Z +X → P, (3.82)

with the result that

dA

dt
= −k1AX, (3.83)

dZ

dt
= k1AX − k2XZ. (3.84)

The working hypothesis we will use is that the intermediate species Z plays a
role similar to the intermediate species C in the Michaelis-Menten reaction.
As with C, we will assume Z reaches a quasi-steady-state very quickly and, as
in (3.65), this translates into the condition that k1AX − k2XZ = 0. Looking
at this result a few seconds it is clear that it is not going to help us rewrite
(3.84) so it resembles (3.80). What we are missing is the reversible reaction
present in Michaelis-Menten, and so, the reaction scheme will be modified to
become

A+X 
 Z, (3.85)
Z +X → P. (3.86)

The kinetic equations in this case are

dA

dt
= −k1AX + k−1Z, (3.87)

dZ

dt
= k1AX − k−1Z − k2XZ. (3.88)
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Imposing a quasi-steady-state assumption on Z yields

Z =
k1AX

k−1 + k2X
. (3.89)

Substituting this into (3.87) gives us that

dA

dt
= − k1k2

k−1 + k2X
AX2 . (3.90)

Assuming that k−1 >> k2X then we obtain the kinetic equation in (3.80).
Clearly several assumptions went into this derivation and one should go

through a more careful analysis using scaling and perturbation methods to
delineate what exactly needs to be assumed. However, the fact that a non-
physical reaction can be explained using elementary reactions has been es-
tablished for this example.

3.5.2 Reverse Mass Action

A question that often arises is, given a set of equations, is it possible to
determine if they are consistent with the Law of Mass Action. As an example,
consider the predator-prey equations

dR

dt
= aR− bRW, (3.91)

dW

dt
= −cW + dRW. (3.92)

We start with the aR term in (3.91) and ask what reaction produces the
equation R′ = aR. Recall that in the original formulation of the model,
the term aR is suppose to account for rabbits producing more rabbits. To
construct the associated reaction, we know that the terms on the right-hand
side of the differential equation are constructed from the reactants. One might
therefore guess that the needed reaction is R→ products. However, this, by
itself, produces the equation R′ = −k1R. We want to produce rabbits, not
lose them, and this means we also need R as a product of the reaction. Based
on this, the proposed reaction should have the form αR→ βR. The equation
in this case is R′ = −k1αR

α + k1βR
α = k1(β − α)Rα. To be consistent with

(3.91), we require α = 1 and a = k1(β − 1). Because it is assumed that a
is positive, then it is required that β > 1. For simplicity, it is assumed that
β = 2.

Turning our attention to the RW terms in (3.91) and (3.92), the first
guess is that the reaction is R + W → products. This agrees with (3.91)
but it gives W ′ = −k2RW . We want to produce wolves, and this can be
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accomplished by modifying the reaction to R+W → γW . This is consistent
with the assumption that this term is responsible for the increase in the wolf
population. The resulting equations are R′ = −k2RW and W ′ = −k2RW +
k2γRW = k2(γ − 1)RW . This agrees with (3.91) and (3.92) if we let b = k2

and d = k2(γ − 1). Because the coefficients must be positive it is required
that γ > 1, and it is assumed here that γ = 2.

Working out the other term we have the following reactions,

R→ 2R, (3.93)
R+W → 2W, (3.94)

W → P. (3.95)

In this last reaction P corresponds to the number of dead wolves.
Expressing the equations in reaction form provides a different viewpoint

on the assumptions that were used to formulate the model. For example,
the aR term in (3.91) came from the assumption that the number of rabbits
increases at a rate proportional to the current population. This is commonly
assumed but in looking at (3.93) it is hard to justify, at least for rabbits. For
example, without some statement to the contrary, the above model applies
to a population of all male rabbits just as well as to one where males and
females are evenly distributed. Clearly, it must be assumed that both genders
are present for the model to make any sense. Even so, the assumption that a
rabbit undergoes mitosis and splits into two rabbits, as implied by (3.93), is a
stretch. If one insists on only using one variable for rabbits, and not separating
them into male and female, then it might be argued that a better assumption
is to replace (3.93) with R + R → 3R. This is still a little odd, and if used
then aR in (3.91) is replaced with aR2. Another possibility is to redefine
R and assume it represents the population of only the female rabbits. This
makes (3.93) somewhat easier to understand, but it raises questions about
why the male rabbits do not affect the population of wolves. Clearly this is
not possible.

The point of the above discussion is that models, by their very nature, are
based on assumptions and it is important to have an understanding of what
these assumptions are. There is nothing wrong with using a simple model
to help develop an understanding of the problem, but it is essential to know
what is assumed when this is done.

3.6 Steady-States and Stability

As with all time-dependent problems, one of the central questions is what
happens to the solution as time increases. Specifically, if a physical system
is started out with particular initial conditions, is it possible to determine if
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the solution will approach a steady-state? There are various ways to address
this question and we will consider three.

3.6.1 Reaction Analysis

It is possible, in some cases, to determine the steady-states and their stability
properties directly from the reactions. To demonstrate how this is done we
use the Michaelis-Menten reaction scheme, given as

S + E 
 C, (3.96)
C → P + E. (3.97)

In molecular terms, the reactions S+E 
 C state that one molecule of S com-
bines with one molecule of E to reversibly form a complex C. By themselves,
this exchange should continue indefinitely with no apparent steady-state. In
comparison, in the reaction C → P + E one molecule of C breaks down, ir-
reversibly, into P and E. The E molecule used to form C survives when P is
produced, but not so with S. Based on this observation the reactions should
continue until there are no more S’s and C’s. For each molecule of S or C we
start with there will be one molecule of P produced. The only exception to
this statement occurs if there are no E’s available at the start, either individ-
ually or as part of C. In this case nothing happens, and the exact solution of
the problem is simply E = C = 0, S = S(0), and P = P (0). Assuming E(0)
or C(0) are nonzero, then the conclusion is that in the limit of t → ∞ the
solution converges to the steady-state S = 0, C = 0, P = S(0)+P (0)+C(0),
and E = E(0)+C(0). Moreover, this limit is obtained no matter what initial
values are chosen for S, C, and E. This is the property underlying the idea
of an asymptotically stable steady-state. The expression used in this case is
that S = 0, C = 0, P = S(0) + P (0) + C(0), E = E(0) + C(0) is an asymp-
totically stable steady-state. We will define asymptotic stability shortly, but
what is significant is that we have been able to obtain this conclusion without
explicitly using the kinetic equations.

3.6.2 Geometric Analysis

A second method for analyzing steady-states involves a geometric argument,
and the starting point is the kinetic equations. It is a bit easier to use the
nondimensional equations, and for the Michaelis Menten system they are
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Figure 3.7 Phase plane and direction fields for the Michaelis-Menten system, in the
region 0 ≤ s and 0 ≤ c.

ds

dτ
= −s+ (µ+ s)c, (3.98)

ε
dc

dτ
= s− (κ+ s)c. (3.99)

To transform this into the phase plane we combine the above two differential
equations to obtain

dc

ds
=
−s+ (µ+ s)c
ε(s− (κ+ s)c)

. (3.100)

The idea here is that in the cs-plane the solution is a parametric curve, with
the time variable τ acting as the parameter. With this viewpoint, (3.98) and
(3.99) are expressions for the velocities of the respective variables. We will use
these equations, along with (3.100), to sketch the solution. Before doing this
note that the physically relevant solution satisfies 0 ≤ s and 0 ≤ c. Limiting
our attention to this region then the situation is sketched in Figure 3.7. The
first step used to produce this figure was to sketch the two nullclines. The
s-nullcline is the curve where s′ = 0, and from (3.98) this is c = s/(µ + s).
Similarly, the c-nullcline is the curve where c′ = 0, and from (3.99) this is
c = s/(κ+ s). The points where the nullclines intersect are the steady-states,
and for this problem this is simply s = c = 0. These two curves separate the
quadrant into three regions, designated ¬, , ®. Using (3.100) we have the
following cases.

Region ¬. In this region s′ < 0 and c′ > 0. Consequently, dc
ds < 0 and this

means the slope of the solution curve in this region is negative. The slope of
the small arrow indicates this in the figure. The arrow points in the direction
of motion, and this is determined from the inequalities c′ > 0 and s′ < 0. So,
c is increasing and s is decreasing.

Region . Now dc
ds > 0, and so the slope of the solution curve in this region

is positive. The small line segment indicates this in the figure. The arrow on
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the line is determined by noting from (3.98) that c′ > 0 while, from (3.98),
s′ < 0. So, c and s are decreasing.

Region ®. Because dc
ds < 0 then the slope of the solution curve in this region

is negative. The small line segment indicates this in the figure. The arrow on
the line is determined by noting from (3.98) that c′ < 0 while, from (3.98),
s′ > 0. So, c is decreasing and s is increasing.

Nullclines. When s′ = 0 the slope of the solution curve, as determined from
(3.100), is vertical. When this occurs, c is decreasing and this explains the
arrows. When c′ = 0 the slope of the solution curve, as determined from
(3.100), is horizontal. When this occurs, s is decreasing and this explains the
arrows.

With this information we are in position to sketch the solution. The initial
conditions we have been using for Michaelis-Menten are s(0) = 1 and c(0) =
0. As indicated by the direction field shown in Figure 3.7, when starting at
this position, c increases and s decreases. This continues until the c-nullcline
is crossed, after which the solution heads towards c = s = 0. This is shown in
Figure 3.8. In contrast, if one starts out with s = 0 and c 6= 0, then c decreases
while s increases. This continues until the s-nullcline is crossed, after which
the solution converges to c = s = 0. It would appear that no matter where
we start that the same conclusion is reached, and for this reason we conclude
that s = c = 0 is a globally asymptotically stable steady-state. By global it is
understood that the conclusion holds for every initial condition that is in the
region s ≥ 0, c ≥ 0. As a point of interest related to this conclusion, Exercise
3.7 should be consulted.

As a check on the geometric arguments made here, the numerical solution
is shown in Figure 3.9 for various values of ε. In each case the two nullclines are
also plotted. All three graphs behave as predicted in Figure 3.8. What is most
striking, however, is how the trajectory changes as ε decreases. The smaller
the value of ε is, the faster the solution moves to the c-nullcline. This gives

��

�

� �

�

Figure 3.8 Phase plane and direction fields for the Michaelis-Menten system.
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Figure 3.9 Numerical solution of the Michaelis-Menten equations for various values
of ε, along with the s- and c-nullclines. The arrows on the solution curves show the
direction of motion. Note the rapid initial rise in c for small values of ε.

rise to an initial layer, and we used this earlier to construct the perturbation
approximation of the solution. Once the solution reaches the c-nullcline it
then follows this curve into the steady-state. In geometric terminology the c-
nullcline is called a slow manifold, and the solution quickly moves to this slow
manifold and follows it into the steady-state. This behavior is also, essentially,
the basis of the quasi-steady-state approximation described in Section 3.4.2.

3.6.3 Perturbation Analysis

The two methods we have used to study the properties of the steady-state
solution have the advantage of not requiring us to solve the differential equa-
tions. This makes them very attractive but they are limited in their applica-
bility. For example, with reaction analysis, if one has even a moderate number
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of reactions it can be difficult to sort out what species reach a steady-state.
Similarly, the geometric approach is most useful for systems with only two
or three species. We now consider a more analytical method, one capable of
resolving a large number of reactions and for this we turn to a perturbation
analysis.

Before working out the Michaelis-Menten example, we consider a general
version of the problem. Specifically, assume the kinetic equations can be writ-
ten is vector form as

d

dt
y = F(y), (3.101)

or in component form

d

dt
y1 = F1(y1, y2, . . . , yn),

d

dt
y2 = F2(y1, y2, . . . , yn),

...
...

d

dt
yn = Fn(y1, y2, . . . , yn).

In this case, ys is a steady-state solution if ys is constant and F(ys) = 0.
We say that ys is stable if any solution that starts near ys stays near it. If,
in addition, initial conditions starting near ys actually result in the solution
converging to ys as t→∞, then ys is said to be asymptotically stable.

To investigate stability we introduce the initial condition

y(0) = ys + δa. (3.102)

The idea here is that we are starting the solution close to the steady-state
(see Figure 3.10), and so we assume δ is small. Now, for asymptotic stability
it is required that the solution of the resulting initial value problem converges
to ys as time increases, irrespective of the particular values for a. This will be
determined using asymptotics, and the appropriate expansion of the solution
for small δ is

y(t) ∼ ys + δ y(t) + · · · . (3.103)

If it is found that limt→∞ y = 0, no matter what we pick for a, then the
steady-state is asymptotically stable (to small perturbations). This approach
is called a linear stability analysis and it will be our standard method for
deciding if a steady-state is stable. Note that unlike the other two methods,
the perturbation approach is not capable, except for very simple problems,
to determine if the steady-state is globally asymptotically stable. For this to
hold we would need to prove convergence for all initial values, and not just
those close to the steady-state.

Substituting (3.103) into (3.101), and using Taylor’s theorem, one finds
that
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Figure 3.10 As given in (3.102), the initial
conditions used in the linearized stability analy-
sis are taken to be within a O(δ) region around
the steady-state solution ys.

d

dt
(ys + δ y(t) + · · · ) = F (ys + δ y(t) + · · · )

= F (ys) + A (δ y(t) + · · · ) + · · · , (3.104)

where A = F′(ys) is the Jacobian matrix for F. More explicitly

A =



∂F1

∂y1

∂F1

∂y2
. . .

∂F1

∂yn

∂F2

∂y1

∂F2

∂y2
. . .

∂F2

∂yn

...
...

...

∂Fn

∂y1

∂Fn

∂y2
. . .

∂Fn

∂yn


, (3.105)

where the derivatives in the above matrix are evaluated at ys. From the O(δ)
terms in (3.104) and (3.102), it follows that

d

dt
y = Ay, (3.106)

where
y(0) = a. (3.107)

The solution is found by assuming that y = xert. Substituting this into
(3.106), the problem reduces to solving

Ax = rx. (3.108)

This is an eigenvalue problem, where r is the eigenvalue and x is the asso-
ciated eigenvector. With this, the values for r are determined by solving the
characteristic equation

det(A− rI) = 0, (3.109)

where I is the identity matrix. Given a value of r, the eigenvector is then
determined by solving (A− rI)x = 0.
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In the case when A has n distinct eigenvalues r1, r2, . . . , rn, with corre-
sponding eigenvectors x1,x2, . . . ,xn, then the general solution of (3.106) has
the form

y = α1x1e
r1t + α2x2e

r2t + · · ·+ αnxne
rnt, (3.110)

where α1, α2, . . . , αn are arbitrary constants. The latter are determined from
the initial condition (3.107). However, it is not necessary to calculate their
values as we are only interested in the time-dependence of the solution. In
particular, from (3.110), it follows that y → 0 as t → ∞ if Re(ri) < 0, ∀i.
However, if even one eigenvalue has Re(ri) > 0 then it is possible to find
values for a so y is unbounded as t→∞.

If A does not have n distinct eigenvalues, then the general solution contains
ert terms as well as those of the form tkert, where k is a positive integer.
Consequently, the conclusion is the same, which is that y → 0 as t → ∞
if Re(ri) < 0, ∀i. Moreover, if there is an eigenvalue with Re(ri) > 0 then
y can become unbounded as t → ∞. These conclusions have been reached
without actually writing down the solution, which is possible because we only
need to know the time-dependence of the solution. Those interested in the
exact formula, in the case of when there are not n distinct eigenvalues, should
consult Braun [1993].

The discussion in the previous paragraphs gives rise to the following result.

Theorem 3.2. The steady-state ys is asymptotically stable if all of the eigen-
values of A satisfy Re(r) < 0, and it is unstable if even one eigenvalue has
Re(r) > 0.

As will become evident in the following examples, the eigenvalues contain
more information than just asymptotic stability.

Examples

1. We begin with the Michaelis-Menten reaction, and the equations of motion
in this case are

ds

dτ
= −s+ (µ+ s)c, (3.111)

ε
dc

dτ
= s− (κ+ s)c. (3.112)

In this example, y = (s, c)T ,

F =

 −s+ (µ+ s)c

1
ε

(s− (κ+ s)c)

 ,

and, from (3.105),
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A =

 −1 + c µ+ s

1
ε
(1− c) −1

ε
(κ+ s)

 . (3.113)

Setting s′ = c′ = 0 in (3.111), (3.112) one finds that the only steady-state is
ss = cs = 0. Substituting this into (3.113) yields

A =

−1 µ

1
ε

κ

ε

 .

The eigenvalues are found by solving det(A − rI) = 0, which reduces to
solving the quadratic equation εr2 + (κ+ ε)r + κ− µ = 0. From this we get
the solutions

r± =
1
2ε

(
−(κ+ ε)±

√
(κ+ ε)2 − 4ε(κ− µ)

)
.

Because κ − µ > 0 it follows that Re(r±) < 0. Therefore, from the above
theorem, the steady-state (ss, cs) = (0, 0) is asymptotically stable. �

2. Suppose the system to solve is

du

dt
= v, (3.114)

dv

dt
= −v − αu(1− u), (3.115)

where α is nonzero. In this example, y = (u, v)T ,

F =

(
v

−v − αu(1− u)

)
,

and, from (3.105),

A =

(
0 1

2u− α −1

)
.

Setting u′ = v′ = 0, the steady-states are found to be (us, vs) = (0, 0) and
(us, vs) = (1, 0). In either case, the eigenvalue equation det(A − rI) = 0
reduces to solving r2 + r + α(1− 2us) = 0. From this we get the solutions

r± =
1
2

(
−1±

√
1− 4α(1− 2us)

)
. (3.116)

Now, for stability it is required that limt→∞ ert = 0 for both r values given
in (3.116). Given that Re(r−) ≤ Re(r+), then the stability requirement is
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Figure 3.11 Numerical solution of (3.114), (3.115) using different starting points.
In the calculations, α = 1 so the asymptotically stable steady-state is (u, v) = (0, 0).
Also, the dashed curves are the two nullclines.

Re(r+) < 0. For the steady-state (us, vs) = (0, 0), r+ = 1
2 (−1 +

√
1− 4α).

Consequently, this steady-state is asymptotically stable if α > 0, and it is un-
stable if α < 0. For the steady-state (us, vs) = (1, 0), r+ = 1

2 (−1+
√

1 + 4α).
This is asymptotically stable if α < 0, and it is unstable if α > 0. These con-
clusions are based on the assumption that the initial condition starts near the
steady-state. To illustrate what happens when this does not happen, three so-
lution curves are shown in Figure 3.11 for α = 1, using initial conditions that
are not near the asymptotically stable steady-state (us, vs) = (0, 0). Although
two of the solutions do end up converging to the steady-state, one does not. �

3. As a third example we consider the system

du

dt
= −v, (3.117)

ε
dv

dt
= u+ λ(v − v3/3). (3.118)

It is assumed ε is positive and λ is nonzero. This is a well-known problem
related to the van der Pol equation. Setting u′ = v′ = 0, the steady-state
is found to be (us, vs) = (0, 0). With this, and carrying out the required
differentiations, it is found that

A =

 0 −1

1
ε

λ

3ε

 .

The resulting eigenvalues are

r± =
1
2ε

(
λ±

√
λ2 − 4ε

)
. (3.119)
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Now, for stability it is required that Re(r±) < 0, and so the steady-state
(us, vs) = (0, 0) is asymptotically stable if λ < 0 and unstable if λ > 0.

Up to this point this example appears to be very similar to the previous
one. However, there is an important difference in how the steady-state goes
unstable. In the last example the steady-state (us, vs) = (0, 0) went unstable
because r+ switched from negative to positive as α passed through zero. In the
current example, when λ is close to zero, the solutions in (3.119) are complex
valued. The steady-state goes unstable, as λ goes from negative to positive,
because r+ and r− both move from the left half-plane, where Re(r) < 0, into
the right half-plane, where Re(r) > 0, as λ passes through zero. Moreover,
at λ = 0, d

dλRe(r) 6= 0. This is called a Hopf bifurcation. This has interesting
repercussions in how the solution behaves when λ > 0, and exactly what it
does do is considered next.

A sketch of the basic properties of the solution in the phase plane is given
in Figure 3.12. The u-nullcline is a vertical line passing through the origin,
while the v-nullcline is the cubic −λ(v − v3/3). Both are shown in the fig-
ure with dashed curves. The small arrows indicate the slope as determined
from dv

du , with the arrowheads showing the direction of the solution as time
increases. From this it is possible to give a rough description of the solu-
tion curve assuming ε << 1. As an example, suppose the initial condition
corresponds to the point a in the figure. Because ε is small, the v equation
in (3.118) will move very quickly to reach a quasi-steady-state. This means
the solution will move almost immediately to the v-nullcline, and given the
direction of the arrows, this means it will move towards point b. Once there
the solution will move upwards, following the v-nullcline very closely, until
it reaches point c. It must still move upwards, but the v equation requires it
to stay near the v-nullcline. The only choice is for the solution to move from
c over to d. Once there it then moves down, following the v-nullcline very
closely, until it reaches point e. It must continue moving downward, but will

-2 -1 0 1 2
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ax
is
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Figure 3.12 Phase plane and direction fields for Example 3, in the case of when
λ > 0.
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Figure 3.13 Numerical solution of (3.114), (3.115) using different starting points.
In the calculations, λ = 1. Also, the dashed curves are the two nullclines.

stay near the v-nullcline. This means the solution will head towards point b,
and once there the whole process repeats itself. The result is that the solution
converges to a closed circuit that encloses the unstable steady-state solution.
This is known as a limit cycle. To reinforce this conclusion, the numerical
solution of the problem is given in Figure 3.13. Two different starting points
are used, one inside and the other outside the limit cycle, and both converge
to the limit cycle. A somewhat different perspective is shown in Figure 3.14,
which shows the solution trajectory with the time variable given explicitly.
�
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Figure 3.14 Numerical solution of (3.114), (3.115) with λ = 1. The initial condition
is (u, v) = (0, 1.5) and ε = 0.01.
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Theorem 3.2 leaves open what happens if there are a pair of eigenvalues
that are complex conjugates with Re(r) = 0. In such situations the nonlinear
terms that were left off in the Taylor series approximation (3.104) must be
considered. There are very few general formulas for such cases, and it is
usually necessary to work out each problem individually. This can be done
using a multiple scale analysis (Holmes [1995]), or else using more general
analytical methods (Hale and Kocak [1996]).

3.7 Oscillators

The Michaelis-Menten reactions resulted in the solution converging, with lit-
tle fanfare, to the steady-state solution of the system. It not uncommon for
nonlinear systems to have multiple steady-states, and to have solutions that
show periodic behavior. Examples of these situations were studied in the
previous section. We are going to investigate an application of this material
and, specifically, look at the existence of periodic solutions to a particular
chemical system.

The idea of a chemical oscillator was not accepted easily, and the first
paper reporting such a system generated more articles devoted to proving
it wrong than trying to understand how it works. This is also true for the
most well-known oscillator, the Belousov-Zhabotinskii (BZ) reaction. This
was discovered by B. P. Belousov when studying the Krebs cycle. He found
that a solution of citric acid in water, with acidified bromate as the oxidant
and yellow ceric ions as the catalyst, alternated in color, from yellow to clear,
approximately every minute and did this for an hour. His suggestion that
this was a form of chemical oscillator was not accepted at the time because it

Figure 3.15 Color changes in a chemical oscillator. These are frames from a video
recording of the experiment, the time of the respective frame, from left to right, is 20
sec, 28 sec, 31 sec, and 38 sec (Bodner et al. [2009]).
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was believed that oscillations in closed homogeneous systems were impossible
because that would imply that the reaction did not go smoothly to a ther-
modynamic equilibrium. About ten years later, A. M. Zhabotinskii expanded
on Belousov’s research and the work was presented at the 1968 Symposium
on Biological and Biochemical Oscillators in Prague. Not unexpectedly, their
system has become known as the BZ reaction. Since their early work many
other chemical oscillators have been found, and one is shown in Figure 3.15.
In this particular experiment, the system alternates between three states:
clear, blue, and amber. As with many such oscillators, the exact mechanism
is unknown.

The most widely accepted model for the BZ reaction is due to Field, Körös,
and Noyes (Field et al. [1972], Field and Noyes [1974]). Their original formu-
lation contained eleven reactions involving 12 chemical species. It is possible
to reduce this system to five reactions, and they are

A+ Y → X + P,

X + Y → 2P,
A+X → 2X + 2Z,

2X → A+ P,

B + Z → 1
2
fY.

The chemicals involved here are bromous acid (X), bromide (Y), cerium-4
(Z), bromate (A), an organic species (B), and a product P. The two reactions
that stand out are the third because it is autocatalytic, and the last because
it involves a rather unusual stoichiometric coefficient. As will be seen below,
the parameter f plays an important role in producing the oscillations in
the solution. This reduced model is often called the Oregonator, due to the
location of Field and Noyes when they first derived it.

There are two additional simplifying assumptions made in the Oregonator
description. Namely, in the experiment the concentrations of A and B are
so large in comparison to the other chemicals that it is assumed they are
constant during the reaction. With this the Law of Mass Action produces
the following kinetic equations,

dX

dt
= k1AY − k2XY + k3AX − 2k4X

2,

dY

dt
= −k1AY − k2XY +

1
2
fk5BZ,

dZ

dt
= 2k3AX − k5BZ.

To nondimensionalize the problem we take X = Xcx, Y = Ycy, Z = Zcz,
and t = tcτ , where Xc = k3A/(2k4), Yc = k3A/k2, Zc = (k3A)2/(k4k5B),
and tc = 1/(k5B). In this case the above equations become
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εx′ = αy − xy + x(1− x), (3.120)
δy′ = −αy − xy + fz, (3.121)
z′ = x− z, (3.122)

where ε = 4×10−2, α = 8×10−4, and δ = 4×10−4. We will take advantage of
the small values of these three parameters in constructing an approximation
of the solution.

The objective here is to understand how the species in the reactions are
able to produce sustained oscillations over a long period of time. Although
we have the tools to handle all three equations, we have learned something
from the Michaelis-Menten reaction that enables us to simplify the situation a
bit. The very small value of δ, which multiplies y′, means that this particular
equation reaches a quasi-steady-state very quickly compared to the other two
equations. Using this observation we have that y = fz/(α+x). With this the
equations of motion reduce to

εx′ = x(1− x) +
α− x

α+ x
fz, (3.123)

z′ = x− z. (3.124)

It is this system of equations that we will analyze. In this sense we will be
constructing an approximation that is the outer solution to (3.120) - (3.122).

The question arises as to why the QSSA is not also applied to (3.123),
which would reduce the entire system done to a single equation. This is an
example that illustrates that some care is needed when using the QSSA. As
we will see shortly, even though x tries to reach a quasi-steady-state, there are
values for the parameter f for which the equation does not have the capability
to reach a steady-state. The solution has to repeatedly reposition itself, trying
to maintain a quasi-steady-state, and this gives rise to a pronounced non-
steady behavior in the solution.

3.7.1 Stability

The first step is to determine the steady-states. Setting x′ = 0 and z′ = 0
one finds two solutions, (xs, zs) = (0, 0) and (xs, zs) = (x̄, x̄), where

x̄ =
1
2

[
−κ+

√
κ2 + 4α(1 + f)

]
, (3.125)

for κ = α+ f − 1.
To determine the stability properties of the steady-states we will use the ge-

ometric argument. The most difficult step for this is to sketch the x-nullcline,
which corresponds to the curve
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z = −x(1− x)
α+ x

(α− x)f
. (3.126)

A rough sketch can be made by making use of the fact that α is very small,
while x ranges over the interval 0 ≤ x <∞. Except when x is near α, we can
use the approximation α± x ≈ ±x. With this (3.126) reduces to

z ≈ 1
f
x(1− x). (3.127)

This is simply a quadratic as shown in Figure 3.16. For x near α then (3.126)
reduces to

z ≈ − 2αx
(α− x)f

. (3.128)

This hyperbola is also shown in Figure 3.16. With this it is possible to sketch
the x-nullcline. Namely, for x near α the curve is given in (3.128), and every-
where else it is given in (3.127). A comparison between these approximations
and the exact curve is given in Figure 3.16.

The above approximations for the x-nullcline make it easy to estimate
where the critical points are located. For example, the local minimum is near
where the two approximation curves intersect. Equating (3.127) and (3.128),
we have that x ≈ 3α. Similarly, the local maximum comes from the quadratic
(3.128), and this is therefore located at x ≈ 1

2 . Both of these values are rough
estimates, and more accurate approximations will be derived shortly. One
last point to make here is that the value of α used in Figure 3.16 is larger
than the value for the BZ system. This was done to make the characteristics
of the curve more apparent in the plot because when using the actual value
the three curves are so close that it is not possible to distinguish among them
graphically.

To use the geometric argument the value of f needs to be specified. We will
consider two cases, and the first is f = 1

4 . The resulting phase plane diagram
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Figure 3.16 The x-nullcline (3.126) is shown along with its quadratic approxima-
tion, (3.127), and its hyperbolic approximation, (3.128). For this example, f = 1 and
α = 4× 10−3.
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Figure 3.17 Phase plane and direction fields for (3.123), (3.124) when f = 1
4 .

is given in Figure 3.17. The two nullclines are shown, as are the direction
fields. To describe the trajectory of the solution suppose the initial condition
corresponds to the point a in the figure. Because ε is small, the x equation
in (3.118) will move very quickly to reach a quasi-steady-state. This means
the solution will move almost immediately to the x-nullcline, and given the
direction of the arrows, this means it will move towards point b. Once there
the solution will move upwards, following the x-nullcline very closely, until it
reaches point c. Once there it is at the steady-state and will therefore remain
at this location. To reinforce this conclusion, the numerical solution of the
problem is given in Figure 3.18.

The convergence of the solution to the steady-state occurs when f = 1
4

because the nullclines intersect at a point that the solution is able to reach. To
explain what this means we consider the case of when f = 3

4 . The phase plane,
and direction fields, are shown in Figure 3.19. As before, starting at point
a, the solution will move very quickly to point b. It will then move upwards,
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Figure 3.18 Numerical solution of (3.123), (3.124) in the case of f = 1
4 . The initial

condition is (x, z) = (0.5, 0).
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Figure 3.19 Phase plane and direction fields for (3.123), (3.124) when f = 3
4 .

following the x-nullcline very closely, and will continue until it reaches point
c. It cannot continue following this segment of the x-nullcline because the
direction field points upward. So, it leaves the nullcline and moves leftward
until it again intersects the x-nullcline, which is point d. Once there it follows
the nullcline down to point e. It cannot follow this segment of the x-nullcline
as the direction field points downward, and so it will move quickly over to
the x-nullcline near point b. Once there the whole process repeats, and what
results is a limit cycle. To reinforce this conclusion, the numerical solution of
the problem is given in Figure 3.20.

One of the more apparent differences between the phase planes in Figures
3.17 and 3.19 is where the two nullclines intersect. This is important as this
location determines the stability of the steady-state. If the value of f is such
that the nullclines intersect between the points e and c, as in Figure 3.19,
then the resulting steady-state is unstable. To determine the values for f ,
note that the two nullclines intersect, at a nonzero value, when the following
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Figure 3.20 Numerical solution of (3.123), (3.124) in the case of f = 3
4 . The initial

condition is (x, z) = (0.5, 0).
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holds
− (1− x)

α+ x

(α− x)f
= 1. (3.129)

As shown in Exercise 3.19, for small α, the point e corresponds to x ∼
(1 +

√
2)α. Consequently the two nullclines intersect at the point e when

f ∼ 1 +
√

2. Using a similar analysis one finds that they intersect at point
c when f ∼ 1

2 . Therefore, our conclusion is that the nonzero steady-state is
unstable if 1

2 < f < 1 +
√

2, and for these values of f the solution forms a
limit cycle similar to the one shown in Figure 3.20. For the other positive
values of f the steady-state is asymptotically stable.

Exercises

3.1. This problem considers various aspects of chemical reactions.
(a) What is the simplest reaction that has rate r = kAB3, and conservation

law A− 3B − 4C = constant?
(b) What is the simplest reaction that has rate r = kAB3, and conservation

law 3A+B = constant?
(c) Suppose that the rate constants for two different reactions have the same

dimensions. What relationship must hold between the stoichiometric co-
efficients of the two reactions?

3.2. The equations below come from applying the Law of Mass Action to two
reactions.

X ′ = aX + bY Z,

Y ′ = cX + bY Z,

Z ′ = cX + dY Z.

(a) Find the two reactions and determine how the coefficients a, b, c, d are
related to each other, if at all. Assume a, b, c, d are nonzero, but they can
be positive or negative.

(b) Find the conservation law(s) for these reactions.

3.3. The equations below come from applying the Law of Mass Action to two
reactions.

X ′ = aXY,

Y ′ = bY Z + cZ,

Z ′ = dY Z + eZ.

(a) Find the two reactions and determine how the coefficients a, b, c, d are
related to each other, if at all. Assume a, b, c, d, e are nonzero, but they
can be positive or negative.
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Figure 3.21 Figure for Exercise 3.4.

(b) Find the conservation law(s) for these reactions.

3.4. A well-studied family of reactions involves molecular hydrogen H2 com-
bining with a diatomic halogen X2 to produce two molecules of HX. For
example, one can have X be fluorine (F) or iodine (I). A sequence of steps
that lead to the combination of H2 with X2 to produce two HX’s is shown in
Figure 3.21.

(a) Write down three reactions corresponding to these steps. Assume the steps
are irreversible.

(b) Derive the rate equations for the five species involved in this sequence of
steps.

(c) Find two independent conservation laws using your equations from part
(b). Provide a reason why the laws are independent.

(d) Using reaction analysis and your answer from part (a), determine the
steady-state(s). Make sure to explain your reasoning. Also, assume that
only H2 and X2 have nonzero concentrations at the start.

3.5. Some enzymes work by sequentially binding molecules, and an example
is shown in Figure 3.22. The idea here is that the enzyme E has a location
that has a high affinity for binding X, and the resulting molecule then binds
Y . The last step is the dissociation of the new product molecule Y X from
E.

(a) Write down three reactions corresponding to these steps. Assume the steps
are irreversible.

(b) Derive the rate equations for the six species involved in this sequence of
steps.

(c) Find three independent conservation laws using your equations from part
(b). Provide a reason why the laws are independent.

(d) Using your reactions in part (a) determine the steady-state(s). Assume
that only X, Y , and E have nonzero concentrations at the start. Make
sure to explain your reasoning.
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Figure 3.22 Figure for Exercise 3.5.
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3.6. The conclusion in Section 3.6.2 concerning the steady-state does not
appear to agree exactly with the conclusions in Section 3.6.1. Explain what
is missing, or assumed, in Section 3.6.2 that is the cause of this disagreement.

3.7. The surface of a solid can act as a catalyst for certain gases. In the Eley-
Rideal mechanism it is assumed that a species A in the gas attaches to a site
on the surface, forming a complex C on the surface. The assumed reaction is
A+S 
 C. Another species B in the gas then reacts with a surface complex
to release a product P into the gas. The reaction is B + C → P .

(a) Write down the kinetic equation for each species.
(b) Find three independent conservation laws and reduce the kinetic equations

down to two, for S and C.

3.8. One method to reduce the spread of a disease is to vaccinate those who
are susceptible. A model that attempts to account for the vaccination of the
susceptible group is

S + I → 2I,
I → R,

S → R,

R→ S.

Here S, I, and R are the same groups used in the SIR model described in
Section 3.1.3. Assume in the problem that S(0) = S0, I(0) = I0, R(0) = 0,
where S0 and I0 are positive.

(a) For each reaction give a sentence or two that explains what assumptions
were made to produce the given reaction. Make sure to identify the reac-
tion(s) used to account for vaccinations.

(b) Using the Law of Mass Action, write down the initial value problem that
comes from the above reactions. After this use a conservation law to reduce
this to a problem for just S and I.

(c) Nondimensionalize the reduced problem in part (b), using N0 = S0 + I0
to scale both S and I. Use s and i as the nondimensional dependent vari-
ables. The final problem, including the initial conditions, should only con-
tain four nondimensional parameters. Identify which one is the vaccination
parameter.

(d) What are the steady-states for the scaled problem?
(e) Explain why the solution must satisfy 0 ≤ s ≤ 1 and 0 ≤ i ≤ 1. What re-

strictions, if any, do you need to impose on the nondimensional parameters
so the steady-states you found in part (d) satisfy these inequalities?

(f) One of the steady-states you found has is = 0. Under what conditions on
the nondimensional parameters is this steady-state asymptotically stable?

(g) One of the steady-states you found has is 6= 0, what is called an epidemic
equilibrium. Under what conditions on the nondimensional parameters is
this steady-state asymptotically stable?
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(h) With the long-term objective of keeping the number of infected individuals
down to a minimum, what conditions, if any, should be imposed on the
vaccination rate constant?

3.9. The Rozenzweig-MacArthur predator-prey model is

dS

dt
= λS − ηS − νS2 − µSP

1 + αS
,

dP

dt
=

βSP

1 + αS
− γP.

Because of the 1 + αS term these equations do not appear to be the direct
application of the Law of Mass Action. However, this term is similar to what
is produced for Michaelis-Menten after analyzing the initial layer. Derive a
reaction scheme that produces the above equations when one of the equations
is assumed to be at a quasi-steady-state.

3.10. A generalization of the SIR model described in Section 3.1.3 is

dS

dt
= −aSI + eR,

dI

dt
= −bI + cSI,

dR

dt
= dI − fR.

Assume that S(0) = S0, I(0) = I0, R(0) = 0, where S0 and I0 are positive.
Also, assume that the coefficients a, b, c, d, e, f are positive constants.

(a) Write the above equations in reaction form. Explain why the coefficients
a, b, c, d, e, f are not independent, and state what conditions they must
satisfy.

(b) For each reaction in (a) give a sentence or two that explains what physical
assumptions correspond to the given reaction.

3.11. This problem considers the dynamics of measles, and what strategy to
use for vaccinations. Using the same three groups as in the SIR model, the
model is

dS

dt
= m(S + I +R)− (βI +m)S,

dI

dt
= βIS − (m+ g)I,

dR

dt
= gI −mR.

This is known as the standard SIR model with vital dynamics. Assume that
S(0) = S0, I(0) = I0, R(0) = 0, where S0 and I0 are positive.

(a) Show that the above system of equations can be derived from the Law of
Mass Action. Do this by finding reactions that give rise to these equations.
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Also, assumptions are made about the rate constants to obtain these equa-
tions and you should make sure to state what these are. Finally, for each
reaction give a sentence or two that explains what assumptions were made
about the population to produce the given reaction.

(b) Use a conservation law to reduce the above system to a problem for just
S and I.

(c) Nondimensionalize the reduced problem in part (b), using N0 = S0 +
I0 to scale both S and I. The final problem should only contain three
nondimensional parameters, one of which will be in the initial conditions.
Also, use s and i as the nondimensional dependent variables. Explain why
the solution must satisfy 0 ≤ s ≤ 1 and 0 ≤ i ≤ 1.

(d) What are the steady-states for the problem in (c)? One of them is obtained
only if the parameters satisfy a certain inequality. Write this inequality as
v > 1 and relate v to the nondimensional parameters in your problem.

(e) One of the steady-states you found has is = 0. Under what conditions on
the parameters is this steady-state asymptotically stable?

(f) One of the steady-states you found has is 6= 0, what is called an epidemic
equilibrium. Under what conditions on the parameters is this steady-state
asymptotically stable?

(g) For measles m = 0.02, β = 1800, g = 100 (Engbert and Drepper [1994]).
Show that in this case the epidemic equilibrium is asymptotically stable.

(h) One strategy for eliminating measles is to vaccinate newborns. If p is the
proportion that are vaccinated then the S and R equations need to be
modified and they become S′ = (1 − p)m(S + I + R) − (βI +m)S,R′ =
pm(S + I + R) + gI −mR . By making the appropriate changes in your
earlier calculations determine what p must be so the epidemic equilibrium
is unstable. Note you do not need to rewrite everything you did in (b)-(d)
to answer this question.

(i) Use the result from (h) to explain why measles is so hard to eliminate.

3.12. In most diseases a person can be sick but not able to infect others. The
SIR model can be generalized to account for this by replacing the original
I group with E, which is the number of individuals who are sick but not
infectious, and I, which is now the number of individuals who are infectious.
This is known as the SIER model and the equations are

dS

dt
= µ(S + E + I +R)− (βI + µ)S,

dE

dt
= βIS − (µ+ σ)E,

dI

dt
= σE − (µ+ γ)I,

dR

dt
= γI − µR.
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Figure 3.23 Data for the hydrolysis of urea by the enzyme urease (Kryatov et al.
[2000]), where R = −S0/S′(0). In this graph, concentrations are measured in moles
and time is in seconds.

Assume that S(0) = S0, E(0) = E0, I(0) = 0, R(0) = 0, where S0 and I0 are
positive.

(a) Show that the above system of equations can be derived from the Law of
Mass Action. Do this by finding reactions that give rise to these equations.
Also, assumptions are made about the rate constants to obtain these equa-
tions and you should make sure to state what these are. Finally, for each
reaction give a sentence or two that explains what assumptions were made
about the population to produce the given reaction.

(b) Use a conservation law to reduce the above system to a problem for S, E,
and I.

(c) Nondimensionalize the reduced problem in part (b), using N0 = S0+E0 to
scale S, E, and I. The final problem should contain three nondimensional
parameters in the differential equations and one nondimensional param-
eter in the initial conditions. Also, use s, e, and i as the nondimensional
dependent variables. Explain why the solution must satisfy 0 ≤ s ≤ 1,
0 ≤ e ≤ 1, and 0 ≤ i ≤ 1.

(d) What are the steady-states for the problem in (c)? One of them is obtained
only if the parameters satisfy a certain inequality. Express this inequality
in terms of the dimensional parameters of the problem.

(e) One of the steady-states you found has i = 0. Under what conditions on
the parameters, if any, is this steady-state asymptotically stable?

3.13. Enzymatic reactions are characterized using vM and KM , as given in
(3.56). For example, values of these constants are standard entries in biochem-
istry tables, such as Schomburg and Stephan [1997]. This problem examines
how they are used in conjunction with experimental data.

(a) Assuming the QSSA is valid, show that

1
vM

(S0 +KM ) = − S0

S′(0)
.
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The graph of the left-hand side of the above equation, as a function of S0,
produces what is known as a Hanes-Woolf plot. Given the experimental
measurement of S0/S

′(0) then linear regression can be used to determine
1/vM and KM .

(b) One method for determining S′(0) is to measure S at time t = t1 and then
use the approximation

S′(0) ≈ S(t1)− S0

t1
.

In calculus this is known as a secant line approximation of the derivative
at t = 0. Ideally t1 should be small to guarantee the above approximation
is accurate. Explain why there is a lower limit on t1, which limits the
accuracy of the approximation. Use the perturbation solution to obtain an
approximation for this lower limit.

(c) Use the data in Figure 3.23 to estimate vM and KM .

3.14. Although trimolecular reactions are rare in the real world, it is not
uncommon to find trimerizations. These are reactions in which a product
is constructed using three reactant molecules of the same species, with an
effective overall reaction 3A→ products. This exercise explores how to obtain
this result using elementary reactions.

(a) One possible mechanism is

A+A 
 B,

A+B 
 C.

What are the resulting kinetics equations?
(b) Using the QSSA, and extreme parameter values, show how to reduce the

equations in part (a) to obtain the approximate equation C ′ = −kA3.

3.15. In applying the QSSA to Michaelis-Menten one finds that the product’s
concentration satisfies an equation of the form

dP

dt
=

aS

b+ S
,

where a and b are constants. It has been observed that in some reactions the
product appears to follow a rate equation more of the form

dP

dt
=

aSn

b+ Sn
.

In biochemistry this is known as Hill’s equation and n is the Hill coefficient.
This exercise explores how to obtain this result using the Law of Mass Action.

(a) One explanation is that n substrate molecules must get together with
the enzyme to construct the intermediate complex C. This is the idea
underlying cooperativity, and the reactions are
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nS + E 
 C,

C 
 P + E.

What are the resulting kinetic equations?
(b) Using the QSSA, and extreme parameter values, show how to reduce the

equations in part (a) to obtain Hill’s equation.
(c) The reactions in (a) are commonly assumed, but they require the unreal-

istic assumption that n+ 1 molecules collide to form C. A more plausible
explanation is they interact sequentially. For n = 3 the reactions are

S + E 
 C1,

S + C1 
 C2,

S + C2 
 P + E.

Using the QSSA, and extreme parameter values, show how to reduce the
kinetic equations to obtain Hill’s equation.

3.16. It is found experimentally that in the hydrogen-bromine reaction,
the rate for the overall reaction of producing HBr from H2 and Br2 is
r = kH2Br

1/2
2 . The implication is that the reaction is H2 + 1

2Br2 → HBr.
This exercise explores one of the proposals for how this reaction proceeds as
a sequence of elementary reactions. The assumption is

Br2 
 2Br,
Br +H2 
 HBr +H,

Br2 +H → HBr +Br.

(a) What are the resulting kinetics equations?
(b) Using the QSSA, and extreme parameter values, show how to reduce the

equations in part (a) to r = kH2Br
1/2
2 .

(c) It is found, using SI units, that k1 = 3.8 × 10−8, k−1 = 4.2 × 10−13,
k2 = 380, k−2 = 7.2× 109, and k3 = 9.6× 1010. Are your assumptions in
part (b) consistent with these values?

3.17. For the systems below, find the steady-states and determine if they are
asymptotically stable.

(a) s′ = c− s2

c′ = 1 + sc
(b) u′ = v − u

v′ = (2− u− v)(1 + v2)
(c) u′ = v

v′ = −α(1− u2)v + βu,
where α and β are positive constants.

3.18. The Schnakenberg model for a chemical oscillator consists of the fol-
lowing two rate equations
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Figure 3.24 Graphs for Exercise 3.19.

U ′ = µ∗ − k1UV
2,

V ′ = −k2V + k1UV
2,

where µ∗ is a positive constant.
(a) The ki terms come from the Law of Mass Action. Find the two reactions

that give rise to these three terms. For the record, the µ∗ term accounts
for a constant influx of U into the system.

(b) Show that the equations can be nondimensionalized to have the form

u′ = µ− uv2,

v′ = −v + uv2,

where µ is a positive constant.
(c) Using the equations from part (b), find the steady-state and show that it

is asymptotically stable if µ > 1 and it is unstable if µ < 1.
(d) Explain why the change in the stability as µ decreases, and passes through

µ = 1, has the properties of a Hopf bifurcation as described in Example 3
of Section 3.6.3.

3.19. The z-nullcline for (3.123), (3.124) is shown in Figure 3.24(a), and the
solution curves are shown in Figure 3.24(b).

(a) Assuming small α, find first term approximations for the coordinates of
the points e and c. Assume that f is independent of α.

(b) As in part (a), find first term approximations for the coordinates of the
points b and d. Note that the z-coordinate for d and c are the same, and
the z-coordinate for b and e are the same.

(c) Explain why the closer ε gets to zero, the more the points b, c, d, and e
determine the limit cycle, assuming there is a limit cycle solution.

(d) The solution curves in Figure 3.24(b) are for a small ε and α. Identify
which is x(t) and which is z(t). Also, locate the points b, c, d, and e in
this graph. With this derive approximations for the amplitudes of the two
functions.

(e) Explain why the x-coordinate of points c and e does not depend on f .
Find a two-term expansion, for small α, of the x coordinate for each of
these points. For each point, use (3.129) to find a two-term expansion for
f that results in the two nullclines intersecting. Use this to find a two-term
expansion for the interval for f that produces a limit cycle solution.



Chapter 4

Diffusion

4.1 Introduction

In the last chapter we examined how to use the kinetics of reactions to model
the rate of change of populations, or concentrations. We did not consider the
consequences of the motion or spatial transport of these populations. There
are multiple mechanisms involved with transport, and in this chapter we will
examine one of them, and it is the process of diffusion. A simple example of
diffusion arises when a perfume bottle is opened. Assuming the air is still,
the perfume molecules move through the air because of molecular diffusion.

One mechanism responsible for diffusion is Brownian motion. Although
the random microscopic movements associated with Brownian motion were
observed as early as 1785, the first significant scientific study began with
Robert Brown. In the summer of 1827 he made microscopic observations of
pollen granules suspended in water. What he saw surprised him as the tiny
granules were in constant motion, never appearing to slow or stop, and fol-
lowing irregular paths much like the one in Figure 4.1. Moreover, he found
that this motion was not caused by external influences such as light or con-
vection currents. He also quickly ruled out his first idea, which was that
the granules were somehow alive. However, the underlying reasons for the
movement remained elusive. It was not until the early 1900’s that the the-
oretical work of Einstein, and experimental work of Perrin, explained the
motion. What is happening is that the pollen granules, which are approxi-
mately 6µm in length, are under constant bombardment by the surrounding
water molecules. Although the latter are much smaller, having a diameter of
approximately 3×10−4 µm, there are many of them and they are responsible
for a very large number of random impacts on each granule. The irregular
nature of this forcing gives rise to the randomness of the motion. It is now
known that Brownian fluctuations are essential to widely diverse phenomena,
from passive transport of ions and nutrients for biological cells to models of
the stock market (Figure 4.2).

M.H. Holmes, Introduction to the Foundations of Applied Mathematics, 141
Texts in Applied Mathematics 56, DOI 10.1007/978-0-387-87765-5 4,
c© Springer Science+Business Media, LLC 2009
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Figure 4.1 The path taken by a
micron-sized particle due to Brow-
nian motion over a 2.2 sec interval.
The black bar is 10 µm (Blum et al.
[2006]).

If one starts with a large number of particles, each undergoing Brownian
motion, then over time the particles will tend to be spread throughout the
medium. This motion will result in particles in regions of higher concentration
to move into regions of lower concentration, and this process is called diffu-
sion. Thus, diffusion is a macroscopic manifestation of the Brownian motion
that is taking place on the microscopic level. This observation also identifies
our approach in modeling diffusion. We will start with random walks at the
microscopic scale and show how they can give rise to diffusion on the macro-
scopic scale. This differs from the more classic approach, considered later
in the chapter, of deriving the diffusion equation using a balance law. The
random walk approach provides an explanation of the possible underlying
mechanisms in diffusion, and so we will begin with it.

4.2 Random Walks and Brownian Motion

The rapid fluctuating movement of a molecule is the result of impacts with
the surrounding atoms and molecules. To construct a mathematical model
for this situation we will consider the motion to be one-dimensional. Specif-
ically, the molecules move back and forth along the x-axis. To account for
the randomness of the motion consider a single molecule that starts out at
x = 0. After a time step ∆t, the molecule moves a distance ∆x either to the
right or left and it moves in either direction with equal probability. One way
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Figure 4.2 The composite index for NASDAQ over a 12-month period.
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Figure 4.3 The first step in a random walk. In going from time step N = 0 to
N = 1, the molecule moves one unit to the right or left with equal probability.

to think of this is that the molecule has a coin, flips it, and based on whether
the outcome is heads or tails it moves left or right. A diagram illustrating
the choices, and outcomes, is shown in Figure 4.3. At time step N = 1 the
coin is again flipped and this determines whether the molecule will step left
or right at time level N = 2. The various positions that are possible when
starting at (x, t) = (0, 0) are shown in Figure 4.4. Also included in this figure
is the number of paths that are available to reach the respective point. For
example, to reach m = −1 at N = 3 there are three possible paths. Letting
L designate a left move, and R a right move, the three paths are LLR, LRL,
and RLL. It is also evident that this number is the sum of the paths for the
two adjacent positions, m = −2 and m = 0, at the previous time step.

Carrying out the above procedure the molecule moves back and forth on
the x-axis and the path it follows is called a random walk. One observation
concerning Figure 4.3 is that at any given time level not all spatial positions
are possible. For example, it is impossible for the molecule to be at x = 0
when N = 1, 3, 5, . . .. Also, each step in the random walk is independent of
the preceding one. This lack of memory is characteristic of what is known
as the Markov property. Finally, note that the number of paths shows more
than a passing resemblance to Pascal’s triangle. This connection will not be
used in what follows because we will be interested in generalizations of this
problem that do not have a Pascal’s triangle structure.

We want to keep track of the molecule’s position and given the way it
is determined it should not be unexpected that probabilistic methods are
needed. With this in mind, let w(m,N) be the probability that the molecule
is at x = m∆x after N time steps. The time steps have a fixed value ∆t, so,
after N steps t = N∆t. In preparation to calculating w it is worth stating a
few of the more interesting properties of this function that are evident from
Figure 4.4.

• Given any time level N , the points where w is nonzero are m = −N,−N+
2, . . . , N − 2, N . It is zero at all other values of m.

• The number of paths available to reach x = m∆x, at time step N , is equal
to the number of available paths to reach m−1, at time step N −1, added
to the number to reach m+ 1, at time step N − 1.
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This conclusion is a consequence of the observation that to be able to be
located at x = m∆x at t = N∆x, it is necessary to be located to either
x = (m+ 1)∆x or x = (m− 1)∆x at time t = (N − 1)∆x.

• Because all paths are equally likely,

w(m,N) =
number of paths from (x, t) = (0, 0) to (x, t) = (m∆x,N∆t)

total number of paths from t = 0 to t = N∆t
.

(4.1)
• The total number of paths from t = 0 to t = N∆t is 2N .

The reason this holds is that a particle has two potential paths to the next
time level. Hence, the total number of paths doubles with each time step.

• At each time step N the molecule must, with probability one, be located
somewhere along the x-axis. In other words,

∑N
m=−N w(m,N) = 1.

It is not difficult to write a computer program for a random walk, and to
use this to investigate what happens when one uses a rather large number of
time steps. Example paths are shown in Figure 4.5. The zig-zag nature of a
random walk is clearly seen in all four graphs, and as N increases the paths
show a large-scale variation in conjunction with the small-scale jagged motion
due to the random changes in direction. These are the same characteristics
seen in the NASDAQ curve in Figure 4.2.

Another point to make is that if the experiments in Figure 4.5 were
to be redone very different paths would likely appear. For example, when
N = 10, 000 there are 210,000 different possible paths so it is very unlikely
one would reproduce the curve shown in Figure 4.5. On the other hand, sup-
pose we ran a large number of random walks, each one starting at the same
location. This has been done in Figure 4.6 where 5000 different walks have
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Figure 4.4 The positions that are possible in the random walk are indicated by the
circles. In this diagram the molecule starts at m = 0, N = 0. The numbers next to
each circle are the number of unique paths that are available to reach that location,
when starting at m = 0 and N = 0. Also, N indicates the number of time steps and
m the spatial grid location.
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Figure 4.5 Examples of a random walk over successively longer time intervals.

been undertaken, all starting at m = 0. The paths, taken together, show a
distinctive spatial distribution. At the last time step, N = 100, the paths
have come together to form what looks like a bell curve (also known as a
normal or Gaussian distribution). This shows that an individual path will
likely be in the vicinity of m = 0. For example, approximately 400 paths
have ended up in the histogram bin containing m = 0. However, there are
paths that manage to be rather far from the center although none of them
have reached the maximum possible distance of m = ±100. This is not really
expected using only 5000 paths because the probability of being at the ex-
treme right, or left, is 2−99. Anyway, the function describing the distribution,
or concentration, seen in this figure is of particular interest and below we
derive a mathematical formula for it.

4.2.1 Calculating w(m, N)

As stated in (4.1), because all paths are equally likely, the probability of being
located at x = m∆x at time step N is equal to the number of unique paths
available to reach this point divided by the total number of paths available to
reach time level N . For example, in Figure 4.4, there are 6 paths that are able
to reach x = 0 at time step N = 4. Because the total number of paths is 24
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it follows that w(0, 4) = 6/24 = 3
8 . We will use this observation to determine

the general formula for w(m,N).
To reach any point after N time steps requires a sequence of left and right

spatial steps. If q is the number of left steps then the number of right steps is
N−q. One way to think of this is that you have q of the L’s, along withN−q of
the R’s, and these are going to be arranged in an N -vector. Picking one of the
L′s, there areN positions it can be placed in the vector, while for the second L
there areN−1 positions, etc. The result is that the total number of choices we
can make is N(N−1)(N−2) · · · (N−q+1). For example, in regard to Figure
4.4, reaching m = 0 at N = 4 requires two L’s and two R’s. The unique order-
ings we can have are LLRR,LRLR,LRRL,RLLR,RLLR,RRLL. However,
because N = 4 and q = 2 our formula states that the number should be
4× 3 = 12. The reason for the discrepancy is because we have considered the
L’s as distinct from each other. Thinking this way we would conclude that
two L’s, say L1 and L2, could produce two different paths, L1L2 and L2L1.
They do not and therefore we must divide by 2!, or in the general case by q!.
Because there are 2N paths in total it therefore follows that

w(m,N) =
N(N − 1)(N − 2) · · · (N − q + 1)

2Nq!

=
N !

2Nq!(N − q)!
for m = −N,−N + 2, . . . , N − 2, N. (4.2)
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Figure 4.6 The outcome of 5, 000 random walks, all starting at x = 0, over 100 time
steps. The lower graph shows the spatial distribution of the particles at the last time
step N = 100.
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Figure 4.7 The nonzero values of w(m, N), as given in (4.2), as a function of m.

To relate the value of q with the spatial position note that if there are q moves
to the left, andN−q moves to the right, then x = −q∆x+(N−q)∆x. Because
we also have that x = m∆x it follows that m = N − 2q, or equivalently,

q =
1
2
(N −m). (4.3)

We have done what we set out to do, which is to produce a formula for
w(m,N). It is not obvious what a plot of w would look like although we can
anticipate some of the major features. Because it is equally likely to move
left or right the plot of w, as a function of m, should be symmetric about
m = 0. For the same reason, it is expected that w decreases with distance
from m = 0. To support these observations, w is plotted in Figure 4.7 for two
values of N . It shows the expected behavior but also notice the spreading of
the peak as N increases and the corresponding drop in the maximum value
at m = 0. This is very typical for a solution that is describing a process
controlled by diffusion. It is also not a coincidence that the curves in Figure
4.7 have the same structure as the distribution curve in Figure 4.6. We will
return to this observation when the point source solution is discussed later
in the chapter.

Random walks are used in a wide variety of applications and because of
this the terminology varies a bit with the area. For example, they are used
in gas dynamics to describe the motion of atoms in a gas. Such atoms do not
travel in a straight line, but rather undergo random changes of direction due
to frequent collisions with other atoms. This is modeled as a random walk
where the spatial jump ∆x is called the mean free path and it is a measure
of the distance that an atom travels between two successive collisions. As
an estimate of this distance, at room temperature the mean free path in air
is about 10−7 m and a typical molecule undergoes up to 109 collisions per
second. This small spatial scale, and the enormous number of collisions, are
the basis for the continuous limit considered later.
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4.2.2 Large N Approximation

Given the regular structure of the function in Figure 4.7 it would be worth-
while to see if we can simplify our formula to make it a bit easier to work
with. The assumption we need to pull this off is that N is large. If this is the
case we can make use of Stirling’s approximation for the factorial, which is

n! ∼ e−nnn
√

2πn
(

1 +
1

12n
+O

(
1
n2

))
. (4.4)

It will be assumed that not only is N large, but the number of left moves and
the number of right moves are also large. Using the first term in Stirling’s
approximation for each of the factorials in (4.2) we get

w(m,N) ∼ NN

2Nqq(N − q)N−q

√
N

2πq(N − q)
.

Recalling that q = (N − m)/2 and N − q = (N + m)/2, then the above
approximation can be written as

w(m,N) ∼

√
2N

π(N +m)(N −m)
Q, (4.5)

where

Q =
(

N

N +m

)(N+m)/2(
N

N −m

)(N−m)/2

. (4.6)

We can simplify Q using the assumption that N is large, or more specifically
that m/N is small. Both factors in (4.6), for large N , fall into the category
of an indeterminate form of type 1∞. In calculus the method used to analyze
such expressions involves taking the natural log of the function. Doing this,
and using the Taylor expansion of ln(1+x) given in Table 2.1, we obtain the
following

ln(Q) =
N +m

2
ln
(

N

N +m

)
+
N −m

2
ln
(

N

N −m

)
= −N +m

2
ln
(
1 +

m

N

)
− N −m

2
ln
(
1− m

N

)
∼ −N +m

2

[
m

N
− 1

2

(m
N

)2

+ . . .

]
− N −m

2

[
−m
N
− 1

2

(m
N

)2

+ . . .

]
= −1

2
m2

N
+ . . . . (4.7)

With this we conclude that, for small m/N , the nonzero values of w can be
approximated as
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Figure 4.8 Comparison between the exact nonzero values of w(m, N) calculated
using (4.2), and the approximation in (4.8).

w(m,N) ∼
√

2
πN

e−m2/(2N). (4.8)

This expression is significantly simpler than (4.2). To examine the accuracy
of this approximation, in Figure 4.8 this function is plotted along with the
exact values for two different values of N . It is seen that even in the case of
N = 10 the approximation is rather good, and it improves significantly when
N is larger. It is also evident that (4.8) provides a reasonable approximation
on the far left and right, regions where m/N is not particularly small.

4.3 Continuous Limit

As formulated in the last section, a random walk involves discrete steps in
space and time. We are now going to investigate the situation when the num-
ber of time steps becomes so large that the process is effectively a continuous
function of time. As we do this it will be necessary to adjust the spatial
stepsize ∆x, but we will wait and let the analysis tell us just how to do this.
To set the stage, we fix the time interval, and so, it is assumed 0 ≤ t ≤ T .
Of interest is what happens to the random walk solution as we increase the
number of time steps from t = 0 to t = T . One way to think about this is
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that the time steps become so small that the motion takes on the appearance
of a continuous function, one that is a continuous function of time and not
one that is making discrete jumps.

The starting point is Figure 4.4. As pointed out earlier, for this grid the
number of paths available to reach x = m∆x at time step N is equal to the
number of the paths to reach m− 1 added to the number to reach m+ 1 at
time step N − 1. Writing this as

paths for (m,N) = paths for (m− 1, N − 1) + paths for (m+ 1, N − 1),

then we have that

paths for (m,N)
2N

=
paths for (m− 1, N − 1)

2N
+

paths for (m+ 1, N − 1)
2N

=
1
2

paths for (m− 1, N − 1)
2N−1

+
1
2

paths for (m+ 1, N − 1)
2N−1

.

Using the function w(m,N), the above equation takes the form

w(m,N) =
1
2
w(m− 1, N − 1) +

1
2
w(m+ 1, N − 1). (4.9)

This important result gives us a formula for the probability function, and it
is the basis for what is called a master equation for a stochastic process.

To switch from m,N to x, t recall that x = m∆x. Also, if we are using
N time steps to reach t = T then the size of each step is ∆t = T/N . By
introducing the function u(x, t) = w(m,N), then (4.9) can be written as

2u(x, t) = u(x−∆x, t−∆t) + u(x+∆x, t−∆t). (4.10)

It remains to use Taylor’s theorem for small ∆x,∆t. Expanding (4.10) up to
the second-order yields the following

2u = u−∆xux −∆tut +
1
2
(
∆x2uxx + 2∆x∆tuxt +∆t2utt

)
+ · · ·

+ u+∆xux −∆tut +
1
2
(
∆x2uxx − 2∆x∆tuxt +∆t2utt

)
+ · · ·

= 2u− 2∆tut +∆x2uxx +∆t2utt + · · · .

In the above expression u and its derivatives are evaluated at (x, t). Rear-
ranging things a bit we obtain

ut −
(∆x)2

2∆t
uxx −

∆t

2
utt + · · · = 0. (4.11)

The question is, what equation is obtained for small ∆x and ∆t? As with
the Goldilocks story, there are three possibilities and they are based on what
happens to the ratio (∆x)2/∆t as ∆x and ∆t approach zero. If (∆x)2/∆t
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becomes unbounded then the first term approximation we obtain from (4.11)
is uxx = 0. Given that u → 0 as x → ±∞ we conclude that u = 0. For
the other extreme, when (∆x)2/∆t → 0 as ∆x and ∆t approach zero, we
obtain ut = 0. This equation only applies to the steady-state and is unable
to describe the time-dependent changes seen in the solution. The limit that
is “just right,” what mathematicians call the distinguished limit, is the case
of when (∆x)2/∆t approaches a positive value as ∆x and ∆t approach zero.
For this reason, we will assume

D =
(∆x)2

2∆t
(4.12)

remains constant in the limit. In this case, we conclude from (4.11) and (4.12)
that

ut = Duxx , (4.13)

where the constant D is known as the diffusion coefficient for the problem.
This is the diffusion equation. As derived, u(x, t) is a continuous approxima-
tion for the nonzero values of w(m,N). One of the more interesting aspects
of this is that it effectively provides a smooth macroscopic description of the
random microscopic movements of the molecules.

4.3.1 What Does D Signify?

The only parameter appearing in the diffusion equation is D, and its value
signifies the strength or weakness of the underlying diffusion process. From
its definition in (4.12), it is seen that the larger the value of D the farther
the molecules move in a given time step. In a medium where the molecules
are more closely packed, so the random walk steps are not particularly large,
the diffusion coefficient is not as big as it would be in a more dilute mixture.
It is not surprising therefore that for a gas diffusing in air D ≈ 10−5 m2/sec
while for a soluble material in water D ≈ 10−9 m2/sec.

Mean Free Path
One view of D is provided by the Einstein-Smoluchowski equation used in gas
dynamics. In this formulation, the spatial jump ∆x is taken to be the average
distance λ that the molecule travels between collisions, what is known as the
mean free path of the molecule. In conjunction with this, ∆t is assumed to
be equal to the average time τ between collisions. With this the diffusion
coefficient (4.12) is written as

D =
λ2

2τ
. (4.14)
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Figure 4.9 Interstitial diffusion in a solid. The atoms of the solid form a lattice,
and the smaller interstitial atoms move through the lattice by undergoing a random
walk.

This can be used to experimentally determine the value of D. For example,
at room temperature, O2 is found to have a mean free path of 80 nm and
an average speed v of approximately 400 m/sec. Assuming v = λ/τ then
D = 2 × 10−5 m2/sec. Perhaps a more interesting observation is that τ =
λ/v = 2×10−10 sec, which means a molecule of O2 undergoes 5×109 collisions
per second. It should be pointed out that this is for one spatial dimension.
As will be explained in Section 4.6, the three dimensional version of (4.14) is
D = λ2/(6τ). Therefore, although the precise value of the diffusion coefficient
is affected by dimension, the order of magnitude is not.

Diffusion in Fluids
Given that D is a measure of the ability of a molecule to move through
the maze created by its neighboring atoms and molecules, it should not be
surprising to learn that the larger the molecule the smaller the diffusion
coefficient. The formula in (4.14), however, contains no information related
to the structure or state of the molecule or its surrounding medium. It is
possible to derive such information, and an example is the Stokes-Einstein
equation

D =
kT

6πrη
. (4.15)

This assumes the molecules are spheres, where T is the temperature in Kelvin,
r is the radius of the molecule, η is the dynamic viscosity of the solvent,
and k is known as the Boltzmann constant. How it is possible to get fluid
viscosity into the formula for the diffusion coefficient will be explained in
Section 4.7. The interest in (4.15), at this point, is the realization that the
diffusion coefficient does depend on the size of the molecule, and decreases as
the molecule’s radius increases. It is also interesting what information can be
derived from (4.15). For example, Einstein was able to use (4.15) to calculate
Avogadro’s number NA, which is the number of molecules in a mole. From
the kinetic theory for gases he knew that k = R/NA, where R is the universal
gas constant, and from this he rewrote (4.15) as NA = RT/(6πrηD). Using
independent measurements of the constants on the right-hand side of this
equation Einstein obtained a simple method for finding NA.
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Diffusion in Solids
Diffusion also occurs in solids, although the process is fundamentally different
from what occurs in gases and liquids. One mechanism, known as intersti-
tial diffusion, is illustrated in Figure 4.9. Solids have a well-defined atomic
structure and in metals the atoms generally form a lattice pattern. Smaller
atoms are able to move through the solid by jumping between adjacent in-
terstitial spaces. This requires the adjacent space to be unoccupied, and so
this form of diffusion applies to dilute concentrations of diffusing atoms. Also,
the diffusing atoms must be small enough to be able to make the jumps. For
example, hydrogen, oxygen, nitrogen, and carbon are able to diffuse intersti-
tially through metals, such as iron. However, the lattice points are relatively
close so even small interstitial atoms must push their way through to the
adjacent opening. This requires them to have sufficient energy to be able to
squeeze through. It is possible to account for this in the diffusion coefficient
by noticing that D = p∆x2/∆t, where p is the probability of a jump (a more
rigorous explanation of this can be found in Exercise 4.2). It is known that
the probability of a successful jump depends on the thermal energy, and the
higher the temperature the greater the likelihood of a successful jump. Using
reaction rate theory it has been found that the specific form is

D = D0e
−E/(kT ) . (4.16)

where E is the activation energy, k is the Boltzmann constant, and T is
the absolute temperature. Also, D0 is the free solution diffusion coefficient,
which is the value obtained when T →∞. This dependence on temperature
is the basis for manufacturing hardened metals, where the metal is heated to
allow diffusion of carbon through the lattice. For example, heating steel and
allowing carbon to diffuse into the metal produces a much stronger surface, a
process known as carburization. This is a slow process, as even at 900◦ C, the
diffusion coefficient for carbon is very small, on the order of 10−11 m2/sec.
Interstitial diffusion is also used in the operation of fuel cells, such as those in
some of the recent hybrid vehicles, and this is still an active research topic.

4.4 Solving the Diffusion Equation

Now that the diffusion equation has been derived the next question to address
is how to find the solution. This equation has been studied for almost two
centuries, and this has given mathematicians time to find multiple ways to
construct the solution. One possibility is to use a similarity variable and an
example of this was worked out in Section 1.4. Another option is to use the
method of separation of variables. This is one of the first methods presented
in introductory differential equations texts (e.g., Boyce and DiPrima [2004],
Braun [1993], Haberman [2003]), but it is mostly limited to spatial intervals
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Figure 4.10 The outcome of 5000 random walks, all starting at x = 0, at time step
N = 100. The solid curve is Pu(x, t), where P = 5000 and u(x, t) is given in (4.17)
for ∆x = ∆t = 1.

that are bounded. We are interested in an unbounded interval, so we will use
other methods.

4.4.1 Point Source

Given that the continuous approximation of the nonzero values for w(m,N)
produces the diffusion equation, we will investigate what happens to the large
N approximation of w(m,N) given in (4.8). Recalling that u(x, t) = w(m,N),
x = m∆x, and t = N∆t then

u(x, t) ∼
√

2∆t
πt

e−x2∆t/(2t∆x2)

=
∆x√
πDt

e−x2/(4Dt). (4.17)

It is not hard to verify that this function satisfies the diffusion equation in
(4.13). To compare it with the random walk experiment, suppose P random
walks are carried out, all starting at x = 0. An example of this is shown in
Figure 4.6, for P = 5000. The probability w(m,N) is determined experimen-
tally by counting the number of paths that go through the point (m,N), and
then dividing this by P . Said another way, Pu(x, t) approximates the total
number of paths that pass through (m,N), assuming P is large and w(m,N)
is nonzero. A confirmation of this is given in Figure 4.10, which shows that
Pu(x, t) does indeed provide an excellent approximation for the number of
paths.
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Each path in the above experiment represents the motion of a molecule.
In many applications, it is not the number of paths that are of inter-
est but, rather, the resulting concentration of the molecules. To determine
this, recall that the nonzero values of w(m,N) are separated by a distance
2∆x. Consequently, the concentration is Pw(m,N)/(2∆x), or equivalently,
Pu(x, t)/(2∆x). Setting c(x, t) = u(x, t)/(2∆x), then the approximation in
(4.17) reduces to

c(x, t) =
1

2
√
πDt

e−x2/(4Dt). (4.18)

This function satisfies the diffusion equation and is known as the point source
solution. It gets this name because if P molecules are released at the point
(x, t) = (0, 0), their concentration is given approximately as Pc(x, t). The
larger the value of P , the better the approximation. Moreover, no matter
what value P has, this approximation gives the correct value for the total
number of molecules. This is because∫ ∞

−∞
c(x, t)dx = 1, (4.19)

and so the total number of molecules is
∫∞
−∞ Pc(x, t)dx = P .

