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Preface

Contents and Scientific Aims

The scientific community is aware that the great scientific revolution of
this century will be the mathematical formalization, by methods of applied
mathematics, of complex biological systems. A fascinating prospect is that
biological sciences will finally be supported by rigorous investigation meth-
ods and tools, similar to what happened in the past two centuries in the
case of mechanical and physical sciences.

It is not an easy task, considering that new mathematical methods
may be needed to deal with the inner complexity of biological systems which
exhibit features and behaviors very different from those of inert matter.

Microscopic entities in biology, say cells in a multicellular system,
are characterized by biological functions and the ability to organize their
dynamics and interactions with other cells. Indeed, cells organize their
dynamics according to the above functions, while classical particles follow
deterministic laws of Newtonian mechanics. Cells have a life according to
a cell cycle which ends up with a programmed death. The dialogue among
cells can modify their behavior. The activity of cells includes proliferation
and/or destructive events which may, in some cases, result in dangerously
reproductive events. Finally, a cellular system may move far from equi-
librium in physical situations where classical particles generally show a
tendency toward equilibrium.

An additional source of complexity is that biological systems always
need a multiscale approach. Specifically, the dynamics of a cell, including
its life, are ruled by sub-cellular entities, while most of the phenomena can
be effectively observed only at the macroscopic scale.

This book deals with the modelling of complex multicellular sys-
tems by a mathematical approach which is related to mathematical kinetic
theory. Applications refer to the mathematical description of the immune
competition with special attention to the interactions between tumor and
immune cells.

The contents of this book are described in the last section of the
first chapter; they are related to some prospective ideas concerning the

vii
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mathematical formalization of complex biological systems.

Complex biological systems cannot be described by simple mathematical
equations traditionally motivated by the need to allow an effective dialogue
between biologists and mathematicians. On the other hand, the mathe-
matical formalization may need new mathematical methods and tools.

Chapter 2 deals with the derivation of a general mathematical frame-
work suitable for describing the evolution of multicomponent cellular sys-
tems. The mathematical framework is defined by a system of integro-
differential equations which describe the evolution in time and space of the
distribution function over the microscopic state of cells of each population.

Indeed it can be regarded as a new mathematical approach which de-
velops methods of mathematical kinetic theory to deal with active particles
(cells) rather than with classical particles. The microscopic state includes
biological functions in addition to geometrical and mechanical variables.

The modelling of microscopic interactions also refers to the organized,
somehow intelligent, behavior and ability of cells to interact and commu-
nicate with other cells. Moreover, proliferating and destructive (even self-
destructive) ability is included in the mathematical description.

Mathematical models cannot be designed on the basis of a purely heuristic
approach. They should be referred to well-defined mathematical structures,
which may act as a mathematical theory.

Chapter 3 develops a mathematical model precisely related to the
mathematical structures proposed in Chapter 2. The model describes the
competition between immune and progressing cells. It should be regarded
as a reference model to be enlarged to include additional phenomenological
descriptions, such as modelling therapeutic actions, or space dynamics,
while the model is proposed in the spatially homogeneous case. Microscopic
interactions are described by simple phenomenological models which relate
the output of the interactions to the biological state of the interaction pairs.

A mathematical model is never a copy of physical reality; it can only ap-
proximate real behaviors. On the other hand a model can visualize, at least
at a qualitative level, phenomena which are not experimentally observed.

Chapters 4 and 5 develop a qualitative analysis of the initial value
problem related to the application of the model proposed in Chapter 3.
The rigorous information delivered by the qualitative analysis is integrated
with simulations which complete the description delivered by the model.
Special attention is devoted to the analysis of the asymptotic behavior of
the solutions, which may show either the destruction of the cells carrying
a pathology (the authors call them abnormal cells) due to the action of
the immune system, or conversely, their blowup due to the progressive
inhibition of immune cells.

The analysis shows how the above behaviors can be related to param-
eters which have a well-defined biological meaning. This means pointing
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out the role of microscopic biological functions in the overall evolution of
the system. This analysis contributes to the modelling and analysis of
therapeutic actions according to models such as those reported in Chapter
7.

Biological systems are characterized by a multiscale structure correspond-
ing, for instance, to the scales of subcellular, cellular, and aggregate matter.
Mathematical models should possess the ability to deal with the passage
from one scale to the other.

Chapter 6 deals with multiscale problems, showing how macroscopic
equations can be obtained from the microscopic descriptions given by the
underlying mathematical kinetic theory for multicellular systems. The ana-
lysis is applied to the mathematical model proposed in Chapter 3; first in
the case of models with conservative interactions only, and then to mod-
els in the case of production or destruction of mass. The methodological
approach is valid for a variety of models, so that the interested reader can
develop it to analyze technically different models. The structure of macro-
scopic equations essentially depends on the rates of interactions, biological
with respect to mechanical, while the analysis provides a rigorous frame-
work for the heuristic approach generally applied when reaction-diffusion
equations are derived by conservation equations closed by material models
which are justified only by means of phenomenological interpretations.

Looking Forward

This book aims on one hand to offer mathematical tools to deal with the
modelling of complex multicellular systems, and on the other hand to deal
with a variety of research perspectives. Indeed, mathematical methods re-
ported in this book can be developed to study various problems related
to the immune competition and, more generally, to the dynamical behav-
ior of multicellular systems. Only a part of the above problems are dealt
with, while several suggestions and research perspectives are proposed and
critically analyzed in the last chapter of this book.

Finally, is worth remarking that the application of the various models
proposed in this book to the analysis of phenomena of interest in biological
sciences generates a variety of challenging mathematical problems. This
means not only the qualitative analysis of the solutions to mathematical
problems, but also additional problems such as the development of the
asymptotic theory from the microscopic to macroscopic description, and
the computational treatment of cellular motion driven by cell signalling.
Possibly, the analysis of both of the above problems may lead to a deeper
understanding of several biological phenomena. Therefore applied mathe-
maticians will find in this book interesting hints not only towards modelling,
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but also to several analytic problems. In conclusion, I cannot avoid men-
tioning that I feel pleased that the authors of this book have transferred
into a mathematical framework various ideas proposed in my scientific col-
laboration with the immunologist Guido Forni.

Nicola Bellomo



1

On the Modelling of

Complex Biological Systems

I have deeply regretted that I did not proceed far enough at least to under-

standing something of the great leading principles of mathematics; for men

thus endowed seem to have an extra sense.

— Charles Darwin

1.1 Introduction

Systems of the real world can be observed to reach an understanding
of their inner structure and behavior. The collection of experimental data
may be organized into a mathematical model to obtain a formal description
of the behavior of the observed system.

Generally, the systems of the real world consist of a large number of
interacting elements, where their state is described by a set of microscopic
variables. The modelling of the overall system is defined by evolution equa-
tions corresponding to the dynamics of all their elements. Moreover, the
evolution equations are linked together because of the interactions among
the above entities.

The first conceptual step in using this approach is the choice of the
representation scale of the observed phenomena. Mathematical models can
be derived at the microscopic scale when the evolution of each element is
individually described, and at the macroscopic scale when the model refers
to the evolution of quantities obtained by local averages of the microscopic
state.

A typical example is a fluid of several interacting particles. Theoreti-
cally, it is possible to describe the above systems through microscopic-type

1



2 Chapter 1. Modelling of Complex Biological Systems

models related to the dynamics of each element interacting with the others;
however this kind of approach generates complexity problems which cannot
be properly dealt with. This approach leads to a large number of equations
because of the enormous number of particles involved in the system, while
their numerical solution needs a very large computational time, making the
approach too cumbersome and expensive.

The above modelling approach can be replaced by a macroscopic de-
scription, typical of continuum mechanics, which reduces the complexity
by dealing with quantities which are averaged locally in space. The appli-
cation of this modelling method is possible when the number of elements
is so large that a given small volume still contains a sufficiently large (in
mathematical terms to be specified) number of elements. However, it is
easy to see that this approach will not always work. For instance, in the
case of a diluted fluid in a container the mean distance between particles
is large with respect to their dimension and may even become of the same
order of the container, making the macroscopic description impossible.

Methods of mathematical kinetic theory represent an alternative to the
above approaches. Kinetic theory looks for evolution equations for the
statistical distribution of the state of each element: gross quantities (those
delivered by macroscopic models) are obtained as suitable moments of the
above statistical distribution. Modelling in kinetic theory means deriving
suitable evolution equations for the above distribution function.

The fundamental model of mathematical kinetic theory is the Boltz-
mann equation (see Cercignani, Illner, and Pulvirenti 1994), which de-
scribes the evolution of the first distribution function over the microscopic
state of a system of equal particles modelled as point masses. If such a
distribution is known, then macroscopic quantities can be computed, as we
shall see, by moments averaged by the above distribution. A large litera-
ture is devoted to this fundamental model, as documented among others
in the books by Cercignani (1998) and the review papers by Villani (2002)
and by Perthame (2004), which deal with foundations, analytic problems,
and applications to fluid dynamics.

Models of mathematical kinetic theory describe the evolution of the
one-particle distribution function over the physical state characterizing a
large population of interacting subjects, and refer to the classical models
of kinetic theory, the Boltzmann equation and the Vlasov equation. The
Boltzmann and Vlasov equations are the fundamental models of nonequilib-
rium statistical mechanics and represent not only the conceptual framework
for generalizing the methods of kinetic theory to various fields of applied
sciences, but also a way of understanding phenomena of nonequilibrium sta-
tistical mechanics which are not described by the traditional macroscopic
approach.

In this book we will focus on models referred to the Boltzmann equation,
calling them generalized kinetic Boltzmann models. Our attention will
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be focused on dynamics of populations of several interacting active particles.
The evolution equations may be called kinetic population models. The
interested reader may refer to the books edited by Bellomo and Pulvirenti
(2000) for information on mathematical foundations and applications re-
lated to the above class of equations. Additional information can be found
in the recent book by Schweitzer (2003), which deals with the modelling of
several large systems in applied sciences such as biology and sociology by
stochastic dynamical systems derived by methods of statistical mechanics.

The modelling of biological systems implies the need for representing
and solving complex problems generated by the fundamental characteristic
of living matter: biological systems are generally constituted by a large
number of interacting entities, whose dynamics follow rules of mechanics
and rules generated by their ability to organize movement and biological
functions.

This new modelling approach is motivated not only by applied math-
ematicians, but also by researchers in the field of biological sciences. For
instance, Hartwell, et al. (1999) suggest that one looks at suitable develop-
ments in statistical mechanics. This enlightening paper will be regarded as
a relevant source of motivations and guide for the contents of this book. An
important hint on the use of methods of kinetic theory and nonequilibrium
statistical mechanics is given in the paper by Bellomo and Forni (2006),
which offers various motivations for the development of the mathematical
approach proposed in this book, as well as some of the reasoning about
future perspectives reported in the last chapter.

The use of methods of statistical mechanics and kinetic theory to model
complex biological systems is capturing the attention of applied mathemat-
icians, as documented in the book by Deutsch and Dormann (2004), which
uses methods of kinetic theory somewhat complementary to the ones pro-
posed in our book. General aspects on the modelling of biological equations
are dealt with in various books, such as Alt, Deutsch, and Dunn (1997);
Murray (2004); and Jones and Sleeman (2003).

1.2 Motivations and Aims

This book deals with the modelling and simulation of complex biological
systems, specifically multicellular systems, by a mathematical approach
obtained as an extension of the methods of kinetic theory. It is not a
straightforward generalization, as dealing with living matter rather than
inert matter generates a variety of complexity problems which have to be
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carefully dealt with, and which generally need new tools and new ma-
thematical approaches.

The modelling of biological systems requires a preliminary reflection on
the objects dealt with, and consideration must be given to the approxima-
tions and simplifications that might be introduced.

In the above-mentioned paper, Hartwell, et al. propose a conceptual
framework for the mathematical approach to biological systems:

“ Biological systems are very different from the physical or chem-
ical systems analyzed by statistical mechanics or hydrodynamics.
Statistical mechanics typically deals with systems containing many
copies of a few interacting components, whereas cells contain from
millions to a few copies of each of thousands of different components,
each with very specific interactions.

... In addition, the components of physical systems are often simple
entities, whereas in biology each of the components is often a micro-
scopic device in itself, able to transduce energy and work far from
equilibrium.”

The microscopic description of a biological system is far more complex
than that of a physical system of inert matter, and it is necessary to move
to a higher level of analysis to deal with such complexity. At the same
time, a biological system cannot simply be observed and interpreted at a
macroscopic level, where it shows only the output of the cooperative and
organized behaviors which may not be apparent at the cellular scale.

In order to properly describe a biological phenomenon, Hartwell and
coworkers introduce the concept of function as the main difference be-
tween the objects of biology and physics: the functions of a biological ob-
ject, which is mainly devoted to survival and reproduction, are developed by
suitable functional modules, which are discrete biological entities with
cellular functions separable from those of other modules. The functions,
which arise from interactions between the components of the module (pro-
teins, DNA, molecules...) and from interactions between several modules,
cannot easily be predicted by studying the properties of the isolated com-
ponents. The functions of a single module may be activated, regulated,
suppressed, or switched between different functions by signals from other
modules; moreover, high-level functions can be built by connecting several
modules together.

It does not really matter whether the modules are real or not, although
several lines of evidence suggest they are quite real. Indeed, it is worth
stressing that, by this approach, a biological phenomenon can be described
as the evolution of the dynamics of several interacting modules; moreover,
such a description naturally links biology to mathematics, thus emphasizing
the necessity of integrating experimental data with conceptual frameworks
and modelling.
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The above reasoning refers to general aspects of modelling complex bio-
logical systems. Additional hints may be found referring to specific biolo-
gical systems. For instance, Gatenby and Maini (2003) note the necessity
of developing a new science, which they call mathematical oncology, to
provide oncologists and tumor biologists with a modelling framework to un-
derstand and organize experimental data: as an example, they suggest the
development of models for the evolution of invasive cancer based on “...
a sequence of competing populations subject to random mutations while
seeking optimal proliferative strategies in a changing adaptive landscape.”

They observe that, although not entirely correct, mathematical models
represent the next step beyond simple verbal reasoning, and conclude their
considerations affirming that “... as in physics, understanding the complex,
non-linear systems in cancer biology will require ongoing interdisciplinary
research, in which mathematical models guide experimental design and in-
terpretation.”

A relatively more precise suggestion for the use of kinetic theory and
nonequilibrium statistical mechanics is given, as already mentioned, in the
paper by Bellomo and Forni (1994), who propose a mathematical model
to describe the competition between tumor and immune cells. A recent
paper by the same authors (2006) analyzes an interesting topic: the de-
velopment of mathematical models toward the challenging objective of de-
signing a mathematical theory of biological sciences, with a structure anal-
ogous to the mathematical theory of physical systems. As the authors
say, “...the heuristic experimental approach which is the traditional inves-
tigation method in biological sciences should be gradually linked by new
methods and paradigms generated by a deep interaction with mathematical
sciences.”

A particularly interesting field of application is mathematical immunol-
ogy. For instance, given the spread of an illness, it is possible to derive a
class of models which are not limited to the description of the evolution of
the numbers of healthy individuals and the number of individuals who are
carriers of pathology, but may also take into account the evolution of the
statistical properties of a certain pathology. Specifically, models should de-
scribe the evolution of the statistical distribution of the level of pathological
states characterizing each individual.

Generally, research in immunology may benefit from interaction with
mathematics; applied mathematicians can contribute to a research pro-
gram in modelling and simulating particular aspects of the immune system.
Considering that in immunology it is necessary to develop experiments in

vivo, one has to make every effort to reduce the number of experiments;
in fact, simulating the behavior of the system can consistently reduce the
experimental effort.

The interplay between mathematics and immunology is already doc-
umented in a large literature. Specifically, regarding tumor and immune
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system interactions, the reader can refer to the collection of surveys by
Adam and Bellomo (1996) and by Preziosi (2003), in order to find useful
information on the state of the art in the field.

1.3 Mathematical Background

The Boltzmann equation offers the mathematical background for this book.
Indeed, it is the reference model for a class of evolution equations which
will be derived, in Chapter 2, for a large system of interacting entities
whose microscopic state is identified not only by geometrical and mechanical
variables, but also by an additional biological variable which may assume
different meanings corresponding to the specific system which is the object
of the modelling process.

The interacting entities are occasionally called active particles to indi-
cate that their microscopic state includes characteristic activities (biological
functions) which are typical of the living matter.

Of course, the Boltzmann equation cannot be used, as it is, to model the
complex systems we deal with. Indeed, microscopic interactions between
active particles are very different from those between classical particles.
The main difficulty arises from the fact that mechanical interactions are
somehow affected by biological functions and vice versa. Moreover, inter-
actions are not mass-preserving, as in the case of the classical Boltzmann
equation, but may include source or sink terms related to proliferation and
destruction events.

Still the Boltzmann equation is an essential reference. Therefore, the
Appendix provides a concise introduction to this fundamental model of
kinetic theory and provides a preliminary analysis of its fundamental prop-
erties. It is only a brief introduction, and the interested reader can find
additional information in the book by Cercignani, Illner, and Pulvirenti
(1994), mainly devoted to the derivation and the mathematical properties,
while more recent mathematical approaches are dealt with in the survey by
Villani (2002).

1.4 Contents

This book is motivated by the idea that methods of mathematical kinetic
theory can be developed to describe the evolution of several biological sys-
tems of interest in applied sciences. Specific fields of applications are,
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among others, collective social behaviors, immunology, epidemiology, and
the dynamics of swarms. Specifically, this book deals with modelling and
simulations of biological systems constituted by large populations of inter-
acting cells. The modelling is then focused on the analysis of the competi-
tion between cells of an aggressive host and cells of the immune system.

The line which is followed is the classical one of the mathematical sci-
ences when applied to modelling real systems. This line links the phe-
nomenological observation of the system to be described within a mathem-
atical framework to modelling and simulations. Between these two steps, a
qualitative analysis has to be inserted not only to define the background for
the application of computational algorithms, but also to precisely identify
the prediction ability of the model.

Bearing the above reasoning in mind, the contents of the chapters which
follow the above introduction can be given:

Chapter 2 deals with methodological aspects, namely with the deri-
vation of a generalized Boltzmann equation for large systems of interact-
ing entities, whose microscopic state is identified not only by position and
velocities, but also by a microscopic additional variable corresponding to
their biological functions. The mathematical framework is obtained start-
ing from a detailed description of microscopic interactions which include
not only modifications of the microscopic state, but also proliferation and
destruction of cells. Therefore this chapter provides various mathematical
tools which will be used to derive various models proposed in the chapters
which follow. It is a general framework which can hopefully also be used to
model other biological systems different from those specifically dealt with
in this book.

Chapter 3 deals with the derivation of various mathematical models
concerning the immune competition. A specific application is the compe-
tition between tumor and immune cells. The mathematical framework is
the one proposed in Chapter 2, while specific models are obtained by a
detailed mathematical description of cellular interactions. As we shall see,
interactions not only may modify the ability of cells to apply their specific
functions, but may also generate destruction or proliferation phenomena
which are typical of the immune competition. For instance, destruction of
the cells of the aggressive guest due to the action of the immune cells, which
may proliferate to fight against it. Of course, the opposite situation may
occur: proliferation of the cells of the guest which may not be sufficiently
contained by the immune system.

Chapter 4 develops a quantitative analysis of the models proposed in
Chapter 3. Well-posedness of the initial value problem is analyzed. Spe-
cial attention is paid to studying the asymptotic behavior of the solutions.
The qualitative analysis is developed with the aim of recovering, out of the
description of the model, suitable information on the output of the com-
petition and, in particular, on the role of the parameters of the model in
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the asymptotic behavior of the solutions. The final aim consists of ana-
lyzing the conditions which may generate blowup of cells of the aggressive
guest with inhibition of the immune system and vice versa. Classically, the
above qualitative analysis defines the mathematical background useful in
the application of algorithms for the computational analysis developed in
Chapter 5.

Chapter 5 deals with a computational analysis of the models proposed
in Chapter 3. The mathematical problem is the analysis of the initial
value problem for systems of integro-differential equations. Simulations
visualize the behavior of the models, with a detailed quantitative analysis
of the role of parameters and of the initial conditions. Suitable biological
interpretations relate the above parameters and conditions to real biological
states or conceivable actions including the development of therapies.

Chapter 6 deals with the introduction to models with space dynamics.
The mathematical background is still the one of Chapter 2, however the
microscopic state of models dealt with in this chapter includes the space
variable, while models dealt with in Chapters 3 to 5 were limited to the
description of spatially homogeneous phenomena. The greatest part of
this chapter is devoted to the derivation of macroscopic models by suitable
asymptotic theories out of the microscopic description given by the kinetic
theory approach. This derivation can be regarded as a relatively more
rigorous alternative to the purely phenomenological derivation offered by
classical methods of continuum mechanics. Indeed, phenomenological con-
tinuum models are derived on the basis of conservation equations closed
by models of the behavior of the matter, which generally do not take into
account the fundamental role of biological functions at the cellular level.
The analysis developed in this chapter shows how these functions, and in
particular the rates of mechanical and biological interactions, play a relev-
ant role in the derivation of macroscopic equations. Specifically different
evolution equations and descriptions of diffusion phenomena are obtained
with different rates of the above-mentioned interactions.

Chapter 7 develops a critical analysis of the contents of preceding chap-
ters in view of further generalizations and developments of the modelling
approach proposed in this book. Specifically, the following two topics, se-
lected among several ones, are dealt with. The first one refers to gener-
alizations of the mathematical approach in view of modelling additional
phenomena, with special attention to therapeutical actions. The second
topic refers to derivation of mathematical frameworks technically different
from those used in this book.

Finally, this chapter also analyzes, with reference to a recent paper by
Bellomo and Forni (2006), an interesting issue related to the mathematical
treatment of living matter: how mathematical models of biological systems
can be properly developed into a biological–mathematical theory. Indeed,
it is a fascinating perspective which already involves the intellectual energy
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of various applied mathematicians. Within this framework a challenging
subject is the derivation of biological–mathematical theory as a natural
development of specific mathematical models.

It is worth stressing that, although the applications dealt with in Chap-
ters 3 to 5 essentially refer to various aspects of immune competition, the
mathematical methods proposed in this book may act as a new paradigm
for a variety of applications. This aspect is analyzed in Chapter 6 and 7,
which look at further research perspectives.

An Appendix and a short Glossary complete the overall contents of
the book. The Appendix provides a brief description of the Boltzmann
equation, its derivation, and some of its properties. This Appendix also
deals with a concise account of the so-called discrete Boltzmann equation,
a mathematical model of kinetic theory corresponding to a gas of particles
which can attain only a finite (discrete) number of velocities. The Glossary
provides a short description of the biological terms used in the systems
dealt with in this book.



2

Mathematical Frameworks
of the Generalized Kinetic
(Boltzmann) Theory

... the importance of integrating experimental approaches with modelling

and conceptual frameworks . . .

— Hartwell, et al.

2.1 Introduction

One of the most interesting and challenging research perspectives for ap-
plied mathematicians is the description of the collective behavior of large
populations of interacting entities whose microscopic state is described not
only by mechanical variables, typically position and velocity, but also by a
biological state related to an organized, and maybe even intelligent, behav-
ior.

This chapter deals with the development of a new approach based on
the methods of kinetic theory. In this approach we derive mathematical
equations suitable for describing the evolution of the interacting population,
taking into account the above microscopic state.

It is an ambitious goal motivated by papers delivered by scientists active
in the field of biology, for instance by Hartwell, et al. (1999), who deeply
analyze the conceptual differences between inert and living matter. The
motivations and reasoning behind this type of mathematical modelling of
biological systems are the guiding principles of this book and have already
been outlined in Section 1.2.

11
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Some mathematical structures have already been proposed in the lit-
erature, in some cases with reference to specific applications. Specifically
some generalizations of the classical Boltzmann equation, which is briefly
reviewed in the Appendix, have been proposed in the paper by Bellouquid
and Delitala (2005), while mathematical aspects are dealt with in the book
by Arlotti, Bellomo, De Angelis, and Lachowicz (2003) dealing with the
well-posedness of the initial value problem and the development of asymp-
totic theory toward the derivation of equations of continuum mechanics.

The above-mentioned class of equations applies to the evolution of the
probability distribution over the microscopic state of the interacting enti-
ties. The derivation of the evolution equations is based upon conservation
equations in the space of the microscopic state. The net flow in the ele-
mentary volume in the state space is determined by short-range microscopic
interactions. This means that the derivation method is analogous to that
of the Boltzmann equation.

Specific applications have been proposed, among others, in mathemat-
ical biology, e.g., Arlotti, Lachowicz, and Gamba (2002); Bellouquid and
Delitala (2004); as documented in the review papers by Delitala (2002) and
by Bellomo, Bellouquid, and Delitala (2004); in social dynamics, Bertotti
and Delitala (2004); and in modelling the spread of epidemics, Delitala
(2004). The above recent papers have been to some extent inspired by the
pioneer papers by Jager and Segel (1992) on the biological behavior of in-
sects and by Bellomo and Forni (1994) on the competition between tumor
and immune cells.

It is possible to show that some models already available in the literature
can be related to the mathematical framework of generalized kinetic theory,
and that new models can be designed referring to the structure. The interest
in this type of mathematical approach toward the modelling of complex
systems in applied sciences is documented in the collection of surveys in
the book edited by Bellomo and Pulvirenti (2000). In this book we focus
on mathematical biology, and specifically on complex multicellular systems.

This chapter is organized as follows:
Section 2.2 provides some preliminary definitions concerning the micro-

scopic state of the interacting entities and their statistical representation.
Moreover, it also shows how macroscopic quantities of interest in biological
sciences can be technically recovered from the above statistical distribution.

Section 2.3 deals with the modelling of microscopic interactions between
pairs of cells. As in mathematical kinetic theory, short-range interactions
are dealt with.

Section 2.4 deals with the derivation of the evolution equations for the
one-particle distribution function corresponding to the above models of
microscopic interactions.

Section 2.5 deals with some technical simplifications: the particular-
ization of the evolution equations in the spatially homogeneous case with
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dominant biological interactions, or with dominant mechanical interactions.
Section 2.6 deals with discretized models which are obtained by replac-

ing the continuous mechanical and biological variables by discrete variables.
Section 2.7 analyzes the general mathematical framework proposed in

this chapter with reference to some specific models, thus showing how it
includes, as special cases, a variety of models of interest in the biological sci-
ences. Out of the above critical analysis the applicability of the framework
for deriving models suitable for describing complex biological phenomena
is discussed.

Some specific mathematical models derived within the general frame-
work offered in Sections 2.4 to 2.6 will be proposed in Chapter 3.

2.2 Mathematical Representation

This section provides some preliminary definitions. These definitions refer
to a large system of interacting cells and concern the concept of a micro-
scopic state and the statistical distribution over such a microscopic state
as an alternative, in terms of collective description, to the individual deter-
ministic modelling of each cell, which in the whole ensemble may not even
be identified.

Consider a large system of interacting cells organized into several popu-
lations. The description of the system by methods of mathematical kinetic
theory essentially means defining the microscopic state of the cells and the
distribution function over the above state.

Definition 2.2.1. The system is constituted by n interacting cell popu-
lations labelled by the index i = 1, . . . , n. Each population is characterized
by a distinct way of organizing its peculiar activities, as well as its interac-
tions with the other populations.

Definition 2.2.2. The physical variable denoting the state of each cell
is called the microscopic state, and is denoted by w, which is formally
written as follows:

w = {z , q , u} ∈ Dw = Dz × Dq × Du , (2.2.1)

where z is the geometrical microscopic state, e.g., position, orientation,
etc., q is the mechanical microscopic state, e.g., linear and angular
velocities, and u is the biological microscopic state. The space of the
microscopic states is called the state space.
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Definition 2.2.3. The description of the overall state of the system is
given by the one-cell distribution function

fi = fi(t,w) = fi(t, z,q,u) , (2.2.2)

which will be called the generalized distribution function, for i =
1, . . . , n, and such that fi(t,w) dw denotes the number of cells whose state,
at time t, is in the interval [w,w + dw].

Definition 2.2.4. Interactions are considered between pairs of cells. The
first one will be called the test cell, while the second one will be the field
cell. The distribution function defined in Definition 2.2.3 refers to the test
cell.

In some cases, the geometrical and mechanical microscopic states refer
simply to position x and velocity v; see Figure 2.1. Then fi = fi(t,x,v,u).

Fig. 2.1. Mechanical state of a cell.