Example: Brownian Ratchet

It is possible to take advantage of the Brownian motion of molecules. One
application is based on what is known as a Brownian ratchet, where particles
are moved in one direction by using a combination of diffusion and externally
applied forces. A device designed with this in mind is shown in Figure 4.11,
which has been used to separate solutions of DNA (Bader et al. [1999]). The
view in this figure is looking down on the device. It consists of an open chan-
nel, with positive and negative electrodes placed in pairs along the bottom of
the channel. The electrodes are placed close together relative to the distance
between the pairs. In Figure 4.11, this corresponds to the statement that
r << `. When a voltage potential is applied, the negatively charged DNA
molecules move away from the negative electrodes and collect on the positive

�

�� � ��� �������

Figure 4.11 Brownian ratchet device. It consists of positive and negative electrodes
placed in pairs along the bottom of a channel. At the start, the negatively charged
DNA molecules are attached to the positive electrode at x = 0.
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ones. It is assumed that at the start all of the DNA molecules are on the elec-
trode located at x = 0. The objective is to get them to move in the positive x
direction. With this in mind, the potential is turned off at t = 0. When this
happens the molecules start spreading out from x = 0, as determined by the
diffusion equation. It is assumed that the channel is relatively narrow, and
the motion is only in the x-direction. Also, because the electrodes are on the
bottom of the channel, the molecules are relatively free to move up and down
the channel. If there are a total of P molecules, then from the point source
solution we have that the concentration of DNA is given as

c(x, t) =
P

2
√
πDt

e−x2/(4Dt). (4.20)

After a time interval t1 the potential is turned back on. When this happens,
all of the molecules between the positive electrodes at x = −`+ r and x = r
move back to x = 0, while those between the electrodes at x = r and x = `+r
move to x = ` (see Figure 4.12). Depending on t1, it is possible that some of
molecules move far enough to the left that when the potential is reapplied that
they are attracted to the electrode at x = −`. To keep this to a minimum we
need c(−`+r, t1) to be relatively small, and so it is assumed that t1 is chosen
so that (−`+ r)2 >> 4Dt1. This also guarantees that very few molecules get
past the electrode at x = `+r. Therefore, when the potential is reapplied the
number of molecules that end up at x = ` is equal to the area of the shaded
region in Figure 4.12. From (4.20), it follows that the number is αP , where

α =
1

2
√
πDt1

∫ ∞

r

e−x2/(4Dt1)dx. (4.21)

Given that the total number is P then the number that move back to x = 0
is (1−α)P . Once the molecules stop moving, the process is repeated, and the
potential is again removed for a time period t1. When the potential is turned
back on, of the (1 − α)P molecules that started out at x = 0, (1 − α)2P of
them will return to x = 0, while the others will move to x = `. Those that
started at x = ` will either return to this electrode or else move to the one at
x = 2`. In this way, the off-on cycles use diffusion to move the molecules to
the right. In the experiments in Bader et al. [1999], D = 1.8× 10−8 m2/sec,
r = 2µm, ` = 2µm, and t1 = 1 sec. For these values, α ≈ 0.216. This means
that approximately 19 off-on cycles are required to be able to have only 1% of
the molecules left at x = 0, all the rest having moved to one of the electrodes
along the positive x-axis. �

The history of Brownian ratchets is very interesting. A landmark event
was Feynman’s description in 1963 of a ratchet and pawl device to lift a
bug, as shown in Figure 4.13. Box T2 is filled with a gas and contains an
axle with vanes attached. The Brownian collisions of gas molecules on the
vanes generate random forces on the vanes. The ratchet on the other end of
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Figure 4.12 The distribution of DNA molecules right before the potential is turned
back on at t = t1. When this happens those in the shaded region move to the electrode
at x = `, while those in the unshaded region move to x = 0.

the axle, however, only allows rotation in one direction, and this means the
wheel rotates in one direction and in the process lifts the bug. This device
generated a lot of discussion as it appears to obtain work for free, in other
words it seems to be a perpetual motion machine. This is impossible because
this would violate the Second Law of Thermodynamics, but exactly how this
happens is still generating research papers (e.g., Gomez-Marin and Sancho
[2006], den Broeck et al. [2004]). Leaving aside this intriguing bug elevator,
variations on a Brownian ratchet have been found in numerous biological
processes, and they have been used to develop rather unique technological
devices. An introduction to this subject can be found in Hanggi et al. [2005].

4.4.2 Fourier Transform

In the original random walk derivation there were no spatial boundaries, the
implication being that−∞ < x <∞. The usual approach in such situations is
to try a transform method. There are many to pick from, and we will consider
one of the more well known, the Fourier transform. It possesses one of the
distinguishing characteristics of most transforms, and that is that it converts

Figure 4.13 Feynman’s ratchet and pawl system for lifting bugs (Feynman et al.
[2005]).
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differentiation into multiplication. Exactly what this comment means will be
explained below.

We are interested in an unbounded interval, and the specific problem is

ut = Duxx, for
{
−∞ < x <∞,
0 < t,

(4.22)

with the initial condition
u(x, 0) = f(x). (4.23)

It is assumed that f(x) is piecewise continuous with limx→±∞ f(x) = 0.
To solve the above diffusion problem we introduce the Fourier transform

of u(x, t), defined as

U(k, t) =
1√
2π

∫ ∞

−∞
u(x, t)e−ikxdx. (4.24)

Occasionally it is convenient to express the above integral in operator form
and write U = F(u). The Fourier transform can be inverted and the formula,
in the case that u is continuous at x, is

u(x, t) =
1√
2π

∫ ∞

−∞
U(k, t)eikxdk. (4.25)

In operator form this is written as u = F−1(U). It should be noted that if
u has a jump discontinuity at x, then the integral in (4.25) does not equal
u(x, t), but is equal to the average of the jump in u. Therefore, at a jump
discontinuity

1
2
[
u(x+, t) + u(x−, t)

]
=

1√
2π

∫ ∞

−∞
U(k, t)eikxdk, (4.26)

where u(x+, t) is the limit from the right, and u(x−, t) is the limit from the
left.

Given the improper integral in (4.24), it is evident that the definition
of F(u) requires u to be reasonably smooth and behave appropriately as
x → ±∞. For example, the Fourier transform exists if

∫∞
−∞ |u|dx is finite

and u is piecewise continuous. What is not obvious is how the integral of U
in (4.25) produces the original function u. An argument similar to the one
originally employed by Fourier is given in Appendix B. A more formal proof
can be found in Weinberger [1995]. One observation that comes from the
proof is that it is possible to extend the definition of the Fourier transform
and include certain functions that do not go to zero as x→ ±∞. An example
is the periodic function f(x) = cos(ωx). This requires the introduction of
what are known as generalized functions, or distributions. It is not necessary
to introduce these for the applications considered here, but those interested
in this should consult Friedman [2005].
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F (k) f(x)

1. F (k)G(k) 1√
2π

∫∞
−∞ f(s)g(x− s)ds

2. aF (k) + bG(k) af(x) + bg(x)

3. e−iakF (k) f(x− a)

4. F (k − a) f(x)eiax

5. F (k + a) + F (x− a) 2f(x) cos(ax)

6. F (k + a)− F (x− a) −2if(x) sin(ax)

7. (ik)nF (k)
dnf
dxn

8. dnF
dkn (−ix)nf(x)

9. 1
a2+k2

1
a

√
π
2 e

−a|x| for a > 0

10. k
a2+k2 i

√
π
2 e

−a|x| [I(0,∞)(x)− I(−∞,0)(x)
]

for a > 0

11.
sin(ak)

k

√
π
2 I(−a,a)(x) for a > 0

12. 1√
a2−k2 I(−a,a)(k)

√
π
2 J0(ax) for a > 0

13. 1
a+ik

√
2πe−ax I(0,∞)(x) for a > 0

14. 1
(a+ik)n+1

1
n!

√
2πxne−ax I(0,∞)(x) for a > 0

15. 1
a−ik

√
2πeax I(−∞,0)(x) for a > 0

16. 1
(a−ik)n+1

1
n!

√
2π(−x)neax I(−∞,0)(x) for a > 0

17. e−a|k|
√

2
π

a
a2+x2 for a > 0

18. ke−a|k| 2i

√
2
π

ax
a2+x2 for a > 0

19. e−ak2−ibk 1√
2a
e−(x−b)2/(4a) for a > 0

20. 1
k (e−ibk − e−iak) −i

√
2πI(a,b)(x) for a < b

21.
sin2(ak/2)

k2
1
2

√
π
2 (a− |x|) I(−a,a)(x) for a > 0

Table 4.1 Inverse Fourier transforms. The indicator function I(a,b)(x) is defined in
(4.32). The general formulas 2.-8. must be modified at a jump discontinuity, as given
in (4.26). Also, the numbers a and b in this table are real-valued.



160 4 Diffusion

Examples

1. For the function

f(x) =
{
α if a ≤ x ≤ b,
0 otherwise, (4.27)

the Fourier transform is

F (k) =
1√
2π

∫ b

a

αe−ikxdx

=
1√
2π

iα

k

(
e−ikb − e−ika

)
. (4.28)

This result appears as Property 20 in Table 4.1. �

2. For the function f(x) = e−α|x|, where α > 0, the Fourier transform is

F (k) =
1√
2π

∫ ∞

−∞
e−ikx−α|x|dx

=
1√
2π

∫ 0

−∞
e−(ik−α)xdx+

1√
2π

∫ ∞

0

e−(ik+α)xdx

=

√
2
π

α

α2 + k2
.

This result appears as Property 9 in Table 4.1. �

4.4.2.1 Transformation of Derivatives

The reason the Fourier transform will enable us to solve the diffusion equation
is that it converts differentiation into multiplication. To explain what this
means we use integration by parts to obtain the following result

F(ux) =
1√
2π

∫ ∞

−∞
uxe

−ikxdx

=
1√
2π

(
ue−ikx

∣∣∞
x=−∞ + ik

∫ ∞

−∞
ue−ikxdx

)
= ikF(u). (4.29)

It has been assumed here that u → 0 as x → ±∞. In a similar fashion,
assuming that ux → 0 as x→ ±∞, one finds that

F(uxx) = (ik)2F(u). (4.30)
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The generalization of this to higher derivatives is given in Table 4.1. There-
fore, using the Fourier transform, differentiation is transformed into multi-
plication by ik.

4.4.2.2 Convolution Theorem

A few of the more well-known formulas for the inverse transform are given in
Table 4.1. This includes some of its general properties, which are the first eight
entries. These are all derivable directly from the definition of the transform
and the properties of integrals. For example, the second one, which is known
as the convolution theorem, states that

F
(

1√
2π

∫ ∞

−∞
f(s)g(x− s)ds

)
= F (k)G(k).

To prove this, the left-hand side of the above equation is

F
(

1√
2π

∫ ∞

−∞
f(s)g(x− s)ds

)
=

1
2π

∫ ∞

−∞

∫ ∞

−∞
f(s)g(x− s)e−ikxdsdx

=
1
2π

∫ ∞

−∞
f(s)

∫ ∞

−∞
g(x− s)e−ikxdxds

=
1
2π

∫ ∞

−∞
f(s)

∫ ∞

−∞
g(z)e−ik(z+s)dzds

=
1√
2π

∫ ∞

−∞
f(s)e−iksds

1√
2π

∫ ∞

−∞
g(z)e−ikzdz

= F (k)G(k).

In the above derivation, it is assumed that f(x) and g(x) decay fast enough
as x→ ±∞ that the improper integrals can be interchanged.

Examples

1. Suppose

F (k) =
sin(3k)

7k
− 2e−4|k|.

To determine the original function f(x), we use Property 1, Property 11 with
a = 3, and Property 17 with a = 4. These are used as follows
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f(x) = F−1

(
sin(3k)

7k
− 2e−4|k|

)
=

1
7
F−1

(
sin(3k)
k

)
− 2F−1

(
e−4|k|

)
=

1
7
I(−3,3)(x)−

8
π

1
16 + x2

, (4.31)

where I(a,b)(x) is the indicator function and is defined as

I(a,b)(x) =


1 if a < x < b,
1
2 if x = a, b,

0 otherwise .
(4.32)

Introducing the definition of I into (4.31), then

f(x) =



− 8
π

1
16 + x2

if 3 < |x|,

1
7
− 8
π

1
16 + x2

if − 3 < x < 3,

1
14
− 8
π

1
16 + x2

if x = ±3. �

2. Suppose

F (k) =
1

2 + ik
e−3k2

.

This transform is not listed in Table 4.1, however, it is a product of two
that are listed. Using Property 13 with a = 2, the inverse of 1/(2 + ik) is√

2πe−2xI(0,∞)(x). Similarly, using Property 19 with a = 3 and b = 0, the
inverse of e−3k2

is e−x2/12/
√

6. Therefore, from Property 2 we obtain

f(x) = F−1

(
1

2 + ik
e−3k2

)
=

1√
2π

∫ ∞

−∞

√
2πe−2s I(0,∞)(s)

1√
6
e−(x−s)2/12ds

=
1√
6

∫ ∞

0

e−2s−(x−s)2/12ds. (4.33)

It is not possible to express the integral in terms of elementary functions, so
the above expression is the final answer. �

A comment is in order about the Fourier transform and functions with
jump discontinuities. As illustrated in (4.27), the transform of a function
with a jump is not an issue. The inverse transform, however, is a different
matter. Specifically, the inverse of the transform in (4.28) produces the orig-
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inal function f(x) except at the jump points. At those two points the inverse
equals the average of the jump. This means that at x = a, and at x = b,
the inverse transform equals 1

2α. This is why the indicator function I(a,b) in
(4.32) is defined the way it is at the jump points x = a and x = b.

4.4.2.3 Solving the Diffusion Equation

The Fourier transform will enable us to solve the diffusion equation but this
brings up a dilemma common in applied mathematics. To use the transform
we need to know if the solution satisfies the conditions needed to guarantee
that the improper integral in (4.24) is defined. However, we do not know the
solution and are therefore not able to check that the conditions are satisfied.
What this means is that we will use the transform in a heuristic manner
and assume that the transform can be used. Afterwards, once an answer is
derived, it is possible to verify directly that it does indeed satisfy the original
problem.

To use the Fourier transform to solve the diffusion equation we first take
the transform of the equation and obtain

F(ut) = F(Duxx).

Because the transform is in x and not t, then F(ut) = d
dtF(u) = Ut. With

this, and using (4.30), we have that

Ut = −Dk2U. (4.34)

We also need to transform the initial condition (4.23), and this gives us

U(k, 0) = F (k), (4.35)

where F (k) is the Fourier transform of f . Solving (4.34), and using (4.35),
yields

U(k, t) = F (k)e−Dk2t. (4.36)

We now come to the step of trying to determine u(x, t) given that we know
its transform U(k, t). One possibility is to determine this from scratch, which
means using the definition of the inverse transform in (4.25) and working out
the resulting integrals. The specifics of this are outlined in Exercise 4.10. The
more conventional approach is to use a table of inverse Fourier transforms,
and simply look up the needed formula. Our transform (4.36) is not listed in
Table 4.1. However, the formula for U can be factored as a product U = FG,
and this will enable us to find the inverse. Setting G = e−Dk2t then, from
Table 4.1,

g(x) =
1√
2a
e−x2/(4a), (4.37)
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where a = Dt. With this, and the convolution property, we obtain

u(x, t) =
1√
2π

∫ ∞

−∞
f(s)g(x− s)ds

=
1

2
√
πDt

∫ ∞

−∞
f(s)e−(x−s)2/(4Dt)ds. (4.38)

This is the sought after solution of the diffusion problem. What is interesting
is that it consists of the integral of the given initial condition multiplied by
the point source solution in (4.18). For those who might question some of
the steps used to obtain this result, it is a simple matter to show that (4.38)
does indeed satisfy the diffusion equation. What is not as straightforward
is verifying that (4.38) satisfies the initial condition (4.23). Taking the limit
t → 0+ requires some careful analysis of what happens in the neighborhood
of s = x and a proof can be found in Mikhlin [1970].

Example 1

If the initial condition is
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Figure 4.14 Solution (4.40) of the diffusion equation when f(x) is given in (4.39),
with a = 0.4, b = 0.6, and D = 0.1. Shown is the solution surface as well as the
solution profiles at specific time values.
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f(x) =
{

1 if a ≤ x ≤ b,
0 otherwise, (4.39)

then, from (4.38), the solution is

u(x, t) =
1

2
√
πDt

∫ b

a

e−(x−s)2/(4Dt)ds. (4.40)

This function is shown in Figure 4.14, both as time slices as well as the so-
lution surface for 0 ≤ t ≤ 0.1. This illustrates several of the characteristic
properties of a solution of the diffusion equation. One is that even with an
initial condition that contains jumps, the solution for 0 < t is smooth. A
second observation is that because the exponential function is positive then
the solution in (4.40) is never zero for t > 0. This means, for example, that
even though the solution starts out as zero at x = 1000, and the nonzero
portion of f(x) is far away, that the solution is nonzero at this position for
any value of t > 0. This means diffusion occurs with infinite speed, which is
physically unrealistic. The usual argument made is that the solution decays
rapidly as x → ±∞, so the consequence of this is minimal. The fact is that
the diffusion equation is a mathematical model, and as such it is an approxi-
mation, albeit an effective approximation. Nevertheless, it is interesting that
a random walk with steps of finite speed can give rise to macroscopic motion
of infinite speed. This paradox has been the subject of numerous studies, two
of the more recent being Keller [2004] and Aranovich and Donohue [2007]. �

The three curves shown in Figure 4.14 are not surprising given the terms
appearing in the diffusion equation. Recall from calculus, the curve y = f(x)
is concave up if f ′′ > 0, and it is concave down if f ′′ < 0. Now, for a
solution of the diffusion equation Duxx = ut there is a relationship between
the concavity of u and the sign of ut. Specifically, if a solution of the diffusion
equation is concave down as a function of x then ut < 0, and the solution
decreases. Conversely, the solution increases if u is concave up. This situation
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Figure 4.15 The change in the solution of the diffusion equation is determined by
the local curvature in the solution. The result is the eventual straightening of the
curve.
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is illustrated in Figure 4.15. With this observation, given the concave down
nature of u in Figure 4.14, the decrease in the solution is expected.

Example 2

Suppose the initial condition is

f(x) =
{
u1 if x ≤ 0,
u2 if 0 < x.

(4.41)

It would seem, at first sight, that this is very similar to the previous exam-
ple. What is wrong with this observation is that the above function does not
satisfy the requirement that limx→±∞ f(x) = 0. Because of this, the Fourier
transform of f(x) does not exist, and so the method used to derive the solu-
tion (4.38) is not valid for this problem. However, all is not lost. Irrespective
of how it was derived, as long as f(x) is well behaved, (4.38) is the solution
of the problem. The reason is that (4.38) satisfies the diffusion equation and
the given initial condition. This happens, for example, if f(x) is bounded and
piecewise continuous. The function in (4.41) satisfies these conditions, and
therefore the solution of the resulting diffusion problem is

u(x, t) =
u1

2
√
πDt

∫ 0

−∞
e−

(x−s)2

4Dt ds+
u2

2
√
πDt

∫ ∞

0

e−
(x−s)2

4Dt ds

=
u1

2
√
πDt

∫ ∞

0

e−
(x+r)2

4Dt dr +
u2

2
√
πDt

∫ ∞

0

e−
(x−s)2

4Dt ds

=
u1√
π

∫ ∞

η

e−z2
dz +

u2√
π

∫ η

−∞
e−w2

dw,

where η = x/(2
√
Dt). This can be written in terms of the complementary

error function erfc(η), given in (1.60), as follows

u(x, t) = u2 +
1
2
(u1 − u2)erfc(η). � (4.42)

The situation occurring in the previous example is not unusual, and it is
worth discussing a bit more. To be able to use the Fourier transform, it is
necessary to impose rather strict conditions on the functions in the problem.
However, the formula that is derived for the solution turns out to be defined
for a much broader class of functions than originally assumed. In this case,
the formula for the solution becomes the center of attention, and the method
that was used to derive the formula is effectively forgotten. This is a very
fortunate situation, but the caveat is that care must be taken to make sure
that the formula is defined for the functions that are used.
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Figure 4.16 At the start of the experiment, the water in the left half of the tube
contains salt, with concentration c0, and the right half contains pure water. The
separation between these two regions is removed at t = 0, and the movement of salt
into the right side is then recorded.

Example 3: Determining D

An experimental method used to study diffusion involves compartments, and
a typical example is shown in Figure 4.16. The tube is filled with water, and
is separated into two compartments. The water on the left, where x < 0,
contains salt with a constant concentration c0. The compartment on the
right, where x ≥ 0, contains pure water and has no salt. At t = 0 the divider
separating these two compartments is removed, and this allows the salt to
move into the region x ≥ 0. It is assumed that the tube is very long, so the
interval can be taken to be −∞ < x < ∞. With this, assuming the motion
is governed by diffusion then the concentration c(x, t) of salt along the tube
satisfies

ct = Dcxx, for
{
−∞ < x <∞,
0 < t,

with the initial condition

c(x, 0) =
{
c0 if x < 0,
0 if 0 ≥ x.

From (4.42), the solution of this problem is

c(x, t) =
1
2
c0erfc(η), (4.43)
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 t = 0
 t = 7 days
 t = 21 days

Figure 4.17 The solution (4.43) of the salt diffusion problem at three values of time.
In the calculations, D = 1.5× 10−9m2/sec and c0 = 1.
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Figure 4.18 The measured values of s2, as defined in (4.46), for the diffusion of salt
in water (Booth et al. [1978]). The dashed line is a least squares fit to the data points.

where η = x/(2
√
Dt). This experiment was used by Booth et al. [1978]

to investigate the diffusion of salt in water, and they found that D =
1.5× 10−9m2/sec. Using this value for the diffusion coefficient, the resulting
solution (4.43) is shown in Figure 4.17. This shows that the salt does move
into the region on the right. However, what is not at all clear is whether the
motion is governed by diffusion, or some other transport mechanism. To check
on this we need more specific information obtained from the experiment.

The apparatus they used was able to track the position where c has a
specified value. For example, if they were interested in where c = 1

10c0, then
their device could follow the x position where this happened. To use this with
our solution in (4.43), let c̄ be the specified concentration, and let x̄ be the
location where c has this value. From (4.43), 2c̄ = c0erfc(x̄/(2

√
Dt). Solving

this for x̄ yields
x̄ = 2α

√
Dt, (4.44)

where

α = erfc−1

(
2c̄
c0

)
. (4.45)

In their experiments, they followed the positions x̄1 and x̄2 for two concen-
trations, c̄1 and c̄2, and then calculated the distance s = x̄1 − x̄2 between
these two locations. According to the model, as given in (4.44),

s2 = 4Dt(α1 − α2)2, (4.46)

where α1 and α2 are the respective values of α for c̄1 and c̄2. Therefore, the
model predicts that the distance squared is linear in time. This is a very
strong statement, but does this actually happen? Well, their experimental
results are shown in Figure 4.18 and evidently it does. This is compelling ev-
idence that the diffusion model applies to this system. Moreover, the model
shows that the slope of this line can be used to find D. Just in case you are
curious, the value computed using this data is D = 1.5× 10−9 m2/sec. �
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Something that is easy to miss in Figure 4.18 is that s = 15 cm when
t = 21 days. In other words, it takes about three weeks for the salt to dif-
fuse just 15 cm! Not what you would call a fast mover. Also, the value of
the diffusion coefficient is typical for solutes in water. What this means is
that diffusion tends to be important over short distances and short time in-
tervals. An indication of this comes from the diffusion coefficient by noting
that the value D = 10−9 m2/sec can also be expressed as D = 1µm2/sec,
the implication being that diffusion is significant over distances measured in
microns and time measured in milliseconds. This is why diffusion plays such
an important role in biological applications related to the function of cells.
Movement over larger distances tends to be dominated by convection, which
occurs when the fluid flows and in the process carries the molecules with it.
The situation is a bit different for diffusion in a gas where the diffusion coef-
ficient is larger, typically by a factor of 104. For example, as found in Section
4.3.1, for O2 in air, D = 2×10−5 m2/sec. This means that diffusion plays an
important role over somewhat larger spatial and temporal intervals in a gas.
Even so, convection is essential to the movement in a gas, and how to model
this transport mechanism will be explored in the next chapters.

4.5 Continuum Formulation of Diffusion

The approach up to this point has been to consider the motion at the micro
(or discrete) level and then consider what happens as one passes to the macro
(or continuous) level. In this section we will simply start with the continuous
description and not concern ourselves with what might, or might not, be
happening at the micro level. This is the more conventional method used to
derive the diffusion equation.

A good example illustrating the approach is the one used in the original
development of the subject by Fick [1885]. He noticed than when salt is
poured into water the concentration of salt slowly spreads out and eventually
becomes uniformly distributed in the water. To obtain an equation for the
concentration we will assume the motion is only along the x-axis. With this,
let c(x, t) designate the concentration of salt, which in this context has the
dimensions of number of particles per unit length.

4.5.1 Balance Law

The equation for c will be derived from a balance law, and to explain how
consider a small interval a ≤ x ≤ b. The number of particles in this interval
can change for only two reasons. First, they can move along the x-axis and
therefore they can move in or out of the interval. Although we do not know
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Figure 4.19 The flux at x = 0 depends on the difference in the number N` of
particles just to the left of x = 0 and the number Nr just to the right of x = 0.

exactly how the salt is moving, it does and therefore let J(x, t) designate
the net number of salt particles that pass x per unit time. The second way
the number of particles in the interval can change is that they are created
or destroyed within the interval. This could happen, for example, through
a chemical reaction. For this possibility we introduce the function Q(x, t),
which gives the number of particles created at x per unit time. With this our
balance law has the form

d

dt

∫ b

a

c(x, t)dx = J(a, t)− J(b, t) +
∫ b

a

Q(x, t)dx. (4.47)

In words, this equation states that the rate of change in the total number of
salt particles is due to the movement of the particles across the endpoints,
this is the J(a, t)−J(b, t) expression, and to the creation or destruction of the
particles within the interval. Using the Fundamental Theorem of Calculus,
the above integral can be written as∫ b

a

∂c

∂t
dx = −

∫ b

a

∂J

∂x
dx+

∫ b

a

Q(x, t)dx.

This can be rewritten as∫ b

a

(
∂c

∂t
+
∂J

∂x
−Q

)
dx = 0.

This equation holds for any interval. As shown in analysis, if the integral of
a continuous function is zero over every interval then it must be that the
function is identically zero. Because of this we conclude that

∂c

∂t
= −∂J

∂x
+Q. (4.48)

This is the balance law we were looking for. In its present form, it is very
general and what we need to do is determine, or specify, the functions J and
Q for the problem we are working on, namely the diffusion of salt in water.
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4.5.2 Fick’s Law of Diffusion

The assumption used to specify the flux is that is that particles in regions of
higher concentration will tend to move toward regions of lower concentration.
The situation is shown schematically in Figure 4.19. As shown, there is a
small number N` of particles in the left bin, and a larger number Nr in the
bin on the right. According to the rules of a random walk, in a time step,
approximately half of those on the right will move into the bin on the left, and
approximately half of those on the left will move to the bin on the right. The
flux is the net difference over the time interval, and so J = 1

2 (N` −Nr)/∆t.
To express this using continuum variables, the total number of particles in
the interval a < x < a+∆x is

N =
∫ a+∆x

a

c(s, t)dx

≈ ∆xc(a, t).

With this,
N` ≈ ∆xc(−∆x, t),

and
Nr ≈ ∆xc(0, t).

Using Taylor’s theorem, we have that the flux is

J ≈ 1
2∆t

[∆xc(−∆x, t)−∆xc(0, t)]

≈ ∆x

2∆t

[
c(0, t)−∆x

∂c

∂x
(0, t) + · · · − c(0, t)

]
≈ −∆x

2

2∆t
∂c

∂x
(0, t).

The above approximation for the flux at x = 0 provides motivation for the
assumption made in the continuum formulation. Specifically, it is assumed
that the flux is given as

J = −D ∂c

∂x
, (4.49)

where D is a positive constant known as the diffusion coefficient. This is
known as Fick’s law of diffusion, or when applied to temperature distributions
it goes by the name of the Fourier law of heat conduction.

To complete the derivation, it is assumed that the particles are not created
or destroyed. In this case Q = 0 in (4.48), and the balance equation reduces
to the diffusion equation

∂c

∂t
= D

∂2c

∂x2
. (4.50)
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The derivation of this result has required minimal effort because it uses the
general balance law along with the constitutive law in (4.49). For this reason,
it is favored in most derivations of the diffusion equation.

The formula for the flux given in (4.49) is an example of a constitutive law,
and we will come across several of these in the later chapters. Even though
we used the random walk to help motivate this assumption, it is important
to understand that (4.49) does not assume that the particles are undergoing
a random walk. It only assumes that the flux is proportional to the spatial
derivative, and what might be going on at the molecular level is not stated.

The more typical method for determining a constitutive law is to measure
J experimentally, and then use this information to specify the function. This
approach is used multiple times in the chapters to follow, as evidenced by the
data given in Figures 5.6, 6.5, 9.2, and 9.3. Although this approach is required
when using a continuum model, a data-driven formulation does not explain
why the flux depends on the specific variables appearing in the constitutive
law. This was the reason for starting this chapter with the random walk
analysis, because it illustrates how a microscale formulation can be used to
explain macroscale motion. An active area of research addresses this issue for
more complex problems, attempting to use quantum or molecular theories to
derive the appropriate constitutive law. Those who are interested in this can
find an introduction to this area in Balluffi et al. [2005] and Lucas [2007].

Example: Using the Flux to Find D

Fluid saturated soil, a sponge filled with water, and articular cartilage are
examples of biphasic materials. They are formed from two constituents, a
porous solid that is saturated with fluid. Given a sample of length `, then the
motion of such a material is governed by the diffusion equation

D
∂2u

∂x2
=
∂u

∂t
, for

{
0 < x < `,
0 < t.

(4.51)

In the experiments described in Holmes et al. [1983], the sample is held at
x = ` and the flux is prescribed at x = 0. The corresponding boundary
conditions are

u(`, t) = 0, (4.52)

and
D
∂u

∂x
(0, t) = −α. (4.53)

Also, the initial condition is

u(x, 0) = 0. (4.54)

What is measured in the experiments is the value of u(0, t), and a typical
result is shown in Figure 4.20. These data are going to be used to address
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Figure 4.20 The values of u(0, t) measured in response to a prescribed flux. The
data are from a test on articular cartilage (Holmes et al. [1983]).

two questions. First, in looking at the values of u(0, t), how do you know that
the response is governed by the diffusion equation? Second, assuming that
the diffusion equation is correct, can you use this information to determine
D? Answering these questions will involve solving the diffusion problem, but
we need to be selective in how this is done. For example, it is possible to find
the solution using separation of variables. However, this is not a particularly
useful method for this example because it is very difficult to develop an
intuitive understanding of the solution from the Fourier series. Instead, we
will derive approximations of the solution using what we know about the
diffusion equation and the data in Figure 4.20.

• Steady-State The first approximation relates to the steady-state solution.
It is seen in Figure 4.20 that u(0, t) approaches a steady-state as t → ∞.
From (4.51), the steady-state satisfies uxx = 0 along with the boundary
conditions in (4.52) and (4.53). The corresponding solution is

u =
α

D
(`− x). (4.55)

With this, the solution at x = 0 is u = α`/D. Given that α and ` are
known then we can use this equation to find D. What is needed is the
steady-state value of u at x = 0. It appears from the data in Figure 4.20
that the steady-state has almost been reached at t = 10,000 sec. Using
this approximation, then the diffusion coefficient can be calculated using
the formula D = α`/u(0, 10,000).

The steady-state has provided the answer to the second question. This
leaves the issue of how the data in Figure 4.20 can be used to help verify
that the diffusion equation is the correct model. For this we consider what
happens for small values of time.

• Small Time Approximation The solution starts out as u = 0, and what
is responsible for causing the solution to be nonzero is the flux boundary
condition (4.53). How this information moves through the interval is gov-
erned by the diffusion equation, and an indication of what happens can be
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derived from Figure 4.14. Namely, it takes a certain amount of time for the
nonzero part of the solution to move across the interval and appreciably
affect what is happening at x = `. Up until this happens, we can assume
that the sample is infinitely long, and replace (4.52) with the condition
that

u→ 0 as x→∞. (4.56)

It is understood that in this approximation the diffusion equation is being
solved, not on a finite spatial interval, but for 0 < x <∞. The easiest way
to solve the problem in this case is using similarity variables. The only
dimensional quantities appearing in this problem, other than u, are x, t,
D, and α. Therefore, it follows that u = F (x, t,D, α). To reduce this using
dimensional analysis note [α] = [Du]/L = [u]L/T . Using an argument
very similar to the one given in Section 1.4, it is found that

u = α

√
t

D
f(η), (4.57)

where η = x/
√
Dt. Substituting this into the diffusion equation, and rear-

ranging things a bit, yields
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Figure 4.21 Comparison between the numerical solution of the diffusion problem
and its approximate solution given in (4.60).
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f ′′ +
1
2
ηf ′ − 1

2
f = 0. (4.58)

Staring at this equation for a few moments it is seen that f = η is a
solution. This enables us to use reduction of order to find the general
solution. This is done by assuming f(η) = ηg(η), and using (4.58) to find
g. The result is that

f(η) = aη + b

(
e−η2/4 − 1

2
η

∫ ∞

η

e−s2/4ds

)
, (4.59)

where a and b are arbitrary constants. The condition in (4.56), and the
initial condition (4.54), require that f(∞) = 0. From this it follows that
a = 0. From the flux condition (4.53) one finds that f ′(0) = −1, and this
means that b = 2/

√
π. The resulting solution is

u(x, t) = 2α

√
t

πD

(
e−η2/4 − 1

2
η

∫ ∞

η

e−s2/4ds

)
= 2α

√
t

πD

(
e−η2/4 −

√
π

2
η erfc(η/2)

)
. (4.60)

To illustrate the accuracy of this approximation, it is plotted in Figure 4.21
along with the numerical solution of the problem. For this comparison,
` = D = α = 1. As expected, the two solutions are very close until
the disturbance effectively reaches the right endpoint. Once that happens
the solution of the diffusion problem rapidly approaches the steady-state
solution, which in this case is u = 1 − x. One of the more important
conclusions that comes from (4.60) is that

u(0, t) = 2α

√
t

πD
. (4.61)
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Figure 4.22 The data for 0 ≤ t ≤ 100 from Figure 4.20 plotted as a function of
√

t.
The data clearly show the linear dependence predicted in (4.61). The dashed line is
a least squares fit to the data points.
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This is the result we were looking for because this is what is measured
in the experiment. It shows that if the diffusion model is correct then the
deformation of the surface must increase as

√
t, at least for small values

of t. It is difficult to see if this happens in Figure 4.20, so the data are
replotted in Figure 4.22 as a function of

√
t, for 0 ≤ t ≤ 100. Although

the linear dependence seen in this figure does not prove that the diffusion
model is correct, it is very compelling evidence that it is. �

Example: Drift Diffusion

Up to this point the particle’s motion is due exclusively to Brownian motion,
but it can also move in response to an external force. To determine how this
affects the flux, suppose the external force results in the particles having a
velocity vd, what we will refer to as the drift velocity. The flux in this case
can be written as J = Jdiff+Jdrift, where Jdiff is given in (4.49). To determine
Jdrift, we refer back to Figure 4.19. Assuming vd is positive, then over a small
time interval ∆t, the particles that are able to cross x = 0 will be within an
interval of width vd∆t. This number is approximately c(0, t)vd∆t, and the
resulting flux, which is the number per time interval, is Jdrift = c(0, t)vd. This
is for x = 0, and is applicable for both positive and negative vd. Generalizing
this

Jdrift = vdc,

and from this we obtain the following constitutive relation for the flux

J = vdc−D
∂c

∂x
. (4.62)

The corresponding equation of motion is

ut = Dcxx − vdcx . (4.63)

This is an example of a convection-diffusion equation, and it can be solved
in a straightforward manner using the Fourier transform (see Exercise 4.17).
Rather than doing that, we will work out the steady-state solution, which
means we find the function that is independent of t and satisfiesDcxx−vdcx =
0. Assuming u = erx one finds from the differential equation that r = 0, vd/D.
From this it follows that the general solution of the steady-state equation,
for vd 6= 0, is c = a+ bevdx/D, where a and b are arbitrary constants. �

A drift velocity can arise for a variety of reasons, and one example is
when the particles are charged and an electrical potential is applied. The
electric field will induce the particles to move, and there are various ways
to determine the resulting formula for Jdrift. One approach simply makes
the assumption that the velocity is proportional to the electric field. The
corresponding constitutive law for the drift velocity is vd = µE, where E is
the electric field and µ is a constant known as the mobility. It is possible
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to obtain this result using a more physically based argument, and this is
contained in the next example.

Example: Nernst-Planck Law

Suppose the charged particles are in solution. In this case, the motion of the
particles induced by the electric field will be resisted by the viscosity of the
fluid. Assuming that the motion is steady then the resulting drift velocity will
correspond to when these forces balance. The electric field force is qE, where
q is the charge of a particle. To determine the viscous force, it is assumed
that the particle is spherical and its velocity is relatively slow. In this case,
from (1.22), the viscous drag force is DF = 6πηrvd, where r is the radius of
the particle and η is the dynamic viscosity of the solvent. Using (4.15) this
can be rewritten as DF = kTvd/D. Equating the electric and viscous force
it follows that vd = qED/(kT ). The resulting constitutive law for the flux
takes the form

J = D

(
− ∂c
∂x

+
qE

kT
c

)
, (4.64)

which is known as the Nernst-Planck law. The resulting diffusion equation
is given in (4.63), where vd = qED/(kT ). The steady-state solution, which
produces a zero flux, is

c = c0e
xqE/(kT ),

where c0 is a constant. This is an example of what is known as a Boltzmann
distribution for the concentration. �

As a final comment on drift diffusion, although it is routinely arises in
applications, there are limitations when (4.63) can be used. An assumption
inherent in the derivation of this equation is that the drift velocity is constant,
and, therefore, independent of c. Although this is a reasonable assumption
at low concentrations and small drift velocities, it is very questionable once
the concentrations and velocities increase. This observation is central to the
next chapter, where the relationship between the concentration and velocity
plays a central role in the analysis.

4.5.3 Reaction-Diffusion Equations

Up to this point we have assumed the particles are not created or destroyed.
An example of a situation where this does not happen is when the parti-
cles are undergoing chemical reactions. To illustrate what effect this has on
the diffusion equation suppose we have two species, A and B, and they are
undergoing the reversible reaction
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A 
 B. (4.65)

Assuming, for the moment, that there is no diffusion, then the resulting
kinetic equations are obtained using the law of mass action, and the result is

dA

dt
= −k1A+ k−1B,

dB

dt
= k1A− k−1B.

The right hand sides of these two equations are our source terms. Namely,
for species A we have that Q = −k1A + k−1B, and for species B we have
Q = k1A− k−1B. The resulting diffusion equations are

∂A

∂t
= Da

∂2A

∂x2
− k1A+ k−1B,

∂B

∂t
= Db

∂2B

∂x2
+ k1A− k−1B.

It has been assumed here that the diffusion coefficients for the two species are
different. The above system of equations is an example of reaction-diffusion
equations.

Example: Pattern Formation

A well researched question in developmental biology is how cells in an or-
ganism arrange themselves to form patterns. One possible mechanism, first
described by Turing [1952], is that two or more chemicals diffuse through
an embryo and react with each other until a stable pattern of chemical con-
centrations is reached. A model that has been proposed for the formation of
stripes involves the interaction of five chemicals across a substrate, and the
equations are (Meinhardt [1982])

∂g1
∂t

= Dg
∂2g1
∂x2

+
cs2g

2
1

r
− αg1 + ρ0,

∂g2
∂t

= Dg
∂2g2
∂x2

+
cs1g

2
2

r
− αg2 + ρ0,

∂s1
∂t

= Ds
∂2s1
∂x2

+ γ(g1 − s1) + ρ1, (4.66)

∂s2
∂t

= Ds
∂2s2
∂x2

+ γ(g2 − s2) + ρ1,

∂r

∂t
= cs2g

2
1 + cs1g

2
2 − βr.

One way to look at this model is that g1 identifies the cells responsible for
producing the color white, while g2 corresponds to the cells responsible for
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Figure 4.23 The stripe patterns
formed on a zebra obtained from
numerically solving the reaction-
diffusion system (4.66) (Turk [1991]).

producing the color black. To be able to function, the g1 cells need the chem-
ical s2, while the g2 cells need s1. What prevents the two cell lines from
occupying the same location is the variable r, which is known as a repressor.
Given the complexity of this model, as with most reaction-diffusion systems,
numerical methods are needed to find the solution. An interesting example
is the zebra shown in Figure 4.23. �

4.6 Random Walks and Diffusion in Higher Dimensions

It is interesting to consider how to extend random walks to multiple dimen-
sions. The basic idea is that starting at x0 the first step in the walk produces
a new position x1. Earlier we assumed the length of a step is fixed, and we
will do the same here. If the step length is h then the formula connecting x1

with x0 is
x1 = x0 + hu1.

In one dimension it is possible to move only left or right, and in this case u1

is randomly chosen to be ±1. In higher dimensions, u1 is a randomly selected
direction, or more precisely, a randomly chosen unit vector. Once we have
x1, the next step x2 in the walk is calculated in a similar fashion. The only
difference is that we randomly select a new direction vector u2. Generalizing
this procedure, the resulting formula for the position at time step n is

xn = xn−1 + hun, (4.67)

where un is a randomly chosen unit vector.
To visualize what happens consider two dimensions, where x = (x, y). In

this case the direction for xn can be written in terms of the polar coordinate
angle θ. With this, (4.67) becomes
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Figure 4.24 Random walks in the plane. Each starts at x = y = 0 and has step
length h = 0.1.

xn = xn−1 + h cos(θn), (4.68)
yn = yn−1 + h sin(θn), (4.69)

where θn is randomly chosen from the interval [0, 2π). The first 20 positions
calculated using this formula are shown in Figure 4.24 using h = 0.1. Four
random walks are shown, and not unexpectedly they are quite different from
one another. Nevertheless, a few observations can be made. First, none of
them has come close to reaching the maximum obtainable distance of 20h = 2.
This is not surprising because to reach the maximum distance the same angle
would need to be used at each step, and this is highly unlikely. Second, there
is a propensity for the positions to be close to the origin. It is natural to ask if
the positions follow the Gaussian distribution found for the one-dimensional
random walks shown in Figure 4.6. To determine this experimentally, suppose
we take 30,000 random walks, all starting at x = y = 0 and look at the
distribution of positions at various time levels. The results are shown in Figure
4.25 for n = 100, n = 200, and n = 400. It appears that at the beginning the
positions are closer to the origin but as time increases they move outward.
These distributions have the rough appearance of an exponential function of
the radial distance from the origin, with an amplitude that decreases with n.
This is the same dependence we obtained for the one-dimensional formula in
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Figure 4.25 Distribution of positions for random walks that start at x = y =
0, using (4.68), (4.69). On the left are the distributions in the plane using 30,000
molecules, and on the right is the distribution along the positive x-axis using 100,000
molecules. The time steps are: (a) n = 50, (b) n = 100, and (c) n = 200.

(4.18). The generalization of the point source solution to higher dimensions
is

1
(4πDt)d/2

e−r2/(4Dt), (4.70)
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where d equals the number of spatial dimensions and r is the radial distance
to the origin. For the distributions in Figure 4.25, d = 2 and this means that
the amplitude decreases as 1/t. This dependence is evident in the distribu-
tions, as doubling the value of n results in a reduction in the amplitude by
approximately a factor of two. This leaves open the question of how to de-
rive (4.70), and this will be done later, after the diffusion equation has been
derived.

4.6.1 Diffusion Equation

It is enough to derive the diffusion equation for two spatial dimensions. Also,
we will limit the directions used in the random walk. Specifically, the an-
gle θn in (4.68), (4.69) will be randomly chosen as one of the four angles
{0, π/2, π, 3π/2}. What this means is that the positions follow a lattice pat-
tern, and this is illustrated in Figure 4.26. The assumption is that at each
time step, the molecule moves, with equal probability, to a nearest neighbor
point on the lattice. Note that this is effectively the two dimensional version
of interstitial diffusion shown in Figure 4.9.

In a similar manner as in the one-dimensional case, we let w(m, p,N)
be the probability the molecule is at (x, y) = (m∆x, p∆y) after N time
steps. Given that we are considering walks with a constant step size, then
h = ∆x = ∆y. Suppose that at time step N the molecule is located at lattice
point (m, p) (take, for example, the solid dot in Figure 4.26). The molecule’s
position at the previous time step has to be one of the four lattice points
(m − 1, p), (m + 1, p), (m, p − 1), or (m, p + 1), which are the hollow dots
in Figure 4.26. The probability of moving from each of these four points to
(m, p) is 1

4 . We therefore have the master equation

w(m, p,N) =
1
4
w(m− 1, p,N − 1) +

1
4
w(m+ 1, p,N − 1)

+
1
4
w(m, p− 1, N − 1) +

1
4
w(m, p+ 1, N − 1). (4.71)

��� �������
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�

Figure 4.26 Nearest neighbor random walk on a rectangular lattice.
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This is the two-dimensional equivalent of the one-dimensional master equa-
tion (4.9). The steps from this point on will follow the one-dimensional anal-
ysis very closely. To switch from (m, p,N) to (x, y, t) recall that x = mh,
y = ph, and t = N∆t. Introducing the function u(x, y, t) = w(m, p,N),
(4.71) takes the form

4u(x, t) = u(x− h, y, t−∆t) + u(x+ h, y, t−∆t)
+ u(x, y + h, t−∆t) + u(x, y − h, t−∆t). (4.72)

To continue we need the multivariable version of Taylor’s theorem (see Section
A). Through the quadratic terms the result is

f(x+ h, y + `, t+ k)

= f +
(
h
∂

∂x
+ `

∂

∂y
+ k

∂

∂t

)
f +

1
2

(
h
∂

∂x
+ `

∂

∂y
+ k

∂

∂t

)2

f + · · ·

= f + hfx + `fy + kft

+
1
2
h2fxx +

1
2
`2fyy +

1
2
k2ftt + h`fxy + hkfxt + `kfyt + · · · , (4.73)

where f and its derivatives on the right-hand side are evaluated at (x, y, t).
Applying this to the terms in (4.72), and then simplifying, we obtain the
following result

4u = 4u− 4(∆t)ut + h2uxx + h2uyy + (∆t)2utt + · · · .

Rearranging things a bit we obtain

ut =
h2

4∆t
(uxx + uyy) +

∆t

4
utt + · · · . (4.74)

With this, the first-order approximation for the probability satisfies

ut = D(uxx + uyy), (4.75)

where

D =
h2

4∆t
. (4.76)

The conclusion is that the resulting continuous problem is a diffusion equa-
tion. Although it was derived assuming the motion was on a rectangular lat-
tice, as shown in Exercise 4.9, the same equation is obtained for the general
random walk given in (4.68), (4.69).

The above formula for D is a factor of two smaller than what we found for
one-dimensional motion. This is not surprising if one remembers that D is a
measure of the spread in the molecules per time step, and the larger D the
greater the spread. In one-dimensional motion the cloud can only move left or
right. In contrast, in two dimensions the particles can also move around the
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origin, as well as radially away from it, and this means the spreading is not
as pronounced as in one dimension. In other words, the associated diffusion
coefficient is less in two dimensions, and this is borne out in (4.76). Based
on this, it should not be surprising that in d dimensions one still obtains a
diffusion equation, with D = h2/(2d∆t).

Example: Point Source Solution

The symmetric solution seen in Figure 4.25 can best be described using polar
coordinates. In switching from Cartesian to polar coordinates one finds that

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+

cos θ
r

∂

∂θ
.

Substituting these into (4.75), and simplifying, the polar coordinate form of
the diffusion equation is

∂u

∂t
= D

(
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2
∂2u

∂θ2

)
, (4.77)

We are interested in solutions that are symmetric about the origin, which
is the case of the distributions shown in Figure 4.25. Mathematically, this
means that u is independent of θ, and (4.77) reduces to

∂u

∂t
= D

1
r

∂

∂r

(
r
∂u

∂r

)
. (4.78)

This is known as the radially symmetric diffusion equation. The second as-
sumption, based on Figure 4.25, is that the total number of molecules remains
constant. This means that ∫ ∞

0

∫ 2π

0

urdr = γ.

Because u is independent of θ, this reduces to∫ ∞

0

u rdr =
γ

2π
. (4.79)

We want to find the solution of (4.78), that satisfies (4.79) and which also
satisfies u→ 0 as r →∞. One of the easier ways to do this is to use similarity
variables. Aside from u, the only dimensional variables or parameters in the
problem are r, t, D, and γ. In other words, u = u(r, t,D, γ). To reduce this
using dimensional analysis note [γ] = [u]/L2. Using an argument very similar
to the one given in Section 1.4, it is found that
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u =
γ

Dt
F (η), (4.80)

where η = r/
√
Dt. Substituting this into (4.78), and rearranging things a bit,

yields

ηF ′′ + F ′ +
1
2
η2F ′ + ηF = 0.

This can be rewritten as

d

dη
(ηF ′) +

d

dη

(
1
2
η2F

)
= 0.

Integrating, and then solving the resulting first-order differential equation for
F , yields the general solution

F = e−η2/4

(
b+ a

∫
1
η
eη2/4dη

)
,

where b and a are arbitrary constants. Now, the solution must be bounded at
η = 0, and for this reason a = 0. The value of b is determined from (4.79), and
one finds that b = γ/(4π). Therefore, from (4.80), the point source solution
of the diffusion equation is

u =
γ

4πDt
e−r2/(4Dt). (4.81)

This is the function predicted in (4.70). �

4.7 Langevin Equation

Random walks can be described as positional models of Brownian motion in
the sense that they identify the locations of the molecules but they do not
identify the physical reasons for the movement. To explore how to incorporate
more of the physics into the modeling we need to consider what is happening
to the molecule. As in Brown’s original observations, the molecules involved
are on the order of microns and are moving through a fluid. As such these
molecules are in a sea of smaller objects, which are the atoms forming the
fluid, that are undergoing thermal motions. The consequence of this is that
the molecule is constantly subjected to many random impacts from these
rapidly moving smaller objects. Although each atom has only a small effect
on the molecule, there are many of them and together they are responsible
for the molecule’s random motion.

To model this we will use Newton’s second law, namely F = ma. The force
F between the molecule and the surrounding fluid will be separated into a
deterministic component D, and a random component R, and we write



186 4 Diffusion

F = D + R. (4.82)

Determining D and R is based on the observation that the relevant time and
space scales for the molecule and surrounding atoms are very different. The
thermal motions of the atoms are rapid, and occur over very short distances,
compared to those for the molecule. The force F is the averaged effect of these
multiple individual collisions that are taking place as the molecule moves. The
first term, D, is the resistance force. As the molecule moves through the fluid
there will be more collisions with the surrounding atoms on the front than
on the back, and this will give rise to a resistance force. This is analogous
to air resistance experienced by a object falling in air, and it is accounted
for in (4.82) with D. It is assumed that this force is proportional to the
velocity. Letting r(t) be the position of the molecule then D = −µr′ where
µ is a constant. The term R is suppose to account for everything else the
atoms are doing to the molecule. As such it contains the random, and rapidly
fluctuating, component of the force. The resulting equation of motion is

m
d2r
dt2

= −µdr
dt

+ R(t), (4.83)

where m is the mass of the molecule. This is known as the Langevin equation.
It is an example of a stochastic differential equation due to the presence of R.
As a mathematical model it has been very influential in classical and quantum
mechanics, as well as in statistical mechanics. In fact, Langevin ideas remain
fundamental to contemporary scientific research in nonequilibrium statistical
physics.

To continue it is necessary to specify R. Although it does fluctuate rapidly,
the amplitude or magnitude of this function is not small. In fact, to quote
Langevin, “it maintains the agitation” of the molecule [Lemons and Gythiel,
1997]. What he means is that R is the driving force that is responsible for
the observed random walk behavior of the molecule. This is interesting in-
formation, but it still leaves open the question of how to determine R. The
usual approach is to simply write down a function, providing plausibility ar-
guments why it is appropriate. In doing so there are conditions the function is
required to satisfy to be consistent with Brownian motion. One of the more
basic hypotheses is that R is an external force and is independent of the
molecule’s motion, in other words, it does not depend on r or its derivatives.
This assumption enables us to solve the equation. Introducing the velocity
v = r′ then (4.83) can be written as

dv
dt

+ λv =
1
m

R(t), (4.84)

where λ = µ/m. This first-order equation can be solved using an integrating
factor, and the result is
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Figure 4.27 Example of the random, rapidly fluctuating, function R appearing in
the Langevin equation (4.83).

v(t) = v(0)e−λt +
1
m

∫ t

0

R(τ)e−λ(t−τ)dτ . (4.85)

This shows that the random forcing has a cumulative effect on the velocity
because it depends on an integral of R. How much the early values of R
affect v depends on λ. The larger λ the greater the exponential decay in the
integral, and the less effect the early values of R have on the velocity. Also
note that larger values of λ reduce the contribution of the initial velocity.
Said another way, the larger λ is, the quicker the molecule forgets its initial
velocity and its movement is determined by Brownian randomization. Once
the velocity is known, the position of the molecule can be determined by
integrating (4.85), the result is

r(t) = r(0) +
1
λ
v(0)(1− e−λt) +

1
mλ

∫ t

0

R(τ)(1− e−λ(t−τ))dτ. (4.86)

Stating that the forcing function R is random does not mean that it is
arbitrary. To be consistent with Brownian motion, R is subject to certain
restrictions, and these will be derived in the next section. Before that, a
comment is needed about the mathematical problem we are addressing. The
example of the random forcing term R shown in Figure 4.27 uses 400 points
along the t-axis. As will be explained later, the value of R(t1) is independent
of the value of R(t2) if t1 6= t2. This means that if more than 400 points
are used, the graph will appear even more random than in Figure 4.27. The
question that immediately arises is whether the resulting nondifferentiability
of this function causes the differential equation (4.84), or its solution (4.84),
to be meaningless. The answer as to why it is possible to include such a forcing
function is one of the central objectives of stochastic differential equations,
and how this is done is explained in Appendix C. The short answer is that
differentiability is not an issue in (4.85) or (4.86), and it is these expressions
that we will work with.
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4.7.1 Properties of the Forcing

The solution in (4.85) is for a single molecule. We are interested in what
happens when a large group of molecules are released at a point, which we
will assume is the origin. Also, for simplicity, it is assumed that the molecules
start out at rest, so v(0) = 0. If there are K molecules in the group then the
mean velocity of the group is

V =
1
K

K∑
i=1

vi,

where vi is the velocity of the ith molecule. Similarly, the mean displacement
of the group is

Dg =
1
K

K∑
i=1

ri,

where ri is the displacement of the ith molecule. Using (4.85) we have that

V =
1
m

∫ t

0

Q(τ)e−λ(t−τ)dτ ,

and from (4.86)

Dg =
1
mλ

∫ t

0

Q(τ)(1− e−λ(t−τ))dτ , (4.87)

where

Q =
1
K

K∑
i=1

Ri (4.88)

is the mean random force, and Ri is the random forcing for the ith molecule.

Assumption 1: Zero Average.

As you might have already noticed, the molecules in the group are identical,
so they have the same mass m and resistance factor µ. This brings us to the
first assumption made on the random forcing. It is perhaps easiest to explain
this using the two-dimensional random walk in (4.68), (4.69). All directions
are equally likely. So, at time step n, if we happen to select a direction angle
θn we could have just as likely selected the opposite direction, either θn + π
or θn−π. Consequently, at any given time step n, if one averages over all the
displacements possible they get zero. The random forcing is assumed to be
consistent with this result. In other words, it is assumed that when letting
K → ∞ in (4.88) they obtain Q = 0. With this, taking the same limit in
(4.87), we have that Dg = 0. This result does not mean the group is mo-
tionless, rather it means the motion is symmetric. Given that it is equally
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Figure 4.28 The upper graph gives the distance squared (4.89) averaged over a
group of molecules moving according to the random walk (4.68), (4.69). The lower
graph gives ||Dg||. In the calculation, K = 100,000 molecules were used, and the step
length was 0.1.

likely to move in one direction as another, when a very large group starts
out at the same point then the group will be distributed approximately sym-
metrically about the point as time progresses. Consequently, the resulting
average displacement is approximately zero. This symmetry is evident in the
distributions in Figure 4.25.

Assumption 2: Independence.

It is known that for random walks in one dimension the average displacement
is zero, but the average of the displacement squared grows linearly in time
(see Exercise 4.1). This same conclusion holds for multidimensional random
walks, and to investigate this for the Langevin equation let

U =
1
K

K∑
i=1

ri · ri. (4.89)

The values of U are given in Figure 4.28 for the two-dimensional random
walk (4.68), (4.69). For completeness, the values of the magnitude of the
average displacement vector (4.87) are also given. In looking at the values
for ||Dg|| one might be a bit skeptical about the statement that the average
displacement is zero. It should be remembered that this holds in the limit
of K → ∞. Also, after 200 time steps the molecules have the potential to
be a distance of 200h = 20 from the origin. Compare to this, the values for
||Dg|| in Figure 4.28 are quite small. No such qualifications, however, need
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to be made about the computed values of U , which clearly show a linear
dependence on time.

The question we now consider is whether the Langevin equation results
in U increasing linearly in time. Substituting the solution (4.85) into (4.89),
and recalling that ri(0) = vi(0) = 0, we obtain

U =
1
K

K∑
i=1

∫ t

0

∫ t

0

Ri(s) ·Ri(τ)f(s, τ)dτds, (4.90)

where
f(s, τ) =

1
m2λ2

(1− e−λ(t−τ))(1− e−λ(t−s)). (4.91)

This brings us to the second assumption made on the random forcing. Com-
pared to the molecule’s motion, the surrounding atoms are moving very
quickly, and they are undergoing a large number of collisions with their neigh-
bors over a very short amount of time. Consequently, the atomic events re-
sponsible for the random force at time t are effectively independent of those
for the random force at a different time τ . In this case the forcing function is
said to be Markovian. A consequence of this assumption is that the positive
and negative values of Ri(s) ·Ri(τ) are all equally likely. It is for this reason
that the average of Ri(s) ·Ri(τ), as K →∞, is zero if s 6= τ . However, this
does not mean that U → 0 as K →∞ in (4.90) because we need to consider
what happens when s = τ .

Assumption 3: Concentration.

Assuming that the forcing is nonzero, the product Ri(s) ·Ri(s) is positive.
This means that the random forcing tends to accentuate the values in the
integrals in (4.90) for s = τ . The specific assumption made is that given any
continuous function f(s, τ), if 0 < s < t then

lim
K→∞

1
K

K∑
i=1

∫ t

0

Ri(s) ·Ri(τ)f(s, τ)dτ = γf(s, s), (4.92)

where γ is a positive constant. As the above equation shows,
√
γ is the ampli-

tude of the forcing, and its value will be determined below when comparing
the random walk and Langevin descriptions.

With (4.92), letting K →∞ in (4.90) we have that

U =
1

m2λ2

∫ t

0

γ
(
1− e−λ(t−s)

)2

ds

=
γ

2m2λ3

(
2λt− 3 + 4e−λt − e−2λt

)
. (4.93)

For large values of time the above solution reduces to
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U ≈ γ

µ2
t. (4.94)

Therefore, with the stated assumptions on the random forcing, the Langevin
equation gives us the expected conclusion that U increases linearly in time.

The two constants in (4.94) can be determined by introducing additional
assumptions into the formulation. It is commonly assumed that the resistance
term µr′ in the Langevin equation is equivalent to the viscous force of a fluid.
As shown in (1.22), it is known that for slow flows the drag force on a sphere
of radius r is 6πνrv, where ν is the dynamic viscosity of the fluid and v is
the velocity of the sphere. This is Stokes’ law for the drag on a sphere, and
was introduced in Section 1.2.2. Assuming that the molecules are spheres
then the conclusion is that µ = 6πν. Because the viscosity of fluids such as
air and water is known, then the corresponding value of µ is known. The
value of γ can be determined from the theory of the kinetic theory of gases
because the integral in (4.93) is associated with the thermal energy of the
system. It is found that γ = 6µkT , where k is the Boltzmann constant and
T is the absolute temperature. To relate this to the diffusion process arising
from the random motion, it is known that U = 2dDt, where d equals the
number of spatial dimensions (see Exercise 4.1). Using (4.94) we have that
D = γ/(2dµ2). Combining this with our values for the two constants we
obtain the Stokes-Einstein equation (4.15).

Example

Because of the random forcing, each time the Langevin equation is solved
a different solution is obtained. Three such solutions r(t) are shown in the
upper graph of Figure 4.29 for one-dimensional motion. For each solution the
initial conditions are r(0) = 0 and r′(0) = 0, and the parameters are µ = 10,
γ = 1, and m = 1. The curves show the typical wandering of a Brownian
motion. To check that the distance squared (4.89) is linear, the values of U(t)
are plotted in the lower graph of Figure 4.29. Not only is the curve linear, it is
the same curve obtained using random walks shown in Figure 4.28 assuming
∆t = 1. This is not a coincidence. From the Langevin formulation we have
that D = γ/(2dµ2), while from the random walk we have D = h2/(2d∆t).
For these to produce the same diffusion coefficient it is therefore required
that γ = (µh)2/∆t. The given values of γ, µ, and h satisfy this equation, and
that is why Figure 4.29 agrees with Figure 4.28. �

Example: Asset Modeling

The Langevin equation was derived using ideas from molecular physics, but
it has application in a wide variety of areas. One is in modeling the value of
a financial asset, such as a stock. To frame this in terms of the discrete time
steps used for a random walk, suppose the value of the asset at t = n∆t is Vn
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Figure 4.29 The upper graph gives three solutions of the one-dimensional Langevin
equation, assuming r(0) = 0 and r′(0) = 0. The lower graph gives the distance
squared (4.89), averaged over 10,000 solutions of the Langevin equation.

and we want to determine its value Vn+1 at the next time step t = (n+1)∆t.
The assumption is that the asset changes by an amount proportional to its
value, and so

Vn+1 = Vn + rnVn. (4.95)

The coefficient rn is the rate of return. For example, if the asset is a simple
savings account, and the interest rate is µ, then rn = µ∆t. The value of
many assets, such as stocks, are affected by external events, and their rates
can vary dramatically with time. To account for this in the model, the rate
is assumed to have the form

rn = µ∆t+ σ∆W, (4.96)

where the terms in this expression are explained below.

• Expected Average Growth. If external events do not affect the asset, then
its value is assumed to increase at a constant rate. Just as with the savings
account example, this rate is assumed to be µ∆t. The positive constant µ
is known as the drift coefficient.

• Random Fluctuations. The value of a stock can change due to rapidly
changing external events. The σ∆W term in (4.96) accounts for these
fluctuations. In this expression, σ is a positive constant that depends on the
particular asset under study, and is known as the volatility. The random
function ∆W is time-dependent, but independent of the asset.

Combining (4.95) and (4.96) we have that
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Vn+1 − Vn = µ∆tVn + σ∆W Vn, (4.97)

or equivalently
Vn+1 − Vn

∆t
=
(
µ+ σ

∆W

∆t

)
Vn. (4.98)

It is tempting to let ∆t → 0 in this expression, and from this conclude that
V ′ = (µ+σR)V , where R = W ′. However, the problem related to how this is
possible with nondifferentiable functions comes up again, and the difficulty
is compounded by the appearance of the product ∆W Vn. One way to avoid
this is to change variables and transform it into a Langevin equation. With
this in mind, assume the change of variables has the form Q = f(V ). In this
case, using Taylor’s theorem for small ∆t,

Qn+1 = f(V (tn +∆t))

= f

(
Vn +∆tV ′

n +
1
2
(∆t)2V ′′

n + · · ·
)

= fn +
(
∆tV ′

n +
1
2
(∆t)2V ′′

n + · · ·
)
f ′n +

1
2
(∆t)2(V ′

n)2f ′′n + · · ·

= Qn +∆t (µ+ σRn)Vn f
′
n +

1
2
(∆t)2(µ+ σRn)2V 2

n f
′′
n + · · · (4.99)

For the random forcing associated with Brownian motion, it can be shown
that for small ∆t, R2 = 1/

√
∆t+ · · · . Also, to transform (4.97) into one that

resembles the Langevin equation let Q = ln(V ). With this, (4.99) becomes

Qn+1 −Qn = ∆t

(
µ− 1

2
σ2

)
+ σ∆tRn. (4.100)

Letting ∆t→ 0 we obtain

dQ

dt
= µ− 1

2
σ2 + σR, (4.101)

Letting W =
∫ t

0
R(τ)dτ , then the solution is

Q(t) = Q(0) +
(
µ− 1

2
σ2

)
t+ σW (t).

Transforming back into the original variables,

V (t) = V (0)eλt+σW (t), (4.102)

where λ = µ− 1
2σ

2. This solution is an example of what is known as geomet-
ric Brownian motion. It gets this name because the random forcing enters
through a multiplicative factor, as given in (4.95). �
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4.7.2 Endnotes

The assumption that R in (4.83) is a randomly varying function is an ap-
proximation. The reasoning used when introducing randomness is that this
reflects the zig-zag nature of the motion. For the space and time scales we
were considering, this is appropriate. However, if you were to slow time down,
and look at the molecular level, the motion would appear to be smooth. As
an example, if you watch a slowed down movie of billiard balls bouncing off
each other, at the level of the billiard balls, the motion would appear smooth.
Yet, in real-time they give the impression of changing directions instantly on
impact. What this means is that the nondifferentiability of the function in
Figure 4.27 is a consequence of the approximation of the forcing function.
This observation has had a significant impact on the development of stochas-
tic differential equations, and it specifically relates to how the integrals in
(4.85) and (4.86) are defined. In one formulation the integrals possess impor-
tant mathematical properties expected of integrals, but are not completely
consistent with the physics, while other formulations do just the opposite. Ex-
ploring the ramifications of this statement is beyond the scope of this text,
and those who want to learn more about this should consult Mazo [2002] and
Kampen [2007].

Exercises

4.1. Suppose a total of K particles, all starting at x = 0, undergo a random
walk. Let xi(N) be the position of the ith particle at time step N .

(a) Writing xi(N) = xi(N − 1) + qi(N), explain why the value of qi is either
∆x or −∆x.

(b) Use the basic properties of a random walk to explain why the following
holds

lim
K→∞

1
K

K∑
i=1

qi(N) = 0.

Explain why the same reasoning can be used to explain why, if N 6= M ,

lim
K→∞

1
K

K∑
i=1

qi(N)qi(M) = 0.

What is the above limit in the case of when M = N?
(c) The mean displacement of the group, at time step N , is

dK(N) =
1
K

K∑
i=1

xi(N).
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Relate dK(N) with dK(N − 1), and from this show that limK→∞ dK =
0. Therefore, the average displacement of a large group of particles is
approximately zero.

(d) The mean-square displacement of the group is defined as

rK(N) =
1
K

K∑
i=1

x2
i (N).

The value of rK is a measure of the spread of the group. By relating xi(N)
with xi(N − 1), show that limK→∞ rK = N(∆x)2. Therefore, on average,
for very large groups of particles the mean-square displacement of the
group increases linearly with time.

(e) There are various ways to derive the formula for the diffusion coefficient.
One sometimes used in physics is

D =
< x2 >

2t
,

where < x2 >= limK→∞ rK . Show why this agrees with the definition in
(4.12).

4.2. This problem considers a random walk when the probabilities of left or
right steps are not equal. In particular the probability of going right is pr

and the probability of going to the left is p`. It is assumed that pr, p` are
nonzero and pr + p` = 1.

(a) The grid in Figure 4.30 identifies the achievable positions a particle can
reach at each time step. Letting w(m,N) be the probability of each posi-
tion then we know that w(−1, 1) = p`, w(0, 1) = 0 and w(1, 1) = pr. One
can show that w(0, 2) = prw(−1, 1) + p`w(1, 1) = 2prp`, that is, w(0, 2) is
the sum of the probability of moving right from (−1, 1) and moving left
from (1, 1). Use this principle to determine the probability for the other
positions shown in the figure below. Also, show that the probabilities at
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Figure 4.30 Figure for Problems 4.2 and 4.7.
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each time level (N = 0, 1, 2, 3, 4) add to one and explain why this has to
be the case.

(b) In going from time level N = 0 to time level N 6= 0 , explain why to reach
x = m∆x it takes nr = (N +m)/2 steps to the right and n` = (N −m)/2
steps to the left.

(c) There are N !/(nr!n`!) unique paths to reach x = m∆x and as a conse-
quence of this

w(m,N) = (pr)nr (p`)n`
N !

nr!n`!
,

for m = −N,−N +2,−N +4, . . . , N . Verify this formula for the positions
shown in the above figure.

(d) Use Stirling’s approximation to write w so it has the form qLn`Rnr , where
R is written in terms of pr, N , and m while L is written in terms of p`,
N , and m. Setting Q = ln(Ln`Rnr ) find the m that maximizes Q. After
this use Taylor’s theorem, through quadratic terms, to expand Q around
this m value. From this show that for large N ,

w(m,N) ∼ 1√
2πNprp`

e−q,

where

q =
[m−N(pr − p`)]2

8Nprp`
.

(e) Use the principle in part (a) to derive a master equation, which expresses
w(m,N) in terms of w(m−1, N−1) and w(m+1, N−1). Setting u(x, t) =
w(m,N) then rewrite your equation in terms of u. Expand this for small
∆x, ∆t and derive a partial differential equation for u that involves ux,
ut, uxx. The coefficients of the equation must not depend on x or t but
can depend on ∆x, ∆t, pr, p`, etc. The equation must also reduce to the
diffusion equation if pr = p`. The equation you are deriving is called the
drift-diffusion equation.

(f) Show that the solution in part (d) can be written, up to a multiplicative
constant, as

u(x, t) =
1√
t
e−(x−vt)2/(αt).

Show that this satisfies your drift-diffusion equation and in the process
state how v and α are related to ∆x, ∆t, pr, p`.

(g) Explain why the constant v in part (f) is known as the drift velocity.
(h) Figure 4.31 shows the result of running a biased random walk with 5,000

particles all starting at the origin. From these data, and your result in part
(d), estimate the values of pr, p` .

4.3. This problem makes use of the connection of the diffusion coefficient
with the molecule’s mean free path and average time between collisions, as
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Figure 4.31 Figure for Exercise 4.2.

expressed by the Einstein-Smoluchowski equation (4.14). In what follows the
average speed of the molecule is defined as v = λ/τ .

(a) In air the mean free path is in the neighborhood of 30 times the average
molecular separation distance d. In air suppose d is approximately 3×10−7

cm. Given that for air D ≈ 0.2 cm2

sec , approximately how long is it between
collisions? Approximately how fast are the molecules traveling? How many
collisions are there per second?

(b) In water the mean free path is in the neighborhood of 30 times the average
molecular separation distance d. In water suppose d is approximately 3×
10−8 cm. Given that for water D ≈ 2 × 10−5 cm2

sec , approximately how
long is it between collisions? Approximately how fast are the molecules
traveling? How many collisions are there per second?

4.4. A lazy random walk is one that allows the particle to stay put instead
of having to move left or right. For this situation assume the probability of
going to the right is pr, the probability of going to the left is p`, and the
probability of not moving is ps. As usual, p` + ps + pr = 1. Also, letting
∆x be the spatial stepsize and ∆t the temporal stepsize then x = m∆x and
t = N∆t.

(a) The grid in Figure 4.32 identifies the achievable positions a particle can
reach at each time step. Letting w(m,N) be the probability the molecule is
at x = m∆x after N time steps then we know that w(−1, 1) = p`w(0, 0) =
p`, w(0, 1) = psw(0, 0) = ps, and w(1, 1) = prw(0, 0) = pr. Determine the
probability for the other positions shown in the figure. Also, show that the
probabilities at each time level (N = 0, 1, 2, 3) add to one and explain why
this has to be the case.
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(b) Based on your result in part (a) what are the values of A, B, C so
w(m,N) = Aw(m− 1, N − 1) +Bw(m,N − 1) + Cw(m+ 1, N − 1).

(c) Setting u(x, t) = w(m,N) then rewrite your result from part (b) in terms
of u. Assuming ∆x, ∆t are small, derive a partial differential equation for
u. The coefficients of the equation must not depend on x or t but can
depend on ∆x, ∆t, p`, ps, pr, etc. Do you need to distinguish between the
cases of when p` 6= pr and when p` = pr? Also, in the case of when p` = pr

your result should reduce to the diffusion equation.
(d) Explain how this result differs from (4.12) and (4.13). Make explicit com-

parisons between the coefficient(s) of the two equations.

4.5. For the random walk we considered there was no memory of the previ-
ous step when determining the current one. An interesting modification is a
correlated walk where the probability at the next time step depends upon the
previous step. To examine this suppose that step N − 1 is complete. Step N
is made in the same direction with probability p and in the opposite direction
with probability 1− p. If p > 1

2 it is called a persistent walk and if p < 1
2 it is

an anti-persistent walk. To get this procedure started a regular random walk
can be used at the first step.

(a) Let w(m,N) = f(m,N) + g(m,N), where f(m,N) is the probability of
arriving at x = m∆x, at time step N , from the left and g(m,N) is the
probability of arriving at x = m∆x, at time step N , from the right. Show
that f(m,N) = pf(m− 1, N − 1) + (1− p)g(m− 1, N − 1) and g(m,N) =
(1− p)f(m+ 1, N − 1) + pg(m+ 1, N − 1).

(b) Setting u(x, t) = f(m,N) + g(m,N) and v(x, t) = f(m,N) − g(m,N),
expand u, v for small ∆x,∆t. Letting ∆t→ 0, with c = ∆x/∆t fixed and
p = 1− α∆t/2, derive the following partial differential equation

utt + αut = c2uxx.

This is known as the telegraph equation.
(c) As in part (b), expand u, v for small ∆x,∆t, but now let ∆t → 0 with

∆x2/∆t fixed and p constant. Show that u satisfies the diffusion equation,
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Figure 4.32 Grid for Exercise 4.4.
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where the diffusion coefficient is

D =
∆x2

2∆t
p

1− p
.

4.6. For the diffusion problem in (4.22), (4.23) suppose

f(x) =
α√
π
e−α2x2

,

where σ is a positive constant.
(a) Show that

u(x, t) =
1

2
√
πD(t+ τ)

e−
x2

4D(t+τ) ,

where τ = 1/(4α2D).
(b) Given that

∫∞
−∞ f(x)dx = 1, show that the solution in part (a) satisfies∫∞

−∞ u(x, t)dx = 1. Explain how the latter result can also be obtained
directly from the diffusion equation.

4.7. A random walk with loss is one that allows the particle to be irreversibly
lost from the system at each time step. Suppose that at t = (N − 1)∆t the
particle is located at x = m∆x. The assumption is that at t = N∆t the
particle will have moved to x = (m + 1)∆x with probability pr, it will have
moved to x = (m− 1)∆x with probability pr, and it will have vanished with
probability ps. As usual, 2pr + ps = 1.

(a) The grid in Figure 4.30 identifies the achievable positions a particle can
reach at each time step when starting at m = 0. Letting w(m,N) be the
probability the molecule is at x = m∆x after N time steps then we know
that w(−1, 1) = prw(0, 0) = pr, and w(1, 1) = prw(0, 0) = pr. Determine
the probability for the other positions shown in the figure.

(b) Based on your result in part (a) what are the values of A,B,C so
w(m,N) = Aw(m− 1, N − 1) +Bw(m,N − 1) + Cw(m+ 1, N − 1)?

(c) Setting u(x, t) = w(m,N), rewrite your result from part (b) in terms of
u(x, t). Assuming ∆x,∆t are small, derive a partial differential equation
for u. In doing this assume the probability of loss is small, that is, assume
ps = p0∆t. The coefficients of the equation you derive must not depend
on x or t but can depend on ∆x, ∆t, pr, and p0. Also, in the case of when
p0 = 0 your result should reduce to the diffusion equation (4.13).

4.8. In two dimensions the lattice need not be square, or even rectangular.
This problem examines what happens in such cases.

(a) Suppose in the lattice shown in Figure 4.26, ∆x and ∆y are not equal.
Assuming λ = ∆x/∆y is fixed what is the resulting diffusion equation?

(b) Suppose the lattice is as shown in Figure 4.33, where ∆x = ∆y. Show that
one still obtains the diffusion equation in (4.75) with D given in (4.76).
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Figure 4.33 Random walk for Exercise 4.8. A molecule at the black dot will move,
with equal probability, to one of the hollow dots. The step length is h.

4.9. This problem explores how to derive the diffusion equation for the gen-
eral random walk in the plane, as given in (4.68), (4.69). Let u(x, y, t) be the
probability that the particle is located at the spatial location (x, y) at time
t.

(a) Suppose that at time step t+∆t the particle is located at (x, y). Explain
why at time t the particle was located somewhere on the circle of radius
h that is centered at (x, y).

(b) As an approximation to the circle in part (a), distribute N points uni-
formly around this circle. Specifically, take the points (x+h cos(j∆θ), y+
h sin(j∆θ)), where ∆θ = 2π/N and j = 1, 2, . . . , N . Explain why the
probability of the particle moving from one of these N points to (x, y) is
approximately 1/N . From this explain why

u(x, y, t+∆t) ≈ 1
N

N∑
j=1

u(x+ h cos(j∆θ), y + h sin(j∆θ), t).

(c) Use the result from part (b) to show that for the general random walk

u(x, y, t+∆t) =
1
2π

∫ 2π

0

u(x+ h cos θ, y + h sin θ, t)dθ.

(d) Derive the diffusion equation from the result in part (c) by letting ∆t and
h approach zero.

4.10. In this problem the inverse Fourier transform for the diffusion equation
is derived from scratch.

(a) Show that

u(x, t) =
1√
2π

∫ ∞

−∞
F (k)eikx−Dk2tdk.

(b) Setting H(k) = F(e−x2
), show that H ′ = −k

2H. Using the fact that
H(0) =

√
π show that F(e−x2

) =
√
πe−k2/4. From this show that
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−∞
eikq−Dk2tdk =

√
π

Dt
e−q2/(4Dt).

(c) Use parts (a) and (b) to derive (4.38).

4.11. This problem involves the Fourier transform and its inverse on problems
involving semi-infinite intervals.

(a) Suppose y(t) satisfies y′′ + 3y′ + 2y = e−3t, for t > 0, with the initial
conditions y(0) = y′(0) = 0. This problem determines the value of y(t)
for t ≥ 0, but the Fourier transform requires the interval −∞ < t < ∞.
Explain why it is possible to assume in this problem that y = 0 for −∞ <
t < 0. Doing this, use the Fourier transform to solve the problem.

(b) Use the Fourier transform to find the function y(t) that satisfies 2y′′ +
7y′ + 3y = −4e−t, for t > 0, with the initial conditions y(0) = y′(0) = 0.

4.12. Find the differential equation satisfied by the Fourier transform U(k, t).
Assume that the solution and its derivatives go to zero as x→ ±∞.

(a) ut + ux = uxxx.
(b) ut + xux = 0.
(c) ut + uxxxx = 0.

4.13. Explain why F(F−1(F )) = F is correct but that F−1(F(f)) = f
might not be true. What assumption(s) must be made so the last statement
is correct?

4.14. This problem concerns calculating the Fourier transform or its inverse.
(a) Find f(x) if

F (k) =
1

(1 + ik)(2 + ik)
.

(b) Find f(x) if

F (k) =
1

(2 + ik)
e−ik.

(c) Find F (k) if

f(x) =
{

cosh(x) if |x| ≤ α,
0 otherwise.

4.15. This problem develops some of the basic properties of the Fourier trans-
form. Assuming F (k) is the Fourier transform of f(x) show the following.

(a) The Fourier transform of f(ax), for a 6= 0, is F (k/a)/|a|.
(b) The Fourier transform of f(x− a) is e−iakF (k).
(c) The Fourier transform of f(x) cos(ax) is 1

2 (F (k + a) + F (x− a)).

4.16. Suppose the initial condition for the diffusion problem is

u(x, 0) =
{
u0 if |x| ≤ h,
0 otherwise.
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Show that the solution is

u(x, t) =
1
2
u0

[
erf
(
x+ h

2
√
Dt

)
+ erf

(
x− h

2
√
Dt

)]
,

where erf() is the error function.

4.17. This problem concerns the convection-diffusion equation

ut = Duxx − cux, for
{
−∞ < x <∞,
0 < t,

with the initial condition
u(x, 0) = f(x).

Assume c is a constant.
(a) Using the Fourier transform, find the solution of the above problem.
(b) Make the change of variables ξ = x − ct, τ = t. Letting v(ξ, τ) = u(x, t)

show that v satisfies a problem very similar to the one solved in Section
7.2.5. Use this observation, and (4.38), to write down the solution of the
convection-diffusion problem.

4.18. This problem concerns the reaction-diffusion equation

ut = Duxx − cu, for
{
−∞ < x <∞,
0 < t,

with the initial condition
u(x, 0) = f(x).

Assume c is a positive constant.
(a) What reaction(s) give rise to this reaction-diffusion equation?
(b) Using the Fourier transform, find the solution of the above problem.
(c) Show that the problem can also be solved by first letting u = veat, where

a is a constant of your choosing, and then using (4.38).
(d) Suppose the −cu term in the differential equation is replaced with cu.

What reaction(s) give rise to the resulting reaction-diffusion equation?

4.19. This problem concerns solving the wave equation

utt = c2uxx, for
{
−∞ < x <∞,
0 < t,

with the initial conditions

u(x, 0) = 0, ut(x, 0) = g(x).

Assume c is a positive constant. Using the Fourier transform, find the solution
of this problem.
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4.20. Using the steady-state solution (4.55) to find the diffusion coefficient
requires the experiment to run for almost three hours. Explain how it is
possible to find D within 60 seconds of the start of the experiment.



Chapter 5

Traffic Flow

5.1 Introduction

In this chapter we again investigate the movement of objects along a one-
dimensional path, but now the motion is directed rather than random. Ex-
amples of such situations include:

• Cars moving along a highway (Figure 5.1)
• Blood cells moving along a capillary (Figure 5.2)
• Molecules moving along a carbon nanotube (Figure 5.3)

Although the underlying physics of each of these is quite different they all
involve the movement of objects along what is effectively a one-dimensional
pathway. We will take advantage of this when developing a mathematical
model for the motion, but before doing so we must first decide on how to
account for the spatial and temporal variables. For example, for random walks
we used discrete steps in space and time. This is also done for traffic models
and it is the basis of the cellular automata description presented in Section

Figure 5.1 Aerial view of traffic flow (Google Maps [2007]).

M.H. Holmes, Introduction to the Foundations of Applied Mathematics, 205
Texts in Applied Mathematics 56, DOI 10.1007/978-0-387-87765-5 5,
c© Springer Science+Business Media, LLC 2009
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Figure 5.2 Red blood cells flowing in an arteriol (Baskurt [2009]).

5.7. We will start out, however, assuming that the motion is continuous,
which is the viewpoint taken when deriving the diffusion equation in Section
4.5.

5.2 Continuum Variables

We are assuming that the objects are numerous enough that it is not neces-
sary to keep track of each one individually, and we can use an averaged value.
In deriving the mathematical model, the objects here will be identified as cars
and the path as a highway. There are a couple of reasons for using this par-
ticular example. One is that most everyone has experience with traffic, and is
able to relate the mathematical results with the real-world application. The
other reason is that the theory for traffic flow is still not complete, so there
are competing ideas that can be explored. However, it should be remembered
that all of this material can be applied to other systems, such as the one
dimensional motion of blood cells and molecules. In fact, some of the termi-

Figure 5.3 Methane molecules
flowing through a carbon tubule
less than 2 nanometers in diameter
(Lawrence Livermore National Lab-
oratory [2009]).
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nology that is introduced comes from gas dynamics, because of its early use
of the ideas developed here.

5.2.1 Density

The variable that will play a prominent role in our study is the traffic density
ρ(x, t). This is the number of cars per unit length, and it is instructive to
consider how it might be determined experimentally. To measure ρ at x = x0,
for t = t0, one selects a small spatial interval x0 −∆x < x < x0 +∆x on the
highway, and then counts the number of cars within this interval (see Figure
5.4). In this case

ρ(x0, t0) ≈
number of cars from x0 −∆x to x0 +∆x at t = t0

2∆x
. (5.1)

The underlying assumption here is that ∆x is small enough that only cars
in the immediate vicinity of x0 are used to determine the density at this
point. At the same time, ∆x cannot be so small that it is on the order of the
length of individual cars (and the spacing between them). In the continuum
viewpoint, the cars are distributed smoothly over the entire x-axis, and the
value of ρ(x0, t0) is the limit of the right-hand side of (5.1) as ∆x→ 0.

Example: Uniform Distribution

To illustrate how density is determined suppose the cars all have length `, and
they are evenly spaced a distance d apart (see Figure 5.5). Given a sampling
interval 2∆x along the highway then the number of cars in this interval is,
approximately, 2∆x/(`+ d). Inserting this into (5.1) and letting ∆x→ 0 we
find that

ρ =
1

`+ d
. (5.2)

One conclusion that comes from this formula is that there is a maximum
density. Because 0 ≤ d <∞ then 0 < ρ ≤ ρM , where ρM = 1/`. For example,
if ` = 17 ft (5.2 m) and d = 12 ft (3.6 m) then, recalling 1 mi = 5280 ft,
ρ = 182 cars

mi (113 cars
km ). With these dimensions then the maximum density

���

���

Figure 5.4 The interval along the highway used to calculate an approximate value
of the density ρ(x0, t0). It is also used to derive the balance law for traffic flow.
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� � � � �

Figure 5.5 For a uniform distribution, the cars are all the same length and are
evenly spaced along the highway.

that is possible, which occurs when d = 0, is ρM = 310.6 cars
mi (193 cars

km ).
When studying traffic flow, it is useful to know the maximum merge density
ρmg, which corresponds to the density that occurs when the spacing is such
that exactly one car fits between two cars currently on the highway. This
occurs when d = ` and for this example ρmg = 155.3 cars

mi (96.5 cars
km ). �

5.2.2 Flux

The second variable we need is the flux J(x, t), which has the dimensions of
cars per unit time. To measure J at x = x0, for t = t0, one selects a small
time interval t0 −∆t < t < t0 +∆t and counts the net number of cars that
pass x = x0 during this time period. The convention is that a car moving to
the right is counted as +1, while one moving to the left is counted as −1. In
this case

J(x0, t0) ≈
net number of cars that pass x0 from t = t0 −∆t to t = t0 +∆t

2∆t
.

(5.3)
The underlying assumption here is that ∆t is small enough that only cars
that are passing x0 at, or near, t = t0 are used to determine the flux at t0.
At the same time, from an experimental standpoint, ∆t can not be so small
that no cars are able to pass this location during this time interval. In the
continuum viewpoint we are taking the cars are distributed smoothly over
the entire t-axis and the value of J(x0, t0) is the limit of the right hand side
of (5.3) as ∆t→ 0.

Example: Uniform Distribution (cont’d)

Returning to the previous example of uniformly distributed cars, shown in
Figure 5.5, we now add in the assumption that the cars are moving with a
constant positive velocity v. In this case, the cars that start out a distance
2∆tv from x0 will pass x0 in the time interval from t0 −∆t to t0 +∆t. The
corresponding number of cars is, approximately, 2v∆t/(`+ d). Inserting this
into (5.3), and letting ∆t→ 0, yields

J =
v

`+ d
. (5.4)
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For example, if ` = 17 ft, d = 51 ft and v = 70 mph then J = 5, 435 cars
hr .

Also, note that J = ρv, which is one of the fundamental formulas in traffic
flow. �

5.3 Balance Law

To derive an equation for the density we will use what is known as a control
volume argument. For this problem the control volume is a small region on
the highway, from x0 −∆x to x0 +∆x. This interval is shown in Figure 5.1.
During the time period from t = t0 −∆t to t = t0 +∆ t it is assumed that
the number of cars in this interval can change only due to cars entering or
leaving at the left or right ends of the interval. We are therefore assuming
cars do not disappear, or pop into existence, on the highway. Actually, this
could happen if we were to include an off- or onramp, but this modification
will be postponed for the moment (see Exercise 5.21). As stated, our balance
law for cars within the highway interval is

{number of cars in interval at t = t0 +∆t}
− {number of cars in interval at t = t0 −∆t}

= {net number of cars that cross x0 −∆x from t0 −∆t to t0 +∆t}
− {net number of cars that cross x0 +∆x from t0 −∆t to t0 +∆t}.

Rewriting this using (5.1) and (5.3) yields

2∆x [ρ(x0, t0 +∆t)− ρ(x0, t0 −∆t)]
= 2∆t [J(x0 −∆x, t0)− J(x0 +∆x, t0)] .

Using Taylor’s theorem, we have that

2∆x
(
ρ+∆tρt +

1
2
(∆t)2ρtt +

1
6
(∆t)3ρttt + · · ·

−ρ+∆tρt −
1
2
(∆t)2ρtt +

1
6
(∆t)3ρttt + · · ·

)
= 2∆t

(
J −∆xJx +

1
2
(∆x)2Jxx −

1
6
(∆x)3Jxxx + · · ·

−J −∆xJx −
1
2
(∆x)2Jxx −

1
6
(∆x)3Jxxx + · · ·

)
,

where ρ and J are evaluated at (x0, t0). Collecting the terms in the above
equation,

ρt +O
(
(∆t)2

)
= −Jx +O

(
(∆x)2

)
.
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Letting ∆x→ 0 and ∆t→ 0 we conclude that

∂ρ

∂t
= −∂J

∂x
. (5.5)

This is our balance law for motion along the x-axis. It is applicable to any
continuous system in which the objects are not created or destroyed. This is
why it was also obtained when deriving the model for diffusion (4.48).

5.3.1 Velocity Formulation

It is possible to express the balance law somewhat differently, by introducing
the velocity v(x, t) of the cars on the highway. This requires care because
the velocity, like the other continuum variables, is an averaged quantity. To
explain how this is done, consider a small interval on the highway as shown
in Figure 5.4. One measures v(x0, t0) experimentally by finding the average
velocity of the cars in this interval. Specifically, if there are n cars in the
interval, and they have velocities v1, v2, . . . , vn, then

v(x0, t0) ≈
1
n

n∑
i=1

vi.

In the continuum model it is assumed that the limit of this average, when
letting ∆x→ 0, exists, and its value is the velocity v(x0, t0).

With the above definition, the velocity is assumed to be related to the flux
through the equation

J = ρv. (5.6)

This equation was derived in the uniform distribution example discussed
earlier. It is also possible to derive it for situations where the velocity is
not constant (see Exercise 5.26). However, a proof for the general case is
not available, and so the above formula is an assumption. Some avoid this
difficulty by using (5.6) as the definition of the flux, while others use it as
the definition of the velocity.

Introducing (5.6) into (5.5) gives us

∂ρ

∂t
+

∂

∂x
(vρ) = 0. (5.7)

In solving this equation it will be assumed the initial density is known, that
is,

ρ(x, 0) = f(x). (5.8)
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The equation in (5.7) is the mathematical model for traffic flow that we will
investigate in the first part of this chapter. Those working in traffic flow re-
fer to this as the Lighthill-Whitham-Richards (LWR) model, naming it after
those who originally derived the equation (Lighthill and Whitham [1955],
Richards [1956]). However, the equation has wide applicability, and appears
under different banners. For example, in continuum mechanics it is known as
the continuity equation, while in electrodynamics (5.7) is the current conti-
nuity equation, where ρ is the current density and J is the current volume.
Those interested in more mathematical pursuits refer to (5.7) as a scalar
conservation law.

It should be kept in mind that, as with most mathematical models, (5.7) is
an approximation of the true system. Not unexpectedly, there are limitations
on its applicability. As a case in point, it is questionable whether the model
provides an accurate description at low densities. If the objects are few and far
between then the assumptions made in defining the density and flux are not
valid. This will not stop us from using the model in such rarified regimes, but
when this is done it should be understood that the continuum model provides
more of a qualitative description of the motion. That said, in the regimes
where it does apply, the continuum model has proven to be an exceptionally
accurate, and mathematical interesting, description.

5.4 Constitutive Laws

Although we have derived the balance law for traffic flow, the mathematical
model is incomplete. The issue is the velocity v and how it is related to the
density ρ. One possibility is to investigate the physics of the problem a bit
more and see if there is another equation relating these variables. This is
done in mechanics, and Newton’s second law is used to derive a force balance
equation that can be used to find the velocity. This option is not easily
adaptable to the traffic flow situation so we will take a different approach and
postulate how v and ρ are related based on experimental evidence. What we
will be doing is specifying a constitutive law relating the velocity and density.
To do this the data for several rather different roadways are shown in Figure
5.6. The question is, what function best describes the data in this figure?
The answer depends, in part, on what density and velocity intervals are of
interest and what applications one has in mind. A few possible constitutive
laws are discussed below.

It is worth making a couple of comments about Figure 5.6 that are un-
related to constitutive modeling. The data in the lower two graphs is what
was used in the original development of the continuum traffic model, while
the data in the upper two graphs is typical of more modern testing. One of
the striking differences between the upper and lower graphs is the amount of
data shown. This is due to the development of computerized testing systems,
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Figure 5.6 The velocity as a function of the density as measured for different road-
ways. Shown is (a) a highway near Toronto, (b) a freeway near Amsterdam, (c) the
Lincoln Tunnel, and (d) the Merritt Parkway. Data for (a) and (b) are from Aerde
and Rakha [1995], and (c) and (d) are from Greenberg [1959].

which have been invaluable for modern scientific research. However, what is
interesting is the rather tight pattern in the earlier data as compared to the
scatter in the more recent results. This begs the question of whether these
earlier experimentalists were more careful, or did they force the results. It
makes one wonder. A second observation concerns the difference in the den-
sities between Toronto and Amsterdam, which differ by almost a factor of
four. Any theory why this happens?

5.4.1 Constant Velocity

The simplest assumption is that v is constant in terms of its dependence on
ρ, in other words, v = a. In this case the balance law (5.7) reduces to

∂ρ

∂t
+ a

∂ρ

∂x
= 0. (5.9)

This is known as the advection equation. In looking at the data in Figure 5.6
one might conclude that assuming v is constant borders on delusional. The
value of this assumption is not its realistic portrayal of traffic but, rather,
what it provides in terms of insights into the type of mathematical problem
that arises in traffic flow. The analysis of this problem will provide the foun-
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dation needed for solving the more difficult nonlinear problems arising from
more realistic velocity functions.

5.4.2 Linear Velocity

The most widely used, and most well known, constitutive laws are linear. For
the traffic problem this means we assume v = a−bρ, where a, b are constants.
Those working in traffic flow refer to this as the Greenshields model, and the
usual way this is written is

v = vM

(
1− ρ

ρM

)
, (5.10)

where the constants vM , ρM are the maximum velocity and density, respec-
tively. The values of these constants can almost be read off the plot in Figure
5.6. However, a more systematic way to find them is to use a least squares
fit. Using the data for the Lincoln Tunnel and Merritt Parkway one finds
that vM = 36.821 mph, ρM = 166.4226 cars/mi and the resulting function is
plotted in Figure 5.7 along with the original data. It is seen that even though
this function misses the values at the extreme ends, where ρ = 0 or ρ = 180,
it does show the correct monotonic dependence of the velocity on density.
This would seem an acceptable approximation, and the traffic flow equation
(5.7) reduces to
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Figure 5.7 Curve fit of the Greenshields law (5.10) and the Newell law (5.17) to
traffic data for the Merritt Parkway and the Lincoln Tunnel.
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∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0, (5.11)

where

c = vM

(
1− 2ρ

ρM

)
. (5.12)

This is a nonlinear conservation equation for ρ. It can be solved analytically,
but it is certainly more challenging than the linear equation in (5.9). We will
return to this problem once we have worked out the constant velocity case
later in this chapter.

5.4.3 General Velocity Formulation

It is clear from the data in Figure 5.6 that the relationship between the
velocity and density is not linear. In certain applications these differences are
considered significant, and a more accurate function is needed. The general
version of the constitutive law in this case has the form

v = F (ρ). (5.13)

With this, the general formula for the flux is J = ρF (ρ). Assuming that F
is a smooth function of ρ then, using the chain rule, it follows that ∂

∂xJ =
J ′(ρ) ∂

∂xρ. The general form of the balance law (5.5) now takes the form

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0, (5.14)

where
c(ρ) = J ′(ρ), (5.15)

or equivalently
c(ρ) = F (ρ) + ρF ′(ρ). (5.16)

The function c(ρ) is known as the wave velocity, and it will play a critical
role in the solution of the equation. A particular example of this function is
given in (5.12), which is the wave velocity associated with the Greenshields
constitutive law in (5.10).

It is not possible to use just any function for the constitutive law in (5.13).
In particular, there are requirements that are needed to guarantee that (5.14)
has a solution. These will become evident once we attempt to solve the prob-
lem. For the moment, we will take a more physical viewpoint, and impose
conditions on the function F (ρ) that are based on what is known about traffic
flow. Interestingly, we will find that these physically based assumptions will
overlap with the mathematical requirements needed to guarantee that the
problem has a solution.
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It has already been assumed that F is a smooth function of ρ. In addition
to this, based on the data in Figure 5.6, the following assumptions are made.

NV1. F ′(ρ) ≤ 0 for 0 ≤ ρ ≤ ρM .
This assumption comes from Figure 5.6 which shows v is a monotonically
decreasing function of density. This requirement is consistent with the
observation that (most) drivers leave a larger bumper-to-bumper spacing
between cars as the speed increases. A consequence of this assumption
is that F (0) = vM is the maximum velocity. This corresponds to the
observation that on an uncongested highway, drivers tend to travel at the
maximum allowable speed.

NV2. F (ρM ) = 0.
This is based on the assumption that the closer the traffic gets to being
bumper-to-bumper the closer the velocity gets to zero.

The list of functions that are capable of satisfying these rather general require-
ments is endless. It is for this reason that in selecting a particular function
one should also consider simplicity. Given the uncertainty in the experimental
data, and the approximate nature of the model, it is a waste of time to con-
struct a function that hits every data point exactly. The problem is that the
condition of simplicity, like beauty, is difficult to quantify. However, the above
conditions require a function containing at least two parameters, namely vM

and ρM . The linear relationship in (5.10) is an example of a simple function
with two parameters. Another possibility is the function proposed by Newell
[1961], given as

v = vM

(
1− e−λ(1/ρ−1/ρM )

)
. (5.17)

Assuming that λ ≥ 0, this is an example of a three parameter constitutive
law that satisfies both NV1 and NV2. Fitting this to the data for the Lincoln
Tunnel and Merritt Parkway one finds that vM = 37.4 mph, ρM = 271
cars/mi, and λ = 67.4 mi/cars. The resulting function is plotted in Figure 5.7
along with the original data. It is evident that it is better than Greenshields
at reproducing the data and, unlike the linear law, this function contains a
plateau region near ρ = 0 that is seen in the Toronto and Amsterdam data in
Figure 5.6. The penalty for this improvement is that the wave velocity, given
in (5.16), is

c = vM

[
1−

(
1 +

λ

ρ

)
e−λ(1/ρ−1/ρM )

]
.

One therefore has to decide if the resulting complexity in the traffic flow
equation (5.14) is worth the improvement in the data fit.
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Figure 5.8 The flux as a function of the density measured on a freeway in Amster-
dam (Aerde and Rakha [1995]).

5.4.4 Flux and Velocity

Our model has three dependent variables, flux, density, and velocity. Given
that the equation of motion is written in terms of density and velocity the
conventional approach is to propose a constitutive law that relates these
two functions. However, it is worthwhile to consider other possibilities. One
alternative is to relate the flux with the density using a constitutive law, and
then use the equation J = ρv to determine the velocity. With this in mind
the data in Figure 5.6 for the freeway in Amsterdam is plotted in Figure
5.8, giving the flux as a function of density. This is known as a fundamental
diagram, and it is used extensively in developing traffic models. What is
striking about this graph is that J has a well-defined dependence on ρ up
to about ρ = 80 after which there is considerable scatter in the data. This
spread is very typical of traffic flow, and it makes formulating a constitutive
law for the flux problematic. In contrast, the v, ρ plots in Figure 5.6 show
a more well-defined relationship over the entire density range, and for this
reason it is more amenable to constitutive modeling.

One conclusion that can be made from Figure 5.8 is that the flux is con-
cave down. From this we obtain an additional general rule for the general
constitutive law v = F (ρ), which is

NV3. J ′′(ρ) ≤ 0, or equivalently, 2F ′(ρ) + ρF ′′(ρ) ≤ 0 for 0 ≤ ρ ≤ ρM .

Recall that a smooth function is concave down if its derivative is monotone
decreasing. Consequently, if the function c(ρ) = J ′(ρ) is monotone decreasing
then the above condition is satisfied.



5.4 Constitutive Laws 217

5.4.5 Reality Check

It is important to understand that even the most complex nonlinear expres-
sion relating the velocity and density is still, in the end, an approximation.
Inevitably certain aspects of the problem are not accounted for, and many
times this is intentional because the goal of the model is to capture the es-
sential mechanisms responsible for the phenomena being studied. This has
certainly been the case with the traffic flow problem. We have not included
effects of intersections, inclement weather, adverse road conditions, or myriad
other things that can influence traffic flow. There is also the problem that
the cars are driven by people, who make individual decisions that can have
dramatic effects on the traffic pattern. As a simple example, some drivers will
speed up if there is lighter traffic ahead. This implies that the velocity de-
pends on the density gradient. This is not accounted for in our model because
we are assuming that the law has the form v = F (ρ) and not v = F (ρ, ρx).
Some of the consequences of this extension are explored in Exercise 5.25.
Generally, this sort of application is outside the scope of this textbook. How-
ever, a very humorous account of the role of human behavior, and how it
affects traffic flow, can be found in Vanderbilt [2008].

A second comment that needs to be made is that the equation of motion
(5.7) is general, and in terms of traffic flow can be applied to a multilane
freeway or a small farm road. However, once a specific constitutive law for
the velocity is introduced then the model becomes more limited in its ap-
plicability. For example, the traffic data given in Figure 5.6 measures the
velocity on one side of the roadway (e.g., the velocity of the vehicles going
east to west). This is reasonable because if both sides are counted, so the
measured velocities can be either positive or negative, one could end up con-
cluding that on average the velocity is zero at all density levels. In fact, it
is not uncommon in traffic applications to have the constitutive law limited
to a particular lane of traffic. For example, some roadways limit trucks to
certain lanes of the roadway and this has a significant consequence for the
velocity function. The point here is that the equation of motion is general
but in applying it to particular problems, which requires the specification of
a constitutive law, the model becomes more limited.

All of the above comments are evidence that we are studying a rich problem
that has multiple research directions, and our model addresses one of them.
Our objective is to understand how traffic flow behaves under the assumed
conditions, and our next step is to figure out how to solve the mathematical
problem we have produced.
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5.5 Constant Velocity

To investigate the properties of the traffic flow problem we will begin with
the assumption that the velocity is constant. The problem takes the form

∂ρ

∂t
+ a

∂ρ

∂x
= 0, for

{
−∞ < x <∞
0 < t,

(5.18)

where
ρ(x, 0) = f(x). (5.19)

The partial differential equation (5.18) is known as the advection equation.
The solution can be found if one notes that the equation can be written as(

∂

∂t
+ a

∂

∂x

)
ρ = 0. (5.20)

The idea is to transform x, t to new variables r, s in such a way that the
derivatives transform as

∂

∂r
=

∂

∂t
+ a

∂

∂x
. (5.21)

If this is possible then (5.20) becomes ∂ρ
∂r = 0 and this equation is very easy

to solve. With this goal in mind let x = x(r, s), t = t(r, s), in which case using
the chain rule the r-derivative transforms as

∂

∂r
=
∂x

∂r

∂

∂x
+
∂t

∂r

∂

∂t
. (5.22)

Comparing this with (5.20), we require ∂x
∂r = a and ∂t

∂r = 1. Integrating
these equations yields x = ar + q(s) and t = r + p(s). To determine the s
dependence recall that the initial condition specifies the solution along the
x-axis. To make it easy to apply the initial condition we will ask that the
x-axis (t = 0) maps onto the s-axis (r = 0). In other words, r = 0 implies
that t = 0 and x = s. Setting r = 0 and t = 0 we conclude q(s) = s and
p(s) = 0, and so, the change of variable we are looking for is

x = ar + s, t = r. (5.23)

Inverting this transformation one finds that r = t and s = x − at. We are
now able to write (5.18) as ∂ρ

∂r = 0, which means ρ = ρ(s) = ρ(x− at). With
the initial condition we therefore conclude that the solution of the problem
is

ρ(x, t) = f(x− at). (5.24)

Before making general conclusions about this solution we consider an exam-
ple. This is worked out twice, first as a mathematical problem, and then as
a problem in traffic flow.
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Figure 5.9 Solution of the advection equation (5.18). The top figure is the initial
condition, as given in (5.27). The bottom figure is the solution at a later time, as
given in (5.24).

Example: Mathematical Version

Suppose the initial condition is the square bump shown in Figure 5.9. In
mathematical terms,

f(x) =
{

1 if 0 < x < 1,
0 otherwise. (5.25)

From (5.24) the solution is

ρ(x, t) =
{

1 if 0 < x− at < 1,
0 otherwise,

or equivalently,

ρ(x, t) =
{

1 if at < x < 1 + at,
0 otherwise. (5.26)

A typical solution profile is also shown in Figure 5.9, and it is apparent that
at any given time t, the solution is simply the original square bump that has
moved over to occupy the interval at ≤ x ≤ 1 + at. �

Example: Traffic Version

The previous example can be restated in physical terms. Suppose, at t = 0,
that cars are uniformly spaced over the interval 0 < x < 1, as shown in Figure
5.10. In this case the density has a constant, positive value for 0 < x < 1,
while the density outside this interval is zero. Also, assuming that each car
travels with the same constant velocity a, then they will move as a unit. So,
at any given time t, the group of cars will occupy the interval at < x < at+1.
Because they are traveling at the same velocity, the spacing of the cars has
not changed, and therefore the density in this interval is the same as it was
at t = 0. This is the same result as obtained in the solution (5.26). �
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Figure 5.10 A uniformly spaced group of cars moves with constant velocity a along
the x-axis.

In the above example, expressing the problem in terms of the motion of the
individual cars is analogous to taking a microscopic point of view. In contrast,
the macroscopic, or continuum, viewpoint is expressed in the solution given
in (5.26). The attractive aspect of the microscopic point of view is that the
solution is easy to understand, and it is obtained without having to solve
a partial differential equation. Unfortunately, for more realistic problems,
where the velocity depends on the density, the micro-scale version loses this
advantage and the continuum problem becomes the easier one to solve.

From the above examples, and from the general formula in (5.24), we
conclude that the solution is a traveling wave. The wave travels in only one
direction, and for this reason (5.18) is sometimes called a one-way wave equa-
tion. In the case of when a > 0 the wave moves to the right with speed a.
What is significant is that it moves at the same velocity as the vehicles, which,
if you recall, is v = a. It might seem obvious that the wave moves with the
vehicle velocity because, after all, the vehicles are responsible for the wave in
the first place. However, the answer is not so simple. For example, the waves
generated at sporting events by the fans in the audience are obtained not by
the fans running around the stadium but, rather, by them periodically stand-
ing up and sitting down. Similarly, in heavy traffic if a car’s taillights come
on you will likely see a wave of taillights come on in the cars that follow. Not
only is the wave of taillights not moving with the car’s velocity, it is actually
moving in the opposite direction. So, the connection between the motion of
the constituents and the velocity of the wave requires some consideration.
We will return to this point later when solving the problem of nonconstant
velocity.

Another observation coming from the above example is that the shape
and amplitude do not change as the wave travels along the x-axis. This is in
marked contrast to the diffusion equation, where the corners or jumps in the
initial condition are immediately smoothed out (see Figure 4.14). Because
of this, one might question whether (5.26) is actually a solution since ρx is
not defined at the jumps located at x = at, 1 + at. The short answer is that
because there are only a finite number of jumps, everything is fine. What is
necessary is to introduce the concept of a weak solution, and the interested
reader is referred to Evans [1998] for an extended discussion of this subject. A
slightly different approach to justifying the jumps, and understanding some
of the difficulties of defining a continuum variable at a jump, are explored in
Exercise 5.17.
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5.5.1 Characteristics

There is another way to look at this solution that will prove to be particularly
worthwhile. It is based on the observation that, from the formula ρ(x, t) =
f(x − at), if we hold x − at fixed then the solution is constant. In other
words, if x− at = x0 then ρ = f(x0) along this line (see Figure 5.11). These
lines are called characteristics for the equation, and the method we used to
find the solution is called the method of characteristics. The observation that
the solution is constant along the characteristics can be used to evaluate the
solution anywhere in the x, t-plane. The next example illustrates how this is
done.

Example

Suppose we want to determine ρ(0, 1). To use characteristics to find this value,
we need to determine the line x− at = x0 that passes through (x, t) = (0, 1)
(see Figure 5.12). Plugging x = 0 and t = 0 into the equation x − at = x0

we obtain x0 = −a. Therefore, ρ(0, 1) = f(x0) = f(−a). As it should, this
result agrees with what is obtained from the formula given in (5.24). �

In general, to determine ρ(x1, t1) using characteristics, one first finds the
characteristic that passes through (x1, t1). The equation for this line is x −
at = x1 − at1. The solution is constant along this line, and because the
x-intercept is x0 = x1 − at1, it follows that ρ(x1, t1) = f(x0).

Example: Red Light - Green Light

As a second example of how the characteristics can be used to construct the
solution, consider the situation of cars waiting at a stoplight. It is assumed
that at t = 0 the light turns from red to green. We will locate the light at
x = 0, and assume that at the start the cars have a constant density to
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Figure 5.11 The characteristics for (5.18) are the straight lines x− at = x0. Along
each line the solution is constant.
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Figure 5.12 The characteristics used in the example to determine the value of
ρ(0, 1).

the left of the light. The initial condition that will be used to describe this
situation is

ρ(x, 0) =
{

1 if x ≤ 0
0 if x > 0. (5.27)

It is also assumed that a > 0. The characteristics for this problem are shown
in Figure 5.13(a). Because of where the characteristics intersect the x-axis,
the solution in the region covered by the solid lines is ρ = 1, while along the
dashed lines the solution is ρ = 0. The characteristic that separates these
two regions is the one that starts at the jump in the initial condition (5.27).
Namely, it is the line x = at, and it is shown in Figure 5.13(a) using a line
with small dots. The resulting solution is shown in Figure 5.13(b), and the
corresponding formula is

ρ(x, t) =
{

1 if x ≤ at
0 if x > at.

(5.28)

A somewhat more traditional view of the solution is given in Figure 5.13(c),
where it is apparent that the solution consists of a wave that moves with
speed a. �

The two previous examples were used to introduce how characteristics can
be used to find the solution, but in both cases the solution can be determined
directly for the formula in (5.24). This is not true for the next, and final,
example.

Example: Finite Length Highways

Up to this point our highways have been infinitely long. In the real world this
is rather rare, and in this example we consider what happens when the road
occupies the interval 0 ≤ x ≤ `. This gives rise to the question as to what can,
or should, be specified for boundary conditions at x = 0, `. A mathematically
correct choice is to specify a boundary condition at x = 0 and not specify one
at x = `. The reason is due to the fact that information in this problem goes
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Figure 5.13 The solution of (5.18) when given the initial condition (5.27).

in only one direction, from left to right. Why this is important will become
evident once we study the solution in more detail. To this end, we consider
solving the equation

∂ρ

∂t
+ a

∂ρ

∂x
= 0, for

{
0 < x < `
0 < t,

(5.29)

along with the initial condition

ρ(x, 0) = f(x),

and the boundary condition

ρ(0, t) = g(t).

Using characteristics this is not hard to solve. We know that the solution of
(5.29) is constant along any line of the form x−at = const and these lines are
shown in Figure 5.14. The analysis naturally separates into two components.

Solid Lines: In the region containing the characteristics that are solid lines,
the solution is determined by the initial condition. Because the lines in
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Figure 5.14 Characteristics used in solving the traffic flow problem over a finite
interval.

this region have the form x− at = x0, where x0 is the x-intercept, then in
this region the solution is ρ(x, t) = f(x0) = f(x− at).

Dashed Lines: To find the solution in the region where the characteristics
are dashed lines, consider the characteristic shown in Figure 5.14 that has
t-intercept t0. The general form for the equation of this line is x − at =
constant. Because it must pass through the point (x, t) = (0, t0), it follows
that the equation is x− at = −at0. Because the solution is constant along
this line, and we are told that ρ(0, t0) = g(t0), then it follows that along
this characteristic ρ(x, t) = g(t0) = g(t− x/a).

Putting this information together, the solution is

ρ(x, t) =
{
f(x− at) if 0 ≤ t < x/a,
g(t− x/a) if x/a < t.

The value at x = at depends on what value the function has at (x, t) = (0, 0).
If ρ(0, 0) = f(0) then ρ = f(0) for x = at, while if ρ(0, 0) = g(0) then ρ = g(0)
for x = at. �

Returning to the question of whether it is possible to impose a boundary
condition at x = `, suppose that f(x) = 1. In Figure 5.14, in the region
covered with the solid lines the solution is ρ = 1. Any boundary condition
imposed at x = `, other than ρ = 1, would be in contradiction to the known
solution. That is why, in the case of when a > 0, it is more natural to impose
a boundary condition at the left end of the interval. If one is insistent on
specifying a boundary condition at x = `, it would then be necessary not to
include either an initial condition or a boundary condition at x = 0. This
idea is explored further in Exercise 5.9.
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ρ
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O(ε)

Figure 5.15 Small disturbance imposed onto constant density solution at t = 0.
The resulting initial condition is given in (5.32)

5.6 Nonconstant Velocity

The linear wave equation studied in the previous section is a valuable source of
information about some of the more basic properties of the solution. The fact
is, however, the assumption that the velocity is independent of the density
is not correct for traffic flow. This is evident in the data given in Figure
5.6. Precisely what constitutive law is used will be left unspecified for the
moment other than to assume v = F (ρ), where F is smooth. As shown in
Section 5.4.3, the traffic flow equation takes the form

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0, (5.30)

where the wave velocity is

c(ρ) = F + ρF ′. (5.31)

Written this way the equation resembles the constant velocity version in
(5.18) we studied earlier. One significant difference is that the wave velocity
c can depend on the unknown ρ, and if this happens then (5.30) is nonlinear.
Generally nonlinear partial differential equations are very difficult to solve.
One option, which works on a wide variety of problems, is to introduce a
small disturbance approximation, and this is discussed below. However, for
this problem it is possible to solve the fully nonlinear equation using the
method of characteristics and this will be considered in Section 5.6.2.

Although the nonlinear traffic flow equation is very general, a couple of
restrictions are needed to help guarantee that there is a solution. One is that
whatever function c(ρ) is used in this equation, it is a smooth function of
ρ. A second condition is related to the observation made in Section 5.4.4
that the flux is concave down. This is equivalent to c(ρ) being a monoton-
ically decreasing function of ρ. Mathematically, what is needed is that c(ρ)
is monotonic, either decreasing or increasing, and this is assumed in what
follows.
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5.6.1 Small Disturbance Approximation

One method for studying nonlinear wave problems is based on a small distur-
bance approximation. The basic idea is that a particular solution has been
determined. This is usually an equilibrium solution, and it is very common
that it is a constant. What is investigated is how small perturbations of this
particular solution behave. To explain what this entails note that a constant
function ρ = ρ0 is a solution of the traffic flow equation (5.30). So, suppose
that the traffic is flowing along smoothly with a uniform density ρ = ρ0 and
then one or more of the cars change speed slightly and cause a small pertur-
bation in the density. For example if someone applies their brakes then the
immediate affect will be to reduce the density in front of their car and to
increase the density right behind them. A function that mimics this change
in the density is shown in Figure 5.15.

To analyze this situation we will assume the disturbance occurs at t = 0.
The initial condition that corresponds to this is

ρ(x, 0) = ρ0 + εg(x). (5.32)

The specific form of the function g(x) is not important but we will illustrate
the analysis using the example in Figure 5.15. Due to the initial condition
the appropriate expansion for the solution is ρ ∼ ρ0 + ερ1(x, t) + · · · . In this
case, using Taylor’s theorem,

c(ρ) ∼ c(ρ0 + ερ1 + · · · )

∼ c(ρ0) + (ερ1 + · · · )c′(ρ0) +
1
2
(ερ1 + · · · )2c′′(ρ0) + · · ·

∼ c(ρ0) + ερ1c
′(ρ0) + · · · .

The equation of motion (5.30) takes the form

ε
∂ρ1

∂t
+ · · ·+ [c(ρ0) + ερ1c

′(ρ0) + · · · ]
(
ε
∂ρ1

∂x
+ · · ·

)
= 0, (5.33)

where, from (5.32),

ρ0 + ερ1(x, 0) + · · · = ρ0 + εg(x). (5.34)

Setting c0 = c(ρ0) then the O(ε) problem is

∂ρ1

∂t
+ c0

∂ρ1

∂x
= 0, (5.35)

where ρ1(x, 0) = g(x). This is known as the small disturbance equation for
the problem and in this case it is a linear wave equation. Using (5.24), the
solution is ρ1(x, t) = g(x − c0t). Therefore, the two term small disturbance



5.6 Nonconstant Velocity 227

approximation of the solution is

ρ(x, t) ∼ ρ0 + εg(x− c0t). (5.36)

It is clear from this that the initial disturbance propagates as a traveling
wave, with velocity c0. We will explore some of the consequences of this in
the next example, but it is first necessary to comment on the accuracy of this
approximation. If you compare (5.36) with, say, the numerical solution it is
found that as time passes the approximation becomes less accurate. This is
due to a slow change in the solution that is not accounted for in (5.36), and
which over time starts to affect its accuracy. It is possible to use multiple
scales, as described in Section 2.6, to improve the approximation. However,
later in the chapter, after the nonlinear problem is solved, we will derive an
exact solution of the problem.

Example: Phantom Traffic Jams

To investigate the properties of (5.36) we will use the Greenshields constitu-
tive law and assume

v = vM

(
1− ρ

ρM

)
. (5.37)

In this case, from (5.31),

c = vM

(
1− 2ρ

ρM

)
, (5.38)

and the flux is

J = vM

(
1− ρ

ρM

)
ρ. (5.39)

These functions are sketched in Figure 5.16. Note that for a given value of the
flux that there are two possible densities. Those satisfying 0 < ρ < 1

2ρM are
commonly referred to as light traffic while those satisfying 1

2ρM < ρ < ρM

are heavy traffic. Also note that c = J ′, in other words it equals the slope of
the flux function. This means c is negative for lighter traffic and it is positive
in heavier traffic.

Based on the above discussion, our conclusion is that in light traffic, where
c > 0, the disturbance moves forward, and in heavy traffic, where c < 0, the
disturbance moves backward. Given that c ≤ v, the disturbance does not
move faster than the flow of traffic. In other words, whoever was responsible
for generating this disturbance would see it move backward relative to their
position, but someone watching from an overpass would see it move forward
in light traffic and move backward in heavy traffic. The one exception to this
last statement is if the traffic density is ρM/2, in which case the disturbance
would stay in the region where it was generated. Another point to make
here is that, unlike the constant velocity example, the wave propagates at
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Figure 5.16 Velocities (5.37), (5.38), and the flux (5.39) when using the Greenshields
law. In these plots vM = 1 and ρM = 1.

a velocity that is different from the velocity of the vehicles that form the
system.

The solution obtained using a small disturbance approximation provides
an explanation of one of the mysteries of driving called the phantom traffic
jam. This is the situation when there is no visible reason for a traffic slow-
down, as there is no accident, construction, etc. As shown in Figure 5.17 some
earlier perturbation in the traffic can result in a density wave propagating
backwards along the highway. A driver who enters this region will see no ap-
parent reason for its existence and once through the disturbance will return
to the uniform flow they had earlier. One cause of such situations is weaving.

ρmax
1

2

ρ

x

Figure 5.17 Disturbances move to the right if ρ0 < 1
2ρM and move toward the left

if 1
2ρM < ρ0. The signal velocity in both cases is c0 = c(ρ0).
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In heavier traffic drivers who change lanes frequently cause the drivers be-
hind them to slow down or brake to leave room between them and the lane
changer. This produces a small disturbance and this propagates along the
highway behind the originators of this situation. �

5.6.2 Method of Characteristics

As it turns out, the method of characteristics we developed to solve the
constant velocity problem can be adapted so it also works on the nonlinear
equation (5.30). In the constant velocity case, we found that the solution is
constant along curves of the form x = x0 + at. So, in a similar manner we
will investigate if it is possible to find curves x = X(t) on which the solution
of (5.30) is constant. What we are looking for are curves with the property
that d

dtρ(X(t), t) = 0. Expanding this using the chain rule it follows that we
need to select X(t) in such a way that

ρt +X ′(t)ρx = 0. (5.40)

To find a function X(t) that works in this equation, recall that ρ satisfies the
traffic flow equation

ρt + c(ρ)ρx = 0. (5.41)

Comparing this with (5.41) it is evident that X(t) should be selected so that

X ′(t) = c(ρ). (5.42)

Before integrating to find the function X(t), remember that ρ is constant
along the curve. Consequently, if the curve begins at x = x0 then at any
point along the curve we have ρ = ρ0 where ρ0 = f(x0) (see Figure 5.18).
Introducing this into (5.42), and integrating, we obtain X = x0 + c(ρ0)t.
Therefore, the characteristic that begins at x = x0 is

x = x0 + c(ρ0)t, (5.43)

and along this characteristic the solution is

ρ = ρ0, (5.44)

where ρ0 = f(x0). It might seem odd that the characteristics for a nonlinear
equation turn out to be linear. However, the nonlinearity does have an affect
as it determines the slope of the characteristics and, as we will see, this has
major consequences on the solution.

The two expressions (5.43) and (5.44) form the solution of the problem.
To explain how they are used, suppose one wants to calculate the value of ρ
at a particular point, say at (x1, t1). In some cases, the value of ρ(x1, t1) is
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Figure 5.18 The method of characteristics involves finding the curves x = X(t)
along which the solution of (5.30) is constant.

easy to determine, and this happens in the next example when ρ = ρL and
when ρ = ρR. If the value is not obvious, then it is necessary to calculate the
result, and this involves the following steps.

Step 1. Find the characteristic that passes through (x1, t1).
Given that the general form of the characteristic is x− c0t = x0, then we
require that x1 − c0t1 = x0.

Step 2. Find c0 in terms of x0.
From the initial condition, we have that c0 = c(f(x0)). As an example,
using the Greenshields law,

c(ρ0) = vM

(
1− 2

f(x0)
ρM

)
.

Step 3. Solve x1 = x0 + c0t1 for x0.
In the case of when the Greenshields law is used then the equation to solve
is

x1 = x0 + vM t1

(
1− 2

f(x0)
ρM

)
.

How difficult this equation is to solve for x0 depends on f(x0). We will
be using piecewise linear functions, so it is possible to solve the above
equation relatively easily.

Once x0 is known then the solution is ρ(x1, t1) = f(x0). This procedure is not
particularly difficult, but it comes with caveats. In particular, it assumes that
there is a characteristic passing through (x1, t1). As we will see shortly, this
might not happen. We will postpone analyzing such difficulties until after we
have more experience using the method when all goes according to plan.

Example: Modified Red Light - Green Light

To use the above solution for traffic flow we consider a modified version of
the red light - green light problem. It is assumed that the traffic is initially
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constant to the left of x = −ε and to the right of x = ε. Also, there is a
transition region, of width 2ε, where the density changes linearly between
the left and right values. This situation is shown in Figure 5.19. It is assumed
the faster cars are in the front, and so, ρL > ρR. The specific function used
for the initial condition is

ρ(x, 0) =


ρL if x ≤ −ε
ρL + ρR−ρL

2ε (x+ ε) if −ε < x < ε
ρR if ε ≤ x.

(5.45)

We also need to be specific about what constitutive law is being used for
the velocity, and in what follows we use the Greenshields law. Consequently,
v = vM (1− ρ/ρM ) and the wave velocity is

c(ρ) = vM

(
1− 2ρ

ρM

)
. (5.46)

To sketch the characteristics, we consider what happens for different starting
positions x0.

• If x0 is on the left, so x0 < −ε, then ρ0 has the constant value ρL. This
means that the characteristics in this region all have the same slope, and
this is shown in Figure 5.20(a). Given that the solution is constant along
each of these lines it follows that ρ = ρL in the region of the x, t-plane
to the left of the characteristic x = −ε + cLt, where cL = c(ρL). This is
shown in Figure 5.20(b).

• Using a similar argument, the characteristics that start on the right, where
x0 > ε, all have the same slope. Because ρL > ρR then the characteristics
on the left have a steeper slope than those on the right, and this is shown
in Figure 5.20(a). The solution is constant along each of these lines, and
so it follows that ρ = ρR in the region of the x, t-plane to the right of
the characteristic x = ε+ cRt, where cR = c(ρR). This is shown in Figure
5.20(b).

• To determine what happens when −ε < x0 < ε, it is seen in Figure 5.19
that the initial density is continuous over this interval. This means that
c(ρ0) varies continuously from cL at x0 = −ε, to cR at x0 = ε. The resulting

�

�
����

����

�� �

Figure 5.19 Initial density ρ(x, 0) for the modified red light - green light problem.
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Figure 5.20 The solution of the modified red light - green light problem. The width
of the linear transition region between the left and right constant states increases
with time because cL < cR.

characteristics are shown in Figure 5.20(a) using dashed lines. To find the
solution at a point (x1, t1) in this region, as illustrated in 5.20(b), we need
to find the characteristic that passes through this point. This requires
finding x0. Because the density is constant on the characteristic, once
x0 is known then ρ(x1, t1) = ρ(x0, 0). Now, the general formula for the
characteristics is x = x0 + c0t, and so it is required that x1 = x0 + c0t1.
Given (5.46) and (5.45) we have that

c0 = vM

(
1− 2ρ0

ρM

)
= vM

[
1− 2

ρM

(
ρL +

ρR − ρL

2ε
(x0 + ε)

)]
.

Substituting this into the equation x1 = x0 + c0t1 and then solving for x0

one finds that

x0 =
x1 − t1(cL + cR)/2
1 + t1(cR − cL)/(2ε)

.
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With this, and the initial condition in (5.45), the density is

ρ(x1, t1) = ρ(x0, 0)

= ρL + (ρR − ρL)
x1 + ε− cLt1

2ε+ (cR − cL)t1
. (5.47)

The formula for the solution is therefore

ρ(x, t) =


ρL if x ≤ cLt− ε
ρL + (ρR − ρL) x+ε−cLt

2ε+(cR−cL)t if cLt− ε < x < cRt+ ε

ρR if cRt+ ε ≤ x.

(5.48)

According to this, between the two constant states the density varies linearly,
just as it did in the initial condition. There is nothing unusual in this solution
as it shows the expected result that the slower group on the left gradually
separates from the faster group on the right. This is illustrated in Figure
5.20(c). �

5.6.3 Rankine-Hugoniot Condition

As will become evident as we study the nonlinear traffic flow equation in
Section 5.6.5, the solution has a propensity to evolve into a function with one
or more jump discontinuities that move along the x-axis. We studied such a
solution with the red light-green light problem for the linear equation, and the
result is shown in Figure 5.13. The nonlinear equation is a different animal,
and we are going to have to be a bit more careful any time a jump is present.
To investigate what happens, suppose we have a situation as shown in Figure
5.21, which consists of a jump that is located at x = s(t). Given that x-
derivatives are not defined at such points we will reformulate the problem by
integrating over a small spatial interval, s− ε ≤ x ≤ s+ ε, around the jump.
So, integrating ρt + Jx = 0 and remembering that the density is constant on
either side of the jump we obtain
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Figure 5.21 A jump discontinuity in the solution, located at x = s(t).
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s−ε

ρtdx+ J(ρR)− J(ρL) = 0. (5.49)

From the Fundamental Theorem of Calculus recall that

d

dt

∫ s+ε

s−ε

ρdx =
∫ s+ε

s−ε

ρtdx+ s′(t)ρ|x=s+ε − s′(t)ρ|x=s−ε.

From this and (5.49) it follows that

d

dt

∫ s+ε

s−ε

ρdx− ρRs
′(t) + ρLs

′(t) + J(ρR)− J(ρL) = 0. (5.50)

Now, using the piecewise constant nature of the density∫ s+ε

s−ε

ρdx =
∫ s

s−ε

ρdx+
∫ s+ε

s

ρdx

= ε(ρL + ρR),

and so
d

dt

∫ s+ε

s−ε

ρdx = 0.

It follows from (5.50) that

s′(t) =
J(ρR)− J(ρL)

ρR − ρL
. (5.51)

This equation is known as the Rankine-Hugoniot condition and it determines
the velocity of a jump discontinuity in the solution.

It is useful to express (5.51) in terms of the wave velocity function c.
Recalling that c = J ′(ρ), and J(0) = 0, then

J(ρ) =
∫ ρ

0

c(ρ̄)dρ̄. (5.52)

With this, the Rankine-Hugoniot condition takes the form

s′(t) =
1

ρR − ρL

∫ ρR

ρL

c(ρ)dρ. (5.53)

This is an interesting result as it shows that any jump in the solution travels
at the wave velocity averaged over the given density interval.

There are two types of jumps, and they are determined by what happens
to the velocity v at the jump. If ρ has a jump discontinuity at x = s(t), but
v is continuous at x = s(t), then the jump is called a contact discontinuity.
An example is the red light-green light solution shown in Figure 5.13. The
velocity is constant, hence it is continuous no matter where the jumps occur.
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Note that because v = a and J = ρv then the Rankine-Hugoniot condition
(5.51) reduces to s′ = a. In other words, the jumps move with the given
constant velocity, and this is what was determined in Figure 5.13.

If v is not continuous at x = s(t) then the jump is called a shock, and the
motion of this jump produces a shock wave. As shown in the next examples,
the velocity of the shock is strongly dependent on the constitutive law.

Examples

1. Greenshields Law. Using the linear law in (5.10), and the fact that J = ρv,
then the Rankine-Hugoniot condition (5.51) simplifies to the following

s′(t) =
1

ρR − ρL

[
ρRvM

(
1− ρR

ρM

)
− ρLvM

(
1− ρL

ρM

)]
= vM

(
1− 1

ρM
(ρR + ρL)

)
=

1
2

(cR + cL) . (5.54)

In other words, when using the Greenshields law, the shock moves at a speed
determined by the average of the jump in the wave velocity across the shock.
�

2. Newell Law. Using (5.17) then the Rankine-Hugoniot condition (5.51) is

s′(t) =
1

ρR − ρL
[ρRvM (1− eR)− ρLvM (1− eL)]

= vM

(
1− ρReR − ρLeL

ρR − ρL

)
, (5.55)

where

eL = e−λ(1/ρL−1/ρM ),

eR = e−λ(1/ρR−1/ρM ). �

When we first started out studying traffic flow, we had only one variable
with the dimension of velocity. Now, we have three variables with this dimen-
sion. They are:

1. v(x, t). This is the velocity of the car located at x at time t.

2. c(ρ). This is the wave velocity, and it is defined in (5.31). It determines
the slopes of the characteristic curves.
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3. s′(t). This is the velocity of the jumps in the solution, and it is defined in
(5.51).

These velocities all play a critical role in the evolution of the solution and are
distinct in the sense that, in most nonlinear problems, they are not simple
multiples of each other. This is evident in the definitions of c and s′, as well
as from the expressions derived in Exercise 5.12. What we conclude from this
is that this interesting problem is rich enough that a single velocity is not
enough to describe the solution.

5.6.4 Expansion Fan

Now that we have some idea what happens when jumps occur in the solu-
tion, we will investigate a problem that starts out with a jump. The initial
condition is shown in Figure 5.22, and it is given as

ρ(x, 0) =
{
ρL if x ≤ 0,
ρR if 0 < x,

(5.56)

where 0 < ρR < ρL. This piecewise constant function gives rise to what
is known as a Riemann problem. This problem is interesting because the
solution is not obvious. In fact, it is so unclear that it is possible to produce
a plausible argument for at least three different solutions. Before describing
what these are we first state what we are certain of about the solution.
This comes from the characteristics, and these are shown in Figure 5.23(a).
As illustrated in Figure 5.23(b),(c), we conclude that ρ = ρL for x < cLt
and ρ = ρR for x > cRt. This leaves unresolved what the solution is for
cLt < x < cRt because there are no characteristics in this region. It is what
happens in this sector that produces the three possible solutions.

1. The cars starting on the left, where x < 0, travel with velocity vL while
those on the right have velocity vR. Because vL < vR then one might
argue, based on physical grounds, that the sector in question is nothing

�
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Figure 5.22 Initial density ρ(x, 0), where the slow cars start out behind the faster
cars (i.e., ρL > ρR).
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more than the gap between the slow cars on the left and the fast cars on
the right. In other words, for points in this sector the density is just zero
and the apparent solution is

ρ(x, t) =

ρL if x ≤ vLt,
0 if vLt < x < vRt,
ρR if vRt ≤ x.

(5.57)

The first indication that there is something wrong with this expression is
that the sector is determined by the velocity of the cars, and not the wave
velocity. This is a problem because c(ρR) < v(ρR) and c(ρL) < v(ρL),
so the sector in (5.57) is different from the one shown in Figure 5.23. In
other words, the above expression contradicts what we certain of, and that
is the solution shown in Figure 5.23(c). Therefore, (5.57) is not the solu-
tion. Those who rely on physically motivated arguments to explain what
is happening mathematically will almost certainly complain about this re-
sult. The reason is that the solution does not agree with what is expected
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Figure 5.23 The solution obtained using the method of characteristics when the
initial density is given in Figure 5.22. As shown in (a) and (b), there are no charac-
teristics in the sector cLt < x < cRt, and so the solution in that region is unclear.
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in the physical problem. More precisely, it does not agree with what might
be expected based on a cursory analysis of the situation.

2. As another attempt at finding out what happens in the sector one might
argue that the solution of the linear traffic flow equation (5.18), using
the initial condition in (5.56), is a traveling wave with a single jump that
moves with velocity a. Assuming the nonlinear equation also produces a
single jump then the apparent solution is

ρ(x, t) =
{
ρL if x ≤ s(t),
ρR if s(t) < x.

(5.58)

The function s(t) is determined from the Rankine-Hugoniot condition
(5.53). Although it is not clear whether (5.58) is the solution, it has
promise. For example, it is not hard to show that the line x = s(t) is
between x = cLt and x = cRt. This means that (5.58) agrees with what
we already know using characteristics, unlike what happened with (5.57).
Moreover, in the special case of when c is constant, (5.58) reduces to the
correct solution of the linear problem. These two observations are encour-
aging, but they do not guarantee that (5.58) is the solution of the Riemann
problem we are studying.

3. A third attempt at finding the solution makes use of the modified red-light
green-light problem shown in Figure 5.20. The solution of this modified
problem should converge to the solution of our Riemann problem when
ε→ 0. This, in effect, takes the dashed characteristics in Figure 5.20 and
pinches them together at the origin with the result shown in Figure 5.23.
The radial characteristics form what is known as an expansion fan, or
rarefaction wave, and it connects the constant states on the left and right.
The formula for the solution, which is obtained from (5.48), is

ρ(x, t) =


ρL if x ≤ cLt,
ρL + (ρR − ρL) x−cLt

(cR−cL)t if cLt < x < cRt,

ρR if cRt ≤ x.

(5.59)

The resulting solution looks much like the one in Figure 5.20(c) in the
sense that the expansion fan is responsible for a linear transition between
the constant solutions on the left and right.

From the above discussion we have two contenders for the solution, namely
(5.58) and (5.59). The fact that we have multiple possible solutions is because
the nonlinear traffic flow problem is ill-posed, which in this case means that
the problem is incomplete. What is required is an additional piece of infor-
mation that will enable us to uniquely determine the solution. Moreover, it
must be consistent with the physics of the problem. As an example, equations
like the one we are dealing with arise in gas dynamics, and the approach used
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t

x

x=cLt x=cRt

Figure 5.24 By letting ε → 0 the dashed characteristics in Figure 5.20 form an
expansion fan between x = cLt and x = cRt.

there is to introduce entropy and then employ the second law of thermody-
namics to derive the needed condition. An effort has been made to define a
concept similar to entropy for traffic flow, what is known as “driver’s ride
impulse,” and then use a second law type of argument (Ansorge [1990]). We
will take a different tack, and use a more mathematical argument.

The assumption is one of continuity. Namely, the jump appearing in the
initial condition is almost impossible to produce physically, and in most ex-
periments there is not a jump, but a small interval where the density changes
in a rapid and continuous fashion from ρL to ρR. In this sense the initial con-
dition containing a jump is simply a mathematical idealization of the true
situation. Given that the solution with a continuous, but rapid, transition is
known and given in Figure 5.20, the condition we are searching for must be
consistent with this result. In other words, the condition must be able to tell
us that (5.59) is the solution to this problem.

There are various ways to write the needed condition, and we will use the
one introduced by Lax [1973]. The statement is that if the solution contains
a jump, at x = s(t), then the wave speed behind the jump is larger than the
wave speed in front of it. In other words, the requirement is

c(ρR) < s′ < c(ρL). (5.60)

This is an example of what is known as an admissibility condition, because
it provides the necessary information to determine the physically or math-
ematically admissible solution. In traffic flow it is often called the entropy
condition, even though its connection to entropy is not at all clear for traffic
problems.

One immediate consequence of the admissibility condition (5.60) is that
the solution will only contain a jump if cL > cR. For our initial condition,
given in (5.56), the assumption is that cL < cR. Therefore, a solution with a
jump is not possible, and the solution in the region in question is an expansion
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Figure 5.25 The upper plot shows the solution on the left and right, and the char-
acteristics for the expansion fan. The lower plot shows the solution after the light
turns green.

fan. In other words, (5.59) is the solution of the stated Riemann problem.
The proof of this statement can be found in Lax [1973].

Example: Red Light - Green Light

Suppose a stoplight is located at x = 0, and it turns from red to green at
t = 0. Also, assume that the light was red for so long that there are no cars
on the right. In other words, the initial condition is

ρ(x, 0) =
{
ρL if x ≤ 0,
0 if 0 < x.

(5.61)

From (5.59), the solution of the traffic flow equation is

ρ(x, t) =


ρL if x ≤ cLt,
ρL

vM t−x
(vM−cL)t if cLt < x < vM t,

0 if vM t ≤ x.

(5.62)

The solution is shown in Figure 5.25, along with the associated characteristic
curves. This shows that once the light turns green the cars move to the right,
with the front moving at the maximum allowable velocity vM . �

The exact form of the expansion fan solution (5.59) relies on the specific
formula for the wave velocity c(ρ). In general, a fan appears when there is a
gap between characteristics as shown in Figure 5.24. This occurs when f(x)
has a jump at a point x = x0, with cR > cL (see Figure 5.26). The equation
for each of the dashed lines making up the fan has the form x = x0 + c(ρ)t,
where c(ρ) satisfies cL < c < cR. There are a couple of methods that can
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be used to prove this, other than taking a limit as we did earlier, and one
is explored in Exercise 5.20. To determine the density at a point (x, t) in
the fan, it is necessary to solve the equation c(ρ) = (x− x0)/t for ρ. This is
where the specific form of c affects the solution, and (5.59) is what is obtained
when using the Greenshields law. Also, in formulating the nonlinear traffic
flow equation in Section 5.6, we made the assumption that c(ρ) is monotonic.
This is one of the places where we need that assumption because it guarantees
that c(ρ) = (x− x0)/t has a unique solution.

After reading the above paragraphs one might decide that the best thing
to do is avoid using an initial condition with a jump. After all, when using the
continuous function in (5.45) the characteristics worked without complication
and there was no doubt about the solution. However, as we will see in the next
section, this nonlinear equation can take a continuous initial condition and
cause it to form jumps. So, even if we do not feed it jumps at the beginning it
can easily grow its own and this means there is no avoiding having to consider
an admissibility condition.

As a final comment, the admissibility condition that should be used in traf-
fic flow is a topic that continues to receive attention in the research literature.
One question is whether the entropy based conditions that are used in gas
dynamics are applicable in traffic problems, particularly those that involve
unusual flux functions. An example of an unusual function is one that is not
convex. Those who are interested in investigating this topic should consult
Ansorge [1990], Velan and Florian [2002], Gasser [2003], and Knowles [2008].

5.6.5 Shock Waves

As stated earlier, at a shock wave both the density and velocity are discon-
tinuous. Calling the solution shown in Figure 5.21 a shock wave gives the
impression the cars are running into each other. They are not, and what
happens when the shock passes over a car is that it immediately undergoes
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Figure 5.26 An expansion fan is generated at a point x0 where the initial function
f(x) has a jump discontinuity, with cR > cL.
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Figure 5.27 The traffic jam problem. The upper plot shows the characteristics as-
sociated with the initial condition. The lower plot shows the resulting shock location.

a jump in velocity. This is a bit unrealistic, and we will return to this point
later.

Characteristics are used to determine when a shock wave is present in the
solution. In contrast to an expansion fan, a shock appears when characteris-
tics overlap, and the values on the characteristics are not equal. The easiest
way to explain this is to work through a couple of examples.

Example: Traffic Jam

The first shock solution we will consider involves a traffic jam. Suppose that
at the start, for x ≥ 0, the density is ρM . This is the maximum density and
means the cars can not move. For the interval x < 0 we will assume that the
cars have density ρL, where 0 < ρL < ρM . This means that the cars on the
left move right with a constant velocity, in the direction of the traffic jam.
Once they reach the jam the cars stop, and the result is that the traffic jam
spreads leftward along the negative x-axis. To quantify these statements, the
characteristics are shown in Figure 5.27. In the upper graph, along the solid
lines the density is ρ = ρM while along the dashed lines ρ = ρL. Clearly, there
is a problem in the region where the characteristics overlap. The conclusion is
that there is a curve x = s(t) in this overlap region where the solution jumps
from ρL to ρM . The resulting characteristics, and shock curve, are shown in
the lower graph in Figure 5.27. The location of the shock, according to (5.53),
moves with a velocity determined by an averaged value of the wave speed.
Using the Greenshields law, the formula for the velocity is given in (5.55).
Given that cL = vM (1− 2ρL/ρM ) and cR = −vM then
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Figure 5.28 Overlapping characteristics are shown in (a), which indicates the exis-
tence of a shock wave in this region. The position of the shock is shown in (b), along
with the two characteristics that intersect to initiate the formation of the shock at
t = ts.

s′(t) = −vM
ρL

ρM
. (5.63)

Integrating this, and using the fact that the shock starts at (x, t) = (0, 0), we
have that the position of the shock is given as

s(t) = −vM
ρL

ρM
t. (5.64)

With this the solution is

ρ(x, t) =
{
ρL if x < s(t),
ρM if s(t) ≤ x.

(5.65)

As one final comment, it is important to point out that this solution satisfies
the admissibility condition (5.60). This is because cL = vM (1 − 2ρL/ρM ),
cR = −vM , and ρL < ρM . �

Example: No Initial Jumps

As a second example suppose the density does not begin with a jump, but
is continuous and has the form in (5.48). Now, however, we place the faster
cars on the left so ρL < ρR. As usual, we will use the Greenshields law. The
characteristics that are produced by these two constant values are shown
in Figure 5.28(a). In the region covered by the dashed lines the solution is
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Figure 5.29 The solution of the traffic flow problem at the times shown in Figure
5.20(b). The width of the linear transition region between the left and right groups
decreases with time until the left group catches the right group, and that time a shock
wave appears.

ρ = ρL, while in the region covered by the solid lines the solution is ρ = ρR.
The exception to this statement is where the dashed and solid lines overlap.
In this region there is a shock wave, that begins where the characteristic
x = −ε+ cLt intersects the characteristic x = ε+ cRt. This intersection point
is (xs, ts), where ts = 2ε/(cL− cR) and xs = cRts + ε, and the shock is shown
in Figure 5.28(b). To determine the equation of this curve, we have from
(5.55) that s′ = 1

2 (cL + cR). Integrating this equation yields

s(t) = cs(t− ts) + xs, (5.66)

where cs = 1
2 (cL + cR). It remains to determine the solution in the triangular

region shown in Figure 5.28(b), which is bounded by the characteristics x =
−ε + cLt and x = ε + cRt. This is the same problem as finding the solution
at (x1, t1) in Figure 5.20(b), and the solution is given in (5.47). Assembling
all of this information, we therefore have that the solution for t < ts is

ρ(x, t) =


ρL if x ≤ cLt− ε,
ρL + ρR−ρL

2ε (x+ ε) if cLt− ε < x < cRt+ ε,
ρR if cRt+ ε ≤ x,

(5.67)

and for t ≥ ts the solution is

ρ(x, t) =
{
ρL if x < s(t),
ρR if s(t) < x.

(5.68)
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This solution is shown in Figure 5.29 for the three time values shown in
Figure 5.20(b). At t = t1 the solution consists of the two constant densi-
ties that are connected by a linear function. Because the cars on the left are
faster than those on the right, at the later time t = t2 the linear connection
between the two densities has been reduced considerably. The effect of this
transition region shrinking is to steepen the wave as it moves. The faster cars
catch the slower ones in front, at t = ts, at which point a shock forms. This
is seen at time t = t3, which shows the solution after the shock has formed. �

The properties of the solution at a shock wave brings out one of the flaws
in the traffic model. Specifically, as a shock passes over a car it immediately
undergoes a jump in velocity. This is unrealistic and the reason it happens
is that the model does not account for the momentum of the cars. Related
to this is the assumption implicit in the constitutive law v = F (ρ). For this
to hold, the velocity must instantly adjust to the value of the density. This
means that it is impossible to have the cars start from rest unless the density
is at its maximum value of ρM . There are traffic models that account for
the acceleration of the cars, and one is the cellular automata model studied
later in the chapter. Also, in the next chapter we will significantly extend the
continuum model in such a way that momentum is a central component of
the model.

5.6.6 Return of Phantom Traffic Jams

The last example we will work out is the problem that introduced the phe-
nomenon of a phantom traffic jam. The initial condition used here is

ρ(x, 0) =


ρ0 if x < a
ρa + ρb−ρa

b−a (x− a) if a ≤ x ≤ b

ρ0 if b < x,
(5.69)
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Figure 5.30 Disturbance imposed onto constant density solution at t = 0. The
resulting initial condition is given in (5.69)
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where ρb < ρ0 < ρa. This function is shown in Figure 5.30. Although it is not
continuous, this function is similar to the one in Figure 5.15, and is chosen to
make the problem easier to solve. However, unlike what was done in Figure
5.15, we do not assume that the disturbance is necessarily small. Also, as
usual, the Greenshields constitutive law is used.

To determine the solution, it is seen in Figure 5.30 that at each jump
the faster cars are on the left. This means that a shock wave is going to
be generated at each of these points. This is evident if one looks at the
characteristics, which are shown in Figure 5.31(a). The characteristics that
start to the left of x = a have the form x = x0 + c0t, where c0 = c(ρ0).
Similarly, the one that starts at x = a is x = a + cat, where ca = c(ρa).
Because ρ0 < ρa then c0 > ca. This means that the characteristic x = a+ cat
is going to overlap with those on the left, as shown in Figure 5.31(a). A similar
conclusion applies to the characteristics on the other end, where x = b.

The resulting shock waves are shown in Figure 5.31(b). The one on the
left end is, from (5.55),
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Figure 5.31 The solution of the phantom traffic jam problem, which uses (5.69) as
the initial condition. The characteristics, and shock wave, have been drawn for the
case of when c < 0.
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sa(t) = a+
1
2
(c0 + ca)t, (5.70)

and the one on the right is

sb(t) = b+
1
2
(c0 + cb)t. (5.71)

Carrying out an analysis very similar to the one used for the modified red
light - green light example of Section 5.6.2, one finds that the solution is
linear in the interval sa ≤ x ≤ sb. The resulting solution is, therefore,

ρ(x, t) =


ρ0 if x < sa

ρa + (ρb − ρa) x−sa

sb−sa
if sa < x < sb

ρ0 if sb < x.
(5.72)

This is shown in Figure 5.31(c), and because of its shape it is known as an
N-wave. It has the properties mentioned earlier for a phantom traffic jam.
Namely, a driver who comes in from the left will be happily driving on a
road with a uniform density. When they reach the jam at x = sa they will
have to immediately reduce their speed to adjust for the unexpected increase
in the density. They will be able to gradually increase their speed, due to
the decrease in the density over the interval sa < x < sb. However when
they reach x = sb they will have gotten through the disturbance and will
need to adjust their speed to match the uniform flow. This is basically the
same conclusion reached with the small disturbance approximation in (5.36).
What the approximation misses is the change in the width of the disturbance,
which it states is constant. The solution in (5.72) shows that the width is
sb − sa = b− a+ 1

2 (cb − ca)t, which increases with time.