Calculations developed in what follows refer, for simplicity of notation,
to the above specific case; generalizations to more complicated cases, where
geometrical and microscopic states refer not only to position and velocity,
are merely technical and do not modify the following considerations.

If fi is known, then macroscopic gross variables can be computed, under
suitable integrability conditions, as moments weighted by the above distri-
bution function. For instance, the local size of the ith population is given
by

ni[fi](t,x) =

∫
Dv×Du

fi(t,x,v,u) dv du . (2.2.3)

The local initial size of the ith population, at t = 0, is denoted by ni0, while
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the local size for all population is denoted by n0 and is given by

n0(x) =

n∑
i=1

ni0(x) . (2.2.4)

Integration over the volume Dx containing the cells gives the total size of
the ith population:

Ni[fi](t) =

∫
Dx

ni(t,x) dx , (2.2.5)

which may depend on time due to proliferating or destructive interactions,
as well as the flux of cells through the boundaries of the volume. The total
size of all populations N0 is given by the sum of all Ni. In all practical
cases it may be convenient to normalize the distributions fi with respect to
the total size N0 at t = 0, so that each size is related to an initial condition.

Marginal densities may refer either to the generalized distribution over
the mechanical state

fm
i (t,x,v) =

∫
Du

fi(t,x,v,u) du , (2.2.6)

or to the generalized distribution over the biological state:

f b
i (t,u) =

∫
Dz×Dq

fi(t,x,v,u) dx dv . (2.2.7)

First-order momenta give either linear mechanical macroscopic quant-
ities or linear biological macroscopic quantities. For instance, the mass
velocity of cells, at the time t at the position x, is defined by

U[fi](t,x) =
1

ni[fi](t,x)

∫
Dv×Du

v fi(t,x,v,u) dv du . (2.2.8)

Focusing on biological functions, linear momenta related to each jth

component of the state u, related to the ith populations, will be called
activations at the time t at the position x, and are computed as follows:

Aij = Aj [fi](t,x) =

∫
Dv×Du

ujfi(t,x,v,u) dv du , (2.2.9)

while the activation density is given by the activation relative to the size
of the ith population:

Aij = Aj [fi](t,x) =
Aj [fi](t,x)

ni[fi](t,x)
, (2.2.10)
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and it allows us to identify the size of the mean value of the activation.
Similar calculations can be developed for higher order momenta. For

instance, quadratic progressions can be computed as second-order mo-
menta:

Eij = Ej [fi](t,x) =

∫
Dv×Du

u2
jfi(t,x,v,u) dv du , (2.2.11)

while the quadratic progression density is given by

Eij = Ej [fi](t,x) =
Ej [fi](t,x)

ni[fi](t,x)
· (2.2.12)

2.3 Modelling Microscopic Interactions

Modelling microscopic interactions is preliminary to the derivation of evo-
lution equations. This section deals with the design of a mathematical
framework suitable for including a large variety of models at the microscopic
level. Essentially, we treat short-range binary interactions which refer
to the mutual actions between test and field cells, when the test cell enters
into the action domain Λx of the field cell; Λx is relatively small and only
binary encounters are assumed to be relevant.

Another type of microscopic interactions are mean field interactions.
These refer to the action over the test cell applied by all field cells which
are in the action domain Ω of the field subject. This means that the density
is sufficiently large relative to Ω so that more than one field cell may act
over the test cell, but the action is still of the type of binary encounters.

In this book, we focus on applications with a short-range interaction
type. In this chapter, we propose and develop the framework for the short-
range interaction modelling; in next chapters we will propose some specific
models. The analysis of mean field interactions is developed in the last
chapter.

We consider the following classifications:

• Conservative interactions which modify the state, mechanical and/or
biological, of the interacting cells, but not the size of the populations.

• Proliferating or destructive interactions which result in the death
or birth of cells due to pair interactions.

Consider first conservative interactions between the test cell with
state w1 belonging to the ith population and the field cell with state w2
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Fig. 2.2. Conservative interactions. A T cell interacts with a dendritic cell
that does not present the specific antigen. After the encounter neither the
T cell nor the dendritic cell change their state.

belonging to the jth population, where w = {x,v,u}. The dynamics of con-
servative interactions are visualized in Figure 2.2. Modelling of microscopic
interactions is based on the knowledge of the following two quantities:

• The encounter rate

ηij(w1,w2) : Dw × Dw → IR+ , (2.3.1)

depending both on the states and on the type of populations of the inter-
acting pairs;

• The transition density function

ϕij(w1,w2;w) : Dw × Dw × Dw → IR+ , (2.3.2)

which is such that ϕij(w1,w2;w) dw denotes the probability density that
a test cell with state w1 belonging to the ith population falls into the state
w after an interaction with a field cell with state w2 belonging to the jth

population. The function ϕij has the structure of a probability density
function with respect to the variable w

∀ i, j , ∀w1,w2 :

∫
Dw

ϕij(w1,w2;w) dw = 1 . (2.3.3)

The knowledge of the above quantities allows us to compute the flux
rate C+ and C− of cells which enter or leave the elementary volume dw of
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the state space due to local interactions. Technical calculations yield

C+
i [f ](t,w) =

n∑
j=1

∫
D×D

ηij(w1,w2)ϕij(w1,w2;w)

× fi(t,w1)fj(t,w2) dw1 dw2 , (2.3.4)

C−
i [f ](t,w) = fi(t,w)

n∑
j=1

∫
D

ηij(w,w2)fj(t,w2) dw2 , (2.3.5)

where D = Λx × Dv × Du, and where f denotes the set of all distribution
functions: f = {fi}.

Fig. 2.3. Proliferating interactions. A T-helper cell is induced to pro-
liferate after the interaction with a dendritic cell presenting the specific
antigen.

Consider now nonconservative interactions between the test cell
with state w1 belonging to the ith population and the field cell with state
w2 belonging to the jth population, which occur with the above defined
encounter rate. The dynamics of nonconservative interactions are visualized
in Figures 2.3 and 2.4. Proliferating and/or destructive encounters can be
modelled by the source/sink short-range distribution function

ψij(w1,w2;w) = μij(w1,w2)δ(w − w1) , (2.3.6)
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Fig. 2.4. Destructive interactions. An activated T citotoxic cell recognizes
its specific target and kills the foreign cell.

where μ is the proliferation (or destruction) rate generated by the interac-
tion of the test cells belonging to the ith population with state w1 with a
field cell belonging to the jth population with state w2. Proliferating and
destructive processes occur in the microscopic state of the test cell.

Calculations analogous to those we have seen for equations (2.3.4) and
(2.3.5) provide the flux rate I due to proliferating or destructive interac-
tions:

Ii[f ](t,w) = fi(t,w)
n∑

j=1

∫
D

ηij(w,w2)μij(w,w2)fj(t,w2) dw2 . (2.3.7)

The above general expressions, where the terms η, ϕ, and μ depend on
the whole set of microscopic variables, need to be particularized according
to the phenomenology of the system we are dealing with. Specifically, the
following particularizations are proposed:

• The encounter rate depends, for each pair of interacting populations,
on the relative velocity

ηij = cij |v1 − v2|δ(x1 − x2) , cij = constant . (2.3.8)

• The transition probability density ϕij is given by the product of the two
transition densities related respectively to mechanical variables and bio-
logical variables. Defining Mij as the transition probability density
related to mechanical variables and Bij as the transition proba-
bility density related to biological variables yields

ϕij = Mij(v1,v2;v|u1,u2)δ(x − x1)Bij(u1,u2;u) , (2.3.9)
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where δ denotes Dirac’s delta function, and where the output of the
mechanical interactions depends on the input velocity and biological
states only, while biological interactions depend on the input biological
states only. Of course mechanics also has an influence over biological
interactions through the encounter rate.

• The proliferating/destruction term μij depends on the biological states
only:

μij = μij(u1,u2) . (2.3.10)

Remark 2.3.1. The above particularizations are essentially based on the
assumption that biological interactions are affected by mechanical interac-
tions only through the encounter rate, while mechanical interactions depend
on the biological state: cells select a strategy to move within their environ-
ment based on the biological state of the interacting pair. The output of
the interaction is assumed to be localized in the same point of the test cell
according to the assumption of short-range interactions.

The above particularizations allow relatively more precise calculations
of the fluxes defined in equations (2.3.4) and (2.3.9). Specifically, referring
to conservative interactions, one has

C+
i [f ](t,x,v,u) =

n∑
j=1

∫
(Dv×Du)2

cij |v1 − v2|Mij(v1,v2;v|u1,u2)

× Bij(u1,u2;u)fi(t,x,v1,u1)

× fj(t,x,v2,u2) dv1 dv2 du1 du2 , (2.3.11)

and

C−
i [f ](t,x,v,u) = fi(t,x,v,u)

n∑
j=1

∫
Dv×Du

cij |v − v2|

× fj(t,x,v2,u2) dv2 du2 . (2.3.12)

Referring to proliferating or destructive interactions, it follows that

Ii[f ](t,x,v,u) = fi(t,x,v,u)
n∑

j=1

∫
Dv×Du

cij |v − v2|μij(u,u2)

× fj(t,x,v2,u2) dv2 du2 . (2.3.13)
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2.4 Mathematical Frameworks

This section deals with the derivation of the evolution equations correspond-
ing to short-range interactions. They should be regarded as a mathematical
framework to be used to design specific models simply by specializing the
various microscopic interaction functions, equations (2.3.8) and (2.3.10),
that we have seen in the previous section. The evolution equation for the
distribution function can be formally written as

Lifi = Nifi , ∀ i = 1 , . . . , n , (2.4.1)

where Li and Ni are linear and nonlinear operators which can be properly
defined by a suitable balance equation obtained by equating the rate of
variation of the distribution function in the elementary volume of the state
space to the inlet and outlet flux due to microscopic interactions. The
scheme for short-range interactions is represented in Figure 2.5, where the
first box refers to the free transport, while the others correspond to the
net fluxes in the elementary volume of the state space due to conservative
and proliferating/destructive interactions, and to the inlet from the outer
environment.

Variation rate of the
number of cells in the
elementary volume of
the state space

Net flux due to
proliferating/destructive
interactions

Inlet from outer
environment

Outlet flux due to
conservative short-
range interactions

�

��

�

Inlet flux due to
conservative short-
range interactions

Fig. 2.5. Mass balance in the state space: short-range interactions.

The class of equations dealt with in what follows refers to the relatively
more detailed models of microscopic interactions proposed by equations
(2.3.8) and (2.3.10) for short-range interactions.

Consider the evolution of a multicellular system where cells are all sub-
ject to short-range microscopic interactions and suppose, in addition, that
nothing external is acting on the cells. The scheme of the flowchart in Fig-
ure 2.5 corresponds, in the absence of inlet flux from the outer environment,
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to the following equation:

dfi

dt
= Ji[f ] =

n∑
j=1

Jij [f ] = C+
i [f ] − C−

i [f ] + Ii[f ] , (2.4.2)

for i = 1, . . . , n. Then, considering that

dfi

dt
=

∂fi

∂t
+ v · ∇xfi , (2.4.3)

and using the expression of the terms corresponding to microsopic interac-
tions given by equations (2.3.11)–(2.3.13), the following class of evolution
equations is obtained:

(
∂

∂t
+v · ∇x

)
fi(t,x,v,u) = Ji[f ](t,x,v,u)

=
n∑

j=1

∫
(Dv×Du)2

cij |v1 − v2|Mij(v1,v2;v|u1,u2)

× Bij(u1,u2;u)fi(t,x,v1,u1)fj(t,x,v2,u2) dv1 du1 dv2 du2

− fi(t,x,v,u)
n∑

j=1

∫
Dv×Du

cij |v − v2|fj(t,x,v2,u2) dv2 du2

+ fi(t,x,v,u)

n∑
j=1

∫
Dv×Du

cij |v − v2|μij(u,u2)

× fj(t,x,v2,u2) dv2 du2 . (2.4.4)

If an inlet flux from the outer environment is present, then a suitable
source term needs to be added to the right-hand side of equation (2.4.4).

2.5 Some Simplified Models

This section reports two technical simplifications related to the mathemat-
ical framework proposed in Section 2.4. The first one refers to models with
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dominant biological interactions, where the distribution over the mechani-
cal state is uniform or constant in time. The second one refers to models
with dominant mechanical interactions, with uniform or constant in time
distributions over the biological state. Another possible simplification is
the discretization technique, which will be treated in the next section.

The above particular classes of models are proposed in view of specific
applications. The modelling is developed in the absence of external actions
and source terms. Inserting these additional terms is simply a matter of
technical calculations.

The class of models proposed in Section 2.4 can be, in some cases, sim-
plified with reference to physical situations where some specific phenomena
are relatively less relevant (or negligible) with respect to others. Indeed,
this is the case for cellular systems in the spatially homogeneous case with
a distribution over the velocity variable that is uniform or constant in time,
i.e., with dominant biological interactions. The evolution equations
are obtained by integrating over the domain of the velocity variable in a
physical condition such that the distribution over the velocity variable is
constant in time and uniform in the space variable:

fi(t,v,u) = f b
i (t,u)P (v) ,

∫
Dv

P (v) dv = 1 . (2.5.1)

Using the above assumptions by substituting (2.5.1) into (2.4.4) yields,
after an integration over the velocity variable, the mathematical model for
a system on n cell populations:

∂f b
i

∂t
(t,u) =

n∑
j=1

η0
ij

∫
Du×Du

Bij(u1,u2;u)f b
i (t,u1)f

b
j (t,u2) du1 du2

− f b
i (t,u)

n∑
j=1

∫
Du

η0
ij

[
1 − μij(u,u2)

]
f b

j (t,u2) du2 , (2.5.2)

where

η0
ij =

∫
Dv×Dv

cij |v − v2|P (v2)P (v) dv2 dv . (2.5.3)

An analogous argument can be applied to the case of dominant me-
chanical interactions. This is the case of cellular systems with a uniform
or constant in time distribution over the biological variable. In other words,
rules covering mechanical interactions depend on the biological states of the
interacting pair. However, the distribution over the biological state is not
influenced by interactions. In this case, the evolution equation is the one
over the mechanical variable obtained by integrating over the domain of
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the biological variable. Calculations are analogous to those we have seen
above. Now, the preliminary assumption is

fi(t,x,v,u) = fm
i (t,x,v)P (u) ,

∫
Du

P (u) du = 1 . (2.5.4)

Moreover, the proliferation term is equal to zero: μij = 0. Then, substitu-
tion into (2.4.4) and averaging over the biological variable yields

∂

∂t
fm

i (t,x,v) =
n∑

j=1

∫
Dv×Dv

cij |v1 − v2|Mm
ij (v1,v2;v)

× fm
i (t,x1,v1)f

m
j (t,x2,v2)dv1 dv2

− fm
i (t,x,v)

n∑
j=1

∫
Dv

cij |v − v2|fm
j (t,x2,v2)dv2 , (2.5.5)

where

Mm
ij (v1,v2;v) =

∫
Du×Du

Mij(v1,v2;v|u1,u2)P (u1)P (u2) du1 du2 .

(2.5.6)

2.6 Discrete Models

Biological cellular systems may in some cases be characterized by a dis-
crete, rather than continuous, biological state. For instance, in some cases
biological functions may be identified by two states: an active state and a
totally suppressed state.

The discretization is motivated by various considerations. Specifically,
it is sometimes useful in computational treatments to reduce the compu-
tational complexity of the continuous equations. In other cases, it is moti-
vated by the biological analysis: this happens when the microscopic state,
rather than being represented by a continuous distribution, can attain only
a finite number of values.

A systematic analysis of the discretization of generalized kinetic models
was proposed by Bertotti and Delitala (2004), where well-posedness prob-
lems are discussed and an application to modelling social competition is
proposed.
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It can be anticipated, referring to the continuous and discrete Boltz-
mann equations proposed in the Appendix, that the evolution equation for
the discretized distribution function is a system of partial differential equa-
tions corresponding to the integro-differential system which describes the
evolution of the continuous distribution function. On the other hand, in
the spatially homogeneous case, the evolution equation for the discretized
function is a system of ordinary differential equations. In principle, if the
number of populations is greater than one, the model can even be a hy-
brid one with continuous distributions for some populations (or at least,
one population) and discrete distributions for others, leading to a system
mixing partial differential and integro-differential equations.

The contents will be organized in two subsections. The first one refers
to the spatially homogeneous case corresponding to the discretization for
a system with more than one population and with biological dominant
interactions; the second subsection generalizes the above analysis to the
discretization to a nonhomogeneuosly distributed system.

2.6.1 Discrete Space Homogeneous Systems

Consider a model with dominant biological interactions. A discrete model
in the spatially homogeneous case means that the biological variable is
discretized into a set of values

Iu = {u1 , . . . , ui , . . . up} , (2.6.1)

while the evolution equation refers to the densities fα
i , corresponding to

the αth population and to the ith state. The original system of n integro-
differential equations is replaced by a system of n × p ordinary differential
equations.

The derivation follows the same line we have seen for the continuous
model. The first step is the modelling of microscopic interactions, which
are described by the following quantities:

• The encounter rate: ηαβ , for each pair of interacting populations α, β;

• The transition probability density:

Bαβ
hk;i = B(uh,uk;ui) : Iu × Iu × Iu → IR+ , (2.6.2)

which is the probability density for a test individual of the αth population
with state uh to fall into the state ui (in the same population) after an
interaction with a field individual of the βth population with state uk.
The transition density functions have the structure of a probability density
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with respect to the variable ui:

∀h, k, α, β :
n∑

i=1

Bαβ
hk;i = 1 . (2.6.3)

• The source/sink term μαβ
ik is the self-proliferation or self-destruction

rate of a test individual of the αth population with state ui due to its
interactions with the field individual of the βth population with state uk.
Interactions occur with the above-defined encounter rate.

Applying the same balance equation we have seen for the continuous
model yields

dfα
i

dt
=

n∑
β=1

p∑
h,k=1

ηαβBαβ
hk;if

α
h fβ

k − fα
i

p∑
k=1

n∑
β=1

ηαβ

[
1 − μαβ

ik

]
fβ

k , (2.6.4)

for i = 1, . . . , p and α = 1, . . . , n.
The above modelling, which is here simply outlined, can be generalized

to the case of models such that the microscopic state also depends on space
and velocity.

2.6.2 Discrete Space Non-homogeneous Systems

For simplicity, consider now the case of one single interacting population
in which the evolution of the system in space cannot be neglected, so that
the discrete distribution function also depends on the velocity variable

fij(t,x) = f(t,x,ui,vj) , (2.6.5)

where the discretization is such that i = 1, . . . , n for the biological variable
and j = 1, . . . , m for the velocity. In this case, the encounter rate can be
modelled as depending on the relative velocity of the interacting pair:

ηhk = η0|vh − vk| , (2.6.6)

where η0 is a constant. Moreover, as in the spatially homogeneous case,
one can define the transition probability density:

Aij
σ = A(uh,vr,uk,vs;ui,vj) ,

n∑
i=1

m∑
j=1

Aij
σ = 1 , (2.6.7)

where σ = {h, k, r, s}. The transition probability density Aij
σ defines the

probability density that a subject with state (uh,vr) interacting with a
subject with state (uk,vs) falls into the state (ui,vj).



Section 2.7. Critical Analysis 27

Following the same reasoning developed in the preceding section gener-
ates the following system of partial differential equations:

∂fij

∂t
+ vj∇xfij =

∑
σ

ηrsA
ij
σ fhrfks

− fij

n∑
k=1

m∑
s=1

ηjsfks + fij

n∑
k=1

m∑
s=1

ηjsμikfks , (2.6.8)

for i = 1, . . . , n and j = 1, . . . , m.

2.7 Critical Analysis

A general mathematical framework has been proposed in this chapter to
model, by systems of integro-differential equations, the evolution of large
systems of interacting cells organized into several populations. The descrip-
tion is derived from the distribution functions over the microscopic states,
biological and mechanical, of the cells.

It is worth stressing that the above-mentioned equations should be re-
garded as a general framework that can be particularized into specific mod-
els. The models can be obtained by specifying the populations which partic-
ipate, as well as the type of microscopic interactions, so the specific model is
related to the observed biological phenomena by defining the participating
populations and the microscopic interaction rules among them.

Models generated by the above framework are intended to describe bio-
logical systems constituted by several interacting entities. The overall evo-
lution of the system is determined by the above-mentioned interactions.
The applications dealt with in the chapter which follows essentially refer
to the immune competition, in particular to the competition between tu-
mor and immune cells. However, these applications have to be regarded
as particular ones. Additional examples can hopefully be developed using
the mathematical framework developed in this chapter; some additional
examples will be given in the last chapter.

The class of equations proposed in Section 2.4 is derived on the basis of
the assumption of a continuous dependence on the microscopic state, while
the class of equations derived in Section 2.6 assumes that the microscopic
state can attain a finite number of states. This choice is not simply induced
by the need for reducing the computational complexity related to the ap-
plication of models, but by the aim of dealing with specific biological states
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which may be effectively observed to attain discrete values. More generally,
it is possible to deal with hybrid systems, such that for some populations
the distribution is continuous while for others it is discrete.

The class of equations proposed in Section 2.5 refers to relatively less
complex physical situations, such as the spatially homogeneous case; how-
ever, several interesting phenomena can still be mathematically described
by these models, as we shall see in the next chapters.

It may be useful, in view of the applications proposed in the next chap-
ters, to analyze the above framework with respect to technically differ-
ent approaches known in the literature. This critical analysis is developed
through two steps: first the mathematical framework is compared with dif-
ferent structures, and then it is shown how it can be particularized into
specific models, described by equations belonging to the so-called general-
ized kinetic (Boltzmann) theory.

Generally, the modelling of complex biological systems, and in partic-
ular multicellular systems, requires integrating processes occurring across
a range of spatial and temporal scales. Phenomena resulting from cellu-
lar interactions, such as dynamics of cellular tissue and tumors, cannot
be deduced from experimental analysis only; they need to be fitted into a
collaborative context with experiments related to mathematical models.

The simplest approach consists of describing biological phenomena by
coupled systems of ordinary differential equations in which one assumes
that the system is “well-stirred,” so that all spatial information is lost and
all individuals (cells or biological molecules) are assumed to have identical
spaces. The limit of this approach is that all individuals are supposed to
be identified by an identical microscopic state constant in time. Only the
number of individuals may change in time, referring to various interacting
populations, each characterized by a certain microscopic state.

Several models are available in the literature: among others, Nani and
Freedmann (2000); D’Onofrio (2005 and 2006); and De Pillis, Radunskaya,
and Wiseman (2005). These models in some cases are able to describe
overall macroscopic phenomena. Certainly, the above-cited papers have
this ability; on the other hand, the description at a cellular scale is lost.

A relatively more sophisticated approach is to model large systems of
interacting individuals with an internal state which is assumed to be the
same for all individuals. The modelling is driven by partial differential
equations; this mathematical approach is well documented in the works by
Webb (1985), (1986), and (1987) and is still an object of interest to applied
mathematicians as documented in a variety of recent papers, e.g., Michel
(2006) and Kheifetz, et al. (2006).

The framework proposed in this chapter will generate individual-based
models, in which each element may represent an individual with assigned
characteristics that can vary from one individual to the next. This approach
allows for populations’ behavior to respond and adapt to individual-level
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interactions.

It can be shown how the framework includes, as specific applications,
some models well known in the literature. This type of analysis may be use-
ful in understanding how the mathematical approach can be used towards
modelling complex biological systems by acting as a general paradigm.

An immediate application is Jager and Segel’s model (1992), which de-
scribes the behavior of colonies of insects which in time evolve towards
small groups of dominant insects which organize the behavior of groups be-
low them. This particular behavior is experimentally observed by Hogeweg
and coworkers (1981), who report a variety of empirical data which are
properly described by this model.

Specifically, Jager and Segel’s model refers to the mathematical struc-
ture (2.5.2) when the microscopic state is a scalar and the model refers to
one population only. That is, the model can be written as

∂f

∂t
(t, u) =

∫ 1

0

∫ 1

0

η0Bij(u1, u2; u)f(t, u1)f(t, u2) du1du2

− f(t, u)

∫ 1

0

η0f(t, u2) du2 , (2.7.1)

in absence of proliferating or destructive events. The microscopic state
u is defined in the interval [0, 1], where u = 0 corresponds to the lowest
level of domination, while the greatest level corresponds to u = 1. The
authors suggest in their paper the use of models with discrete states, thus
corresponding to the structures proposed in Section 2.6.1.

Another particularization which is worth mentioning is the “velocity
jump model” proposed by Othmer, et al. (1988, 1997, 2002) to describe
the motion of microorganisms.

The model is written as

(
∂

∂t
+ v · ∇x

)
f(t,x,v) = −λf(t,x,v) + λ

∫
Dv

T (v,v2)f(t,x,v2) dv2 ,

(2.7.2)
where it is assumed that the random velocity changes are the result of a
Poisson process of intensity λ so that λ−1 is the mean run length time
between the random choices of direction. Finally, the kernel T (v,v2) rep-
resents the probability of change in velocity from v2 to v. T is taken to be
nonnegative and normalized, so that

∫
Dv

T (v,v2) dv = 1 . (2.7.3)
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It is also assumed that T is independent of the time interval between
two consecutive jumps.

The above models are characterized by the absence of proliferating or
destructive phenomena. On the other hand, the models dealt with in the
chapters which follow include these specific events, which play a relevant
role in several biological phenomena.

Let us now complete our analysis by showing how aggregation and frag-
mentation phenomena of clusters of cells can be described by models still
related to the frameworks proposed in this chapter. The modelling can be
written as follows:

∂c

∂t
(t, x) =

1

2

∫ x

0

K(y, x − y) c(t, y) c(t, x − y) dy

− c(t, x)

∫ ∞

0

K(x, y) c(t, y) dy , (2.7.4)

where c(t, x) denotes the concentration of individuals of a certain popula-
tion with size x at time t. The first term on the right-hand side of (2.7.4)
represents coagulation of individuals of size x by means of binary encoun-
ters with individuals of sizes y and (x − y) respectively. The mechanism
by which aggregation occurs is encoded in the choice of the coagulation
kernel K(x, y). On the other hand, the second term describes the loss of
x-sized individuals through encounters with individuals of any size y > 0,
which results in the formation of clusters of size (x + y). In many phys-
ical situations, when clusters grow sufficiently large, fragmentation effects
(which introduce reversibility into the process) become relevant. These are
contained in (2.7.4) but could easily be accounted for by adding suitable
integral terms.

Originally, the model was introduced by means of discrete equations by
Smoluchowski (1916); see also Chandrasekhar (1943) for an illuminating
review. Equation (2.7.4) and its discrete counterpart

dck

dt
=

1

2

∑
i+j=k

aijcicj − ck

∞∑
j=1

akjcj (k ≥ 1) , (2.7.5)

where ck is the size of the clusters, has been extensively used to analyze a
number of problems in population dynamics.

The above examples can be regarded as simple particularizations, while
those dealt with in the chapters which follow aim at dealing with rela-
tively more complex phenomena. The various examples shown above de-
scribe systems in the spatially homogeneous case. Their generalization to
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space-dependent phenomena can be dealt with by appropriate techniques,
as documented in the book by Arlotti, et al. (2003).



3

Modelling the Immune Competition

and Applications

... history of life can be described as the evolution of systems that manipu-

late one set of symbols representing inputs into another set of symbols that

represent outputs.

— Hartwell, et al.

3.1 Introduction

The analysis developed in Chapter 2 has provided a general mathematical
framework which can be used as a background to model specific biological
phenomena related to complex multicellular systems. Mathematical models
can be designed by identifying the cell populations which participate, and
then, according to the specific biological phenomena, by modelling pair
interactions at the microscopic level between cells of the same or different
populations.

An effective criterion for defining the populations which are involved in
the competition can be found by following the suggestions of the paper by
Hartwell, et al. (1999): every cell population will be identified essentially
by the functional modules which it performs. Hartwell says,

“A functional module is a discrete entity whose function is separable
from those of others modules. Modules can be insulated from or
connected to each other; the connectivity allows one function to
influence another, and the higher-level properties of the cells will
be described by the pattern of connections among their functional
modules.”

33
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However, the above modelling technique needs to take into account sev-
eral complexity problems, originating, for instance, from the large number
of cell populations involved, the large number of cells in each population,
and the interplay between the mechanical and biological variables charac-
terizing the cells’ microscopic states.

As mentioned in Chapter 2 and in the Appendix, a way to overcome the
complexity arising from the mathematical representation of a system at the
microscopic scale can be found in the statistical description of the system,
applying the tools typical of mathematical kinetic theory. The system is
described as a swarm of various interacting cell populations where each
cell is characterized by a certain microscopic biological state, statistically
distributed among the cells.