5.6.7 Summary

The results we have derived for the traffic flow problem are scattered through
the preceeding pages, and it is worth finishing up this material by collecting
them together. The problem consists of the first-order partial differential
equation

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0, (5.73)

with the initial condition
ρ(x, 0) = f(x). (5.74)

Assuming c(ρ) is a smooth function, with c′(ρ) 6= 0, for 0 ≤ ρ ≤ ρM , then
the solution is constructed using the following information.
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a) The solution is constant along the characteristic curves x = x0 + c0t (see
Figure 5.18).

b) Characteristics Overlap. In a region containing overlapping characteristic
curves the solution contains a shock wave at x = s(t). The velocity of this
wave is

s′(t) =
ρRvR − ρLvL

ρR − ρL
. (5.75)

On either side of the shock, the respective characteristics determine the
solution (as illustrated in Figure 5.27). As an example, if f(x) is piecewise
constant with a jump discontinuity at x0, with cR < cL, then the solution
starts out with a shock wave of the form x = x0 + s′0t, where s′0 is deter-
mined from (5.75).

c) Characteristics Separate. In a region with no characteristics, the solution
is an expansion fan. An example is shown in Figure 5.26, where f(x) has
a jump discontinuity at x0, with cR > cL. In this case, in the region
cLt < x < cRt the solution is found by solving c(ρ) = (x− x0)/t.

The above conclusions are general in the sense that they apply to traffic flow,
where c′ < 0, but also to the case of when c′ > 0. The latter occurs, for
example, for gas flow, and is the subject of Exercises 5.13 and 5.14.

5.7 Cellular Automata Modeling

The viewpoint of the continuum model derived in Section 5.3 is that the
motion of the individual cars can be approximated using an averaging process,
giving rise to the density and flux functions. It is interesting to explore how
to retain the individuality of the cars, and one approach incorporates ideas
from cellular automata. The first step in constructing the model is to divide
the road into equal segments, each with length ` as shown in Figure 5.32.
Conventionally, this distance is taken to be the length of an average car, or
vehicle, on the road. Time is also divided into equal segments, producing a
time step ∆t. The objective of the model is, given the positions of the cars at
time told, to determine their positions at tnew = told +∆t. With this in mind
we introduce an integer variable m that equals the number of road segments
the car moves in a time step. For example, m = 1 means the car moves one
segment, m = 2 means it moves two segments, etc. It is assumed that there
is a maximum number of segments M that a car is allowed to move in a time
step. This is equivalent to assuming there is a maximum velocity vM on the
highway. Given that a car’s velocity in this formulation is v = m`/∆t, then
vM = M`/∆t.
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Figure 5.32 In traffic cellular automaton models the roadway is divided into equal
segments, and the segments are numbered. For the car on the left, x = i and its gap,
which is the number of empty segments in front of it, is g = 3.

Example

Taking ` = 16 ft (4.9 m) and ∆t = 1 sec then m = 1 corresponds to a velocity
of 10.9 mph (17.5 kph), while m = 6 corresponds to a velocity of 65.4 mph
(105.2 kph). �

In the model, each car has three integers associated with it, and they are
(x,m, g). Here x is the position of the car and its value is determined by
the road segment currently occupied by the car. The integer m was defined
earlier, and g is called the gap and it is the number of spaces between the
car and the one in front of it. For example, for the car on the left in Figure
5.32, x = i and g = 3, while for the car on the right x = i+ 4.

The basic idea in the model is that at time told we know the values of
(xold, mold, gold) for each car, and what the model does is to determine their
values (xnew, mnew, gnew) at time tnew = told +∆t. This is done by applying
the following four rules to each car on the road:

1. Speedup.
If mold 6= M , then mnew = mold + 1.

2. Do Not Overrun.
If mnew > gold then mnew = gold.

3. Randomization.
If mnew 6= 0 then, with probability p, take mnew = mnew − 1.

4. Move the Car.
Take xnew = xold +mnew.

These four steps constitute what is known as the stochastic traffic cellular
automaton (SCTA) model.

The first three steps of the SCTA model contain assumptions, and poten-
tial modifications, that need to be discussed.

Speedup. It is assumed that a driver will attempt to drive at the maximum
allowed velocity. Assuming the car is not moving at the maximum velocity
then in this step the number of segments a car moves is increased by one. It is
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certainly possible to consider what happens if there are larger accelerations,
and increase the movement by two or more segments, but this will not be
investigated here.

Do Not Overrun. The idea here is that if there are, say, three empty spaces in
front of the car then it cannot move any more than three spaces in the time
step. One can argue that the car in front will likely move in the time step
and therefore there will be more than three available spaces. This is correct
but it is not accounted for in the model.

Randomization. The previous two steps are intuitive, but not so with the
randomization. Numerous reasons have been given to justify this assumption,
and this includes the statements that it mimics delayed acceleration or that
it accounts for an overreaction in braking. These explanations are rather
vague, so instead we will concentrate on what effect the probability p has on
the motion. If p is close to zero then it is unlikely the velocity is reduced and
there will be little noticeable affect on the car’s movement. This is not the
case for larger values of p. Any time a car slows down there is a potential to
effect the motion of those who are following, and the more often this happens
the greater the affect on the flow. The extreme case of when p = 1 is examined
in Exercise 5.28.

Given the recursive nature of how the four rules are used, it is difficult
to determine exactly what happens using analytical methods. The approach,
therefore, is to use computer simulations and this brings us to the next ex-
ample.
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Figure 5.33 In (a) five cars are placed uniformly along a roadway at t = 0. Their
positions calculated using the SCTA model are shown in (b) at t = ∆t, and in (c) at
t = 2∆t.



5.7 Cellular Automata Modeling 251

Example

Suppose the cars start out uniformly distributed along the highway, where
the gap g is the same for all cars. This is shown in Figure 5.33(a), with n = 20
and g = 3. The lower two graphs are the positions of the cars at the first two
time steps, assuming p = 9/10, m = 1, and M = 2. It is seen that after the
first time step all cars have moved one space to the right, except for the sec-
ond that has moved two spaces. To explain this, the speedup step sets m = 2
and this means the cars move forward two spaces. However, because of the
large value of p it is likely that the velocity of each car in the randomization
step is reduced to m = 1, and this is borne out in the plot. This one space
movement is also seen at the next time step, given in the lower plot. What
is new at this time step is the appearance of a sixth car on the left. This is
not from the model but, rather, something that is included in the computer
code. Specifically, if the first space is empty then the computer adds in a car
at this location with a probability equal to the original uniform distribution,
namely with probability 1/(g + 1). The computer code also removes cars on
the right if they pass n = 20, although none of the cars in Figure 5.33 have
traveled far enough for this to happen. �

It is possible to take the computer code that produced Figure 5.33 and
calculate car positions using a large number of road segments and time steps.
Although this generates interesting pictures, little is learned in the process.
It is better to study specific situations and compare the results with what
is expected on a real roadway. For this we turn to the red light-green light
and the green light-red light examples introduced earlier for the continuum
model.

Example: Red Light - Green Light

For this the road is divided into 1000 segments, and the stoplight is located
at x = 333. It is assumed the cars are bumper-to-bumper to the left of the
light. This is shown in the lower plot of Figure 5.34(a), where the solid black
block on the left are the 333 cars waiting for the light to turn green. Also
shown in this plot is the corresponding density, using the continuum model.
The solution after a few time steps, for both the SCTA and the continuum
models, is shown in Figure 5.34(b). In the calculation M = 2 and p = 1/10.
Both are behaving as expected. In the SCTA model the cars on the right
have pulled ahead while those in the block on the left are waiting for room to
open up so they can move. For the continuum model we have a expansion fan.
From (5.59), in the case of when the light is located at x = x̄, the solution is

ρ(x, t) =


ρL if x ≤ x̄− vM t,
ρL

vM t+x̄−x
2vM t if x̄− vM t < x < x̄+ vM t,

0 if x̄+ vM t ≤ x,
(5.76)
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Figure 5.34 Solution of the red light-green light problem. Show are (a) the density
and positions of the cars at t = 0, and (b) the density and positions after several time
steps. The density is computed using (5.76) and the car positions are determined
using the SCTA model.

where ρL = 1/`. The linear transition between ρ = ρL and ρ = 0 is seen in
the upper plot of Figure 5.34(b). We are now able to ask the big question,
namely, how do the two models compare? To investigate this note that for the
SCTA model the car in the front, after N time steps, can move no farther
than MN spaces. The actual number will be smaller, depending on how
many time steps it takes to accelerate to velocity M and the always present
reduction of the velocity due to the randomization step. If p is close to zero,
then the first car moves approximately NM = M [N − 1

2 (M − 1)] spaces,
where the 1

2M(M − 1) term is due to the number of steps it takes the car to
reach speed M . In Figure 5.34(b) this car is located at about x = 600. The
leftmost car that is able to move, for p close to zero, is located approximately
N spaces to the left of the light, which in Figure 5.34(b) is near x = 200. At
the other extreme, the closer p gets to one the closer the number of spaces on
either the left or right gets to zero. In this discussion we will assume a linear
approximation in p. Therefore, the approximate spatial interval involving the
cars that are in motion after N time steps is

x̄∗ −N`(1− p) ≤ x∗ ≤ x̄∗ +NM `(1− p). (5.77)
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In comparison, for the continuum model the interval is

x̄∗ −NM∆t ≤ x∗ ≤ x̄∗ +NM∆t. (5.78)

This result brings out one clear difference between the two models. Specifi-
cally, the continuum model predicts the interval is symmetric about the light’s
position, while for the SCTA model the interval is generally nonsymmetric.
This is seen in Figure 5.34(b). The interval is symmetric in the continuum
model because of the constitutive law. The speed the interval expands is de-
termined from the slope of the flux function and, as seen in Figure 5.16, this
function is symmetric. In real life, as indicated in Figure 5.8, the flux is not
symmetric and this means if we were to use a more realistic constitutive law
for v then we would obtain a nonsymmetric interval. Can we find a constitu-
tive law that produces the same result as the SCTA model? Well, this rather
interesting question will be left for you to think about. �

Example: Green Light - Red Light
For this example the road is again divided into 1000 segments, with a stoplight
located at x = 1000. It is assumed that the cars are uniformly spaced with
three spaces between them, and each starts out at the maximum velocity
vM = 2. The randomization probability in this example is p = 1

4 . This is
shown in Figure 5.35(a). Also shown in this plot is the corresponding density
ρ = 1/(4`) for the continuum model. The solution after a few time steps,
for both the SCTA and the continuum models, is shown in Figure 5.35(b).
Both are behaving as expected. In the SCTA model the cars coming in from
the left stop when they arrive at the traffic jam, which in Figure 5.35(b) is
located near x = 800. For the continuum model we have a shock wave that
moves leftward. Because ρL = 1/(4`) and ρR = 1/` then, after N time steps,
the shock is located at s = x̄ − MN∆t/4, where x̄ is the location of the
stoplight. In Figure 5.35(b), where N = 450, we have that s = 780.

One of the more obvious differences in the two models, when looking at
Figure 5.35(b), is the lack of uniformity in the density to the left of the traf-
fic jam in the SCTA description. This is not unexpected and is due to the
randomization step. The second difference is the location of the traffic jam.
It is difficult to predict where the jam is located using the SCTA model be-
cause there is no simple formula as there is in the continuum case. What is
interesting in Figure 5.35(b) is that it appears that in the SCTA model the
jam affects the motion of the cars before they reach the jam. Specifically,
there is an increase in the density as the cars approach the jam. This can be
explained by the fact that any time a car slows down this information is sent
backwards along the road (Step 2). Therefore, when a car slows down as it
arrives at the jam this affects the cars that follow. This is not in the con-
tinuum model and consequently represents a fundamental difference between
the two descriptions. �
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Figure 5.35 Solution of the green light-red light problem. Shown are (a) the density
and positions of the cars at t = 0, and (b) the density and positions after several time
steps. The density is computed using (5.65) and the car positions are determined
using the SCTA model.

Exercises

5.1. This problem considers various consequences of the traffic flow equation.
(a) Show that given any two points a and b on the x-axis, with a < b,

d

dt

∫ b

a

ρ(x, t)dx = J(ρa)− J(ρb),

where ρa = ρ(a, t) and ρb = ρ(b, t). Interpret the above equations in phys-
ical terms.

(b) Show that

ρ(x, t) = f(x)− ∂

∂x

∫ t

0

J(x, z)dz.

5.2. Consider the situation of when two lanes of traffic merge down to one
lane, as shown in Figure 5.36. The densities and velocites at the far left and
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right are known. Assume a steady flow, so the density and velocity do not
depend on time, and assume all variables are non-negative.

(a) Using the result of Exercise 5.1(a), find an equation that relates the values
on the right with those on the left.

(b) What does the equation in part (a) reduce to if the Greenshields law is
used?

(c) Suppose ρ2 = ρ1, v2 = v1, and the Greenshields law is used. Find ρ3 in
terms of ρ1. Your solution should give ρ3 = 0 if ρ1 = 0. With this, describe
what happens to the flow of cars on the right as ρ1 is increased, starting
from ρ1 = 0. Make sure to explain what happens as ρ1 nears 1

4 (2−
√

2)ρM .

5.3. There are various recommendations concerning safe following distances
for cars. Below are a few of the more commonly sited rules. Find the result-
ing constitutive law relating density and velocity if you assume the cars are
uniformly spaced according to the given rule. The function F (ρ) must be
continuous, and if you need to make additional assumptions to derive the re-
quested constitutive law make sure to state what they are. Finally, determine
which, if any, of the three requirements NV1-NV3, given in Sections 5.4.3,
5.4.4 the constitutive law satisfies.

(a) The National Safety Council recommends the 3-second rule. This means
that you allow at least 3 seconds between you and the vehicle in front of
you.

(b) In the early days of motoring, it was recommended that you keep one car
length back (about 20 feet) for each ten miles per hour of speed.

(c) According to an insurance company, you should allow at least 4 seconds
between you and the vehicle in front of you, but if traveling more than 50
mph that this time interval should be at least 6 seconds.

(d) According to a motoring society, the minimum safe distance to the car in
front is made up of the sum of two terms. One accounts for the distance
traveled due to reaction time, which is usually assumed to be 0.7 seconds.
The second term is calculated assuming a constant deceleration, and it
accounts for the distance the car will travel after the brakes are applied.

5.4. Apparently drivers do not follow the advice given out by insurance com-
panies or motor clubs, and the claim is that they prefer to select their speed
according to the rule

ρ =
1

α+ βv + γv2
,

where α, β, γ are positive constants (Zhou and Peng [2005]).

ρ
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ρ
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Figure 5.36 Configuration of roadway used for Problem 5.2.
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(a) What are the units of α, β, γ?
(b) What is the resulting constitutive law for the velocity? Which of the three

conditions on the constitutive law listed in Sections 5.4.3, 5.4.4 does this
expression satisfy?

(c) It was found experimentally that in many cases γ is negative. This happens
because γ is close to zero, and small variations in the data can cause the
curve fitting program to produce a negative value. How does this affect
your conclusions in part (b)?

5.5. Assume the flux J is given in Figure 5.37.
(a) Solve the traffic flow equation in the case of when ρ(x, 0) = 4.
(b) Solve the traffic flow equation when ρ(x, 0) = (5 + x2)/(1 + x2).
(c) Using the information in the graph, find the velocity in terms of the density.

5.6. In the traffic flow problem suppose the velocity of cars, as a function of
the density, is measured on a highway and the data shown in Figure 5.38 are
obtained.

(a) Formulate a constitutive law for v as a function of ρ based on these data.
Provide an explanation of how you reach your conclusion.

(b) In the traffic model it is assumed that c′(ρ) 6= 0 for 0 ≤ ρ ≤ ρM . Does
your constitutive law satisfy this condition?

5.7. This problem explores some of the consequences of the Greenshields
model as identified in a typical traffic engineering manual.

(a) Sketch the flux as a function of density. At what density is the flux a
maximum?

(b) The constant ρM is called the jam density, vM is called the free-flow veloc-
ity, and 1

4vMρM is the capacity. Explain why they are given these names.
(c) The headway is defined as the time interval between a common point on

the vehicles (e.g., the front bumper) passing a fixed point in space. How
is this related to the flux or velocity?

(d) In the example of Section 5.2 for uniform cars the maximum merge density
ρmerge was calculated. Use this and the data in Figure 5.6 to find an
approximate value for the maximum merge velocity vmerge, which is the
velocity corresponding to the maximum merge density.
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Figure 5.37 Flux-density data used in Exercise 5.5.
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Figure 5.38 Data used for Problem 5.6.

5.8. Solve the following problems by extending the method that was used in
Section 5.5 to solve the advection equation.

(a)
∂ρ

∂t
+ 2

∂ρ

∂x
= 1,

where ρ(x, 0) = f(x).
(b)

∂ρ

∂t
− 6

∂ρ

∂x
= ρ,

where ρ(x, 0) = f(x).
(c)

∂ρ

∂t
+
∂ρ

∂x
= ρ2,

where ρ(x, 0) = f(x).
(d)

∂ρ

∂t
+
∂ρ

∂x
= x, for x > 0, t > 0,

where ρ(x, 0) = 0 for x > 0, and ρ(0, t) = 0 for t > 0.

5.9. This problem explores the finite highway problem associated with Figure
5.14.

(a) Suppose it is found that ρ(`, t) = 2. What is f(x) and what is g(t)?
(b) Suppose it is found that ρ(`, t) = e−t. What is f(x) and what is g(t)?

5.10. This problem considers possible solutions of the traffic flow equation
when using the Greenshields law. Assume that ρ(x, 0) = f(x), where f(x) is
piecewise constant. Also, make sure to justify your answers.

(a) Give an example of f(x) that produces a solution with two expansion fans
and no shock waves.

(b) Give an example of f(x) that produces a solution that starts out with two
shock waves and no expansion fans.

(c) Give an example of f(x) that produces a solution that starts out with one
shock wave and one expansion fan.
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(d) In part (a), explain why the two expansion fans can not overlap.
(e) In part (b), the two shock waves eventually intersect. Explain why this is

expected based on the way the cars are positioned at the very start. When
the shocks intersect, a single shock is formed. Find the resulting solution.

5.11. This problem considers what values a solution of the traffic flow equa-
tion can have when using the Greenshields law, with vM = 1 and ρM = 10.
Assume that ρ(x, 0) = f(x) is piecewise constant.

(a) Assuming that 3 ≤ f(x) ≤ 4, explain why it is impossible for ρ(x, t) = 5
at any value of (x, t). Is it possible for ρ(x, t) = 2?

(b) Suppose that f(x) is piecewise constant, and only takes on the values 1
and 3. Give an example to show that it is possible for ρ(x, t) = 2 for one or
more points (x, t). For your example, what other values does the solution
take on?

(c) Give an example for f(x), so that the only values ρ takes on are 1, 2, and
3.

5.12. This problem explores some of the connections between the velocity
functions that arise with nonlinear traffic flow.

(a) Show that

v =
1
ρ

∫ ρ

0

c(ρ̄)dρ̄.

(b) Show that

s′(t) =
ρRvR − ρLvL

ρR − ρL
.

(c) Show that if v is a monotonically decreasing function of ρ then c ≤ v.
(d) Give an example to show that to have c monotonically decreasing, it is

not enough to assume v is monotonically decreasing.
(e) Is it possible for a shock wave to stay in one place? You can assume the

Greenshields law is used.
(f) Is it possible for the wave velocity c to be independent of ρ without as-

suming the car velocity v is independent of ρ?

5.13. In fluid dynamics one solves the nonlinear equation (5.30), but the wave
velocity is c(ρ) = ρ. Using this function, assume that the initial condition is

ρ(x, 0) =

1 if x ≤ −1
1
2 (1− x) if − 1 ≤ x ≤ 1
0 if 1 ≤ x.

(a) Sketch the characteristics in the x, t-plane.
(b) Find the solution, and sketch it as a function of x, for t > 0.
(c) Show that v = 1

2ρ.

5.14. As in the previous problem, suppose c(ρ) = ρ but now the initial con-
dition is
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ρ(x, 0) =

0 if x ≤ −1
1
2 (1 + x) if − 1 ≤ x ≤ 1
1 if 1 ≤ x.

(a) Sketch the characteristics in the x, t-plane.
(b) Find the solution, and sketch it as a function of x, for t > 0.
(c) Find the points in the x, t-plane where ρ = 1

3 .
(d) Show that v = 1

2ρ. With this, determine the flux J .

5.15. This problem examines what happens on a finite length highway when
the velocity is not constant. The equation is

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0, for

{
0 < x < `
0 < t,

where
ρ(x, 0) = f(x), for 0 ≤ x ≤ `,

and
ρ(0, t) = g(t), for 0 < t.

Assume the Greenshields law is used, and so the function c is given in (5.38).
(a) Assuming that 2ρR < ρM , find the solution when f(x) = ρR(1− x/`) and

g(t) = ρR.
(b) For part (a), explain why there is no solution if 2ρR > ρM . Which condi-

tion, the one at t = 0 or the one at x = 0, should be dropped so there is
a solution?

(c) Find the solution when f(x) = 0 and g(t) = ρL.
(d) Find the solution when f(x) = ρR and g(t) = 0.

5.16. To investigate just how much influence the constitutive law has on the
solution, suppose it is assumed that v = vM ((1− (ρ/ρM )2). This is a special
case of what is known as Drew’s constitutive law (Drew [1968]).

(a) What is the wave velocity c(ρ)? Is it a monotonic function of ρ?
(b) What is the solution of the modified red light - green light problem? As in

Figure 5.20, sketch the solution as a function of x and comment on how
the solution differs from the one in Figure 5.20. You can assume in this
problem that ρR = 0.

(c) What is the solution of the red light - green light problem, where ρR = 0?
As in Figure 5.25, sketch the solution as a function of x. Also, comment
on how the solution differs from the one in Figure 5.25.

(d) What is the solution of the traffic jam problem? As in Figure 5.27, sketch
the solution as a function of x. Also, compare the velocity of the shock
with the value obtained using the Greenshields law.

5.17. One way to explain weak solutions is to consider a smooth version of
the jump initial condition. Specifically, let ρ(x, 0) = 1/(1 + αex/ε), where ε
and α are positive. Also, this problem considers the linear equation, so v = a
is constant.
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(a) Find the solution using the above initial condition. Explain why the re-
sulting solution is smooth and sketch it assuming that ε is small.

(b) Explain what happens both to the initial condition and solution when
ε→ 0. Make sure to explain what happens if x = at.

(c) Part (b) helps explain why using a jump initial condition is consistent with
what is known for smooth solutions, with the exception of what happens
at the jump itself. This raises the question of what value the density can
have at a jump. Given the definition of the density in (5.1), what should
the value of the density be at x = 0 and at x = 1 in Figure 5.9 when t = 0?

(d) Show that the limiting value you found in part (b), when x = at, can be
obtained for the solution in Figure 5.9 by modifying the averaging interval
in (5.1). What this shows is that in a continuum theory, the value at a
discontinuity is dependent on the averaging method.

5.18. Suppose one is interested in knowing the position of a particular car
when using the continuum model. Assume that at t = 0 the car is located
at x = A, and its position at later times is given by x = χ(t). This problem
is concerned with how to find the function χ(t). In doing this it is assumed
that the traffic flow equation has been solved, so the density ρ(x, t) and the
velocity v(x, t) functions are known.

(a) Explain why, to find χ(t), one solves the differential equation χ′ = v(χ, t),
where χ(0) = A.

(b) For the red light-green light solution given in (5.62), assume ρL = ρM and
A < 0. What is the resulting velocity function? With this show that

χ(t) =
{
A if 0 ≤ t ≤ −A/vM

vM t− 2
√
−AvM t if −A/vM < t.

On the same axes, sketch χ(t) for A = −vM , A = −2vM , and A = −3vM .
(c) For the red light-green light problem, which cars are able to get through

the light if it is green for 0 ≤ t < tR and turns red at t = tR?
(d) For the traffic jam example studied in Section 5.6.5, find χ(t) for A < 0.

On the same axes, sketch χ(t) for A = −vM , A = −2vM , and A = −3vM .

5.19. It is observed that when a stoplight turns green, the density of traffic
passing through the light increases in time up to a constant value ρ0. As-
suming the light is located at x = 0, a boundary condition that mimics this
observed behavior is

ρ(0, t) =
{
ρ0t/ts if 0 ≤ t ≤ ts
ρ0 if t > ts.

The domain over which the traffic flow problem is solved is 0 < x and 0 < t.
Assume here that ρ(x, 0) = 0 and the Greenshields constitutive law is used.

(a) In the case of when ρ0 = 1
3ρM find, and then sketch, the solution.

(b) Suppose that ρ0 = 2
3ρM . Sketch the characteristics, and use this to explain

why there is no solution. In fact, explain why there is no solution for any
density that satisfies ρ0 >

1
2ρM .
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5.20. This problem investigates how to use similarity variables to find an
expansion fan.

(a) Assume ρ(x, t) = R(η), where η = x/t. Show that the traffic flow equation
reduces, in the case of when ρ is not constant, to the equation c(ρ) = x/t.

(b) Using the Greenshields law, solve c(ρ) = x/t for ρ.
(c) Show that your solution in part (b) is the same as the one given in (5.59).

5.21. This problem examines what happens to the traffic flow problem when
cars are allowed to enter or exit the highway. It is assumed this occurs not
at discrete locations but continuously along the highway.

(a) Assume that over an interval x0 − ∆x < x < x0 + ∆x the number that
enter (or exit) from t = t0 −∆t to t = t0 +∆t is 4∆x∆tQ , where Q(x, t)
is the net rate per unit length at which cars are entering or leaving the
highway. Show that the resulting balance law for traffic flow is

∂ρ

∂t
= −∂J

∂x
+Q.

(b) One possible constitutive law for this new variable is Q = α(ρ− β) where
α, β are constants. Can you explain how this assumption could arise for
traffic flow? Is there any reason you should assume α is either positive or
negative? Any suggestion on how to choose β?

(c) Use the procedure to solve the α = 0 case to solve the equation derived
in part (a) along with the constitutive assumption in part (b). Assume a
constant velocity.

(d) Based on your solution from part (c), what is the effect ofQ on the density?
Is the solution still a traveling wave? Demonstrate your conclusion using
the initial distribution ρ(x, 0) = e−x2

by sketching the solution at later
times.

5.22. Suppose you had an experimental apparatus that enabled you to mea-
sure the velocity of a shock wave. Explain how you could use this to determine
a constitutive law for the velocity.

5.23. A variable related to density is the volume fraction φ(x, t), which is
used to determine how much of the highway is taken up by cars (versus
empty road). In reference to Figure 5.4,

φ(x0, t0) ≈
total length of cars from x0 −∆x to x0 +∆x at t = t0

2∆x
.

The value of φ(x0, t0) is the limit of the right-hand side as ∆x→ 0.
(a) For evenly spaced cars as in Example 5.2, show that φ(x, t) = `/(` + d),

and therefore φ = `ρ.
(b) If the cars are not necessarily evenly spaced but still are all of length `

show that it is still true that φ = `ρ.
(c) Assuming φ = `ρ, where ` is constant, rewrite the traffic flow equation

(5.30) in terms of φ(x, t).
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Figure 5.39 Averaging intervals used to define (a) the density, and (b) the flux. The
horizontal bar in (a) has length 2∆x, and the vertical bar in (b) has length 2∆t. The
four slanted lines shown in each figure are the paths of individual cars. These figures
are used in Problem 5.26.

5.24. Suppose the density is given in terms of the velocity, and so, assume
ρ = H(v).

(a) Show how the traffic flow equation can be written as vt + d(v)vx = 0.
(b) Find H for the Greenshields (5.10) and Newell (5.17) functions.
(c) The initial condition used for the small disturbance approximation is

v(x, 0) = v0 + εh(x). Find the resulting two term expansion for the ve-
locity.

5.25. One might argue that if a driver is in a relatively high-density region
and sees lower density traffic up ahead that they will speed up with the
objective of traveling in the lower-density region.

(a) Explain why an assumption that accounts for this behavior is a constitutive
law of the form v = F (ρ, ρx).

(b) Write down a simple, three parameter, constitutive law for v that involves
ρ and ρx.

(c) With the constitutive law from part (b) what is the resulting traffic flow
equation?

(d) What is the resulting small disturbance equation and how does it differ
from (5.35)?

5.26. This problem examines the averaging used to define the flux and den-
sity, and how they relate with the velocity. It is assumed that a car with
initial location x0 has velocity f(x0). Consequently, the position of this car
at any later time t is x = x0 + f(x0)t. Example paths for the cars are shown
in Figure 5.39. Therefore, in this problem, each car has a constant velocity,
but different cars can have different velocities. For simplicity, it is assumed
that f(x) = v0 + w0x, where v0 and w0 are constants.

(a) The averaging interval used to define the density in (5.1) is shown in Figure
5.39(a), and it is the same as the one shown in Figure 5.4. Explain why
x0 −∆x = α+ f(α)t0 and x0 +∆x = β + f(β)t0. Use these equations to
find α and β in terms of x0 and t0.

(b) The averaging interval used to define the flux in (5.3) is shown in Figure
5.39(b). Explain why t0 −∆t = b+ f(b)t0 and t0 +∆t = a+ f(a)t0. Use
these equations to find a and b in terms of x0 and t0.
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(c) Assuming that the cars are continuously distributed, show that the average
velocity for the cars in the horizontal bar in Figure 5.39(a) is v0 +w0(x0−
v0t0)/(1 + w0t0).

(d) Assuming that the cars are continuously distributed, find the average ve-
locity for the cars in the vertical bar in Figure 5.39(b). Assuming that ∆t
is small, show that the average velocity is, approximately, v0 + w0(x0 −
v0t0)/(1 + w0t0).

(e) Use the fact that the average velocities in parts (c) and (d) are the same
to explain why this provides additional evidence of the validity of the
equation J = ρv.

5.27. This problem considers various formulas for the SCTA model.
(a) Show that the first two steps in the SCTA model can be combined into

the formula mnew = min{mold + 1,M, gold}.
(b) Show that the first three steps in the SCTA model can be combined into

the formula mnew = max{0,min{mold +1,M, gold}−χ}, where χ = 1 with
probability p (otherwise, χ = 0).

5.28. Suppose that in the SCTA model the cars start out uniformly spaced
with g = M . Assume the randomization probability is p = 1.

(a) Let M = 1. What happens if the cars start out with velocity M? What
happens if the cars start out with zero velocity?

(b) Let M = 3. What happens if the cars start out with velocity M? What
happens if the cars start out with velocity m = 2? What happens if the
cars start out with velocity m = 1? What happens if the cars start out
with zero velocity?

(c) Generalize your conclusions from part (b) to describe what happens if
M ≥ 2.

5.29. Suppose there is a stoplight located at x = 0. When it turns red assume
the cars are uniformly spaced in the region x < 0, with three spaces between
the cars, and each car has m = 1. The maximum movement is M = 2. A
space here is one car length.

(a) Assuming the Greenshields constitutive law is used, what is the resulting
solution of the traffic flow problem? What is the velocity of the shock
wave?

(b) In the SCTA model suppose the randomization is turned off (i.e., p = 0).
Show that the approximate velocity of the shock wave is −2∆x/(3∆t).
How does this compare with the continuum result from part (a)?

(c) In the SCTA model suppose that in the randomization step p = 1. Explain
why there is a shock-like solution but the jam density is half of what is
obtained from the continuum solution. Also show that the shock moves
with approximate velocity −∆x/∆t.

(d) Given the solution in part (c) describe, in general terms, what happens
when p is close to one.
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Figure 5.40 Possible car positions when deciding to make a lane change, as consid-
ered in Problem 5.30.

(e) Using your results from parts (b) and (d), explain why −2(1−p)∆x/(3∆t)
provides an approximation of the shock velocity for the SCTA model.
Given this, what should the randomization probability be so that the
SCTA velocity agrees with the continuum model?

5.30. To extend the SCTA model to multilane roads, where individual cars
are able to change lanes, consider Figure 5.40. Assume a driver will switch
lanes whenever they are able to travel farther in a time step in the other
lane. Safe lane changing requires consideration of the backward gap in the
other lane, so the driver in car B must consider the position and velocity of
car A when deciding to switch. Write down a set of rules for moving the cars
along the highway that includes lane changes. Assume in this problem that
the randomization step is omitted.



Chapter 6

Continuum Mechanics: One Spatial
Dimension

6.1 Introduction

In the previous chapter we investigated how to model the spatial motion of
objects (cars, molecules, etc.) but omitted the possibility that the objects
exert forces on each other. The objective now is to introduce this into the
modeling. The situations where this is needed are quite varied and include
the deformation of an elastic bar, the stretching of a string, or the flow of
air or water. Each of these has an internal material structure that resists
either stretching (the string and bar) or compression (air, water, and bar).
Illustrations of particular applications are shown in Figure 6.1. In this chapter
the mathematical model for these systems is derived, and in dong this we will
limit our attention to one-dimensional motion. Also, the only problems solved
in this chapter are to find the steady-state solution. The question of how to
solve the time-dependent mathematical problem coming from the model will
be taken up in the next chapter.

6.2 Coordinate Systems

The first step in continuum modeling is to define the coordinates that will
be used. We will find two systems invaluable, and we will continually switch
back and forth between them. One of them follows the material as it moves,
and not surprisingly, this is called the material system. The other is fixed in
space, and this is the spatial system.

M.H. Holmes, Introduction to the Foundations of Applied Mathematics, 265
Texts in Applied Mathematics 56, DOI 10.1007/978-0-387-87765-5 6,
c© Springer Science+Business Media, LLC 2009
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(a) (b)

(c) (d)

Figure 6.1 Examples of uniaxial motion or deformation. (a) Axial compression of a
bar. These Doric-style columns are under compression due to the annular entablature
they support. (b) Air flow through a pneumatic tube. (c) Longitudinal stretching of
bungie cord. (d) Flow of water along a straight pathway.

6.2.1 Material Coordinates

To define this system, consider a cylindrical bar as shown in Figure 6.2. The
top figure shows the bar at t = 0 and identifies a particular cross-section
located at x = A. The lower figure shows the bar at a later time and the
cross-section has moved to x = X(A, t). To be consistent it is required that
X(A, 0) = A.

Given the position function X, we can track each cross-section as it moves
back and forth along the x-axis. In this way, the coordinates A, t can be
used to locate the cross-sections, and together they constitute what is known
as the material coordinate system. In physics this is usually referred to as
Lagrangian coordinates.

We are particularly interested in how far each section moves from its orig-
inal position, and for this reason we introduce the displacement function,
defined as
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Figure 6.2 Axial motion of a cross-section that begins at x = A and moves to
x = X(A, t). The resulting displacement of the cross-section is U(A, t).

U(A, t) = X(A, t)−A. (6.1)

Because X(A, 0) = A then it is required that

U(A, 0) = 0. (6.2)

Connected with the displacement is the velocity of the cross-section, defined
as

V (A, t) =
∂U

∂t
. (6.3)

The acceleration and other higher time derivatives can be calculated similarly.
One last comment to make is that in the material coordinate system the

positions of the cross-sections at t = 0 comprise what is known as the refer-
ence configuration.

6.2.2 Spatial Coordinates

For an external observer watching the motion, the material description is
not particularly convenient. For example, if you were to observe fluid flow in
a river it is likely you would simply stand on the river bank and take your
measurements at that fixed position. In doing this, you would be determining
the properties of the motion without knowing where the individual water
molecules were located at t = 0. For this reason the spatial, or Eulerian,
coordinate system is introduced. The idea here is that you select the spatial
location x and let the cross-sections come to you. In spatial coordinates the
displacement function is denoted as u(x, t) and the velocity is v(x, t). In
this context, u(x, t) is the displacement of the cross-section that is located
at x and time t, and v(x, t) is the velocity of that cross-section. So, at a
fixed location x, as long as the velocity is nonzero, the cross-sections at x
keep changing. In contrast, in the material system, a fixed A means you are
following a particular cross-section, but your spatial location is changing.
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The values obtained from the spatial coordinate system must be exactly
the same as obtained when they are computed using material coordinates. To
determine how this happens, the transformation between material and spatial
coordinates is through the formula x = X(A, t). Because the two coordinate
systems must give the same value, we have that

U(A, t) = u(X(A, t), t), (6.4)

and
V (A, t) = v(X(A, t), t). (6.5)

If, on the other hand, we know the material variables U and V and want
to calculate the spatial versions it is first necessary to solve x = X(A, t) for
A. Physically this corresponds to determining the original position A of the
cross-section that is currently located at x. Writing this as A = a(x, t) then

u(x, t) = U(a(x, t), t), (6.6)

and
v(x, t) = V (a(x, t), t). (6.7)

The above expressions will prove to be invaluable when transforming between
spatial to material coordinates.

Example

Suppose the bar deforms in such a way that the cross-sections move according
to the rule that x = A(1 + 2t)/(1 + t). In this case,

U(A, t) = X −A

=
tA

1 + t
,

and

V (A, t) =
∂U

∂t

=
A

(1 + t)2
.

This means, for example, that the cross-section that starts at A = 1 moves
with velocity V = 1/(1+t)2. To express these formulas in spatial coordinates,
we solve the rule to obtain A = x(1 + t)/(1 + 2t). In this case, from (6.6),

u(x, t) = U |A= 1+t
1+2t x

=
tx

1 + 2t
,
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and, from (6.7),

v(x, t) = V |A= 1+t
1+2t x

=
x

(1 + 2t)(1 + t)
. (6.8)

One significant observation from the above calculation is that v 6= ∂u
∂t . Also,

the change of variables is reversible, and so

U(A, t) = u(x, t)

= u(A
1 + 2t
1 + t

, t)

=
tA

1 + t
. �

One of the distinctive differences in the two coordinate systems is the
domain over which they apply. To demonstrate, suppose that the bar starts
off, at t = 0, with length `0 and occupies the interval 0 ≤ A ≤ `0. The range
of A values for any material variable, such as U(A, t) or V (A, t), is determined
by the original position of the bar. In other words, they are defined for 0 ≤
A ≤ `0. In contrast, the range of x values for a spatial variable, such as u(x, t)
or v(x, t), depends on the current position of the bar. The left end of the bar
is at x = X(0, t) = U(0, t) and the right end is at x = X(`0, t) = `0 +U(`0, t).
Consequently, the spatial variables are defined for U(0, t) ≤ x ≤ `0 +U(`0, t).

Example (cont’d)

In the previous example, suppose the bar initially occupies the interval 0 ≤
A ≤ 3. In this case, U(A, t) and V (A, t) are defined, for all values of t, in
the interval 0 ≤ A ≤ 3. To determine the interval for the spatial coordinates,
note that the position of the left end is at

x = U(0, t) = 0,

and the position of the right end is at

x = 3 + U(3, t) = 3 +
3t

1 + t
.

Therefore, the spatial variables are defined for 0 ≤ x ≤ 3(1 + 2t)/(1 + t). �

A comment is needed about partial derivatives and the two coordinate
systems. The independent variables in the material system are A and t, while
the independent variables in the spatial system are x and t. Partial derivatives
with respect to these variables will be written using one of several notations.
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In particular, the following are three different ways to designate the first
partial derivative

∂U

∂A
, UA , ∂AU .

The second partial derivative are written in either of the following three ways:

∂2U

∂A2
, UAA , ∂2

AU .

Correspondingly, mixed second partial derivatives are written in one of the
following ways:

∂2U

∂A∂t
, UAt , ∂A∂tU .

There is nothing particularly special about any one of the these forms, and the
choice of what to use is mostly determined by the format of the mathematical
expression under consideration.

6.2.3 Material Derivative

The above example shows that even though V = ∂U
∂t it turns out that in

spatial coordinates v 6= ∂u
∂t . This begs the question as how it might be possible

to determine v if we know u. To answer this suppose F (A, t) is a function
in material coordinates, and assume that its spatial version is f(x, t). In this
case ∂F

∂t represents the time rate of change of the variable for the cross-section
that began at A. To determine what this is in spatial coordinates note that
F and f must produce the same value. For example, if the cross-section that
started at A is currently located at x = X(A, t) then F (A, t) = f(x, t). In
other words,

F (A, t) = f(X(A, t), t). (6.9)

Taking the time derivative, and using the chain rule, we have that

∂F

∂t
=
∂f

∂x

∂X

∂t
+
∂f

∂t

=
∂f

∂x
V (A, t) +

∂f

∂t

=
∂f

∂x
v(x, t) +

∂f

∂t
. (6.10)

This derivative plays such an important role in what follows that it gets its
own name and notation. It is called the material derivative of f and it is
defined as

Df

Dt
≡ ∂f

∂t
+ v

∂f

∂x
. (6.11)
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The reason this is important is because Df
Dt is the time rate of change of the

function following a material cross-section, but expressed in spatial coordi-
nates.

A particularly important application of the above formula concerns the
spatial coordinate description of the displacement and velocity functions.
Taking F (A, t) = U(A, t), then f(x, t) = u(x, t) and from (6.10) we have that

∂U

∂t
=
Du

Dt
. (6.12)

Because V = ∂U
∂t , and V (A, t) = v(x, t), it follows that

v =
Du

Dt
. (6.13)

Using the definition of the material derivative in (6.11) the above equation
reduces to

v =
ut

1− ux
. (6.14)

In other words, the velocity v(x, t) of the cross-section located at x, at time t,
is Du

Dt and not ∂u
∂t . This result explains why in spatial coordinates we usually

end up with v 6= ut.

Example (cont’d)

Using the functions from the previous example,

∂u

∂x
=

t

1 + 2t
,

∂u

∂t
=

x

(1 + 2t)2
,

and so, from (6.14)
v =

x

(1 + t)(1 + 2t)
.

This agrees with the formula for the spatial velocity calculated by converting
the material velocity V to v in (6.8). �

In modeling the deformation of a bar we will also need to consider the
spatial changes in the material. The variable of interest in such situations
will be the material gradient ∂F

∂A . To express this in spatial coordinates we
again start by differentiating (6.9) but this time with respect to A. In a
similar manner as before, using the chain rule one finds that
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Material Expression Spatial Expression

∂F
∂t

= ∂f
∂t

+ v ∂f
∂x

∂F
∂A

= 1
1−ux

∂f
∂x

1
1+UA

∂F
∂A

= ∂f
∂x

∂F
∂t
− V

1+UA

∂F
∂A

= ∂f
∂t

Table 6.1 Relationship between various spatial and material derivatives. Here
F (A, t) is a function in material coordinates and f(x, t) is the function in spatial
coordinates.

∂F

∂A
=
∂f

∂x

∂X

∂A

=
∂f

∂x

(
1 +

∂U

∂A

)
. (6.15)

In the special case of when F = U and f = u, this reduces to UA = (1+UA)ux.
Solving for UA we obtain

∂U

∂A
=

ux

1− ux
. (6.16)

Substituting this into (6.15), yields

∂F

∂A
=

1
1− ux

∂f

∂x
. (6.17)

This result is listed in Table 6.1 along with other useful equalities between
various derivatives.

It would appear from the formulas in Table 6.1 that we might have a
problem if ux = 1, or if UA = −1. Later in the chapter we will find that for
the spatial coordinate system to be defined it is necessary to require ux < 1.
Similarly, the requirement for the material coordinate system to be defined
is that UA > −1.

6.2.4 End Notes

Before moving on to the derivation of the equations of motion there are a
few aspects of the development that need to be stated explicitly. First, it is
important to remember that the points making up a material cross-section,
such as shown in Figure 6.2, move as a unit and the motion is only along the
x-axis. One consequence of this assumption is that the cross-sectional area
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is constant. A second point is the implicit assumption that cross-sections do
not pass each other. For example, if a cross-section starts out to the left of
another cross-section then it is always to the left of it. This is reasonable
from a physical viewpoint, and it is known as the impenetrability of matter
assumption. It is also important for mathematical reasons because it guaran-
tees that we can uniquely convert back and forth between spatial and material
coordinates, and this is related to the inequalities mentioned at the end of
the previous paragraph. A third implicit assumption being made concerns
the smoothness of the motion. We will differentiate variables any number of
times based on the assumption that the motion is smooth enough to permit
this.

There is more than a passing connection between this chapter and the
previous one on traffic flow. In a mathematical sense the cars of the last
chapter are cross-sections in this chapter. Both are objects moving along the
x-axis. For this reason it should not be a surprise that the cross-sections
satisfy a conservation law related to their density, just as the cars did in
the last chapter as expressed in (5.7). A significant difference is that in this
chapter the objects (i.e., the cross-sections) exert forces on their neighbors,
and we will derive a force balance equation from this. Another difference is
that only a spatial coordinate system was used in traffic flow. It was not
necessary to introduce the material coordinate system, which would describe
the motion from the driver’s point of view, but in this chapter the material
system is important. To explain why, using the car analogy, we will assume
that the car directly in front of the driver, and the car directly behind, exert a
force on the driver’s car. This will happen, for example, if adjacent cars were
connected by springs. These forces change as the distance between the cars
change, and to keep track of this we will need to follow the cars. Hence, the
need for material coordinates. At the same time, there will be situations where
the spatial coordinate system is preferable, and this means we will switch
back and forth between the two systems. If you are interested how material
coordinates can be used in traffic flow, Exercise 5.18 should be consulted.

6.3 Mathematical Tools

To derive the traffic flow equation in the last chapter we used a control
volume approach. With the objective of trying different ideas, we will derive
the equations in this chapter using what is known as the integral method.
This requires a bit more mathematical background but the benefit is that
the derivation is easier. It is the purpose of this section to present the needed
mathematical tools. As with seemingly everything in mathematical modeling,
these results are personalized and given names.

The first result is straight out of mathematical analysis, and it tells us
when we are able to conclude a function is identically zero.
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Theorem 6.1. If f(x) is continuous and
∫ b

a
f(x)dx = 0, ∀a, b with a < b,

then f(x) = 0, ∀x.

This is known as the du Bois-Reymond lemma, and the usual proof of this
result involves contradiction. Assuming there is a point where f(x) 6= 0 then
continuity requires that there is a small interval where the function is either
positive or negative. The existence of such an interval contradicts the zero
integral assumption and therefore such a point cannot exist. Just as a note
in passing, the fellow this result is named for, Paul du Bois-Reymond, was
the brother of Emil, the noted physiologist.

The second result we need involves the rate of change of an integral in
which the interval of integration depends on time, and it is known as the
Reynolds Transport Theorem.

Theorem 6.2. Assuming α(t), β(t), f(x, t) are smooth functions then

d

dt

∫ β(t)

α(t)

f(x, t)dx =
∫ β(t)

α(t)

∂f

∂t
dx+ f(β, t)β′(t)− f(α, t)α′(t). (6.18)

In looking at this result it might appear we have simply restated a version of
the second fundamental theorem of calculus. This observation is correct. The
Reynolds Transport Theorem, as usually stated, is for the time rate of change
of a volume integral when the integration domain is time dependent. Our
version is what is obtained when reducing the motion to the x-axis. In calculus
this identity is sometimes identified as Leibniz’s rule for differentiation of
integrals.

Given that we are establishing the mathematical tools for the derivation
of the equations of motion it is appropriate to mention the inverse function
theorem. As stated earlier, the impenetrability of matter requires the invert-
ibility of x = X(A, t). What this means is that given t, if x0 is in the range of
X then there is only one A that maps onto x0. This brings us to the following
result, the Inverse Function Theorem.

Theorem 6.3. Assume ∂X
∂A is defined and continuous. Also, for t fixed, as-

sume x0 = X(A0, t). If ∂X
∂A (A0, t) 6= 0 then x = X(A, t) can be solved uniquely

for A for x near x0. Moreover, ∂A
∂x is defined and continuous in this interval.

What this result shows is that in the interval occupied by the material, the
impenetrability of matter requirement will be satisfied if we assume

∂U

∂A
6= −1.

This result follows directly from the definition of the displacement (6.2) and
the requirement that XA 6= 0. We also know, from (6.2), that UA(A, 0) = 0.
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Assuming the motion is smooth then the impenetrability of matter require-
ment takes the form

∂U

∂A
> −1. (6.19)

In spatial coordinates, the requirement is that

∂u

∂x
< 1. (6.20)

Like the smoothness assumptions made earlier, the above inequalities will
always be assumed to hold.

6.4 Continuity Equation

We will assume that mass is neither created nor destroyed. To understand the
mathematical consequences of this assumption suppose at t = 0 we identify a
segment of the bar, and assume this is an interval of the form AL ≤ x ≤ AR.
At any later time this segment occupies an interval α(t) ≤ x ≤ β(t), where
the endpoints are determined from the formulas α(t) = X(AL, t) and β(t) =
X(AR, t). Our assumption means that the total mass of the material in this
interval does not change. If we let ρ(x, t) designate the mass density of the
material (i.e., mass per unit volume) then our assumption states that∫ β(t)

α(t)

σρ(x, t)dx =
∫ AR

AL

σρ(x, 0)dx, (6.21)

where σ is the (constant) cross-sectional area of the bar. Differentiating both
sides with respect to t gives

d

dt

∫ β(t)

α(t)

σρ(x, t)dx = 0. (6.22)

Recalling that ∂X(A,t)
∂t = V (A, t) and V (A, t) = v(X(A, t), t) then β′ = v(β, t)

and α′ = v(α, t). With this, and the Reynolds Transport Theorem, we have
the following
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d

dt

∫ β(t)

α(t)

σρ(x, t)dx

=
∫ β(t)

α(t)

σ
∂ρ

∂t
dx+ σρ(β, t)β′ − σρ(α, t)α′ (6.23)

=
∫ β(t)

α(t)

σ
∂ρ

∂t
dx+ σρv|x=β − σρv|x=α

=
∫ β(t)

α(t)

σ
∂ρ

∂t
dx+

∫ β(t)

α(t)

σ
∂

∂x
(vρ)dx (6.24)

=
∫ β(t)

α(t)

σ

(
∂ρ

∂t
+

∂

∂x
(vρ)

)
dx.

Substituting this into (6.22) we have that∫ β(t)

α(t)

(
∂ρ

∂t
+

∂

∂x
(vρ)

)
dx = 0, (6.25)

and this is zero no matter what AL and AR we choose. Therefore, from the
du Bois-Reymond lemma we conclude

∂ρ

∂t
+

∂

∂x
(vρ) = 0. (6.26)

This is the continuity, or mass conservation, equation in spatial coordinates.
It is also the traffic flow equation. As with traffic flow, the mathematical
formulation is not complete because v is unknown. The difference now is
that there are forces within the material, and by accounting for them we will
be able to derive an equation for the velocity. This does not mean, however,
that we are out of the constitutive law business. As will be seen shortly, that
step has just been postponed until later in the development.

As a final comment, the Reynolds Transport Theorem was used to obtain
(6.23), and this resulted in the evaluation of the integrand at the endpoints. In
(6.24) these were then combined into a single integral using the Fundamental
Theorem of Calculus. These two steps are the core of the integral method
for deriving an equation of motion. It should be expected that any time the
method is used that these steps will be present in the derivation.

6.4.1 Material Coordinates

There are situations when it is easier if the equations are expressed in material
coordinates. To do this for the continuity equation let R(A, t) be the density
in material coordinates. This means that R(A, t) = ρ(X(A, t), t), and from
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(6.10) we have that ∂R
∂t = ρt + vρx. Also, from Exercise 6.5, we have that

vx = ∂
∂t ln(1 + UA). With these two formulas, the continuity equation (6.26)

transforms into
∂R

∂t
+R

∂

∂t
ln
(

1 +
∂U

∂A

)
= 0.

Solving this first-order equation for R yields

R(A, t) =
R0(A)
1 + UA

, (6.27)

where R0(A) = R(A, 0). It would appear that by using material coordinates
we have solved the continuity equation. This conclusion is correct although
the solution contains the displacement gradient and this is unknown until the
momentum equation is solved.

6.5 Momentum Equation

We will now introduce Newton’s Second Law, F = ma, into the formulation.
Actually, for our problem it is convenient to write this in momentum form as
d
dt (mv) = F . To begin, we itemize the forces that are involved and how they
usually enter the mathematical problem. They include:

External Surface Forces. These are, as the name implies, forces that affect
the motion across the outer surface of the bar. For example, if you were
to pick the bar up and stretch it you would be applying a surface force.
Generally, for us these will only appear in the problem through boundary
conditions.

External Body Forces. These affect all material points in the bar and will
appear in the equation as a known forcing function. In the formulation
below f(x, t) will represent the external body forces per unit mass, and
so, ρf is the resultant body force. The standard example of an external
body force is gravity, in which case f = −g and the resultant force is −gρ.

Internal Forces. These are the forces that the constituents making up the
bar exert on each other. For example, if the bar is stretched then the
material points in the bar pull on each other in an effort to restore the bar
to its original length. To get a handle on these forces, note that given any
cross-section, except those at the ends, you can separate the bar into a
left and right side as shown in Figure 6.3. In this context the left side can
be thought of as being pulled (or pushed) by the material on the right.
Although we do not yet know exactly what this force is, let τ(x, t) denote
its value per unit area. Because τ has the dimensions of force/area it is a
stress function. At the moment it is unknown and in the next section we
will discuss at some length how to remedy this situation. Nevertheless, a
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Figure 6.3 Any internal material cross-section can be thought of as separating the
bar into a left (L) and right (R) side. As shown, the bar is being stretched and this
results in a stress τ on side L due to the material on side R.

few things can be said about the stress. Newton’s Third Law states that
for every action, there is an equal and opposite reaction. What this means,
in regard to Figure 6.3, is that if the stress on L due to R is τ , then −τ
is the stress of L and R. The convention is that a force in the positive x-
direction is positive. Consequently, if τ > 0 then R is pulling on L, while
if τ < 0 then R is pushing on L.

The assumption made here is that the time rate of change of the momentum
equals the sum of forces on the material. To understand the mathematical
consequences of this assumption suppose that at t = 0 we identify a segment
of the bar, and assume this is an interval of the form AL ≤ x ≤ AR. At
any later time this segment occupies an interval α(t) ≤ x ≤ β(t), where the
endpoints are determined from the formulas α(t) = X(AL, t) and β(t) =
X(AR, t). The total momentum of this segment is∫ β(t)

α(t)

σρvdx, (6.28)

and the total body force on the segment is∫ β(t)

α(t)

σρfdx. (6.29)

The force on the left end of the segment is −στ(α, t), and on the right end
it is στ(β, t). Therefore, from Newton’s Second Law we obtain the equation

d

dt

∫ β(t)

α(t)

σρvdx =
∫ β(t)

α(t)

σρfdx+ στ(β, t)− στ(α, t). (6.30)

Using the same steps as in (6.24), differentiation of the integral on the left-
hand side of the above equation yields

d

dt

∫ β(t)

α(t)

σρvdx =
∫ β(t)

α(t)

σ

(
∂(ρv)
∂t

+
∂

∂x
(v2ρ)

)
dx. (6.31)

As for the right-hand side of (6.30), we can write it as
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α(t)

σρfdx+ στ(β, t)− στ(α, t) =
∫ β(t)

α(t)

σ

(
ρf +

∂τ

∂x

)
dx. (6.32)

Combining (6.31) and (6.32) we have that∫ β(t)

α(t)

σ

(
∂(ρv)
∂t

+
∂

∂x
(v2ρ)− ρf − ∂τ

∂x

)
dx = 0. (6.33)

This holds for any segment, and so from the du Bois-Reymond lemma it
follows that

∂(ρv)
∂t

+
∂

∂x
(v2ρ)− ρf − ∂τ

∂x
= 0. (6.34)

Using the continuity equation (6.26), this can be written as

ρ
Dv

Dt
= ρf +

∂τ

∂x
, (6.35)

where the material derivative Dv
Dt is given in (6.11). This is the momentum

equation for the bar expressed in spatial coordinates.

6.5.1 Material Coordinates

It is straightforward to rewrite the momentum equation in material coordi-
nates. We know that ρ(x, t) = R(A, t) and Dv

Dt = ∂V
∂t . Also, letting T (A, t) be

the stress in material coordinate then T (A, t) = τ(x, t) for x = X(A, t). With
this, and Table 6.1,

∂τ

∂x
=

1
1 + UA

∂T

∂A
. (6.36)

Similarly, letting F (A, t) be the body force in material coordinates then
f(x, t) = F (A, t). Substituting all of this information into (6.35), and making
use of the continuity equation (6.37), one obtains

R0
∂2U

∂t2
= R0F +

∂T

∂A
, (6.37)

where R0(A) is the initial density.

6.6 Summary of the Equations of Motion

To summarize the formulation of the equations of motion up to this point,
we have found that in spatial coordinates the continuity and momentum
equations are, respectively,
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∂ρ

∂t
+

∂

∂x
(vρ) = 0, (6.38)

ρ

(
∂v

∂t
+ v

∂v

∂x

)
= ρf +

∂τ

∂x
. (6.39)

In the above equations, ρ is the density, v is the velocity, τ is the stress, and
f in the force per unit mass.

In material coordinates the equations take the form

R(A, t) =
R0

1 + UA
, (6.40)

R0
∂2U

∂t2
= R0F +

∂T

∂A
, (6.41)

where R0 = R(A, 0). In the above equations, R is the density, V is the
velocity, T is the stress, and F in the force per unit mass.

Comparing the spatial and material versions it is easy to come to the
conclusion that the material form is easier to use. For one reason the con-
tinuity equation does not need to be solved. Also, the material version of
the momentum equation does not explicitly contain nonlinear terms, such
as vvx appearing in the spatial momentum equation. This does not mean,
however, that the material version is linear as we have yet to determine how
the stress is related to the density and displacement. Even so, the evidence
appears to support the conclusion that the material version is easier to use.
The fact is, however, that there are situations where the spatial version is
preferred. Examples are easy to find in fluid dynamics because it is common
when studying fluid motion to observe the flow from a fixed spatial position.
In such cases the spatial version is more natural. At this point we will keep
an open mind on the subject and use whichever seems to produce the easiest
problem to solve.

As another observation, the mathematical problem consists of two equa-
tions involving several variables. The body force term in the momentum
equation is assumed known. This leaves us with what looks to be three de-
pendent variables to solve for, the density, the velocity, and the stress. So,
we have either one too many unknowns or we are short one equation. The
approach taken in continuum mechanics is to introduce a constitutive law for
the stress, which relates it with the other two dependent variables. This is
not a new situation for us as we had to do something similar in the traffic
flow problem. Before doing this, we examine the steady-state solution.

6.7 Steady-State Solution

A simple yet informative problem involves the steady-state. This is the sit-
uation where the bar has come to rest, so the variables are independent of
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time. Assuming there are no body forces then the momentum equation (6.41)
reduces to

∂T

∂A
= 0. (6.42)

Therefore, at a steady-state with no body forces the stress T is a constant.
To determine the value of T we need to know what was done to the bar to
cause it to deform. In other words, we need to know the boundary conditions.
Experimentally there are two commonly used testing methods, and they are
considered in the examples below.

Example: Stress Relaxation Test

Consider the situation of when a bar of length `0 is stretched to length `
and held in this position. This is illustrated in Table 6.2. As shown, the
bar initially occupies the interval 0 ≤ x ≤ `0, and it is then stretched so it
occupies 0 ≤ x ≤ ` for t ≥ t0. Because the left end of the bar is held fixed,
it is relatively easy to write down the corresponding boundary condition. In
material coordinates it is

U |A=0 = 0. (6.43)

The bar is stretched to length `, and for the steady-state problem this trans-
lates into the following boundary condition,

U |A=`0 = `− `0. (6.44)

Although we know the displacement at the two ends we do not know how
to relate this to the stress or displacement within the bar. This will have to
wait until we specify the constitutive law for the stress. One last comment
to make is that it is possible to express this steady-state problem in terms

Configuration Time Material Spatial

�

����

�
�

���

���
�

t = 0 0 ≤ A ≤ `0 0 ≤ x ≤ `0

U(0, 0) = 0 u(0, 0) = 0

U(`0, 0) = 0 u(`0, 0) = 0

t > t0 0 ≤ A ≤ `0 0 ≤ x ≤ `

U(0, t) = 0 u(0, t) = 0

U(`0, t) = `− `0 u(`, t) = `− `0

Table 6.2 The differences between how a stretched, or compressed, bar is described
using material and spatial coordinates for the stress relaxation example.
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Figure 6.4 Typical test-
ing system in which a
material sample (on right)
is tested to determine its
deformational properties.

of the spatial variables, and the associated boundary conditions are given in
Table 6.2. �

Example: Creep Test

Another common method of stretching, or compressing, a bar is to apply a
force on one of its ends. A situation where this arises is when the bar is vertical
and a weight is attached to the lower end, which causes the bar to stretch.
To put this into mathematical terms, assume the bar is held at x = 0, so the
condition at this end is the same as before; namely, U(0, t) = 0. At the other
end assume a constant force F0 is applied. The boundary condition in this
case is T (`0, t) = F0/σ. At steady-state the stress is constant throughout the
bar, and this means T (A, t) = F0/σ. Because we have been able to determine
the stress in the bar we have gotten a bit further in solving the problem
than in the stress relaxation example. However, we still do not know the
displacement of the bar except at x = 0. Again, the issue is how to relate the
stress to the displacement, and this is the reason for needing a constitutive
law. �

6.8 Constitutive Law for an Elastic Material

To complete the formulation we need to determine a constitutive law for the
stress. This step requires more thought than is usually realized. It is not un-
common in modeling textbooks simply to state a law and then get on with
the mathematics. Such an approach ignores some of the more interesting, and
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important, questions that arise in applied mathematics. The reason is that
determining a constitutive law requires close interaction of the mathemat-
ics with experiments, and even after decades of research the principles that
underpin constitutive laws are still not completely understood.

The first question to address is what properties of the solution we can
determine based on what is known about the problem so far. The objective is
to compare the mathematical model with what is determined experimentally.
An obvious choice is the steady-state solution obtained from stretching, or
compressing, a bar from length `0 to length `. As shown in the preceding
section, at steady-state the stress T is constant throughout the bar. This is
useful information because one of the most common material testing experi-
ments involves measuring the steady-state stress as a function of `. A typical
experimental setup is shown in Figure 6.4. For testing in tension, so ` > `0,
samples are cut into small strips and inserted into a computer-controlled
testing machine. The range of such experimental systems is enormous, from
huge machines that are capable of testing samples the size of a car, down to
microscopic systems that are used to test single molecules. Given this, it is
not surprising that the types of materials tested in this way are quite varied,
and four examples are given in Figure 6.5. In this figure the measured stress
is given as a function of the extension ratio

λ =
`

`0
. (6.45)

With this, the material is in tension if λ > 1, and it is in compression if λ < 1.
The range of extension in the figure varies significantly with the material.
For example, the range for steel is much smaller than it is for rubber. This
difference is not surprising. Also, steel has the odd feature that the stress
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Figure 6.5 Stress measured as a function of the extension ratio (6.45), for (a) steel,
(b) capture silk from a spider web (Blackledge and Hayashi [2006]), (c) rubber (Raos
[1993]), and (d) articular cartilage (Kwan [1985]).
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starts decreasing at larger extension ratios. This is due to the metal being
pulled apart, and it is characteristic of what are called ductile materials. In
contrast, brittle materials, such as glass, simply break. We will assume the
displacements are not so extreme as to cause this irreversible behavior to
occur, and when the force is removed that the material will return to its
original shape.

In looking at the data in Figure 6.5 it is apparent that, for the materials
shown, the stress increases with the imposed displacement U = `−`0. This is
consistent with the everyday observation that the more you stretch something
the greater it resists. Based on this it might seem reasonable that for our
constitutive law we should assume T = T (U). The fact is, however, that this
is not possible. We found earlier that at a steady-state the stress is constant.
If T = T (U) then this would require that the displacement is also constant.
The difficulty with this is that we require U = 0 at the left end of the bar and
U = ` − `0 at the right end. It is therefore impossible for the displacement
to be constant and, consequently, it is not possible to assume the stress is a
function only of the displacement.

6.8.1 Derivation of Strain

A way to correct the difficulty discussed in the previous paragraph is to as-
sume the stress depends on the relative displacement. There are various ways
to measure relative displacement and an example is (`− `0)/`0, which com-
pares the displacement `− `0 to the original length `0. There are other ratios
for measuring relative displacement and some of the more commonly used
are listed in Table 6.3. At this point there is no clear reason why you would
want to pick one over another and we will use the Lagrangian strain, leaving
the others for the exercises. For cultural reasons it is worth saying something
about the names given the different strain measures. The ratio used to derive
the Lagrangian strain is known in the literature as the engineering or nominal
strain. You will also see the Hencky strain referred to as the natural, or true,
strain. In this text whenever referring to strain it is understood we are using
the Lagrangian strain as defined in Table 6.3.

The basic assumption for our constitutive law is that the stress depends
on the relative displacement (`− `0)/`0. To be more precise, we will assume
that the stress at a material point depends on the relative displacement in
the immediate vicinity of this point. To translate this into mathematical
terms, given a cross-section located initially at A, consider cross-sections at
A ± ∆A that are just to the left and right (see Figure 6.6). After time t,
the cross-section on the right moves to X(A + ∆A, t), and the one on the
left moves to X(A − ∆A, t). The length of this small segment of the bar is
X(A+∆A, t)−X(A−∆A, t), while the original length was 2∆A. Recalling
that X = A+ U , then the ratio for the relative displacement is
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Figure 6.6 A segment starts off centered at A with length 2∆A. At time t the
segment has length X(A + ∆A, t)−X(A−∆A, t).

new length− original length
original length

=
X(A+∆A, t)−X(A−∆A, t)− 2∆A

2∆A

=
U(A+∆A, t)− U(A−∆A, t)

2∆A
. (6.46)

Assuming ∆A is small, then using Taylor’s theorem,

U(A±∆A, t)

= U(A, t)±∆A
∂U

∂A
(A, t) +

1
2
∆A2 ∂

2U

∂A2
(A, t)± 1

6
∆A3 ∂

3U

∂A3
(A, t) + · · · .

Introducing these into (6.46) we obtain

new length− original length
original length

=
∂U

∂A
(A, t) +O(∆A2). (6.47)

Therefore, a local measure of the relative distortion in the vicinity of a ma-
terial point is

Name Ratio Definition

Lagrangian Strain (`− `0)/`0 ε = UA

Eulerian Strain (`− `0)/` εe = ux

Green Strain (`2 − `20)/(2`
2
0) εg = UA + 1

2U
2
A

Almansi Strain (`2 − `20)/(2`
2) εa = ux − 1

2u
2
x

Midpoint Strain 2(`− `0)/(`+ `0) εm = UA/(1 + 1
2UA)

Hencky Strain ln(`/`0) εh = ln(1 + UA)

Table 6.3 Various strain measures used in continuum mechanics.
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ε =
∂U

∂A
, (6.48)

which is known as the Lagrangian strain, or in this textbook, simply the
strain.

With the definition of strain given in (6.48), the assumed constitutive law
for the stress is T = T (ε). A material for which this holds is said to be elastic.
The momentum equation, in material coordinates, in this case is

R0
∂2U

∂t2
= R0F + T ′

(
∂U

∂A

)
∂2U

∂A2
. (6.49)

This is a wave equation for U , and it is nonlinear if the stress is a nonlinear
function of the strain. Not just any function can be used for the stress, and
later in the chapter we will investigate some of the restrictions that must be
imposed on how it depends on strain.

One last useful piece of information concerns the extension ratio (6.45).
Given the result in (6.47), when deriving the continuum formulation by letting
∆A→ 0, the extension ratio λ turns into 1 + ε. The reason for pointing this
out is that in the simplification of the constitutive law for the stress that
is given below, we will investigate how the measured stress behaves in the
neighborhood of λ = 1. In the continuum formulation this is equivalent to
looking at how the stress behaves around ε = 0.

6.8.2 Material Linearity

With the assumption that T = T (ε), we return to the stress curves in Fig-
ure 6.5. The dependence of T on ε clearly depends on the material. This is
reasonable as the morphological and mechanical characteristics of these ma-
terials are markedly different. Even so, there is a region for each material,
containing ε = 0, where the stress is approximately a linear function of strain.
The constitutive law in this case reduces to

T = E
∂U

∂A
, (6.50)

where E is known as Young’s, or the elastic, modulus. A material that follows
this law is said to be linearly elastic. The momentum equation (6.49) in this
case reduces to

R0
∂2U

∂t2
= R0F + E

∂2U

∂A2
. (6.51)

This is a linear wave equation for the displacement U .
In the parlance of continuum mechanics, (6.50) is an assumption of mate-

rial linearity. It should be understood that this constitutive law is not based
on a requirement of a small strain. The strains for which (6.50) is valid need
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Material Young’s Modulus (GPa) Density (kg/m3)

Multiwall carbon nanotube 1200 2600

Diamond 1000 3500

Stainless Steel 200 8030

Glass 65 2600

White Oak 12 680

Beeswax 0.2 960

Rubber 0.007 1200

Silica Aerogel 0.001 100

Table 6.4 Young’s modulus and density of various materials. These represent the
current range of values for these parameters.

not be small, and it is only required that (6.50) furnishes an accurate approx-
imation of the stress over the given range of strains. For example, in Figure
6.5, steel is linearly elastic for strains up to about 0.002 while the capture
fibers from a spider web are linear up to strains of approximately 2.0.

In terms of dimensional units, because strain is dimensionless, the elastic
modulus has the same dimensions as stress. The basic unit for stress is the
Pascal (Pa) and 1 Pa = 1 N/m2. Relative to the strength of most materials,
however, a Newton (N) is relatively small. To illustrate this, 1 N is the force
on an object with the mass of approximately an apple, and it takes a lot of
apples to deform steel or glass a noticeable amount. For this reason, the elastic
moduli of most materials run in the MPa or GPa range, where M = 106 and
G = 109. A few examples are given in Table 6.4. An observation coming from
this table is that one should not assume that denser materials have larger
elastic moduli. However, the density and modulus are connected through the
molecular structure of the material, and this will be discussed later in the
chapter.

Example: Stress Relaxation

In Section 6.7 we were unable to solve the steady-state problem. The situation
has improved with the introduction of the linear constitutive law in (6.50).
The reduced momentum equation (6.46) now takes the form

∂2U

∂A2
= 0.

The solution of this that satisfies the boundary conditions (6.43) and (6.47)
is U = (` − `0)A/`0. With this the stress is T = E(` − `0)/`0. Also, from
(6.40), the density is R = ER0/(T + E). Therefore, as advertised, with the
inclusion of the constitutive law, we have been able to determine the stress,
displacement, and density in the bar. �
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Example: Bungie Cord

Apparently, for bungie jumpers it is more entertaining if the cord is long
enough that the jumper comes very close to hitting the ground. Getting the
right length cord is not a simple matter of just knowing the weight of the
jumper and the height of the jump. The reason is that the weight of the cord
will cause it to extend. To determine this suppose the cord is hung with the
upper end attached and the lower end free (see Figure 6.7). Assume gravity is
the only force present, and the cord starts off with a constant density R0 and
length `0. Also, assume that the cord is at rest and its length after being hung
is `. Given that the cord is at a steady-state then the material momentum
equation (6.41) takes the form

dT

dA
= −R0g.

As for the boundary condition, the lower end is free and this means the stress
is zero there. The boundary condition in this case is T = 0 at A = `0. From
the above momentum equation, and the given boundary condition, we obtain

T = R0g(`0 −A). (6.52)

To determine the displacement of the cord we need to specify the constitutive
law for the stress, and we will use (6.50). With this, and (6.52), we have that

dU

dA
=
R0g

E
(`0 −A).

Integrating this equation, and using that fact that the upper end is fixed, so
U = 0 at A = 0, then

U =
R0g

2E
A(2`0 −A). (6.53)

The bungie cord problem is now solved, and with the solution it is possible to
determine just how far the cord will stretch. The displacement of the free end
is obtained from (6.53) by setting A = `0. The total length ` of the stretched
cord is obtained by adding this displacement to the original length `0, and

���

�

���� Figure 6.7 A bungie cord, origi-
nally with length `0, stretches to
length ` after having been hung.
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the result is

` = `0

(
1 +

R0g

2E
`0

)
. (6.54)

This shows that a less stiff cord (E small) stretches longer. This is expected,
but the above result shows that the stretched length is not a simple multiple
of the modulus. For example, it does not happen that reducing the modulus
by a factor of two causes the length to double. Also, because of the nonlinear
dependence of ` on `0, we have found that longer cords stretch proportionally
longer than shorter cords. �

6.8.3 End Notes

The basic equations for elasticity were developed by Robert Hooke, and (6.50)
is sometimes referred to as Hooke’s law. Given this, it might seem odd that
the one parameter that appears in the equations is named after a physician
named Thomas Young. The reason for this is that Hooke’s original statement
that “as is the extension, so is the force” implies that the force is proportional
to displacement. For springs this might be acceptable but as we saw earlier
this assumption is inapplicable to elastic bars. It was Young who interpreted
it correctly using strain.

The statement that the stress is a linear function of strain depends on the
strain and coordinate used in the formulation. For example, using (6.16), the
constitutive law (6.50) expressed in spatial coordinates is

τ = E
ux

1− ux
. (6.55)

Consequently, an assumption of material linearity using one strain measure
does not necessarily mean it is linear using another strain measure.