The system is described by a distribution function over the microscopic
state of the interacting cells. The derivation of the equations describing the
evolution of the above distribution is obtained from conservation equations
in the space of the microscopic states, while the fluxes of cells in the ele-
mentary volume of this space are computed by taking advantage of models
of microscopic interactions.

This chapter deals with the mathematical modelling of the immune
competition. Specifically, it deals with the competition between immune
cells and cells which are carriers of a pathology. The contents are developed
in four sections:

Section 3.2 provides a phenomenological description of the physical sys-
tem which is going to be modelled using the various mathematical tools
developed in Chapter 2.

Section 3.3 deals with the derivation of mathematical models suitable
for describing the evolution and competition between cells of the immune
system and cells which are carriers of a certain pathology.

Section 3.4 shows how some particularizations of the general model de-
rived in Section 3.3 provide specific, relatively simpler models which can
describe particular, though interesting, aspects of the immune competition.

Section 3.5 develops a critical analysis of the contents of Sections 3.3
and 3.4, in view of further derivation of new models.

3.2 Phenomenological Description

The immune system, in multicellular organisms, is an organ system that
acts as a defense against foreign pathogens (viruses, bacteria, parasites) as
well as against internal cellular disorder.
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Fig. 3.1. The immune system involves different populations of cells.
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The immune system can be regarded as an organization of substances
and cooperating cells with specialized roles for the defense against infec-
tion. The immune system plays its defensive role through the recognition
of non-self substances, detecting particular molecular patterns, the anti-
gens, which are associated with the foreign pathogen agents.

The process is quite a sophisticated one, as the immune system needs
to evolve and change in time, recognizing some non-self substances as non-
offending elements (i.e., cellular feeding substances, growing embryos in
the mother) and learning to identify new pathogen agents not previously
encountered. The task is performed by several populations of specialized
cells as well as by biochemical substances (proteins, enzymes etc.). Figure
3.1 shows some of the most common subpopulations of cells of the immune
system. For a short description of their roles, the reader is referred to the
Glossary.

The immune system reacts to pathogen agents by means of two differ-
ent kinds of response: innate response and acquired response. The innate
response is quickly activated and occurs every time the infectious agent
is encountered and detected through the recognition of its specific molec-
ular pattern. The innate response uses two main components to fight the
infection: specialized cells of the family of leukocytes and the complement
system. The complement system is a large family of low–molecular weight
proteins and cytokines: it responds to the detected infection with a re-
action chain that starts increasing blood flow in the area, then attracts
phagocytic cells by releasing molecules that active chemotaxis, and finally
attempts to perforate the membrane of the target cell. The leukocytes
involved in the innate response are phagocytic cells, like neutrophils and
macrophages; cells that release inflammatory mediators, like basophils and
eosinophils; and “natural killer” (cytotoxic) cells. They act by engulfing
the pathogen agent or lysing it.

Figure 3.2 shows a macrophage which engulfs a pathogen agent and then
exposes fragments of it to stimulate the production of specific antibodies.

Pathogen
agents

Fragments
exposed

Macrophage

Fig. 3.2. Phagocytosis.
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The acquired response is activated after repeated exposures to a given
infection, and uses the mechanism of proliferation of B and T cells, lympho-
cytes of the family of leukocytes. B cells, stem cells which matured into the
bone marrow, retain memory of the specific pathogen patterns encountered
during the primary immune response and can produce specific antibodies.
T cells are stem cells which matured in the thymus, and are divided into
“helper” and “killer” T cells. T-helper cells may recognize virally infected
or neoplastic cells, or may be activated by a macrophage which exposes
fragments of a pathogen that it previously engulfed. The T cell compares
the exposed structure to similar structures on the cell membrane of a B cell,
and, if there is a matching pair, it activates the B cell; then both T and B
cells migrate out of the lymph nodes in which they reside and proliferate.

Antigen binding site

Variable
domain

Constant
domain

Fig. 3.3 Antibody.

Lymphocyte

Antigen

High affinity

Low affinity

Fig. 3.4 Binding process.

B cells produce specific antibodies against the recognized antigens. An-
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tibodies attack pathogens by binding them at the variable binding domain,
the end of the “Y” antibody shape (Figure 3.3), and cooperate to destroy
them by directly eliminating extracellular microorganisms or by facilita-
ting the binding to the constant domain by the other immune cells, (Figure
3.4). Antibodies are specific to only one antigen, and in binding to it, they
cause “agglutination” of antibody–antigen products prime for phagocytosis
by macrophages.

The acquired response is divided into the “humoral immune response”
and the “cellular immune response” (or “cell-mediated immune response”).
Both responses are controlled by T-helper cells, and they occur when the
T-helper cell is activated and releases a specific cytokine. In the humoral
immune response the cytokine stimulates B cells to proliferate and to dif-
ferentiate into “plasma cells,” which secrete free-flowing antibodies. In the
cellular immune response, the cytokine activates the T-killer (cytotoxic)
cells, which attack the infected body cells, lysing them or committing them
to apoptosis. Figures 3.5 and 3.6 show a schema of the humoral immune
response and the cellular immune response.

a - Macrophage
exposing fragments

b - T-helper
is activated

c - T-helper
activates B-cell

e - Plasma cells
release antibodies

d - B-cell differentiates
into Plasma cells

Fig. 3.5. Humoral immune response.

The activated lymphocytes are long-term survivors, thus retaining
a “memory” of the infection and allowing a fast response in the case of
repetition of the infection, while the innate response lacks of this kind of
immunologic memory.

Innate and acquired responses work together against the infection; in
both cases the defense starts from the recognition of the pathogen agents.
It is a complex process in which several components of the immune system
cooperate in order to reach the objective, from the detection of the infection
to the proliferation of the leukocytes specialized against the pathology.
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Fig. 3.6. Cell-mediated immune response.

On the other hand, abnormal cells, i.e., cells that are carriers of a
particular pathology, virally infected or neoplastic cells, may proliferate,
rapidly increasing the number of infecting individuals or inhibiting in some
way the functionality of the immune system. In this point of view, the
neoplastic invasion may be described as a kind of infection, and the com-
petition between neoplastic and immune cells is ruled by the dynamics of
the two interacting systems. Tumor cells may be regarded as an aggressive
host, at least at early stage of the tumor.

A tumor may be generally defined as a disease originated through some
kind of cellular disorder, which allows certain cellular populations to mani-
fest deviant characteristics. The life of each cell is regulated by the genes
contained in its nucleus; when signals stimulate receptors on the cell sur-
face and are transmitted to the nucleus of the cell, the genes can either
be activated or inhibited. Typically a series of several genetic mutations
is required before a cell becomes a tumor cell. The process involves both
oncogenes and tumor suppressor genes: oncogenes promote tumors when
activated by a genetic mutation, whereas tumor suppressor genes prevent
tumors unless inhibited by a mutation. In general, mutations in both types
of genes are necessary, as a mutation limited to an oncogene would be sup-
pressed by normal cell-life control. A normal cell may start to deviate from
genetic normality through slow degradation and variation of the genome or
through some catastrophic event. The degenerated cells receive the signal
of apoptosis, the natural way of death of the cell, but they may bypass
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the signal because they are able, by synthesizing for themselves suitable
proteins, to “escape” the natural checks to avoid uncontrolled corruption
and proliferation. Once the genetic mutations are concluded, the tumor
starts its clonal proliferation; the newborn cells remain genetically almost
constant and start growing in number and volume.

At this stage, tumor cells start to compete with the immune system,
and, if not recognized and depleted, start to condense into a solid form:
this is the passage from the microscopic (cellular) scale to the macroscopic
scale. Figure 3.7 shows a “live” picture of a T cell competing with a tumor
cell and thus attempting to neutralize the pathogen agent.

Fig. 3.7. T cell in competition with tumor cells (from www.med.sc.edu).

The competition between the immune system and a pathogen agent
is quite a complicated process, where cellular and subcellular phenomena
play a relevant role in the evolution of the competition. It may be de-
scribed through the interactions of several cellular populations, related to
immune system cells as well as to abnormal cells: if some differences at
multiple levels of cellular biological organization (genetic, phenotypic, cel-
lular, etc.) among individuals of the same population are exhibited, leading
to progressively increasing cellular heterogeneities (genotypic, phenotypic,
spatial and temporal), the immune cells are activated and the competition
starts. See, among others, Greller, Tobin, and Poste (1996), Herberman
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(1982), and Forni, et al. (1994).
The paper by Greller, Tobin, and Poste (1996) provides some significant

hints addressed to the description of multicellular systems by equations of
statistical mechanics. Their approach provides a schema for building con-
ceptual models of the evolution of tumors, combining three phenomenolog-
ical features: genetic instability of the cells, growth of the tumor, and its
progression. The progression is the complex of the phenotypic changes
which may be observed in a large spectrum of tumor properties, and de-
scribes, through an aggregate property, the degeneration of normal cells
toward replicant and eventually metastatic states.

Models can be built for different tumor situations through the study of
the interactions of the three driving elements, genetic heterogeneity, growth
of the tumor, and its progression; moreover, these elements can be used to
explore the dynamic changes in cellular populations during tumor progres-
sion. As Greller, et al. say, “The modeling paradigm acts as a consistent
descriptive language for describing the complex interactions between ge-
netic heterogeneity of the cells and progression of the tumor.”

That language can be further converted into mathematical equations,
and, to the degree that a model is an adequate representation of biolo-
gical reality, it can be used to explore hypotheses and perform in silico

experiments that are impractical in vitro.

Fig. 3.8. Evolution of progression distributions.

The progression of a tumor, due to random irreversible genetic muta-
tions, may provide a criterion for describing the collective changes that will
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develop in the tumor: in this way, it is possible to compare two tumors that
may evolve similarly. As stated in the paper by Greller, Tobin, and Poste
(1996), “Tumor cellular populations are characterized by progression dis-
tributions, progression velocities, and progression-dependent growth rates.
Major genetic changes alter the tumor dynamics as each subpopulation
moves further away from genetic normality.”

Figure 3.8 summarizes these concepts in a schematic representation
of the progression distribution for a tumor progressing over time to a
metastatic competence.

The mathematical model discussed below refers to the immune com-
petition. It deals with the dynamics between immune cells and abnormal
cells, carriers of different types of pathology, and the formulation offers a
relatively broad mathematical framework for the competition between the
immune system and many types of pathology. In Chapter 5, a suitable
selection of the parameters of the model will define a specific application
of the model to the tumor–immune competition and to the concept of pro-
gression.

3.3 Modelling the Immune Competition

Given the various phenomena described in Section 3.2, the general frame-
work proposed in Chapter 2 can be specialized to model the immune com-
petition at the cellular level between immune cells and abnormal cells.

As discussed in the previous section, the immune system involves sev-
eral different subpopulations of cells; however to simplify the complexity
induced by considering a large number of subpopulations, we will consider
the immune cells as only one population. Therefore, this population de-
velops activities which really are distributed among several particular sub-
populations. An analogous simplification will be carried out for the cells or
particles that are carriers of a pathology.

As mentioned in the previous chapter, each cell is characterized by a
certain microscopic biological state. Cell interactions may either modify
the state of each cell or the number of cells in each population by prolifer-
ation/destruction phenomena.

The formal framework proposed in Chapter 2 is specialized into a spe-
cific model by detailed assumptions based on a mathematical interpretation
of the phenomenological behavior of the system. Bearing all of the above
in mind, the following assumptions are proposed.
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Assumption 3.3.1. (Cell populations) The system is constituted by
two interacting cell populations: environmental and immune cells, labelled,
respectively, by the indexes i = 1 and i = 2. Cells are homogeneously
distributed in space.

Assumption 3.3.2. (Cell state) The functional state of each cell is de-
scribed by a real variable u ∈ (−∞,∞). For the environmental cells, the
above variable refers to the natural state (normal endothelial cells) for neg-
ative values of u and to the abnormal or pathological state (abnormal cells
or cells which have lost their differentiated state and become pathological
cells) for positive values of u. For the immune cells, negative values of u
correspond to nonactivity or inhibition; positive values of u correspond to
activation.

Assumption 3.3.3. (Statistical description) The statistical description
of the system is defined by the normalized distribution density functions

f b
i (t, u) =

1

nb
10

N b
i (t, u) , (3.3.1)

where the densities N b
i = N b

i (t, u) are such that dnb
i = N b

i (t, u) du denotes
the number of cells per unit volume whose state is, at time t, in the interval
[u, u + du], and nb

10 is the number per unit volume of environmental cells
at t = 0.

According to the above assumptions, the reference framework is the one
proposed in Section 2.5, which corresponds to biological dominant interac-
tions.

Before going further, some notations need to be specified. In the follow-
ing discussion the superscript b which characterizes the distribution func-
tion will be dropped: f b(t, u) = f(t, u), because the biological interaction
is predominant. Moreover, since there are no more mechanical variables,
the microscopic states of the test cell and the field cell will be denoted re-
spectively by v and w (instead of u1 and u2), so that the transition density
function is denoted by Bij(v, w; u). In this simplified notation, the subscript
number will refer only to populations involved in the competition.

Equation (2.5.2) can be rewritten, according to the above notation, as
follows:

∂

∂t
fi(t, u) =

2∑
j=1

η0
ij

∫
Du×Du

Bij(v, w; u)fi(t, v)fj(t, w) dv dw

+ fi(t, u)

2∑
j=1

η0
ij

∫
Du

[μij(u, w) − 1]fj(t, w) dw . (3.3.2)
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Specific models are generated by a detailed modelling of cell interactions.

Assumption 3.3.4. The encounter rate is assumed to be constant and
equal to unity for all interacting pairs, hence η0

ij = η = 1, ∀ i, j = 1, 2.

Introducing the stepwise function U[a,b](z) such that U[a,b](z) = 1 if z ∈ [a, b]
and U[a,b](z) = 0 if z /∈ [a, b], and referring to assumptions 3.3.1 and 3.3.2,
we state the following assumptions in order to model the conservative and
proliferating microscopic interactions:

Assumption 3.3.5. The transition probability density related to con-
servative interactions is assumed to be a Gaussian distribution function
with the most probable output defined by the mean value mij(v, w), which
may depend on the microscopic state of the interacting pair, and with a
finite variance sij :

Bij(v, w; u) =
1√

2πsij

exp

{
− (u − mij(v, w))

2

2sij

}
. (3.3.3)

Specifically, referring to every possible conservative pair interaction:

• Interactions between cells of the first population: Cells of the first
population show a tendency to degenerate with most probable output given
as follows:

v, w ∈ IR : m11 = v + α11 , (3.3.4)

where α11 is a parameter related to the inner tendency of both a normal
and an abnormal cell to degenerate.

• Interactions between cells of the first population with the cells of
the second population: It is assumed that if a cell of the first population
is normal, v < 0, then its state does not change due to interactions with
immune cells. Moreover, if the cell is abnormal, v ≥ 0, then the state of
the cell does not change if the immune cell is not active, w < 0:

v < 0 , w ∈ IR , v ≥ 0 , w < 0 : B12 = δ(u − v) . (3.3.5)

On the other hand, for an abnormal cell, i.e., for positive values of v, if the
immune cell is active, i.e., w ≥ 0, then the most probable output is given
as follows:

v, w ≥ 0 : m12 = v − α12 , (3.3.6)

where α12 is a parameter which indicates the ability of the immune system
to reduce the state of cells of the first population.

• Interactions between cells of the second population with cells of
the first population: Immune cells do not change state due to interactions
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with normal endothelial cells, w < 0. Moreover, if the cell is inhibited, its
state also does not change if it interacts with abnormal cells:

v ∈ IR , w < 0 , v < 0 , w ≥ 0 : B21 = δ(u − v) . (3.3.7)

For positive values of w, the transition probability density is a Gaussian
distribution, as in (3.3.3), with the most probable output given as follows:

v ≥ 0 , w ≥ 0 : m21 = v − α21 , (3.3.8)

where α21 is a parameter which indicates the ability of abnormal cells to
inhibit immune cells.

• Interactions between cells of the second population: It is assumed
that the interactions between cells of the second population have a trivial
output:

v, w ∈ IR : B22 = δ(u − v) . (3.3.9)

Assumption 3.3.6. Proliferating and destructive interactions in
the microscopic state u of the test cell are described by the following models
of the proliferation and destruction rates.

Specifically, referring to every possible nonconservative pair interaction:

• Interactions between cells of the first population: The prolifera-
tion rate of normal endothelial cells, v < 0, due to encounters with other
endothelial cells, is equal to zero. On the other hand, abnormal cells with
v ≥ 0 proliferate due to encounters with normal cells, which show a feed-
ing ability. Encounters between abnormal cells lead to no proliferation or
destruction:

μ11(v, w) = β11U[0,∞)(v)U(−∞,0)(w) , (3.3.10)

where β11 is a parameter which characterizes the proliferating ability of
abnormal cells.

• Interactions between cells of the first population with the cells of
the second population: The proliferation rate of normal cells, v < 0, due
to encounters with immune cells, is equal to zero. When v ≥ 0, abnormal
cells are partially destroyed due to encounters with active immune cells:

μ12(v, w) = −β12U[0,∞)(v)U[0,∞)(w) , (3.3.11)

where β12 is a parameter which characterizes the destructive ability of active
immune cells.

• Interactions between cells of the second population with the cells
of the first population: The proliferation rate of inhibited immune cells,
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v < 0, due to encounters with cells of the first population, is equal to zero.
When immune cells are active, v ≥ 0, they proliferate due to encounters
with abnormal cells:

μ21(v, w) = β21U[0,∞)(v)U[0,∞)(w) , (3.3.12)

where β21 is a parameter which characterizes the proliferating ability of
immune cells.

• Interactions between cells of the second population: Encounters
between immune cells have always a trivial output, μ22 = 0 .

Based on the above modelling of cell interactions, the evolution equation
(3.3.2) is rewritten as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f1

∂t
(t, u) =

n1(t)√
2πs11

∫ ∞

−∞

exp

{
− (u − (v + α11))

2

2s11

}
f1(t, v) dv

+
nA

2 (t)√
2πs12

∫ ∞

0

exp

{
− (u − (v − α12))

2

2s12

}
f1(t, v) dv

− f1(t, u)n1(t)

+ f1(t, u)
[
β11n

E
1 (t) − (1 + β12)n

A
2 (t)

]
U[0,∞)(u) ,

∂f2

∂t
(t, u) =

nT
1 (t)√
2πs21

∫ ∞

0

exp

{
− (u − (v − α21))

2

2s21

}
f2(t, v) dv

+ (β21 − 1)U[0,∞)(u)f2(t, u)nT
1 (t) ,

(3.3.13)

where

n1(t) =

∫ ∞

−∞

f1(t, u) du , n2(t) =

∫ ∞

−∞

f2(t, u) du , (3.3.14)

are the zeroth-order momenta representing the densities of each cell popu-
lation. More specifically,

nE
1 (t) =

∫ 0

−∞

f1(t, u) du , nT
1 (t) =

∫ ∞

0

f1(t, u) du , (3.3.15)

are the densities of normal endothelial cells and abnormal endothelial cells,
respectively;

nI
2(t) =

∫ 0

−∞

f2(t, u) du , nA
2 (t) =

∫ ∞

0

f2(t, u) du , (3.3.16)
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are the densities of normal immune cells and active immune cells, respect-
ively.

If the variance goes to zero, a deterministic output in the conservative
interaction functions is obtained:

sij → 0 =⇒ Bij(v, w; u) = δ(u − mij(v, w)) . (3.3.17)

In this particular case, the evolution equations (3.3.13) reduce to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f1

∂t
(t, u) = n1(t)[f1(t, u − α11) − f1(t, u)]

+ nA
2 (t)f1(t, u + α12)U[0,∞)(u + α12)

+ f1(t, u)
[
β11n

E
1 (t) − (1 + β12)n

A
2 (t)

]
U[0,∞)(u) ,

∂f2

∂t
(t, u) = nT

1 (t)f2(t, u + α21)U[0,∞)(u + α21)

+ (β21 − 1)nT
1 (t)f2(t, u)U[0,∞)(u) .

(3.3.18)

The above model is characterized by six positive phenomenologic parame-
ters, which are small with respect to one:

α11 corresponds to the tendency of endothelial cells to degenerate.

α12 corresponds to the ability of the active immune cells to reduce the state
of abnormal cells.

α21 corresponds to the ability of abnormal cells to inhibit the active immune
cells.

β11 corresponds to the proliferation rate of abnormal cells.

β12 corresponds to the ability of immune cells to destroy abnormal cells.

β21 corresponds to the proliferation rate of immune cells.

The α parameters are related to conservative encounters, while the β para-
meters are related to proliferation and destruction phenomena. The next
section will show how a suitable specialization of the above parameters can
provide models able to describe some particular interesting aspects of the
immune competition.

The evolution equations for the densities nT
1 (t) and nE

1 (t) are obtained
from (3.3.14)–(3.3.16) by integration of the first equation of (3.3.18) re-
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spectively on IR+ and on IR−:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂nT
1 (t)

∂t
=n1(t)

∫ 0

−α11

f1(t, u) du − nA
2 (t)

∫ α12

0

f1(t, u) du

+ nT
1 (t)

[
β11n

E
1 (t) − β12n

A
2 (t)

]
,

∂nE
1 (t)

∂t
= − n1(t)

∫ 0

−α11

f1(t, u) du + nA
2 (t)

∫ α12

0

f1(t, u) du .

(3.3.19)

Applying the same procedure to the second equation of (3.3.18) yields the
evolution equation for nA

2 (t) and nI
2(t):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂nA
2 (t)

∂t
= nT

1 (t)

[
β21n

A
2 (t) −

∫ α21

0

f2(t, u) du

]
,

∂nI
2(t)

∂t
= nT

1 (t)

∫ α21

0

f2(t, u) du .

(3.3.20)

Remark 3.3.1. Systems (3.3.19) and (3.3.20) are not in a closed form,
since f1(t, u) and f2(t, u) are unknown. However, the above equations are
useful, as we shall see in Chapter 4, in view of the qualitative analysis and
the study of the asymptotic behavior of the solution of the initial value
problem of model (3.3.18).

Remark 3.3.2. Model (3.3.18) can be technically generalized and de-
veloped. For instance, we may consider an open system such that the inlet
from the outer environment keeps the number of normal cells of the first
population constant in time. Moreover, assumption 3.3.6 can be modified
by considering a decay of the number of immune cells when the number of
abnormal cells also declines.

3.4 Some Technical Particularizations

The mathematical model described in Section 3.3, although it has a very
simple structure, can describe several stages of the immune competition: a
preliminary stage when cells of the two interacting populations simply mod-
ify their respective biological functions, and later the onset of proliferating
or destructive phenomena which may end up with the blowup or destruc-
tion of the aggressive, maybe invasive, host. The output of the competition
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mostly depends on the ability of immune cells to identify and destroy the
invading host.

Bearing all of the above in mind, various examples of particularization
of the general model proposed in the previous section are reported below
with attention to the biological counterpart.

Example: Model C

This first example, called Model C, is related to (prevalent) conserva-
tive interactions and it is obtained simply equating to zero all β param-
eters. Thus, as it is characterized only by conservative α parameters, it
corresponds to a competition where no proliferation or destruction occurs
while interactions only modify and affect the biological functions.

The model, derived from equation (3.3.18), is written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f1

∂t
(t, u) =n1(t)[f1(t, u − α11) − f1(t, u)]

+ nA
2 (t)f1(t, u + α12)U[0,∞)(u + α12)

− f1(t, u)nA
2 (t)U[0,∞)(u) ,

∂f2

∂t
(t, u) =nT

1 (t)f2(t, u + α21)U[0,∞)(u + α21)

− nT
1 (t)f2(t, u)U[0,∞)(u) .

(3.4.1)

The equations for the densities (3.3.19)–(3.3.20) reduce to the following
system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂nT
1

∂t
(t) = n1(t)

∫ 0

−α11

f1(t, u) du − nA
2 (t)

∫ α12

0

f1(t, u) du ,

∂nE
1

∂t
(t) = −n1(t)

∫ 0

−α11

f1(t, u) du + nA
2 (t)

∫ α12

0

f1(t, u) du ,

∂nA
2

∂t
(t) = −nT

1 (t)

∫ α21

0

f2(t, u) du ,

∂nI
2

∂t
(t) = nT

1 (t)

∫ α21

0

f2(t, u) du .

(3.4.2)

System 3.4.2 is not closed, considering that f1 and f2 are not known.
Model C can be applied to analyze latent immune competitions when

cells degenerate before the onset of relevant proliferation phenomena which
give evidence of the presence of a pathological state.
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Example: Model P

An analogous reasoning can be applied to the modelling of a stage char-
acterized by the fact that the distribution over the biological functions is
almost constant (or slowly varying), while the proliferating or destruct-
ive events are predominant. This predominant proliferating or destructive
model, later called Model P, is obtained from the general model (3.3.18)
by setting equal to zero all α-type parameters.

It is related to (prevalent) proliferative/destructive interactions: the
biological counterpart is that the cells do not show a natural tendency to
degenerate, since α11 = 0. Moreover, an eventual pathological state is not
opposed by immune cells, since α12 = 0, and abnormal cells cannot inhibit
immune cells, since α21 = 0. In this case, the evolution equation for the
distribution function is written as follows:

⎧⎪⎪⎨
⎪⎪⎩

∂f1

∂t
(t, u) = f1(t, u)

[
β11n

E
1 (t) − β12n

A
2 (t)

]
U[0,∞)(u) ,

∂f2

∂t
(t, u) = β21n

T
1 (t)f2(t, u)U[0,∞)(u) .

(3.4.3)

This particular model, integrated over the biological variable u, gives four
closed equations and thus provides a population dynamic model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂nT
1

∂t
(t) = nT

1 (t)
[
β11n

E
1 (t) − β12n

A
2 (t)

]
,

∂nE
1

∂t
(t) = 0 ,

∂nA
2

∂t
(t) = β21n

T
1 (t)nA

2 (t) ,

∂nI
2

∂t
(t) = 0 .

(3.4.4)

In this case, the system is closed and can be analyzed by classical
methods of ordinary differential equations.

This model can be used to analyze the last stage of the competition,
when both cell populations have reached a fixed stage of the biological
functions, and only proliferating or destructive phenomena are relevant.

Both Model C and Model P refer to the mathematical description of the
immune competition when certain phenomena are prevalent with respect
to the others. Not only is the particularization useful for capturing specific
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biological phenomena, but it can be used for the identification of the pa-
rameters of the model by comparison between theory and experiment. The
idea of separately identifying the parameters corresponding to conservative
and proliferative phenomena was suggested by Bellomo and Forni (1994).

The model stated in equation (3.3.18), with both conservative and non-
conservative parameters, can be particularized by acting on the α parame-
ters. The selection of the particular examples proposed in what follows does
not cover all conceivable possibilities, but it aims to illustrate the ability of
the model to describe various aspects of the immune competition.

Three particular models are derived from (3.3.18), setting two of the α
parameters equal to zero, while keeping the third one different from zero:

Example: Model I (α11 = 0, α12 = 0, α21 > 0).

Since α11 = 0, cells do not show a natural tendency to degenerate. More-
over, the pathological state is not opposed by immune cells, as α12 = 0,
while abnormal cells have the ability to inhibit immune cells as α21 > 0.
The evolution equations (3.3.18) reduce to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂f1

∂t
(t, u) = f1(t, u)

[
β11n

E
1 (t) − β12n
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2 (t)

]
U[0,∞)(u) ,
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1 (t)f2(t, u + α21)U[0,∞)(u + α21)

+ (β21 − 1)nT
1 (t)f2(t, u)U[0,∞)(u) ,

(3.4.5)

while the equations for the densities become
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∂nE
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[
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f2(t, u) du

]
,

∂nI
2
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(t) = nT

1 (t)

∫ α21

0

f2(t, u) du .

(3.4.6)

Again, as pointed out in Remark 3.3.1, these equations for the densities
are not in a closed form; nevertheless they are useful for the study of the
asymptotic behavior of the model developed in next chapter.

This model describes competitions where the destructive ability of im-
mune cells, represented by the parameter β12, is progressively reduced by
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the inhibition ability of cells which are carriers of a certain pathology. Then
the output of the competition can generate a blowup of abnormal cells, al-
though these cells have no tendency to degenerate.

Example: Model II (α11 > 0, α12 = 0, α21 = 0).

Since α11 > 0, cells show a natural tendency to degenerate. This trend
is not opposed by immune cells, as α12 = 0, while abnormal cells cannot
inhibit immune cells, as α21 = 0. The evolution equations (3.3.18) reduce
to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂f1

∂t
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(3.4.7)

while those for the densities reduce to
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2
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T
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2 (t) ,

∂nI
2

∂t
(t) = 0 ,

(3.4.8)
which is not closed.

The model is able to describe how the proliferation of abnormal cells
may or may not be opposed by immune cells which are not progressively
inhibited. In this case, the immune system keeps its destructive ability.
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Example: Model III (α11 = 0, α12 > 0, α21 = 0).

Since α11 = 0, cells do not show a natural tendency to degenerate. The
pathological state is opposed by immune cells, as α12 > 0, while abnormal
cells do not inhibit immune cells, as α21 = 0. The evolution equations
(3.3.18) reduce to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
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(3.4.9)

while those for the densities reduce to
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∂nI
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(3.4.10)
which is not closed.

This model is able to describe how abnormal cells which do not degen-
erate may or may not be countered by immune cells.

The above particularizations cover only a part of the potential ability
of the model to describe phenomena of the immune competition, as each of
them corresponds to a well-defined pathology. This matter will be discussed
in more detail in Chapter 5, where the interested reader will find numerical
simulations and additional biological interpretations related to the models
proposed above. Moreover, in that chapter, Model P will be interpreted
as a way of modelling and describing the interplay between immune and
progressing (tumor) cells.

The table which follows summarizes the main properties of the various
models proposed in this chapter, and should allow a rapid interpretation of
them. Additional specific models can be obtained by following the guide-
lines proposed in this chapter.
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Table 3.1. Properties of the Models.

Model C: β11 = 0, β12 = 0, β21 = 0.

The competition between populations is still latent and degenera-
tion of cells does not cause the onset of proliferating/destructive
phenomena.

Model P: α11 = 0, α12 = 0, α21 = 0.

Both populations of cells have reached a fixed stage of their biological
functions, and only proliferating/destructive phenomena are relevant.

Model I: α11 > 0, α12 = 0, α21 = 0.

The destructive ability of immune cells is progressively reduced by
the inhibition ability of abnormal cells.

Model II: α11 = 0, α12 = 0, α21 > 0.

The immune system maintains its destructive ability, and the
proliferation of abnormal cells may be opposed by immune cells.

Model III: α11 = 0, α12 > 0, α21 = 0.

Active immune cells may counter abnormal cells, which do not show
a tendency to degenerate.

3.5 Critical Analysis and Additional Applications

It can be stressed that this chapter was devoted to the modelling of the
competition between immune cells and cells of an aggressive, maybe prolif-
erating, invasive host.



Section 3.5. Critical Analysis and Additional Applications 55

Mathematical models described in this chapter refer to the framework
proposed in Chapter 2. The models are obtained by starting from a detailed
description of microscopic interactions and are derived on the basis of a
mathematical interpretation of the phenomenology of the interactions. The
models are characterized by various parameters, with a well-defined physical
meaning, related to mass conservative interactions and to encounters which
modify the biological functions of the interacting cells.

It has been shown how the general model can be particularized into
specific models obtained by setting some of the parameters equal to zero.
These examples describe specific phenomena which may be experimentally
observed. The qualitative and computational analysis of mathematical
problems related to the application of models is able to provide, as we shall
see in Chapters 4 and 5, a detailed description of the above phenomena.

The general framework is actually the one offered by equation (3.3.18),
while models C, P, I, II, and III should be regarded as particularizations of
the model. Additional models can be generated by setting other parame-
ters equal to zero. The interested reader can work out these specific cases
and analyze them on the basis of the mathematical methods developed in
Chapters 4 and 5.

Although the proposed model shows the ability to describe several in-
teresting phenomena related to the immune competition, it does not claim
to cover the whole variety of applications which can be generated by the
mathematical framework proposed in Chapter 2. For instance, one may en-
large the number of cell populations to specify in more detail the biological
functions involved in the phenomena which are analyzed.

Therefore, the class of mathematical models proposed in this chapter
should be regarded as a tool suitable for describing certain aspects of the
immune competition, as well as being the starting basis for technical de-
velopments suitable for increasing the ability of mathematical equations to
describe phenomena.

Specifically, a quite natural development refers to the mathematical sim-
ulation of therapeutical actions. This matter can be dealt with by adding
new populations which apply a specific action against cells which are car-
riers of a pathological state. For instance, an additional population may
refer to the actions of proteins which contribute to activating the immune
defense. Useful hints are offered by the literature in the fields of pharmaceu-
tical sciences; among others, Relling and Darvieux (2001), Weinshilboum
(2003), and Evans, et al. (2003). These papers clearly show how the biolo-
gical dynamics essentially refers to the cellular and subcellular scale, and,
moreover, that modelling doses and time of application may be crucial to
obtaining the expected output of the competition.

A specific example will be given, as already mentioned, in Chapter 7,
where an additional population is considered to activate the immune re-
sponse by cytokine signals.
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Of course, the above remarks should be regarded simply as a hint on
developing a research project aimed at deriving new models for describing
therapeutical actions, and possibly developing a proper control theory.

Finally, let us remark that the analysis proposed in this chapter can be
further developed to model additional complex phenomena in biology. A
challenging topic is the modelling of the immune competition against HIV
particles. This subject is generally dealt with by models stated in terms of
ordinary differential equations; see, among others, Kirschner and Panetta
(1998). The modelling approach is then developed at the macroscopic scale
for a system considered as a whole, while biological events occur at the
cellular scale. This challenging topic will be considered again in Chapter 5,
after the development of various simulations which will enlarge the descrip-
tion of the predictability of the class of models proposed in this chapter.



4

On the Cauchy Problem

As in physics, understanding the complex, nonlinear systems in cancer bi-

ology will require interactive research in which mathematical models guide

experimental design and interpretation.

— Gatenby and Maini

4.1 Introduction

This chapter develops a qualitative analysis of the initial value problem
for the various mathematical models proposed in Chapter 3. The problem
is stated by linking the evolution equations to suitable initial conditions.
The analysis is developed with classical methods of functional analysis (see
Zeidler 1995), and provides the background for the simulations which will
be proposed in Chapter 5.

Specifically, the qualitative analysis problem will be addressed in the
following manner:
i) showing the well-posedness of the mathematical problems generated by

application of the model, i.e., initial value problems;
ii) analyzing the asymptotic behavior of the solutions.

It is clear that the above asymptotic analysis may play an interest-
ing role in the interaction between medicine and mathematics. Indeed,
while mathematicians cannot contribute to the design of specific thera-
peutic treatments, they can develop an analysis of the parameters which
play a relevant role in determining the qualitative asymptotic behavior of
the system. As we shall see, some parameters may separate two different
asymptotic behaviors: growth of the number of abnormal or tumor cells
and progressive inhibition of the immune system, or progressive destruc-
tion of abnormal or tumor cells due to the activation of the immune system.

57
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These parameters have a well-defined physical meaning and may possibly
be modified by therapeutic actions.

The qualitative analysis developed in this chapter already provides some
useful information which can be related to interesting biological informa-
tion. However, a full description of the scenarios offered by the class of
models proposed in this book is completed by the quantitative information
offered by the simulations proposed in the next chapter. Therefore, the
biological interpretation is not dealt with here, but it is postponed until
the next chapter.

The contents of this chapter are developed through two more sections:
Section 4.2 deals with an analysis of the well-posedness and global ex-

istence of the initial value problem of the general model of immune compe-
tition proposed in Chapter 3.

Section 4.3 develops an analysis of the asymptotic behavior of the solu-
tions of the specific models identified in Chapter 3.

4.2 The Cauchy Problem

This section deals with the qualitative analysis of the initial value problem
for the model of immune competition of Chapter 3 proposed in equation
(3.3.13). An analysis of this initial value problem is dealt with in the
first subsection. Then the second subsection analyzes a variety of specific
models described in the examples of Chapter 3. This type of analysis is not
only technical, because each parameter has a well-defined physical meaning:
consequently, the particular models which will be analyzed in what follows
correspond to different aspects of the immune competition related to the
response to different types of pathology.

4.2.1 Well-Posedness of the Initial Value Problem

The initial value problem related to equation (3.3.13) can be written as
follows: ⎧⎨

⎩
∂f

∂t
= N(f),

f(t = 0, u) = f0(u),

(4.2.1)

where f = (f1, f2), f0(u) = (f10(u), f20(u)), and the operator N is defined
as

N(f)(t) = {N1(f)(t), N2(f)(t)}T , (4.2.2)
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where

N1(f)(t) =
n1(t)√
2πs11

∫ ∞

−∞

exp

{
− (u − (v + α11))

2

2s11

}
f1(t, v) dv

+
nA

2 (t)√
2πs12

∫ ∞

0

exp

{
− (u − (v − α12))

2

2s12

}
f1(t, v) dv

− f1(t, u)n1(t) + f1(t, u)U[0,∞)

[
β11n

E
1 (t) − (1 + β12)n

A
2 (t)

]
,

and

N2(f)(t) =
nT

1 (t)√
2πs21

∫ ∞

0

exp

{
− (u − (v − α21))

2

2s21

}
f2(t, v) dv

+ (β21 − 1)U[0,∞)(u)f2(t, u)nT
1 (t) .

The analysis of problem (4.2.1) requires the definition of some suitable
function spaces. Specifically,

• L1(IR) is the Lebesgue space of measurable, real-valued functions which
are integrable on IR. The norm is denoted by ‖ · ‖1.

• X = L1(IR) × L1(IR) = {f = (f1, f2) : f1 ∈ L1(IR), f2 ∈ L1(IR)} is the
Banach space endowed with the norm

‖f ‖= ‖f1 ‖1 + ‖f2 ‖1 .

• X+ = {f = (f1, f2) ∈ X : f1 ≥ 0, f2 ≥ 0} is the positive cone of X .

• Y = C([0, T ],X ) and Y+ = C([0, T ],X+) are the space of the functions
continuous on [0, T ] with values, respectively, in a Banach space X and
X+, equipped with the norm

‖f ‖Y = sup
t∈[0,T ]

‖f ‖ .

Local existence and uniqueness of the solution to the initial value prob-
lem are stated by the following:

Theorem 4.2.1. Let f0 ∈ X+. Then there exist two positive constants
T and a0 such that the initial value problem (4.2.1) has a unique solution
f ∈ C([0, T ],X+). The solution f satisfies

f(t) ∈ X+, t ∈ [0, T ] , (4.2.3)
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and

‖f ‖≤ a0 ‖f0 ‖, ∀ t ∈ [0, T ] . (4.2.4)

Proof. Equation (4.2.1) can be written in the form of the integral equation

f = M(f) = f0(u) +

∫ t

0

N(f)(s) ds = f0(u) + Ψ(g)(t) . (4.2.5)

Then the proof can be obtained by application of classical fixed point
methods. The following estimates hold true:
i) Ψ is a continuous map from Y into Y and ∃C1 > 0 such that

‖Ψ(f)‖Y ≤ C1T ‖f ‖2
Y , (4.2.6)

ii) Ψ is a contraction in Y

‖Ψ(f) − Ψ(g)‖Y ≤ C1T (‖f ‖Y + ‖g‖Y) ‖f − g‖Y , (4.2.7)

where C1 is a constant depending on βij .
The technical proof of the above estimates will be given in Lemma 4.2.1.

By exploiting them, it is possible to show that M is a contraction in a ball
of Y. In fact, M maps Y into itself. Moreover:

‖M(f)‖Y ≤‖f0 ‖ + C1T ‖f ‖2
Y , (4.2.8)

‖M(f) − M(g)‖Y ≤ C1T (‖f ‖Y + ‖g‖Y) ‖f − g‖Y . (4.2.9)

This implies that there exist constants a0, T , determined only by C1 and
‖f0 ‖, such that M is a contraction on a ball in Y of radius a0. Thus, there
exists a unique local solution f(t) of equation (4.2.1) on [0, T ].

Positivity of solutions has now to be proved. Bearing this objective in
mind, consider the operators K = t(K1,K2) and B = t(B1,B2) defined as
follows:

K1(f)(t) = n1(t) + (1 + β12)n
A
2 (t)U[0,∞)(u) , (4.2.10)

K2(f)(t) = nT
1 (t)U[0,∞)(u) , (4.2.11)

B1(f)(t) =
n1(t)√
2πs11

∫ ∞

−∞

exp

{
− (u − (v + α11))

2

2s11

}
f1(t, v) dv

+
nA

2 (t)√
2πs12

∫ ∞

0

exp

{
− (u − (v − α12))

2

2s12

}
f1(t, v) dv

+ β11f1(t, u)U[0,∞)(u)nE
1 , (4.2.12)
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and

B2(f)(t) =
nT

1 (t)√
2πs21

∫ ∞

0

exp

{
− (u − v + α21))

2

2s21

}
f2(t, v) dv

+ β21f2(t, u)U[0,∞)(u)nT
1 . (4.2.13)

The map M satisfies the integral relation

M(f) = exp

{
−
∫ t

0

K(f)

}
f0(u)

+

∫ t

0

exp

{∫ τ

t

K(f)(s) ds

}
B(f)(τ) dτ . (4.2.14)

Then due to the nonnegativity of operator B, it is clear that M maps X+

into itself if the initial datum (condition) is positive. To complete the proof,
the fixed point theorem in Y+ can be applied again using inequalities (i)
and (ii).

Lemma 4.2.1. Ψ is a continuous map from Y into Y and ∃C1 > 0 such
that

‖Ψ(f)‖Y ≤ C1T ‖f ‖2
Y , (4.2.15)

‖Ψ(f) − Ψ(g)‖Y ≤ C1T (‖f ‖Y + ‖g‖Y) ‖f − g‖Y . (4.2.16)

The proof of Lemma 4.2.1 is based on the following:

Lemma 4.2.2. Let f and g in X . Then
i) N(f) ∈ X and
ii) there exists a constant C1 such that

‖N(f)‖≤ C1 ‖f ‖2, (4.2.17)

and

‖N(f) − N(g)‖≤ C1(‖f ‖ + ‖g‖) ‖f − g‖ . (4.2.18)

Proof. Taking into account equation (4.2.2) yields

‖N(f)‖≤ |n1(t) |√
2πs11

∫ ∞

−∞

∫ ∞

−∞

exp

{
− (u − (v + α11))

2

2s11

}
|f1(t, v) | dv du
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+
|nA

2 (t) |√
2πs12

∫ ∞

−∞

∫ ∞

0

exp

{
− (u − (v − α12))

2

2s12

}
|f1(t, v) | dv du

+ |n1(t) |
∫ ∞

−∞

|f1(t, u) | du

+
[
β11 |nE

1 (t) | +(1 + β12) |nA
2 (t) |] ∫ ∞

0

|f1(t, u) | du

+
|nT

1 (t) |√
2πs21

∫ ∞

−∞

∫ ∞

0

exp

{
− (u − (v − α21))

2

2s21

}
|f2(t, v) | dv du

+ (1 − β21) |nT
1 (t) |

∫ ∞

0

|f2(t, u) | du .

Using the Fubini–Tonelli theorem and the following estimates,

1√
2πs11

∫ +∞

−∞

exp

{
− (u − (v + α11))

2

2s11

}
du = 1 ,

1√
2πs12

∫ +∞

−∞

exp

{
− (u − (v − α12))

2

2s12

}
du = 1 ,

1√
2πs21

∫ +∞

−∞

exp

{
− (u − (v − α21))

2

2s21

}
du = 1 ,

and

|ni | ≤ ‖f ‖ , i = 1, 2 ,

implies that N(f) ∈ X and

‖N(f)‖≤ (β11 + β12 − β21 + 6) ‖f ‖2 .

By using the same arguments, it is easy to show that

‖N(f) − N(g)‖≤ (β11 + β12 − β21 + 6)(‖f ‖ + ‖g‖) ‖f − g‖ .

Proof of Lemma 4.2.1. It is easy to prove estimates (4.2.15) and (4.2.16),
so that the Lemma 4.2.1 is proved by Lemma 4.2.2. Let s, t ∈ [0, T ]. One
gets, by Lemma 4.2.2,

‖Ψ(f)(t) − Ψ(f)(s)‖Y ≤ C1 | t − s |‖f ‖2
Y ,
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which gives the continuity of Ψ.

4.2.2 Global Existence

Global existence and the analysis of the asymptotic behavior are obtained
by analyzing the influence of the parameters of the model on the qualitative
behavior of the solutions. The above analysis can be developed for specific
models. Global existence can be always proved for Models C, P, I, and II,
while such a general theorem cannot be proved for Model III. A detailed
analysis of this model can be developed in connection with the study of the
asymptotic behavior.

Theorem 4.2.2. Let

α12 = 0. (4.2.19)

Then, ∀ T > 0 there exists a unique solution f ∈ C([0, T ],X ) of (3.3.18)
with the initial data, f0 ∈ X+. The solution satisfies

f(t) ∈ X+, ∀ t ∈ [0, T ], (4.2.20)

and, for some constant CT depending on T and on the initial data,

sup
t∈[0,T ]

f(t) ≤ CT . (4.2.21)

Proof. Given the results of Theorem 4.2.1, it remains to find a priori

estimates for the solution. Integrating the first equation of (3.3.18) with
respect to u yields

∂n1(t)

∂t
= nT

1

(
β11n

E
1 (t) − β12n

A
2 (t)

)
. (4.2.22)

From the second equation of (3.3.19), taking into account (4.2.19), it follows
that nE

1 ≤ nE
1 (0), which combined with (4.2.22) yields

∂n1

∂t
(t, u) ≤ β11n

E
1 (0)n1, n1 ≤ n1(0) exp(β11n

E
1 (0)t) . (4.2.23)

Hence the total number of abnormal cells is bounded on each finite interval
[0, T ]. Integrating the second equation of (3.3.18) with respect to u yields

∂n2(t)

∂t
= β21n

T
1 (t)nA

2 . (4.2.24)
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It follows, from equations (4.2.23) and (4.2.24), that

n2(t) ≤ n2(0) exp

(
β21n1(0)

β11nE
1 (0)

(exp(β11n
E
1 (0)t) − 1)

)
,

which yields that n2(t) is bounded on each finite time interval [0, T ]. This
gives (4.2.21) with CT given by

CT = n1(0) exp
(
β11n

E
1 (0)T

)
+ n2(0) exp

(
β21n1(0)

β11nE
1 (0)

(exp(β11n
E
1 (0)T ) − 1)

)
. (4.2.25)

Remark 4.2.1. As a consequence of Theorem 4.2.2, the initial value prob-
lems for equations (3.4.4)–(3.4.5) and (3.4.7), corresponding to Models P,
I, and II, have a global solution. The solution of Model III may not ex-
ist globally in time, due to the possibility of growth. Nevertheless, in some
cases, we can get the global existence as it will be discussed in remark 4.3.1.

Referring to Model C, it is conservative and satisfies the following esti-
mate:

‖f ‖= ‖f0 ‖ (4.2.26)

which guarantees global existence. Thus:

Theorem 4.2.3. There exists a unique, nonnegative, strong solution f(t)
of problem (3.4.1) in (L1(IR))2, for t > 0, and for every f0 ≥ 0 in (L1(IR))2.
Moreover, equality (4.2.26) is satisfied.

4.3 Asymptotic Behavior

The analysis of the asymptotic behavior of the solutions refers to particu-
lar models obtained by letting only one of the conservative parameters be
different from zero. Thus, in the subsections which follow we will deal with
the asymptotic behavior of Models I, II, III, P, and C.
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4.3.1 Model I. Asymptotic behavior

It is useful, in developing the analysis of the asymptotic behavior of Model
I, i.e., equation (3.4.5), to introduce the following quantities:

δ = β11n
E
1 (0) − β12n

A
2 (0) , γ� =

β21β11

β12
nE

1 (0) . (4.3.1)

Theorem 4.3.1. Consider the initial value problem for Model I defined in
equation (3.4.5).

• If β12 = 0, then nT
1 increases, nE

1 = constant and n2 satisfies the following

nA
2 (t) ≥ nA

2 (0) exp((β21 − 1)nT
1 (0)t). (4.3.2)

Moreover if
– β21 = 0, then nA

2 decreases.
– β21 = 1, then nA

2 increases.

• If β12 = 0, then three cases are possible:
– δ < 0

· If β21 = 0, then nA
2 decreases and if nT

1 (0) = 0, then, ∃ t0 such that
nT

1 decreases in [0, t0] and increases in [t0, T ], ∀T > 0.
· If β21 = 1, then nA

2 increases and nT
1 decreases:

nT
1 (t) ≤ nT

1 (0) exp(δt) . (4.3.3)

· If β21 = 0 and β21 = 1, then

- If β11 = 0, then nT
1 decreases and nA

2 (t) satisfies

nA
2 (t) ≤ nA

2 (0) exp(β21n
T
1 (0)t). (4.3.4)

Moreover, ∀T > 0, ∃β21 ∈ (0, 1) and r > 0 such that nA
2 (t) increases

in [0, T ], if

sup
t∈[0,T ]

∫ α21

0

f2(t, u) du ≤ r .

- If β11 = 0, then ∀ T > 0, ∃n
(0)
1 , β

(0)
11 , β

(0)
12 , such that if n1(0) ≤

n
(0)
1 , β11 ≤ β

(0)
11 and β12 ≤ β

(0)
12 , then ∃β21 ∈ (0, 1) such that nT

1

decreases in [0, T ] and

nA
2 (t) ≥ γ�

β21
. (4.3.5)



66 Chapter 4. On the Cauchy Problem

Moreover, if ∃ γ(γ ≤ γ�) such that if sup
t∈[0,T ]

∫ α21

0
f2(t, u) du ≤ γ, then

nA
2 increases in [0, T ]:

nA
2 (t) ≥ nA

2 (0). (4.3.6)

– δ > 0
· If β21 = 0, then nA

2 decreases and nT
1 increases.

· If β21 = 0, then ∀ T > 0, ∃β
(0)
11 such that if β11 ≤ β

(0)
11 , ∃β21 ∈ (0, 1)

such that nT
1 increases in [0, T ] and

nA
2 (t) ≤ γ�

β21
. (4.3.7)

Moreover, if ∃ γ(γ ≥ γ�) such that sup
t∈[0,T ]

∫ α21

0
f2(t, u) du ≥ γ, then

nA
2 decreases and

nA
2 (t) ≤ nA

2 (0). (4.3.8)

– δ = 0
· If β21 = 0, then nA

2 decreases and nT
1 increases.

· If β21 = 1, then nA
2 increases and nT

1 decreases.

· If β21 = 0 and β21 = 1, then ∀ T > 0, ∃n
(0)
1 , β

(0)
11 and r > 0 such

that if n1(0) ≤ n
(0)
1 , β11 ≤ β

(0)
11 and sup

t∈[0,T ]

∫ α21

0
f2(t, u) du ≤ r, then

nA
2 increases and nT

1 decreases.

We need, in order to prove Theorem 4.3.1, the following lemmas which
give the asymptotic behavior in the case βij = 0 ∀ i, j.

Lemma 4.3.1. Let δ < 0 and let T fixed. Consider the function h in [0, 1]
defined as follows

h(x) = (x − 1)T

[
n1(0) exp(β11n

E
1 (0)T )

+ n2(0) exp

(
(n1(0))x

β11nE
1 (0)

(exp(β11n
E
1 (0)T ) − 1)

)]
. (4.3.9)

If h is increasing in [0, 1], then ∃β
(0)
12 such that if β12 ≤ β

(0)
12 , then there

exists a unique solution x ∈ (0, 1) of the equation

h(x) = ln

(
β11n

E
1 (0)

β12nA
2 (0)

)
. (4.3.10)
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Proof. The function h is continuously increasing in x and maps [0, 1] into

[−T (n1(0) exp(β11n
E
1 (0)T ) + n2(0)), 0] .

As δ < 0, equation (4.3.10) has a solution only if

ln

(
β12n

A
2 (0)

β11nE
1 (0)

)
≤ T

(
n1(0) exp(β11n

E
1 (0)T ) + n2(0)

)
. (4.3.11)

Considering that

T (n1(0) exp(β11n
E
1 (0)T ) + n2(0)) > TnA

2 (0) ,

then the condition (4.3.11) is satisfied if

β12 ≤ β11n
E
1 (0)

nA
2 (0)

exp(TnA
2 (0)) = β

(0)
12 . (4.3.12)

Lemma 4.3.2. Consider the function h given by (4.3.9). Then ∃n
(0)
1 , β

(0)
11

such that if n1(0) ≤ n
(0)
1 , β11 ≤ β

(0)
11 , h is increasing in [0, 1].

Proof. The function h can be written in the following form:

h(x) = (x − 1)T (A + n2(0) exp(Bx)), (4.3.13)

where the constants A and B are given by

A = n1(0) exp(β11n
E
1 (0)T ) , (4.3.14a)

B =
n1(0)

β11nE
1 (0)

(exp(β11n
E
1 (0)T ) − 1) . (4.3.14b)

The derivative of h is defined as follows:

h
′

(x) = Tn2(0) exp(Bx)(Bx + 1 − B) + TA.

For ε small, ∃ η > 0 such that if β11n
E
1 (0)T ≤ η, we have

B − n1(0)T < ε .

Let n1(0)T < 1 − ε; then B < 1. Therefore

h
′

(x) > Tn2(0) exp(Bx)(1 − B) + TA > 0 .
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Lemma 4.3.3. Let r > 0 and consider the functions k(x) and m(x) defined
in (0, 1] by

k(x) = h(x) + ln(xnA
2 (0)), (4.3.15)

and

m(x) = nT
1 (0)T (x − 1) + ln(xnA

2 (0)). (4.3.16)

Consider the equations

k(x) = ln(r), (4.3.17a)

m(x) = ln(r). (4.3.17b)

Then
i) ∃n

(0)
1 , β

(0)
11 such that if n1(0) ≤ n

(0)
1 , β11 ≤ β

(0)
11 , equation (4.3.17a) has

a solution in (0, 1] if r < nA
2 (0).

ii) Equation (4.3.17b) has a solution in (0, 1] if r < nA
2 (0).

Proof. The derivative of k(x) is given by

k
′

(x) = h
′

(x) +
nA

2 (0)

x
. (4.3.18)

Using Lemma 4.3.2, k is increasing for n1(0) ≤ n
(0)
1 , β11 ≤ β

(0)
11 , and k

maps (0, 1] into (−∞, ln(nA
2 (0))], then, if r < nA

2 (0), equation (4.3.17a) has
a solution. In the same way, it is plain that if m is continuous, increases
in (0, 1] and maps (0, 1] into (−∞, ln(nA

2 (0))], then equation (4.3.17b) has
a solution in (0, 1] if r < nA

2 (0).

Lemma 4.3.4. Let δ > 0 and let be T fixed. Consider the function g in
[0, 1] given by

g(x) = xTn1(0) exp(β11n
E
1 (0)T )

+ xTn2(0) exp

(
xn1(0)

β11nE
1 (0)

(exp(β11n
E
1 (0)T ) − 1)

)
. (4.3.19)

Then, ∃β
(0)
11 such that if β11 ≤ β

(0)
11 , there exists a unique solution x ∈ (0, 1)

of the equation

g(x) = ln

(
β11n

E
1 (0)

β12nA
2 (0)

)
. (4.3.20)

Proof. The proof follows the same arguments. The function g is increasing
from [0, 1] into [0, g(1)]. As δ > 0, equation (4.3.20) has a solution if

ln

(
β11n

E
1 (0)

β12nA
2 (0)

)
≤ g(1) , (4.3.21)
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which, as g(1) > TnA
2 (0), can be written as follows:

β11 ≤ β12n
A
2 (0)

β11nE
1 (0)

exp(TnA
2 (0)). (4.3.22)

Proof of Theorem 4.3.1. The equations satisfied by nT
1 , nA

2 , and nE
1 are

the following:

∂nT
1

∂t
= nT

1 (β11n
E
1 − β12n

A
2 ), (4.3.23)

∂nE
1

∂t
= 0, (4.3.24)

∂nA
2

∂t
= nT

1

(
β21n

A
2 −

∫ α21

0

f2(t, u) du

)
. (4.3.25)

Case β12 = 0: From (4.3.23), we deduce that nT
1 is given by

nT
1 (t) = nT

1 (0) exp(β11n
E
1 (0)t), (4.3.26)

and so nT
1 (t) is increasing.

Noting that

nA
2 (t) ≥

∫ α21

0

f2(t, u) du, (4.3.27)

then equation (4.3.25) yields the estimate (4.3.2). Equation (4.3.25) shows
that if β21 = 0, nA

2 decreases, and if β21 = 1 with (4.3.27), nA
2 increases.