In the experiments used to produce the data in Figure 6.5, the experi-
menter waits until the motion stops before measuring the stress. This means
that the constitutive law for the stress is determined using the steady-state
response. Even so, the linear constitutive law (6.50) is assumed to apply even
when the bar is in motion. If the stress also depends on rate variables, such as
v or vx, our approach of using the steady-state to determine the constitutive
law would miss this completely. There are materials that depend strongly
on rate variables and examples are water, jello, and silly putty. To determine
the correct rate dependence requires dynamic tests and several are commonly
used in material testing. Exactly how this is done will be explained when we
study viscoelasticity in the next chapter.
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6.9 Morphological Basis for Deformation

The constitutive law used for the stress is a mathematical expression for how
the material reacts to deformation. The materially linear assumption in (6.50)
is routinely used to describe such diverse materials as steel, rubber, and skin.
Given the differences in the atomic, or molecular, structure of these materials
it is of interest to be able to understand how the substructural changes that
take place during deformation give rise to the constitutive law for the stress.

6.9.1 Metals

Undoubtedly, the most studied metal is steel. A typical stress-strain curve for
steel is given in Figure 6.5(a), but a more complete version is shown in Figure
6.8. Because of the larger range of the extension ratio, the linear portion of
the curve is not as evident as it is in Figure 6.5(a). However, what is apparent
is that at larger strains the material is far from a simple linear function. It
is also evident that the curve is not monotonic, and as explained in the next
section this generates rather serious mathematical difficulties.

To understand how the microstructure of metal accounts for the observed
deformation, the atoms in most metals are arranged in a periodic array, form-
ing a lattice pattern. In this description the atoms are modeled as spheres. As
examples, the radius of iron is 1.24 nm, the radius for copper is 1.28 nm, and
for silver it is 1.44 nm. The dominant attractive force on the atoms is due
to metallic bonding, which arises from the positively charged metal atoms
sharing electrons. The resulting force has the form Fa = α/rm, where r is
the separation distance between atoms, and α is a constant determined by
the electronic characteristics of the material. For many metals m = 4. There
is also a repulsive force that comes into play if the electron shells of the atoms
overlap, and it is based on the Pauli exclusion principle. The associated form
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Figure 6.8 The complete stress-strain curve for the steel sample shown in Figure
6.5(a). The atomic configuration at (a), (b), and (c) is shown in Figure 6.9.
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Figure 6.9 The atomic configurations in a metal during deformation: (a) the atoms
when no load is applied; (b) their position in the elastic region; and (c) the appearance
of a slip plane for larger strain values.

of this force is Fr = −β/rn, where β is a constant. The value of n depends on
the material, and typical values are n = 11 for copper and n = 12 for silver
(Kimura et al. [2000]). The resulting force is

F =
α

rm
− β

rn
, (6.56)

where 1 < m < n, and α, β are positive constants.
In material science the properties of metals are often characterized using

energy, and for this reason the force is written in terms of a potential function
V . This is done by writing F = dV

dr , where

V =
−α

(m− 1)rm−1
+

β

(n− 1)rn−1
. (6.57)

This function, along with F , is sketched in Figure 6.10.
When no load is applied, so the atoms are in their equilibrium config-

uration, the two forces balance. Setting F = 0 determines the equilibrium
interatomic spacing r0, and one finds that

r0 =
(
β

α

) 1
n−m

. (6.58)

This configuration is shown in Figure 6.9(a). As examples, for copper r0 =
1.25 nm, and for silver r0 = 1.29 nm. This means that the distance between
the atoms, at equilibrium, is slightly larger than twice the atomic radius.

As the metal bar is stretched, the distance between the atomic layers
increases, and the bonds between the atoms resist this change as described
in (6.56). This is illustrated in Figure 6.9(b). If the load is not too large the
bonds do not break, and when the load is removed the atoms return to their
original positions in the lattice, shown in Figure 6.9(a). To relate the stress
with the interatomic force, Figure 6.9(b) shows four cross-sections that are
made up of atoms. To calculate the force between any two such cross-sections,
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note there are approximately σ/(4r20) atoms in a square cross-section of area
σ. So, the stress is approximately

T ≈ σ

4r20

F

σ

=
F

4r20
. (6.59)

In a similar manner, for r near r0, the linear elastic law (6.50) can be ap-
proximated as

T (r0) + (r − r0)T ′(r0) ≈ E
r − r0
r0

. (6.60)

Combining (6.59) and (6.60), it follows that

E ≈ 1
4r0

dF

dr

∣∣∣
r=r0

=
(n−m)α

4rm+2
0

. (6.61)

Consequently, the elastic modulus has a strong dependence on the interatomic
spacing. Another observation is that the atomic mechanisms involved with
tension, where r > r0, are fundamentally different than those involved with
compression, where r < r0. This is why knowing the stress-strain function
for a nonlinearly elastic material for tension provides little insight into what
the stress function is for compression.
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Figure 6.10 The force (6.56) and the potential (6.57) on the atoms in a metal. The
dashed line is the tangent to the force curve at the point where F = 0. The slope of
this line is used to obtain an approximation of the Young’s modulus in (6.61).
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The largest load that, when removed, results in the atoms returning to
their original configuration is known as the elastic limit. From Figure 6.5(a)
the elastic limit corresponds to an extension ratio of approximately 0.002. If
a larger load is used slip planes will start to appear, and one is illustrated
in Figure 6.5(c). As the name suggests, at a slip plane the atoms slide over
each other along a plane. This is a permanent modification and if the load
is removed the slip planes remain. In this situation the material is said to
be plastic. Stretching the bar any farther produces more slip planes. Other
defects in the atomic structure appear, including dislocations, and the specific
events depend on the metal being tested. Eventually the metal is not capable
of withstanding the stretching and breaks, a point material scientists call
fracture. In Figure 6.8 this happens when the extension ratio reaches about
0.35.

Given the rather complicated atomic interactions taking place in the steel
bar, it is natural to ask whether our continuum model can be used once
slip planes start to appear. The answer is yes and no. It is no because the
shearing motion generated by the slip planes violates our assumption that
the cross sections move as a unit. However, if we were to use a continuum
model with three spatial dimensions then this would not be an issue. In this
case the answer is yes, although it would require some effort to determine the
appropriate constitutive law for the stress function.

The function in (6.57) is a special case of what is known as a Sutton-
Chen potential. We only considered what is effectively a nearest neighbor
approximation using this potential, which means that we only considered the
forces between a molecule and it nearest neighbor in the adjoining cross-
section. A more realistic description would account for the other molecules,
in which case F would consist of a sum of attractive and repulsive forces.
It is also interesting that several other functions have been proposed, each
accounting for different interatomic forces. One of the better known is the
Lennard-Jones potential, where the attractive force is due to van der Waals
bonding. Mathematically, there is little difference in the model as (6.57) still
applies but m = 7, which reflects that fact that van der Waals bonding is
weaker than metallic bonding. There has been considerable research in the
last few years into what is called atomistic-based continuum theory, where
the material’s continuum properties are derived using interatomic potential
functions. An introduction to this can be found in Finnis [2004].

6.9.2 Elastomers

An elastomer is rubber made with a loosely cross-linked molecular structure.
To explain what this means, natural rubber is made up of long individual
molecules, or more specifically, from long polymer chains. In effect, it is the
molecular version of spaghetti. As with spaghetti, the molecules of natural
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Figure 6.11 Elastomer network, before and after the application of an axial load.
The cross-links between the rubber molecules increase its ability to resist the load, and
enable the network to return to its original configuration once the load is removed.

rubber are not connected and this means it is more like a liquid than a solid.
This changes if sulfur is added because this produces atomic bridges between
the polymer chains. The consequence of this is a material that consists of long
entangled molecules that are cross-linked, and a schematic of this is given in
Figure 6.11 Assuming that the number of cross-links is not too large, one
produces what is known as an elastomer. Such materials are formed from a
three-dimensional molecular network in which highly flexible molecules are
connected at points provided by cross-links between the molecules.

In stretching such an elastomer, the entangled polymer chains start to
straighten. They are very extendable but at large extensions the cross-links
mean that the movement of chains relative to one another is minimal. Con-
sequently, upon the application and release of a stress, the molecules quickly
revert to their normal crumpled form in the unstressed configuration, and
this is the basis of the reversible high extensibility of elastomeric solids. This
scenario applies to Figure 6.5(b),(d). Both the capture silk and rubber offer
relatively little resistance for extension ratios up to about 3. This is the inter-
val over which the polymer molecules are uncoiled. Once that happens, and
the cross-links become engaged, both materials show significant resistance
and the stress increases almost exponentially. An example of a constitutive
law incorporating this into the formulation is examined in Exercise 6.25. A
more extensive investigation into the molecular contributions to the elastic
behavior of an elastomer can be found in Mark and Erman [2007].

6.10 Restrictions on Constitutive Laws

One of the central problems in continuum modeling is finding the appropriate
constitutive law for the stress. What is appropriate depends on what the
model is describing. If the goal is to determine the deformation of a table due
to the load of a computer then the strains are likely so small that a linear
theory can be used. On the other hand, if you are interested in the deflection
of a trampoline then the strains are likely so large that a nonlinear theory
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would be required. One question that arises in such cases is, what function
should be used to describe this nonlinear behavior? As an example, for the
data for rubber in Figure 6.5(c), the curve resembles a cubic. Based on this
observation, one might assume that

T = aε+ bε3, (6.62)

where ε = ∂U
∂A . On the other hand, the data for capture silk in Figure 6.5(b)

look to follow more of an exponential function, and a possible constitutive
law that could be used in this case is

T = a
(
ebε − 1

)
. (6.63)

One of the standard answers to the question of what function to use is that
it is simple, and it does a reasonable job describing the stress-strain data.
Although reproducing the experimental results is a worthy goal, you want
the model to also describe the motion in situations for which you do not have
data. As an example, we known that strains must satisfy −1 < ε < ∞. So,
suppose one of the above nonlinear functions is used to fit data in the range
−0.5 < ε < 50. It is questionable that either one would successfully describe
what happens for −1 < ε < −0.5 because both predict a finite stress when
the material is compressed to zero (i.e., when ε→ −1). Because of this, it is
worth imposing a requirement on the constitutive law to guarantee the right
behavior under the extreme condition of letting ε → −1. It is the objective
of this section to develop some general requirements that can be used to help
formulate the constitutive law.

6.10.1 Frame-Indifference

Considering what happens to the stress when ε→ −1 falls into the extreme
behavior category. Another category relates to consistency. An example of
this came up earlier when we concluded that it is impossible for the consti-
tutive law for the stress to depend on the displacement. A general principle,
that includes this situation, is given below.

Principle of Material Frame-Indifference: The response of any material must
be independent of the observer.

To illustrate how this affects the constitutive law for the stress, suppose two
observers are moving in opposite directions. Because they will record different
velocities of a cross-section, velocity is not a frame-indifferent function. There-
fore, any constitutive law depending on velocity will be observer-dependent.
The above principle excludes such functions from consideration in the formu-
lation of the constitutive law for the stress.
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The argument used to rule out velocity needs to be made mathematically
precise, and this leads us to the following definition.

Definition 6.1. Suppose two spatial coordinate systems (x, t) and (x∗, t∗)
are related through a change of coordinates given as x∗ = x+ b(t) and t∗ =
t− t0. Using a superscript ∗ to denote the value of a quantity in the (x∗, t∗)
system then a function f(x, t) is frame-indifferent if f(x, t) = f∗(x∗, t∗) for
all smooth b and t0.

As expressed in this definition, observers are related through a translation,
with the spatial motion allowed to be time dependent. This is known as
an Euclidean transformation. It differs from a Galilean transformation, of-
ten used in Newtonian physics, because the latter assumes b to be a linear
function of time.

The assumption made in continuum mechanics is that the density ρ and
stress τ are frame-indifferent. This is important for us because it means that
the constitutive law for the stress can only depend on frame-indifferent quan-
tities. Examples of frame-indifferent, and non-frame-indifferent, functions will
be given below. However, before doing that, the principle is stated in terms
of spatial coordinates, and we need to understand how it can be used when
using material coordinates. This can be explained using an example.

In the case of when the material is elastic, we know that the constitutive
law for the stress, in material coordinates, can be written in the general form

T = T (UA). (6.64)

This is equivalent to the statement that the constitutive law for the stress,
in spatial coordinates, for an elastic material can be written in the general
form

τ = τ(ux). (6.65)

The reason this is equivalent is because, from (6.16),

∂U

∂A
=

ux

1− ux
. (6.66)

This enables us to transform (6.64) into an expression of the form given in
(6.65). For example, if T = αU3

A then, from (6.66), τ = αu3
x/(1−ux)3. What

the equivalence of (6.64) and (6.65) gives us is that if (6.65) satisfies the
Principle of Material Frame-Indifference then so does (6.64). In other words,
the material coordinate version of a constitutive law satisfies the Principle of
Material Frame-Indifference if its spatial version does.

Examples

1. The displacement function is not frame-indifferent. To explain why, in each
coordinate system we have a different position function, so x = X(A, t) and
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x∗ = X∗(A, t∗). Given that the change of coordinates is x∗ = x + b(t), then
the position functions satisfy X∗ = X + b. Expressing this equation in terms
of the displacement function we have that

U∗(A, t∗) = U(A, t) + b(t). (6.67)

Given (6.4), in terms of spatial coordinates, the above equation takes the
form u∗(x∗, t∗) = u(x, t) + b(t). To be frame-indifferent we must be able to
conclude that u∗ = u, no matter what b we select. Clearly this does not
happen and the conclusion is that the displacement is not frame-indifferent.
Therefore, from the Principle of Material Frame-Indifference, τ cannot be
assumed to depend on u, and T can not be assumed to depend on U . So, we
are able to eliminate this possibility without resorting to special solutions of
the steady-state problem as was done in Section 6.8.

2. The velocity function is not frame-indifferent. This follows by taking the
time derivative of (6.67) and concluding that V ∗ = V +b′(t). From (6.5), this
can be written as v∗ = v + b′(t). Given that b′(t) is not necessarily zero, it
follows that the velocity is not frame-indifferent.

3. The strain function ∂U
∂A is frame-indifferent. This follows by taking the A

derivative of (6.67) and concluding that U∗
A = UA. We also conclude, from

(6.66), that the strain function ∂u
∂x is frame-indifferent. Therefore, the as-

sumption underlying the constitutive law for an elastic material satisfies the
Principle of Material Frame-Indifference.

4. The function ∂ρ
∂t is not frame-indifferent. To prove this, the density in the

two coordinate systems must satisfy ρ(x, t) = ρ∗(x∗, t∗) = ρ∗(x + b, t − t0).
Consequently,

∂ρ

∂t
=
∂ρ∗

∂t
+
∂ρ∗

∂x∗
∂x∗

∂t

=
∂ρ∗

∂t∗
+ b′(t)

∂ρ∗

∂x∗
.

Any change of coordinates with b′ 6= 0 means ρt 6= ρ∗t∗ , and so this function
is not frame-indifferent. �

Given this requirement on the constitutive law it is worth having a
small list of functions that are frame-indifferent. Functions that are frame-
indifferent include

ρ,
Dρ

Dt
,
∂U

∂A
,
∂u

∂x
,
∂V

∂A
,
∂v

∂x
. (6.68)

Functions that are not frame-indifferent include
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∂ρ

∂t
, U, u, V, v . (6.69)

Are there materials that use multiple frame-indifferent functions in the con-
stitutive model? The answer is yes, and they are very common. A simple
example is a viscoelastic material, where one assumes the stress depends on
the strain UA and the strain rate VA. Examples such as this are explored in
the next chapter.

6.10.2 Entropy Inequality

There are several other principles used to formulate constitutive laws. We
will only consider one more, and it is related to the second law of thermody-
namics. This requires the introduction of three new variables, and the first
is connected with the energy. As with all mechanical systems, the energy in-
volves both kinetic and potential components. It is relatively easy to identify
the kinetic energy density, and it is 1

2ρv
2. The potential energy has multiple

sources, and one comes from the external forcing. Another comes from the
ability of the material to store energy, in the same way a spring stores energy
when it is compressed. Because this component arises from the properties of
the material, it is known as the internal energy. We want to determine this
in our continuum theory, and with this in mind let χ(x, t) be the internal
energy density per unit mass.

Like the density and momentum, the energy is assumed to satisfy a balance
law, and it is

d

dt

∫ β(t)

α(t)

σρ

(
1
2
v2 + χ

)
dx =

∫ β(t)

α(t)

σρvfdx+ σvτ
∣∣∣x=β

x=α
. (6.70)

In words, the above equation states that the rate of change of the total energy
of a material segment equals the sum of the rate of work of the external forces
and the rate of work done by the forcing on the ends of the segment. Using the
same argument employed to derive the continuity and momentum equations,
the above expression results in the following equation

ρ
Dχ

Dt
= τ

∂v

∂x
. (6.71)

This gives us an equation that can be solved to determine the function χ.
The second variable that needs to be introduced is η(z, t), which is the

entropy density per unit mass. As expressed in the second law of thermody-
namics, it is assumed that the entropy does not decrease. In other words, it
is assumed that

Dη

Dt
≥ 0. (6.72)
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In continuum mechanics this is known as the Clausius-Duhem inequality. It
is assumed here that there is no supply or flux of entropy. This can occur,
for example, when there is heat flow in the system. In our development, the
thermal affects are omitted.

The third, and final, function that needs to be introduced is the Helmholtz
free energy density ψ, defined as

ψ = χ− θη, (6.73)

where θ is the absolute temperature. Consistent with our earlier assumptions,
θ is assumed to be constant. The reason for calling ψ the free energy is that
it represents the energy remaining to do work after accounting for what is
invested in the entropic state of the material.

Solving (6.73) for η, and then substituting the result into the Clausius-
Duhem inequality (6.72), yields

− ρ
Dψ

Dt
+ τ

∂v

∂x
≥ 0. (6.74)

This is known as the reduced entropy inequality. In material coordinates this
inequality takes the form

−R0
∂Ψ

∂t
+ T

∂V

∂A
≥ 0, (6.75)

where Ψ is the material form of the Helmholtz free energy. It is assumed here
that the spatial and material forms of the free energy functions give the same
value. Therefore, if a cross-section that starts at A is currently located at
x = X(A, t) then Ψ(A, t) = ψ(x, t).

We are now in position to state the second requirement imposed on con-
stitutive laws.

Principle of Dissipation. A constitutive law must satisfy the reduced entropy
inequality (6.74), or equivalently (6.75), for all values of its arguments.

Now comes the question of exactly how we use this condition because it
involves the yet to be determined Helmholtz free energy ψ. We will show
that in certain cases the stress τ can be determined from ψ. This means that
instead of formulating a constitutive law for the stress, we can specify one
for ψ, and then use this to determine τ . In doing this it is assumed that the
constitutive law for ψ depends on the same variables used for the stress.

Example

For an elastic material, the general form of the constitutive law in spatial
coordinates is τ = τ(ux). The corresponding assumption for the constitutive
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law for the free energy function is ψ = ψ(ux). To see what this gives us, note,
using the chain rule and Exercise 6.5(f),

Dψ

Dt
= ψ′

D

Dt
ux

= ψ′(1− ux)vx.

With this, (6.74) reduces to

[τ − ρ(1− ux)ψ′(ux)] vx ≥ 0. (6.76)

According to the Principle of Dissipation, this inequality must hold for all
values of vx. For example, it must hold when vx = 1, and when vx = −1.
Because the quantity in the square brackets does not depend on vx, it must
be that τ − ρ(1−ux)ψ′(ux) = 0. Therefore, for an elastic material, the stress
is determined from the free energy as follows,

τ = ρ(1− ux)ψ′(ux). � (6.77)

In the above example spatial coordinates were used. If one uses material
coordinates, and assumes that the material is elastic then the constitutive law
has the form T = T (ε). The corresponding assumption for the free energy
function is Ψ = Ψ(ε). Using (6.75), and an argument similar to the one used
in the above example, one finds that

T = R0Ψ
′(UA). (6.78)

Elastic materials for which the stress can be derived from the Helmholtz
free energy function are called hyperelastic. With this we have changed the
question of how the stress depends on strain to how the free energy depends
on strain. In other words, if we specify the constitutive law for the Helmholtz
free energy function then the above equations are used to determine the
stress function. By doing this, and assuming that the free energy depends
only on frame-indifferent variables, then the resulting stress will satisfy both
the Principle of Material Frame-Indifference and the Principle of Dissipation.

The usual way the free energy function method is employed starts with us-
ing experimental observations to determine the functional form of the stress.
With this one then shows there is a free energy function that will produce the
given stress function. This is the approach used in the following examples.

Examples

1. For a linearly elastic material, T = EUA. According to (6.78), the free
energy function must satisfy R0Ψ

′(ε) = Eε. Integrating this expression we
obtain R0Ψ(ε) = 1

2Eε
2. The constant of integration has not been included
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here as it has no impact on the stress function. �

2. If T = a
(
ebε − 1

)
, where b 6= 0, then integrating R0Ψ

′(ε) = a
(
ebε − 1

)
yields R0Ψ(ε) = a

(
1
b e

bε − ε
)
. �

3. For a viscous fluid it is assumed that τ = τ(ρ, vx). Assuming ψ depends
on the same quantities, the Clausius-Duhem inequality (6.74) takes the form

∂v

∂x

(
τ − ρ2 ∂ψ

∂ρ

)
+ ρ

∂ψ

∂vx

Dvx

Dt
≥ 0. (6.79)

To obtain this result, the continuity equation ρt = −vρx−ρvx has been used.
The above inequality must hold when vx = 0 and Dtvx = ±1. The only way
for this to happen is that

∂ψ

∂vx
= 0. (6.80)

Consequently, even though the stress might depend on vx, the Clausius-
Duhem inequality shows that the free energy function does not. Now, for
a linear viscous model it is assumed that τ − ρ2ψρ = α + βvx, where α and
β are constants. Substituting this into (6.79), and making use of (6.80), we
obtain (α + βvx)vx ≥ 0. This must hold for all values of vx, and from this
we conclude that α = 0, and β ≥ 0. Setting p = −ρ2ψρ then the resulting
constitutive law for the stress is

τ = −p+ β
∂v

∂x
. (6.81)

The function p is the pressure and the constant β is the viscosity. This means
that for a viscous fluid there is an additional function to determine, and that
is the pressure. This requires an additional equation, and for compressible
fluids this is done by prescribing an equation of state. As an example, for an
ideal gas it is assumed that p = aργ . �

The thermodynamic foundations of continuum mechanics have been intro-
duced only in the briefest terms, just enough to obtain the reduced entropy
inequality. The fact is, this is a rich area, one that has generated more than
its share of challenging mathematical and physical questions. For those who
might want to learn more about this subject, the source for this material,
and one that is oddly entertaining, is Truesdell [1984]. In fact, the review of
this book by Aris [1987] is also recommended.
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6.10.3 Hyperelasticity

As stated earlier, a hyperelastic material is one for which there is a Helmholtz
free energy function ψ that is a function of the strain ε = ∂U

∂A . After working
through the above example one might wonder if it is really necessary to
introduce this idea. After all, the stress function can be deduced directly
from the experimental data. As long as it is assumed that T depends on ε
then the Principle of Dissipation is satisfied. The reason for this is that once
T (ε) is known you just integrate to find ψ, and this automatically guarantees
the Principle of Dissipation is satisfied. Although this observation has merit,
there are several reasons why the energy method is worth considering. One,
very significant, reason is that in three-dimensional problems the integration
method does not work except if the stress depends on the strain in a particular
way.

Another reason for introducing the energy formulation relates to the math-
ematical problem derived from the constitutive law. If T is a nonlinear func-
tion of strain then the momentum equation (6.49) is a nonlinear partial differ-
ential equation for the displacement. We saw in the last chapter how difficult
it can be to determine whether a nonlinear equation has a solution, or whether
it has just one solution. The energy formulation helps answer these questions,
and this is illustrated in the next example.

Example: Bungie Cord Revisited

For the bungie cord example we solved the momentum equation to find the
stress, given in (6.52). To determine the displacement of the cord the linear
elastic constitutive law was used. Suppose, instead, the material is nonlinear.
We will consider three different nonlinear stress-strain laws, along with their
corresponding free energy functions:

T1 = Eε2, ψ1 =
1
3
Eε3, (6.82)

T2 = Eε3, ψ2 =
1
4
Eε4, (6.83)

T3 = E arctan(ε), ψ3 = E

(
ε arctan(ε)− 1

2
ln(1 + ε2)

)
. (6.84)

These functions are plotted in Figure 6.12. The strain interval in this figure
is larger than what is possible physically, but is used to help make the points
to follow. For the problem at hand the question is, given the stress, can we
uniquely determine the displacement? For each stress function we have the
following observations:

T1: Given a value for the stress, other than zero, there are two possible values
of the strain if T1 > 0, and no strain values when T1 < 0. In other words,
except for zero, there is no solution or else the solution is not unique.
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Figure 6.12 Nonlinear stress-strain functions and their corresponding Helmholtz
free energy functions.

T2: Given any value for the stress value there is a unique strain. In other
words, there is a solution and it is unique. Note that the free energy for
this stress function is concave up, or equivalently, convex.

T3: For each stress value there is a unique strain. However, there are stress
values, such as T3 = 2, for which there is no corresponding strain. In other
words, if there is a solution it is unique, but there are stress values for
which there is no solution. Note that the free energy for this stress func-
tion is convex. �

In general, to prevent multiple strain values as happened with T1, but not
with T2 and T3, the stress-strain law must be strictly monotonic increasing.
This translates into the requirement that ψ is a strictly convex function of
the strain, and this occurs if

d2ψ

dε2
> 0. (6.85)

However, this assumption is not enough. As shown with T3, to guarantee that
a solution exists, the stress values must have the right limiting behavior. This
is the extreme value issue that was discussed earlier. Given that the strain
interval is −1 < ε < ∞, the specific requirement for this one-dimensional
problem is that

lim
ε→−1

T = −∞ and lim
ε→∞

T = ∞. (6.86)
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This means that it is assumed that it takes infinite energy to expand a finite
bar to one of infinite length, and it also takes infinite energy to compress a
bar down to one with zero length. None of the above three energy functions
satisfies the ε → −1 condition, but examples of those that do can be found
in Exercises 6.15 and 6.25.

The requirements for multidimensional problems are harder to determine.
For example, when there is more than one spatial dimension, it has been
shown that a free energy function that is convex will not be frame-indifferent.
This was the motivation for introducing a milder form of convexity, some-
thing called polyconvexity. This is beyond the scope of this textbook, and
the interested reader should consult Marsden and Hughes [1994] for further
details.

Examples

1. For a linearly elastic material, R0Ψ(ε) = 1
2Eε

2. From the convexity condi-
tion, it is required that E ≥ 0. �

2. If T = a
(
ebε − 1

)
, then R0Ψ(ε) = a

(
1
b e

bε − ε
)
. From the convexity condi-

tion, it is required that ab ≥ 0. �

Exercises

6.1. Assume the motion is described by X(A, t) = Aet.
(a) Consider the cross-section that at t = 5 is located at x = 1 . Where was it

at t = 0?
(b) Find u(x, t) and U(A, t).
(c) Find v(x, t) and V (A, t).
(d) What is the velocity of the cross-section that is at x = 2 at time t? What

is the velocity at time t of the cross-section that starts at x = 2?
(e) Suppose the temperature of the bar is θ(x, t) = x5 + 4t. What is the rate

of change of θ following a material section?

6.2. Suppose that at t = 0 the bar occupies the interval 0 ≤ A ≤ 1 and the
motion of the bar is governed by the equation X(A, t) = A+At2.

(a) What spatial interval does the bar occupy at t = 2?
(b) Find V (A, t). What are the limits on A?
(c) Find v(x, t). What are the limits on x?
(d) Suppose the temperature of the bar is θ(x, t) = xt3. What is the rate of

change of θ following a material section?

6.3. This problem considers how the displacement can be determined from
the velocity when using spatial coordinates. Therefore, in this problem, it is
assumed that v(x, t) is known.
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(a) The direct approach to finding u uses (6.14). Show that this leads to a
first-order partial differential equation for u. What is the initial condition
for u?

(b) Another approach involves first converting to material coordinates. Ex-
plain why this results in having to solve

∂U

∂t
= v(U +A, t),

where U(A, 0) = 0. Once U(A, t) is known, explain how to determine
u(x, t).

(c) Using the approach in either part (a) or part (b), find u if v = x/(α+ t),
where α is a positive constant.

6.4. This problem explores the transformation between the material and spa-
tial coordinate systems.

(a) Explain why x = X(a(x, t), t) and A = a(X(A, t), t).
(b) Show that ∂X

∂A
∂a
∂x = 1.

6.5. Prove the following.
(a) v =

ut

1− ux
.

(b)
∂u

∂x
=

UA

1 + UA
.

(c)
∂v

∂x
=

∂

∂t
ln
(

1 +
∂U

∂A

)
.

(d)
∂V

∂A
=

vx

1− vx
.

(e)
∂2U

∂A2
=

uxx

(1− ux)3
.

(f)
D

Dt
ux = (1− ux)vx.

6.6. Assuming that f(x, t) and g(x, t) are smooth functions, show the follow-
ing.

(a)
D(f + g)

Dt
=
Df

Dt
+
Dg

Dt
.

(b)
D(fg)
Dt

= f
Dg

Dt
+ g

Df

Dt
.

(c) Explain why it is not necessarily true that D
Dt

∂f
∂x = ∂

∂x
Df
Dt . What about

the equation D
Dt

∂f
∂t = ∂

∂t
Df
Dt ?

(d) If h = h(x), then show that D
Dth(f) = h′(f)Df

Dt .

6.7. The deformation gradient, in material coordinates, is defined as F (A, t) =
∂X
∂A . This function is used extensively in continuum mechanics when studying
nonlinear elastic materials.

(a) Show that F (A, t) = 1 + ∂U
∂A , and F (A, 0) = 1.
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(b) Letting f(x, t) denote the deformation gradient in spatial coordinates show
that Df

Dt = ∂v
∂xf .

(c) The function C(A, t) = F 2 is known as the Cauchy-Green deformation ten-
sor in material coordinates. Letting c(x, t) denote this function in spatial
coordinates show that Dc

Dt = 2 ∂v
∂xf

2.

6.8. This problem considers some of the restrictions on the displacement
function.

(a) Why is it not possible to have X(A, t) = 1
2A cos(t)?

(b) Why is it not possible to have, at any given value of t, u(0, t) = −1 and
u(1, t) = 1?

(c) Why is it not possible to have U(0, t) = 1 and U(1/2, t) = 0?
(d) Prove that if A1 < A2 then U(A1, t) < A2 −A1 + U(A2, t).
(e) Explain why it is not possible to have a displacement function of the form

U = α sin(A), where α > 1.

6.9. Show that (6.19) in spatial coordinates is ∂u
∂x < 1.

6.10. Suppose in the bungie cord example the initial density is not constant,
and R(A, 0) = α(1 + A/`0). What is the steady-state length ` of the bungie
cord?

6.11. In the steady-state bungie cord problem, if U(A, t) = − g
2EA(2`0 −

A)eA/`0 then find the density and stress in both material and spatial coordi-
nates.

6.12. In three dimensions it is more common to use the Green strain, and
this problem explores some of the differences between it and the Lagrangian
strain.

(a) Rewrite the Lagrangian and Green ratios listed in Table 6.3 in terms of
λ = `/`0 and then on the same axes, sketch each ratio for 0 < λ <∞.

(b) Derive the formula for the Green strain εg.
(c) In the case of when UA is close to zero, explain why the Green strain

reduces to the Lagrangian strain.
(d) Under what circumstances would it be more appropriate to assume T =

Eεg rather than T = Eε?
(e) What is the resulting equation of motion for the displacement U if one

assumes T = Eεg?

6.13. This exercise examines the Hencky and midpoint strains listed in Table
6.3.

(a) Rewrite the Hencky and midpoint ratios in terms of λ = `/`0 and then on
the same axes sketch each ratio for 0 < λ <∞.

(b) Derive the formulas for the Hencky and midpoint strains from their cor-
responding ratios.
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(c) Expand the Hencky and midpoint strain formulas in a Taylor series in the
case of when UA is small. It has been stated that the midpoint strain can
be used as an approximation of the Hencky strain. Comment on this based
on your two expansions as well as your results from part (a).

(d) What is the resulting equation of motion for the displacement U if one
assumes T = Eεh? What is it if one assumes T = Eεm?

6.14. In modeling rubber as a chained polymer using what is known as a
fixed junction model it is determined that two useful strain measures are
λ2 − 1/λ and λ− 1/λ2, where λ = `/`0 in the extension ratio.

(a) On the same axes, sketch each strain measure for 0 < λ <∞.
(b) Derive the strain for each strain measure.
(c) Does either strain in part (b) reduce to UA if UA is small?

6.15. The Mooney-Rivlin model for rubber assumes T = (α + β
λ )(λ2 − 1

λ ),
where λ = 1 + ε, and α, β are positive constants.

(a) Sketch the stress for −1 < ε <∞.
(b) By assuming ε is close to zero, determine how α, β are related to Young’s

modulus.
(c) Find the Helmholtz free energy function Ψ?

6.16. This problem considers if various constitutive laws satisfy the Principle
of Material Frame-Indifference.

(a) Show that ∂v
∂t is not frame-indifferent. Explain why this shows that τ =

τ(vt) does not satisfy the Principle of Material Frame-Indifference.
(b) Does T = T (Vt) satisfy the Principle of Material Frame-Indifference?
(c) Show that τ = τ(ux, uxt) satisfies the Principle of Material Frame-

Indifference.
(d) Does T = T (UA, UAt) satisfy the Principle of Material Frame-Indifference?

6.17. Transform the initial conditions U |t=0 = G(A) and V |t=0 = H(A) into
initial conditions for u and ut.

6.18. A linearly elastic bar is made of two different materials and before being
stretched it occupies the interval 0 ≤ A ≤ `0. Also, before being stretched,
for 0 ≤ A < A0 the modulus and density are E = EL and R = RL, while for
A0 < A ≤ `0 they are E = ER and R = RR. Both RL and RR are constants.

(a) The requirements at the interface, where A = A0, are that the displace-
ment and stress are continuous. Express these requirements mathemati-
cally using one-sided limits.

(b) Suppose the bar is stretched and the boundary conditions are U(0, t) = 0
and U(`0, t) = ` − `0. Assume there are no body forces. Find the steady-
state solution for the density, displacement and stress.

6.19. Suppose it is assumed that Ψ = Ψ(εg), where εg = UA + 1
2U

2
A is the

Green strain.
(a) Given that UA > −1, sketch εg as a function of UA.
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(b) Show that T = R0(1 + UA)Ψ ′(εg).
(c) Suppose it is known that T = Eεg. Use this to show that the free energy

function is
Ψ(εg) =

E

3R0
(εg − 1)

√
1 + 2εg.

6.20. Suppose it is assumed that ψ = ψ(εa), where εa = ux − 1
2u

2
x is the

Almansi strain.
(a) Given that ux < 1, sketch εa as a function of ux.
(b) Show that D

Dtψ = (1− ux)2vxψ
′(εa).

(c) Show that τ = ρ(1− ux)2ψ′(εa).
(d) Suppose it is known that τ = Eεa. What is the free energy function?

6.21. In the derivation of the equations of motion it was assumed that the
cross-sectional area is constant. This problem examines what happens if this
assumption is dropped and σ = σ(x).

(a) Derive the resulting continuity equation in spatial coordinates, and then
show that the material coordinates version is

R(A, t) =
R0

1 + UA
e−κU ,

where κ = σ′(X)/σ(X).
(b) Derive the momentum equation in spatial coordinates, and then show that

the material coordinates version is

R0
∂2U

∂t2
= R0F + eκU ∂T

∂A
+ κ(1 + UA)eκUT.

(c) Show that
∂σ

∂A
= (1 + UA)σ′.

(d) Assuming F = 0, show that the steady-state solution of the momentum
equation is

T =
f0

σ(X)
,

where f0 is a constant.
(e) The equations in part (a) and (b) are often used when designing loud-

speakers, and an assumption often made is that the loudspeaker is an
exponential horn. This means that σ = σ0e

µx, where σ0 and µ are positive
constants. How does this assumption simplify the momentum equation?

6.22. Instead of using a material volume to derive the equations of motion, it
is possible to use a fixed spatial region. This is the control volume approach
used to derive the traffic flow equation in the previous chapter.

(a) Given a spatial location x0, consider the interval x0−∆x ≤ x ≤ x0 +∆x.
Explain where each term in the following equation comes from:
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x0−∆x

σρ(x, t)ā(x, t)dx

= τ(x0 +∆x, t)σ − τ(x0 +∆x, t)σ +
∫ x0+∆x

x0−∆x

σρ(x, t)f(x, t)dx,

where ā(x, t) is the acceleration.
(b) Assuming small ∆x, show that the equation in part (a) reduces to

2σ∆xρ(x0, t)ā(x0, t) = 2σ∆xτx(x0, t) + 2σ∆xρ(x0, t)f(x0, t) +O(∆x2).

(c) Using the result from part (a), derive the momentum equation.

6.23. This problem derives general forms of the balance law, using the same
notations used in (6.21), (6.30), and (6.70). With this in mind, let f(x, t) be
a quantity that is measured per unit volume.

(a) Explain where each term in the following balance equation comes from:

d

dt

∫ β(t)

α(t)

σfdx = −σJ
∣∣∣x=β

x=α
+
∫ β(t)

α(t)

σQdx.

(b) Identify the functions f , J , and Q for the equations (6.21), (6.30), and
(6.70).

(c) Show that the balance law in part (a) reduces to

∂f

∂t
+
∂(vf)
∂x

= −∂J
∂x

+Q.

6.24. The mechanical energy equation is

ρ
D

Dt

(
1
2
v2

)
+ τ

∂v

∂x
=

∂

∂x
(vτ) + ρvf.

(a) Derive this directly from the momentum equation.
(b) Combine the result from part (a) with (6.71) to show that

ρ
D

Dt

(
1
2
v2 + χ

)
=

∂

∂x
(vτ) + ρvf.

The above equation represents the time rate of change of the total energy
balanced with the energy flux associated with the stress and the rate of
work of the body forces.

6.25. The Holmes energy function is

Ψ =
α

λ2β
eβλ2

.

where λ = 1 + ε, and α, β are positive constants.
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(a) Show that

T =
1
2
E
λ2 − 1
λ2β+1

eβ(λ2−1),

where E is a positive constant.
(b) Show that if ε is small then the formula in part (a) reduces to the linearly

elastic constitutive law given in (6.50).
(c) Show that T is a strictly monotonic increasing function of λ. Explain why

this means that T is a strictly monotonic increasing function of ε.
(d) Show that T satisfies the limit conditions in (6.86).

6.26. This problem explores some additional ideas related to the morpholog-
ical basis for deformation of a metal.

(a) The binding energy is V0 = V (r0), where V is given in (6.57), and it is the
minimum energy needed to break the atomic bonds. Show that

V =
V0

m− n

[
−(n− 1)

(r0
r

)m−1

+ (m− 1)
(r0
r

)n−1
]
.

(b) Show that

E ≈ − (n− 1)(m− 1)V0

4r30
.

One conclusion that comes from this result is that materials with a high
binding energy, and a small interatomic spacing, have a relatively large
Young’s modulus.

6.27. This problem examines the elastic modulus when the interatomic forces
are described using the Morse potential function, which is

V = β
(
e−2α(r−r0) − 2e−α(r−r0)

)
,

where α and β are positive constants.
(a) Show that V ′(r0) = 0.
(b) What is the resulting force function F? Identify the term accounting for

the repulsive component of the force, and the term responsible for the
attractive component.

(c) Sketch V and F . Because of the pronounced differences in the repulsive
and attractive components of (6.56), it was stated that knowing the stress-
strain function for a nonlinearly elastic material for tension provides little
insight into what the stress function is for compression. Is this true when
using the Morse potential? Are there any significant qualitative differences
between (6.56) and the function you derive in part (b)?

(d) What is the resulting approximation for the elastic modulus?
(e) It has been found that for carbon nanotubes, β = 3.77 eV, α = 26.25

nm−1, and r0 = 0.14 nm (Liew et al. [2005]). Use these values to estimate
the Young’s modulus. Note that 1 eV = 1.6× 10−19 J.



Chapter 7

Elastic and Viscoelastic Materials

7.1 Linear Elasticity

A particularly successful application of continuum mechanics is linear elas-
ticity. For a linearly elastic material, the constitutive law for the stress is

T = E
∂U

∂A
, (7.1)

where E is Young’s modulus. The momentum equation (6.41) in this case
reduces to

∂2U

∂t2
= c2

∂2U

∂A2
+ F, (7.2)

where c2 = E/R0. It is assumed that both E and R0 are constants. Therefore,
the equation of motion for a linearly elastic material is a wave equation for the
displacement. One of the objectives of this chapter is to solve this equation,
and then use the solution to understand how an elastic material responds.

It is important to point out that the linear elastic model we are considering
comes from assuming that the stress is a linear function of the Lagrangian
strain (6.48). As is evident from Figure 6.5, exactly what strains this is valid
for depends on the specific material under study. Also, if one of the other
strains listed in Table 6.3 is used, a linear constitutive law for the stress does
not lead to a linear momentum equation as happens in (7.2). This observation
will be reconsidered later when discussing what is known as the assumption
of geometric linearity.

There is a long list of methods that can be used to solve problems in linear
elasticity, and this includes separation of variables, Green’s functions, Fourier
transforms, Laplace transforms, and the method of characteristics. The latter
two will be used in this chapter, and the reasons for this will be explained
as the methods are developed. Before doing this we consider a more basic
issue, and this has to do with the form of the mathematical solution and its
connection to the physical problem.

M.H. Holmes, Introduction to the Foundations of Applied Mathematics, 311
Texts in Applied Mathematics 56, DOI 10.1007/978-0-387-87765-5 7,
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Figure 7.1 (a) A slightly extended slinky is held at A = 0 and at A = 10. (b) The
loop that was at A = 4 is moved over to A = 2, producing a compression in the region
0 ≤ A < 2, and an expansion in 2 < A ≤ 10.

Example: Rubber Band at Rest

Suppose a rubber band is stretched a small amount with one end held at
A = 0 and the other end held at A = 10. One then moves the cross section
at A = 4 to A = 2. This situation is illustrated in Figure 7.1 for a slinky,
which is not exactly a rubber band but behaves in a similar manner. For
the spring, the distance between the loops is a measure of the strain. As an
example, in Figure 7.1(b), the loops in 0 ≤ A < 2 and in 4 < A ≤ 10 are both
uniformly placed, indicating a uniform strain in these two regions. The fact
that the loops in 0 ≤ A < 2 are closer together than they are in the upper
figure indicates a constant compressive strain. For a similar reason there is a
constant tensile strain in 4 < A ≤ 10. Returning to the rubber band, we will
assume that at rest it can be modeled as a linearly elastic material. To satisfy
the given boundary conditions, it is required that the displacement satisfy
U = 0 at A = 0, 10. Also, given that the cross-section that was at A = 4 is
moved over to A = 2, then it is required that U = −2 at A = 4. From (7.2),
at steady-state we know UAA = 0, and this means U is a linear function of A.
More precisely, it is linear for 0 < A < 4, and it is another linear function for
4 < A < 10. For 0 < A < 4, the linear function that satisfies U(0) = 0 and
U(4) = −2 is U = −A/2. For 4 < A < 10, the linear function that satisfies
U(10) = 0 and U(4) = −2 is U = (A−10)/3. We therefore have the piecewise
linear solution

U =

{
−A/2 if 0 ≤ A ≤ 4,
(A− 10)/3 if 4 ≤ A ≤ 10.

(7.3)

The conventional method for plotting such a function is given in Figure 7.2(b).
It shows, for example, that the point that started at A = 4 moves in the neg-
ative direction to A = 2. Although there is nothing wrong with this plot, it
obfuscates what is happening in the rubber band and seems to have no con-
nection with what is illustrated in Figure 7.1. Another method for plotting
the solution is given in Figure 7.2(a). The upper bar shows cross-sections
equally spaced along the rubber band, before the rubber band is pulled. In
the lower bar in Figure 7.2(a) the positions of the same cross-sections are
shown after the rubber band has been pulled. The position of any given
cross-section is X = A + U , where U is given in (7.3). What is seen is that



7.1 Linear Elasticity 313

(a)

0 2 4 6 8 10

0 2 4 6 8 10

(b)

0 2 4 6 8 10
−2

−1

0

D
is
pl
ac
em

en
t

A−axis

Figure 7.2 The rubber band at rest example. In (a) the upper bar shows evenly
spaced cross-sections in the rubber band before it is pulled, and the lower bar shows
where they are located after it is pulled. In (b) the displacement (7.3) is plotted in a
more traditional method.

the cross-sections that started out uniformly spaced in 0 ≤ A ≤ 4 end up
uniformly spaced in the interval 0 ≤ A ≤ 2. The difference is that they are
closer together due to the fact that the rubber band is being compressed in
this region. In contrast, the cross-sections that started out in 4 ≤ A ≤ 10
get farther apart after pulling, and this is due to the stretching of the rubber
band in this region. �

The solution in the rubber band example illustrates some general charac-
teristics that arise in elasticity. Whenever the strain is negative, so UA < 0,
the cross section is said to be in compression. This means that the cross-
sections in this vicinity are closer together than they were before the load
was applied. In contrast, whenever the strain is positive the cross-section is
in tension. In Figure 7.2(a), the cross-sections that start out in 4 < A < 10
end up in 2 < A < 10, and are therefore in tension because UA = 1/3. Sim-
ilarly, those that start out in 0 < A < 4 end up in 0 < A < 2, and they are
in compression because UA = −1/2.

7.1.1 Method of Characteristics

Suppose the bar is very long, so it is reasonable to assume −∞ < A < ∞.
Also, it is assumed that there are no body forces. The two initial conditions
that will be used are

U(A, 0) = f(A), Ut(A, 0) = g(A). (7.4)
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With the given assumptions, the wave equation (7.2) can be written as(
∂2

∂t2
− c2

∂2

∂A2

)
U = 0.

Factoring the derivatives, the equation takes the form(
∂

∂t
− c

∂

∂A

)(
∂

∂t
+ c

∂

∂A

)
U = 0. (7.5)

Our goal is to change coordinates, from (A, t) to (r, s), so the above equation
can be written as

∂

∂r

(
∂U

∂s

)
= 0. (7.6)

What we want, therefore, is the following

∂

∂r
=

∂

∂t
− c

∂

∂A
, (7.7)

∂

∂s
=

∂

∂t
+ c

∂

∂A
. (7.8)

To determine how this can be done assume A = A(r, s), t = t(r, s). In this
case, using the chain rule

∂

∂r
=
∂A

∂r

∂

∂A
+
∂t

∂r

∂

∂t
, (7.9)

∂

∂s
=
∂A

∂s

∂

∂A
+
∂t

∂s

∂

∂t
. (7.10)

Comparing (7.7) and (7.9), we require ∂A
∂r = −c and ∂t

∂r = 1. Similarly, com-
paring (7.8) and (7.10), we require ∂A

∂s = c and ∂t
∂s = 1. Solving these equa-

tions gives us that A = c(−r+s) and t = r+s. Inverting this transformation
one finds,

r = − 1
2c

(A− ct), s =
1
2c

(A+ ct). (7.11)

This change of variables reduces the wave equation to (7.6). The general
solution of this is U = F (r) + G(s) where F and G are arbitrary functions.
Reverting back to A, t, and absorbing the 1

2c into the arbitrary functions, we
obtain the solution

U(A, t) = F (A− ct) +G(A+ ct), (7.12)

where F , G are determined from the initial conditions. With this we have
that the general solution of the problem consists of the sum of two traveling
waves. One, with profile F , moves to the right with speed c, and the other,
with profile G, moves to the left with speed c.
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U

A-1 1

t=0

1+ct-1-ct -1+ct

U

A

0<ct<1

1-ct

1<ct
U

A

1/2

1+ct-1+ct-1-ct 1-ct

Figure 7.3 Solution of the wave equation obtained using the d’Alembert solution
(7.15).

It remains to have (7.12) satisfy the initial conditions (7.4). Working out
the details, one finds that the solution is

U(A, t) =
1
2
f(A− ct) +

1
2
f(A+ ct) +

1
2c

∫ A+ct

A−ct

g(z)dz. (7.13)

This is known as the d’Alembert solution of the wave equation. It is crystal
clear from this expression how the initial conditions contribute to the solu-
tion. Specifically, the initial displacement f(A) is responsible for two traveling
waves, both moving with speed c and traveling in opposite directions. The ini-
tial velocity g(A) contributes over an ever-expanding interval, the endpoints
of this interval moving with speed c.

Example

As an example, suppose the initial conditions are Ut(A, 0) = 0 and U(A, 0) =
f(A), where f(A) is the rectangular bump

f(A) =

{
1 if − 1 ≤ A ≤ 1,
0 otherwise.

(7.14)

From (7.13) the solution is
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U(A, t) =
1
2
f(A− ct) +

1
2
f(A+ ct). (7.15)

This is shown in Figure 7.3 and it is seen that the solution consists of two
rectangular bumps, half the height of the original, traveling to the left and
right with speed c. �

The nice thing about the method of characteristics is that it produces a
solution showing the wave-like nature of the response. Its flaw is that the
derivation assumes that the interval is infinitely long. It is possible in some
cases to use it on finite intervals, by accounting for the reflections of the
waves at the boundaries. The mathematical representation of such a solution
is obtained in the slinky example in the next section. For finite intervals other
methods can be used. One is separation of variables, which is a subject often
covered in elementary partial differential equation textbooks. Another in the
Laplace transform, and this is the one pursued here.

7.1.2 Laplace Transform

Earlier, in Chapter 4, we used the Fourier transform to solve the diffusion
equation. This could also be used on the wave equation, but the Laplace
transform is used instead. One reason is that it is an opportunity to learn
something new. Another reason is that the Laplace transform is particularly
useful for cracking open some of the problems that will arise later in the
chapter when studying viscoelasticity.

The Laplace transform of a function U(t) is defined as

Û(s) =
∫ ∞

0

U(t)e−stdt. (7.16)

We will need to be able to determine U(t) given Û(s), and for this we need
the inverse transform. It can be shown that if U is continuous at t then

�����

�����

	

�
�

�

Figure 7.4 Contour used in the formula for the inverse Laplace transform (7.17). It

must be to the right of any singularities of Û , which are indicated using the symbol
⊗.
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U(t) =
1

2πi

∫ c+i∞

c−i∞
Û(s)estds. (7.17)

The integral here is a line integral in the complex plane, along the vertical
line Re(s) = c (see Figure 7.4). It is evident from the above line integral that
the variable s in (7.16) is complex valued. A second observation is that the
inverse transform (7.17) is not as simple as might be expected from (7.16).
Although some of the more entertaining mathematical problems arise when
inverting the Laplace transform using contour integration in the complex
plane, most people rely on tables. This will be the approach used here, and
we will mostly determine the inverse using the relatively small collection of
formulas listed in Table 7.1.

It is convenient to express the Laplace transform in operator form, and
write (7.16) as Û = L(U). Using this notation, the inverse transform (7.17) is
U = L−1(Û). It should be restated that the inverse formula assumes that U
is continuous at t. If it is not, and U has a jump discontinuity at t, then the
right-hand side of (7.17) equals the average of the jump. This means that,
for t > 0,

1
2
(
U(t+) + U(t−)

)
= L−1(Û),

and if t = 0 then
1
2
U(0+) = L−1(Û) .

This result, that one obtains the average of the function at a jump, is con-
sistent with what was found for the inverse Fourier transform.

Examples

1. For the function U(t) = e−t sin(3t) the Laplace transform is

Û(s) =
∫ ∞

0

sin(3t)e−(s+1)tdt

=
[
− s+ 1

(s+ 1)2 + 9
e−(s+1)t sin(3t)− 3

(s+ 1)2 + 9
e−(s+1)t cos(3t)

]∞
t=0

= − 3
(s+ 1)2 + 9

. �

2. For the piecewise constant function

U(t) =

0 if t ≤ 1,
2 if 1 < t ≤ 3,
−1 if 3 < t,

the Laplace transform is
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Û(s) u(t)

1. aÛ(s) + bV̂ (s) aU(t) + bV (t)

2. V̂ (s)Û(s)
∫ t
0 V (t− r)U(r)dr

3. sÛ(s) U ′(t) + U(0)

4. 1
s
Û(s)

∫ t
0 U(r)dr

5. e−asÛ(s) U(t− a)H(t− a)

6. Û(s− a) eatU(t)

7.
1

(s+a)n

1

(n− 1)!
tn−1e−at for n = 1, 2, 3, . . .

8.
bs+c

(s+a)2+ω2 e−at

(
b cos(ωt) +

c− ab

ω
sin(ωt)

)
for ω > 0

9.
cs+d

(s+a)(s+b)

1

b− a

(
(bc− d)e−bt − (ac− d)e−at

)
for a 6= b

10.
1√
s+a

1
√

πt
e−at

11.
1

(s+a)
√

s+b


1√

b−a
e−aterf(

√
(b− a)t) if b > a

2√
(a−b)π

∫ (a−b)t
0 er2

dr if b < a

12.
1

√
s(
√

s + a)
ea2terfc(a

√
t)

13.
1

s
e−as H(t− a) for a > 0

14. e−a
√

s a

2
√

π
t−3/2e−a2/(4t) for a > 0

15.
1
√

s
e−a

√
s 1

√
πt

e−a2/(4t) for a > 0

16.
1

s
e−a

√
s erfc(a/(2

√
t)) for a > 0

17.
1

sν+1
e−a2/(4s)

(
2

a

)ν

tν/2Jν(a
√

t) for Re(ν) > −1

18.
1

q
e−cq where c ≥ 0 and

q =
√

(s + a)(s + b)

e−(a+b)t/2I0[(a− b)
√

t2 − c2/2]H(t− c)

Table 7.1 Inverse Laplace transforms. The Heaviside step function H(x) is defined in
(7.19), the complementary error function erfc(x) is given in (1.60), the error function
erf(x) = 1− erfc(x), and Jν , I0 are Bessel functions.
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Û(s) =
∫ 3

1

2e−stdt−
∫ ∞

3

e−stdt

= −3
s
e−3s +

2
s
e−s.

It is interesting to see if we obtain the original function U(t) by taking the
inverse transform of Û(s). Using Property 13 from Table 7.1 it follows that

L−1(Û) = −3L−1(
1
s
e−3s) + 2L−1(

1
s
e−3s)

= −3H(t− 3) + 2H(t− 1), (7.18)

where H(x) is the Heaviside step function, and it is defined as

H(x) =


0 if x < 0,
1
2 if x = 0,
1 if 0 < x.

(7.19)

Writing out the definition of H in (7.18), the inverse transform is

L−1(Û) =


0 if t < 1,
1 if t = 1,
2 if 1 < t < 3,
3
2 if t = 3,
−1 if 3 < t.

This result shows that L−1(Û) = U at values of t where U is continuous, but
at the jump points the inverse equals the average of the jump in the function.
�

3. Suppose that

Û =
2
s
− 3
s2 + 4

.

According to Property 7, from Table 7.1, L−1( 1
s ) = 1, and from Property 8,

L−1((s2 + 4)−1) = 1
2 sin(2t). Using Property 1 it therefore follows that

U(t) = L−1

(
2
s
− 3
s2 + 4

)
= 2L−1

(
1
s

)
− 3L−1

(
1

s2 + 4

)
= 2− 3

2
sin(2t). �
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Given the improper integral in (7.16), it is necessary to impose certain
restrictions on the function U(t), although the requirements are much less
severe than for the Fourier transforms studied in Chapter 4. It is assumed
that U(t) is piecewise continuous and has exponential order. This means that
U grows no faster than a linear exponential function as t→∞. The specific
requirement is that there is a constant α so that

lim
t→∞

Ueαt = 0. (7.20)

As examples, any bounded function or any polynomial function has expo-
nential order. On the other hand, et2 and et3 do not. With this, the Laplace
transform (7.16) is defined for any s that satisfies Re(s) > α, and this gives
rise to what is known as the half-plane of convergence for the Laplace trans-
form. This comes into play when calculating the inverse transform (7.17), and
the requirement is that c is in the half-plane of convergence. It is relatively
easy to determine this half-plane from Û . The requirement is that the half-
plane of convergence is to the right of the singularities of Û (see Figure 7.4).
As an example, if Û = 1/s then the half-plane of convergence must satisfy
Re(s) > 0, while if Û = 1/

√
s(s− 1) then the half-plane of convergence must

satisfy Re(s) > 1.
One last comment to make before working out some of the properties of the

Laplace transforms relates to the behavior of Û when Re(s) → ∞. Because
of the negative exponential in the integral, it follows that

lim
Re(s)→∞

Û = 0. (7.21)

This limit assumes that the original function U is piecewise continuous and
has exponential order. The reason this result is useful is that it can be used
to help check for errors in a calculation. For example, if you find that Û = s,
or Û = sin(s), or Û = es then an error has been made. The reason is that
none of these functions satisfies (7.21).

7.1.2.1 Transformation of Derivatives

One of the hallmarks of the Laplace transform, as with most integral trans-
forms, is that it converts differentiation into multiplication. To explain what
this means, we use integration by parts to obtain the following

L(U ′) =
∫ ∞

0

U ′e−stdt

= Ue−st
∣∣∞
t=0

+ s

∫ ∞

0

Ue−stdt

= −U(0) + sL(U). (7.22)
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This formula can be used to find the transform of higher derivatives, and as
an example

L(U ′′) = −U ′(0) + sL(U ′)
= −U ′(0) + s (−U(0) + sL(U))

= s2L(U)− U ′(0)− sU(0). (7.23)

Generalizing this to higher derivatives

L(U (n)) = snL(U)− U (n−1)(0)− sU (n−2)(0)− · · · − sn−1U(0). (7.24)

7.1.2.2 Convolution Theorem

A common integral arising in viscoelasticity is a convolution integral of the
form

T =
∫ t

0

G(t− τ)V (τ)dτ . (7.25)

Taking the Laplace transform of this equation we obtain

L(T ) =
∫ ∞

0

∫ t

0

G(t− τ)V (τ)e−stdτdt

=
∫ ∞

0

∫ ∞

τ

G(t− τ)V (τ)e−stdtdτ

=
∫ ∞

0

∫ ∞

0

G(r)V (τ)e−s(r+t)drdτ

=
∫ ∞

0

V (τ)e−sτ

∫ ∞

0

G(r)e−srdrdτ

= Ĝ(s)V̂ (s).

Using the inverse transform this can be written as

L−1(Ĝ(s)V̂ (s)) =
∫ t

0

G(t− τ)V (τ)dτ . (7.26)

This is Property 2, in Table 7.1, and it is known as the convolution theorem.

7.1.2.3 Solving the Problem for Linear Elasticity

The problem that will be solved using the Laplace transform consists of the
wave equation

∂2U

∂t2
= c2

∂2U

∂A2
+ F (A, t), (7.27)
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where the boundary conditions are

U(0, t) = p(t), U(`, t) = q(t), (7.28)

and the initial conditions are

U(A, 0) = f(A), Ut(A, 0) = g(A). (7.29)

It is understood that the only unknown is U(A, t), and all the other func-
tions in the above equations are given. The first step is to take the Laplace
transform of both sides of the wave equation to obtain

L(Utt) = c2L(UAA) + L(F ). (7.30)

Using (7.23), and the given initial conditions,

L(Utt) = s2Û − g(A)− sf(A).

Also, because the transform is in the time variable, L(UAA) = ÛAA. Intro-
ducing these observations into (7.30) we have that

c2ÛAA − s2Û = −F̂ (A, s)− g(A)− sf(A). (7.31)

The solution of this equation must satisfy the transform of the boundary
conditions (7.28), and this means that

Û(0, s) = p̂(s), Û(`, s) = q̂(s). (7.32)

where p̂ = L(UL) and q̂ = L(q).
Solving (7.31) for Û depends on what functions are used for the forcing,

boundary, and initial conditions, and we consider two examples. Before doing
this, note that by taking the Laplace transform that the initial conditions
have become forcing functions in the differential equation (7.31). This limits
the usefulness of this method. The reason is that even simple looking initial
conditions can result in solutions of (7.31) that are complicated functions
of the transform variable s. By complicated it is meant that the inverse
transform is not evident, and even manipulating the contour integral in the
definition of the inverse transform does not help. This observation should
not be interpreted to mean that the method is a waste of time. Rather, it
should be understood that the Laplace transform is an important tool for
analyzing differential and integral equations, but like all other methods, it
has limitations.

Example 1: Slinky

Suppose there is no forcing, so F (A, t) = 0, and f(A) = g(A) = 0. Also, the
boundary conditions are p = U0 and q = 0. Physically, this corresponds to
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taking an elastic bar at rest and pushing on the left end a fixed amount U0. A
similar situation is shown in Figure 7.5 for a slinky. What happens is that the
disturbance propagates along the slinky, reaches the right end, reflects, and
then moves leftward. The result is a disturbance that moves back and forth
along the spring. This is mentioned as it is worth having some expectation on
what the mathematics will produce. Proceeding on to solving the problem,
with the stated assumptions (7.31) takes the form

c2ÛAA − s2Û = 0, (7.33)

and the boundary conditions (7.28) are

Û(0, s) =
U0

s
, Û(`, s) = 0. (7.34)

The general solution of (7.33) is

Û = αesA/c + βe−sA/c,

where α and β are arbitrary constants. This function must satisfy the bound-
ary conditions (7.34), and from this it follows that

Û(A, s) =
U0

s

sinh(s(`−A)/c)
sinh(s`/c)

. (7.35)

Now comes the big question, can we find the inverse transform of (7.35)? Some
of the more extensive tables listing inverse Laplace transforms do include this
particular function, but most do not. Given the propensity of second order
differential equations to generate solutions involving the ratio of exponential
functions, as in (7.35), it is worth deriving the inverse from scratch. The first
step is to use the definition of the sinh function to write

��

��

��

��

��

Figure 7.5 (a) A slightly extended slinky is held at A = 0 and at A = `. (b) The left
end is then moved a distance U0, producing a compressed region in the spring. (c)
This region spreads down the spring towards the right end. (d) When the compression
reaches A = `, it reflects and then starts moving in the opposite direction. In an elastic
spring this back-and-forth motion will continue indefinitely.
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Figure 7.6 Solution of the elastic bar given in (7.36). The solution consists of a
traveling wave that starts at A = 0 and then propagates back and forth along the
A-axis.

sinh(αs)
sinh(βs)

=
eαs − e−αs

eβs − e−βs

= e−βs e
αs − e−αs

1− e−2βs
.

It is assumed here that 0 < β. Using the geometric series on the denominator
we obtain

sinh(αs)
sinh(βs)

= e−βs
(
eαs − e−αs

) (
1 + e−2βs + e−4βs + · · ·

)
= e−βs

(
eαs − e−αs

)
+ e−3βs

(
eαs − e−αs

)
+ e−5βs

(
eαs − e−αs

)
+ · · ·

=
∞∑

n=1

e−(2n−1)βs
(
eαs − e−αs

)
.

Now, using Property 13 from Table 7.1,
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L−1

(
1
s
e−bs(eαs − e−αs)

)
= L−1

(
1
s
e(α−b)s

)
− L−1

(
1
s
e−(α+b)s

)
= H [t+ (α− b)]−H [t− (α+ b)] .

With this,

L−1

(
1
s

sinh(αs)
sinh(βs)

)
=

∞∑
n=1

[H (t+ α− (2n− 1)β)−H (t− α− (2n− 1)β)] .

The inverse of (7.35) is, therefore,

U(A, t) = U0

∞∑
n=1

[H (t+ κ−n+1)−H (t− κn)] , (7.36)

where
κn =

1
c
(−A+ 2n`).

The solution is shown in Figure 7.6, for ` = c = U0 = 1. As expected from the
slinky analogy, the solution is a traveling wave that starts at A = 0 and then
moves back and forth over the bar. The amplitude is U0 = 1, and the speed
of the wave can be determined from the arguments of the Heaviside functions
in (7.36). Namely, its speed is equal to c. This is not surprising as this is the
speed of the traveling waves found using the method of characteristics, given
in (7.13). As a final comment, there are different ways of writing the solution
to this problem, and some are derived in Exercise 7.3. �

Example 2: Resonance

In this example we investigate what happens to the bar when it is forced
periodically. Specifically, it is assumed that the forcing function in (7.27) is
F (A, t) = a(t) cos(κnA), where a(t) = sin(ωt), κn = nπ/`, and n is a positive
integer. The bar is assumed to be stress free at the ends, and so the boundary
conditions are

∂U

∂A
= 0 at A = 0, `. (7.37)

Taking the Laplace transform, the boundary conditions become

∂Û

∂A
= 0 at A = 0, `. (7.38)

The initial conditions are f(A) = g(A) = 0. In this case (7.31) takes the form

c2ÛAA − s2Û = −â(s) cos(κnA),

where â = L(a). The general solution of this equation is
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Û =
â(s)

κ2
nc

2 + s2
cos(κnA) + αesA/c + βe−sA/c,

where α and β are arbitrary constants. This solution must satisfy the bound-
ary conditions (7.38), and from this is follows that

Û =
â(s)

κ2
nc

2 + s2
cos(κnA). (7.39)

Again, the big question, can we find the inverse transform of (7.39)? Using
Property 8, with a = b = 0 and ω = κnc,

L−1

(
1

κ2
nc

2 + s2

)
=

1
κnc

sin(κnct).

Therefore, using the convolution property (7.26), it follows that

U(A, t) = L−1

(
â(s)

κ2
nc

2 + s2
cos(κnA)

)
= cos(κnA)L−1

(
â(s)

1
κ2

nc
2 + s2

)
=

1
κnc

b(t) cos(κnA),

where

b(t) =
∫ t

0

a(t− r) sin(κncr)dr.

Given that a(t) = sin(ωt) it follows that

b(t) =


1

ω2 − κ2
nc

2
(ω sin(κnct)− κnc sin(ωt)) if ω 6= κnc,

−1
2
t cos(κnct) +

1
2κnc

sin(κnct) if ω = κnc.

(7.40)

This shows that when ω 6= κnc, the displacement is a combination of pe-
riodic functions. In contrast, when ω = κnc the solution grows, becoming
unbounded as t→∞. This is a phenomenon known as resonance, and it is a
characteristic of linearly elastic systems. The resonant frequencies are easily
measured experimentally, and this provides a means to test the accuracy of
the model. In the experiments of Bayon et al. [1993], an aluminum bar was
tested and the first three measured resonant frequencies f1, f2, and f3 are
given in Table 7.2. Recall that circular and angular frequencies are related
through the equation f = 2πω. In this case, ω = κnc reduces to

fn =
n

2`

√
E

R
. (7.41)
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n fn Experimental fn Computed Relative Error

1 15,322 Hz 15,541 Hz 1.4%

2 30,644 Hz 31,082 Hz 1.4%

3 45,966 Hz 46,623 Hz 1.4%

Table 7.2 Natural frequencies of an aluminum bar measured experimentally (Bayon
et al. [1993]), and computed using (7.41).

To compare with the model, the bar in the experiment was 0.1647 m long.
Also, using the conventional values for pure aluminum, E = 70758 MPa and
R = 2700 kg/m3. The resulting values of the angular frequencies are also
shown in Table 7.2. The rather small difference between the experimental
and computed values is compelling evidence that the linear elastic model is
appropriate here. �

Given the need to be able to determine the material parameters in a model,
the question comes up whether the measured values for fn can be used to
determine E and R. The best we can do with (7.41) is to determine the
ratio E/R. How it might be possible to use the resonant frequencies to find
the material and geometrical parameters is one of the core ideas in inverse
problems. As an example, a classic paper in this area is, “Can you hear
the shape of a drum,” by Kac [1966]. Considerable work has been invested
in solving inverse problems, and some of the more recent discoveries are
discussed in Gladwell [2004].

In a physical problem, the growth in the amplitude that occurs at the
resonant frequency means that eventually the linear elasticity approximation
no longer applies, and other effects come into play. These will generally mollify
the amplitude, although not always. An example is the Tacoma Narrows
Bridge. Although classic resonance was not the culprit, the same principle of
unstable linear oscillations that feed large nonlinear motion was in play, and
this eventually caused the bridge to collapse.

7.1.3 Geometric Linearity

The assumption in (7.1) that the stress is a linear function of the Lagrangian
strain results in a linear momentum equation (7.2). This does not happen
if any of the other strains listed in Table 6.3 are used. For example, when
working in three dimensions it is conventional to use the Green strain εg. From
(6.49), the assumption that T = Eεg results in the momentum equation
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∂2U

∂t2
= c2

(
1 +

∂U

∂A

)
∂2U

∂A2
+ F.

In contrast to (7.2), this is a nonlinear wave equation for the displacement.
It is possible to obtain a linear momentum equation using the other strains,

but it is necessary to impose certain restrictions on the motion. What is
needed is geometric linearity, and to contrast this with our earlier assumption
we have the following:

• Material Linearity. The assumption is that the stress-strain function is
linear. Examples are T = Eε, T = Eεg, and τ = Eεe. Linearity in this
context is relative to a particular strain measure.

• Geometric Linearity. It is assumed that there are only small deformations,
and so ε is assumed close to zero. This is often referred to as an assumption
of infinitesimal deformations.

The idea underlying geometric linearity is that the displacement is small in
comparison to the overall length of the bar. This means that the displacement
gradients ∂U

∂A and ∂u
∂x are close to zero. One consequence of this assumption

is that all of the strains listed in Table 6.3 are effectively equal. For example,
εg = UA + 1

2U
2
A ≈ UA = ε. Similarly, ε = UA = ux/(1 − ux) ≈ ux = εe.

As is apparent in these calculations, the assumption of geometric linearity
knocks out the nonlinear terms in the equations. Therefore, one ends up with
a linear momentum equation.

7.2 Viscoelasticity

The slinky example in the previous section is interesting but unrealistic from
a physical point of view. The reason is that the traveling waves shown in
Figure 7.6 continue indefinitely. In contrast, in a real system the motion
eventually comes to rest. The reason is that energy is lost due to dissipation.
This is similar to what occurs when dropping an object and letting it fall
through the air. The faster the object moves the greater the air resistance
on the object. The usual assumption in this case is that there is a resistance
force that is proportional to the object’s velocity. This same idea is used when
formulating the equations for a damped oscillator, and in the next section we
use this observation to develop the theory of viscoelasticity.
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7.2.1 Mass, Spring, Dashpot Systems

It is informative to review the equation for a damped oscillator, as shown in
Figure 7.7. From Newton’s second law, the displacement u(t) of the mass in
the mass, spring, dashpot system satisfies

mu′′ = Fs + Fd, (7.42)

where m is the mass, Fs is the restoring force in the spring, and Fd is the
damping force. Assuming the spring is linear, then from Hooke’s law

Fs = −ku, (7.43)

where k is a positive constant. The mechanism commonly used to produce
damping involves a dashpot, where the resisting force is proportional to ve-
locity. The associated constitutive assumption is

Fd = −cu′, (7.44)

where c is a positive constant. With this, the total force F = Fs + Fd.
This example contains several ideas that will be expanded on below. First,

it shows that the force includes an elastic component, which depends on
displacement, and a damping component that depends on the velocity. As we
saw earlier, when using a spring, mass system to help formulate a constitutive
law for the stress, displacement is replaced with strain. Therefore, instead of
assuming the force depends on displacement and velocity, in the continuum
formulation the stress is assumed to depend on the strain ε = UA and strain
rate εt = UAt. The question is, as always, exactly what function should we
select and how do we make this choice. To help answer this question, we will
examine spring and dashpot systems.

It is possible to generalize the above example and introduce the basic
laws of viscoelasticity. This is done by putting the spring and dashpot in
various configurations, and three of the more well-studied are shown in Figure
7.8. We start with the series orientation shown in Figure 7.8(a). The point
m moves due to a force −F (t), and its displacement u(t) equals the sum
of the displacement us(t) of the spring and the displacement ud(t) of the
dashpot. Converting to velocities we have that u′ = u′s + u′d. Now, according

c

m

k

Figure 7.7 Mass, spring, dashpot system.
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to Newton’s third law, the force in the spring and dashpot equals F . From
(7.43) we get us = F/k and from (7.44) we have that u′d = F/c. With this
we obtain the following force, deflection relationship

u′ = F ′/k + F/c. (7.45)

This is known as the Maxwell element in viscoelasticity.
In the next configuration, shown in Figure 7.8(b), the spring and dashpot

are in parallel. For this we use the fact that forces add, and so Fs + Fd = F .
Also, the displacement of the spring and dashpot are the same, and both are
equal to u(t). With this we obtain

F = ku+ cu′. (7.46)

This is known as the Kelvin-Voigt element in viscoelasticity.
The third configuration, shown in Figure 7.8(c), gives rise to what is known

as the standard linear element. The force in the upper spring is F0 = k0u,
while for the lower spring, dashpot the force satisfies u′ = F ′1/k1 + F1/c1.
The forces must balance, and this means that F = F0 + F1. In this case,
F1 = F − F0, and so

u′ = (F − F0)′/k1 + (F − F0)/c1
= (F − k0u)′/k1 + (F − k0u)/c1.

Rearranging things, it follows that

F + a1F
′ = a2u+ a3u

′, (7.47)

(a)
m

k c

F

(b)

m
Fk

c

(c)

F
m

k
1

c
1

k
0

Figure 7.8 Spring, dashpot systems used to derive viscoelastic models: (a) Maxwell
element; (b) Kelvin-Voigt element; and (c) standard linear element.
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where a1 = c1/k1, a2 = k0 and a3 = c1(1 + k0/k1). The coefficients in this
equation satisfy an inequality that is needed later. Because c1 = k1a1, then
a3 = a1(k1 + a2). With this we have that a3 > a1a2.

Each of the spring, dashpot examples can be generalized to a viscoelastic
constitutive law that can be used in continuum mechanics. This is done by
simply replacing u with the strain ε, u′ with the strain rate εt, and F with
the stress T . After rearranging the constants in the formulas, the resulting
viscoelastic constitutive laws are

Maxwell model: T + τ0
∂T

∂t
= Eτ1

∂ε

∂t
, (7.48)

Kelvin-Voigt model: T = E

(
ε+ τ1

∂ε

∂t

)
, (7.49)

standard linear model: T + τ0
∂T

∂t
= E

(
ε+ τ1

∂ε

∂t

)
. (7.50)

The strain in the above formulas, as usual, is

ε =
∂U

∂A
.

In analogy with the linear elastic law (7.1), the constant E is the Young’s
modulus and it is assumed to be positive. The constants τ0 and τ1 have
the dimensions of time, and are known as the dissipation time scales for the
respective model. To be consistent with the expressions in (7.45) - (7.47),
E and the τi’s are assumed to be positive. In addition it is assumed in the
standard linear model that τ0 < τ1. This condition comes from the same
inequality that exists between the constants in (7.47).

7.2.2 Equations of Motion

The somewhat unusual forms of the viscoelastic constitutive laws generate
several questions related to their mathematical and physical consequences.
We begin with the mathematical questions, and with this in mind, remember
that the reason for introducing a constitutive law is to complete the equations
of motion. There are two functions that are solved for, which are the displace-
ment and the stress. Using the standard linear model (7.50), and assuming
there is no body force, the equations to solve are

R0
∂2U

∂t2
=
∂T

∂A
, (7.51)

T + τ0
∂T

∂t
= E

(
∂U

∂A
+ τ1

∂2U

∂A∂t

)
. (7.52)
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To complete the problem, initial and boundary conditions must be specified
and an example is presented below. Also, if one of the other viscoelastic
models is used then (7.52) would change accordingly.

Example: Periodic Displacement

A common testing procedure involves applying a periodic displacement to
one end of the material, while keeping the other end fixed. Assuming the bar
occupies the interval 0 ≤ A ≤ `, then the associated boundary conditions are

U(0, t) = a sin(ωt), and U(`, t) = 0. (7.53)

We are going to solve the system of equations (7.51), (7.52). In doing so,
it is assumed that the elastic modulus E and density R0 are known using
one or more of the steady-state tests described in Section 6.7. Our goal here
is to use the periodic displacement to determine the damping parameters
τ0 and τ1. This will be accomplished by finding the periodic solution to the
problem, which is the solution that appears long after the effects of the initial
conditions have died out. To find this solution assume that

U(A, t) = U(A)eiωt, (7.54)

and
T (A, t) = T (A)eiωt. (7.55)

Using complex variables simplifies the calculations to follow, but it is neces-
sary to rewrite the boundary condition at A = 0 in (7.53) to fit this formu-
lation. This will be done by generalizing it to

U(0, t) = aeiωt. (7.56)

It is understood that we are interested in the imaginary component of what-
ever expression we obtain. Now, substituting (7.54), (7.55) into (7.52) we
have that

T = E
1 + iωτ1
1 + iωτ0

dU

dA
. (7.57)

The momentum equation (7.51) in this case reduces to

d2U

dA2
= −κ2 U,

where

κ2 =
R0ω

2

E

1 + iωτ0
1 + iωτ1

.

The general solution of this is U = α exp(iκA) + β exp(−iκA). Imposing the
two boundary conditions gives us the following solution,
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U(A) = a
eiκA − e−iκA+2iκ`

1− e2iκ`
. (7.58)

To simplify the analysis we will assume the bar is very long and let `→∞.
With this in mind, note

κ2 =
R0ω

2

E

1 + ω2τ0τ1 + iω(τ0 − τ1)
1 + ω2τ2

1

.

Given that 0 ≤ τ0 < τ1, then Re(κ2) > 0 and Im(κ2) < 0. From this we have
that Im(κ) < 0, and so for large values of `, (7.58) reduces to

U(A) = ae−iκA.

With this, the displacement is

U(A, t) = aei(ωt−κA). (7.59)

One of the reasons that experimentalists use this test is to compare the stress
measured at A = 0 with what is predicted from the model. With the solution
in (7.59), and the formulas for the stress in (7.55) and (7.57), the stress at
A = 0 is

T (0, t) = −iκaE 1 + iωτ1
1 + iωτ0

eiωt. (7.60)

To determine the imaginary component of this expression set

r0e
iδ = κE

1 + iωτ1
1 + iωτ0

= ω
√
R0E

√
1 + iωτ1
1 + iωτ0

= ω
√
R0E

√
1 + ω2τ0τ1 + iω(τ1 − τ0)

1 + ω2τ2
0

.

Taking the modulus of this we have that

r0 = ω
√
R0E

(
1 + ω2τ2

1

1 + ω2τ2
0

)1/4

, (7.61)

and, taking the ratio of the imaginary and real components,

tan(2δ) =
ω(τ1 − τ0)
1 + ω2τ0τ1

. (7.62)

With this, (7.60) reduces to

T (0, t) = ar0 sin(ωt+ δ − π/2). (7.63)
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Figure 7.9 The amplitude r0 and phase δ in response to a periodic forcing. Shown
are the curves for a Kelvin-Voigt model, τ0 = 0, and for a standard linear model,
where τ0 = 1/2.

We are now in position to determine some of the affects of viscoelasticity.
First, because 1 +ω2τ2

1 > 1 +ω2τ2
0 , the amplitude ar0 of the observed stress

is increased due to the viscoelasticity. This conclusion is consistent with the
understanding that damping increases the resistance to motion. However, as
shown in Figure 7.9, the r0 curves for the two viscoelastic models are rather
similar, although they show some differences for very large values of ω. What
this means is that the r0 curve is not particularly useful in identifying which
viscoelastic model to use. This is not the case with the phase δ. As shown
in (7.63), for a viscoelastic material the phase difference between the stress
and displacement is δ−π/2. The characteristics of δ differ markedly between
the two models. For the Kelvin-Voigt model, so τ0 = 0, the formula in (7.62)
reduces to

δ =
1
2

arctan(ωτ1). (7.64)

In this case, δ is a monotonically increasing function of ω, and the larger
the driving frequency the closer δ gets to π/4 (see Figure 7.9). In compari-
son, for the standard linear model with 0 < τ0 < τ1, δ reaches a maximum
value when ω = 1/

√
τ0τ1, and approaches zero as ω → ∞. This difference

provides a simple test to determine which of the two models should be used.
It is also useful for determining the damping parameters from experiment. If
one is able to measure the frequency ωM , and phase δM , for the maximum
phase, then from (7.62) one finds thats τ1 = [tan(2δM ) + sec(2δM )]/ωM and
τ0 = 1/(τ1ω2

M ). The derivation of this result is the subject of Exercise 7.25.
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To demonstrate that the frequency dependence shown in Figure 7.9 does in-
deed occur in applications, data for porcine cartilage is shown in Figure 7.10.
The dependence appears to follow the standard linear model. Also, note that
cartilage is strongly viscoelastic. The reason is that if an elastic model is as-
sumed then δ = 0, and this certainly does not happen in Figure 7.10. �

The previous example demonstrates how a mathematical model can be
used in conjunction with experimental measurements to help test that the
model is applicable, and to also determine some of the parameters. The focus
of the inquiry was on the resulting stress at the end of the bar. It is also
interesting to study the response within the bar. For example, with (7.59),
the displacement has the form

U(A, t) = ae−κiA sin(ωt− κrA), (7.65)

where κ = κr − iκi. This is a traveling wave which has an amplitude that
decays with A. A similar conclusion holds for the stress. Exactly how the
viscoelasticity affects the properties of the wave is important in many appli-
cations, such as in geophysics when studying earthquakes, and this is explored
in Exercise 7.14.

7.2.3 Integral Formulation

One of the attractive features of the Kelvin-Voigt model is that it provides
an explicit formula for the stress. This can be substituted directly into the
momentum equation (7.51), to produce a single equation for U , which avoids
a system formulation as in (7.51), (7.52). The other two viscoelastic models
are implicit, and require a solution of a differential equation to determine T .
There are reasons, particularly when solving the problem numerically, why
one would want to keep the problem in system form. However, there are also
reasons why it is worth expressing the problem as a single equation.
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Figure 7.10 Measured values for δ for porcine cartilage (Morita et al. [2002]).
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To solve the Maxwell model (7.48), note that it is a linear first-order
equation for T . Solving this equation one finds that

T (A, t) = T0(A)e−t/τ0 +
∫ t

0

Ee(τ−t)/τ0
∂ε

∂τ
dτ ,

where T0(A) = T (A, 0). We will assume T (A, 0) = 0, so the above solution
reduces to

T =
∫ t

0

G(t− τ)
∂ε

∂τ
dτ , (7.66)

where
G(t) = Ee−t/τ0 . (7.67)

Substituting this into (7.51) we obtain

R0
∂2U

∂t2
=
∫ t

0

G(t− τ)
∂3U

∂A2∂τ
dτ , (7.68)

which is an integro-differential equation for the displacement. The standard
method for solving this equation is to use the Laplace transform. For the
moment we will continue to concentrate on the formulation of the viscoelastic
constitutive law and save the question of how to solve the problems until later.

The standard linear model is also a linear first-order equation for T , that
can be solved using an integrating factor. One finds that

T =
∫ t

0

G(t− τ)
∂ε

∂τ
dτ , (7.69)

where
G(t) = E

(
1 + κe−t/τ0

)
, (7.70)

and κ = (τ1 − τ0)/τ0 is a nonnegative constant. It has been assumed in
deriving (7.69) that ε = 0 and T = 0 at t = 0. With this we have obtained
the same integral equation given in (7.66), except the function G is given in
(7.70).

We now have two versions of the viscoelastic models. Those in (7.48)-(7.50)
are differential equations and are examples of what are called rate-type laws.
Expressing them in integral form we found that

T (A, t) =
∫ t

0

G(t− τ)
∂ε

∂τ
(A, τ)dτ, (7.71)

and this is known as a viscoelastic law of relaxation type. The function G
is called the relaxation function. It is possible to rewrite the integral using
integration by parts. The result is
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T (A, t) = Eε(A, t) +
∫ t

0

K(t− τ)ε(A, τ)dτ , (7.72)

whereK(t) = G′(t) and E = G(0). Written this way, the stress is expressed as
the sum of an elastic component and an integral associated with the damping
in the system. Either version, (7.71) or (7.72), shows that the stress depends
on the values of the strain, or strain rate, over the entire time interval. For
this reason, the Maxwell and standard linear models apply to materials with
memory. It might seem unreasonable to expect that the stress at the current
time depends on what was happening a long time ago. However, the decaying
exponential in (7.70) reduces the contribution from earlier times, and the
smaller the dissipation time scale τ0 the less they contribute. In contrast,
with the Kelvin-Voigt model the stress depends solely on the values of the
strain and strain rate at the current time.

7.2.4 Generalized Relaxation Functions

The integral form of the stress law (7.71) is widely used in the engineering
literature, and this is partly due to the information that is obtained from
experiments. In many of the conventional tests used to determine material
properties, the strain is imposed and the stress is measured. This information
is then used to determine the parameters in the relaxation function. For this
to work one must make a judicious choice for the functional form for G. The
usual argument made in such situations is that real materials do not operate
as a simple spring, dashpot system as in Figure 7.8, but involve many such
elements. The consequence of this observation is that one does not end up
with one exponential, as in (7.67) and (7.70), but a relaxation function of the
form

G(t) = E
(
1 +

∑
κie

−t/τi

)
. (7.73)

An example spring, dashpot system that produce a multi-exponential relax-
ation function is shown in Figure 7.14, and the specifics are worked out in
Exercise 7.11. Although (7.73) is considered an improvement over the earlier
simpler models, it still has flaws. Again, the argument is that because of the
complexity of real materials, a finite number of elements is inadequate and
one should use a continuous distribution. What happens in this case is that
the sum in (7.73) is replaced with an integral. The resulting constitutive law
for the relaxation function is

G(t) = E

(
1 +

∫ ∞

0

g(τ)e−t/τdτ

)
, (7.74)

where g(τ) is a nonnegative function. This transfers the question of how
to pick G to what to take for g, which is not much of an improvement in
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terms of difficulty. The answer depends on the application. One approach
is to attempt to formulate a general law that is still simple enough to allow
analysis of the problem. For example, a commonly made choice used to model
the viscoelastic properties of biological materials is

G(t) = E

(
1 + κ

∫ τ2

τ1

1
τ
e−t/τdτ

)
, (7.75)

where κ, τ1, τ2 are positive constants. This is known as the Neubert-Fung
relaxation function. Exactly how to determine the three constants from ex-
periment is discussed in Fung [1993].

We are in a quagmire that is common in viscoelasticity, which is having
multiple constitutive laws to pick from but not knowing exactly which one to
use. The answer, again, depends on the application. To illustrate, let’s recon-
sider the slinky example of the previous section. As noted earlier, assuming
the bar is linearly elastic means that the motion observed in Figure 7.6 never
slows down, much less stops, and this was the motivation for introducing a
viscoelastic model in the first place. We will assume that the damping, or
dashpot, mechanism only acts when the bar is moving, and when at rest the
bar can be modeled as a linearly elastic material. In terms of the differential
forms in (7.48)-(7.50), this means that when εt = 0 and Tt = 0 the formula
reduces to T = Eε. This eliminates the Maxwell model from consideration.
This observation is why (7.49) and (7.50) are referred to as viscoelastic solids,
while (7.48) is called a viscoelastic fluid. This still leaves open the question
of whether to use a Kelvin-Voigt or a standard linear model. The answer
bridges the mathematical and experimental worlds. It is not uncommon for
an applied mathematician to ask an experimentalist to run a specific test that
corresponds to a problem that the mathematician is able to solve. It is also
not uncommon for the experimentalist to reply that the testing equipment
does not have the particular capability that is requested. What is necessary
in such cases is for the two to work out an experimental procedure that
can provide useful information for building and testing the model. One that
has found wide use in viscoelasticity involves periodic loading, and this was
considered in an earlier example. There are certainly other methods, and a
review of the possibilities can be found in Lakes [2004].

7.2.5 Solving Viscoelastic Problems

One of the standard tools for reducing viscoelastic models, both rate and
integral type, is the Laplace transform. There are a couple of reasons for
this. One is that it converts differentiation into multiplication. The second
reason is it can handle the convolution integrals that arise with the integral
type viscoelastic laws.
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Example 1: Deriving the Relaxation Function

For the standard linear model the stress T is related to the strain ε through
the equation

T + τ0
∂T

∂t
= E

(
ε+ τ1

∂ε

∂t

)
.

To solve this for T take the Laplace transform of both sides to obtain

L(T ) + τ0L(Tt) = E (L(ε) + τ1L(εt)) .

It is assumed that T = 0 and ε = 0 at t = 0. With this, and using Property
1 from Table 7.1, and (7.22), we obtain

T̂ + τ0sT̂ = E (ε̂+ τ1s ε̂ ) .

Solving for T̂ yields

T̂ = E
1 + τ1s

1 + τ0s
ε̂.

We are going to take the inverse transform to find T . At first glance it might
appear that the convolution theorem, Property 2 from Table 7.1, can be
used to find the inverse of the right hand side of the equation. However,
the function multiplying ε̂ does not satisfy (7.20), and therefore there is no
inverse transform for this function. It is possible to modify the equation to
get this to work, and the trick is to write the equation as

T̂ = E
1 + τ1s

s(1 + τ0s)
s ε̂. (7.76)

From (7.22), L−1(s ε̂ ) = εt, and from Property 9 from Table 7.1

L−1

(
1 + τ1s

s(1 + τ0s)

)
= 1 +

(
1− τ1

τ0

)
e−t/τ0 .

Applying the convolution theorem to (7.76), and then using integration by
parts, the stress is

T =
∫ t

0

(
1 +

(
τ1
τ0
− 1
)
e−(t−r)/τ0

)
∂ε

∂r
dr.

This result agrees with the solution given in (7.69) that was obtained using an
integrating factor. For this particular problem the integrating factor method
is easier to use, but its limitation is that it only works on first-order equa-
tions. The Laplace transform, however, also works on higher-order problems,
and this is important for studying more complex viscoelastic models, such as
those investigated in Exercises 7.11 and 7.12. �
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Example 2: Solving an Integro-Differential Equation

Suppose the bar is modeled as a Maxwell viscoelastic material, and the inte-
gral form of the stress law (7.66) is used. As shown in (7.68), the momentum
equation in this case is

R0
∂2U

∂t2
=
∫ t

0

G(t− τ)
∂3U

∂A2∂τ
dτ , (7.77)

whereG(t) = Ee−t/τ0 . It is assumed the bar occupies the interval 0 ≤ A <∞,
and the associated boundary conditions are

∂U

∂A
(0, t) = F (t), (7.78)

and
lim

A→∞
U(A, t) = 0. (7.79)

The initial conditions are U(A, 0) = Ut(A, 0) = 0. Taking the Laplace trans-
form of (7.77) we obtain

R0L(Utt) = L
(∫ t

0

G(t− τ)
∂3U

∂A2∂τ
dτ

)
. (7.80)

Because of the initial conditions, from (7.23), we have that L(Utt) = s2L(U).
Also, from the convolution theorem we know that

L
(∫ t

0

G(t− τ)V (τ)dτ
)

= L(G)L(V ).

Consequently, (7.80) takes the form

R0s
2Û = L(G)L

(
∂3U

∂A2∂t

)
. (7.81)

Now, basic integration gives us

L(G) =
∫ ∞

0

Ee−t/τ0e−stdt

= E
τ0

s+ τ0
.

Also,

L
(

∂3U

∂A2∂t

)
= sL

(
∂2U

∂A2

)
= s

∂2

∂A2
L(U).
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Figure 7.11 Solution of the Maxwell viscoelastic model as given in (7.86), in the
case of when F (t) = sin(t).

Introducing these into (7.81) we obtain

R0s
2Û = E

τ0s

s+ τ0

∂2Û

∂A2
.

The general solution of this second order differential equation is

Û = αeωA + βe−ωA, (7.82)

where

ω =

√
R0s(s+ τ0)

Eτ0
. (7.83)

To find α and β we take the Laplace transform of the boundary conditions
(7.78) and (7.79) to find that ÛA(0, s) = F̂ and Û(A, s) → 0 as A → ∞. In
this case (7.82) reduces to

Û(A, s) = − 1
ω
F̂ (s)e−ωA. (7.84)

From Property 18, in Table 7.1 we have that

L−1

(
1
ω
e−ωA

)
= κe−τ0t/2I0

[
1
2
τ0
√
t2 − λ2

]
H(t− λ), (7.85)

where κ =
√
Eτ0/R0 and λ = A/κ. In the above expression, I0 is the modified

Bessel function of the first kind. With this, and the convolution theorem, it
follows that

U(A, t) = H(t− λ)
∫ t

λ

Q(A, t− r)F (r)dr, (7.86)

where

Q(A, t) = −κe−τ0t/2I0

[
1
2
τ0
√
t2 − λ2

]
. (7.87)
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An interesting conclusion that can be made is that the effects of the bound-
ary condition move through the material with finite velocity. According to
(7.86), the solution starts to be nonzero when t = λ, and the corresponding
velocity is

√
Eτ0/R0. On the other hand, the solution in (7.86) is not as sat-

isfying a result as the previous example because the solution is in the form
of a convolution integral involving a Bessel function. However, most math
software programs, such as Maple and MATLAB, have the Bessel functions
built in, so it is relatively easy to evaluate the integral. The result of such
a calculation is shown in Figure 7.11, which gives the solution at two time
points. The finite velocity of the wave is clearly seen in this figure. �

Exercises

7.1. A linearly elastic bar is stretched by applying a constant stress T0 to the
right end. Assuming the original interval is 0 ≤ A ≤ `0 then the boundary
conditions are U(0, t) = 0 and T (`0, t) = T0. Assume there are no body forces.

(a) Find the steady-state solution for the density, displacement and stress.
(b) What happens to the displacement and stress if Young’s modulus is in-

creased?

7.2. The equations for the linearly elastic bar are given in (7.27)-(7.29). This
exercise shows that not just any smooth function can be used in the displace-
ment initial condition.

(a) Based on the impenetrability of matter requirement, what condition must
be imposed on f(A) in (7.29)?

(b) Using the result from part (a), explain why it is not possible to take
f(A) = 3A(`−A)/`, but it is possible to take f(A) = A(`−A)/(2`).

7.3. This problem considers various ways to express the solution of the wave
equation given in (7.36).

(a) Show that −κ−n+1 ≤ κn.
(b) Show that (7.36) can be written as

U(A, t) =
∞∑

n=1

I(−κ−n+1,κn)(t) .

(c) Show that (7.36) can be written as

U(A, t) =


U0 if 0 ≤ A < q(t),
U0/2 if A = q(t),
0 if q(t) < A ≤ `,

where q(t) is a 2`/c periodic function.
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7.4. Solve the following problems by extending the method that was used in
Section 7.1.1 to solve the wave equation.

(a)
∂2U

∂t2
− 4

∂2U

∂A2
= 1,

where U(A, 0) = f(A) and Ut(A, 0) = 0.
(b)

∂2U

∂t2
+
∂U

∂t
=
∂2U

∂A2
+
∂U

∂A
,

where U(A, 0) = f(A) and Ut(A, 0) = 0.

7.5. A steel bar is forced periodically, and it is found that the first three
resonant frequencies are 7,861 Hz, 15,698 Hz, and 23,535 Hz (Bayon et al.
[1994]).

(a) Explain why this result is consistent with the assumption that the bar is
linearly elastic.

(b) If the bar is 0.32 mm long and has a density of 7893.16 kg/m3, find Young’s
modulus for the bar.

(c) The same experimentalists found that the wave speed in the bar is 5037
m/sec. Use this to estimate the Young’s modulus and compare the result
from part (b).

7.6. The equations of motion when the cross-section is not constant were
derived in Exercise 6.21. This problem explores how these equations can be
linearized.

(a) Explain why assuming material linearity, so T = Eε, does not result in
the momentum equation being linear.

(b) Assuming geometric linearity, as well as material linearity, the momentum
equation reduces to

∂2U

∂t2
= c2

∂2U

∂A2
+

1
σ

∂σ

∂A

∂U

∂A
+ F.

This is known as Webster’s equation, or Webster’s horn equation, and it
is linear. Explain how this result is obtained from the equations given in
Exercise 6.21.

7.7. This problem explores the effect on the solution when using different
materially linear theories. The two constitutive laws that are compared are:
(i) T = EUA, and (ii) τ = Eux. As usual, let ε = UA and εe = ux

(a) Transform constitutive law (ii) into material coordinates, that is, transform
it into an expression involving T and ε. For labeling purposes, identify this
stress as Tii and label the one from (i) as Ti. On the same axes, sketch Tii

and Ti for −1 < ε <∞.
(b) Transform constitutive law (i) into spatial coordinates, that is, transform

it into an expression involving τ and εa. For labeling purposes, identify
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Figure 7.12 Three-parameter viscoelastic solid studied in Exercise 7.9.

this stress as τi and label the one from (ii) as τii. On the same axes, sketch
τi and τii for −∞ < εe < 1.

(c) Show that Tii < Ti if ε 6= 0.
(d) Show that τii > τi if εa 6= 0.
(e) Suppose the stress in the bar becomes unbounded for large tensile strains.

Is Tii or Ti the more appropriate constitutive law?
(f) Suppose the stress in the bar becomes unbounded for large compressive

strains. Is Tii or Ti the more appropriate constitutive law?

7.8. This problem explores what happens with a constitutive law when there
is a jump in the solution. To do this, assume that at a given position A, the
stress and strain are smooth except for a jump discontinuity when t = ts.

(a) By integrating the constitutive law (7.50) over the time interval ts−∆t ≤
t ≤ ts +∆t, show that an expression of the following form is obtained,

τ0 [T (A, ts +∆t)− T (A, ts −∆t)]

= Eτ1 [ε(A, ts +∆t)− ε(A, ts −∆t)] +
∫ ts+∆t

ts−∆t

q(A, t)dt.

(b) By letting ∆t→ 0, show that

τ0
[
T (A, t+s )− T (A, t−s )

]
= Eτ1

[
ε(A, t+s )− ε(A, t−s )

]
.

This states how the stress and strain behave across a jump, similar to what
is obtained from the Rankine-Hugoniot condition for traffic flow.

(c) A common experiment is to apply a constant stress at one end of the bar,
which is assumed here to be at A = 0. This produces what is known as
a creep response, and the associated boundary condition is T (0, t) = T0

for t > 0. Assume that for t < 0 the bar is at rest with T = 0 and ε = 0.
Using the standard linear model show that an expression of the following
form is obtained

Ei
∂U

∂A
(0, 0+) = T0,

where Ei = Eτ1/τ0. In engineering Ei is called the instantaneous elastic
modulus. Explain why it is larger than the elastic modulus.

(d) Find the instantaneous elastic modulus when using the Maxwell model.

7.9. This problem concerns the system shown in Figure 7.12, which is an
example of what is known as a three- parameter viscoelastic solid.
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(a) Show that the force F and the displacement u satisfy

F +
1

c1(k1 + k2)
F ′ =

k1k2

k1 + k2
u+

k2

c1(k1 + k2)
u′.

(b) Show that the continuum version of the result from part (a) has the form

T + τ0
∂T

∂t
= E

(
ε+ τ1

∂ε

∂t

)
,

where 0 < τ0 < τ1.
(c) Show that the viscoelastic constitutive law in part (b) can be expressed in

integral form (7.66), where

G(t) = E(1 + κe−t/λ).

Assume that ε = 0 and T = 0 at t = 0. Also, show that κ and λ are
positive.

(d) Discuss the similarities, and differences, between the results from (a) and
(b) with the formulas for the standard linear model.

7.10. This problem concerns the system shown in Figure 7.13, which is an
example of what is known as a three-parameter viscoelastic fluid.

(a) Show that the force F and the displacement u satisfy

F +
c1 + c2
k1

F ′ = c2u
′ +

c1c2
k1

u′′.

(b) Show that the continuum version of the result from part (a) has the form

T + τ0
∂T

∂t
= τ1

∂ε

∂t
+ τ2

∂2ε

∂t2
,

where the τi’s are positive with τ0τ1 < τ2.
(c) Show that the viscoelastic constitutive law in part (b) can be expressed in

integral form as

T = κ1ε
′ +
∫ t

0

G(t− s)ε′(s)ds,

where

� ���

��
��

Figure 7.13 Three-parameter viscoelastic fluid studied in Exercise 7.10.
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Figure 7.14 Five-parameter model for Exercise 7.11.

G(t) = κ2e
−t/λ.

Assume that ε = ε′ = 0 and T = 0 at t = 0. Also, show that κi’s and λ
are positive.

7.11. This problem concerns the five-parameter model shown in Figure 7.14.
(a) Derive the differential equation that relates the force F with the displace-

ment u.
(b) Show that the continuum version of the result from part (a) has the form

T + τ0
∂T

∂t
+ τ1

∂2T

∂t2
= E

(
ε+ τ2

∂ε

∂t
+ τ3

∂2ε

∂t2

)
,

where the τi’s are positive, with τ0 < τ2 and τ1 < τ3.
(c) Show that the viscoelastic constitutive law in part (b) can be expressed in

integral form (7.66), where

G(t) = E(1 + κ1e
−t/λ1 + κ2e

−t/λ2).

Assume that ε = ε′ = 0 and T = T ′ = 0 at t = 0. Also, show that the λi’s
are positive.

7.12. This problem concerns the four-parameter model shown in Figure 7.15,
what is known as the Burger model.

(a) Derive the differential equation that relates the force F with the displace-
ment u.

�
�
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Figure 7.15 The Burger viscoelastic model used in Exercise 7.12.
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(b) Show that the continuum version of the result from part (a) has the form

T + τ0
∂T

∂t
+ τ1

∂2T

∂t2
= τ2

∂ε

∂t
+ τ3

∂2ε

∂t2
,

where the τi’s are positive, with 4τ1 < τ2
0 .

(c) Show that the viscoelastic constitutive law in part (b) can be expressed in
integral form (7.66), where

G(t) = κ1e
−t/λ1 + κ2e

−t/λ2 .

Assume that ε = ε′ = 0 and T = T ′ = 0 at t = 0. Also, show that the λi’s
are positive.

7.13. In some applications it is easier to work with the stress rather than the
displacement. This problem investigates this for the standard linear model.

(a) Derive (7.47).
(b) Starting from (7.50), show that

ε =
∫ t

0

J(t− τ)
∂T

∂τ
dτ .

Assume here that ε = 0 and T = 0 at t = 0. The function J is called the
creep function.

(c) Show that

ε = J(0)T +
∫ t

0

J ′(t− τ)Tdτ.

(d) Use the result in part (b) to transform (7.52) into an equation for the
stress T .

(e) By taking the Laplace transform of the creep and relaxation forms of the
constitutive laws show that∫ t

0

G(s)J(t− s)ds = t.

7.14. This problem investigates the traveling waves that are obtained in the
periodic displacement example using the standard linear model.

(a) Assuming ` is large, and letting κ = κr − iκi, show that (7.54) and (7.58)
reduce to

U(A, t) = ae−κiA sin(ωt−Aκr).

Find the corresponding expression for the stress T (A, t).
(b) Show that for high frequencies

κ ∼
√
R0τ0
Eτ1

ω

(
1− i

τ1 − τ0
2τ0τ1ω

+O

(
1
ω2

))
.
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(c) Show that for low frequencies

κ ∼
√
R0

E
ω

(
1− i

1
2
(τ1 − τ0)ω +O(ω2)

)
.

(d) Suppose the elastic modulus E and density R0 are known. Can the phase
velocity vp = ω/κr of the wave, measured at both low and high frequen-
cies, be used to determine the two viscoelastic constants τ0 and τ1? If the
amplitude ae−κiA of the wave is also measured at both low and high fre-
quencies, does this help in determining the two viscoelastic constants τ0
and τ1?

7.15. One of the consequences of damping is that it can mollify the effects
of resonance. As an example, suppose that in (7.58) the viscoelasticity is
turned off by letting τ0 = τ1 = 0. In this case there are frequencies for which
(7.58) is undefined. Relate these to the resonance frequencies found in (7.40).
Also, explain why (7.58) does not have this particular problem when the
viscoelasticity is turned on (remember that τ0 < τ1).

7.16. This problem investigates the differences in the viscoelastic models
when a periodic forcing is used. The boundary conditions in this case are

T (0, t) = b sin(ωt), U(`, t) = 0.

Assume the standard linear viscoelastic model is used.
(a) Assuming a periodic solution, find U(A) and T (A).
(b) Find U(0) assuming ` → ∞. Your answer should be in terms of one trig

function, similar to what was done for the stress in (7.63).
(c) In the experiments one measures the displacement at the end and com-

pares the data with the predictions from the model. One objective is to
determine the viscoelastic parameters in the model. Does the periodic
stress boundary condition provide any information not learned from the
periodic displacement boundary condition?

7.17. Find the Laplace transform of the following functions. Make sure to
state if there are conditions on s.

(a) f(t) = teαt

(b) f(t) = cosh2 t

(c) Si(t) =
∫ t

0
sin(r)

r dr

(d) f(t) = 1
t sin(t)

(e) f(t) =
√
t

7.18. Using the Laplace transform, solve y′′ + 4y = f(t), where y(0) = 0,
y′(0) = −1, and

f(t) =

{
cos(2t) if 0 ≤ t < π,

0 otherwise.



Exercises 349

7.19. Using the Laplace transform, solve the system of equations

x′ = 3x− 4y
y′ = 2x+ 3y

where x(0) = 1 and y(0) = 0.

7.20. This problem concerns solving the diffusion equation

Duxx = ut, for
{

0 < x <∞,
0 < t,

where u(x, 0) = 0, u→ 0 as x→∞, and

u(0, t) =
{
T if 0 < t ≤ b,
0 if b < t.

Using the Laplace transform, find the solution of this problem.

7.21. Using the Laplace transform solve the integral equation

u(t)−
∫ t

0

et−ru(r)dr = f(t).

Assume this holds for 0 ≤ t and that f(t) is continuous.

7.22. Find the solution of the problem for a linearly elastic bar with zero
initial conditions, zero external forcing, and boundary conditions U(0, t) = 0
and U(`, t) = U0.

7.23. In solving the tautochrone problem one finds that it is necessary to
solve the integral equation∫ t

0

u(r)√
t− r

dr = α, for 0 < t,

where α is a positive constant. Find the solution using the Laplace transform.

7.24. Using the Laplace transform solve the integral equation

u(t) +
∫ t

0

u(r)√
t− r

dr = f(t),

where f(t) is smooth and satisfies f(0) = 0.

7.25. This problem explores some of consequences of the periodic displace-
ment example of Section 7.2.2. Assume that 0 < τ0 < τ1.

(a) Assume that the maximum value of δ, as determined from (7.62), is δM
and occurs at frequency ωM . Show that τ1 = [tan(2δM ) + sec(2δM )]/ωM

and τ0 = 1/(τ1ω2
M ).

(b) Use your results from part (a) to estimate τ1 that was used in Figure 7.9.



Chapter 8

Continuum Mechanics: Three Spatial
Dimensions

8.1 Introduction

The water in the ocean, the air in the room, and a rubber ball have a common
characteristic, they appear to completely occupy their respective domains.
What this means is that the material occupies every point in the domain.
This observation is the basis of the continuum approximation, and it was used
in Section 5.2 to define continuum variables such as density and flux. These
variables can be defined as long as the individual nature of the constituent
particles are not apparent. So, for example, the continuum approximation
cannot be used on the nanometer scale, because atomic radii range from 0.2
to 3.0 nm. It can, however, be used down to the micron level. As an example,
at 15◦ C, and one atmosphere, there are approximately 3 × 107 molecules
in a cubic micron of air. Similarly, for water at room temperature there are
approximately 3× 1010 molecules in a cubic micron, and for a metal such as
copper there are approximately 1011 atoms in a cubic micron. Consequently,
the averaging on which the continuum approximation is based is applicable
down to the micron scale. This is why continuum models are commonly used
for microdevices, which involve both electrical and mechanical components.
At the other extreme, continuum models are used to study the motion of disk
galaxies and, more recently, to investigate the existence and properties of the
“dark fluid” proposed to be responsible for the expansion of the universe.
This range of applicability is why the continuum approximation, and the
subsequent equations of motion, play a fundamental role in most branches of
science and engineering. From a mathematical standpoint, the problems that
come from continuum models have been almost single-handedly responsible
for the development of an area central to applied mathematics, and this
is the theory of nonlinear partial differential equations. In this chapter the
fundamental concepts of continuum mechanics are introduced, and they are
then used to derive equations of motion for viscous fluids and elastic solids.

M.H. Holmes, Introduction to the Foundations of Applied Mathematics, 351
Texts in Applied Mathematics 56, DOI 10.1007/978-0-387-87765-5 8,
c© Springer Science+Business Media, LLC 2009
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8.2 Material and Spatial Coordinates

To define the material coordinate system, assume that at t = 0 a particular
point in the material is located at x = A. It is assumed that as the material
moves, the position of the point is given as x = X(A, t). To be consistent,
the position function must satisfy X(A, 0) = A. The resulting displacement
and velocity functions are defined as

U(A, t) = X(A, t)−A, (8.1)

and
V(A, t) =

∂U
∂t

. (8.2)

Because X(A, 0) = A, it follows that U(A, 0) = 0.
Instead of following particles as they move, one can select a spatial location

and then let them come to you. This is the viewpoint taken for spatial coor-
dinates. In this system, the displacement function is denoted as u(x, t), and
the velocity is v(x, t). As is usual for displacement functions, it is required
that u(x, 0) = 0.

Example

Suppose a particle that started at location (1,−1, 1) is, at t = 2, located at
(3, 0,−1).

Material Coordinates: For this particle, A = (1,−1, 1), and its displace-
ment at t = 2 is (3, 0,−1)− (1,−1, 1) = (2, 1,−2). In other words,

U(A, 2) = (2, 1,−2), for A = (1,−1, 1). (8.3)

We also have that

X(A, 0) = (1,−1, 1), for A = (1,−1, 1),

and
X(A, 2) = (3, 0,−1), for A = (1,−1, 1).

Spatial Coordinates: At t = 2, the displacement of the particle located at
(3, 0,−1) is (2, 1,−2). In other words,

u(x, 2) = (2, 1,−2), for x = (3, 0,−1). � (8.4)

The spatial system is the one usually used for fluids, which includes both
gases and liquids. As an example, when measuring the properties of the at-
mosphere, observers are often fixed, and not moving with the air. This is the
viewpoint taken by the spatial coordinate system, and hence the reason why
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it is the default system in fluid dynamics. In contrast, the material system is
associated with solid mechanics, because the configuration at t = 0, what is
known as the reference state, is usually known for a solid. The fact is, however,
that some of the more interesting contemporary applications of continuum
mechanics involve both fluid and solid components. A particularly rich area
for this is biology, which includes the study of how birds fly and the study
of the internal mechanisms of cell function. For this reason, both coordinate
systems need to be understood, and both are studied in this chapter.

The material and spatial descriptions for the displacement and velocity
functions must be consistent. This was demonstrated in the last example,
as given in (8.3) and (8.4). To express this in a general form, for a particle
with position function x = X(A, t) it is required that U(A, t) = u(x, t), and
V(A, t) = v(x, t). More expansively, these equations can be written as

U(A, t) = u(X(A, t), t), (8.5)

and
V(A, t) = v(X(A, t), t). (8.6)

The transformation between the two coordinate systems is assumed to be
invertible, and so it is possible to solve x = X(A, t) uniquely for A. Writing
the solution as A = a(x, t) then

u(x, t) = U(a(x, t), t), (8.7)

and
v(x, t) = V(a(x, t), t). (8.8)

The above formulas will be invaluable when converting the equations of mo-
tion between the two coordinate systems

8.2.1 Deformation Gradient

The assumption that the transformation between the two coordinate systems
is invertible is one of the fundamental hypotheses in continuum mechanics.
To explore this a bit more, suppose that given a material point A0 that its
spatial counterpart is x0 = X(A0, t). For material points A = A0 +∆A near
A0, we have from Taylor’s theorem

x = X(A0 +∆A, t)
≈ X(A0, t) + F∆A

= x0 + F∆A, (8.9)
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where F is the Jacobian matrix for X, evaluated at A0. Letting X = (X,Y, Z)
and A = (A1, A2, A3), then

F =



∂X

∂A1

∂X

∂A2

∂X

∂A3

∂Y

∂A1

∂Y

∂A2

∂Y

∂A3

∂Z

∂A1

∂Z

∂A2

∂Z

∂A3


. (8.10)

This matrix plays an important role in continuum mechanics, and is known
as the deformation gradient. The reason it is important can be seen in (8.9),
which shows that as a local approximation, x − x0 = F(A − A0). Conse-
quently, F is a measure of how much the motion is distorting the material,
where F = I means that there is no distortion. We will return to this idea
later in the chapter, once the equations of motion are derived.

If the transformation between the spatial and material coordinate systems
is invertible, then it must be possible to find A given x. We must, therefore,
be able to solve x − x0 = F(A −A0) for A. The result is that A = A0 +
F−1(x − x0). The requirement for this to hold is that F is invertible. This
is known as the impenetrability of matter assumption, and its mathematical
statement is that det(F) 6= 0. This means that det(F) is either always positive
or it is always negative. Given that X(A, 0) = A, so F = I at t = 0, then the
mathematical form for the impenetrability of matter assumption is

det(F) > 0. (8.11)

The one-dimensional version of this condition is given in (6.19). As in Chap-
ter 6, this inequality is assumed to hold whenever discussing the continuum
theory.

Example: Uniform Dilatation

A motion given by
x = α(t)A, (8.12)

where α(0) = 1, is called a uniform dilatation. As an example, suppose we
start out, at t = 0, with a sphere of radius r that is centered at the origin
(Figure 8.1). Under a uniform dilatation we still have a sphere, centered at
the origin, but with a radius αr. If α > 1 there is a uniform expansion
while for 0 < α < 1 there is uniform contraction. This is illustrated in
Figure 8.1 for a circular region in the plane. Calculating the displacement
and velocity, in material coordinates, using (8.1) and (8.2), we have that
U(A, t) = (α− 1)A and V(A, t) = α′A. To find the spatial version, we solve
(8.12) to obtain A = x/α. From (8.7) and (8.8) it follows that u(x, t) =
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Figure 8.1 Uniform
dilatation of a circular
region.
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(α − 1)x/α and v(x, t) = α′x/α. Therefore, as in the one-dimensional case,
v 6= ∂u

∂t . Finally, from (8.10), the deformation gradient is F = αI. To satisfy
the impenetrability of matter condition (8.11), it is required that α > 0. �

Example: Simple Shear

A motion given by x = A1 + α(t)A2, y = A2, z = A3, where α(0) = 1,
is an example of simple shear. An illustration of what happens in simple
shear is shown in Figure 8.2, where a rectangle is transformed into a par-
allelogram with the same height. This is the type of motion one gets when
pushing on the side of a deck of cards. To determine the kinematic vari-
ables, because X = (A1 + α(t)A2, A2, A3) then, from (8.1), we have that
U(A, t) = (α(t)A2, 0, 0). To find the displacement in spatial coordinates, we
solve x = (A1 +α(t)A2, A2, A3) to obtain (A1, A2, A3) = (x−αy, y, z). With
this,

u(x, t) = U(x− αy, y, z, t)
= (α(t)y, 0, 0).

Finally, from (8.10)

F =

1 α 0
0 1 0
0 0 1

 .

Given that det(F) = 1, then this motion satisfies the impenetrability of
matter condition for any value of α. �

�
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Figure 8.2 Simple shear of a rectangular region.
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Example: Rigid Body Motion

A rigid motion is one given by

x = Q(t)A + b(t), (8.13)

where Q(t) is a rotation matrix with Q(0) = I, and b(0) = 0. Therefore,
it consists of a rotation, determined by Q, followed by a translation given
by b. To qualify for a rotation, the matrix Q must satisfy QQT = I and
det(Q) = 1. As an example, consider a merry-go-round motion, where the
points in the x, y-plane rotate around the z-axis. This happens if b(t) = 0
and

Q(t) =


cos(ωt) − sin(ωt) 0

sin(ωt) cos(ωt) 0

0 0 1

 . (8.14)

In this case, the points rotate around the z-axis with an angular velocity ω.
�

8.3 Material Derivative

To derive the formula for the material derivative, suppose F (A, t) is a variable
or function in material coordinates and its spatial version is f(x, t). In this
case, ∂F

∂t is the time rate of change of the variable for the material point that
began at A. To determine what this is in spatial coordinates note that F and
f must produce the same value. Therefore, if the material point that started
at A is currently located at x = X(A, t) then it must be that

F (A, t) = f(X(A, t), t). (8.15)

Letting x = (x, y, z) and X = (X,Y, Z), we have that

∂F

∂t
=
∂f

∂x

∂X

∂t
+
∂f

∂y

∂Y

∂t
+
∂f

∂z

∂Z

∂t
+
∂f

∂t

=
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
· ∂U
∂t

+
∂f

∂t

=
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
·V +

∂f

∂t

= ∇f · v +
∂f

∂t

=
(
∂

∂t
+ v · ∇

)
f, (8.16)
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where

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (8.17)

Therefore, the material derivative in three spatial dimensions is

D

Dt
=

∂

∂t
+ v · ∇. (8.18)

This derivative is important because it is the time rate of change of a function
following a material point, but expressed in spatial coordinates.

It is not hard to show that the material derivative satisfies some, but not
all, of the elementary properties of differentiation. For example, for constants
α, β and functions f , g,

D

Dt
(αf + βg) = α

Df

Dt
+ β

Dg

Dt
,

D

Dt
(fg) = g

Df

Dt
+ f

Dg

Dt
.

However, because of the v in the formula for the material derivative, it is
generally true that

D

Dt

∂

∂x
6= ∂

∂x

D

Dt
,

D

Dt

∂

∂t
6= ∂

∂t

D

Dt
.

In other words, interchanging the order of differentiation requires some care
when using the material derivative.

A particularly important example is the material derivative of the dis-
placement function. Recalling that V = ∂

∂tU, it follows from (8.16) that

v =
Du
Dt

. (8.19)

This is the vector version of (6.13), and some of the complications that arise
from this innocent-looking formula are explored in Exercise 8.10.

Example: Uniform Dilatation (cont’d)

For uniform dilatation we found that u(x, t) = (α − 1)x/α and v(x, t) =
α′x/α. To check on (8.19),
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Du
Dt

=
∂u
∂t

+ (v · ∇)u

=
α′

α2
x +

α′

α
x
(

1− 1
α

)
=
α′

α
x.

So, as expected, (8.19) holds. �

The above derivation of the material derivative closely follows what was
done for one dimension. In fact, this is true for much of what is done in the
chapter. There are some notable exceptions to this statement, and this will
become evident when we introduce the stress tensor in Section 8.6.1.

8.4 Mathematical Tools

The key tool in deriving the equations of motion is the Reynolds Transport
Theorem. To state this result, consider a collection of material points that
at t = 0 occupy a volume R(0), as shown in Figure 8.3. Due to the motion,
at later times these same points occupy the volume R(t). The surface of this
volume is denoted as ∂R(t). For example, if R is the ball ||x|| ≤ 2t+ 1, then
∂R(t) is the sphere ||x|| = 2t + 1. With this we have the following result,
known as the Reynolds Transport Theorem.

Theorem 8.1. Assuming R(t) is regular, and f is a smooth function then

d

dt

∫∫∫
R(t)

f(x, t)dV =
∫∫∫
R(t)

∂f

∂t
dV +

∫∫
∂R(t)

fv · n dS, (8.20)

where n is the unit outward normal to R(t), v is the velocity of the points on
the surface, dV is the volume element, and dS is the surface element.
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Figure 8.3 The material points that occupy the region R(0) at t = 0 move and at
later times occupy R(t).
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Stating that R(t) is regular includes several requirements, all imposed on the
original region R(0) and the motion x = X(A, t). First, R(0) is assumed to
satisfy the conditions stated in the integral theorems of multivariable calcu-
lus. Namely, R(0) is bounded with a boundary ∂R(0) that consists of finitely
many smooth, closed orientable surfaces. The second assumption is that the
motion is smooth and satisfies (8.11). The reason for this is that in the proof
of (8.20) a change of coordinates is made in the volume integral to trans-
form it into an integral over the time-independent domain R(0). To use the
change of variables theorem from multivariable calculus the Jacobian for the
transformation must be nonzero, and that is guaranteed if (8.20) holds.

To outline the proof of (8.20), the first step is to change variables in the
integrals so the limits are not dependent on time. The natural choice is to
use material coordinates, and let x = X(A, t). The Jacobian matrix for this
change of variables is F, given in (8.10). From the change of variables formula
for multiple integrals,∫∫∫

R(t)

f(x, t)dxdydz =
∫∫∫
R(0)

f(X(A, t), t) det(F)dA1dA2dA3. (8.21)

In the calculations to follow, we need a result from analysis for the derivative
of a determinant (Bourbaki [2004]). Namely, given a smooth invertible matrix
M(t),

d

dt
det(M) = det(M) tr

(
M−1 d

dt
M
)
, (8.22)

where det() is the determinant and tr() is the trace. The trace is the sum of
the diagonal entries of the matrix, and so tr(M) = M11 + M22 + M33. Its
basic properties, as well as those for the determinant, are given in Appendix
D. Setting J = det(F) then from (8.22), and the results from Exercise 8.9,

∂J

∂t
= J tr

(
F−1 d

dt
F
)

= J tr
(
F−1∇AV

)
= J tr (∇v) . (8.23)

In the above expressions, letting V = (V1, V2, V3) and v = (v1, v2, v3),

∇AV =



∂V1

∂A1

∂V1

∂A2

∂V1

∂A3

∂V2

∂A1

∂V2

∂A2

∂V2

∂A3

∂V3

∂A1

∂V3

∂A2

∂V3

∂A3


, (8.24)

and
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∇v =



∂v1
∂x

∂v1
∂y

∂v1
∂z

∂v2
∂x

∂v2
∂y

∂v2
∂z

∂v3
∂x

∂v3
∂y

∂v3
∂z


. (8.25)

The above two tensors play an important role in continuum mechanics, and
they are called velocity gradients. Specifically, ∇AV is the material velocity
gradient tensor, and∇v is the spatial velocity gradient tensor. One important
property that we need here is that

tr (∇v) = ∇ · v. (8.26)

With this, (8.23) reduces to

∂J

∂t
= J (∇ · v) . (8.27)

It should be remembered that in the above expression J is a function of A
and t, and ∇ · v is evaluated at x = X(A, t).

We are now in position to differentiate (8.21). Letting X = (X,Y, Z),

d

dt

∫∫∫
R(t)

f(x, t)dxdydz

=
∫∫∫
R(0)

[
∂f

∂t
J +

∂f

∂x

∂X

∂t
J +

∂f

∂y

∂Y

∂t
J +

∂f

∂z

∂Z

∂t
J + f

∂J

∂t

]
dA1dA2dA3

=
∫∫∫
R(0)

[
∂f

∂t
+
∂f

∂x
V1 +

∂f

∂y
V2 +

∂f

∂z
V3 + f∇ · v

]
JdA1dA2dA3

=
∫∫∫
R(0)

[
∂f

∂t
+∇f · v + f∇ · v

]
JdA1dA2dA3

=
∫∫∫
R(t)

[
∂f

∂t
+∇ · (fv)

]
dxdydz. (8.28)

The next step requires the Divergence Theorem, which states that for a
smooth function w, ∫∫∫

R

∇ ·w dV =
∫∫
∂R

w · n dS.

Taking w = fv, then (8.28) reduces to (8.20), and the theorem is proved.
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A useful form of the Reynolds Transport formula comes out of the proof,
and it is worth restating the result. From (8.28), and the definition of the
material derivative in (8.18), it follows that

d

dt

∫∫∫
R(t)

f(x, t)dV =
∫∫∫
R(t)

(
Df

Dt
+ f∇ · v

)
dV . (8.29)

8.4.1 General Balance Law

The above integral theorems will be used to take balance laws that are for-
mulated as integrals and express them as differential equations. The steps
involved in this derivation are always the same, so it is worth deriving a gen-
eral formula that can be used when needed. With this in mind, the general
form of the balance laws can be written as

d

dt

∫∫∫
R(t)

f(x, t)dV = −
∫∫

∂R(t)

J · n dS +
∫∫∫
R(t)

Q(x, t)dV . (8.30)

To state the above equation in physical terms, f can be thought of a density
of a quantity, and examples are mass density, momentum density, and energy
density. The above balance law states that the rate of change of the total
amount of this quantity in a region R(t) is due to the flux across the boundary
and the creation or loss through the volume. The flux in this case is J, and
Q is the creation or loss density.

The integral balance law (8.30) is the three dimensional version of (4.47).
Differentiating the integral using (8.29), and using the Divergence Theorem
to convert the surface integral into a volume integral, (8.30) can be written
as ∫∫∫

R(t)

(
Df

Dt
+ f∇ · v

)
dV =

∫∫∫
R(t)

[−∇ · J +Q(x, t)]dV .

The balance law is assumed to hold for all volumes R, and therefore from the
du Bois-Reymond Lemma we have that

Df

Dt
+ f∇ · v = −∇ · J +Q, (8.31)

or equivalently
∂f

∂t
+∇ · (vf) = −∇ · J +Q. (8.32)

This equation, in one form or another, has been used repeatedly in this
textbook. The one-dimensional version (4.48) was used to derive the diffusion
equation in Chapter 3, it was used in the derivation of the traffic flow equation
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in Chapter 4, and it was used multiple times in Chapter 6. We are now going
to use it to derive the equations of continuum mechanics.

8.5 Continuity Equation

The assumption is that mass is neither created nor destroyed. To express this
mathematically, assume that at t = 0 a collection of material points occupies
the volume R(0). At any later time these same points occupy a spatial volume
R(t). Our assumption means that the total mass of the material in this region
does not change. If we let ρ(x, t) designate the mass density of the material
(i.e., mass per unit volume) then our assumption states that

d

dt

∫∫∫
R(t)

ρ(x, t)dV = 0. (8.33)

In terms of the general law (8.30), we have that f = ρ, J = 0, and Q = 0.
Therefore, from (8.31) we have that the continuity equation is

Dρ

Dt
+ ρ∇ · v = 0. (8.34)

8.5.1 Incompressibility

When studying the motions of liquids, such as water, it is very often assumed
the liquid is incompressible. The idea is that even though a volume of ma-
terial points moves, and changes shape, the total volume is constant. This
assumption provides an addition balance law, and it is that

d

dt

∫∫∫
R(t)

dV = 0. (8.35)

In this case, in (8.30), f = 1, J = 0, and Q = 0, and so from (8.31) the
resulting differential equation is

∇ · v = 0. (8.36)

This is the continuity equation for an incompressible material, fluid or solid.
You might be wondering what happens to the more general version given in
(8.34). Well, in this case it reduces to Dρ

Dt = 0. This states that the density
following a material point does not change in time. Therefore, if the density is
initially constant, then it is constant for all time. In this textbook, whenever
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discussing an incompressible material it will always be assumed that the
initial density is constant, so ρ is constant.

Examples

1. For uniform dilatation, v(x, t) = α′x/α. In this case, ∇ · v = 3α′/α.
Assuming that α is not constant then ∇·v 6= 0. Therefore, uniform dilatation
is not possible for an incompressible material. �

2. For translational motion the velocity v is independent of x, but can depend
on t. Given that v = v(t) then∇·v = 0. This means that translational motion
is possible for an incompressible material. This conclusion makes sense from
a physical point-of-view because the volume of an object is unaffected by
translation. By the same reasoning, it is expected that rigid body motion is
possible for an incompressible material, and this is proved in Exercise 8.4. �

8.6 Linear Momentum Equation

The derivation of the momentum equation requires more effort than for mass
conservation. One complication is that we now need to distinguish between
linear and angular momentum. We start with linear momentum, which is
what was derived in the one-dimensional formulation in Chapter 6. To deter-
mine the forces within the material we consider what happens as it moves.
With this in mind, we assume that at t = 0 a collection of material points
occupies a volume R(0), and at any later time these same points occupy a
spatial volume R(t), as shown in Figure 8.3. As in the one-dimensional formu-
lation, it is assumed that R is subject to external body forces, measured with
respect to unit mass, and these are denoted as f . There are also forces that
act on the surface of R due to the relative deformation of the material. The
one-dimensional version of this is shown in Figure 6.3. The idea is that the
material points external to R act on R across the surface ∂R. To incorporate
this into the balance law, given a point x on the surface, let t be the force,
per unit area, on R due the material exterior to R. Because of its units, t
is referred to as a stress vector. Also, from Newton’s Third Law, −t is the
stress of the material in R on the exterior region.

With this the balance of linear momentum gives us that

d

dt

∫∫∫
R(t)

ρv dV =
∫∫

∂R(t)

t dS +
∫∫∫
R(t)

ρf dV . (8.37)

It is important to understand that the above equation is an assumption, and
is one of the balance laws of continuum mechanics. We will reduce it to a
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differential equation, but before doing that it is necessary to consider the
stress vector t in more detail.

8.6.1 Stress Tensor

The equation in (8.37) is almost too general. To explain this statement, all
four quantities in this equation, ρ, v, t, and f , can depend on x and t. The
new complication is that t also depends on direction. As an example, if you
pull on a sheet of rubber, the stress t in the direction of the pull is different
than the stress t perpendicular to the pull. Given that we are dealing with
vectors in R3, you might think that if you know the stress vector for three
different directions that you can use this to find the stress vector in any
other direction. This is correct, and the next few paragraphs show how this
is done. It is important to point out that this result is much more than simply
constructing a basis in R3. It also requires the use of some of the fundamental
laws of physics.

We are going to show that the stress at a point on the surface can be
decomposed into stresses on three orthogonal coordinate surfaces. To explain
how, for simplicity, assume that the point is the origin. A small square piece
of the planar surface y = 0, centered at the origin, is shown in Figure 8.5(b).
The material in y > 0 exerts a force Fy on this square on the material in
y < 0. The resulting approximation for the stress is Fy/A, where A = h2 is
the area of the square. Letting the area shrink to zero we obtain the stress
vector ty = (T21, T22, T23)T , and this vector is shown in Figure 8.5(b). It
follows from Newton’s Third Law, that the stress of y < 0 on y > 0 is −ty.
In the same way, on the surface x = 0 there is a stress tx = (T11, T12, T13)T ,
and on the surface z = 0 there is a stress tz = (T31, T32, T33)T .

We are interested in the stress t = (t1, t2, t3)T on the surface that has unit
outward normal n = (n1, n2, n3)T , as illustrated in Figure 8.4. To relate this

Figure 8.4 A triangular piece of the tangent plane to a surface, along with the unit
outward normal n and stress vector t.
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Figure 8.5 Stress vectors on three orthogonal coordinate surfaces. Shown are: (a)
tx; (b) ty; and (c) tz.

with the stress vectors in Figure 8.5, consider a small tetrahedron as shown
in Figure 8.6. The lateral face ABC of the tetrahedron is perpendicular to
n, and is the triangular piece of the tangent plane shown in Figure 8.4. The
critical observation is that the forces on this small volume must balance.
Letting ∆Ay be the area of triangular face ABO then the total force on the
tetrahedron across this face is approximately −∆Ayty. The forces on the
other faces are determined in a similar manner, and from the requirement
that they balance we have that

−∆Axtx −∆Ayty −∆Aztz +∆At = 0, (8.38)

where ∆A is the area of the lateral face. A particularly useful, if not well
known, result from geometry is that the area of the four faces of the tetrahe-
dron are related as follows

∆Ax = n1∆A, ∆Ax = n2∆A, ∆Az = n3∆A.

Introducing these into (8.38), and cleaning things up a bit we have that

�

�

�

�
�

�

�

��

Figure 8.6 Cauchy stress tetrahedron used to derive the stress tensor in (8.40).
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t = n1tx + n2ty + n3tz

= n1

T11

T12

T13

+ n2

T21

T22

T23

+ n3

T31

T32

T33


=

n1T11 + n2T21 + n3T31

n1T12 + n2T22 + n3T32

n1T13 + n2T23 + n3T33


= TT n, (8.39)

where

T =


T11 T12 T13

T21 T22 T23

T31 T32 T33

 (8.40)

is known as the Cauchy stress tensor. This proves that three stress vectors
can be used to determine the stress in any direction. One consequence of this
is that we have nine unknown stress functions in (8.40). As in Chapter 6, we
will use a constitutive law to determine these functions.

As defined, the rows of the stress tensor (8.40) correspond to the three
stress vectors shown in Figure 8.5. The diagonal entries of T are referred to
as the normal stresses, and the off-diagonal entries are the shear stresses. For
example, the second row corresponds to ty and the entry of this vector that
is perpendicular, or normal, to the y = 0 plane is T22. The other two entries
T21 and T23 are the tangential, or shear, components.

Not everything was explained in the above derivation of the equation
t = TT n, and this was done to simplify the presentation. In particular,
it was stated that the force on ABO is approximately −∆Ayty. The word
“approximately” is used because the actual force on ABO is the integral of
−ty over ABO. We are using a first term Taylor series approximation of the
stress, which is its value at x = 0, and this gives rise to the stated approxi-
mation. A second point is that (8.38) comes directly from the force equation
F = ma, but it does not contain the acceleration term. The reason is, again,
Taylor’s theorem. It is not difficult to show that the acceleration term has
order O(∆A2). Therefore, it contributes to the second term in the expansion,
and not to the first term approximation in (8.38). In the limit of letting the
tetrahedron shrink to zero, the second terms in the approximation drop out,
and for this reason they were not included in (8.38).

Before ending this section, a comment is necessary about the definition of
the Cauchy stress tensor in (8.40). You would think that for a subject as old
as continuum mechanics that there would be universal agreement about how
to define such a fundamental concept. Well, apparently not because some
define T to be the transpose of what is given in (8.40). It will be shown
later that for most problems T is symmetric, so this difference has minimal
consequences when using the spatial coordinate system.
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8.6.2 Differential Form of Equation

Using (8.39), the balance law (8.37) for linear momentum becomes

d

dt

∫∫∫
R(t)

ρv dV =
∫∫

∂R(t)

TT n dS +
∫∫∫
R(t)

ρf dV . (8.41)

This is now in a form that is the same as the general law in (8.30). Using
(8.31) we therefore conclude that

D

Dt
(ρv) + (∇ · v)(ρv) = ∇ ·T + ρf . (8.42)

The divergence of T in the above equation is defined as

∇ ·T =



∂T11

∂x
+
∂T21

∂y
+
∂T31

∂z
∂T12

∂x
+
∂T22

∂y
+
∂T32

∂z
∂T13

∂x
+
∂T23

∂y
+
∂T33

∂z

 . (8.43)

Expanding the material derivative, and using the continuity equation (8.34),
we obtain

ρ
Dv
Dt

= ∇ ·T + ρf . (8.44)

This is the equation for linear momentum, or just the momentum equation
for short. It is expressed in spatial coordinates, and the material coordinates
version is given in Section 8.12.

8.7 Angular Momentum

Unlike continuity and linear momentum, the equation for angular momentum
is simply the statement that the stress tensor is symmetric. To obtain this
result, we consider the angular momentum of the volume R(t). For a single
point the angular momentum per unit volume is x×(ρv). Integrating this over
the volume, and accounting for the same forces used for linear momentum,
it follows that the balance law for angular momentum is

d

dt

∫∫∫
R(t)

x× (ρv)dV =
∫∫

∂R(t)

x× (TT n)dS +
∫∫∫
R(t)

x× (ρf)dV . (8.45)
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Carrying out the cross products, writing the result in our standard balance
law format, and then using the linear momentum equation to simplify the
expression, the resulting equation is (T32 − T23, T13 − T31, T21 − T12)T =
0. The conclusion is that T32 = T23, T13 = T31, T21 = T12. Therefore, as
stated earlier, to satisfy the balance law for angular momentum, T must be
symmetric.

8.8 Summary of the Equations of Motion

To summarize the equations of motion up to this point, we have found that
the continuity and momentum equations are, respectively,

Dρ

Dt
+ ρ∇ · v = 0, (8.46)

ρ
Dv
Dt

= ∇ ·T + ρf , (8.47)

where T is symmetric. If the material is assumed to incompressible, and the
initial density is constant, then (8.46) is replaced with

∇ · v = 0, (8.48)

and ρ is a constant. Depending on the region the material occupies, boundary
and initial conditions must be supplied to complete the problem.

Although the above equations are quite general, certain assumptions were
made in the derivation. In particular, it was assumed that mass is not cre-
ated or destroyed. If this occurs then both the continuity and the momentum
equations are affected. We also assumed that there are no sources of angular
momentum, other than what comes from the linear momentum forcing func-
tion f . There are situations where this does not happen, and the most well
known are micropolar materials. Those interested in investigating what this
means in terms of the model and analysis should consult Eringen [2001].

One last comment worth making here is that the above equations are
coordinate free. This means that if a particular orthogonal coordinate system
is preferred, such as cylindrical coordinates, one only needs to determine the
formulas for the divergence and gradient operators to be able to determine
the equations of motion. An example of this will be given in Section 9.2.2.

8.9 Constitutive Laws

It remains to specify the constitutive law for the stress. As discussed in Chap-
ter 6, there are certain requirements these laws are expected to satisfy. We
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are interested here in only one, and it is the Principle of Material Frame-
Indifference. The basic requirement is that the stress does not depend on the
observer, assuming observers are connected by a rigid body motion.

To put this into a mathematical framework, suppose we change coordinates
from x to x∗ using rigid body motion. Specifically,

x∗ = Q(t)x + b(t), (8.49)

where Q(t) is a rotation matrix, and Q and b are smooth functions of time. To
qualify for a rotation, the matrix Q must satisfy QQT = I and det(Q) = 1.
An example of such a matrix is given in (8.14). One important property of
rotations is that Q−1 = QT , and this is a direct consequence of the equation
QQT = I. In the parlance of continuum mechanics, (8.49) is known as an
Euclidean transformation. It differs from a Galilean transformation, often
studied in Newtonian physics. This is because for a Galilean transformation
Q is taken to be constant and b is linear in time.

The rigid body motion assumption has consequences for the material coor-
dinate system. Given that the spatial system reduces to the material system
when t = 0, then from (8.49) we have that

A∗ = Q0A + b0, (8.50)

where Q0 = Q(0) is a rotation, and both Q0 and b0 = b(0) are constants.
This means that if our two observers want to revert to material coordinates,
the above expression tells them how their material coordinate systems are
related.

There are two tenets of the Principle of Material Frame-Indifference, and
both are assumptions on the properties of the stress when measured by dif-
ferent observers.

Tenet 1 : Objectivity

Given basis vectors e1, e2, e3 in the x system, the corresponding basis vectors
in the x∗ system are e∗1 = Qe1, e∗2 = Qe2, e∗3 = Qe3. Using the respective
basis vectors, the stress has a representation T in the x system, and it has
a representation T∗ in the x∗ system. The Principle of Frame-Indifference
requires that the stress obeys the usual change of basis formula from linear
algebra, and so the requirement is that

T∗ = QTQT . (8.51)

A tensor T that satisfies this equation is said to be objective, or Euclidean
frame-indifferent.

Put into words, (8.51) states that the stress in the x∗ system can be
found by rotating back to the x system, calculating the stress there, and
then rotating the result over to the x∗ system. To show this mathematically,
consider the stress vector shown in Figure 8.6 and given in (8.39). Letting
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the unit outward normal in the x∗ system be n∗, then the stress vector in
this system is t∗ = T∗n∗. Now, according to (8.51), t∗ = QTQT n∗. Because
Q−1 = QT , then QT n∗ is n∗ rotated back into the x system, so QT n∗ = n.
With this, T(QT n∗) = Tn = t is the stress vector in the x system. In this
case, Q(TQT n∗) = Qt is the rotation of the stress tensor back over to the
x∗ system.

Tenet 2 : Form Invariance

The second tenet of Material Frame-Indifference concerns the functional form
of the constitutive law. To explain, suppose that the proposed constitutive
law for the stress states that it depends on a quantity R. In other words,
there is a function G so that

T = G(R). (8.52)

The assumption is that the form of the constitutive law does not depend on
the observer. Therefore, if T∗ and R∗ are the x∗ system versions of T and
R, then the requirement is that

T∗ = G(R∗). (8.53)

In this case the constitutive law is said to be form invariant.

The conditions given in (8.51), (8.52), and (8.53) are combined to produce
the requirement on the constitutive law coming from the Principle of Frame-
Indifference. The statement is that the function G must satisfy

QG(R)QT = G(R∗), (8.54)

for all possible values for R, rotations Q, and translations b.
To use the requirement in (8.54), we need some basic information about

how the variables transform under a rigid body motion. In the x coordinate
system, the material points move according to the rule x = X(A, t), while
in the x∗ coordinate system the material points move according to the rule
x∗ = X∗(A∗, t). Given (8.49), it follows that X∗ = QX+b. Taking the time
derivative of this equation it follows that

V∗ = QV + Q′X + b′,

or equivalently
v∗ = Qv + Q′x + b′. (8.55)

In a similar manner it follows that the deformation gradient, given in (8.10),
transforms as

F∗ = QF. (8.56)

This shows that F does not satisfy (8.51), and it is therefore not objective.
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Examples

1. Suppose it is assumed that T = G(v). In this case R = v, and from (8.55)
we have that R∗ = Qv + Q′v + b′. From this, (8.54) becomes

QG(v)QT = G(Qv + Q′x + b′).

This must hold for every rotation Q, and vectors v and b′. In particular,
taking Q = I and v = 0, then G(0) = G(b′) for all vectors b′. The only
function capable of this is the constant function, and so the stress must be
independent of the velocity. The conclusion is that to be consistent with the
Principle of Frame-Indifference, a constitutive law cannot depend on the spa-
tial velocity. �

2. Suppose it is assumed that T = λFFT , where F is the deformation gradient
and λ is a constant. In this case, the left-hand side of (8.54) is

QG(R)QT = λQFFT QT .

Also, from (8.56) we have that the right hand side of (8.54) is

G(R∗) = λF∗(F∗)T

= λ(QF)(QF)T

= λQFFT QT .

This shows that this constitutive law satisfies (8.54), and is therefore consis-
tent with the Principle of Frame-Indifference. �

3. The equation for the velocity in (8.55) is an example of a relationship of
the form g∗(x∗, t) = g(x, t). To relate the derivatives of these two functions,
from (8.49) we have that

x = QT (x∗ − b).

Letting g∗ = (g∗1 , g
∗
2 , g

∗
3) and g = (g1, g2, g3), then using the chain rule

∂g∗1
∂x∗

=
∂g1
∂x

∂x

∂x∗
+
∂g1
∂y

∂y

∂x∗
+
∂g1
∂z

∂z

∂x∗

=
∂g1
∂x

Q11 +
∂g1
∂y

Q12 +
∂g1
∂z

Q13,

∂g∗1
∂y∗

=
∂g1
∂x

∂x

∂y∗
+
∂g1
∂y

∂y

∂y∗
+
∂g1
∂z

∂z

∂y∗

=
∂g1
∂x

Q21 +
∂g1
∂y

Q22 +
∂g1
∂z

Q23.

Carrying out the other derivatives the conclusion is that
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(∇g)∗ = (∇g)QT ,

where

(∇g)∗ =



∂g∗1
∂x∗

∂g∗1
∂y∗

∂g∗1
∂z∗

∂g∗2
∂x∗

∂g∗2
∂y∗

∂g∗2
∂z∗

∂g∗3
∂x∗

∂g∗3
∂y∗

∂g∗3
∂z∗

 , ∇g =



∂g1
∂x

∂g1
∂y

∂g1
∂z

∂g2
∂x

∂g2
∂y

∂g2
∂z

∂g3
∂x

∂g3
∂y

∂g3
∂z

 .

As an example, with the velocity given (8.55),

(∇v)∗ = (Q∇v + Q′)QT

= Q(∇v)QT + Q′QT . � (8.57)

It needs to be pointed out that Frame-Indifference is only imposed on the
constitutive law for the stress, and not imposed on the equations of motion.
As shown in Exercise 8.23, the momentum equation is not form invariant.
More precisely, it is not invariant for Euclidean transformations, but it is
for Galilean transformations. This fact is one of the reasons for the rather
pointed controversies that surround the subject, and this will be discussed in
more detail later.

8.9.1 Representation Theorem and Invariants

The assumptions that the stress is objective, and the constitutive law is
form invariant, have some interesting consequences. One, which will play an
important role in the constitutive modeling, is the next result, known as the
Rivlin-Ericksen representation theorem.

Theorem 8.2. Assume T and R are both symmetric and objective tensors.
If T = G(R) is form invariant then the constitutive law can be rewritten as

T = α0I + α1R + α2R2, (8.58)

where the coefficients α0, α1, and α2 are functions of

IR = tr(R), (8.59)

IIR =
1
2
(
tr(R)2 − tr(R2)

)
, (8.60)

IIIR = det(R). (8.61)

In the above expressions, tr() is the trace, and det() is the determinant.
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The proof of this theorem relies on picking different rotations that show
how to simplify G, and the steps are outlined in Exercise 8.26. A somewhat
simplier proof, that requires an additonal hypothesis,is given in Exercise 8.25.

The three quantities IR, IIR, and IIIR are the principal invariants of R.
They are called invariants because their values do not change when changing
coordinates using rigid body motion. The proof of this statement is based
on the identities tr(RS) = tr(SR) and det(RS) = det(SR). For example,
IIIR∗ = det(R∗) = det(QRQT ) = det(QT QR) = det(R) = IIIR. To take
advantage of this observation, recall that a symmetric matrix can be diag-
onalized, and the diagonal entries are the eigenvalues λ1, λ2, and λ3. With
this we have that

IR = λ1 + λ2 + λ3, (8.62)
IIR = λ1λ2 + λ1λ3 + λ2λ3, (8.63)

IIIR = λ1λ2λ3. (8.64)

This shows that in terms of their dependence on the eigenvalues, IR is linear,
IIR is quadratic, and IIIR is cubic. It also shows that the three invariants
are independent, in the sense that it is not possible to write one of them in
terms of the other two. Some of the properties of the principal invariants are
developed in Exercise 8.24.