Case β12 = 0: Let δ < 0; if β21 = 0; then nA
2 decreases. Let nT

1 (0) = 0, so
nT

1 = 0 and

∂nT
1

∂t
= 0 ⇔ nA

2 (t) =
β11n

E
1 (0)

β12
. (4.3.28)

Let t ∈ [0, T ]; as δ < 0 and nA
2 is decreasing, it follows that

nA
2 (T ) <

β11n
E
1 (0)

β12
= nA

2 (t) ≤ nA
2 (0). (4.3.29)

The function nA
2 is continuous and decreases in [0, T ]; then from (4.3.29),

there exists a unique t0 ∈ [0, T ] such that

nA
2 (t0) =

β11n
E
1 (0)

β12
, (4.3.30)
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and nT
1 decreases in [0, t0] and increases in [t0, T ].

If β21 = 1, it is easy to see that nA
2 increases and nT

1 decreases. Now let
β21 = 0 and β21 = 1; then from (4.3.25), the following estimate holds true
∀T > 0:

∂nA
2

∂t
≥ nT

1 (β21 − 1)nA
2 ≥ CT (β21 − 1)nA

2 ,

where the constant CT is given by (4.2.25). Therefore

nA
2 ≥ nA

2 (0) exp((β21 − 1)CT t) ,

which, substituted into (4.3.23), yields

∂nT
1

∂t
≤ nT

1 (β11n
E
1 (0) − β12n

A
2 (0) exp((β21 − 1)CT t)). (4.3.31)

If β11 = 0, then it follows from (4.3.31) that there exists

t0 =
1

CT (β21 − 1)
ln

(
β11n

E
1 (0)

β12nA
2 (0)

)

such that, if t ≤ t0, one has

∂nT
1

∂t
≤ 0 for t ≤ t0 . (4.3.32)

The decreasing property of nT
1 in [0, T ] for any T > 0 is equivalent to

h(β21) = ln

(
β11n

E
1 (0)

β12nA
2 (0)

)
, (4.3.33)

where h is given by (4.3.9). Therefore Lemmas 4.3.1 and 4.3.2 give the

existence of n
(0)
1 , β

(0)
11 , and β

(0)
12 such that if n1(0) ≤ n

(0)
1 , β11 ≤ β

(0)
11 , and

β12 ≤ β
(0)
12 , then there exists β21 ∈ (0, 1) such that t0(T ) = T , and nT

1

decreases in [0, T ]. From equation (4.3.23), equation (4.3.5) follows; from
equation (4.3.25), it follows

∂nA
2

∂t
≥ nT

1

(
γ� −

∫ α21

0

f2(t, u) du

)
. (4.3.34)

Moreover, let γ be such that γ ≤ γ� and suppose that

sup
t∈[0,T ]

∫ α21

0

f2(t, u) du ≤ γ ,
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then nA
2 increases and satisfies (4.3.6) for t ∈ [0, T ].

If β11 = 0, then from (4.3.23) it follows that nT
1 is decreasing and by

(4.3.25), nA
2 satisfies (4.3.4) and

∂nA
2

∂t
≥ nT

1 (β21n
A
2 (0) exp(nT

1 (0)(β21 − 1)t) − r) (4.3.35)

∀ r > 0 such that sup
t∈[0,T ]

∫ α21

0
f2(t, u) du ≤ r. Let r < β21n

A
2 (0); then from

(4.3.35), we get the existence of

t0 =
1

nT
1 (0)(β21 − 1)

ln

(
r

β21nA
2 (0)

)

(now β21 = 1) such that nA
2 increases for t ≤ t0. The increase in [0, T ]

is equivalent to m(β21) = ln(r) (m is given by (4.3.16)). As r < nA
2 (0),

Lemma 4.3.3 gives the existence of β21 ∈ (0, 1) such that nA
2 increases in

[0, T ].

Now let δ > 0. In this case we have β11 = 0. Let β21 = 0 (the case
β21 = 0 is trivial). Then by using equation (4.3.25), it follows that ∀T > 0:

nA
2 (t) ≤ nA

2 (0) exp(β21CT t). (4.3.36)

Substituting (4.3.36) into (4.3.23) yields

∂nT
1

∂t
≥ nT

1

(
β11n

E
1 (0) − β12n

A
2 (0) exp(β21CT t)

)
, (4.3.37)

which implies that there exists

t0 =
1

β21CT
ln

(
β11n

E
1 (0)

β12nA
2 (0)

)

such that if t ≤ t0 we have
∂nT

1

∂t
≥ 0. As above, the increase in [0, T ] is

equivalent to

g(β21) = ln

(
β11n

E
1 (0)

β12nA
2 (0)

)
, (4.3.38)

where g is given by (4.3.19). Therefore Lemma 4.3.4 gives the existence

of β
(0)
11 such that if β11 ≤ β

(0)
11 , there exists β21 ∈ (0, 1) such that nT

1
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increases in [0, T ] and equation (4.3.23) gives (4.3.7), which we substitute
into (4.3.25) to have

∂nA
2

∂t
≤ nT

1

[
γ� −

∫ α21

0

f2(t, u) du

]
. (4.3.39)

Let

sup
t∈[0,T ]

∫ α21

0

f2(t, u) du ≥ γ ≥ γ� ; (4.3.40)

then from (4.3.39) it follows that nA
2 decreases and satisfies (4.3.8).

Let δ = 0. The equation satisfied by nT
1 is written in the form

∂nT
1

∂t
= β12n

T
1 (nA

2 (0) − nA
2 (t)). (4.3.41)

Let β21 = 0 (the case β21 = 0 or β21 = 1 are trivial), r < β21n
A
2 (0), and

suppose that sup
t∈[0,T ]

∫ α21

0
f2(t, u)du ≤ r; then there exists t0:

t0 =
1

CT (β21 − 1)
ln

(
r

β21nA
2 (0)

)

such that nA
2 is increasing in [0, t0]. The decreasing in [0, T ] is equivalent

to

k(β21) = ln(r), (4.3.42)

where k is given by (4.3.15). Let n1(0), β11 be small as in Lemma 4.3.3.
As r < nA

2 (0), the solution of (4.3.42) exists due to Lemma 4.3.3 and so nA
2

increases, and by (4.3.41), nT
1 decreases.

4.3.2 Model II. Asymptotic behavior

In order to study the asymptotic behavior of Model II, equation (3.4.7), let
us introduce the quantity λ:

λ = (1 + β11)n
E
1 (0) − β12n

A
2 (0). (4.3.43)

Theorem 4.3.2. Consider the initial value problem for Model II, equation
(3.4.7). Then nA

2 increases, nE
1 decreases, and

• If β12 = 0, then nT
1 increases.
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• If β12 = 0, then

nT
1 ≤ exp(λt)

(
nT

1 (0) +
(nE

1 (0))2

λ

)
− (nE

1 (0))2

λ
. (4.3.44)

In particular if λ < 0, then we have the following estimate for nT
1 (∞):

nT
1 (∞) ≤ − (nE

1 (0))2

λ
. (4.3.45)

Proof. The equations satisfied by nT
1 , nA

2 , and nE
1 are the following:

∂nT
1

∂t
= n1

∫ 0

−α11

f1(t, u) du + nT
1 (β11n

E
1 − β12n

A
2 ), (4.3.46)

∂nE
1

∂t
= −n1(t)

∫ 0

−α11

f1(t, u) du, (4.3.47)

∂nA
2

∂t
= β21n

T
1 nA

2 . (4.3.48)

If β12 = 0, then from (4.3.46)–(4.3.48) it follows that nT
1 , nA

2 increases, and
nE

1 decreases. Let β12 = 0; it is easy to prove by using n1 = nE
1 + nT

1 and
by ∫ 0

−α11

f1(t, u) du ≤ nE
1 (4.3.49)

the following estimate:

∂tn
T
1 ≤ (nE

1 (0))2 + nT
1 ((1 + β11)n

E
1 (0) − β12n

A
2 (0)) = (nE

1 (0))2 + λnT
1 .

(4.3.50)
Using the Gronwall lemma yields

nT
1 ≤ exp(λt)nT

1 (0) − (nE
1 (0))2

λ
(1 − exp(λt)) , (4.3.51)

which is the expected estimate (4.3.44).
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4.3.3 Model III. Asymptotic behavior

Referring to Model III, it useful to introduce the quantities � and θ given
by

� = β11n
E
1 (0) − (1 + β12)n

A
2 (0),

θ = β11

(
nE

1 (0) − 1

β21
nA

2 (0)

)
. (4.3.52)

Theorem 4.3.3. Consider the initial value problem for Model III, equation
(3.4.9). Then

• If β21 = 0, then nE
1 increases and n2 = nA

2 (0).
– If β11 = 0, then nT

1 decreases.
– If β11 = 0, then

nT
1 (t) ≤ nT

1 (0) exp

(
β11

∫ t

0

nE
1 (s) ds

)
. (4.3.53)

Moreover if � ≥ 0, then nT
1 increases and

nT
1 (t) ≥ nT

1 (0) exp(�t). (4.3.54)

• If β21 = 0, then nE
1 and nA

2 increases. Moreover, if
β11

β21
− β12 ≤ 0 (β11 <

β21) and θ ≤ 0, then nT
1 decreases and

nT
1 (t) ≤ nT

1 (0) exp(θt). (4.3.55)

Proof. The equations satisfied by nT
1 , nA

2 , and nE
1 are the following:

∂nT
1

∂t
= −nA

2

∫ α12

0

f1(t, u)du + nT
1 (β11n

E
1 − β12n

A
2 ), (4.3.56)

∂nE
1

∂t
= nA

2

∫ α12

0

f1(t, u) du , (4.3.57)

and

∂nA
2

∂t
= β21n

T
1 nA

2 . (4.3.58)

Let β21 = 0; then from the above equation, it is obvious that nA
2 = nA

2 (0)
and nE

1 increases.
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If β11 = 0, it is easy to see that nT
1 decreases. Let β11 = 0; then we get

∂nT
1

∂t
≤ β11n

T
1 nE

1 , (4.3.59)

which gives (4.3.53). Moreover, considering that

∫ α12

0

f1(t, u) du ≤ nT
1 ,

then nT
1 satisfies

∂nT
1

∂t
≥ �nT

1 , (4.3.60)

which gives (4.3.54).
Let β21 = 0; then, from equations (4.3.57)–(4.3.58), we have

∂nE
1

∂t
≤ nA

2 nT
1 =

1

β21

∂nA
2

∂t
,

and so

nE
1 (t) ≤ nE

1 (0) − 1

β21
nA

2 (0) +
1

β21
nA

2 (t) , (4.3.61)

which we combine with (4.3.56) to obtain

∂nT
1

∂t
≤ nT

1 (β11n
E
1 (0) − β11

β21
nA

2 (0) +
β11

β21
nA

2 (t) − β12n
A
2 ). (4.3.62)

Now let

β11

β21
− β12 ≤ 0 (β11 < β21) ,

and

β21n
E
1 (0) − nA

2 (0) ≤ 0 .

Then it follows from (4.3.62) that nT
1 decreases and satisfies (4.3.55).

Remark 4.3.1. The solution of Model III may not exist globally in time,
due to the possibility of growth. Nevertheless, in some cases we can get
the global existence. For example, in the case when β11 = 0, or in the case
β21 = 0 and β11

β21
−β12 ≤ 0 and θ ≤ 0 (see (4.3.52)), we obtain n1(t) ≤ n1(0),

and by using (4.2.24), we have that n2 is bounded on each finite time
interval [0, T ]. Thus, using the technique of the proof of Theorem 4.2.2, we
get the global existence of the solution.
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4.3.4 Model P. Asymptotic behavior

This subsection is devoted to analyzing the asymptotic behavior of Model
P, equation (3.4.3).

The analysis of the asymptotic behavior refers, as in the previous sub-
sections, to the time evolution of the densities nT

1 , nE
1 , and nA

2 . A parameter
which plays a relevant role is, as in Model I, equation (3.4.5), the following:

δ = β11n
E
1 (0) − β12n

A
2 (0). (4.3.63)

Referring to the initial value problem, the following results can be proved.

Theorem 4.3.4. Consider the initial value problem for the model defined
in equation (3.4.4). Then

• If β21 = 0, then nA
2 = constant, nE

1 = constant, and nT
1 satisfies the

equality

nT
1 (t) = nT

1 (0) exp(δt) ; (4.3.64)

thus, if δ ≥ 0, then nT
1 increases, and if δ < 0, then nT

1 decreases.

• If β21 = 0, then
– If β12 = 0, then nT

1 increases, nE
1 = constant, and n2 increases.

– If β12 = 0, then nE
1 = constant, nA

2 increases, and
· If δ ≤ 0, then nT

1 decreases and satisfies the following estimate:

nT
1 (t) ≤ nT

1 (0) exp(δt). (4.3.65)

· If δ > 0: if nT
1 (0) = 0, then ∃ t0 such that nT

1 increases in [0, t0] and
nT

1 decreases in [t0, T ] ∀T > 0.

Proof. The equations satisfied by nT
1 , nA

2 , and nE
1 are the following:

∂nT
1

∂t
= nT

1 (β11n
E
1 − β12n

A
2 ), (4.3.66)

∂nE
1

∂t
= 0, (4.3.67)

∂nA
2

∂t
= β21n

T
1 nA

2 . (4.3.68)

If β21 = 0, then from (4.3.67)–(4.3.68) we deduce that nA
2 = nA

2 (0), and
nE

1 = nE
1 (0), which, substituted into (4.3.66), gives (4.3.64).

Let β21 = 0; if β12 = 0, it is easy to see from (4.3.66) that nT
1 increases.

Let β12 = 0; then two cases are possible: if δ ≤ 0, then from (4.3.66) follows
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(4.3.65). Now let δ > 0 (which implies β11 = 0) and T > 0. If nT
1 (0) = 0,

then it follows that nT
1 = 0. Now let nT

1 (0) = 0, so that nT
1 = 0 and

∂nT
1

∂t
= 0 ⇔ nA

2 (t) =
β11n

E
1 (0)

β12
. (4.3.69)

Let t ∈ [0, T ]; as δ > 0 and nA
2 is increasing, it follows that

nA
2 (0) <

β11n
E
1 (0)

β12
= nA

2 (t) ≤ nA
2 (T ) .

Since nA
2 is continuous, increasing in [0, T ], then we get the existence of a

unique t0 ∈ [0, T ] such that

nA
2 (t0) =

β11n
E
1 (0)

β12
, t0 = (nA

2 )−1

(
β11n

E
1 (0)

β12

)
. (4.3.70)

From (4.3.70) we get that nT
1 increases in [0, t0] and decreases in [t0, T ].

In the next chapter, we will show that the above theorems provide a
description of various phenomena interesting from the viewpoint of im-
munology, and that they also give some interesting information toward the
development of therapeutic actions.

4.3.5 Model C. Asymptotic behavior

In this subsection we focus on two particular cases of the conservative
model, Model C1 and C2, obtained from the Model C, equation (3.4.1),
by setting equal to zero α12 and α11, respectively.

Model C1 (α12 = 0, α11 > 0, α21 > 0). In this particular case, the
evolution equations for the Model C reduce to

⎧⎪⎪⎨
⎪⎪⎩

∂f1

∂t
(t, u) = n1(t)[f1(t, u − α11) − f1(t, u)],

∂f2

∂t
(t, u) = nT

1 (t)(f2(t, u + α21)U[0,∞)(u + α21) − f2(t, u)U[0,∞)(u)) .

(4.3.71)

Theorem 4.3.5. Consider the initial value problem for the model defined
in equation (4.3.71). Then

i) nA
2 is decreasing, and nT

1 is increasing.
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ii) Moreover nT
1 (t) and nA

2 (t) satisfies, in the limit t −→ +∞, the following

estimate:

lim
t−→+∞

nT
1 (t) ≥

∫ +∞

−α11

f10(u) du > nT
1 (0), (4.3.72)

lim
t−→+∞

nA
2 (t) ≤

∫ +∞

α21

f20(u) du < nA
2 (0). (4.3.73)

Remark 4.3.2. Note that the number density nT
1 (t) at any time t > 0 is

always greater than the initial number density nT
1 (0).

In the same spirit, the number density nA
2 (t) at any time t > 0 is always

less than the initial number density nA
2 (0).

Proof. The proof needs some preliminary estimates which are cited in the
following lemma:

Lemma 4.3.5. One gets the following estimates for f1:

∫ 0

−α11

f1(t, u) du ≥ exp(−n1(0)t)

∫ 0

−α11

f10(u) du, (4.3.74)

∫ +∞

0

f1(t, u) du ≥
∫ +∞

−α11

f10(u) du − exp(−n1(0)t)

∫ 0

−α11

f10(u) du.

(4.3.75)
and the following estimates for f2:

∫ α21

0

f2(t, u) du ≥ exp

(
−
∫ t

0

nT
1 (s) ds

)∫ α21

0

f20(u) du,

(4.3.76)∫ +∞

0

f2(t, u) du ≤
∫ +∞

α21

f20(u) du + exp

(
−
∫ t

0

nT
1 (s) ds

)∫ α21

0

f20(u) du.

(4.3.77)
Proof. Integrating (4.3.71) over u in (−α11, 0) yields

∂t

∫ 0

−α11

f1(t, u) du = n1(0)

(∫ −α11

−2α11

f1(t, u) du −
∫ 0

−α11

f1(t, u) du

)

≥ −n1(0)

∫ 0

−α11

f1(t, u) du .
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Therefore, the estimate (4.3.74) is obtained by applying the Gronwall
lemma.

Integrating (4.3.71) in (0,∞) and using (4.3.74) yields

∂t

∫ +∞

0

f1(t, u) du ≥ n1(0) exp(−n1(0)t)

∫ 0

−α11

f10(u) du ,

which, once integrated over time in (0, t), yields the estimate (4.3.75).

The proof of (4.3.76) is easily obtained by an integration of the second
equation of (4.3.71) over u in (0, α21):

∂t

∫ α21

0

f2(t, u) du = nT
1 (t)

(∫ 2α21

α21

f2(t, u) du

)
−
(∫ α21

0

f2(t, u) du

)
nT

1 (t)

≥ −nT
1 (t)

∫ α21

0

f2(t, u) du .

The expected estimate (4.3.76) follows from the Gronwall lemma.

Integrating the second equation of (4.3.71) in (0,∞) and using (4.3.76),
one gets

∂t

∫ +∞

0

f2(t, u) du ≤ −
(∫ α21

0

f20(u) du

)
nT

1 (t) exp

(
−
∫ t

0

nT
1 (s) ds

)
.

(4.3.78)
Noting that

−nT
1 (t) exp

(
−
∫ t

0

nT
1 (s) ds

)
=

d

dt
exp

(
−
∫ t

0

nT
1 (s) ds

)
, (4.3.79)

and integrating (4.3.78) over t, using (4.3.79), we find that

∫ +∞

0

f2(t, u) du −
∫ +∞

0

f20(u) du

≤
[
exp

(
−
∫ t

0

nT
1 (s) ds

)
− 1

] ∫ α21

0

f20(u) du ,

which is the expected estimate (4.3.77).

The proof of Theorem 4.3.5 is easily deduced from Lemma 4.3.5.
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Model C2 (α11 = 0, α12 > 0, α21 > 0). In this particular case the evolu-
tion equations for the Model C, equation (3.4.1), reduce to

⎧⎪⎪⎨
⎪⎪⎩

∂f1

∂t
(t, u) = nA

2 (t)(f1(t, u + α12)U[0,∞)(u + α12) − f1(t, u)U[0,∞)(u)) ,

∂f2

∂t
(t, u) = nT

1 (t)(f2(t, u + α21)U[0,∞)(u + α21) − f2(t, u)U[0,∞)(u)) .

(4.3.80)

Theorem 4.3.6. Consider the initial value problem for Model C2 defined
in equation (4.3.80). Then

i) nA
2 and nT

1 decrease.
ii) Moreover nT

1 (t) and nA
2 (t) satisfy in the limit t → +∞ the following

estimates:

lim
t→+∞

nT
1 (t) ≤ exp

(
−nA

2 (0)

nT
1 (0)

)∫ α12

0

f10(u) du +

∫ +∞

α12

f10(u) du, (4.3.81)

lim
t→+∞

nA
2 (t) ≤ exp

(
−nT

1 (0)

nA
2 (0)

)∫ α12

0

f20(u) du +

∫ +∞

α21

f20(u) du . (4.3.82)

The proof of the above theorem is based on the following lemmas.

Lemma 4.3.6. The following estimates for f1 hold true:

∂t

∫ +∞

0

f1(t, u) du = −nA
2 (t)

∫ α12

0

f1(t, u) du ≤ 0, (4.3.83)

∫ +∞

0

f1(t, u) du ≤ exp

(
−
∫ t

0

nA
2 (s) ds

)∫ α12

0

f10(u) du

+

∫ +∞

α12

f10(u) du,

(4.3.84)

and ∫ t

0

nT
1 (s) ds ≥ nT

1 (0)

nA
2 (0)

(1 − exp(−nA
2 (0)t)). (4.3.85)

Proof. The proof of (4.3.83) is easy. To prove (4.3.84), we integrate the
first equation of (4.3.80) over u in (0, α12):

∂t

∫ α12

0

f1(t, u) du = nA
2 (t)

(∫ 2α12

α12

f1(t, u) du −
∫ α12

0

f1(t, u) du

)

≥ −nA
2 (t)

∫ α12

0

f1(t, u) du .
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The application of the Gronwall lemma yields

∫ α12

0

f1(t, u) du ≥ exp

(
−
∫ t

0

nA
2 (s) ds

)∫ α12

0

f10(u) du . (4.3.86)

Using (4.3.83) and taking into account (4.3.86) yields

∂t

∫ +∞

0

f1(t, u) du ≤ −nA
2 (t) exp

(
−
∫ t

0

nA
2 (s) ds

)∫ α12

0

f10(u) du .

(4.3.87)
Noting that

d

dt
exp

(
−
∫ t

0

nA
2 (s) ds

)
= −nA

2 (t) exp

(
−
∫ t

0

nA
2 (s) ds

)

and integrating (4.3.87) over s in (0, t) yields (4.3.84).
Using (4.3.83) and the fact that nA

2 (t) is decreasing yields

∂tn
T
1 (t) ≥ −nA

2 (0)nT
1 (t) ,

which gives

nT
1 (t) ≥ nT

1 (0) exp(−nA
2 (0)t) . (4.3.88)

Finally, integrating (4.3.88) in (0, t) yields (4.3.85).

Lemma 4.3.7. The following estimates for f2 hold true:

∂t

∫ +∞

0

f2(t, u) du = −nT
1 (t)

∫ α21

0

f2(t, u) du ≤ 0, (4.3.89)

∫ t

0

nA
2 (s) ds ≥ nA

2 (0)

nT
1 (0)

(1 − exp(−nT
1 (0)t)). (4.3.90)

Proof. The proof of (4.3.89) is easily obtained. For the proof of (4.3.90),
we use the same technique as in Lemma 4.3.6. Using (4.3.89) and the fact
that nT

1 (t) is decreasing yields

∂tn
A
2 (t) ≥ −nT

1 (0)nA
2 (t) .

This gives

nA
2 (t) ≥ nA

2 (0) exp(−nT
1 (0)t) ,
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which, after integration in (0, t), yields (4.3.90).

Proof of Theorem 4.3.6. The proof of (i) comes from (4.3.83) and
(4.3.89).
Using (4.3.84), (4.3.90), and the fact that

exp

(
−
∫ t

0

nA
2 (s) ds

)
≤ exp

(
− nA

2 (0)

nT
1 (0)

(1 − exp(−nT
1 (0)t))

)

→ exp

(
− nA

2 (0)

nT
1 (0)

)
for t → +∞

yields (4.3.81).
In the same way, using (4.3.85) and the fact that

exp

(
−
∫ t

0

nT
1 (s) ds

)
≤ exp

(
− nT

1 (0)

nA
2 (0)

)
(1 − exp(−nA

2 (0)t))

→ exp

(
− nT

1 (0)

nA
2 (0)

)
for t → +∞

yields (4.3.82).

4.4 Perspectives

The qualitative analysis developed in this chapter relates to the general
model proposed in Chapter 3, but also to some specific particularizations.
The specializations of the model have been proposed to focus on different
particular aspects of the immune competition with special attention to
phenomena which can be experimentally observed.

This is certainly an interesting application, but not the only conceivable
one. It aims to show how analytic methods can be developed not simply
as mathematical speculations, but also towards a deeper understanding of
complex biological phenomena. Bearing all of the above in mind, this chap-
ter can be regarded as a bridge between Chapter 3, devoted to modelling,
and Chapter 5, where some simulations will be proposed to complete the
qualitative analysis.

As we have seen, the analysis has been devoted mainly to working out
the asymptotic behavior of the solutions with special attention to analyzing
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the role of the parameters of the model and the initial conditions over the
output of the competition between the immune system and the carriers of
a pathological state.

It is worth stressing that the qualitative analysis does not cover the
whole panorama of models and examples which can be obtained from the
general model proposed in Chapter 3, and, although it offers a variety of
interesting results, it still needs the additional support of computational
simulations. As a matter of fact, it refers to the evolution of the density of
the cell populations, while higher order moments can be computed by com-
putational simulations. Chapter 2 has shown that higher order moments
have a well-defined biological meaning, so that it is worth completing the
analysis developed in this chapter by adding simulations of the evolution
of the whole distribution function and eventually of higher order moments.
Of course, additional analysis is required for models with space structure.
The contents of Chapter 6 will be devoted to this difficult issue.



5

Simulations, Biological Interpretations,

and Further Modelling Perspectives

In the physical sciences, mathematical theory and experimental investiga-

tion have always marched together. Mathematics has been less intrusive

in the life sciences because they have been largely descriptive, lacking the

invariance principles and fundamental constants of physics.

Increasingly, in recent decades, however, mathematics has become per-

vasive in biology, taking many different forms: statistics in experimental

design; pattern seeking in bioinformatics; models in evolution, ecology and

epidemiology: and much else . . .

— R.M. May

5.1 Introduction

A qualitative analysis of the initial value problem for various models of the
immune competition against an aggressive host was developed in Chapter
4. The analysis showed that the problem is locally well posed, while special
attention was devoted to identifying the output of the competition and, in
particular, the influence of the parameters of the model over the above-
mentioned asymptotic behavior.

The above analysis should not be regarded as a simple mathematical
speculation, because well-defined biological interpretations can be linked to
the analysis of the asymptotic behavior. This means identifying the para-
meters which play a role in recognizing and combating the aggressive host.
Therapeutic actions can possibly be addressed to act over the biological
factors related to the identified parameters.

85
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The analysis also proved suitable regularity properties and, in some par-
ticular cases, the global existence and asymptotic behavior of the solutions.
This means that there exist biological situations where the immune system
can counteract the carriers of the pathology.

The above qualitative analysis enables us to develop appropriate com-
putational methods to obtain simulations of the initial value problems. The
computational analysis will be used to obtain additional information on the
asymptotic behavior of the solution.

Simulations are developed to enlarge the description delivered by the
theorems proposed in Chapter 4, with a relatively more detailed analysis
of the role of the parameters. In particular, while the qualitative analysis
refers to the evolution of the densities, simulations also show the behavior
of the distribution function.

Simulations are obtained using the so-called generalized collocation
method.

Considering that the computational problem is not technically difficult,
it does not seem necessary to provide a detailed description of such method.
We simply state that the variable u is discretized into a suitable set of collo-
cation points, and that the dependent variables, the distribution functions,
are interpolated by Sinc functions. Then the integral terms are approx-
imated by means of algebraic weighted sums in the nodal points of the
discretization. The particularization of the evolution equation in each node
and the enforcing of the initial conditions has transformed the integro-
differential initial value problem into an initial value problem for ordinary
differential equations, describing the evolution of the values of the distri-
bution functions in the nodes of the collocation. The latter technically
is solved with standard methods for ordinary differential equations. Fur-
ther details on numerical methods can be found, for instance, in Canuto,
Yousuff, Quarteroni, Zang (1988), Lund and Bowers (1992), and Bellomo
(1997).

According to the above computational approach, the continuous distri-
bution is obtained by interpolations. Moments, which as we have seen have
a well-defined physical meaning, are computed by weighted sums.

It is worth stressing that the simulations developed in this chapter with
their biological interpretations do not cover the whole variety of conceivable
competitions. Simulations refer to some particularizations of model 3.3.18;
some of them are developed with various levels of detail, while various hints
are brought to the attention of the reader. The contents of this chapter are
as follows:

Section 5.2 deals with simulations related to Model I, II, III, and C.
The computational analysis is organized as already described in the above
introduction. Various hints are indicated, for each model, for extending the
analysis, thus obtaining a complete panorama of the prediction offered by
each model.
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Section 5.3 concerns the analysis of a specific model. In particular, it
shows how Model P may be interpreted as a model of competition between
immune cells and some particular progressing (neoplastic) cells.

Section 5.4 analyzes the delicate problem of the validation of parameters
by experimental data. The main problem, as we shall see, consists of corre-
lating empirical data at the macroscopic level with the microscopic behavior
described by the model.

Section 5.5 develops a critical analysis for inquiring about the possibil-
ity of developing additional simulations and enlarging the class of models
proposed in this book to the modelling of complex biological systems other
than those considered so far.

5.2 Simulation of Immune Competition

This section is devoted to simulations and biological interpretations of the
model of immune competition proposed in Chapter 3. Each simulation is
illustrated by three graphs. A 2D graph shows the evolution in time of the
densities of the system: the continuous line is the evolution of the density
of abnormal cells, while the dashed line is the evolution of the immune
density. A 3D graph on the left shows the evolution of f1, and the one on
the right shows the evolution of f2; the axis corresponds to the time and
the value of the state.

In addition to the simulations delivered with reference to each specific
model, some suggestions for additional analysis are offered to the interested
reader. Some of the suggestions can be regarded as a proper research per-
spective, with the aim of focusing the description of particular phenomena
which may be delivered by the model.

The proposed simulations, as already mentioned in Section 5.1, do not
cover the whole panorama related to the sensitivity analysis of all para-
meters. However, various aspects of interest for the biological sciences are
covered, while the methodological approach can be further developed by
the interested reader as discussed in the last section of this chapter.

The following subsections will analyze respectively the following three
models: Models I–III, proposed in (3.4.5)–(3.4.9) and analyzed in Theo-
rems 4.3.1–4.3.3; and Model C, proposed in (3.4.1)–(3.4.2) and analyzed in
Theorems 4.3.5–4.3.6. For each model, some simulations and a biological
interpretation are given.
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5.2.1 Simulations of Model I.

The mathematical model. The model describes the competition
when normal cells do not autonomously increase their degeneration, and
immune cells do not have the ability to reduce the above microscopic state,
while abnormal cells have some ability to inhibit the activation of immune
cells.

Expected behavior. In general, we should expect a growth of abnor-
mal cells and an inhibition of immune cells. Of course, the growth occurs
if the initial number of abnormal cells is sufficiently large.

Simulations related to Theorem 4.3.1. The above expected beha-
vior is the one delivered by Theorem 4.3.1, which gives a detailed description
of the asymptotic scenario; see (4.3.5) and (4.3.7).

If δ > 0 :

⎧⎪⎨
⎪⎩

∀T ≥ 0 : nT
1 (t) ↑ in [0, T ] ,

nA
2 (t) ≤ γ∗

β21
,

where, recalling (4.3.1), δ is given by

δ = β11n
E
1 (0) − β12n

A
2 (0) ,

and

γ� =
β21β11

β12
nE

1 (0) .

δ > 0 means that initially, at t = 0, the number of normal endothelial cells
is sufficiently large with respect to the number of immune cells, respectively
weighted with the parameters β11 and β12 related to the proliferation ability
of abnormal cells and the ability of immune cells to counter abnormal cells.
In this case, when δ > 0, a growth of abnormal cells nT

1 is observed. It is
indicated in Figures 5.1a–c, which also show how the maximum value of f2

moves progressively toward lower values of the microscopic state u.
The opposite behavior is observed when δ < 0 (Figures 5.2a–c), where

abnormal cells are depleted while immune cells grow in number since they
are not sufficiently inhibited.

If δ < 0 :

⎧⎪⎨
⎪⎩

∀T > 0 : nT
1 (t) ↓ in [0, T ] ,

nA
2 (t) ≥ γ∗

β21
.

Biological interpretation. The model corresponds to a competition
where the immune system is inhibited by abnormal cells. However, despite
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this inhibition, immune cells are still able to counter the invasive host,
depending both on the initial state and on the ability of abnormal cells to
proliferate and on the ability of immune cells to combat against the invader.

This result suggests therapeutic actions related to the ability to reduce
proliferation of abnormal cells (by reducing β11) or to increase the immune
activity (by increasing β12).

The model also shows that if the therapeutic action increases the number
of active immune cells beyond a certain threshold, then the immune system
is able to complete the destructive action on the abnormal cells.

Suggestions for additional qualitative and computational ana-
lysis. Additional simulations can be developed to enrich the panorama of
the description offered by Theorem 4.3.1 with special attention to the role
of the β-type parameters. Further analysis, qualitative and/or computa-
tional, may identify the asymptotic behavior when α11 > 0, which should
generate a relatively more complex behavior due to the progressive degen-
eration of abnormal cells; or when α21 > 0, should show a relatively more
favorable situation for the immune system due to its ability to reduce the
state of abnormal cells.
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Fig. 5.1a. α11 = 0, α12 = 0, α21 = 0.1, and δ > 0.
Growth of abnormal cells and immune inhibition.
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Fig. 5.1b. α11 = 0, α12 = 0, α21 = 0.1, and δ > 0.
Growth of abnormal cells.
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Fig. 5.1c. α11 = 0, α12 = 0, α21 = 0.1, and δ > 0.
Immune inhibition.
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Fig. 5.2a. α11 = 0, α12 = 0, α21 = 0.1, and δ < 0.
Depletion of abnormal cells and immune activation.
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Fig. 5.2b. α11 = 0, α12 = 0, α21 = 0.1, and δ < 0.
Final depletion of abnormal cells.
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Fig. 5.2c. α11 = 0, α12 = 0, α21 = 0.1, and δ < 0.
Evolution of immune distribution.

5.2.2 Simulations of Model II.

The mathematical model. The model describes the competition
when cells of the first population, both normal and already abnormal cells,
show a natural tendency to degenerate. In addition, the competition be-
tween abnormal cells and immune cells is influenced by the values of the
nonconservative parameters only.

Expected behavior. The tendency to degenerate of the normal en-
dothelial cells is not countered by immune cells, as α12 = 0, and abnormal
cells cannot inhibit immune cells, as α21 = 0. For some sets of the β-
type parameters and the initial conditions, a reduction of abnormal cells is
expected.

Simulations related to Theorem 4.3.2. The above expected beha-
vior is predicted by Theorem 4.3.2, based on the following a priori esti-
mates; see (4.3.45).

If λ = (δ + nE
1 (0)) < 0 :

⎧⎪⎨
⎪⎩

nT
1 (∞) ≤ − (nE

1 (0))2

λ
,

nA
2 (t) ↑ ,

where, according to (4.3.43), λ = (1 + β11)n
E
1 (0) − β12n

A
2 (0).
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In this case, simulations show the total depletion of abnormal cells with
a growth in number of immune cells (Figures 5.3a–c).

Conversely, if the non-conservative parameters and the initial conditions
are chosen in such a way that λ > 0, Theorem 4.3.2 gives no information
and from the computational analysis we obtain an increase of the state of
abnormal cells, while their density, after an initial growth, is reduced by the
competition with immune cells which are stimulated to grow (Figures 5.4a–
c). Thus, the density of abnormal cells, after a growth stage, is eventually
reduced by immune cells.

Biological interpretation. The above results show that when ab-
normal cells are not able to inhibit immune cells, they are asymptotically
destroyed. Note that once the density of abnormal cells reaches a certain
threshold (which may be identified in comparison with suitable experimen-
tal and medical results), the attacked host may survive no longer.

Suggestions for additional qualitative and computational ana-
lysis. Additional analysis, qualitative and/or computational simulations
can be developed with the introduction of the capability of immune cells
to counter abnormal cells, i.e., α12 > 0. In this case, the natural tendency
of endothelial cells to degenerate is countered by the immune system and a
competition starts. The magnitude of the initial conditions and the values
of the parameters play an important role in determining the final scenario.
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Fig. 5.3a. α11 = 0.1, α12 = 0, α21 = 0, and λ < 0.
Final depletion of abnormal cells and immune activation.
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Fig. 5.3b. α11 = 0.1, α12 = 0, α21 = 0, and λ < 0.
Final depletion of abnormal cells.
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Fig. 5.3c. α11 = 0.1, α12 = 0, α21 = 0, and λ < 0.
Immune activation.
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Fig. 5.4a. α11 = 0.1, α12 = 0, α21 = 0, and λ > 0.
Depletion of abnormal cells and immune activation.
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Fig. 5.4b. α11 = 0.1, α12 = 0, α21 = 0, and λ > 0.
Abnormal cells increase their state but finally are depleted.
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Fig. 5.4c. α11 = 0.1, α12 = 0, α21 = 0, and λ > 0.
Immune activation.

5.2.3 Simulations of Model III.

The mathematical model. In this case endothelial cells do not show
a natural tendency to degenerate. The abnormal cells are countered by
immune cells, while they do not inhibit immune cells.

Expected behavior. Abnormal cells do not degenerate and are not
able to inhibit immune cells, which conversely are stimulated to reproduce
themselves. Thus the expected behavior is the depletion of abnormal cells.

Simulations related to Theorem 4.3.3. The a priori estimates ob-
tained from Theorem 4.3.3 provide only partial information on the depletion
of abnormal cells; see (4.3.52) and (4.3.55).

If θ ≤ 0 :

{
nT

1 ↓ and nT
1 ≤ nT

1 (0) exp(θt) ,

nA
2 (t) ↑ ,

where, according to (4.3.52),

θ = β11

(
nE

1 (0) − 1

β21
nA

2 (0)

)
.
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The computational analysis shows that the growth of abnormal cells is
always countered by immune cells. The number of immune cells grows and
they are able to control, from the beginning, the proliferation of abnormal
cells. This behavior is shown in Figures 5.5a–c.

If θ > 0, abnormal cells initially grow in number, but since the prolifer-
ation of immune cells is also stimulated, when the number of the immune
cells reaches a threshold, abnormal cells start to be reduced until their
complete depletion; see Figures 5.6a–c.

Biological interpretation. The situation is the most favorable one
for the host. Abnormal cells do not degenerate any more (the maximum
degenerated state is at the beginning) and are not able to inhibit immune
cells, which conversely are stimulated to reproduce themselves. The final
outcome is always the depletion of abnormal cells. The values of the non-
conservative parameters and of the initial condition play a significant role
in determining the initial evolution; for instance, there might be an initial
growth of abnormal cells before their final depletion; see Figures 5.6a–c.

Suggestions for additional qualitative and computational ana-
lysis. It appears interesting to analyze the evolution when α21 is also
positive and different from zero, i.e., the case α11 = 0, α12 > 0, α21 > 0. It
is expected that there exists a bifurcating parameter such that if the ability
of immune cells to reduce abnormal ones is set at a critical value, the final
scenario is the depletion of abnormal cells. Conversely, if it is below the
critical value, the final expected outcome is the growth of abnormal cells
and immune inhibition.
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Fig. 5.5a. α11 = 0, α12 = 0.1, α21 = 0, and θ < 0.
Depletion of abnormal cells and immune activation.
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Fig. 5.5b. α11 = 0, α12 = 0.1, α21 = 0, and θ < 0.
Final depletion of abnormal cells.
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Fig. 5.5c. α11 = 0, α12 = 0.1, α21 = 0, and θ < 0.
Evolution of immune distribution.
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Fig. 5.6a. α11 = 0, α12 = 0.1, α21 = 0, and θ > 0.
Final depletion of abnormal cells and immune activation.
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Fig. 5.6b. α11 = 0, α12 = 0.1, α21 = 0, and θ > 0.
Final depletion of abnormal cells.
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Fig. 5.6c. α11 = 0, α12 = 0.1, α21 = 0, and θ > 0.
Immune activation.

5.2.4 Simulations of Model C.

The mathematical model. Model C is characterized by the fact that
the number of cells is constant in time, while the distribution function over
the microscopic state shifts toward higher or lower values.

Expected behavior. The evolution is ruled by the evolution of the
states and not by destruction/proliferation phenomena. The expected be-
havior strongly depends on the ability of abnormal/immune cells to inhibit
the competitor cells (immune/abnormal cells), and thus on the ratio be-
tween α21 and α12. An additional role is played by the parameter related
to the tendency of endothelial cells to degenerate, α11. Thus, we expect a
complex scenario strongly depending on the parameters.

We focus on Model C2, defined in equation (4.3.80), corresponding to
the situation in which no degeneration occurs (α11 = 0) and only the para-
meters α21 and α12 are different from zero. The qualitative scenario of this
model is studied in Theorem 4.3.6, which states that

nA
2 ↓ and nT

1 ↓ .
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Simulations related to Theorem 4.3.6. As expected, both abnor-
mal and immune cells are reduced during the competition (since no pro-
liferation may occur). However, the asymptotic scenario is such that only
one cell population survives and the other is completely depleted. The ratio
between the values of α21 and α12, as well as the initial conditions, defines
which of the populations will survive.

Consider the same initial condition for abnormal and immune cells. If
α21 > α12, the ability of abnormal cells to inhibit immune cells is greater
than the ability of immune cells to reduce the state of abnormal cells. The
final output is a complete inhibition of immune cells and a final survival of
abnormal cells, as shown in Figures 5.7a–c.

If α21 < α12, the final scenario is a reduction of the state of abnormal
cells until their complete depletion and a final survival of immune cells, as
shown in Figures 5.8a–c.

Biological interpretation. In this situation, the time is so short that
no proliferation occurs. The final scenario depends on which of the two
populations is the “strongest” in inhibiting the competitor population.

Suggestions for additional qualitative and computational ana-
lysis. It is interesting to develop a complete picture taking into account
the self-degeneration of endothelial cells, i.e., α11 = 0.
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Fig. 5.7a. α11 = 0, α12 = 0.1, α21 = 0.9.
Complete immune depression and density evolution of abnormal cells.
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Fig. 5.7b. α11 = 0, α12 = 0.1, α21 = 0.9.
Evolution of abnormal cells.
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Fig. 5.7c. α11 = 0, α12 = 0.1, α21 = 0.9.
Immune inhibition.
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Fig. 5.8a. α11 = 0, α12 = 0.9, α21 = 0.1.
Immune survival and total depletion of abnormal cells.
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Fig. 5.8b. α11 = 0, α12 = 0.9, α21 = 0.1.
Reduction of abnormal cells.
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Fig. 5.8c. α11 = 0, α12 = 0.9, α21 = 0.1.
Immune survival.

The table which follows summarizes the biological meaning and the
asymptotic (in time) behavior of the models proposed in this chapter, thus
allowing their biological interpretation.

Table 5.1. Biological meaning and asymptotic behavior of the models.

Model C2

The model is (prevalent) conservative, and the
evolution is ruled by the evolution of the states. No
degeneration occurs (α11 = 0).

No proliferation phenomena occur, since the obser-
vation time is short: the final scenario is related to
the ability of each of the two populations to inhibit
its competitor.
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Model I

Normal cells do not degenerate autonomously, and
immune cells do not have the ability to reduce their
microscopic state, while abnormal cells have the
ability to inhibit the activation of immune cells.

Despite the inhibition of immune cells by abnormal
cells, they are still able to counter the invasive
host depending both on the initial state and on the
proliferating ability of abnormal cells.

Model II

Cells of the first population show a natural tendency
to degenerate. The competition between abnormal
cells and immune cells is influenced only by the
values of the nonconservative parameters.

Abnormal cells are not able to inhibit immune
cells, so after an initial growth stage, they are
progressively destroyed.

Model III

Endothelial cells do not show a natural tendency
to degenerate. Abnormal cells are countered by
immune cells, while they do not inhibit immune
cells.

The evolution of the competition shows that ab-
normal cells, after an initial growth stage, are
completely depleted.

5.3 Tumor–Immune Competition

This section is devoted to the biological interpretations and simulations of
Model P given by equation (3.4.3). The analysis shows how Model P may
describe the competition between immune cells and tumor cells. Specifi-
cally, we consider the evolution of cells which have lost their differentiated
state and become tumor cells, or progressing cells as specifically discussed
in Section 3.2.
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Let us assume that

i) The progressing cells do not show a natural tendency to increase their
progression. This means that either the cells do not show a tendency to
degenerate at all, or the phenotypic changes occur so rarely that they
are negligible with respect to the time scale of the model (and thus
to the survival time of the host). According to the above biological
interpretation, this means assuming α11 = 0.

ii) The active immune cells are not able to reduce the progression of tumor
cells. This means that either the immune cells are able to destroy the
progressing cells (destructive interaction), or they are unable to counter
the progression. In other words, the immune system is not able to par-
tially “repair” the genetic degradation of the progressing cell. According
to the above biological interpretation of the parameters of the general
model, this means assuming α12 = 0.

iii) The progressing cells are not able to inhibit the immune cells; referring
to the biological interpretation of the parameters of the general model,
this means assuming α21 = 0.

The model is not to be considered as a general model of tumor–immune
competition, but only as a way of modelling some aspects of the competition
between particular progressing cells and immune cells.

In this way, the general model (3.3.18) reduces to a model where only
the nonconservative parameters are different from zero: this is Model P.
These parameters should be related to specific types of progressing cells.

The quantitative analysis which follows is developed in three subsec-
tions. The first one provides some biological interpretations of Theorem
4.3.4 on the solution of the Cauchy problem. The second subsection shows
some simulations and develops a computational analysis of the model. Fi-
nally, the third subsection shows how the model can be compared with
experimental results and how some parameters can be identified.

5.3.1 Biological interpretations

In this subsection, we provide an interpretation from the biological point of
view of Theorem 4.3.4. Specifically, Theorem 4.3.4 shows that the asymp-
totic behavior depends, in a rather complicated way, on the size of the
initial condition and on the β-type parameters related to the proliferation
ability.

According to definition (4.3.1) of the parameter

δ = β11n
E
1 (0) − β12n

A
2 (0) ,

which plays a relevant role in defining the asymptotic scenario, a critical
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immune density nA
2C

= β∗ can be defined, such that

β∗ =
β11

β12
nE

1 (0)

is the product of the initial number of environmental cells (both normal
and abnormal endothelial cells) and the ratio of the proliferation rate of
tumor cells and the ability of immune cells to destroy tumor cells. Then,
the results of Theorem 4.3.4 can be summarized as follows:

If nA
2 (0) < nA

2C
= β∗ (δ > 0) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

nA
2 (t) ↑ ,

∃ t0 : nT
1 ↑ ,∀ t ∈ [0, t0] and

nT
1 ↓ ,∀ t ∈ [t0, T ] ,∀ T > 0 .

If nA
2 (0) ≥ nA

2C
= β∗ (δ ≤ 0) :

⎧⎪⎪⎨
⎪⎪⎩

nA
2 (t) ↑ ,

nT
1 (t) ↓ ; ∃δ ≤ 0 : nT

1 (t) ≤ nT
1 (0) exp(δt) ,

Thus, according to Theorem 4.3.4, in the presence of an aggressive host,
the immune system is stimulated to grow and its density increases, while
the following two behaviors are predicted by the model:

• If nA
2 (0) ≥ β∗, i.e., δ ≤ 0, then the number of tumor cells decreases and

the rate of decrease is given by estimate (4.3.65), which shows that this
rate is related to the values of β∗.

• If nA
2 (0) < β∗, i.e., δ > 0, at first the number of tumor cells grows,

since the number of immune cells is not sufficient to counter them.
Nevertheless, since the immune cells are stimulated to proliferate by
the presence of the host, after a certain critical time t0 their number
will be great enough to reduce the number of tumor cells. Of course this
critical time t0 is, at this stage, purely mathematical, while it should be
linked to the survival time of the individual. In principle, the asymptotic
behavior always shows an increase and then a decrease of the tumor cells,
but in reality this critical time may be too long, so that one sees only
the first step of tumor growth.
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Some computational analysis may be useful to complete the above inter-
pretation.

5.3.2 Simulations

Simulations have been obtained, as mentioned in the introduction of this
chapter, by using the generalized collocation methods. We are interested
in the evolution of the size of the populations nT

1 (t), nE
1 (t). The solution of

equation (3.4.4) will be evaluated in a compact subset of IR+×IR: the choice
of this set is biologically justified because we are considering early-stage
tumor cells and an infinite progression state has no biological counterpart.

Fig. 5.9. Phase portrait of
the density of tumor cells and immune cells.

Specifically, Figure 5.9 is the phase portrait related to the model de-
scribed by equations (3.4.4). On the abscissa it reports the immune den-
sity and the tumor density is on the ordinate. As known in the theory of



Section 5.3. Tumor–Immune Competition 109

ordinary differential equations, starting from a point of the phase space,
which corresponds to fixing the initial condition of the initial value prob-
lem, there is only one orbit which describes the evolution of the system, as
the system is autonomous. The arrows in the figures indicate the direction
of the evolution in time of the orbits.

Figure 5.9 shows the phase portrait for fixed values of β∗ and for fixed
β21 > 0. In this situation immune cells increase, and we can distinguish
two areas, Area D and E, which differentiate the evolution. Specifically,
Area D refers to the initial values of immune density less than the critical
value. In this case, the tumor is able to grow in the first stage, but when the
immune cells, stimulated to proliferate by the presence of the progressing
cells, reach the critical value, then the tumor cells start to decrease and
finally are depleted.

Area E refers to the initial values of immune density greater than the
critical value. If the initial condition belongs to Area E, then only the sec-
ond stage occurs; namely the tumor reduction toward complete depletion.

It needs to be stressed that the phase portraits refer to a chosen set of the
parameters defining β∗ and β21. A change of these values slightly modifies
the portraits, namely the dimension and shape of the above-mentioned
areas. The change shifts the position of the critical immune density and
the position of the above-mentioned “threshold orbit,” but the qualitative
behavior does not change and it is always possible to identify the above-
mentioned areas.

Therefore, it can be remarked that the above representation fully de-
scribes the qualitative influence of the parameters on the evolution of the
immune competition. Specifically, Figure 5.9 illustrates the theoretical pre-
dictions given in Theorem 4.3.4.

Of course the same result can be visualized by showing the evolution of
the distribution function. Indeed, this simulation shows the evolution of the
distribution function, thus providing a deeper look at the inner structure of
the system, giving additional information with respect to the theorem and
the phase portrait referred to the evolution of the densities, which are the
moments of the distribution function.

Thus, if δ ≤ 0 for the density we get a decrease from the initial number of
abnormal cells and an increase for the number of immune cells; see Figure
5.10a. The same results is obtained for the distribution function where,
since in Model P only proliferative/destructive encounters occur, no shift
in the state of the distribution function occurs (Fig. 5.10b,c).

The opposite behavior is obtained if δ > 0, where immune cells are
stimulated to proliferate while abnormal cells increase at first and after a
certain critical time start to be depleted; see Figures 5.11a–c.
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Fig. 5.10a. α11 = 0, α12 = 0, α21 = 0, and δ < 0.
Immune cell proliferation and depletion of abnormal cells.
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Fig. 5.10b. α11 = 0, α12 = 0, α21 = 0, and δ < 0.
Depletion of abnormal cells.
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Fig. 5.10c. α11 = 0, α12 = 0, α21 = 0, and δ < 0.
Immune cell proliferation.
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Fig. 5.11a. α11 = 0, α12 = 0, α21 = 0, and δ > 0.
Immune proliferation and initial increase and final depletion of abnormal cells.
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Fig. 5.11b. α11 = 0, α12 = 0, α21 = 0, and δ > 0.
Initial increase and final depletion of abnormal cells.
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Fig. 5.11c. α11 = 0, α12 = 0, α21 = 0, and δ > 0.
Immune proliferation.
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5.4 Comparison with Experimental Data

The class of mathematical models proposed in this book has shown the
ability to describe several interesting phenomena of the immune competi-
tion. However, a detailed quantitative description can be obtained only if
the parameters of the model are properly identified.

Of course, the above identification can be realized if the competition is
specialized to a well-defined phenomenon. The analysis proposed in this sec-
tion refers to the competition between tumor and immune cells. However,
the generalization to other types of competition can be properly analyzed,
as we shall discuss in Section 5.5.

It is necessary, before dealing technically with the above problem, to
analyze the difficulties, and maybe even the impossibility, of achieving some
useful data. The articles published in the special issue of the journal La

Recherche can contribute to a deep understanding of the above-mentioned
difficulties.

Specifically, we refer to the article by Gillet (2005), which points out the
impossibility of analyzing in vivo cellular cancer phenomena, while exper-
iments in vitro do not reproduce what really happens in vivo. This is due
to the fact that experiments observe macroscopic behaviors, while relevant
biological phenomena occur at the cellular scale. This is not a peculiarity of
cancer phenomena only, but of several immune competitions when cellular
phenomena play a relevant role.

Returning to the model analyzed in Section 5.3, it is clear that some
macroscopic output can be described through changing the selection of
the parameters related to microscopic interactions. On the other hand,
it is possible to reproduce specific competitions involving only one or two
parameters, while the role of the others can be neglected. In this case, it is
possible to organize the identification of each parameter.

The above method was proposed in Bellomo and Forni (1994) and con-
sists of analyzing the evolution of a tumor induced in a population of
immuno-depressed mice and in a population of normal mice.

We assume, to be consistent with Model P, and in particular with the
assumption α11 = 0, that the time of the observation of the experimental
measurement is small enough to suppose that no genetic degeneration oc-
curs, i.e., there is no change of the progression state of the cells during the
experiment.

The experimental results are reported in Figure 5.12, where triangular
dots refer to the first population and circular dots refer to the second popu-
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lation. A suitable comparison between experimental data and the results
provided by the mathematical model allows us to identify the parameters.

Fig. 5.12. Comparison between theoretical results and experimental
data of growth of a tumor in nontreated mice (dots) and in irradiated mice
(triangles).

Specifically, referring to the first population of immuno-depressed mice,
nA

2 (0) = 0, the evolution equations (3.4.4) lead to an exponential growth
of tumor cells of the type

nT
1 (t)/nT

1 (0) = exp[β11n
E
1 (0)t] .

A comparison (Fig. 5.12), between the experimental results, the trian-
gles and the output of the model (dashed line), allows us to the identify the
product of β11 and the initial size of endothelial cells: β11n

E
1 (0) = 0.12. Of

course the identification depends on the particular experiment carried out;
as β∗ is related to β11, the proliferation rate of tumor cells, depending on
to the aggressiveness of the particular tumor induced in the mice.

The same approach can be used to analyze the experimental results
for the second population, nontreated mice (dots), with the output of the
model (continuum line), so that the value of β12n

A
2 (0) = 0.04 is obtained.

In addition to the above specific identification, which should be regarded
as just one example among various conceivable ones, it is worth remark-
ing that the simulations in this chapter provide a description of relevant
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biological events, and can effectively contribute to a deeper understand-
ing of this complex phenomenology. The description is also supported by
theorems which have a wide generality.

Stressing again some of the concepts already proposed in the previous
sections, the following remarks are again brought to the attention of the
reader.

• The role of the initial number of abnormal cells is ruled by the pa-
rameter δ, where this number is weighted by the proliferating ability
of abnormal cells and by the destructive ability of active immune cells.
Positive values of δ are related to situations which are dangerous for
the vertebrate affected by a pathology. This means that a large number
of weakly proliferating abnormal cells can possibly be countered by ac-
tive immune cells, while a small number of cells with great proliferation
ability can overcome the immune defense.

• The ability of immune cells to identify abnormal cells plays a crucial role
in the competition. This specific role is represented by the parameter
α12, and must be related to the above-mentioned role of the initial
number of abnormal cells.

The above remarks can be regarded as a speculation on the stimulating
article by Gillet (2005). Indeed, modelling at the cellular scale can focus
events which are consistent with the biological phenomenology of the sys-
tem we are dealing with, but which cannot be carefully observed through
macroscopic experiments. Therefore, we may optimistically observe that
when a model achieves the above target, then the bridge between mathem-
atical and biological sciences is effectively crossed.

5.5 Developments and Perspectives

The various simulations offered in the preceding sections have given an
interesting overview of several biological events which characterize the im-
mune competition, and which can be described by the class of models pro-
posed in Chapter 3. As we have seen, simulations enlarge and increase the
precision of the information given by qualitative analysis.

The analysis of this chapter should also be regarded as a methodological
approach which may be technically developed for different models obtained
by generalizations and possible improvements to include additional features
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and the ability to describe phenomena which are not covered by the models
proposed in this book.