A consequence of material frame-indifference is that the material must be
isotropic, which means that the material properties are the same in all direc-
tions. To investigate what this means physically, assume that v = (u, v, w)
and the constitutive law is

T =


a
∂u

∂x
0 0

0 b
∂v

∂y
0

0 0 c
∂w

∂z

 . (8.65)

For an isotropic material it is required that a = b = c. To explain why,
suppose an experimental device is aligned with the x-axis and it measures
T11 for ∂u

∂x = 1. If the device is picked up and rotated so it is aligned with the
y-axis, and the experiment rerun, then one would measure T22 for ∂v

∂y = 1.
For an isotropic material, because the test in the y-direction is exactly the
same as the one run earlier in the x-direction, the value of T22 must equal the
stress T11 measured in the first experiment. For this to happen it is necessary
that a = b, and by extension we have that a = b = c. The conclusion that
the stress is directionally independent is a consequence of the assumption of
form invariance (8.53). It is possible to generalize the formulation and include
non-isotropic materials, and an introduction to this can be found in Batra
[2002] and Soldatos [2008].
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The ideas underlying the Principle of Frame-Indifference are almost uni-
versally accepted by those working in continuum mechanics, and the develop-
ment used here was adapted from the work of Svendsen and Bertram [1999].
This does not mean that all issues related to this principle have been worked
out. Most of the attention on this topic is not germane to this textbook, but
it is worth providing a glimpse into some of the questions that have arisen.
Constitutive laws are macroscopic functions representing the accumulated
actions taking place on the atomic scale. This viewpoint was used in Chapter
6 to help explain how the atomic structure of a solid can give rise to the
assumed linear law of elasticity. The idea is that it should be possible to
derive the constitutive law from more fundamental principles, such as arise
in statistical mechanics. This very attractive proposal brings with it a prob-
lem, which is that the Newtonian laws of microscopic physics generally do
not satisfy the Principle of Frame-Indifference. Given this then how can one
expect that the resulting macroscopic constitutive laws obey this principle?
The resolution of this problem involves a closer look at the limit taken when
moving from the microscopic to macroscopic scale, and this is discussed in
the papers by Speziale [1987] and Murdoch [2006]. More general reviews on
Frame-Indifference can be found in Speziale [1998] and Frewer [2009].

8.10 Newtonian Fluid

To apply the above theory to the study of fluid motion, the first question to
consider is, what exactly is a fluid? It is certainly easy to list specific examples.
This includes liquids, such as water and mercury at room temperature, as
well as gases, such as air. Two of the central characteristics of fluids is their
ability to flow, and their inability to retain a specific shape of their own. The
important question for us is, how do we translate these observations into a
mathematical formula for the stress?

8.10.1 Pressure

In developing the constitutive law for a solid, one of the first experiments
we considered was what happens when the material is compressed. We found
that the displacement in such situations was not constant, and this gave rise
to the concept of a strain in an elastic solid. The reason a strain is possible
within the solid is indicated in Figure 6.9. The forces holding the atoms in
the lattice enable the solid to support a variable displacement. This is not
possible in a fluid. The reason is that the fluid atoms are farther apart, and
are able to move past each other with little difficulty. Under compression
they will get closer together, and assuming the fluid has come to rest, they
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are all approximately equidistant from each other. This is the situation, for
example, that occurs after you have blown up a balloon. The compression
does introduce a stress in the fluid, and it is the same in all directions. This
is the concept underlying a pressure, and the resulting constitutive law is

T = −pI, (8.66)

where I is the identity tensor and p is the pressure.

8.10.2 Viscous Stress

What about the stress when the fluid is moving? A hint on how to answer this
is obtained from the usual explanation for how to account for air resistance.
When modeling the motion of an object in a fluid, such as a ball falling
through the air, it is usually assumed that the drag force is proportional
to the velocity. The correct way to say this is that it is proportional to the
relative velocity between the fluid and object. The idea is that when atoms of
the fluid move together, in parallel, there is no relative velocity and therefore
no resistance. It is when the atoms move past each other that the resistance
force is generated. The resulting constitutive assumption is that the fluid
stress depends on the spatial derivative of the fluid velocity. To get an idea
of what this entails, all of the various spatial derivatives of v are collected
together in the velocity gradient tensor ∇v, given in (8.25). The constitutive
assumption is, therefore, that each of the six elements of the stress tensor are
functions of the nine derivatives in the velocity gradient. This is not a very
appealing result. For example, even if we try to make things easy and assume
that the dependence is linear we end up with 54 parameters.

To derive a more manageable theory for fluids, we first use∇v to introduce
two associated tensors. One is the rate of deformation tensor

D =
1
2
(
∇v +∇vT

)

=



∂v1
∂x

1
2

(
∂v1
∂y

+
∂v2
∂x

)
1
2

(
∂v1
∂z

+
∂v3
∂x

)
1
2

(
∂v1
∂y

+
∂v2
∂x

)
∂v2
∂y

1
2

(
∂v2
∂z

+
∂v3
∂y

)
1
2

(
∂v1
∂z

+
∂v3
∂x

)
1
2

(
∂v2
∂z

+
∂v3
∂y

)
∂v3
∂z


, (8.67)

and the other is the vorticity or spin tensor
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W =
1
2
(
∇v −∇vT

)

=


0

1
2

(
∂v1
∂y

− ∂v2
∂x

)
1
2

(
∂v1
∂z

− ∂v3
∂x

)
1
2

(
∂v2
∂x

− ∂v1
∂y

)
0

1
2

(
∂v2
∂z

− ∂v3
∂y

)
1
2

(
∂v3
∂x

− ∂v1
∂z

)
1
2

(
∂v3
∂y

− ∂v2
∂z

)
0


. (8.68)

The most obvious properties of these two tensors are that D is symmetric,
W is skew-symmetric or antisymmetric, and ∇v = D + W.

8.10.2.1 Reduction of the Viscous Stress Function

In its general form, the fluid stress is assumed to not depend on ∇v but,
rather, on D and W. Specifically, the assumption is that

T = −pI + G(D,W), (8.69)

where G(0,0) = 0. In what follows, the specific form of the function G is
reduced, using the properties of T and additional simplifying assumptions.
Before doing this, note that we have assumed that G does not depend ex-
plicitly on x. This means we are assuming that the fluid is homogeneous, so
the constitutive law for the stress does not depend explicitly on position.

Simplification 1 : T = −pI + G(D).

The conclusion that the stress does not depend on W is not too surprising
because T is symmetric while W is skew-symmetric. The proof, however,
comes from the Principle of Material Frame-Indifference. For the rigid body
motion given in (8.49), it is shown in Exercise 8.23 that D∗ = QDQT and
W∗ = QWQT + Ω, where Ω = Q′QT is skew-symmetric. Therefore, from
(8.54), it is required that

QG(D,W)QT = G(QDQT ,QWQT + Ω). (8.70)

To make our point we do not need to consider every rotation, and it is enough
to consider those where Q(0) = I and Q′(0) = M is an arbitrary skew-
symmetric matrix. With this, and setting t = 0 in (8.70), it follows that

G(D,W) = G(D,W + M),

for every skew-symmetric matrix M. The only function capable of this is one
that does not depend on W. The dependence of G on D is left open, other
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than it must satisfy QG(D)QT = G(QDQT ), for all rotations Q.

Simplification 2 : G(D) = α0I + α1D + α2D2

This result is an immediate consequence of the Rivlin-Ericksen theorem
(8.58), because both T and D are symmetric and objective (see Exercise
8.23). In this case, the coefficients α0, α1, and α2 have the dimensions of
stress and, with one exception, are arbitrary functions of the three principal
invariants

ID = tr(D),

IID =
1
2
(
tr(D)2 − tr(D2)

)
,

IIID = det(D).

The exception comes from the requirement that G = 0 if D = 0, which
means that α0 = 0 if D = 0.

Simplification 3 : G(D) = λID I + 2µD.

This simplification is an assumption, and specifically it is assumed that the
stress is a linear function of D, with G(0) = 0. This means, using the result
of Simplification 2, that α2 = 0 and α1 = 2µ is a constant. The coefficient
α0 can be a linear function of the elements of D. As is evident in how the
invariants depend on the eigenvalues, as given in (8.62)-(8.64), only ID is
linear in D. Therefore, it follows that α0 = λID, where λ is a constant.

After working through the last few pages, the following question might
arise. The conclusion of Simplification 3 is the result of several assumptions,
and some mathematical effort. Why not skip all this and simply make one
assumption, which is the formula given below in (8.71)? This is, in fact, the
approach of more elementary textbooks, and has the advantage of letting you
get started solving fluid problems without a lot of preparatory work. The rea-
son for using a sequence of simplification steps is to try to better understand
the physical assumptions underlying the formulation of the constitutive law
for the stress. Also, the assumptions made here are more fundamental in the
sense that they can be used to obtain constitutive laws for other types of
materials, and an example of this will come later in the chapter when we
apply the theory to elastic solids.

A second comment that should be made concerns an alternative approach
for the derivation of the fluid stress. Many textbooks on this subject start
with the assumption that T is a linear function of the elements of ∇v. This
idea was mentioned earlier, right before introducing D and W. Using this
approach, one employs isotropy and frame-indifference to reduce the general
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formula for the stress down to the conclusion of Simplification 3. The reason
for reversing the order here, and keeping the linearity assumption until the
end, is to obtain a theory that can be generalized to nonlinear materials.
For example, to study isotropic non-Newtonian fluids we have the general
result given in Simplification 2. This result is, for example, used to derive the
nonlinear theory for what are called Reiner-Rivlin fluids. It is also used in
the next chapter to describe power-law fluids.

8.11 Equations of Motion for a Viscous Fluid

The conclusion from the previous section is that the constitutive law for a
viscous fluid is

T = −pI + λ(∇ · v)I + 2µD, (8.71)

where p is the pressure and D is the rate of deformation tensor given in
(8.67). This is the constitutive law for what is called a Newtonian fluid,
which means that the stress is a linear function of the rate of deformation
tensor. The coefficients λ and µ are viscosity parameters. In the engineering
literature µ is called the dynamic viscosity, or sometimes the shear viscosity.

With this, one finds that

∇ ·T = −∇p+ λ∇(∇ · v) + µ
(
∇(∇ · v) +∇2v

)
, (8.72)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(8.73)

is the Laplacian. The resulting equations of motion are

Dρ

Dt
+ ρ∇ · v = 0, (8.74)

ρ
Dv
Dt

= −∇p+ (λ+ µ)∇(∇ · v) + µ∇2v + ρf . (8.75)

The above momentum equation is known as the Navier-Stokes equation.
Looking at the equations in (8.74), (8.75) you soon realize that something

is missing. Namely, there are four equations, but five unknowns (ρ, p, and
v). What is needed is a second constitutive law, an equation of state, that
relates the pressure and density. Commonly used examples are the ideal gas
law p = ρRT , and the van der Waals equation

p = ρRT

(
1

1− βρ
− αρ

RT

)
.

Both of these expressions contain the temperature T . For isothermal flows
this is assumed constant, but if this is not the case then it is necessary to
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derive a balance law for the energy. This was considered earlier, in Section
6.10.2, for one-dimensional motion, but will not be considered here.

A couple of comments are in order related to the derivation of the above
equations of motion. First, it is important to note that a Newtonian fluid
is an assumption of material linearity, and not an assumption of geometric
linearity. The domains over which the Newtonian fluid equations are applica-
ble can be, and are routinely are, highly variable. A second comment is that
there are different ways to derive the constitutive law for a Newtonian fluid.
As an example of a different approach, it is possible to obtain (8.71) using
the Principle of Dissipation. This was the method used in Section 6.10.2, to
derive the one-dimensional version of (8.71).

8.11.1 Incompressibility

If the fluid is assumed to be incompressible then the constitutive law for the
stress is

T = −pI + 2µD. (8.76)

The equations of motion in this case reduce to the following

ρ
Dv
Dt

= −∇p+ µ∇2v + ρf , (8.77)

∇ · v = 0. (8.78)

Assuming that the initial density is constant, then ρ is known, and it is con-
stant. In this case the number of equations matches the number of unknowns
(p and v), and so an equation of state is not needed. Also, these equations ap-
pear to be somewhat simpler than the compressible versions in (8.74), (8.75).
Although this may be true, both versions are formidable mathematical prob-
lems.

Given our interest in solving (8.77), (8.78), it is worth spending a moment
considering what sort of mathematical problem we are facing. In terms of the
velocity, (8.77) is a first-order equation in time and a second-order equation in
space. In this sense it is the same as the diffusion equations studied in Chapter
4, and it should not be surprising to find that the kinematic viscosity ν = µ/ρ
has the same dimensions as a diffusion coefficient. One of the distinctive
differences from a diffusion equation is the nonlinear term (v · ∇)v hiding in
the material derivative. This term is the type of nonlinearity we studied in
traffic flow. In fact, in terms of its mathematical characteristics, you could say
that (8.77), (8.78) is Chapter 4 meets Chapter 7. The nonlinearity, however,
means that transform methods, both Fourier and Laplace, will not work. Also,
the presence of the viscosity term means that the method of characteristics
will not work. Aside from a numerical solution, this leaves similarity methods,
perturbation methods, and guessing. We will make heavy use of guessing, and
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this requires a well formulated mathematical problem, which means that we
need boundary conditions.

Before moving on, it is worth commenting on the earlier statement about
the formidability of solving the Navier-Stokes equation. Finding the solution
is considered to be one of the greatest unsolved mathematical problems of
our time, and this is the reason that it was included as one of the Millennium
Prize Problems (Devlin [2002]). The person, or team, that first solves this
problem will be awarded $1,000,000 (US).

8.11.2 Boundary and Initial Conditions

To be able to find the solution of the fluid equations it is necessary to know the
boundary conditions. Of interest here are the conditions at a solid boundary,
which for us will usually be the container holding the fluid. Although it
is often the case that such boundaries are stationary, we will include the
possibility that it moves. An example of such a situation arises with a water
balloon, where the boundary, the balloon, does not just move, it also deforms.

In the following, let S be the boundary surface, and assume that the points
on the boundary have a known velocity vs(x, t).

Impermeability Condition

The boundary is solid, and this means that the fluid can not flow through it.
To translate this into a boundary condition, let n be the unit outward normal
to the surface. With this, v · n is the velocity of the fluid in the normal
direction, and vs · n is the velocity of the surface in the normal direction.
The boundary condition is one of continuity, namely that on S the normal
velocity of the fluid is equal to the normal velocity of the surface. Therefore,
the mathematical consequence of impermeability is that

v · n = vs · n on S. (8.79)

If the fluid is incompressible, and S is the boundary of a bounded domain,
then vs must be consistent with the incompressibility assumption (see Exer-
cise 8.14). Also, it should be pointed out that it is implicitly assumed here
that the fluid does not separate from the boundary. There are situations
where separation occurs, such as in cavitation, and this often results in a
very challenging mathematical problem. For obvious reasons, we will avoid
such situations in this introductory presentation.

No-Slip Condition

Because of the viscosity, it is assumed that the fluid sticks to the boundary.
This means that the fluid velocity, on the boundary, equals the velocity of
the boundary. The corresponding boundary condition is
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Figure 8.7 Fluid flow over a flat plate illustrating the no-slip boundary condition.
The fluid is moving from left to right, and the plate is at the bottom and is not
moving. The white curves are indicators of the fluid particles moving with the flow,
which show a rapid transition from zero velocity on the plate, to the constant velocity
in the upper region.

v = vs on S. (8.80)

This is known as the no-slip condition. It means that not only the normal
velocities are equal, as required by the impermeability condition (8.79), it also
means that the tangential velocities are equal. In many fluid problems the
boundary does not move, and in those cases the no-slip condition is simply
v = 0 on S. An illustration of this situation is shown in Figure 8.7.

It is common to have situations where the pressure is prescribed on the
boundary. Rather than attempt to write down a general formulation of such
situations, it is informative to consider an example.

Example: Flow in a Pipe

Most people, when attempting to drink using a straw, create a pressure dif-
ference between the two ends of the straw. This is the same idea used to have
water flow through a hose or pipe. To formulate the boundary conditions for

�

�
��

��

�

�

Figure 8.8 Geometry of pipe used in the boundary condition example.
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such a situation, consider the straight pipe shown in Figure 8.8. The pipe
is fixed, and water is flowing through the pipe due to a pressure difference
between the two ends. From the no-slip condition we have that v = 0 on S,
which is the wall of the pipe. At the two ends, S0 and SL, inflow/outflow
conditions are used. This means that instead of prescribing the three com-
ponents of the velocity, we will prescribe its two tangential components and
the pressure. Letting v = (u, v, w) then on S0 we take u = w = 0 and p = p0,
while at SL we take u = w = 0 and p = pL. These boundary conditions,
along with the equations of motion, form what is known as the Poiseuille
flow problem, and the solution in the case of steady flow is derived in Section
9.2.2. �

The usual initial condition used for incompressible fluid problems is simply

v(x, 0) = v0(x), (8.81)

where v0(x) is given. Not just any function can be used here. In particu-
lar, it must be consistent with incompressibility, and therefore it is required
that v0(x) satisfies (8.78). A consistency requirement can also come from the
boundary conditions. For example, at a solid surface the impermeability con-
dition (8.79) must be satisfied. This means that v0 ·n = vs(x, 0) ·n on S. To
obtain a well-posed mathematical problem it is not necessary that the tan-
gential components of v0(x) satisfy the no-slip condition. A more complete
discussion of the various boundary and initial conditions that can be used
to obtain a well-posed mathematical problem involving the Navier-Stokes
equation can be found in Temam [2001].

Boundary conditions are of supreme importance in the formulation of any
physical problem. This is brought up because the equations of motion have
been derived from fundamental physical principles. The boundary conditions,
in contrast, give the appearance of being tacked on using plausibility argu-
ments why they should be used. The no-slip condition is an example of this.
Make no mistake, it is almost universally used for viscous fluid problems.
However, as a budding applied mathematician, you should be skeptical of
this situation. One question you might ask is, can it be derived from more
fundamental physical principles? Even more important, are there situations
where it should not be used? These are difficult questions, and in the early
development of fluid dynamics they were controversial topics. Eventually,
based on the available experimental evidence, the no-slip condition became
the accepted requirement. These questions, however, have started to be asked
again. This is due to better experimental methods, and the application of the
Navier-Stokes equations to small-scale systems where the no-slip condition is
questionable. It should be pointed out that the questions apply to the tan-
gential component of the no-slip condition. The normal component, which
is the impermeability condition (8.80), can be derived from the continuity
equation (Hutter and Johnk [2004]), and is not in question. Those interested
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in the no-slip condition, and its limitations, should consult the review by
Lauga et al. [2007].

8.12 Material Equations of Motion

Because elastic solids have the ability to hold their shape, they have a nat-
ural reference configuration. For this reason, the material coordinate system
is more often used in elasticity. There are a couple of options here for how to
determine the material version of the equations of motion. One is to use the
chain rule, and convert the spatial derivatives in (8.46) and (8.47) into ma-
terial derivatives. This is rather tedious, and not very enlightening. Another
approach is to derive the equations from the material form of the balance
laws, and this is the one used here.

The more interesting equation to derive is the one for linear momentum.
To state this result, let B be a volume of material points with boundary
surface ∂B. When using spatial coordinates this volume was designated as
R(0). Using the balance of linear momentum,

d

dt

∫∫∫
B

RV dVA =
∫∫
∂B

t̄ dSA +
∫∫∫

B

RF̄ dVA. (8.82)

This equation is simply the material version of (8.37). In this equation R(A, t)
is the density in material coordinates, V(A, t) is the velocity, t̄(A, t) is the
force, per unit area, on B due the material exterior to B, and F̄(A, t) is the
external body force in material coordinates. The subscript A on the volume
and surface elements is to indicate that the integration is with respect to
material coordinates. For example, if dV = dxdydz then dVA = dA1dA2dA3.

Using exactly the same type of analysis that led to (8.39), one can show
that

t̄ = PT N, (8.83)

where

P =


P11 P12 P13

P21 P22 P23

P31 P32 P33

 (8.84)

is known as the first Piola-Kirchhoff stress tensor and N is the unit outward
normal to ∂B. Substituting this into (8.82), and using the fact that this holds
for all material volumes B we conclude that

R0
∂2U
∂t2

= ∇A ·P +R0F̄. (8.85)
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This is the momentum equation in material coordinates. The ∇A · P term
is similar to (8.43), except the derivatives are with respect to the elements
of A instead of x. In simplifying the above result the material version of the
continuity equation has been used, which is

R =
R0

det(F)
, (8.86)

where F is given in (8.10) and R0 = R(A, 0) is the initial value for the density.
Finally, the angular momentum equation in material coordinates is

PT FT = FP. (8.87)

The derivation of this result, and the continuity equation, is left as an exercise.
The derivation of the linear momentum equation looks to be a replay of

the spatial coordinate analysis, and this is correct. What is left is the more
interesting step, and that is to relate the stress tensors T and P. Because
they consist of the stresses on three orthogonal coordinate surfaces, and the
material is undergoing deformation, T and P are not necessarily equal. In
fact, to jump ahead a bit, we will find that

P = det(F)F−1T . (8.88)

To derive this result, suppose that given a material point A0, its spatial
counterpart is x0 = X(A0, t). Assuming A0 is on the surface ∂B then x0 is on
the surface ∂R(t). The definition of the stress vector t̄ uses the force on a small
piece of the tangent plane at A0, and then lets this region shrink to zero. This
is the same idea employed earlier when using the tetrahedron, shown in Figure
8.6, to define the stress vector in spatial coordinates. The difference here is
that it is easier to use pieces of the tangent plane shaped as parallelograms
instead of triangles. To construct the parallelogram let A1 and A2 be two
points close to A0, and in the tangent plane. This means that Ai = A0+∆Ai.
The corresponding points in the spatial system are determined using (8.9),
and the result is xi ≈ x0 + F∆Ai, where F is the Jacobian matrix for X,
evaluated at A0. Now, the cross-product (A2−A0)×(A1−A0) = ∆A2×∆A1

determines the normal direction to the surface, and its length gives the area
of the parallelogram. To determine the corresponding information for the
spatial system, we use the vector (x2−x0)× (x1−x0) ≈ (F∆A2)× (F∆A1).
We are going to compare the areas in these two coordinate systems, and for
this we need the vector identity

BT (By ×Bz) = det(B)(y × z).

Setting ∆xi = xi − x0, then we have shown that
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∆x2 ×∆x1 ≈ (F∆A2)× (F∆A1)

= det(F)F−T (∆A2 ×∆A1).

Letting the area of the parallelogram in the spatial system be ∆S, and letting
∆SA be the area in the material system, then the above equation can be
written as ∆S n ≈ (∆SA) det(F)F−T N. Taking the limit of ∆Ai → 0 we
obtain

ndS = det(F)F−T NdSA, (8.89)

which is known as Nanson’s formula. What this means is that, when changing
from spatial to material coordinates in a surface integral, the following holds∫∫

∂R(t)

TT n dS =
∫∫
∂B

det(F)TT F−T N dSA.

The consequence of this is that expressing TT n in terms of material coordi-
nates we obtain det(F)TT F−T N. Given that this equals PT N, for all mate-
rial regions B, it follows that PT = det(F)TT F−T . Taking the transpose of
this equation yields (8.88).

The equations of motion in material coordinates are given in (8.85)-(8.87).
There is nothing particularly unusual about this system of equations. For
example, as in the one-dimensional version given in Chapter 6, it is not nec-
essary to solve a differential equation to find the density when using material
coordinates. This is because of (8.86). The one new twist that arises in the
material version is that the stress tensor P is not necessarily symmetric,
but satisfies (8.87) instead. As will be seen shortly, this nonsymmetry does
complicate the formulation of the constitutive law for the stress.

One last comment that needs to be made concerns naming conventions
for the stress. Earlier it was mentioned that some authors define the Cauchy
stress to be the transpose of the formula in (8.40). For the same reasons,
they define the first Piola-Kirchhoff stress tensor to be the transpose of the
formula given in (8.84), and then refer to (8.84) as the nominal stress tensor.
This difference is of little consequence when using spatial coordinates, but
the stress tensor in the material system is not symmetric so this difference is
more of an issue.

8.12.1 Frame-Indifference

Before formulating constitutive laws in material coordinates, it is first nec-
essary to understand how the Principle of Frame-Indifference applies. For
one-dimensional motion, studied in Section 6.10, a constitutive law in mate-
rial coordinates is frame-invariant if its spatial counterpart is frame-invariant.
This statement also holds for the three-dimensional case we are now studying.
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However, rather than doing this on a case-by-case basis, it is easier to simply
determine the material form of the two tenets that make up the Principle of
Frame-Indifference, as given in Section 8.9.

The rigid body change of coordinates used for the material version of
frame-indifference is given in (8.50). With this, the form invariance assump-
tion, Tenet 2, is unaffected. In particular, if the constitutive law is that
P = G(R), and if P∗ and R∗ are the A∗ system versions of P and R,
then it must be that P∗ = G(R∗).

The objectivity condition, Tenet 1, is affected by the change in coordinates.
To determine how, recall that T∗ = QTQT and F∗ = QF. So, from (8.88),

P∗ = det(F∗)(F∗)−1T∗

= det(QF)(QF)−1QTQT

= det(Q) det(F)F−1Q−1QTQT

= det(F)F−1TQT

= PQT . (8.90)

Therefore, P satisfies the material form of objectivity if P∗ = PQT , for all
rotations Q.

The result of the above discussion is that if the constitutive law is P =
G(R), then the Principle of Material Frame-Indifference, when using material
coordinates, requires that

G(R)QT = G(R∗). (8.91)

This is the material coordinate version of (8.54).

Example

Suppose it is assumed that P = G(U). It is not hard to show that U∗ =
QU + (Q−Q0)A + b− b0, so from (8.91) it is required that

G(U)QT = G(QU + (Q−Q0)A + b− b0).

This must hold for every rotation Q, and vectors U and b. In particular,
taking Q = I and U = 0, then G(0) = G(b − b0) for all vectors b. The
only function capable of this is the constant function, and so the stress must
be independent of the displacement. This is the same conclusion reached in
Section 6.7, and in Section 6.10, for one-dimensional motion. �
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8.12.2 Elastic Solid

The stress in an elastic solid is determined by the strain, and the reasons for
this assumption were discussed in Chapter 6. The strain in this case being
determined using ∂U

∂A . The three-dimensional version of this is

∇AU =



∂U1

∂A1

∂U1

∂A2

∂U1

∂A3

∂U2

∂A1

∂U2

∂A2

∂U2

∂A3

∂U3

∂A1

∂U3

∂A2

∂U3

∂A3


. (8.92)

This is known as the displacement gradient. It is related to the deformation
gradient, given in (8.10), through the identity ∇AU = F− I.

An elastic solid is one for which the stress is a function of ∇AU, or equiv-
alently, of F. It is more traditional to work with F, and so, the constitutive
assumption is that

P = G(F). (8.93)

To satisfy the Principle of Material Frame-Indifference (8.91), from (8.56),
the function G must satisfy

G(F)QT = G(QF), (8.94)

for all possible values for F and rotations Q. One immediate conclusion is
that it is not possible to have a linear constitutive law. For example, it is not
possible to assume that G = αF, because (8.94) requires

FQT = QF.

If this were to hold, then taking F = I we would conclude that Q is symmet-
ric. This clearly does not have to happen, as demonstrated by the rotation
in (8.14).

To take stock of our situation, we have a stress that is not symmetric, a
form of objectivity that does not fit the requirement of the Rivlin-Ericksen
theorem, and a constitutive law that cannot be linear. One way to avoid these
difficulties is to revert back to spatial coordinates, but this will not be done
as material coordinates is a more natural system for elastic solids. There are
a couple of ways to handle these difficulties, and the one we will use involves
the introduction of the second Piola-Kirchhoff stress tensor, defined as

S = PF−T , (8.95)

or equivalently
S = det(F)F−1TF−T . (8.96)
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Because T is symmetric it follows that S is symmetric. Also, the requirement
that P is materially objective is equivalent to the requirement that S∗ = S,
where the superscript ∗ indicates the value of the variable using the change
of variables in (8.49). There is still a problem with linearity. For example, it
not possible to assume S = αF or S = α(F + FT ), because neither satisfies
S∗ = S. The stress S is assumed to depend on F, but this dependence is
through a quantity C that has the same properties as S. Specifically, C is
symmetric and C∗ = C. The one used in elasticity is

C = FT F, (8.97)

which is known as the right Cauchy-Green deformation tensor. A related
quantity is

E =
1
2
(C− I), (8.98)

which is known as the Green strain tensor. It is the three-dimensional version
of the Green strain listed in Table 6.3.

A few quick comments about E are in order. Given (8.98), assuming S
depends on C is equivalent to assuming it depends on E. The explanation of
why E is a measure of strain was given in Section 6.8. Instead of revisiting
that discussion, we note two important properties that are required of all
strain measures. One is that if there is no deformation, so U = 0, then
E = 0. A second property comes from the general observation that for rigid
body motion there is no relative deformation, and the strain is therefore zero.
It is not hard to check that if X(A, t) = Q(t)A + b(t), where Q(0) = I and
b(0) = 0, then E = 0 (see Exercise 8.17).

The constitutive assumption is that S = G(E). It is assumed that the
material is stress free at t = 0. Given that F = I at t = 0 then we require
that G(0) = 0. We are not able to use the Rivlin-Ericksen theorem because
S does not satisfy the form of objectivity required. Nevertheless, we can
use what we learned using that theorem when modeling a viscous fluid. We
are interested in a linear constitutive law, and in analogy with (8.71), it is
assumed that

S = λsIEI + 2µsE, (8.99)

where λs and µs are constants, and IE = tr(E). This expression satisfies
the form invariance requirement, and it also produces a stress that satisfies
S∗ = S. The corresponding constitutive law for P is

P = λsIEFT + 2µsEFT . (8.100)

Using the terminology of Section 4.7, (8.99) is an assumption of material
linearity. Geometric linearity has not been assumed, and this brings us to the
next topic.
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8.12.3 Linear Elasticity

The constitutive law for the stress S in (8.99) is based on the assumption
of material linearity, or more specifically, on the assumption that the stress
is a linear function of E. We are going to assume that the motion is also
geometrically linear. This means that the displacements are small enough
that we are able to linearize the problem. For example, because F = I+∇AU,
then

C = (I +∇AU)T )(I +∇AU)

= I +∇AU + (∇AU)T + (∇AU)T (∇AU)

≈ I +∇AU + (∇AU)T . (8.101)

With this we have that

E =
1
2
(C− I)

≈ 1
2
(∇AU + (∇AU)T ), (8.102)

and IE ≈ ∇A ·U. Also, from (8.100),

P ≈
[
λs(∇A ·U)I + µs(∇AU + (∇AU)T )

]
(I +∇AUT )

≈ λs(∇A ·U)I + µs(∇AU + (∇AU)T ). (8.103)

This can be rewritten as

P = λs(∇A ·U)I + 2µsE0, (8.104)

where
E0 =

1
2
(
∇AU +∇AUT

)
. (8.105)

This is the constitutive law for linear elasticity, and it is the three-dimensional
version of (6.50). The coefficients λs and µs are called the Lamè constants,
and in the engineering literature µs is referred to as the shear modulus.
Also, E0 is the linearized Green strain tensor, or what is identified as the
Lagrangian strain in Table 6.3.

With (8.104) the equation of motion given in (8.85) reduces to

R0
∂2U
∂t2

= (λs + µs)∇(∇ ·U) + µs∇2U +R0F̄. (8.106)

This is known as the Navier equation.
There are striking similarities between the constitutive laws, and equations

of motion, for fluids and elastic solids. For example, the constitutive law for a
linearly elastic solid given in (8.104) is very similar to the fluid law in (8.71),
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and the Navier equations (8.106) are similar to the Navier-Stokes equations
(8.75). There are also differences, and one of the more obvious ones is that
elasticity uses the displacement gradient while fluids use the velocity gradient
in the formulation of the constitutive law for the stress. However, a perhaps
more subtle difference is that the Navier-Stokes equations are obtained using
an assumption of material linearity, while the Navier equations require both
material and geometric linearity.

8.13 Energy Equation

One of the central components in characterizing a mechanical system is the
energy. This was discussed in Chapter 6, and in the process a variety of new
variables were introduced. A different tack is taken here, and we will derive
the energy formulation from what we already know. The key player is the
momentum equation (8.47). Taking the dot product with the velocity, and
rearranging the terms one obtains the equation

1
2
ρ
D

Dt
(v · v) = ∇ · (Tv)− tr(TD) + ρv · f . (8.107)

This is known as the mechanical energy equation. Using the continuity equa-
tion (8.46), (8.107) can be rewritten as

D

Dt

(
1
2
ρv · v

)
+
(

1
2
ρv · v

)
(∇ · v) = ∇ · (Tv)− tr(TD) + ρv · f . (8.108)

This has the form of the general balance law given in (8.31), where f = 1
2ρv·v

is the kinetic energy density. To express this in integral form, from (8.30) we
have that

d

dt

∫∫∫
R(t)

1
2
ρv · v dV =

∫∫
∂R(t)

(Tv)·n dS+
∫∫∫
R(t)

[−tr(TD) + ρv · f ] dV . (8.109)

This shows that the rate of change of the kinetic energy is due to three
contributions. The first term on the right, the surface integral, is the rate of
work done by surface forces. Given the form of the general balance law in
(8.30), this can be interpreted as an energy flux term, with J = −Tv. In a
similar manner, the integral of ρv · f is the rate of work done by the body
forces. This leaves the integral involving −tr(TD). Without the constitutive
law for the stress it is not obvious how to interpret this term, and usually in
continuum mechanics it is given the rather vague name of the stress power.
In this regard it is stated to be rate of work by the stress per unit volume.

What we have in (8.108) and (8.109) are energy balance equations. Usually
when considering energy there is a term for the kinetic energy, and another
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for the potential energy. The kinetic term we have. If there is a contribution
of the potential energy it is hidden in either the stress power or the external
forcing terms. It is the stress power that is of interest because it is unclear at
the moment what this is, and so it is assumed that there are no body forces.

8.13.1 Incompressible Viscous Fluid

Assuming that T = −pI + 2µD, and ∇ · v = 0, then

tr(TD) = tr ((−pI + 2µD)D)
= −p tr(D) + 2µ tr(DD)

= 2µ tr(D2).

In fluid mechanics it is conventional to set

Φ = 2µ tr(D2), (8.110)

which is known as the viscous dissipation function. With this, (8.109) becomes

d

dt

∫∫∫
R(t)

1
2
ρv · v dV =

∫∫
∂R(t)

(Tv) · n dS −
∫∫∫
R(t)

ΦdV . (8.111)

Given that Φ ≥ 0, then the above expression shows that the kinetic energy
decreases due to this term. Physically, this means that the stress power in
this particular example accounts for the loss of energy due to viscosity. For
this reason, a viscous fluid does not conserve energy. As a final comment,
note that for an incompressible viscous fluid, with no body forces, there is
no potential energy term in the energy equation.

8.13.2 Elasticity

To apply the above arguments to an elastic material we first need to derive
the energy equation in material coordinates. Proceeding in a similar manner
as before, we take the dot product of the momentum equation (8.85) with the
velocity. Remembering our earlier assumption that there are no body forces,
the result is

∂

∂t

(
1
2
R0V ·V

)
= ∇A · (PV)− tr(P∇AV). (8.112)
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The above equation states that the rate of change in the kinetic energy den-
sity is balanced by the energy flux and the negative of the stress power
tr(P∇AV). It is the latter term that needs to be sorted out, and this re-
quires the constitutive law for the stress.

To express the stress power in terms that make its contribution more
evident we need to first derive a few identities involving the derivative of the
trace. The first step is finding the derivative of a product of tensors

∂

∂t

(
P2
)

=
∂

∂t
(PP)

=
∂P
∂t

P + P
∂P
∂t

.

This shows the usual power rule does not apply to tensors, but in taking the
trace of the above expression we get

∂

∂t
tr
(
P2
)

= tr
(
∂

∂t
P2

)
= tr

(
∂P
∂t

P + P
∂P
∂t

)
= tr

(
∂P
∂t

P
)

+ tr
(
P
∂P
∂t

)
= tr

(
P
∂P
∂t

)
+ tr

(
P
∂P
∂t

)
= 2 tr

(
P
∂P
∂t

)
. (8.113)

Although the stress was used in the derivation of the above formula, the
result holds for any differentiable tensor. In a similar manner one can show
that

∂

∂t
tr
(
FT F

)
=

∂

∂t
tr
(
FFT

)
= 2 tr

(
FT ∂F

∂t

)
.

Again, the above formula holds for any tensor, as long as it is differentiable.
Using the constitutive law in (8.104), and the results from Exercise (8.9),

we have that

tr(P∇AV) = tr
(

(λsIEFT + 2µsEFT )
∂

∂t
F
)

= λsIE tr
(
FT ∂

∂t
F
)

+ µs tr
(

(FT F− I)FT ∂

∂t
F
)

=
1
2

(λsIE − µs)
∂

∂t
tr
(
FT F

)
+ µs tr

(
FT FFT ∂

∂t
F
)
. (8.114)
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It is convenient at this point to introduce the left Cauchy-Green deformation
tensor, defined as

B = FFT . (8.115)

From (8.113),

∂

∂t
tr
(
B2
)

= 2 tr
(
B
∂B
∂t

)
= 2 tr

(
FFT (FFT

t + FtFT )
)

= 4 tr
(
FT FFT ∂

∂t
F
)
.

Also, from (8.98), IE = 1
2

(
tr(FT F)− 3

)
. Substituting these into (8.114) we

obtain

tr(P∇AV) =
1
4
(
λs tr

(
FT F

)
− 3λs − 2µs

) ∂
∂t

tr
(
FT F

)
+

1
4
µs

∂

∂t
tr
(
B2
)

=
∂

∂t

[
1
8
λs

(
tr
(
FT F

))2 − 1
4
(3λs + 2µs) tr

(
FT F

)
+

1
4
µs tr

(
B2
)]
.

(8.116)

Inserting (8.116) into (8.112), the conclusion is that

∂

∂t
(K + U) = ∇A · (PV), (8.117)

where
K =

1
2
R0V ·V (8.118)

is the kinetic energy density, and

U =
1
8
λs

(
tr
(
FT F

))2 − 1
4
(3λs + 2µs) tr

(
FT F

)
+

1
4
µs tr

(
B2
)

(8.119)

is the potential energy density. Using the Green strain tensor (8.98), and the
properties of the trace, the above expression can be written as

U =
1
2
λs [tr(E)]2 + µs tr

(
E2
)
− 3

8
(3λs + 2µs). (8.120)

The function U is the energy stored in the elastic material due to the defor-
mation. For this reason it is often called the stored energy function, or the
strain energy function. One conclusion coming from (8.117) is that the total
energy K +U only changes due to the energy flux −PV. It does not change
because of a loss due to dissipation, such as happened with a viscous fluid.
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Exercises

8.1. This exercise is based on the definition of the material and spatial coor-
dinate systems.

(a) Suppose a particle that started at location (2, 0,−1) is, at t = 4, located
at (1, 0, 1). What is A for this particle? For this particle, what is U(A, 4)?
What is the spatial coordinate x at t = 4, for this particle, and what is
the corresponding value of u(x, 4)?

(b) For another particle, u(x, 3) = (1, 0, 0) for x = (2, 1, 1). What is A for this
particle?

8.2. A motion of the form x = α(t)A1, y = A2/α(t), z = A3, where α(0) = 1
and α > 0, is an example of pure shear.

(a) Give a geometric interpretation of this motion by describing what happens
to the unit cube 0 ≤ A1 ≤ 1, 0 ≤ A2 ≤ 1, 0 ≤ A3 ≤ 1.

(b) Find U, u, V, and v.
(c) Verify that v = Du

Dt .
(d) Show that v satisfies the continuity equation for an incompressible mate-

rial.
(e) Find D and then calculate the invariants ID, IID, IIID.

8.3. Consider the motion x = A1 + α(t)A2, y = A2 + α(t)A3, z = A3, where
α(0) = 0.

(a) Give a geometric interpretation of this motion by describing what happens
to the unit cube 0 ≤ A1 ≤ 1, 0 ≤ A2 ≤ 1, 0 ≤ A3 ≤ 1.

(b) Find U, u, V, and v.
(c) Verify that v = Du

Dt .
(d) Show that v satisfies the continuity equation for an incompressible mate-

rial.
(e) Find D and then calculate the invariants ID, IID, IIID.

8.4. Linear flow occurs when v = Hx+h, where the matrix H and vector h
can depend on t.

(a) Find H and h for uniform dilatation, for simple shear, and for rigid body
motion.

(b) Show that linear motion is possible for an incompressible material only if
tr(H) = 0.

(c) Does simple shear satisfy the condition in part (b)?
(d) Show that rigid body motion satisfies the condition in part (b). The results

from Exercise 8.22 might be helpful.

8.5. This problem continues the study of linear flow, introduced in the pre-
vious exercise.

(a) Assuming there are no body forces, show that linear flow is a solution
of the incompressible Navier-Stokes equation if H′(t) is symmetric. This
assumes that tr(H) = 0, which was established in Exercise 8.4(b)
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(b) Under what conditions, if any, does simple shear satisfy the conditions in
part (a)?

(c) Under what conditions, if any, does rigid body motion satisfy the condi-
tions in part (a)?

8.6. Suppose the stress tensor is

T =

 x yz 2
yz y x
2 x z

 .

(a) Assuming there are no body forces, explain why it is not possible that the
material is at rest.

(b) What would the body force need to be so the material is at rest?

8.7. Suppose the stress tensor is

T =

1 2 3
2 0 −1
3 −1 1

 .

(a) Consider the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1. Find the stress
vector on each face of the cube.

(b) Suppose T is the stress tensor for a viscous incompressible fluid, with
p = 0. Find the velocity v.

8.8. Suppose it is known that the stress is identically zero, and there are no
body forces.

(a) What is the resulting displacement in material and in spatial coordinates?
(b) Suppose the constitutive law for a Newtonian fluid is used. What is the

pressure?
(c) Explain why your conclusion from part (a) holds in the case of when the

stress tensor is assumed to be constant.

8.9. This problem develops some of the formulas for spatial and material
coordinates.

(a) Show that F = I +∇AU.

(b) Show that
∂

∂t
F = ∇AV.

(c) Assuming (8.15) holds, show that ∇AF = FT (∇f).
(d) Let G(A, t) be a vector function in material coordinates and let its spatial

version be g(x, t). This means that G(A, t) = g(X(A, t), t), and from
this equation show that ∇AG = (∇g)F. Explain why this shows that
∇AV = (∇v)F.

8.10. This problem develops some of the connections between the displace-
ment and velocity in spatial coordinates.
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(a) Show that to find v given u one must solve (I − ∇u)v = ∂tu, where
u = (u1, u2, u3) and

∇u =



∂u1

∂x

∂u1

∂y

∂u1

∂z

∂u2

∂x

∂u2

∂y

∂u2

∂z

∂u3

∂x

∂u3

∂y

∂u3

∂z


.

(b) In the case of when the motion is one-dimensional, show that the formula
in part (a) reduces to (6.14).

(c) Verify the result from part (a) for uniform dilatation, as given in Section
8.2.

(d) Suppose v is known and one wants to determine u. Explain why one way
this can be done is by solving the partial differential equation ∂tu + (v ·
∇)u = v, with u(x, 0) = 0.

(e) Another method for finding u can be derived by reverting to material
coordinates. Given a particle that starts out at A, explain why the position
function X(t) of that particle satisfies the ordinary differential equation
X ′ = v(X, t), where X(0) = A. Given the solution of this problem, assume
the equation x = X is solved for A, to obtain A = a(x, t). With this,
explain why the displacement is u = X−A, where A = a(x, t).

(f) Suppose that v = (γy, 0, 0), where γ is a constant. Show that u =
(γyt, 0, 0). Also, explain why the position of the particle that starts out at
(x0, y0, z0) is (x0 + γyt, y0, z0).

8.11. If the densities are per unit mass, then the general balance law (8.30)
takes the form

d

dt

∫∫∫
R(t)

ρf(x, t) dV = −
∫∫

∂R(t)

J · n dS +
∫∫∫
R(t)

ρQ(x, t) dV .

Show that in this case (8.31) is replaced with

ρ
Df

Dt
= −∇ · J + ρQ.

8.12. Show that the following cannot be constitutive laws.
(a) T = G(x).
(b) T = G(u).
(c) P = α(F + FT ).
(d) P = G(V).

8.13. This problem considers possible motions of an incompressible fluid,
with no external body forces.
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(a) Consider the simple shear motion described in Section 8.2. What is the
corresponding spatial velocity v? When will this be a solution of the equa-
tions of motion?

(b) Consider the rigid body motion described in Section 8.2. What is the corre-
sponding spatial velocity v? When will this be a solution of the equations
of motion?

8.14. Suppose that the incompressible fluid equations (8.77), (8.78) are to
be solved in a bounded domain D, and the impermeability condition (8.79)
is used on the boundary ∂D. Show that not just any boundary velocity vs

can be used. Namely, show that the given velocity must satisfy∫∫
∂D

vs · n dS = 0.

What is the physical meaning of the above equation?

8.15. This problem concerns some of the connections between spatial and
material variables.

(a) Show that the spatial and material stresses are equal at t = 0. Namely,
show that T = P = S at t = 0.

(b) Using (8.27), show that in material coordinates the assumption of incom-
pressibility results in the equation det(F) = 1.

8.16. In formulating the constitutive law for elasticity we used the right
Cauchy-Green deformation tensor C given in (8.97). The left Cauchy-Green
deformation tensor is B = FFT . This problem develops some of the similar-
ities, and differences, of these two tensors.

(a) Show that B and C are symmetric.
(b) Show that C is not objective but it is invariant in the sense that C∗ = C.
(c) Show that B is objective but not materially objective.
(d) Explain why a constitutive law of the form T = αIB I+2βB is permitted,

but one of the form T = αIC I + 2βC is not. Similarly, explain why S =
αIC I+2βC is permitted, but S = αIB I+2βB is not. In these expressions,
α and β are constants.

(e) Prove that C and B have the same eigenvalues but do not necessarily have
the same eigenvectors.

(f) Prove that the eigenvalues of C and B are nonnegative.
(g) If the material is incompressible, use Exercise 8.15(b) to show that IIIB =

IIIC = 1.

8.17. A strain tensor is symmetric, and it is zero if there is no deformation
or if the deformation corresponds to a rigid body motion. Consequently, if
Z is a strain tensor then Z must be symmetric, and Z = 0 if U = 0 or if
X = Q(t)A + b(t).

(a) Show that the Green strain tensor E satisfies the stated conditions.
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(b) Does the Lagrangian strain tensor, given in (8.105), satisfy the stated
conditions?

(c) Show that Z = 1
2 (I−B) satisfies the stated conditions. It is known as the

Finger strain tensor.
(d) Show that Z = 1

2 (I −B−1) satisfies the stated conditions. It is known as
the Almansi strain tensor.

(e) Show that Z = B does not qualify as a strain tensor.

8.18. The kinetic energy for a regular region R(t) is

K =
∫∫∫
R(t)

1
2
ρv · v dV .

Let K0 be the value of K when the motion is irrotational, which means
that the velocity can be written as v = ∇φ. Let v be any other velocity,
not necessarily irrotational, but which has the same normal velocity at the
boundary as the irrotational motion. This means that v ·n = (∇φ) ·n on ∂R.
Assuming the density is constant, show that K0 ≤ K. This observation that
irrotational flows minimize the kinetic energy is known as Kelvin’s Minimum
Energy Theorem.

8.19. This problem extends some of the ideas developed with the energy
equation.

(a) Using the second law of thermodynamics it can be shown that the stress
power is nonnegative. Use this to show that if T = −pI+α0I+α1D+α2D2,
and the material is incompressible, then 0 ≤ α1tr(D2)+3α2 det(D). Hint:
The Cayley-Hamilton theorem will be useful here.

(b) Use the result from part (a) to prove that the dynamic viscosity of an
incompressible Newtonian fluid is nonnegative.

(c) Show that the potential energy density (8.119) can be written as

U =
1
8
(λs + 2µs)I2B −

1
4
(3λs + 2µs)IB −

1
2
µsIIB .

8.20. This problem provides the details related to the derivation of the energy
equation.

(a) Show that v ·(∇·T) = ∇·(Tv)−tr(T∇v). Also, explain why this equation
holds even if T is not symmetric.

(b) Using the fact that T is symmetric show that tr(T∇v) = tr(T(∇v)T ).
With this show that v · (∇ ·T) = ∇ · (Tv)− tr(TD).

(c) Explain why part (a) can be used to show that V · (∇A ·P) = ∇A · (PV)−
tr(P∇AV).

8.21. This problem concerns the inverse of the constitutive law for a linear
material.

(a) For a viscous compressible fluid show that
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D = − λ

2µ(3λ+ 2µ)
(3p+ tr(T))I +

1
2µ

(T + pI).

(b) For a linearly elastic material show that

E = − λs

2µs(3λs + 2µs)
tr(P)I +

1
2µs

P.

8.22. This problem develops some of the properties of the rotation matrix
Q(t) used in the definition of a rigid body motion (8.13). Therefore, Q has
the properties that QQT = I and det(Q) = 1.

(a) Show that (QT )′ = (Q′)T and from this show that Q′QT = −Q(Q′)T .
(b) Setting Ω = Q′QT , show that the spatial velocity for rigid body motion

is v = Ωx + b′ −Ωb.
(c) Show that Ω is skew symmetric and tr(Ω) = 0.
(d) Let Q = exp(Mt), where M is a skew-symmetric matrix and the expo-

nential is defined using the Taylor series

exp(Mt) = I + tM +
1
2
t2M2 +

1
3!
t3M3 + · · ·

=
∞∑

n=0

1
n!
tnMn.

Show that Q is a rotation, and Q′ = MQ. Therefore, Q is a rotation that
satisfies Q(0) = I and Q′(0) = M. You can assume the above series has
the same convergence properties as the Taylor series for ex.

8.23. This problem derives formulas for vector and tensor quantities when
making the rigid body change of variables given in (8.49).

(a) Show that F∗ = QF
(b) Show that D∗ = QDQT and W∗ = QWQT + Ω.
(c) Show that (∇ ·T)∗ = Q(∇ ·T).
(d) Setting c = QTb, show that V = QT V∗ + (QT )′X∗ − c′. From this show

that
Dv
Dt

= QT

(
Dv
Dt

)∗
+ 2(QT )′v∗ + (QT )′′x∗ − c′′.

(e) Assuming the body force transforms as f∗ = Qf , and the density as ρ∗ = ρ,
show that the momentum equation in the x∗ coordinate system is

ρ∗
(
Dv
Dt

)∗
= (∇ ·T)∗ + ρ∗f∗ − ρ∗z∗,

where z∗ = 2Q(QT )′v∗+QQ′′x∗−Qc′′ is an acceleration term that comes
from the change of variables.

(f) Explain why the momentum equation in not Euclidian invariant but is
Galilean invariant.
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8.24. This problem develops some of the properties of the principal invariants
of a symmetric matrix R.

(a) Derive the formulas in (8.62)-(8.64).
(b) Show that the characteristic equation for R can be written as λ3− IRλ2 +

IIRλ− IIIR = 0.
(c) By definition, IR is a function of the components of R. Show that

∂

∂Rij
IR = δij ,

where δij is the Kronecker delta function. Explain why the above equation
can be written as

∂

∂R
IR = I.

(d) Using the ideas developed in part (c) show that

∂

∂R
IIR = −R + IRI.

8.25. This problem derives the Rivlin-Ericksen representation theorem for
a special case. The assumption is that the constitutive law for the stress is
T = G(R), where R is a symmetric tensor. Also, assume that the function
G can be expanded using a Taylor series to give

G =
∞∑

n=0

κnRn,

where the κn’s are constants and Rn = I for n = 0.
(a) Use the Cayley-Hamilton theorem to show that the constitutive law can

be written as T = α0I + α1R + α2R2, where the coefficients α0, α1, and
α2 are functions of the three invariants of R.

(b) Suppose R is objective, so that R∗ = QRQT . Does the assumed consti-
tutive law satisfy the Principle of Material Frame-Indifference?

8.26. This problem outlines the proof of the Rivlin-Ericksen representation
theorem. The assumption is that the constitutive law for the stress is given in
(8.52), where R is a symmetric, objective tensor. Because of symmetry, there
is a basis so R is diagonal, where the diagonal entries are its eigenvalues λ1,
λ2, and λ3. In this problem, this basis is used for the x-system. Also, because
R is objective, it satisfies the transformation law R∗ = QRQT .

(a) Show that Q1, given below, is a rotation. With this rotation, show that
(8.53) implies that T∗ = T, while (8.51) implies something else. Use this
to prove that T12 = T13 = 0.

(b) Find a rotation Q2 that shows that T23 = 0.
(c) The conclusion, so far, is that if R is diagonal then so is T. With this, we

write T11 = f1(λ1, λ2, λ3), T22 = f2(λ1, λ2, λ3), and T33 = f3(λ1, λ2, λ3).
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Show that Q3, given below, is a rotation. With this rotation, show that
f2(λ1, λ2, λ3) = f1(λ2, λ3, λ1) and f3(λ1, λ2, λ3) = f1(λ3, λ1, λ2).

(d) Show that Q4, given below, is a rotation. With this rotation, show that
f1(λ1, λ2, λ3) = f1(λ1, λ3, λ2).

(e) Assume α, β, and γ are solutions of the following systems of equations:

α+ βλ1 + γλ2
1 = f1(λ1, λ2, λ3),

α+ βλ2 + γλ2
2 = f1(λ2, λ3, λ1),

α+ βλ3 + γλ2
3 = f1(λ3, λ1, λ2).

In this case, α, β, and γ are functions of λ1, λ2, and λ3. Use parts (c)
and (d) to show that they are symmetric functions, that is, their values
do not change if any pair of λ1, λ2, and λ3 are interchanged. From the
theory of symmetric functions, it can be shown that α, β, and γ can be
written as functions of tr(R), tr(R2), and tr(R3). Use this to obtain the
Rivlin-Ericksen representation theorem.

(f) Show that α, β, and γ are uniquely determined if λ1, λ2, and λ3 are
distinct.
As a comment, the solution of the system in part (e) is not necessarily
unique, and this has repercussions for how smooth α, β, and γ are as
functions of the invariants. A discussion of this can be found in Truesdell
and Noll [2004].

Q1 =

1 0 0
0 −1 0
0 0 −1

 , Q3 =

0 1 0
0 0 1
1 0 0

 , Q4 =

0 1 0
1 0 0
0 0 −1





Chapter 9

Fluids

9.1 Newtonian Fluids

The equations of motion for an incompressible Newtonian fluid were derived
in the previous chapter. The conclusion was that the constitutive law for the
stress is

T = −pI + 2µD, (9.1)

where p is the pressure, D is the rate of deformation tensor given in (8.67),
and µ is the dynamic viscosity. The SI unit for µ is the Pascal-second (Pa
s), and to help provide some perspective on this, the viscosities of some well-
known fluids are given in Table 9.1. Not unexpectedly, the viscosity of air is
significantly less than the viscosity of water, which in turn is less viscous than
olive oil. What might seem odd is that there is an entry for peanut butter,
which was determined experimentally in Baker et al. [2004]. You might think
that a substance like peanut butter behaves more as a solid than a fluid.
This is partly due to the length of time it takes peanut butter to flow. It is so
slow that it seems to have more of the characteristics of a solid. As it turns
out, peanut butter is not a Newtonian fluid, but this is not due to its slow
flow characteristic. It has properties similar to toothpaste and ketchup, two
materials that are discussed in more depth in the next section.

Fluid Viscosity (Pa s) Density (kg/m3)

Air 1.8× 10−5 1.18

Water 0.89× 10−3 0.997× 103

Mercury 1.5× 10−3 1.3× 104

Olive Oil 0.8× 10−1 0.92× 103

Peanut Butter 1.2× 105 1.02× 103

Table 9.1 Viscosity and density of various substances at 25◦ C.

M.H. Holmes, Introduction to the Foundations of Applied Mathematics, 403
Texts in Applied Mathematics 56, DOI 10.1007/978-0-387-87765-5 9,
c© Springer Science+Business Media, LLC 2009
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The question that arose about peanut butter is one of the objectives of
this chapter, namely how can you determine if a substance can be modeled
as a Newtonian fluid? This same question came up in Chapters 6 and 7 when
studying elasticity and viscoelasticity, and the answer is the same as before.
Namely, we will derive solutions to the equations of motion and then compare
them with what is found experimentally. Assuming they agree then we should
be able to use the experimental data to determine the viscosity. We will also
use this approach to investigate various simplifications that can be made in
the Newtonian model. For example, the viscosity of air is so small, it would
seem that it might be possible to simply assume it is zero. This assumption
produces what is known as an inviscid fluid, and the resulting mathematical
problem gives the appearance of being simpler than what is obtained for a
viscous fluid. In this chapter a progression of such simplifying assumptions is
examined, with the goal of better understanding fluid motion.

9.2 Steady Flow

One of the more studied problems in fluids involves steady flow. This means
that the fluid velocity and pressure are independent of time. Assuming there
are no body forces then the equations of motion for a steady incompressible
fluid, coming from (8.77) and (8.78), are

ρ(v · ∇)v = −∇p+ µ∇2v, (9.2)
∇ · v = 0. (9.3)

As always, with incompressible motion, it is assumed that ρ is constant.
We will solve several fluid problems, and it is always of interest on such

occasions to be able to visualize the flow. One method is to find the paths
of individual fluid particles as the fluid moves, what are known as pathlines.
Once the velocity is known, then the pathline x = X(t) that starts out at
x = A is found by solving

dX
dt

= v(X, t), (9.4)

where
X(0) = A.

As is probably evident, a pathline is just the position function used to define
material coordinates introduced in Sections 6.2 and 8.2. As demonstrated in
Exercise 6.3, even for one dimensional motion it is not particularly easy to
find an analytical solution of (9.4). For steady motion, which is what we are
currently investigating, the problem is a bit easier as the velocity does not
depend explicitly on time. However, for most problems numerical methods
are usually needed to find the solution.
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Figure 9.1 In plane Couette flow the lower plate is stationary, while the top plate
moves in the x-direction. Solving this problem shows that the velocity of the fluid
varies linearly between the two plates.

9.2.1 Plane Couette Flow

One of the more basic flows arises when studying the motion of a fluid between
two parallel plates. A cross-section of this configuration is shown in Figure
9.1. The lower plate, located at y = 0, is fixed, while the upper plate, at
y = h, moves with a constant velocity u0 in the x-direction. The associated
boundary conditions are

v = (u0, 0, 0) on y = h, (9.5)
v = 0 on y = 0. (9.6)

It is assumed that the upper plate has been moving with this constant velocity
for a long time, so the flow is steady. It is also assumed that the fluid is
incompressible, so (9.2), (9.3) apply.

At first glance, given that (9.2) is a nonlinear partial differential equation,
finding the velocity and pressure would seem to be an almost impossible
task. However, some useful insights on the properties of the solution can be
derived from the boundary conditions and the geometry. In particular, given
that the upper and lower boundaries are flat plates, and the upper one moves
with a constant velocity in the x-direction, it is not unreasonable to guess
that there is no dependence on, or motion in, the z-direction. In other words
v = (u, v, 0), where u, v, and p are independent of z. In this case, (9.2), (9.3)
reduce to

ρ(u∂x + v∂y)u = −∂xp+ µ∇2u,

ρ(u∂x + v∂y)v = −∂yp+ µ∇2v,

∂xu+ ∂yv = 0.

This is still a formidable problem, so we need another insight into the form
of the solution. Given that the upper plate is sliding in the x-direction, it is
not unreasonable to expect that there is no flow in the y-direction. In this
case, v = 0 and the above system reduces to
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ρu∂xu = −∂xp+ µ∂2
yu,

0 = −∂yp,

∂xu = 0.

From the last two equations we have that p = p(x) and u = u(y). In this case,
the first equation reduces to p′(x) = µu′′(y). The only way for a function of
x to equal a function of y is that both functions are constants. Consequently,
p′(x) constant means p(x) = p0 + xp1, where p0 and p1 are constants. It is
assumed that the pressure remains bounded, and so p1 = 0. With this, the
solution of µu′′(y) = p′(x) is u = ay + b. Imposing the boundary conditions
u(0) = 0 and u(h) = u0, it follows that u = u0y/h.

The solution of the plane Couette flow problem is, therefore,

v = (γy, 0, 0), (9.7)

where p = p0 is constant, and
γ =

u0

h
(9.8)

is known as the shear rate. This shows that the fluid velocity in the x-direction
increases linearly between the two plates, from zero to u0. This dependence
is illustrated in Figure 9.2. Also, the resulting fluid stress tensor (9.9) is

T = −p0I + µ


0

u0

h
0

u0

h
0 0

0 0 0

 . (9.9)

The above solution gives us something we sorely need, and that is a method
for checking on the assumption that a fluid is Newtonian. The solution shows
that for a Newtonian fluid the shear stress is T12 = µu0/h. Therefore, the
shear stress depends linearly on the shear rate γ = u0/h, with the slope of
the curve equal to the viscosity. This is the basis for one of the more impor-
tant experiments in fluid dynamics, where the shear stress is measured as a
function of the shear rate. Results from such tests are shown in Figures 9.2
and 9.3, for fluids most people have experience with. Based on the linearity
of the data in Figure 9.2, the assumption that water and oil are Newtonian is
reasonable. For the same reason, from Figure 9.3, ketchup and toothpaste are
not Newtonian, or only Newtonian for very small shear rates. They are exam-
ples of what are called nonlinear power-law fluids, where T12 = αγβ . Based
on the data in Figure 9.3, for ketchup, β = 0.55, where as for toothpaste,
β = 0.44. Some of the implications of such a constitutive law are investigated
in Exercise 9.7.

Before moving on to another topic, a comment needs to be made about
our solution of the plane Couette flow problem. The assumptions we made in
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Figure 9.2 Shear stress, as a function of shear rate γ, for water and oil at 25◦ C
(Ellenberger et al. [1976]).

deriving the solutions worked in the sense that we found pressure and velocity
functions that satisfy the original steady flow problem given in (9.2), (9.3),
along with the stated boundary conditions (9.5), (9.6). So, if the solution to
this problem is unique then we have found it. The question is uniqueness.
We saw in Chapter 3 that nonlinear problems often have multiple solutions.
In such cases the question that arose was whether the solution was asymp-
totically stable, because even if there are multiple solutions, those that are
unstable are effectively unachievable. This question arises in all but the sim-
plest fluid problems because of the inherent nonlinear nature of fluid flow.
It has been shown that the solution we have derived for plane Couette flow
is linearly stable (Drazin and Reid [2004]). However, it has been found ex-
perimentally that as the shear rate increases there is a value where the flow
changes dramatically, from the unidirectional flow we found to one that is
three-dimensional and turbulent. The appearance of a solution different than
the one we derived is due to the experimental setup, where the flow is per-
turbed sufficiently to cause the turbulence to appear. This means that for
higher shear rates the solution we derived is not globally asymptotically sta-
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Figure 9.3 Shear stress, as a function of shear rate γ, for ketchup and toothpaste
at room temperature (Leong and Yeow [2003]).
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ble, and an article discussing the ramifications of this issue can be found in
Tillmark and Alfredsson [1992].

9.2.2 Poiseuille Flow

A second steady flow that is often studied involves the fluid motion through a
long pipe due to a pressure difference between the two ends of the pipe. The
pipe is assumed to have length L, and radius R. Given the geometry, it is
easier to use cylindrical coordinates, with the pipe oriented as shown in Figure
9.4. In this case the spatial coordinate system is (r, θ, z), and the associated
velocity vector is v = (vr, vθ, vz). It should be noted that the subscripts on
the components of this vector do not indicate differentiation, but identify the
coordinate of the particular velocity component. So, for example, vr is the
velocity in the r-direction.

The boundary conditions for Poiseuille flow are

v = 0 on r = R, (9.10)
p = p0, vr = vθ = 0 on z = 0, (9.11)
p = p1, vr = vθ = 0 on z = L. (9.12)

To explain these, (9.10) is the no-slip condition and it applies because the
pipe does not move. The conditions at z = 0, L account for the prescribed
pressures at these ends, and the assumption that the fluid velocity is only in
the axial direction as it enters and leaves the pipe.

To find the solution, we will first consider some of the basic properties of
the flow. Given the boundary conditions (9.10) and (9.11), both vr and vθ

are zero on the pipe and at both ends. Based on this, it is expected that
vr = vθ = 0 everywhere. Also, there is no θ dependence in the boundary, or
the boundary conditions. Because of this it is expected that the axial velocity
vz and pressure p do not depend on the angular coordinate θ. In other words,
it is expected that vz = vz(r, z) and p = p(r, z). The equations of motion in

�

�

�

Figure 9.4 In Poiseuille flow, fluid moves through a pipe due to a pressure difference
across the ends. Solving this problem shows that the axial velocity of the fluid has a
parabolic distribution, as given in (9.14).
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cylindrical coordinates, which are given in Appendix E, in this case reduce
to

∂p

∂r
= 0,

ρvz
∂vz

∂z
= −∂p

∂z
+ µ

(
∂2vz

∂r2
+

1
r

∂vz

∂r
+
∂2vz

∂z2

)
, (9.13)

∂vz

∂z
= 0.

From the first and third equation we conclude that p = p(z) and vz = vz(r).
In this case (9.13) reduces to

dp

dz
= µ

(
d2vz

dr2
+

1
r

dvz

dr

)
.

The left hand side is only a function of z, while the right-hand side is only
a function of r. The only way that this can happen is that p′(z) is constant.
Given the boundary conditions on the pressure we conclude that p = p0 +
z(p1 − p0)/L. The remaining equation (9.13) reduces to

µ

(
d2vz

dr2
+

1
r

dvz

dr

)
= p1/L.

This is a first order equation for d
drvz. Using this observation to solve the

equation, one finds that the general solution is

vz =
p1 − p0

4µL
r2 + a ln(r) + b.

The solution must be bounded, so a = 0, and it must also satisfy the no-slip
boundary condition vz = 0 at r = R. The resulting axial velocity is therefore

vz =
p0 − p1

4µL
(R2 − r2). (9.14)

This shows that the velocity has a parabolic distribution in the pipe, and this
is illustrated in Figure 9.4. The fact that pipe flow has this parabolic shape
is demonstrated in Figure 9.5.

It is important to make a point that was also made after solving the plane
Couette flow problem. Several simplifying assumptions were made about the
velocity and pressure functions, based on the given boundary conditions and
geometry of the pipe, to reduce the momentum equations down to (9.13).
These assumptions might be better described as educated guesses on the form
of the solution. They worked in the sense that we found pressure and velocity
functions that satisfy the original steady flow problem given in (9.2), (9.3),
along with the stated boundary conditions (9.10)-(9.12). So, if the solution
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t = 0

t = 5

t = 10

Figure 9.5 Two fluids flowing, from left to right, in a clear pipe (Kunkle [2008]). At
t = 0 the darker fluid is located at the left end. At t = 10 sec the darker fluid shows
the parabolic shape predicted by the solution given in (9.14).

to this problem is unique then we have found it. Moreover, an experimental
demonstration that the solution has the predicted parabolic profile is shown
in Figure 9.5.

As it turns out, experiments show that non-parabolic flow can be obtained
in pipe flow. As with the plane Couette problem, for large enough perturba-
tions in the flow, it is found that at high velocities the flow in the pipe can
be three-dimensional and turbulent. This does not mean our solution is in
question, it just means that it is not globally asymptotically stable at high
flow rates. A great deal of effort has been invested into understanding the
properties of flow in a pipe, and a recent review of this work can be found in
Eckhardt et al. [2007].
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9.3 Vorticity

If you float on an inner tube on a river you notice that not only do you move
downstream, the moving water also causes you to spin. It is the rotational
component of the motion that we are now interested in exploring. The first
step is to derive a variable that can be used to measure the rotation, at least
locally.

To explain how this is done, consider three fluid particles located on the
coordinate axis, at t = 0, as shown in Figure 9.6. For simplicity the flow is
assumed to be two-dimensional, and the positions of the three particles at
t = ∆t are also shown in the figure. The velocity, at t = 0, of the particle
located at the origin is v0 = (u0, v0), where u0 = u(0, 0) and v0 = v(0, 0).
The initial velocity of the particle located at x = ∆x is v1 = (u1, v1), where
u1 = u(∆x, 0) and v1 = v(∆x, 0). We are interested in the case of when ∆x
and ∆t are small. In this case, Taylor’s theorem gives us

u1 = u(∆x, 0)
= u(0, 0) +∆xux(0, 0) + · · ·
= u0 +∆xux + · · · .

Similarly, v1 = v0 +∆xvx + · · · . With this, v1 ≈ v0 +∆x(ux, vx). Now, at
t = ∆t the particle that started at the origin is located at approximately
∆tv0, and the one that started at x = ∆x is at approximately ∆tv1 ≈
∆t(v0 +∆x(ux, vx)). With this

tan(θ1) ≈
∆t(v0 +∆xvx)−∆tv0

∆x+∆t(u0 +∆xux)−∆tu0

=
∆tvx

1 +∆tux

≈ ∆tvx.
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Figure 9.6 Three nearby fluid particles used to introduce the concept of vorticity.
Their motion from t = 0 to t = ∆t, causes both a translation and relative rotation in
their configuration.
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Given that the angle is small, so tan(θ1) ≈ θ1, we have that θ1 ≈ ∆t vx.
Carrying out a similar analysis using the particle that started at y = ∆y one
finds that θ2 ≈ −∆tuy. The average angular velocity around the z-axis is
therefore (θ1 +θ2)/(2∆t) ≈ 1

2 (vx−uy). Similar expressions can be derived for
the rotation around the other two axes. This is the motivation for introducing
the vorticity ω, which is defined as

ω = ∇× v

=
(
∂w

∂y
− ∂v

∂z

)
i +
(
∂u

∂z
− ∂w

∂x

)
j +
(
∂v

∂x
− ∂u

∂y

)
k, (9.15)

where v = (u, v, w). Consequently, ω is twice the average angular velocity
in the three coordinate planes. This also helps explain why W in (8.68) is
known as the vorticity tensor.

Example: Plane Couette Flow

As shown in Figure 9.1, the fluid particles in Couette flow move in straight
lines, and, consequently, appear to have no rotational component. However,
using the solution (9.7) in (9.15), one obtains ω = (0, 0,−γ). In other words,
the vorticity is nonzero. To explain this, plane Couette flow can be thought
of using traffic flow on a multilane road, where the fluid particles are the cars.
This is shown in Figure 9.7. The slowest lane is at y = 0, and the fastest lane
is at y = h. Given a line of cars that start out at x = 0, after a short time they
will have a linear distribution as shown in Figure 9.7. A driver in one of middle
lanes will see the car on the left a bit farther ahead, and the one on the right
a bit farther behind. Hence, from the driver’s perspective there has been a
rotation in the orientation, the rotation being in the clockwise direction. This
gives rise to a negative angular velocity, and this is why the z-component of
the vorticity is negative for this flow. This example also shows that nonzero
vorticity does not necessarily mean that the fluid particles themselves are
rotating. The definition of vorticity assumes nothing about how the fluid
particles interact, it only measures their respective orientations as they flow
past each other. �

9.3.1 Vortex Motion

A vortex is a circular flow around a center, and is similar to what is seen
in a tornado, hurricane, and in the swirling flow through a drain. To study
such motions, it is often convenient to use cylindrical coordinates, and the
equations of motion in this coordinate system are given in Appendix E.
The coordinates in this system are (r, θ, z), with corresponding velocity
v = (vr, vθ, vz). Assuming the center of the vortex is the z-axis then to have
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circular motion around the z-axis we assume that vr = vz = 0. This means
there is no motion in either the z- or r-direction, and so the fluid particles
move on circles centered on the z-axis. Making the additional assumption
that vθ = vθ(r, t) then the equations of motion reduce to

∂vθ

∂t
= ν

∂

∂r

(
1
r

∂(rvθ)
∂r

)
, (9.16)

∂p

∂r
=
ρ

r
v2

θ . (9.17)

This assumes the fluid is incompressible, and that there are no body forces.
The vorticity for this flow is

ω =
(

0, 0,
1
r

∂(rvθ)
∂r

)
. (9.18)

The momentum equation (9.16) is an old friend because it is the radially
symmetric diffusion equation given in (4.78). In this case, the kinematic vis-
cosity is the diffusion coefficient. The point source solution given in (4.81)
gives rise to what is known as the Taylor vortex. The analysis of this vortex
is carried out in Exercise 9.10, while we will investigate a related vortex in
the following example.

Example: Oseen-Lamb Vortex

In this flow vr = vz = 0, and

vθ =
α

r

(
1− exp

(
−r2

β2 + 4νt

))
. (9.19)

It is not hard to show that this function satisfies (9.16), and is therefore an
exact solution of the incompressible fluid equations. The pressure is found by
integrating (9.17), and the vorticity is calculated using (9.18). One finds that

�

�

��� ����

Figure 9.7 Multilane traffic flow analogy used to explain vorticity in plane Couette
flow.
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Figure 9.8 The rotational motion
of a hurricane is an example of vortex
type motion, with the eye containing
the central axis.

ω =
(

0, 0,
2α

β2 + 4νt
exp
(

−r2

β2 + 4νt

))
. (9.20)

The velocity (9.19) is shown in Figure 9.9 at different time points, for α =
β = 4ν = 1. This shows that when the vortex starts out, it is confined to the
region near r = 0. As time passes the vortex slows down, with the maximum
velocity moving outward from the center and decreasing in the process. This
is due entirely to the viscosity of the fluid, and the result is that in the limit
of t→∞, the vortex disappears. Also note that when this vortex starts out,
there is a region near r = 0 where there is little motion, which is reminiscent
of the eye of the hurricane shown in Figure 9.8. �

9.4 Irrotational Flow

One of the ideas underlying the introduction of vorticity is that the mo-
tion of a fluid can be split into two components, a rotational part and a
non-rotational part. How this can be done is obtained from the Helmholtz
Representation Theorem, and this will be presented shortly. In preparation
for this we introduce the concept of an irrotational flow.
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Figure 9.9 Circumferential velocity (9.19) for a Oseen-Lamb vortex.
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Definition 9.1. A fluid for which the vorticity is identically zero is said to
be irrotational. The flow is rotational if the vorticity is nonzero anywhere in
the flow.

One might guess that a flow which moves in a straight line is irrotational, but
the plane Couette flow example shows that statement is incorrect. It is also
incorrect to assume that if the flow is a vortex then it must be rotational.
The next example explains why.