For instance, the number of populations characterizing the immune sys-
tem can be enlarged in order to specialize the specific activity to each sub-
population. Moreover, additional cells or populations can be inserted to
model therapeutic actions. For instance, populations of cytokines or specific
proteins may be taken into account to model the activation of the immune
system, while particles acting over tumor cells may simulate chemotherapy
treatments. Indeed, the model proposed in Chapter 3 should be regarded as
the basic model to be further generalized to include a variety of conceivable
technical developments. An account of some developments and research
perspectives will be given in Chapter 7.

The methodological approach to mathematically analyze these devel-
opments is the same: a qualitative analysis of the initial value problem,
based on methods of functional analysis, provides a careful description of
the evolution of the systems, and this analysis is completed and enriched
by computational simulations.

Analogous reasoning can be addressed to simulations, and specifically to
those proposed in this chapter. The various simulations should be regarded
as computational experiments, designed to visualize specific features of the
immune competition. Additional computations can be developed, according
to the suggestions given at the end of each subsection concerning certain
types of simulations.

Particularly interesting is the case of simulations developed by setting
all parameters except one equal to zero: the analysis of the model is then
focused on one particular phenomenon, while the others are not relevant. If
suitable experiments can be linked to these types of simulations, then the
parameters can be identified. Indeed, this is the case for the identification
process developed in this chapter.

Moreover, the analysis can be addressed to particular biological compe-
titions. Certainly the modelling of the competition between HIV particles
and the immune system is a challenging research problem; see Campello
de Souza (1999) on modelling the dynamics of HIV-1 and CD4 and CD8
lymphocytes. The dynamics of the competition shows how the number of
HIV particles first grows countered by immune cells, which have the ability
of weakening them; then a second increase of the viral particles is again
countered by the lymphocytes, while the competition may last for a very
long period, as discussed in the article by Coisne (2005).

Models developed at a macroscopic scale, documented in the review
by Hethcote (2000), can possibly describe the above specific aspects of
the competition. However, macroscopic models cannot relate biological
phenomena to specific cellular properties.

The various simulations developed in this chapter show how the behavior
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of the dynamics of HIV-1 and CD4 and CD8 lymphocytes can be reproduced
through a suitable characterization of the class of models proposed in this
book. Certainly it is an interesting perspective, related to one of the great
challenges of this century.



6

Models with Space Structure and the

Derivation of Macroscopic Equations

The power of modeling methodology comes from the channelling of the de-

scription of the phenomena into a consistent descriptive language.

— Greller, Tobin, and Poste

6.1 Introduction

The various mathematical models proposed and analyzed in the preceding
chapters describe multicellular systems in the spatially homogeneous case.
As we have seen, these models are able to describe several interesting phe-
nomena related to several aspects of the immune competition. On the other
hand, a space structure is needed to model cellular motion, as well as to
recover macroscopic models from the underlying microscopic description.

Deriving macroscopic equations, generally partial differential equations,
is particularly important for describing the evolution of cells when they
aggregate into solid form. This phenomenon is visualized in Figure 6.1.

The mathematical literature on the modelling of cellular motion phe-
nomena includes several valuable papers which analyze specific issues. Most
of them are modelled by kinetic-type equations which can be regarded
as particular cases of the very general framework proposed in Chapter
2. Among others, Othmer and Stevens (1997) analyze aggregation and
collapse of cellular populations, Chalub, et al. (2001, 2004) derive from
kinetic-type equations macroscopic diffusion equations, while Capasso and
Morale (2005) obtain macroscopic models from stochastic models of cel-
lular motion. Hyperbolic models are obtained by Filbet, Laurencot, and

119
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Fig. 6.1. From microscopic to macroscopic description.

Perthame (2005). Valuable surveys, mainly on mathematical topics, are
proposed by Perthame (2004) and Chalub, et al. (2006). The above ana-
lysis refers to models with a constant number of particles; these models are
essentially based on a transport model based on a velocity jump process
proposed by Hillen and Othmer (2000), which will be analyzed in Section
6.2.

The derivation of macroscopic equations from kinetic cellular models
appears to be a relatively more complex problem, due to the evolution in
time both of the biological functions and of the number of cells. As we shall
see, the ratio between the various rates characterizing every evolution—
biological, mechanical, and proliferating/destructive—plays an important
role in assessing the structure of mathematical macroscopic equations de-
rived from the underlying microscopic equations.

Generally macroscopic models are obtained via methods of continuum
mechanics. This means writing the system of conservation equations for
mass, momentum, and energy to be closed by suitable phenomenological
models describing the material behavior of the biological systems assumed
to be continuous.

In some cases, the biological material may even be characterized by
growing mass phenomena. The paper by Humphrey and Rajagopal (2002)
provides original ideas and methods toward the continuum mechanics ap-
proach to the derivation of the macroscopic equations suitable for describing
the behavior of the above mechanical systems. The review paper by Bel-
lomo, De Angelis, and Preziosi (2003) reports the existing literature on
macroscopic models of tissues of tumor systems. Specific models and appli-
cations are reported, among others, in the papers by De Angelis and Preziosi
(2000), Chaplain and Sherrat (2001), Anderson and Chaplain (2003), Ber-
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tuzzi, Fasano and Gandolfi (2004), and Alarcon, Byrne, and Maini (2005).
An alternative approach to the derivation of macroscopic models stems

from mathematical kinetic theory. This method consists, as documented
in Arlotti, Bellomo, De Angelis, and Lachowicz (2003), of deriving macro-
scopic models by suitable limits, or averaging methods, of Boltzmann-type
equations related to the statistical microscopic description. Hopefully this
approach may capture properties and behaviors of the material which are
hidden, at least in some cases, by models derived through the traditional
approach of continuum mechanics. Indeed, different equations correspond,
as we shall see, to different scalings and modelling of microscopic phenom-
ena related to cell populations interacting in biological tissues.

Methods of kinetic theory have been recently used to recover macro-
scopic models from the mesoscopic description by suitable asymptotic the-
ories for multicellular systems. In particular, various authors have proposed
mathematical methods towards the above theory; among others, Hillen and
Othmer (2000), Hillen (2002), Lachowicz (2002) and (2005), and Filbet,
Laurencot, and Perthame (2005). These methods deal with multicellular
systems in the absence of an internal biological microscopic structure. On
the other hand, recently Bellomo, Bellouquid, and Herrero (2006) developed
the above analysis for multicellular systems such that interactions modify
the microscopic state and generate phenomena with destruction and prolif-
eration of cells. Specifically, interactions which modify the velocity of cells
are assumed to be stochastic in a way which will be made precise later.

The main difficulty, as already mentioned, is induced by the need for in-
cluding the evolution of biological functions and of proliferating/destructive
processes.

This chapter deals with revisiting and critically analyzing the above
mathematical analysis and provides some suggestions for future research
perspectives. Indeed, the problem of developing the above analysis in the
more general case of the mathematical structures dealt with in Chapter 2
appears, at this stage, still open.

Section 6.2 deals with the description of a class of evolution equations
which include space dynamics in addition to biological interactions, and
with the analysis of a linear operator related to the modelling of space
dynamics.

Section 6.3 deals with the scaling of the equations described in Section
6.2 and develops the asymptotic analysis for mass conservative systems,
showing how different diffusion equations correspond, at different scaling,
to the underlying microscopic description offered by the model.

Section 6.4 deals with the asymptotic analysis for models with prolifer-
ation and destruction interactions, showing how the presence of source or
sink terms, related to the growth or death of cells, modifies the macroscopic
equations derived for systems with constant overall mass.

Section 6.5 proposes a simple application with the aim of showing how
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the method can be technically applied to the analysis of a specific model in
the cases of conservative interactions only. It is a simple exercise proposed
to show some technical aspects related to the application of the method.

Section 6.6 deals with a critical analysis with special attention to re-
search perspectives on open problems. Indeed, the contents of this chapter
should be regarded as an introduction to the challenging research field of
modelling the macroscopic behavior of living tissues, including the case of
growing matter.

6.2 Models with Space Dynamics

This section deals with the modelling of multicellular systems such that the
microscopic state includes position and velocity, in addition to variables re-
lated to biological functions. Specifically, referring to Chapter 2, consider
a physical system constituted by a large number of cells interacting in the
environment of a vertebrate (or in an in vitro experiment). The physical
variable used to describe the state of each cell, already called the micro-
scopic state, is denoted by w = {x ,v , u}, where {x,v} is the mechan-
ical microscopic state and u ∈ Du ⊆ IR is the biological microscopic
state. The biological state is here assumed to be a scalar, referring to the
models of Chapter 3.

The statistical collective description of the system is, in the case of
one population only, identified (see Chapter 2), by the statistical distribu-
tion f = f(t,x,v, u) , which has been called the generalized distribution
function. Weighted moments permit, under suitable integrability prop-
erties, the calculation of macroscopic variables by technical calculations
already reported in Chapter 2. The evolution of f , according to Bellomo,
Bellouquid, and Herrero (2005), can be modelled as follows:

(
∂

∂t
+ v · ∇x

)
f(t,x,v, u)

= ν

[ ∫
Dv

T (v,v∗)f(t,x,v∗, u) − T (v∗,v)f(t,x,v, u)

]
dv∗

+ η

[ ∫
Du

∫
Du

ϕ(u∗, u∗∗, u)f(t,x,v, u∗)f(t,x,v, u∗∗) du∗ du∗∗

− f(t,x,v, u)

∫
Du

f(t,x,v, u∗∗) du∗∗

]
, (6.2.1)
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which can be formally written as follows:

∂f

∂t
+ v · ∇xf = νLf + ηN [f, f ] . (6.2.2)

The linear term L has been proposed by various authors to model the dy-
namics of biological organisms modelled by a velocity-jump process, where
ν is the turning rate or turning frequency (hence τ = 1

ν is the mean run
time), and T (v,v∗) is the probability kernel for the new velocity v ∈ Dv,
given the previous velocity v∗. This corresponds to the assumption that
cells choose any direction with bounded velocity. Specifically the set of
possible velocities is denoted by Dv, where Dv ⊂ IR3, and it is assumed
that Dv is bounded and spherically symmetric (i.e., v ∈ Dv ⇒ −v ∈ Dv).

Referring to the term related to the biological interactions, η denotes
the biological interaction rate, which for simplicity is here assumed to be
constant; while the term ϕ models the transition probability density of the
test cell with state u∗ into the state u after the interaction with the cell with
state u∗. Interactions occur within the action domain Ω of the test cell. Ω
is assumed to be relatively small so that only binary localized encounters
are relevant. We recall that ϕ is not symmetric with respect to u and has
the structure of a probability density only for mass conservative systems.

The above model generalizes the transport model with a velocity jump
proposed by Othmer and Hillen (2000) to a mathematical description of
multicellular systems which include biological functions in the microscopic
scale.

This model can be rewritten as a system of two coupled equations (see
Chapter 3). The model, in the case of conservative encounters only, can be
written as follows:

(
∂

∂t
+v · ∇x

)
f1(t,x,v, u)

= ν

∫
Dv

[
T (v,v∗)f1(t,x,v∗, u) − T (v∗,v)f2(t,x,v, u)

]
dv∗

+ (G11 − L11 + G12 − L12)(f, f)(t,x,v, u) ,(
∂

∂t
+v · ∇x

)
f2(t,x,v, u)

= ν

∫
Dv

[
T (v,v∗)f2(t,x,v∗, u) − T (v∗,v)f1(t,x,v, u)

]
dv∗

+ (G21 − L21 + G22 − L22)(f, f)(t,x,v, u) ,

(6.2.3)
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where the operators G and L are defined as follows:

Gij(f, f) =

∫
Du

∫
Du

ηijϕij(u∗, u
∗; u)fi(t,x,v, u∗)fj(t,x,v, u∗) du∗ du∗ ,

(6.2.4)
and

Lij(f, f) = fi(t,x,v, u)

∫
Du

ηijfj(t,x,v, u∗) du∗ . (6.2.5)

The above set of equations describes the evolution in the space x ∈
IR3 and in the biological state u ∈ Du ⊆ IR of a large system of two
interacting cell populations. Specifically, G and L correspond, respectively,
to the gain and loss of cells in the state u due to conservative encounters,
namely to encounters which modify the biological state without generating
proliferation or destruction phenomena.

The analysis developed in what follows refers to the model with conser-
vative interactions only. After this analysis, some technical developments
for models with proliferating and destructive terms will be dealt with.

Let us now define the following operators:

Γ(f, f) = (G11 − L11 + G12 − L12,G21 − L21 + G22 − L22)(f, f) ,

and

L(f) = (L1(f),L2(f)) ,

where

L1(f) =

∫
Dv

[
T (v,v∗)f1(t,x,v∗, u) − T (v∗,v)f2(t,x,v, u)

]
dv∗ , (6.2.6)

and

L2(f) =

∫
Dv

[
T (v,v∗)f2(t,x,v∗, u) − T (v∗,v)f1(t,x,v, u)

]
dv∗ . (6.2.7)

Then the evolution equation (6.2.3) for f = (f1, f2) can be formally
written as follows:

∂f

∂t
+

3∑
j=1

Vj
∂f

∂xj
= νLf + Γ(f, f) , (6.2.8)

where Vj = diag(vj ,vj), j = 1, 2, 3.
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A detailed qualitative analysis of the operator K is preliminary to the
asymptotic analysis. K is defined as follows:

Kf =

∫
Dv

(
T (v,v∗)f(t,x,v∗, u) − T (v∗,v)f(t,x,v, u)

)
dv∗, (6.2.9)

where f : Dv −→ IR.
Let us now state some properties of this operator. Let h, g, N : Dv −→

IR, and let

Ψ1[N ] =
T (v,v∗)N(v∗) + T (v∗,v)N(v)

2
, (6.2.10a)

and

Ψ2[N ] =
T (v,v∗)N(v∗) − T (v∗,v)N(v)

2
(6.2.10b)

denote, respectively, the symmetric and antisymmetric parts of the term
T (v,v∗)N(v∗). The following result is given in Bellomo, Bellouquid, and
Herrero (2005):

Lemma 6.2.1. The operator K satisfies the following relation:

∫
Dv

K(Ng)
h(v)

N(v)
dv =

1

2

∫
Dv

∫
Dv

Ψ1[N ](g(v∗) − g(v))

×
(

h(v)

N(v)
− h(v∗)

N(v∗)

)
dv dv∗

+
1

2

∫
Dv

∫
Dv

Ψ2[N ](g(v) + g(v∗))

×
(

h(v)

N(v)
− h(v∗)

N(v∗)

)
dv dv∗. (6.2.11)

Proof of Lemma 6.2.1: The proof is a straightforward computation. In
fact, using equations (6.2.10) yields

∫
Dv

K(Ng)
h(v)

N(v)
dv =

∫
Dv

∫
Dv

Ψ1[N ](g(v∗) − g(v))
h(v)

N(v)
dv dv∗

+

∫
Dv

∫
Dv

Ψ2[N ](g(v) + g(v∗))
h(v)

N(v)
dv dv∗ .

Then, interchanging v and v∗, using the symmetry properties of Ψ1[N ] and
Ψ2[N ], yields (6.2.11).
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The following assumption on the leading turning operator is essential
to the analysis developed in what follows:

Assumption 6.2.1. There exists a bounded velocity distribution M(v) >
0, independent of x and t, such that the detailed balance

T (v∗,v)M(v) = T (v,v∗)M(v∗) (6.2.12)

holds. The flow produced by this equilibrium distribution vanishes, and M
is normalized: ∫

Dv

vM(v) dv = 0,

∫
Dv

M(v) dv = 1 . (6.2.13)

The kernel T (v,v∗) is bounded, and there exists a constant σ > 0 such
that

T (v,v∗) ≥ σM, ∀(v,v∗) ∈ Dv × Dv, x ∈ IR3, t > 0 . (6.2.14)

The above assumption allows the proof of the following lemmas:

Lemma 6.2.2. If (6.2.12) of assumption 6.2.1 holds true, then the follow-
ing equalities hold:

∫
Dv

K(f)
h(v)

M(v)
dv = − 1

2

∫
Dv

∫
Dv

Ψ1[M ]

(
f(v)

M(v)
− f(v∗)

M(v∗)

)

×
(

h(v)

M(v)
− h(v∗)

M(v∗)

)
dv dv∗ , (6.2.15)

and

∫
Dv

K(h)
h(v)

M(v)
dv = −1

2

∫
Dv

∫
Dv

Ψ1[M ]

(
h(v)

M(v)
− h(v∗)

M(v∗)

)2

dv dv∗ .

(6.2.16)

Proof of Lemma 6.2.2: Equality (6.2.15) is an application of lemma 6.2.1
with f = Ng and N = M . The detailed balance assumption in (6.2.12) is
equivalent to Ψ2 = 0.

Let L2(Dv,v) × L2(Dv,v) be the space of the functions f = (f1, f2),
with fi ∈ L2(v), and let the scalar product be defined by

〈f, g〉L2(v)×L2(v) =

2∑
i=1

〈fi, gi〉L2(v). (6.2.17)
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Lemma 6.2.3. The following equality holds:

〈
Lf,

g

M

〉
L2(v)×L2(v)

=
〈
Kf1,

g1

M

〉
L2(v)

+
〈
Kf2,

g2

M

〉
L2(v)

+

∫
Dv

∫
Dv

T (v∗,v)(f1(v) − f2(v))

×
(

g1(v)

M(v)
− g2(v)

M(v)

)
dv dv∗ . (6.2.18)

Proof of Lemma 6.2.3: Using the definition of scalar product (6.2.17)
yields:

〈
Lf,

g

M

〉
L2(v)×L2(v)

=

∫
Dv

∫
Dv

g1(v)

M(v)

[
T (v,v∗)f1(v

∗) − T (v∗,v)f2(v)
]
dv dv∗

+

∫
Dv

∫
Dv

g2(v)

M(v)

[
T (v,v∗)f2(v

∗) − T (v∗,v)f1(v)
]
dv dv∗

=

∫
Dv

∫
Dv

[
T (v,v∗)f1(v

∗) − T (v∗,v)f1(v)
] g1(v)

M(v)
dv dv∗

+

∫
Dv

∫
Dv

[
T (v,v∗)f2(v

∗) − T (v∗,v)f2(v)
] g2(v)

M(v)
dv dv∗

+

∫
Dv

∫
Dv

T (v,v∗)
[
f1(v) − f2(v)

] g1(v)

M(v)
dv dv∗

+

∫
Dv

∫
Dv

T (v,v∗)
[
f2(v) − f1(v)

] g2(v)

M(v)
dv dv∗ .

The above equation, taking into account (6.2.9), corresponds to equality
(6.2.18).

Lemma 6.2.4. Let (6.2.12) and (6.2.13) of assumption 6.2.1 hold. Then
the following properties and equalities related to the operator L hold true:
i) L is a self-adjoint operator with respect to the scalar product in the

space

L2(Dv,
dv

M
) × L2(Dv,

dv

M
) ;

ii) Let ψ = (1, 1); then 〈Lf, ψ〉 = 0;
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iii) Moreover if

T (v,v∗) = T1(v)T2(v
∗) , (6.2.19)

then N(L) = vect(M(v)ψ).

Proof of Lemma 6.2.4: The proof of i) is obtained by application of
(6.2.15) and (6.2.18). Consider now

〈Lf, ψ〉L2(v)×L2(v) =〈L1f〉L2(v) + 〈L2f〉L2(v)

=

∫
Dv

∫
Dv

[
T (v,v∗)f1(v

∗) − T (v∗,v)f2(v)

]
dv∗dv

+

∫
Dv

∫
Dv

[
T (v,v∗)f2(v

∗) − T (v∗,v)f1(v)

]
dv∗dv .

Then interchanging v and v∗ implies the equality ii). Moreover, using
(6.2.13) of assumption 6.2.1 implies M(v)ψ ∈ N(L). Let (6.2.19) hold true;
then the operator L can be written as follows:

L(f) =
(
T1(v)〈T2f1〉v − T2f2〈T1〉v, T1(v)〈T2f2〉v − T2f1〈T1〉v

)
. (6.2.20)

Consider now f ∈ N(L); then one has

T1(v)〈T2f1〉v = T2f2〈T1〉v (6.2.21)

and

T1(v)〈T2f2〉v = T2f1〈T1〉v , (6.2.22)

which, after integration with respect to v, yield:

〈T2f1〉v = 〈T2f2〉v . (6.2.23)

Substituting (6.2.23) into (6.2.21) and (6.2.22) yields f1 = f2.
On the other hand, one obtains the following from Lemma 6.2.3:

〈
Kf1,

f1

M

〉
+

〈
Kf2,

f2

M

〉
= 0 ,

which gives by (6.2.16)

f1(v)

M(v)
− f1(v

∗)

M(v∗)
= 0 . (6.2.24)
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Integrating (6.2.24) with respect to v yields

ρf1
=

f1(v
∗)

M(v∗)
, f1 = M(v)ρf1

. (6.2.25)

This completes the proof of iii).

Lemma 6.2.5. Let (6.2.19) and assumption 6.2.1 hold. Then the equation
L(f) = g has a unique solution

f ∈ L2

(
Dv,

dv

M

)
× L2

(
Dv,

dv

M

)

satisfying

f1 = f2,

∫
Dv

f1 dv = 0 , (6.2.26a)

if and only if ∫
Dv

g1 dv +

∫
Dv

g2 dv = 0 . (6.2.26b)

In particular

L(hj) = MVjψ, j = 1, 2, 3 (6.2.27)

has a unique solution given by

hj(v) = kj(v)ψ, 〈kj(v)〉v = 0, j = 1, 2, 3. (6.2.28)

Proof of Lemma 6.2.5: The relation

∫
Dv

g1 dv +

∫
Dv

g2 dv = 0

is a necessary condition for the solvability of Lf = g. From (6.2.14),
(6.2.16), and (6.2.18), one has

−
〈
Lf,

f

M

〉
L2(v)×L2(v)

=
1

2

∫
Dv

∫
Dv

Ψ1[M ]

(
f1(v)

M(v)
− f1(v

∗)

M(v∗)

)2

dv dv∗

+
1

2

∫
Dv

∫
Dv

Ψ1[M ]

(
f2(v)

M(v)
− f2(v

∗)

M(v∗)

)2

dv dv∗
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−
∫

Dv

∫
Dv

T (v∗,v)

M(v)
(f1(v) − f2(v))2dv dv∗

≥ σ

∫
Dv

∫
Dv

M(v)M(v∗)

(
f1(v)

M(v)
− f1(v

∗)

M(v∗)

)2

dv dv∗

+ σ

∫
Dv

∫
Dv

M(v)M(v∗)

(
f2(v)

M(v)
− f2(v

∗)

M(v∗)

)2

dv dv∗

−
∫

Dv

∫
Dv

T (v∗,v)

M(v)
(f1(v) − f2(v))2dv dv∗

≥ σ

∫
Dv

(
f2
1 (v)

M(v)
+

f2
2 (v)

M(v)

)
dv

−
∫

Dv

∫
Dv

(
f1(v)f1(v

∗) − f2(v)f2(v
∗)
)
dv dv∗

−
∫

Dv

∫
Dv

T (v∗,v)

M(v)
(f1(v) − f2(v))2dv dv∗ .

For f1 = f2 and

∫
f1dv = 0, the last inequality leads to the following

estimate:

−
〈
Lf,

f

M

〉
L2(v)×L2(v)

≥ σ

(∫
Dv

f2
1

M
dv +

∫
Dv

f2
2

M
dv

)

= σ

〈
f,

f

M

〉
L2(v)×L2(v)

. (6.2.29)

The statement of the lemma is then a consequence of the Lax–Milgram
theorem. Moreover, the condition of solvability is satisfied for the equation
L(hj) = MVjψ by (6.2.13) of assumption 6.2.1 and then there exists a
unique solution hj(v) = kj(v)ψ, j = 1, 2, 3.

Remark 6.2.1. If T (v,v∗) = T1(v), then one can compute the solution of
the equation L(hj) = MVjψ. Indeed, since

L(MVjψ) = (−Mvj〈T1〉v,−Mvj〈T1〉v) = −M〈T1〉vVjψ ,

the solution is given by

hj(v) = − 1

〈T1〉v MVjψ . (6.2.30)
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The technical results proposed in this section will be used to recover
macroscopic equations.

6.3 Asymptotic Limits for Mass-Conserving Systems

The mathematical model described in Section 6.2 is characterized by two
types of rates, the first one related to the dynamics of the mechanical
variables, the second one to the biological ones. Experimental evidence
suggests that we study the regimes such that the biological dynamics, i.e.,
ηij , are of a smaller order with respect to the mechanical one, i.e., ν. In
order to simplify we set η11 = η22 and η12 = η21, and

η11 = εq , η12 = εr ,

with r, q ≥ 1. Moreover,

ν =
1

εp
, with p ≥ 1 ,

where ε is a small parameter which will be allowed to tend to zero. In
addition, the slow diffusion scale time τ = εt will be used so that the
following scaled equation is obtained:

ε
∂

∂t
fε(t,x,v, u) +

3∑
j=1

Vj
∂

∂xj
fε(t,x,v, u)

=
1

εp
Lfε + εq Γ22

11(fε, fε) + εr Γ21
12(fε, fε) , (6.3.1)

where

Γ22
11 = (Γ11, Γ22) =

1

η11
(G11 − L11,G22 − L22) , (6.3.2)

and

Γ21
12 = (Γ12, Γ21) =

1

η12
(G12 − L12,G21 − L21). (6.3.3)

The diffusion approximation asymptotic limit can be obtained by ap-
propriate moments of fε. The main result is given by the following theorem:
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Theorem 6.3.1. Let equality 6.2.19 and assumption 6.2.1 hold, and let
fε(t,x,v, u) be a sequence solutions to the scaled kinetic equation (6.3.1)
such that fε converges, in the distributional sense, to a function f as ε goes
to zero. Furthermore, assume that the moments

〈fεi〉,
〈

k(v)

M(v)
⊗ vfεi

〉
, 〈Γij(fε, fε)〉, i, j = 1, 2

converge in the sense of distributions to the corresponding moments

〈fi〉,
〈

k(v)

M(v)
⊗ vfi

〉
, 〈Γij(f, f)〉 ,

and that all formally small terms vanish. Then the asymptotic limit takes
the form

f(t,x,v, u) = M(v)ρ(t,x, u)ψ , (6.3.4)

where ρ(t,x, u) is the weak solution of the following equations:

p = q = r = 1 ∂tρ −∇x · (D · ∇xρ)

= 1
2 〈M2〉v

∑2
i,j=1 Γij(ρ, ρ) (6.3.5)

p = r = 1, q > 1 ∂tρ −∇x · (D · ∇xρ)

= 1
2 〈M2〉v(Γ12 + Γ21)(ρ, ρ) (6.3.6)

p = q = 1, r > 1 ∂tρ −∇x · (D · ∇xρ)

= 1
2 〈M2〉v(Γ11 + Γ22)(ρ, ρ) (6.3.7)

p = 1, r > 1, q > 1 ∂tρ −∇x · (D · ∇xρ) = 0 (6.3.8)

r = q = 1, p > 1 ∂tρ = 1
2 〈M2〉v

∑2
i,j=1 Γij(ρ, ρ) (6.3.9)

r = 1, p > 1, q > 1 ∂tρ = 1
2 〈M2〉v(Γ12 +Γ21)(ρ, ρ) (6.3.10)
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q = 1, p > 1, r > 1 ∂tρ = 1
2 〈M2〉v(Γ11 +Γ22)(ρ, ρ) (6.3.11)

p > 1, q > 1, r > 1 ∂tρ = 0 (6.3.12)

where the terms Γij are defined by

Γij(ρ, ρ)(t,x, u) =

∫
Du

∫
Du

ϕij(u∗, u
∗; u)ρ(t,x, u∗)ρ(t,x, u∗) du∗ du∗

− ρ(t,x, u)

∫
Du

ρ(t,x, u∗) du∗ ,

(6.3.13)
and the diffusivity tensor D is given by

D = −
∫

Dv

v ⊗ k(v) dv, (6.3.14)

where k(v) is a solution of equation (6.2.27) delivered by equation (6.2.28)
in Lemma 6.2.5.