Example: Line Vortex

In the special case of when vr = vz = 0, and vθ = vθ(r, t), then the vortic-
ity is given in (9.18). This will be zero if rvθ is constant. Consequently, an
irrotational flow is achieved by taking

vθ =
α

r
, (9.21)

where α is a constant. The flow in this case is circular motion around the
z-axis, just as it is for the Oseen-Lamb vortex shown in Figure 9.9. This is
called a line vortex, and it produces irrotational flow. �

As the above example clearly demonstrates, rotational motion around the
origin does not necessarily mean that the vorticity is nonzero. The reason
this is confusing is that vorticity is a local property of the flow, and it is
determined by the relative movement of nearby fluid particles. This is not
necessarily the same as what is happening to the flow on the macroscopic
level. This is why the conclusion coming from the line vortex example, that
this particular rotational flow around the origin is irrotational, is not self-
contradictory.

One of the difficulties with assuming a flow is irrotational is that it is a
statement about the absence of a property, namely no vorticity. The question
arises whether it might be possible to characterize the solutions of the Navier-
Stokes equation that are irrotational. To answer this, we will make use of the
following result, which is known as the Helmholtz Representation Theorem.

Theorem 9.1. Assume q(x) is a smooth function of x in a domain D. In
this case, there exists a scalar function φ(x) and a vector function g(x) so
that for x ∈ D,

q(x) = ∇φ+∇× g, (9.22)

where ∇ · g = 0. The function φ is called the scalar potential, and g is the
vector potential, for q.

The proof of this theorem involves two vector identities and a result from
partial differential equations. The first identity is that, given any smooth
vector function h(x),
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∇2h = ∇(∇ · h)−∇× (∇× h).

The right hand side of this equation resembles the result in (9.22), where
φ = ∇ · h and g = −∇ × h. What is needed is to find h so that q = ∇2h.
This is where the result from partial differential equations comes in. Solving
∇2h = q for h is known as Poisson’s equation, and a particular solution is
(Weinberger [1995])

h(x) = − 1
4π

∫∫∫
D

q(s)
||x− s||

dVs, (9.23)

where the subscript s indicates integration with respect to s. With this choice
for h we have derived an expression of the form given in (9.22). The only thing
left to show is that ∇·g = 0. This follows because g = −∇×h and the vector
identity that states, given any smooth vector function h(x), ∇ · (∇×h) = 0.

The above proof relied on the solution of Poisson’s equation, and this
requires certain conditions to be satisfied. If the closure of D is a bounded
regular region, then the stated assumption that q is smooth is sufficient.
Specifically, what this means is that∇×q and∇·q are continuous functions. If
D is not bounded then the integral requires an additional condition, which is
that q goes to zero faster than ||x||−2 as ||x|| → ∞. It is, however, possible to
modify the proof so this latter condition is not needed. The details concerning
the extension to unbounded domains can be found in Gregory [1996].

Another comment concerning the proof is that it is constructive in the
sense that it provides formulas for the potential functions. To explore some
of the consequences of this, suppose for the moment that D = R3. Given that
φ = ∇ · h, then from (9.23) the scalar potential function can be written as

φ = − 1
4π
∇ ·
∫∫∫

q(s)
||x− s||

dVs

= − 1
4π

∫∫∫
q · ∇x

1
||x− s||

dVs

= − 1
4π

∫∫∫
q · ∇s

1
||x− s||

dVs

= − 1
4π

∫∫∫
∇s ·

q
||x− s||

− ∇s · q
||x− s||

dVs

=
1
4π

∫∫∫
∇s · q
||x− s||

dVs.

Carrying out a similar calculation for g one finds that the vector potential
can be written as

g = − 1
4π

∫∫∫
∇s × q
||x− s||

dVs. (9.24)
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It should be remembered that this is for D = R3, so any contribution from
the boundary of the domain is not accounted for in this formula.

9.4.1 Potential Flow

We are interested in irrotational fluid motion, and what can be learned using
the Helmholtz Representation Theorem. Taking q to be the fluid velocity
then ∇×q = ω. For an irrotational flow, so ω = 0, the conclusion we derive
from (9.22) and (9.24) is that the velocity has the form

v = ∇φ. (9.25)

Any flow in which the velocity can be written in this way is called potential
flow. To investigate the consequences of this, we will assume that the fluid is
incompressible and there are no body forces. The continuity equation∇·v = 0
in this case reduces to

∇2φ = 0. (9.26)

This means that the velocity can be found by simply solving Laplace’s equa-
tion, and this is one of the reasons why potential flow is a centerpiece in most
fluid dynamics textbooks. It is important to point out here that nothing has
been said about the boundary conditions. These have major repercussions
for potential flow, and this will be discussed in more detail shortly.

The pressure p for potential flow is determined by solving the momentum
equations. In the x-direction, as given in (8.77), we have that

ρ

(
∂2φ

∂x∂t
+
∂φ

∂x

∂2φ

∂x2
+
∂φ

∂y

∂2φ

∂x∂y
+
∂φ

∂z

∂2φ

∂x∂z

)
= −∂p

∂x
+ µ∇2 ∂φ

∂x
. (9.27)

Given (9.26), then the viscous stress term µ∇2∂xφ in the above equation is
zero. In other words, for irrotational flow the viscosity does not contribute
to the momentum equation. With this, it is possible to rewrite (9.27) in the
form

∂

∂x

[
∂φ

∂t
+

1
2

(
∂φ

∂x

)2

+
1
2

(
∂φ

∂y

)2

+
1
2

(
∂φ

∂z

)2

+
1
ρ
p

]
= 0.

Not too surprisingly, the y and z momentum equations show that the y
and z derivatives of the above quantity in the square brackets are zero. The
conclusion is that

∂φ

∂t
+

1
2

(
∂φ

∂x

)2

+
1
2

(
∂φ

∂y

)2

+
1
2

(
∂φ

∂z

)2

+
1
ρ
p

is only a function of time. In other words,
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p = p0(t)− ρ

[
∂φ

∂t
+

1
2

(
∂φ

∂x

)2

+
1
2

(
∂φ

∂y

)2

+
1
2

(
∂φ

∂z

)2
]
, (9.28)

or equivalently

p = p0(t)− ρ

(
∂φ

∂t
+

1
2
∇φ · ∇φ

)
. (9.29)

This is known as Bernoulli’s theorem for irrotational flow. Once Laplace’s
equation is solved to find the potential function, (9.25) is used to find the
velocity and (9.29) is used to find the pressure.

Example: Line Vortex (cont’d)

Using cylindrical coordinates, then v = (vr, vθ, vz), and

∇φ =
(
∂φ

∂r
,
1
r

∂φ

∂θ
,
∂φ

∂z

)
. (9.30)

To obtain vr = vz = 0 it is required that φ = φ(θ, t). To have (9.21) hold it
is required that ∂φ

∂θ = α. Therefore, the scalar potential function for the line
vortex is φ = αθ. The pressure, obtained from (9.29), is p = p0− 1

2ρα
2/r2. �

One question that has not been addressed is, how realistic is it to assume
a flow is irrotational? In applications, in addition to the equations of mo-
tion, there are boundary and initial conditions, and these were conveniently
ignored when deriving (9.24). The fact is that they can easily ruin the assump-
tion of irrotationality. To explain why, consider the no-slip condition (8.7).
This prescribes all three components of the velocity vector on the boundary.
The equation to solve for an irrotational flow is Laplace’s equation (9.26),
from which the velocities are determined using (9.25). Mathematically, for
Laplace’s equation, one can only impose one condition on the boundary, and

Figure 9.10 The motion of the
airflow around a plane generates
vorticity into the flow (Morris
[2006]). This is evident in the mo-
tion of the clouds behind the plane
in the photograph.
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not three as required from the no-slip condition. The usual choice is to have
the solution satisfy the impermeability condition (8.79). Therefore, if the flow
is to be irrotational, the other two boundary conditions making up the no-
slip condition would have to be selected to be consistent with the resulting
solution of Laplace’s equation. What this means is that irrotational flow in a
viscous fluid is possible, but the boundary conditions have to be just right. An
example is the line vortex above, where there are no boundaries, and hence
no difficulties trying to satisfy the no-slip condition. Physically, what hap-
pens in most fluid problems is that the boundaries generate vorticity, which
then spreads into the flow and causes it to be rotational. An example of this
is shown in Figure 9.10. One way to avoid this from happening, in addition
to adjusting the boundary conditions, is to assume the fluid viscosity is zero.
This produces what is known as an inviscid fluid, and this is the subject of
the next section.

Because of the complications of the no-slip condition, most textbooks as-
sociate potential flow with an inviscid fluid. In fact, to overcome this asso-
ciation, in the research literature the above discussion would be referred to
as viscous potential flow, just to make sure to point out that the viscosity
has not been assumed to be zero. Those interested in learning about some of
the consequences of keeping the viscosity in a potential flow should consult
Joseph [2006].

9.5 Ideal Fluid

As seen in Table 9.1, the viscosity of air is much less than it is, for example,
for water. It is for this reason that when studying air flow that it is often
assumed to be inviscid, which means the viscosity is zero. If, in addition, the
fluid is assumed to be incompressible then one has what is called an ideal
fluid. The equations of motion in this case are

ρ(∂t + v · ∇)v = −∇p, (9.31)
∇ · v = 0. (9.32)

The above system is known as the Euler equations. The absence of viscosity
means that the no-slip condition is inappropriate, but the impermeability
boundary condition still applies.

Two assumptions are made in this section. One is relatively minor, and it
is that there are no body forces. The formulas derived below can be extended
in a straightforward manner to include body forces, and the results are given
in Exercise 9.15. The second assumption is not minor, and it is that there is
a unique solution of the ideal fluid problem and it is smooth. This issue will
be discussed again at the end of this section.
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Example: Plane Couette Flow Revisited

The lack of viscosity has some interesting consequences. As an example, sup-
pose in the plane Couette flow problem the fluid starts from rest. With a
viscous fluid, because of the no-slip condition, when the upper surface starts
to move it pulls the nearby fluid with it. After a short amount of time the fluid
between the two plates approaches a steady flow, and the solution given in
(9.7) applies. This does not happen if the fluid is inviscid. The only boundary
condition at y = h is the impermeability condition, which is that the velocity
in the vertical direction is zero. The motion of the plate has no effect on the
fluid, and so the fluid remains at rest. Therefore, the solution of the plane
Couette flow problem for an ideal fluid is simply v = 0 and p = p0. �

9.5.1 Circulation and Vorticity

An important property of an ideal fluid is that if it starts out irrotational, it
is irrotational for all time. To explain why, we start with the surface integral∫∫

S

ω · n dA, (9.33)

where S is an oriented smooth surface that is bounded by a simple, closed,
smooth boundary curve C with positive orientation. This is the vorticity flux
across the surface S, and it can be used to measure the vorticity. The first
step is to recall Stokes’ theorem, which states that∫∫

S

∇× v · n dA =
∫

C

v · dx.

Using this in (9.33) we have∫∫
S

ω · n dA =
∫

C

v · dx. (9.34)

It is the last integral that we will work with, and so let

Γ (t) =
∫

C

v · dx. (9.35)

The function Γ (t) is called the circulation.

Example: Oseen-Lamb Vortex Revisited
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The vorticity for the Oseen-Lamb vortex is given in (9.20). Suppose we want
to calculate the circulation when the curve C is the circle in the x,y-plane,
with radius R and centered at the origin (see Figure 9.11). It is easier, in this
case, to use (9.34) and write

Γ (t) =
∫∫
S

ω · n dA.

Using cylindrical coordinates, the surface S is the disk r ≤ R in the plane
z = 0, and n = (0, 0, 1). From (9.20), ω · n = 2αq(t) exp(−q(t)r2), where
q(t) = 1/(β2 + 4νt), and so

Γ =
∫ 2π

0

∫ R

0

2αq(t) exp(−q(t)r2)rdrdθ

= 2πα
[
1− exp(−q(t)R2)

]
.

Consequently, for a viscous fluid, the circulation starts out with the value
Γ0 = 2πα

[
1− exp(−R2/β2)

]
, and decays to zero as t→∞. In contrast, for

an ideal fluid, so ν = 0, the circulation has the constant value Γ0. It is this
property, that the circulation is constant for an ideal fluid, that is the central
idea of the next theorem. �

Before stating the theorem, the concept of a material curve needs to be
explained. Suppose one starts out, at t = 0, with a simple closed curve. As
time progresses, the material points making up this initial curve move with
the fluid, deforming the original shape. Due to the impenetrability of matter
assumption, the points never intersect, so the shape remains a simple closed
curve. This is what is known as a material curve. With this, we can now state
what is known as Kelvin’s Circulation Theorem.

Theorem 9.2. For an ideal fluid, if C is a material curve, then dΓ
dt = 0.

Figure 9.11 Surface, and contour, used to calculate the circulation for an Oseen-
Lamb vortex.
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To prove this, we need what effectively is a Reynolds transport theorem for
line integrals. The first step is to use material coordinates to get the time
dependence out of the limits of integration, and so, at t = 0 assume the curve
C is given as A = G(s), for a ≤ s ≤ b. At later times the curve is described
as x = X(G(s), t). With this, dx = FG′(s)ds, and so (9.35) becomes

Γ =
∫ b

a

V · FG′(s)ds,

where V and F are evaluated at A = G in the above integral. Taking the
time derivative yields

dΓ

dt
=
∫ b

a

(
∂V
∂t

· FG′(s) + V · ∂F
∂t

G′(s)
)
ds. (9.36)

Using the results from Exercise 8.9, and remembering that V is evaluated at
A = G, it follows that

V · ∂F
∂t

G′(s) = V · ∇AVG′(s)

=
d

ds

1
2
(V ·V).

Given that the curve is closed then (9.36) reduces to

dΓ

dt
=
∫ b

a

∂V
∂t

· FG′(s)ds

=
∫

C

Dv
Dt

· dx. (9.37)

What remains is to recall a property of line integrals. Specifically, given any
smooth function φ, and a closed curve C, the following holds

∫
C
∇φ ·dx = 0.

From (9.32) we have that Dv
Dt = − 1

ρ∇p, where ρ is constant. Therefore, from
(9.37), we have that dΓ

dt = 0.
The above result will enable us to make the stated conclusion about the

irrotationality of an ideal fluid. The following result is known as Helmholtz’s
Third Vorticity Theorem.

Theorem 9.3. If an ideal fluid is irrotational at t = 0, then it is irrotational
for all time.

The proof of this starts with using Stokes’ theorem to write the circulation
as

Γ =
∫∫
S

ω · n dA.
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This shows that because ω = 0 at t = 0, then Γ = 0 at t = 0. Given that
Γ is constant, it follows that Γ = 0 for all time. To use this observation to
prove the vorticity is always zero, suppose ω is nonzero at some point in the
flow. In this case, given that ω is continuous, it is possible to find a small
surface containing this point for which the above integral is nonzero. This is
a contradiction, and therefore ω must be zero everywhere.

As an example, the above theorem shows that an ideal fluid which starts
at rest is irrotational for all time. The reason is that because v = 0 at t = 0
then ω = 0 at t = 0.

9.5.2 Potential Flow

What we have been able to show is that if the fluid is irrotational at t = 0,
then it is possible to introduce a potential function φ so that

v = ∇φ, (9.38)

and

p = p0(t)− ρ

(
∂φ

∂t
+

1
2
∇φ · ∇φ

)
. (9.39)

To find φ one solves
∇2φ = 0, (9.40)

along with the appropriate boundary conditions. For example, at a solid
boundary surface the impermeability boundary condition (8.79) is imposed.
If the boundary S is not moving then, given (9.38), the resulting boundary
condition is

∇φ · n = 0 on S, (9.41)

or equivalently
∂φ

∂n
= 0 on S. (9.42)

If the problem involves a pressure boundary condition, then the corresponding
boundary condition for φ is obtained using (9.39). However, this can make the
problem much harder to solve because the ∇φ · ∇φ term causes the problem
to be nonlinear.

Any fluid flow in which the velocity satisfies (9.38) is known as potential
flow. Although this might seem obvious, it differs from the definition used
in some textbooks on fluid dynamics, where a potential flow is defined as
“an irrotational flow in an inviscid and incompressible fluid.” The reason for
including these additional qualifications, as explained at the end of Section
9.4.1, is the difficulty of obtaining a potential flow when the fluid is viscous.
However, it is inappropriate to include them. The reason is that potential
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Figure 9.12 Cross-section for uniform flow past a cylinder.

flow is a statement about a fluid’s motion, while the statement that it is
inviscid is an assumption about its material properties.

We have been making a series of simplifying assumptions in this chap-
ter, attempting to obtain a more tractable mathematical problem. By this
measure, we have been extraordinarily successful because we have reduced a
coupled system of nonlinear equations down to the single linear equation in
(9.40). This has been done by excluding the effects of viscosity, and assuming
the flow is irrotational. This degree of simplification helps explain the inter-
est in potential flow. It is also why textbooks on the applications of complex
variables inevitably have a chapter on fluid flow, although they must limit
their analysis to flow in two dimensions. The question is, however, just how
realistic is it to assume a potential flow? The next example will shed some
light on this topic.

Example: Potential Flow Past a Cylinder

Consider air flow over a solid cylinder of radius R centered on the z-axis, as
shown in Figure 9.12. It is assumed that the flow is from left to right, and
the specific condition is that v = (u0, 0, 0) as x → −∞. The flow must also
satisfy the impermeability condition on the surface of the cylinder, and this
means that v ·n = 0 on ||x|| = R, where n is the unit normal to the boundary.
Given the geometry and flow at infinity it is reasonable to expect there is no
flow in the z-direction, and the potential function is independent of z. With
this, Laplace’s equation in cylindrical coordinates becomes

∂2φ

∂r2
+

1
r

∂φ

∂r
+

1
r2
∂2φ

∂θ2
= 0, for r > R. (9.43)

The impermeability condition (9.42) takes the form

∂φ

∂r
= 0, for r = R, (9.44)

and the flow at infinity requires that
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Figure 9.13 Flow lines around a cylinder in uniform flow, calculated using the
potential function given in (9.46). In this calculation, u0 = R = 1.

cos θ
∂φ

∂r
+ sin θ

1
r

∂φ

∂θ
= u0,

sin θ
∂φ

∂r
+ cos θ

1
r

∂φ

∂θ
= 0.

 for r →∞ (9.45)

This is one of the few unbounded domain problems for which the method of
separation of variables can be used. So, assuming that φ(r, θ) = F (r)G(θ)
one finds from (9.43) that F = αrn + βr−n and G = A cos(nθ) + B sin(nθ).
Because the solution must be 2π periodic in θ, it is required that n be a
positive integer. From (9.44) it follows that β = αR2n. Imposing (9.45) yields
n = 1, αA = u0, and B = 0. The resulting potential is

φ = u0 cos θ
(
r +

R2

r

)
. (9.46)

The velocity field is therefore

vr =
∂φ

∂r
= u0 cos θ

(
1− R2

r2

)
,

vθ =
1
r

∂φ

∂θ
= −u0 sin θ

(
1 +

R2

r2

)
.

It is possible to determine the paths of individual fluid particles by solving
(9.4) using the above velocity functions. This is easily done numerically, and
the results from this calculation are shown in Figure 9.13. �

If air can be assumed to be an ideal fluid, then it would seem that potential
flow could be used in aerodynamics to help understand flight. As an example,
you could think of Figure 9.13 as the flow around an airplane wing that has
a circular cross-section. You also might think that this is not particularly
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realistic because cross-sections of airplane wings are relatively thin, to help
reduce the drag and increase lift. Well, let’s see about this. The pressure is
determined by substituting (9.46) into (9.39), yielding

p =
1
2
ρ

(
u0R

r

)2(
4 cos2 θ − 2− R2

r2

)
. (9.47)

The force on the circular-cross section is

F = −
∫

C

pnds,

where C is the boundary circle x2 + y2 = R2, and n is the unit outward
normal to the circle. The x and y components of this force are

Fx = −R
∫ 2π

0

p(R, θ) cos(θ)dθ,

Fy = −R
∫ 2π

0

p(R, θ) sin(θ)dθ.

A straightforward calculation shows that both integrals are zero. In other
words, the drag Fx, and the lift Fy, are both zero. As it turns out, this
happens with any shape, as long as the fluid is ideal and the flow is steady
and irrotational. This is clearly at odds with what is expected, and it is
known as d’Alembert’s paradox. It is possible to produce lift, an essential
requirement to be able to fly, if the flow is rotational. This result is known as
the Kutta-Joukowski theorem, but as we saw earlier, it is impossible to get an
ideal fluid to be rotational if you start from rest. In other words, if you strap
on a pair of wings and starting running in still air, there is no way you are
taking off, no matter how fast you are able to run. What this means is that
if you want your airplane to fly it is essential that the fluid is viscous. Or,
more precisely, that the contribution of the viscosity in generating vorticity
from the solid surface of the wing is accounted for in the model. One method
how this can be done is explained in the next section.

9.5.3 End Notes

An important issue that arises when assuming the fluid is inviscid concerns
the regularity of the solution. Viscosity acts to smooth out jumps and other
irregular behavior. By not having viscosity, we have equations similar to those
used to model traffic flow. This means that shock wave solutions are possible,
and the uniqueness of the solution is an issue. In traffic flow we introduced
the entropy condition to determine uniqueness, but for multidimensional fluid
problems there are still questions related to the appropriate condition. In fact,
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there are several open problems associated with the Euler equations. One
that has generated considerable interest is the Euler blow-up problem. It is
suspected that the solution of the three-dimensional Euler equations develops
a singularity in finite time, but no one has been able to prove this assertion.
This means that most of the evidence has come from numerical solutions,
but even this has been contradictory. An interesting survey of the blow-up
problem, as well as other aspects of the Euler equations, can be found in the
proceedings of the conference, Euler Equations: 250 Years On (Eyink et al.
[2008]).

9.6 Boundary Layers

The assumption that a fluid is inviscid corresponds to setting the viscosity
equal to zero in the Navier-Stokes equation (8.77). What drops out of the
equation in this case is the highest spatial derivative in the problem. As we
found in Section 2.4, this is the type of limit that is associated with the
appearance of a boundary layer. The fact that boundary layers might occur
in the flow of a viscous fluid is not surprising given the rapid transitions
shown in Figure 8.7. However, the situation is not as straightforward as what
occurred in Chapter 2, because the viscous fluid problem is time dependent,
and it is not clear what exactly the assumption “small viscosity” means. To
get started, we will consider a example that illustrates what happens in a
time-dependent flow.

9.6.1 Impulsive Plate

This example is known as Stokes’ first problem, and it is one of the few time
dependent solutions known for the Navier-Stokes equation. It is assumed that
the fluid is incompressible, has no body forces, and it occupies the region
y > 0. Also, it is at rest for t < 0, and at t = 0 the lower boundary, at
y = 0, is given the constant velocity v = (u0, 0, 0). This situation is similar to
the plane Couette flow problem, in the sense that a planar boundary surface
produces a flow in the x-direction. For this reason, the argument used to solve
the Couette flow problem can be used here. Assuming that v = (u(y, t), 0, 0),
then the problem reduces to solving

ρ(ut + u∂xu) = −∂xp+ µ∂2
yu,

0 = −∂yp,

∂xu = 0.



428 9 Fluids

0 1 2 3 4
0

0.5

1

y−axis

u−
ax

is

 

 
 t = 0.01
 t = 0.1
 t = 1.0

Figure 9.14 Solution (9.49) of the impulsive plate problem, at three time values.

As before, it follows that p is constant, and the entire problem reduces to
solving

∂u

∂t
= ν

∂2u

∂y2
, (9.48)

where u(y, 0) = 0, u(0, t) = u0, and u(∞, t) = 0. Also, ν = µ/ρ is the
kinematic viscosity. This diffusion problem was solved in Section 1.4 using a
similarity variable. The solution, given in (1.61), is

u(y, t) = u0 erfc
(

y

2
√
νt

)
, (9.49)

where

erfc(η) = 1− 2√
π

∫ η

0

e−s2
ds. (9.50)

This solution is shown in Figure 9.14 at three time values, in the case of
when u0 = ν = 1. What is seen is that the effect of the moving plate is
initially located near y = 0, which is expected of a boundary layer. However,
as time passes the effects spread through the fluid domain, and this is due to
the diffusive nature of the viscous stress. This gives rise to what is known as
a diffusive boundary layer. To quantify what this means, in the engineering
literature the boundary layer thickness is defined to be the distance between
the boundary and the point where the velocity is 1% of the imposed value.
Given that erfc(η) = 0.01 for η ≈ 1.8, then the boundary layer thickness in
this problem is approximately y = 3.6

√
νt. Consequently, this layer grows

and spreads through the fluid region.
The existence of a boundary layer separates the flow into an inner and

outer region. In the outer region the fluid can be approximated to be inviscid,
and the viscous effects are confined to the inner, or boundary layer, region.
This observation is routinely used in the numerical solution of the Navier-
Stokes equation, because the resolution needed in the inviscid region is usually
much less than what is needed in the boundary layer. This is seen in Figure
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??, where the grid structure near the surface of the plane is much finer than
the one used in the outer, inviscid, flow region.

9.6.2 Blasius Boundary Layer

The next boundary layer example involves the steady flow over a stationary
flat plate (see Figure 9.15). The plate occupies the plane y = 0, for 0 < x < L,
and the flow is coming in from the left. Assuming that the flow is steady, and
that there is no flow in the z-direction, then the fluid equations are

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
,

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
,

∂u

∂x
+
∂v

∂y
= 0.

The boundary conditions are

v = (0, 0, 0) on y = 0, 0 < x < L,

v = (u0, 0, 0) for y → −∞.

To undertake a boundary layer analysis we must nondimensionalize the prob-
lem. This is done by letting x = Lx̄, y = Lȳ, u = u0ū, v = u0v̄, and p = pcp̄,
where pc = ρu2

0. In this case the equations of motion become(
ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
= −∂p̄

∂x̄
+ ε2

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
, (9.51)(

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
= −∂p̄

∂ȳ
+ ε2

(
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2

)
, (9.52)

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (9.53)

�

�

� �

�

Figure 9.15 Flow over a flat plate used to study viscous boundary layers.
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where
ε2 =

µ

ρLu0
. (9.54)

From (1.20), we have that ε2 = 1/Re. In other words, ε2 is the inverse of
the Reynolds number for the flow. Our assumption that the viscosity is small
translates into the assumption that the Reynolds number is large. As an
example, consider the flow over an airplane wing. The width of the wing on
the Boeing 787 is 18 ft (5.5 m) and cruises at a speed of 561 mph (903 km/h).
In this case, Re = 4×107, which certainly qualifies as high Reynolds number
flow.

The reduction of the above problem will closely follow the format used in
Section 2.4, although the calculations are a bit more involved.

Outer Solution
The expansion in this region is assumed to have the form v̄ ∼ v̄0 + εv̄1 + · · ·
and p̄ ∼ p̄0 + εp̄1 + · · · . The problem for the first term, obtained by setting
ε = 0 in (9.51) - (9.53), is the problem for an inviscid flow. The solution is
just v0 = (u0, 0, 0), and p̄0 is a constant. It is assumed, for simplicity, that
p̄0 = 0.

Boundary Layer Solution
The boundary layer coordinate is

Y =
ȳ

ε
.

As in Section (2.4), capitals will be used to designate the dependent variables
in the boundary layer region. With this, (9.51) - (9.53) take the form(

Ū
∂Ū

∂x̄
+

1
ε
V̄
∂Ū

∂Y

)
= −∂P̄

∂x̄
+ ε2

∂2Ū

∂x̄2
+
∂2Ū

∂Y 2
, (9.55)(

Ū
∂V̄

∂x̄
+

1
ε
V̄
∂V̄

∂Y

)
= −1

ε

∂P̄

∂Y
+ ε2

∂2V̄

∂x̄2
+
∂2V̄

∂Y 2
, (9.56)

∂Ū

∂x̄
+

1
ε

∂V̄

∂Y
= 0, (9.57)

The appropriate expansions in this case are Ū ∼ Ū0 + · · · , V̄ ∼ ε(V̄0 + · · · ),
and P̄ ∼ P̄0 + · · · . Introducing these into (9.55) - (9.57), and letting ε → 0
we obtain (

Ū0
∂Ū0

∂x̄
+ V̄0

∂Ū0

∂Y

)
= −∂P̄0

∂x̄
+
∂2Ū0

∂Y 2
, (9.58)

∂P̄0

∂Y
= 0 , (9.59)

∂Ū0

∂x̄
+
∂V̄0

∂Y
= 0. (9.60)
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From the no-slip condition on the plate, it is required that

(Ū0, V̄0) = (0, 0) on Y = 0, 0 < x̄ < 1. (9.61)

Moreover, the solution must match with the outer solution, and for this reason
it is required that

Ū0 → 1 and P̄0 → 0 as Y →∞, 0 < x̄ < 1. (9.62)

There is a matching condition for V̄0, but it is not needed at the moment and
this will be explained after the solution is derived.

From (9.59) and (9.62) it follows that P̄0 = 0. The usual method for finding
the velocity functions is to introduce a stream function ψ(x̄, Y ), which is
defined so that

Ū0 =
∂ψ

∂Y
, (9.63)

V̄0 = −∂ψ
∂x̄

. (9.64)

By doing this, the continuity equation (9.57) is satisfied automatically. This
leaves the momentum equation (9.55), which reduces to

∂ψ

∂Y

∂2ψ

∂Y ∂x̄
− ∂ψ

∂x̄

∂2ψ

∂Y 2
=
∂3ψ

∂Y 3
. (9.65)

The boundary (9.61) and matching (9.62) conditions transform into the fol-
lowing

∂ψ

∂Y
=
∂ψ

∂x̄
= 0, on Y = 0, (9.66)

and
∂ψ

∂Y
→ 1, as Y →∞. (9.67)

Something that was not explained above is where the idea of using a stream
function comes from. The answer is the Helmholtz Representation Theorem
(9.22). When the flow is incompressible, and two-dimensional as in the present
example, then the velocity vector can be written as v = ∇ × g, where g =
(0, 0, ψ). Expanding the curl, one obtains v = (∂yψ,−∂xψ, 0), and this gives
rise to the stream function.

It is not possible to find an analytical solution of the above problem for the
stream function. However, it is possible to come close if we make one more
assumption. Instead of a plate of finite length, we assume that the plate is
semi-infinite and occupies the interval 0 ≤ x̄ < ∞. This gives rise to what
is known as the Blasius boundary layer problem, and it can be reduced by
introducing a similarity variable. Specifically, assuming that ψ =

√
x̄f(η),

where η = Y/
√
x̄, then (9.65) reduces to
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f ′′′ +
1
2
ff ′′ = 0, for 0 < η <∞, (9.68)

where (9.66) and (9.67) become

f(0) = f ′(0) = 0, and f ′(∞) = 1. (9.69)

One might argue that we have not made much progress, because the solution
of the above problem is not known. However, the ordinary differential equa-
tion (9.68) is certainly simpler than the partial differential equation (9.65),
and this does provide some benefit. For example, it is much easier to solve
(9.68) numerically than it is to solve (9.65) numerically. Just one last com-
ment to make here, before working out an example, is that once the function
f is determined then the velocity functions are calculated using the formulas

Ū0 = f ′(η), (9.70)

V̄0 = − 1
2
√
x̄

(f − ηf ′). (9.71)

These expressions are obtained by substituting the similarity solution into
(9.63) and (9.64).

Example: Numerical Solution

To use a numerical method to solve (9.68) it is a bit easier to rewrite the
equation as a system by letting g = f ′. In this case the equation can be
written as

0
0y

−a
xi
s

0
0

x−axis

y−
ax
is

Figure 9.16 Flow over a flat plate, as determined from solving (9.68), (9.69). The
upper graph shows Ū0, as a function of Y , at three points on the plate. The dashed
curve in the lower graph is where Ū0 = 0.99.
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f ′ = g,

g′′ = −1
2
fg′.

The boundary conditions (9.69) become g(0) = 0, g(∞) = 1, and f(0) = 0.
With this, it is relatively straightforward to use finite differences to solve the
problem (Holmes [2005]). The result of such a calculation is given in Figure
9.16. The upper graph shows the horizontal velocity u at three locations along
the plate. As required, the velocity is zero on the plate, and as the vertical
distance from the plate increases it approaches the constant velocity of the
outer region. It is also evident that the velocity reaches this constant value
fairly quickly for a point on the plate that is near the leading edge, where
x̄ = 0, and less so as the distance from the leading edge increases. The reason
is that the boundary layer on the plate grows with distance from the leading
edge. Using the engineering definition that the boundary layer thickness is
where the flow reaches 99% of the outer flow value, the dashed curve shown
in the lower graph is obtained. The shape of this curve can be explained using
(9.71). By definition, the dashed curve is where Ū0 = 0.99, and this means
that f ′(η) = 0.99. Letting the solution of this equation be η0 then, because
η = Y/

√
x̄, we have that the dashed curve is Y = η0

√
x̄. �

The above example illustrates how a flow can be separated into an outer,
inviscid, region, and a boundary layer where the viscous affects play an im-
portant role. This requires a large value for the Reynolds number, and does
not hold for a low Reynolds number. It is also based on the solution for an
infinitely long plate, something that is rather rare in the real world. When
the plate has finite length, a wake is formed downstream from the plate.
An example of this is shown in Figure 9.17. The pattern seen in the wake is
known as a Karman vortex street. It is also possible to see the boundary layer
on the plate in the upper figure. What is interesting is that the fluid used in
this experiment is water, and not air. This is indicative of the fact that the
separation of the flow into inviscid and boundary layer domains is a charac-

Figure 9.17 Wake behind a flat plate, showing the vortices generated in the flow
(Tanaka [1986]). The photograph of the left is the flow immediately behind the plate,
and the one on the right is further downstream. The vortices are evident because
aluminum particles are suspended in the flow. In this experiment, Re = 15800.



434 9 Fluids

teristic of any fluid governed by the Navier-Stokes equations, assuming the
Reynolds number is sufficiently large. It is also evident, given the complexity
of the flow, that finding the solution for the finite plate requires numerical
methods. Some of the issues that arise with this are discussed in Cebeci and
Cousteix [2005].

Before closing this section, a couple of comments are needed about the
boundary layer reduction. First, the flow in the immediate vicinity of the
leading edge requires a more refined boundary layer analysis that was used
here. The same comment applies to the trailing edge for the finite length plate.
Second, there are questions remaining about the matching requirement for
the vertical velocity. In particular, there must be a matching condition, yet
it is not included in (9.62). This is an issue, because according to (9.71), it
appears that the vertical velocity is unbounded when one moves out of the
boundary layer into the outer region. Namely, given that f ′(∞) = 1 then ηf ′

is unbounded as η → ∞. In comparison, we know that the vertical velocity
in the inviscid region is just zero. Therefore, to guarantee that the vertical
velocity matches it must be that f ∼ η as η → ∞. If the solution of (9.68)
does not do this then the whole approximation fails. It is found, from the
numerical solution, that f does indeed have the correct limiting behavior,
and so the expansions match.

Exercises

9.1. Suppose an incompressible viscous fluid has velocity v = (u, v, 0), with
u = ax2 + bxy + cy2, where a, b, and c are constant.

(a) Find v assuming that v(x, 0, z) = 0.
(b) Find T.
(c) For what values of a, b, and c, if any, is the flow irrotational?

9.2. Suppose the velocity for an incompressible fluid is v = (−αy, αx, β),
where α and β are constants.

(a) Show v satisfies the continuity equation.
(b) Assuming no external body forces, find the pressure.
(c) Is this flow rotational or irrotational?
(d) Find the pathlines.
(e) This is known as steady helical flow. Why?

9.3. Suppose the velocity for an incompressible fluid is v = (x+ y, 3x− y, 0).
(a) Show v satisfies the continuity equation.
(b) Assuming no external body forces, find the pressure.
(c) Is this flow rotational or irrotational?
(d) Find the pathlines.
(e) Use the result from part (d) to find the material description of the flow.
(f) Find the invariants for D.
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Figure 9.18 Concentric rotating cylinders used in the Taylor-Couette problem in
Exercise 9.6.

9.4. This problem considers some of the limitations on the method used to
solve the steady flow equations.

(a) Suppose in the Poiseuille flow problem in Section 9.2.2 that the pipe has
an elliptical cross-section. What assumptions about the solution used to
derive (9.13) no longer apply? What assumptions should still be valid?

(b) Suppose in the plane Couette flow problem in Section 9.2.1 that gravity
is included. This means that a forcing function must be included in (9.2),
as determined from (8.77), of the form f = (0,−g, 0). What assumptions
about the solution used to derive (9.7) no longer apply? What assumptions
should still be valid?

9.5. As a modification of the plane Couette flow problem, suppose there are
two fluids between the plates. One fluid occupies the region 0 < y < h0,
and has density ρ1 and viscosity ν1. The second fluid occupies the region
h0 < y < h and has density ρ2 and viscosity ν2.

(a) In plane Couette flow the velocity has the form v = (u(y), 0, 0). Also, at
the interface, where y = h0, the velocity and stress are assumed to be
continuous. Use this to show that p, u and u′(y) are continuous at y = h0.

(b) Using the results from part (a), solve this plane Couette problem.

9.6. An incompressible viscous fluid occupies the region between two concen-
tric cylinders of radii R1 and R2, where R1 < R2. Assume the cylinders are
infinitely long, and centered on the z-axis (see Figure 9.18). The inner cylin-
der is assumed rotating around the z-axis with angular velocity ω1, while the
outer cylinder rotates around the z-axis with angular velocity ω2. The flow
is assumed to be steady, and there are no body forces. This is known as the
Taylor-Couette problem.

(a) Using cylindrical coordinates, explain why the boundary conditions on the
cylinders are (vr, vθ, vz) = (0, ωiRi, 0) for r = Ri.

(b) Explain why it is reasonable to assume that the solution has vz = 0 and
vr = 0.
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(c) Find vθ and p.
(d) What is the vorticity for this flow? With this show that the flow is irrota-

tional if R2
1ω1 = R2

2ω2.

9.7. This problem examines a model for power-law fluids. It is based on the
observation coming from Figure 9.3 that the shear stress for plane Couette
flow has the form T12 = α(∂u

∂y )β . It is assumed here that the fluid is incom-
pressible.

(a) In plane Couette flow the velocity has the form v = (u(y), 0, 0). What are
D and its three invariants in this case?

(b) As shown in Section 8.10.2.1, the general form of the constitutive law for
a nonlinear viscous fluid is T = −pI + G, where G = α0I + α1D + α2D2.
Explain how the power-law

T12 = α

∣∣∣∣∂u∂y
∣∣∣∣m ∂u

∂y

is obtained by assuming that α0 = α2 = 0 and α1 depends on IID in a
particular way. It is assumed that m > −1, which guarantees that G = 0
if D = 0.

(c) Assuming that ∂u
∂y > 0, and using the constitutive law from part (b),

solve the resulting plane Couette flow problem. From this show that T12 =
αγm+1, where γ is given in (9.8).

(d) On the same axes, sketch T12 as function of γ when −1 < m < 0, when
m = 0, and when 1 < m. Use this to compare the differences in the
behavior of the shear stress for large values of γ. Would the −1 < m < 0
case be called a shear-thickening or a shear-thinning situation?

9.8. This problem examines the vorticity for a linear flow, which means that
v = Hx + h, where the matrix H and vector h can dependent on t. Other
properties of linear flows were developed in Exercises 8.4 and 8.5.

(a) Show that ω = (H32 −H23,H13 −H31,H21 −H12). What is the vorticity
when H is symmetric?

(b) Show that for rigid body motion, as given in (8.13), H = Q′QT and
h = b′−Q′QT b. Therefore, rigid body motion is a special case of a linear
flow.

(c) What is v in the case when Q is given in (8.14) and b = 0? For this flow
show that ω = (0, 0, 2ω).

(d) The equations for vortex motion are given in Section 9.3.1. Show that the
only vortex with a smooth velocity and constant vorticity has vθ = 1

2rω.
In this case, show that h = 0 and

H =


0 −ω 0

ω 0 0

0 0 0

 .
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(e) For the H given in part (d) find a rotation Q so that H = Q′QT . Do
this by showing that this equation reduces to solving Q′′ = H2Q, with
Q(0) = I and Q′(0) = H, and then solving for Q. Make sure to verify that
the solution is a rotation matrix.

(f) Explain why it is possible to conclude that a vortex motion with a smooth
velocity and constant vorticity must be a rigid body motion.

9.9. Suppose that v = α||x||kx, where k and α are real numbers.
(a) Show that the flow is irrotational.
(b) Find a potential function φ for this flow.
(c) Show that this velocity function does not correspond to incompressible

fluid motion, unless α = 0.

9.10. For a Taylor vortex, vr = vz = 0, and

vθ =
αr

t2
exp
(
−r2/(4νt)

)
.

Show this satisfies the equations of motion, assuming the fluid is incompress-
ible and there are no body forces. In doing this also determine the pressure.

9.11. For Burger’s vortex, vr = −αr, vz = 2αz, and

vθ =
β

r

(
1− e−αr2/(2ν)

)
.

Show this satisfies the equations of motion, assuming the fluid is incompress-
ible and there are no body forces. In doing this also determine the pressure.

9.12. This exercise explores the connections between vorticity and energy
dissipation in a viscous fluid.

(a) The viscous dissipation function Φ is given in (8.110). Show that

Φ = 2µ(D2
xx +D2

yy +D2
zz + 2D2

xy + 2D2
xz + 2D2

yz),

where the Dij ’s are the components of the rate of deformation tensor given
in (8.67).

(b) Show that for an incompressible fluid,

Φ = µω · ω + 2µ∇ · q,

where q = (∇v)v.
(c) Let B is a bounded region in space. Use the result from part (b) to derive

what is known as the Bobyleff-Forsyth formula, given as∫∫∫
B

ΦdV = µ

∫∫∫
B

ω · ω dV + 2µ
∫∫
∂B

n · q dS.
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(d) If v = 0 on ∂B show that∫∫∫
B

ΦdV = µ

∫∫∫
B

ω · ω dV .

This shows that the total energy dissipation in the region is determined
by the magnitude of the vorticity vector.

(e) Show that for an incompressible fluid, with no body force,

d

dt

∫∫∫
R(t)

1
2
ρv · v dV =

∫∫
∂R(t)

g · n dS − µ

∫∫∫
R(t)

ω · ω dV ,

where g = −pv − µω × v + 2µq, and q is given in part (b).
(f) If the fluid is compressible, show that the generalization of the Bobyleff-

Forsyth formula is∫∫∫
B

ΦdV =
∫∫∫

B

[
(λ+ 2µ)Θ2 + µω · ω

]
dV + 2µ

∫∫
∂B

n · q dS,

where Θ = ∇ · v and q = (∇v)v −Θv.

9.13. There are three known principal invariants, or conserved quantities,
for an ideal fluid. One is the circulation, which comes directly from Kelvin’s
Circulation Theorem. This problem derives the other two. Assume R(t) is a
material volume, as used for the Reynolds Transport Theorem, and there are
no body forces.

(a) If v · n = 0 on ∂R, show that

d

dt

∫∫∫
R

v · v dV = 0.

This is the energy invariant, and states that the kinetic energy of the
material volume is constant.

(b) If ω · n = 0 on ∂R, show that

d

dt

∫∫∫
R

ω · v dV = 0.

This is called the helicity invariant, and it measures the extent the path-
lines coil around each other.

(c) Explain why the conclusions of parts (a) and (b) hold if the body force
has the form f = ∇Ψ .

9.14. Suppose that the velocity of an incompressible fluid is v = v0+ 1
2Ω×x,

where v0 and Ω are constant vectors. Consequently, v consists of a constant
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velocity v0 added to the velocity for circular motion in the plane perpendic-
ular to Ω.

(a) Show that ω = Ω.
(b) The helicity density is defined as h = ω ·v, and it gives rise to the invariant

derived in Exercise 9.13(b). Using the result from part (a), show that
h = Ω · v0.

(c) Assuming Ω = (0, 0, Ω) and v0 = (0, 0, w0), find the pathlines and from
this show that the flow is helictical.

(d) From the description of v given above, one might think that it corresponds
to rigid body motion. Prove this using the results from Exercises 8.22(d)
and 9.8(b).

9.15. In this problem assume the body force in the Navier-Stokes equations
can be written as f = ∇Ψ .

(a) Assuming that the fluid is ideal show that

∂v
∂t

+∇
(

1
2
v · v +

1
ρ
p− Ψ

)
+ ω × v = 0.

In the case where the fluid is also irrotational show that

p = p0(t)− ρ

(
∂φ

∂t
+

1
2
∇φ · ∇φ

)
+ ρΨ.

This is a generalization of Bernoulli’s theorem given in (9.29).
(b) Suppose the fluid is inviscid and irrotational. Also, assume it satisfies the

equation of state for a polytropic fluid, which is p = kργ , where γ > 1.
Adapt the argument of part (a) to show that

∂φ

∂t
+

γ

γ − 1
p

ρ
+

1
2
∇φ · ∇φ− Ψ = c(t).

9.16. For the impulsive plate problem in Section 9.6.1, suppose the lower
plate moves with velocity v = (u0f(t), 0, 0). Assuming that f(t) is a smooth
function of t, use the Laplace transform to show that

u(y, t) = u0f(0)erfc
(

y

2
√
νt

)
+ u0

∫ t

0

f ′(t− r)erfc
(

y

2
√
νr

)
dr.

9.17. For the impulsive plate problem in Section 9.6.1, suppose the lower
plate moves with velocity v = (u0 cos(ωt), 0, 0). This is known as Stokes’
second problem. The exact solution can be found using the formula from the
previous problem, but a different approach is taken here.

(a) After a sufficiently long period of time the solution should be approxi-
mately periodic. Assume that u = eiωtq(y), where it is understood that
the real part of this expression is used. This expression should satisfy the
momentum equation, and the two boundary conditions. Show that this
results in the solution of the form u = u0e

−σy cos(σy − ωt).
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(b) Sketch the solution as a function of y, and describe the basic characteristics
of the solution.

(c) Show that the boundary layer thickness is approximately 5
√

2ν/ω. What
happens to the thickness as the frequency increases?
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Taylor’s Theorem

A.1 Single Variable

The single most important result needed to develop an asymptotic approx-
imation is Taylor’s theorem. The single variable version of the theorem is
below.

Theorem A.1. Given a function f(x) assume that its (n + 1)st derivative
f (n+1)(x) is continuous for xL < x < xR. In this case, if a and x are points
in the interval (xL, xR) then

f(x) = f(a)+(x−a)f ′(a)+
1
2
(x−a)2f ′′(a)+ · · ·+ 1

n!
(x−a)nf (n)(a)+Rn+1,

(A.1)
where the remainder is

Rn+1 =
1

(n+ 1)!
(x− a)n+1f (n+1)(η), (A.2)

and η is a point between a and x.

There are different, but equivalent, ways to write the above result. One is

f(x+ h) = f(x) + hf ′(x) +
1
2
h2f ′′(x) + · · ·+ 1

n!
hnf (n)(x) +Rn+1, (A.3)

The requirement here is that x and x+ h are points in the interval (xL, xR).

A.2 Two Variables

The two-variable version of the expansion in (A.3) is

M.H. Holmes, Introduction to the Foundations of Applied Mathematics, 441
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f(x+ h, t+ k) = f(x, t) +Df(x, t) +
1
2
D2f(x, t) + · · ·+ 1

n!
Dnf(x, t) +Rn+1.

(A.4)
where

D = h
∂

∂x
+ k

∂

∂t
.

Writing this out, through quadratic terms, yields

f(x+ h, t+ k) = f(x, t) + hfx(x, t) + kft(x, t)

+
1
2
h2fxx(x, t) + hkfxt(x, t) +

1
2
k2ftt(x, t) + · · · .

The subscripts in the above expression denote partial differentiation. So, for
example,

fxt =
∂2f

∂x∂t
.

It is assumed that the function f has continuous partial derivatives up
through order n+ 1.

The above expansion can be expressed in a form similar to the one in
(A.1), and the result is

f(x, t) = f(a, b) + (x− a)fx(a, b) + (t− b)ft(a, b)

+
1
2
(x− a)2fxx(a, b) + (x− a)(t− b)fxt(a, b) +

1
2
(t− b)2ftt(a, b)

+ · · · .

A.3 Multivariable Versions

For more than two variables it is convenient to use vector notation. In this
case (A.4) takes the form

f(x + h) = f(x) +Df(x) +
1
2
D2f(x) + · · ·+ 1

n!
Dnf(x) +Rn+1,

where x = (x1, x2, · · · , xk), h = (h1, h2, · · · , hk) and

D = h · ∇

= h1
∂

∂x1
+ h2

∂

∂x2
+ · · ·+ hk

∂

∂xk
.

Writing this out, through quadratic terms, yields

f(x + h) = f(x) + h · ∇f(x) +
1
2
hT Hh + · · · ,
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where H is the Hessian and is given as

H =



∂2f

∂x2
1

∂2f

∂x2∂x1
· · · ∂2f

∂xk∂x1

∂2f

∂x1∂x2

∂2f

∂x2
2

· · · ∂2f

∂xk∂x2

...
...

. . .
...

∂2f

∂x1∂xk

∂2f

∂x2∂xk
· · · ∂2f

∂x2
k


.

Taylor’s theorem can also be extended to vector functions, although the
formulas are more involved. To write down the expansion through the linear
terms, assume that f(x) = (f1(x), f2(x), . . . , fm(x)) and x = (x1, x2, . . . , xk).
In this case,

f(x + h) = f(x) + (∇f)h + · · · ,

where

∇f =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xk

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xk

...
...

. . .
...

∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xk


.
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Fourier Analysis

B.1 Fourier Series

It is assumed here that the function f(x) is piecewise continuous for 0 ≤ x ≤
`. Recall that this means f(x) is continuous on the interval 0 ≤ x ≤ ` except
at a finite number of points within the interval at which the function has a
jump discontinuity.

The Fourier sine series for f(x) is defined as

S(x) =
∞∑

n=1

βn sin(λnx), (B.1)

where λn = nπ/` and

βn =
2
`

∫ `

0

f(x) sin(λnx)dx. (B.2)

The Fourier cosine series for f(x) is defined as

C(x) =
1
2
α0 +

∞∑
n=1

αn cos(λnx), (B.3)

where

αn =
2
`

∫ `

0

f(x) cos(λnx)dx. (B.4)

A certain amount of smoothness is required of the function f(x) so the above
series are defined. For example, f(x) must be smooth enough that the in-
tegrals in (B.2) and (B.4) exist. Certainly assuming f(x) is continuous is
enough for the integrals, but, unfortunately, this is not enough to guarantee
that the series in (B.1) and (B.3) converge. They will converge, however, if
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f(x) and f ′(x) are piecewise continuous. The question naturally arises as to
what they converge to, and for this we have the following result.

Theorem B.1. Assume f(x) and f ′(x) are piecewise continuous for 0 ≤
x ≤ `. On the interval 0 < x < `, the Fourier sine series, and the Fourier
cosine series, converge to f(x) at points where the function is continuous,
and they converge to 1

2 (f(x+) + f(x−)) at points where the function has a
jump discontinuity. At the endpoints, S(0) = S(`) = 0, while C(0) = f(0)
and C(`) = f(`).

When using a Fourier series to solve a differential equation one usually
needs the expansion of the solution as well as its derivatives. The problem is
that it is not always possible to obtain the series for f ′(x) by differentiating
the series for f(x). For example, given a sine series as in (B.1) one might be
tempted to conclude that

S′(x) =
∞∑

n=1

βnλn cos(λnx).

The issue is that the differentiation has resulted in λn appearing in the coef-
ficient. As an example, for the function

f(x) =
{

1 if 0 ≤ x ≤ 1
2 if 1 < x ≤ 2,

one finds that
βnλn =

2
`

[1− 2(−1)n + cos(nπ/2)] .

The general term βnλn cos(λnx) of the series does not converge to zero as
n → ∞, and this means that the series does not converge. Consequently,
additional restrictions must be imposed on f(x) to guarantee convergence.
Basically what are needed are conditions that will give us βn = O(1/n2), and
this brings us to the next result.

Theorem B.2. Assume f(x) is continuous, with f ′(x) and f ′′(x) piecewise
continuous, for 0 ≤ x ≤ `. If f(x) is expanded in a cosine series then the
series for f ′(x) can be found by differentiating the series for f(x). If f(x) is
expanded in a sine series, and if f(0) = f(`) = 0, then the series for f ′(x)
can be found by differentiating the series for f(x).

The question of convergence for integration is much easier to answer. As
long as the Fourier series of f(x) converges then the series for the integral of
f can be found by simply integrating the series for f .
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B.2 Fourier Transform

To derive the formula for the Fourier transform from the Fourier series, it is
convenient to use the symmetric interval −` < x < `. Generalizing (B.2) and
(B.3), the Fourier series of a continuous function f(x) is

f(x) =
1
2
α0 +

∞∑
n=1

[αn cos(λnx) + βn sin(λnx)] ,

where λn = nπ/`,

αn =
1
`

∫ `

−`

f(x) cos(λnx)dx,

and

βn =
1
`

∫ `

−`

f(x) sin(λnx)dx.

By using the identities cos(θ) = 1
2 (eiθ + e−iθ) and sin(θ) = 1

2i (e
iθ− e−iθ), the

Fourier series can be written in exponential form as

f(x) =
∞∑

n=−∞
γne

iλnx,

where

γn =
1
2`

∫ `

−`

f(x̄)e−iλnx̄dx̄.

Combining these two expressions

f(x) =
∞∑

n=−∞

1
2`

∫ `

−`

f(x̄)eiλn(x−x̄)dx̄.

The sum in the above equation is reminiscent of the Riemann sum used to
define integration. To make this more evident, let ∆λ = λn+1−λn = π

` . With
this

f(x) =
∞∑

n=−∞

1
2π

∫ `

−`

f(x̄)eiλn(x−x̄)dx̄∆λ.

The argument originally used by Fourier is that in the limit of ` → ∞, the
above expression yields

f(x) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
f(x̄)eiλ(x−x̄)dx̄dλ.

Fourier then made the observation that the above equation can be written
as f(x) = F−1(F(f)), where F is the Fourier transform defined in Section
7.2.5. With this, the Fourier transform was born.
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To say that the above derivation is heuristic would be more than generous.
However, it is historically correct, and it does show the origin of the Fourier
transform and its inverse. The formal proof of the derivation can be found in
Weinberger [1995].



Appendix C

Stochastic Differential Equations

The steps used to solve the Langevin equation look routine, and the solu-
tions in (4.85) and (4.86) are not particularly remarkable. However, on closer
inspection, the randomness of the forcing function raises some serious mathe-
matical questions. An example of R is shown in Figure 4.27 using 400 points
along the t-axis. As will be discussed in more detail in Section 4.7.1, the value
of R(t1) is independent of the value of R(t2) if t1 6= t2. This means that if
more than 400 points are used, the graph would appear even more random
than in Figure 4.27. The question that immediately arises is whether the
non-differentiability of this function causes the differential equation (4.84),
or its solution (4.84), to be meaningless. One approach for addressing this
issue rests on denial, where the calculations are carried out as if everything is
just fine. This is, in fact, what was done to derive (4.85), and this approach
almost works. To have it succeed, all that is needed is to make sense of the
solution, and then use this to justify the entire process.

The question is, therefore, how to define the integrals in (4.85) and (4.86).
The exponentials are not an issue, and so to simplify the discussion we will
concentrate on the expression

W(t) =
∫ t

0

R(τ)dτ . (C.1)

The definition of this integral employs the same Riemann sum used in Calcu-
lus. With this in mind, we introduce a partition 0 < t1 < t2 < · · · < tm < t,
where t0 = 0 and tm+1 = t. For simplicity, it is assumed the points are
equally spaced, and so tj+1− tj = ∆t. Letting sj be a point from the interval
[tj , tj+1], then we introduce the partial sum

Sm =
m−1∑
j=0

R(sj)∆t. (C.2)
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The question is, if ∆t → 0, does Sm converge? The answer is yes, although
convergence is measured in the mean-square sense. Knowing that it converges
then the limit of Sm serves as the definition of the integral in (C.1). This def-
inition preserves most, but not all, of the properties associated with standard
integration. In particular, W is a continuous function of t, and the integral
is additive in the sense that if t1 < t2 then∫ t2

0

R(τ)dτ =
∫ t1

0

R(τ)dτ +
∫ t2

t1

R(τ)dτ .

Moreover, the partial sums in (C.2) provide a method for numerically evalu-
ating the stochastic integrals in (4.85) and (4.86).

Now that integration has been put onto a solid mathematical footing, we
turn to the differential equation (4.84). In the case of when R is smooth, this
equation can be integrated to yield

v(t) = v(0)− λ

∫ t

0

v(τ)dτ +
1
m

∫ t

0

R(τ)dτ. (C.3)

For smooth functions this integral equation is equivalent to the differential
equation (4.84). This fact is used to explain what happens when a random
forcing is used. Specifically, the interpretation of the differential equation
(4.84) is that v satisfies (C.3). It is for this reason that in the subject of
stochastic differential equations, (4.84) is conventionally written using differ-
entials as

dv = −λvdt+
1
m

Rdt.

The implication in using this notation is that the stochastic differential equa-
tion is being interpreted as the solution of the associated integral equation.
With this viewpoint, (C.1) can be written as dW = Rdt. Those interested
in pursuing the theoretical foundation of the stochastic differential equations
should consult Oksendal [2003].



Appendix D

Identities

D.1 Trace

In the following, A and B are 3× 3 matrices, and α and β are scalars.

tr(αA + βB) = α tr(A) + β tr(B)
tr(AB) = tr(BA)

tr(AT ) = tr(A)

If A is symmetric and B is skew-symmetric then tr(AB) = 0.

D.2 Determinant

In the following, A and B are 3× 3 matrices, and α and β are scalars.

det(AB) = det(BA) = det(A)det(B)

det(αA) = α3det(A)

det(AT ) = det(A)

det(A−1) = 1/det(A)
det(I) = 1
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D.3 Vector Calculus

In the following, φ is a scalar, u = (u, v, w) is a vector, and A(x) is a 3 × 3
matrix. They are all smooth functions of x = (x, y, z).

∇ · u = tr(∇u)
∇ · (φu) = u · ∇φ+ φ(∇ · u)

∇ · (Au) = u · (∇ ·A) + tr(AT∇u)

∇ · (φA) = AT∇φ+ φ(∇ ·A)
(v · ∇)u = (∇u)v
∇× (∇φ) = 0

∇ · (∇× u) = 0

In the above identities

∇u =



∂u

∂x

∂u

∂y

∂u

∂z

∂v

∂x

∂v

∂y

∂v

∂z

∂w

∂x

∂w

∂y

∂w

∂z


,

and

∇ ·A =



∂A11

∂x
+
∂A21

∂y
+
∂A31

∂z
∂A12

∂x
+
∂A22

∂y
+
∂A32

∂z
∂A13

∂x
+
∂A23

∂y
+
∂A33

∂z

 .



Appendix E

Equations for a Newtonian Fluid

E.1 Cartesian Coordinates

Letting v = (u, v, w) and f = (f, g, h), then for an incompressible Newtonian
fluid in Cartesian coordinates:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ ρf

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ ρg

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ ρh

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

E.2 Cylindrical Coordinates

Letting v = (vr, vθ, vz) = vrer + vθeθ + vzez and f = frer + fθeθ + fzez,
then for an incompressible Newtonian fluid in cylindrical coordinates:

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+
vθ

r

∂vr

∂θ
− v2

θ

r
+ vz

∂vr

∂z

)
= −∂p

∂r
+ µ

[
∂

∂r

(
1
r

∂

∂r
(rvr)

)
+

1
r2
∂2vr

∂θ2
− 2
r2
∂vθ

∂θ
+
∂2vr

∂z2

]
+ ρfr

ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+
vθ

r

∂vθ

∂θ
+
vrvθ

r
+ vz

∂vθ

∂z

)
= −1

r

∂p

∂θ
+ µ

[
∂

∂r

(
1
r

∂

∂r
(rvθ)

)
+

1
r2
∂2vθ

∂θ2
+

2
r2
∂vr

∂θ
+
∂2vθ

∂z2

]
+ ρfθ
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ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+
vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)
= −∂p

∂z
+ µ

[
1
r

∂

∂r

(
r
∂vz

∂r

)
+

1
r2
∂2vz

∂θ2
+
∂2vz

∂z2

]
+ ρfz

1
r

∂(rvr)
∂r

+
1
r

∂vθ

∂θ
+
∂vz

∂z
= 0

Transformation laws for velocities:

u = vr cos θ − vθ sin θ vr =
1√

x2 + y2
(xu+ yv)

v = vr sin θ + vθ cos θ vθ =
1√

x2 + y2
(−yu+ xv)

w = vz vz = w

Transformation laws for derivatives:

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ

∂

∂r
=

x√
x2 + y2

∂

∂x
+

y√
x2 + y2

∂

∂y

∂

∂y
= sin θ

∂

∂r
+

cos θ
r

∂

∂θ

∂

∂θ
= −y ∂

∂x
+ x

∂

∂y

∂

∂z
=

∂

∂z

∂

∂z
=

∂

∂z

D

Dt
=

∂

∂t
+ vr

∂

∂r
+
vθ

r

∂

∂θ
+ vz

∂

∂z

Formulas from vector analysis:

∇× v =
(

1
r

∂vz

∂θ
− ∂vθ

∂z

)
er +

(
∂vr

∂z
− ∂vz

∂r

)
eθ +

1
r

(
∂(rvθ)
∂r

− ∂vr

∂θ

)
ez

∇2φ =
1
r

∂

∂r

(
r
∂φ

∂r

)
+

1
r2
∂2φ

∂θ2
+
∂2φ

∂z2

∇φ =
∂φ

∂r
er +

1
r

∂φ

∂θ
eθ +

∂φ

∂z
ez

∇ · v =
1
r

∂(rvr)
∂r

+
1
r

∂vθ

∂θ
+
∂vz

∂z
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admissibility condition, 239
advection equation, 218
Alfven speed, 40
Almansi strain, 285, 308
Arrhenius equation, 97
articular cartilage, 172, 283
asymptotically stable, 115, 119, 121, 132
autocatalytic reaction, 95, 127
Avogadro’s number, 152

balance law, 170, 210, 361
balancing, 59, 63, 69, 70
bell curve, 145
Belousov-Zhabotinskii reaction, 126
Bernoulli’s theorem, 418, 439
Bessel function, 318, 341
binding energy, 310
Blasius boundary layer, 431
Bobyleff-Forsyth formula, 437
Bohr radius, 40
Boltzmann constant, 152, 191
Boltzmann distribution, 177
boundary layer coordinate, 63, 69, 430
boundary layer solution, 63, 69
boundary layer thickness, 428, 433
Bratu’s equation, 84
brittle material, 284
Brownian motion, 141
Brownian ratchet, 155
Buckingham Pi Theorem, 16
bungie cord, 266, 288, 302, 306
Burgers’ equation, 41

capture silk, 283
carbon nanotube, 287, 310
carburization, 153
Cauchy stress tensor, 366

Cauchy-Green deformation tensor, 306
cellular automata modeling, 248
characteristics, 221, 229
Clausius-Duhem inequality, 299
complementary error function, 25, 166,

318
composite expansion, 66, 71, 108
compressive strain, 292, 313
conservation law, 93, 99, 211
constitutive law, 172, 283, 294

diffusion, 171
elastic, 296
Greenshields law, 213, 231
linear elastic, 286, 311, 388
viscoelastic, 331
viscous fluid, 378

contact discontinuity, 234
continuity equation, 211, 276, 280
control volume, 209, 308
convolution theorem, 161, 321
cooperativity, 138
Couette flow, 405
creep, 282

d’Alembert’s paradox, 426
deformation gradient, 305, 354, 387
density, 207, 275, 362
diffusion coefficient, 22, 151
diffusion equation, 42, 151, 182

point source solution, 42, 181, 184,
413

radially symmetric, 184, 413
diffusive boundary layer, 428
dimension matrix, 17
dimensionally complete, 17, 19
dimensionally homogeneous, 5, 19
dimensionless product, 8, 18
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independent, 18
displacement gradient, 387
distinguished limit, 151
Divergence Theorem, 360
drag coefficient, 9
drag on sphere, 6
drift coefficient, 192
drift diffusion, 176
drift velocity, 196
drift-diffusion equation, 196
driver’s ride impulse, 239
du Bois-Reymond lemma, 274
ductile material, 284
Duffing equation, 84

Einstein-Smoluchowski equation, 151,
197

elastic beam, 38
elastic limit, 293
elastic modulus, 4, 286
elastic string, 37
elastomer, 293
elementary reaction, 97, 112
Eley-Rideal mechanism, 134
entropy, 4, 239, 298
entropy condition, 239
epidemic equilibrium, 134, 136
error function, 318
Euclidean transformation, 296, 369
Euler equations, 419
Eulerian coordinates, 352
Eulerian strain, 285
expansion fan, 41, 238, 239
exponential horn, 308
exponential order, 320
extension ratio, 283, 307

Fick’s law of diffusion, 171
first Piola-Kirchhoff stress tensor, 383
Fisher’s equation, 30
fixed junction model, 307
FKN mechanism, 127
flux, 38, 171, 208, 361
form invariance, 370
Fourier law of heat conduction, 171
Fourier series, 445
Fourier transform, 158
fracture, 293
frame-indifference, 296, 369, 385
fundamental diagram, 216
fundamental dimension, 3, 16

Galilean transformation, 296, 369
gap, 249

geometric analysis, 115
geometric Brownian motion, 193
geometric linearity, 311, 328
globally asymptotically stable, 119
Goldilocks, 150
Green strain, 285, 388
Greenshields constitutive law, 213, 228

half-plane of convergence, 320
Hanes-Woolf plot, 138
Heaviside step function, 319
helical flow, 434
helicity, 438
Helmholtz free energy, 299
Helmholtz Representation Theorem,

415, 431
Helmholtz’s Third Vorticity Theorem,

422
Hencky strain, 285
Hill’s equation, 138
homogeneous material, 376
Hopf bifurcation, 124
hurricane, 414
hydrogen-bromine reaction, 139
hyperelasticity, 300, 302

ideal fluid, 419
ideal gas, 301, 378
impenetrability of matter, 273, 274, 354
impermeability boundary condition,

380, 423
impulsive plate, 427, 439
incompressibility

material coordinates, 397
spatial coordinates, 362

indicator function, 162
infinitesimal deformation, 328
initial layer, 103
inner solution, 63, 107
instantaneous elastic modulus, 344
integro-differential equation, 336, 340
internal energy, 298
interstitial diffusion, 153
Inverse Function Theorem, 274
inverse problems, 327
invertase, 102
inviscid fluid, 419
irrotational flow, 398, 415
isotropic material, 373

Jacobian matrix, 120, 354, 384
jam density, 256

Karman vortex street, 433
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Kelvin’s Circulation Theorem, 421, 438
Kelvin’s Minimum Energy Theorem, 398
Kelvin-Voigt model, 330
Kermack-McKendrick model, 88
ketchup, 407
kinematic viscosity, 428
kinetic energy, 298, 390, 393, 398
Kutta-Joukowski theorem, 426

Lagrangian coordinates, 266, 352
Lagrangian strain, 285, 389
Lamè constants, 389
Langevin equation, 186
Laplace transform, 316
Law of Mass Action, 91
left Cauchy-Green deformation tensor,

393, 397
Leibniz’s rule, 274
Lengyel-Epstein model, 20
Lennard-Jones potential, 293
limit cycle, 125
Lincoln Tunnel, 212
linear flow, 394, 436
linear stability analysis, 119

magnetonsonic waves, 40
Markov property, 143
Markovian forcing, 190
mass density, 4
mass, spring, dashpot, 37, 329
master equation, 150, 182, 196
matching condition, 65, 70, 107
material coordinate system, 266, 352
material derivative, 270, 357
material linearity, 311, 328, 343
material velocity gradient tensor, 360
Maxwell model, 330
mean free path, 147, 151
mean-square displacement, 189, 195
measles, 135
mechanical energy equation, 309, 390
merge density, 208, 256
Merritt Parkway, 212
metallic bonding, 290
method of characteristics, 313

linear wave equation, 221
nonlinear wave equation, 229

method of multiple scales, 76
Michaelis-Menten reaction, 101, 121
midpoint strain, 285
mobility, 176
momentum equation, 280

angular, 367, 384
material coordinates, 279, 308, 384

spatial coordinates, 279, 367
Mooney-Rivlin model, 307
Morse potential function, 310

N-wave, 247
Nanson’s formula, 385
Navier equations, 389
Navier-Stokes equation, 378
Nernst-Planck law, 177
Neubert-Fung relaxation function, 338
Newtonian fluid, 378, 403
no-slip condition, 381, 420
nominal stress tensor, 385
non-isotropic material, 373
non-Newtonian fluid, 406, 436
nondimensionalization, 26, 105
normal stress, 366
nuclear explosion, 37
nullcline, 116, 129

objective tensor, 369, 386
one-way wave equation, 220
Oregonator, 127
outer solution, 63, 68, 106, 128, 430
overlap domain, 64

P-glycoprotein, 102, 108
partial derivative notation, 270, 442
Pascal, 287
pathline, 404, 425
Pauli exclusion principle, 290
peanut butter, 403
pendulum, 33, 72
phantom traffic jam, 228, 245
piecewise continuous, 445
pipe flow, 33, 381, 408
Planck’s constant, 40
plasticity, 293
plug-flow reactor, 19
point source solution of diffusion

equation, 155, 181, 184, 413
Poiseuille flow, 382, 408
polyconvexity, 304
polytropic fluid, 439
potential energy, 298, 393
potential flow, 417, 423
power-law fluid, 406, 436
predator-prey model, 88, 113
pressure, 301
principal invariants, 373, 400
Principle of Dissipation, 299, 379
Principle of Material Frame-Indifference,

295, 369, 385
projectile problem, 1, 26, 53
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pure shear, 394

quantum chromodynamics, 40
quasi-steady-state assumption, 104, 109

radioactive decay, 87
random walk, 142, 179

biased, 195
lazy, 197
non-rectangular lattice, 199
persistent, 198
with loss, 199
with memory, 198

Rankine-Hugoniot condition, 234, 344
rarefaction wave, 238
rate of deformation tensor, 375, 437
reaction analysis, 115
reaction-diffusion equations, 178
red blood cells, 206
red light - green light problem, 221, 240,

251
modified, 230

reduced entropy inequality, 299
reduced problem, 28, 32, 43
reference configuration, 267, 353
regular perturbation problem, 43
Reiner-Rivlin fluid, 378
resonance, 326
Reynolds number, 9, 430
Reynolds Transport Theorem, 274, 358,

361
Riemann problem, 41, 236
right Cauchy-Green deformation tensor,

388
rigid body motion, 399
Rivlin-Ericksen representation theorem,

372, 377, 400
rotation matrix, 356, 369, 399
Rozenzweig-MacArthur model, 135
rubber, 283, 307

scale model testing, 12
Schnakenberg chemical oscillator, 139
SCTA model, 249
second law of thermodynamics, 239, 298
second Piola-Kirchhoff stress tensor, 387
secular term, 75
shear stress, 366, 407, 436
shock wave, 235, 242
similarity variable, 23, 174, 184, 261
simple shear, 355
singular perturbation problem, 58, 106
SIR model, 89

SIER, 136

with vaccination, 134
with vital dynamics, 135

slinky, 312, 322
slip plane, 293
small disturbance approximation, 226
spatial coordinate system, 267, 352
spatial velocity gradient tensor, 360
spin tensor, 375
standard linear model, 330
steady flow, 404
steady-state, 94, 114, 280
Stirling’s approximation, 148, 196
stochastic differential equation, 186
stoichiometric coefficients, 91, 98
stoichiometric matrix, 98
Stokes drag formula, 11, 177, 191
Stokes flow, 11
Stokes’ first problem, 427
Stokes’ Law, 36
Stokes-Einstein equation, 152, 191
stored energy function, 393
strain

Almansi, 285, 398
engineering, 284
Eulerian, 285
Finger, 398
Green, 285, 388, 397
Hencky, 285
Lagrangian, 285, 286, 389, 398
midpoint, 285
nominal, 284
true, 284

strain energy function, 393
strain tensor, 397
stream function, 431
stress, 4, 277, 286, 363, 383
stress power, 390
stress relaxation, 281
surface tension, 4
Sutton-Chen potential, 293

Tacoma Narrows Bridge, 327
tautochrone problem, 349
Taylor’s theorem, 44, 441
Taylor-Couette problem, 435
Taylor-Sedov formula, 37
telegraph equation, 198
temperature, 299, 378
tensile strain, 292, 313
toothpaste, 407
traffic flow equation

linear, 212, 218
nonlinear, 214, 225, 247
small disturbance approximation, 226
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wave velocity, 214, 225
transcendentally small, 50
trimerization, 138
two-timing, 76

uniform approximation, 66, 71
uniform dilatation, 354
universal gas constant, 152

van der Pol equation, 123
van der Waals bonding, 293
velocity gradient tensor, 360, 375
viscoelasticity

Burger model, 346
creep function, 347
Kelvin-Voigt model, 330
Maxwell model, 330
relaxation function, 336
standard linear model, 330

viscosity, 4, 301, 378, 403

viscous dissipation function, 391, 437
viscous fluid, 301
volatility, 192
volume fraction, 261
vortex

line, 415
Oseen-Lamb, 413
Taylor, 437

vorticity, 412, 420, 426, 437
vorticity tensor, 375, 412

wave velocity, 214, 225
weak nonlinearity, 30
Weber number, 34
Webster’s equation, 343
well-ordering assumption, 45

Young’s modulus, 286, 311

zebra stripes, 179
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