Remark 6.3.1. One can prove that the tensor D is symmetric and positive
definite. To see this, note that for any x ∈ IR3, one has

(Dx) · x = −
∫

V

(v · x)(k(v) · x) dv. (6.3.15)

Indeed, by (6.2.27), one has

vi =
1

2M

(
L1(ki(v)ψ) + L2(ki(v)ψ)

)
, i = 1, 2, 3. (6.3.16)

Substituting (6.3.16) into (6.3.15) and using (6.2.29) yields

(Dx) · x = −1

2

〈
1

M
(L1(k(v) · xψ) + L2(k(v) · xψ)), k(v) · x

〉
L2(v)

= −1

2

〈
1

M
L(k(v) · xψ), k(v) · xψ

〉
L2(v)×L2(v)

≥ 1

2σ

〈
k(v) · xψ,

k(v) · xψ

M

〉
L2(v)

. (6.3.17)

Suppose now that k(v) · x are identically equal to zero for all x = 0.
Then by taking the scalar product of (6.2.27) with x, v · x would be zero
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for all v ∈ Dv, which is impossible by the spherical symmetry of Dv. Thus
the right-hand side of (6.3.17) is positive for each x = 0. The symmetry of
the matrix D is an immediate consequence of the fact that L is self-adjoint
with respect to the scalar product in

L2(v,
dv

M
) × L2(v,

dv

M
) .

Indeed, let x, z ∈ IR3; then

(D · x) · z = −
∫

V

(v · z)(k(v) · x) dv

= −1

2

〈
1

M
(L1(k(v) · zψ) + L2(k(v) · zψ)), k(v) · x

〉
L2(v)

= −1

2

〈
1

M
L(k(v) · zψ), k(v) · xψ

〉
L2(v)×L2(v)

.

The tensor D in general is nonisotropic (it is a nonscalar multiple of the
identity). At the end of this chapter, an example will be given in which the
tensor D is isotropic.

Remark 6.3.2. When both biological interactions have the same rate,
which corresponds to q = r, then the above cases (6.3.5)–(6.3.12) simply
reduce to the following: (6.3.5), (6.3.8), (6.3.9), and (6.3.12).

Let us now define the following quantities:

Rε(t,x) =

∫
IR3

×IR
fε(t,x,v, u) dv du

and

R(t,x) =

∫
IR

ρ(t,x, u) du .

As ϕij(u∗, u
∗; u) is a probability density

∫
IR

ϕij(u∗, u
∗, u) du = 1,

one easily gets ∫
IR

Γij(ρ, ρ)(t,x, u) du = 0 . (6.3.18)
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Integrating (6.3.5)–(6.3.8) over u yields

∂R(t,x)

∂t
+ ∇x · 〈k(v) ⊗ v · ∇xR(t,x)〉 = 0 , (6.3.19)

while integrating (6.3.9)–(6.3.12) over u yields

∂R(t,x)

∂t
= 0 . (6.3.20)

In the limit

ε → 0 , ⇒ Rε(t,x) ∼= (R(t,x), R(t,x)) ,

which is a solution of the linear diffusion equation (6.3.19) or, respectively,
of the mass conservative equation (6.3.20) and where (R, R) is the vector
with components corresponding to the two components of fε.

Proof of Theorem 6.3.1: Multiplying equation (6.3.1) by εp, letting ε
go to zero, and using the moment convergence assumptions yields Lf = 0.
This implies that f ∈ Ker(L) and consequently can be written as in (6.3.4).
Integrating equation (6.3.1) over v and using the fact that 〈Lf, ψ〉 = 0 yields

∂t〈fε, ψ〉 +
3∑
1

∂xj

〈
Vj

fε

ε
, ψ

〉
= εq−1〈Γ22

11(fε, fε), ψ〉

+ εr−1〈Γ21
12(fε, fε), ψ〉 . (6.3.21)

The asymptotic limit of

〈
Vj

fε

ε
, ψ

〉
has to be estimated to recover the

limit in (6.3.21). Then, using Lemma 6.2.5, and recalling from i) of Lemma
6.2.4 that L is self-adjoint, we find that

〈
Vj

fε

ε
, ψ

〉
=

〈Lfε

ε
,
kj(v)

M
ψ

〉
. (6.3.22)

Eliminating Lfε and using equation (6.3.1) yields

1

ε
L(fε) = εp ∂fε

∂t
+ εp−1

3∑
j=1

∂Vjfε

∂xj

− εp+q−1Γ22
11(fε, fε) − εp+r−1Γ21

11(fε, fε) . (6.3.23)
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Finally, combining (6.3.22) and (6.3.23), the following result is obtained:

3∑
j=1

∂

∂xj

〈
Vj

fε

ε
, ψ

〉
=

3∑
j=1

∂

∂xj

〈
εp ∂fε

∂t
+ εp−1

3∑
k=1

∂

∂xk
Vkfε

− εp+q−1Γ22
11(fε, fε) − εp+r−1Γ21

12(fε, fε),
kj(v)

M
ψ

〉
.

This term, with the hypothesis on the moments, converges to the fol-
lowing expression:

3∑
j=1

3∑
k=1

∂

∂xj

∂

∂xk
〈Vkf,

kj(v)

M
ψ〉 = 2∇x · 〈k(v) ⊗ v · ∇xρ〉 , (6.3.24)

when p = 1, or to 0 if p > 1.

The asymptotic quadratic term of (6.3.21) converges to the following
expression:

〈Γ22
11(Mρ, Mρ), ψ〉 + 〈Γ21

12(Mρ, Mρ), ψ〉 if q = r = 1 ,

〈Γ21
12(Mρ, Mρ), ψ〉 if r = 1, q > 1 ,

〈Γ22
11(Mρ, Mρ), ψ〉 if q = 1, r > 1 ,

and to

0 if r > 1, q > 1 .

This completes the proof.

6.4 Models with Proliferation and Destruction

The various models of cell populations dealt with in Chapters 3 to 5 are
characterized by a source term related to birth and death processes. There-
fore it is useful to deal with the derivation of macroscopic equations in this
relatively more general case.
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The formal structure of the equations including birth and death pro-
cesses terms (2.3.7), using the same notation we have seen in the preceding
sections, is as follows:

(
∂

∂t
+v · ∇x

)
f1(t,x,v, u)

= ν

∫
Dv

[
T (v,v∗)f1(t,x,v∗, u) − T (v∗,v)f2(t,x,v, u)

]
dv∗

+ (G11 − L11 + G12 − L12 + I11 + I12)(f, f)(t,x,v, u) ,(
∂

∂t
+v · ∇x

)
f2(t,x,v, u)

= ν

∫
Dv

[
T (v,v∗)f2(t,x,v∗, u) − T (v∗,v)f1(t,x,v, u)

]
dv∗

+ (G21 − L21 + G22 − L22 + I21 + I22)(f, f)(t,x,v, u) ,

(6.4.1)

where the operators G and L are defined by (6.2.4) and (6.2.5) and Iij is
defined by

Iij(f, f) = fi(t,x,v, u)

∫
Du

∫
Du

ηijμijfj(t,x,v, u∗) du∗ . (6.4.2)

The mathematical model described by (6.4.1) is characterized by three
types of rates, the first one related to the dynamics of the mechanical
variables, and the second and third one to the biological rates. Experimen-
tal evidence suggests that we study those regimes such that the biological
terms, ηij and μij , are of a smaller order with respect to the mechani-
cal ones, i.e., νij . In order to simplify the equations we take η11 = η22,
η12 = η21, μ11 = μ22, and μ12 = μ21. Then we set

η11 = εq , η12 = εr , μ11 = εδ , μ12 = εγ , q, r, δ, γ ≥ 0 ,

and

ν =
1

εp
, p > 0,

where ε is a small parameter which will be allowed to tend to zero. In
addition, the slow diffusion scale time τ = εt will be used so that the
following scaled equation is obtained:

ε
∂

∂t
fε(t,x,v, u) +

3∑
j=1

Vj
∂

∂xj
fε(t,x,v, u)
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=
1

εp
Lfε + εq Γ22

11(fε, fε) + εr Γ21
12(fε, fε)

+ εq+δI22
11 (fε, fε) + εr+γI21

12 (fε, fε) , (6.4.3)

where Γ22
11 and Γ21

12 are given by equations (6.3.2) and (6.3.3), respectively,
and the terms I21

12 and I22
11 are given by

I22
11 = (I11, I22), I21

12 = (I12, I21), Iij =
Iij(f, f)

ηijμij
, i, j = 1, 2. (6.4.4)

Suppose now that fε converges in the distributional sense to a function
f as ε goes to zero. Moreover, assume that all moments of fε, Γij(fε, fε),
and Iij(fε, fε) converge to the corresponding moments in the distribu-
tional sense and that all formally small terms vanish. Multiplying equation
(6.4.3) by εp, letting ε go to zero, and using convergence assumptions yields
Lf = 0. This implies that f ∈ Ker(L) and consequently it can be written
as in (6.3.4). Integrating equation (6.4.3) over v and using the fact that
〈Lf, ψ〉 = 0 yields

∂

∂t
〈fε, ψ〉 +

3∑
j=1

∂

∂xj
〈Vj

fε

ε
, ψ〉 = J [fε]

= εq−1〈Γ22
11(fε, fε), ψ〉 + εr−1〈Γ21

12(fε, fε), ψ〉

+ εq+δ−1〈I22
11 (fε, fε), ψ〉 + εr+γ−1〈I21

12 (fε, fε), ψ〉 . (6.4.5)

Before calculating the limit for ε → 0 in the right-hand side of (6.4.5), we

must take r, q ≥ 1 and δ, γ ≥ 0. The asymptotic limit of

〈
Vj

fε

ε
, ψ

〉
must

be estimated to recover the limit in (6.4.5). Then, using Lemma 6.2.5, and
recalling from i) of Lemma 6.2.4 that L is self-adjoint, we find that

3∑
j=1

∂

∂xj

〈
Vj

fε

ε
, ψ

〉
=

3∑
j=1

∂

∂xj

〈
εp ∂

∂t
fε + εp−1

3∑
k=1

∂

∂xk
Vkfε

− εp+q−1Γ22
11(fε, fε) − εp+r−1Γ21

12(fε, fε) − εq+δ+p−1I22
11 (fε, fε)

− εr+γ+p−1I21
12 (fε, fε),

kj(v)

M
ψ

〉
. (6.4.6)
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The limit of (6.4.6) exists if p ≥ 1. This term, under the hypothesis on
the moments, converges to the expression (6.3.24) when p = 1, or to 0 if
p > 1.

Remark 6.4.1. It is clear that if r, q > 1, then the asymptotic limit of the
quadratic term of (6.4.5) converges to zero for any δ, γ ≥ 0, in which case
one formally obtains the mass conservation equation or the linear diffusion
equation depending of the values of p:

∂ρ

∂t
+ ∇x · 〈k(v) ⊗ v · ∇xρ〉 = 0, p = 1 , (6.4.7)

∂ρ

∂t
= 0, p > 1 , (6.4.8)

which are the same equations (6.3.8), (6.3.12) in the case of mass-conser-
vating systems (6.2.3). Therefore, for any δ, γ ≥ 0, the presence of source
terms in the case r, q > 1 does not affect the macroscopic limit equations.

Remark 6.4.2. One can compute the proliferating term in the limit ε → 0.
For any i, j,

〈Iij(fε, fε)〉v −→ 〈Iij(Mρ, Mρ)〉v = 〈M2(v)〉vρ〈ρ〉u . (6.4.9)

The asymptotic limit of the quadratic term of (6.4.5) clearly depends
on δ and γ. In order to simplify the analysis, we take r = q, and only the
following cases will be analyzed.

I: γ = 0 , δ = 0 , q = 1. In this case, the quadratic term of (6.4.5) converges
to

〈Γ22
11(Mρ, Mρ), ψ〉 + 〈Γ21

12(Mρ, Mρ), ψ〉 + 〈I21
12 (Mρ, Mρ), ψ〉 .

II: δ = 0, γ = 0, q = 1. In this case, the quadratic term of (6.4.5) converges
to

〈Γ22
11(Mρ, Mρ), ψ〉 + 〈Γ21

12(Mρ, Mρ), ψ〉 + 〈I22
11 (Mρ, Mρ), ψ〉 .

Letting ε go to zero in (6.4.5), and using (6.4.6) and (6.4.9), one obtains
the following result:

Theorem 6.4.1. Let (6.2.19) and assumption 6.2.1 hold, suppose that
q = 1, γ = 0, δ = 0 or q = 1, δ = 0, γ = 0, and let fε(t,x,v, u) be a sequence
solutions to the scaled kinetic equation (6.4.3) such that fε converges, in
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the distributional sense, to a function f as ε goes to zero. Furthermore,
assume that the moments

〈fεi〉,
〈

k(v)

M(v)
⊗ vfεi

〉
, 〈Γij(fε, fε)〉, 〈Iij(fε, fε)〉, i, j = 1, 2

converge in the sense of distributions to the corresponding moments

〈fi〉,
〈

k(v)

M(v)
⊗ vfi

〉
, 〈Γij(f, f)〉, 〈Iij(f, f)〉, i, j = 1, 2 ,

and that all formally small terms vanish. Then the asymptotic limit f
takes the form (6.3.4) where ρ(t,x, u) is the weak solution of the following
equation:

p = 1 :
∂ρ

∂t
−∇x · (D · ∇xρ) =

〈M2〉v
2

2∑
i,j=1

Γij(ρ, ρ) + 〈M2〉vρ〈ρ〉u ,

(6.4.10)
and

p > 1 :
∂ρ

∂t
=

1

2
〈M2〉v

2∑
i,j=1

Γij(ρ, ρ) + 〈M2〉vρ〈ρ〉u , (6.4.11)

where Γij is defined by (6.3.13).

III: q = 1, δ = 0, γ = 0. In this case, the quadratic term of (6.4.5)
converges to

〈Γ22
11(Mρ, Mρ), ψ〉 + 〈Γ21

12(Mρ, Mρ), ψ〉 + 〈I22
11 (Mρ, Mρ), ψ〉

+ 〈I21
12 (Mρ, Mρ), ψ〉 .

The macroscopic description is defined by the following result:

Theorem 6.4.2. Let fε(t,x,v, u) be a sequence solutions to the scaled
kinetic equation (6.4.3). Let the assumptions of Theorem 6.4.1 hold, and
suppose that q = 1 and γ = δ = 0. Then the asymptotic limit f has the
form (6.3.4) where ρ(t,x, u) is the weak solution of the following equations:

p = 1 :
∂ρ

∂t
−∇x · (D · ∇xρ) =

〈M2〉v
2

2∑
i,j=1

Γij(ρ, ρ) + 2〈M2〉vρ〈ρ〉u ,

(6.4.12)
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and

p > 1 :
∂ρ

∂t
=

1

2
〈M2〉v

2∑
i,j=1

Γij(ρ, ρ) + 2〈M2〉vρ〈ρ〉u . (6.4.13)

IV: q = 1, δ = 0, γ = 0. The asymptotic quadratic term of (6.4.5)
converges to

〈Γ22
11(Mρ, Mρ), ψ〉 + 〈Γ21

12(Mρ, Mρ), ψ〉 .

The macroscopic picture is now given by

Theorem 6.4.3. Let fε(t,x,v, u) be a sequence solutions to the scaled
kinetic equation (6.4.3). Let the assumptions of Theorem 6.4.1 hold, and
suppose that q = 1, γ = 0, and δ = 0. Then the asymptotic limit f has the
form (6.3.4) where ρ(t,x,u) is the weak solution of the following equations:

p = 1 :
∂ρ

∂t
−∇x · (D · ∇xρ) =

〈M2〉v
2

2∑
i,j=1

Γij(ρ, ρ) , (6.4.14)

and

p > 1 :
∂ρ

∂t
=

1

2
〈M2〉v

2∑
i,j=1

Γij(ρ, ρ). (6.4.15)

Remark 6.4.3. In this case, the proliferating terms disappear in the limit
and therefore they do not influence the behavior of the macroscopic limit
equations.

Remark 6.4.4. The case γ = δ = 0, which corresponds to μ11 = μ12 =
μ21 = μ22 = Constant = 1 is particularly important in birth and death
processes. Let R(t,x) and Rε(t,x) be the functions defined as in remark
6.3.2. Integrating (6.4.12) and (6.4.13) over u yields

∂R(t,x)

∂t
−∇x · (D · ∇xR(t,x)) = 2〈M2〉vR2(t,x) , (6.4.16)

or

∂R(t,x)

∂t
= 2〈M2〉vR2(t,x) . (6.4.17)

In the limit

ε −→ 0 , Rε(t, x) =

∫
IR3

×IR
fε(t,x,v, u) dv du ∼= (R(t,x), R(t,x)) ,
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which is a solution of the nonlinear diffusion equation (6.4.16) or respect-
ively of the nonlinear evolution equation (6.4.17).

Remark 6.4.5. The macroscopic equation (6.4.15) can be obtained from
kinetic model (6.4.1) in the case p = 1, without the diffusion time scaling
and in the case q = δ = γ = 0. In this case the model (6.4.1) becomes

∂

∂t
fε(t,x,v, u) +

3∑
j=1

Vj
∂fε(t,x,v, u)

∂xj
=

1

ε
Lfε + Γ22

11(fε, fε)

+ Γ21
12(fε, fε) + I22

11 (fε, fε) + I21
12 (fε, fε) . (6.4.18)

In the limit ε −→ 0,

fε(t,x,v, u) −→ (Mρ, Mρ),

and 〈
3∑

j=1

Vj
∂

∂xj
fε(t,x,v, u), ψ

〉
−→ 0.

The scalar product of equation (6.4.18) with ψ yields equation (6.4.15).

Example. Let us discuss a specific model for the turning kernel and com-
pute explicit formulas for the diffusion coefficient. This task is straightfor-
ward for the relaxation time model

T (v,v∗) = σM(v), σ > 0 . (6.4.19)

In this case, the leading turning operator becomes

L(f) = σ

(
M〈f1〉v − f2, M〈f2〉v − f1

)
. (6.4.20)

In particular one derives from equation (6.2.30) the following expression
for the diffusion coefficient:

D =
1

σ

∫
Dv

v ⊗ vM(v) dv . (6.4.21)

Moreover, if we assume rotational invariance of the equilibrium distribution,
i.e., M = M(|v |), one gets the isotropic tensor D:

D =

(
1

3σ

∫
Dv

|v |2 M(v) dv

)
· I . (6.4.22)
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For q = 1, γ = δ = 0, the following nonlinear diffusion equation and
nonlinear evolution equation are obtained:

p = 1 :
∂ρ

∂t
− dΔxρ =

〈M2〉v
2

2∑
i,j=1

Γij(ρ, ρ) + 2〈M2〉vρ〈ρ〉u , (6.4.23)

and

p > 1 :
∂ρ

∂t
=

1

2
〈M2〉v

2∑
i,j=1

Γij(ρ, ρ) + 2〈M2〉vρ〈ρ〉u , (6.4.24)

where

d =
1

3σ

∫
Dv

|v |2 M(v) dv . (6.4.25)

When d −→ 0, equation (6.4.24) formally reduces to (6.4.23). The question
is, how can we get equation (6.4.24) in the case p = 1?

The following answer is proposed. For d very small, this means that σ
is very large; let σ = 1/εa, a > 0. For p = q = 1, γ = δ = 0, one gets the
following model:

ε
∂

∂t
fε(t,x,v, u) +

3∑
j=1

Vj
∂

∂xj
fε(t,x,v, u) =

1

εa+1
Lfε + ε

(
Γ22

11(fε, fε)

+ Γ21
12(fε, fε) + I22

11 (fε, fε) + I21
12 (fε, fε)

)
, (6.4.26)

where L = L/σ. By taking the scalar product of (6.4.26) with ψ, we obtain

∂

∂t
〈fε, ψ〉+

3∑
j=1

∂

∂xj

〈
Vj

fε

ε
, ψ

〉
= J [fε] = 〈Γ22

11(fε, fε), ψ〉

+ 〈Γ21
12(fε, fε), ψ〉 + 〈I22

11 (fε, fε), ψ〉 + 〈I21
12 (fε, fε), ψ〉. (6.4.27)

The asymptotic limit of

〈
Vj

fε

ε
, ψ

〉
has to be estimated to recover the

limit in (6.4.27).
For ε → 0, one has

J =

3∑
j=1

∂

∂xj

〈
Vj

fε

ε
, ψ

〉
−→ 0 , (6.4.28)
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where

J = εa

[ 3∑
j=1

∂

∂xj

〈
ε

∂

∂t
fε +

3∑
k=1

∂

∂xk
Vkfε

− ε

(
Γ22

11(fε, fε) + Γ21
12(fε, fε)

+ I22
11 (fε, fε) + I21

12 (fε, fε)

)
,

kj(v)

M
ψ

〉]
. (6.4.29)

This implies that the diffusion term vanishes and gives the macroscopic
equation (6.4.24) in the limit σ → +∞. One concludes that equation
(6.4.24) can be obtained from the kinetic model even in the case p = 1 in
the regime σ → +∞.

6.5 Application

A methodological approach to the derivation of macroscopic equations from
the mesoscopic description has been developed in the preceding sections by
means of a suitable generalization of the methods of kinetic theory. This
section proposes a simple application with the aim of showing how the
method can be applied to the analysis of a specific model in the case of
conservative interactions only. The reader may develop additional calcula-
tions related to models with proliferation and destruction of cells.

As we shall see, although nonconservative phenomena are neglected, the
macroscopic description, derived according to the above method, clearly
shows nonlinear features.

We consider the class of equations proposed in Chapter 2 in the case of
two populations: endothelial cells which may start progressing, and tumor
cells.

Specifically we refer to assumptions 3.3.1–3.3.6 of Chapter 3. Hence, the
mathematical model consists of the following integro-differential evolution
equation:

(
∂f1

∂t
+v · ∇xf1 − νL1f

)
(t,x,v, u)

= η11n1(t,x,v)

(
1√

2πs11

∫ ∞

−∞

exp

{
− (u − (w + α11))

2

2s11

}
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× f1(t,x,v,w) dw − f1(t,x,v, u)

)

+ η12n
A
2 (t,x,v)

(
1√

2πs12

∫ ∞

0

exp

{
− (u − (w − α12))

2

2s12

}

× f1(t,x,v,w) dw

− U[0,∞)(u)f1(t,x,v, u)

)
, (6.5.1a)

and

(
∂f2

∂t
+ v · ∇xf2 − νL2f

)
(t,x,v, u)

= η21n
T
1 (t,x,v)

(
1√

2πs21

∫ ∞

0

exp

{
− (u − (w − α21))

2

2s21

}

× f2(t,x,v,w) dw

− U[0,∞)(u)f2(t,x,v, u)

)
, (6.5.1b)

where UD(u) is the characteristic function and

n1(t,x,v) =

∫ ∞

−∞

f1(t,x,v, u) du , (6.5.2)

nA
2 (t,x,v) =

∫ +∞

0

f2(t,x,v, u) du , (6.5.3)

and

nT
1 (t,x,v) =

∫ ∞

0

f1(t,x,v, u) du . (6.5.4)

The model is characterized by three phenomenological parameters:

α11 refers to the variation of the progression due to encounters between
endothelial cells. It describes the tendency of a normal cell to degenerate
and to increase its progression.

α12 is the parameter corresponding to the ability of the active immune
cells to reduce the progression of tumor cells.

α21 is the parameter corresponding to the ability of tumor cells to inhibit
the active immune cells.
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We are looking for the diffusive/hydrodynamic asymptotic limit of equa-
tion (6.5.1) when the parameters ηij , i, j = 1, 2 are of a smaller order with
respect to the mechanical one. We suppose that η12 = η21 = εr, η11 =
εq, r, q ≥ 1, and ν = 1

εp , p ≥ 1. Under the above assumption, model (6.5.1)
can be rewritten as follows:

(
ε
∂f1

∂t
+v · ∇xf1 − 1

εp
L1f

)
(t,x,v, u)

= εqn1(t,x,v)

(
1√

2πs11

∫ ∞

−∞

exp

{
− (u − (w + α11))

2

2s11

}

× f1(t,x,v,w) dw

− f1(t,x,v, u)

)

+ εrnA
2 (t,x,v)

(
1√

2πs12

∫ ∞

0

exp

{
− (u − (w − α12))

2

2s12

}

× f1(t,x,v,w) dw

− U[0,∞)(u)f1(t,x,v, u)

)
,

(
ε
∂f2

∂t
+v · ∇xf2 − 1

εp
L2f

)
(t,x,v, u)

= εrnT
1 (t,x,v)

(
1√

2πs21

∫ ∞

0

exp

{
− (u − (w − α21))

2

2s21

}

× f2(t,x,v,w) dw

− U[0,∞)(u)f2(t,x,v, u)

)
.

(6.5.5)

The various results of Section 6.3 can be exploited to find the possible
asymptotic limit equations. In particular, let (Mρ(t,x, u), Mρ(t,x, u)) be
an approximation of fε; then some specific cases, among several ones, of
different evolution equations for the density ρ are described below. Specif-
ically, three different regimes will be dealt with, corresponding to different
ratios between the biological and mechanical interaction rates. As we shall
see, the more the biological interaction rate grows with respect to the me-
chanical one, the more the macroscopic evolution equation shifts from a
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diffusion process to a local mass evolution. Specifically, the following cases
will be examined:

Case I: p = q = r = 1, η11
∼= η12

∼= ε, ν ∼= 1
η11

∼= 1
ε ;

Case II: q, r > 1, p = 1 η11
∼= εq, η12

∼= εr, ν ∼= 1
ε ;

Case III: q = r = 1, p > 1, η11
∼= η12

∼= ε, ν ∼= 1
ηp

11

∼= 1
εp .

The analysis provides the following results:

Case I: The following nonlinear diffusion equation is derived for p = q =
r = 1:

∂ρ

∂t
−∇x · (D · ∇xρ)

=
〈M2〉v

2

(
〈ρ〉u

(
1√

2πs11

∫ ∞

−∞

exp

{
− (u − (v + α11))

2

2s11

}
ρ(·,v) dv − ρ

)

+ 〈U[0,∞)(u)ρ〉u
(

1√
2πs12

∫ ∞

0

exp

{
− (u − (v − α12))

2

2s12

}
ρ(·,v) dv

− U[0,∞)(u)ρ

)

+ 〈U[0,∞)(u)ρ〉u
(

1√
2πs21

∫ ∞

0

exp

{
− (u − (v − α21))

2

2s21

}
ρ(·,v) dv

− U[0,∞)(u)ρ

))
. (6.5.6)

Case II: Linear diffusion is obtained for r > 1, q > 1, and p = 1:

∂ρ

∂t
−∇x · (D · ∇xρ) = 0 . (6.5.7)

This means that the ratio with respect to ν of the rates of biological
interactions is of a smaller order. This means that nonlinear diffusion takes
place only if the rate of biological interactions overcomes a critical value,
i.e., case I.

Case III: Nonlinear evolution equations are obtained for r = q = 1 and
p > 1:

∂ρ

∂t
=
〈M2〉v

2

(
〈ρ〉u

(
1√

2πs11

∫ ∞

−∞

exp

{−(u − (v + α11))
2

2s11

}
ρ(·,v) dv − ρ

)



148 Chapter 6. Models with Space Structure

+ 〈U[0,∞)(u)ρ〉u
(

1√
2πs12

∫ ∞

0

exp

{
− (u − (v − α12))

2

2s12

}
ρ(·,v) dv

− U[0,∞)(u)ρ

)

+ 〈U[0,∞)(u)ρ〉u
(

1√
2πs21

∫ ∞

0

exp

{
− (u − (v − α21))

2

2s21

}
ρ(·,v) dv

− U[0,∞)(u)ρ

))
. (6.5.8)

This corresponds to the opposite situation with respect to the previ-
ous two cases. Now the rate of mechanical interactions becomes relatively
greater than those corresponding to cases I and II.

Remark 6.5.1. It is worth stressing again that the biological interpreta-
tion of the above result is that the diffusion process, which may generate
invasion, only occurs when biological interactions become predominant with
respect to mechanical ones.

6.6 Critical Analysis

This chapter has shown how different macroscopic equations (with dif-
ferent mathematical structures) can be derived corresponding to rates be-
tween the biological and mechanical interactions terms.

The analysis may appear tediously formal, and somehow far removed
from biological sciences. On the other hand, the mathematical approach
is technically necessary for a rigorous derivation of macroscopic equations
from microscopic descriptions. The reader who is not interested in the
mathematical analysis may skip over all the technical calculations and reach
the final conclusion of Sections 6.3 and 6.4 which deal, respectively, with
equations in the absence and presence of proliferation terms. The mathem-
atical structure of the evolution equations (parabolic, hyperbolic, partial
differential equations, ordinary differential equations) is directly related to
the rates between mechanical and biological interactions terms. These rates
can be experimentally determined.

The derivation of macroscopic models from underlying microscopic de-
scriptions is necessary for overcoming purely heuristic reasoning which may
lead to an incorrect description of biological matter. Applied mathemat-
icians are getting more and more involved in this difficult research field as
documented in the recent paper by Lachowicz (2005).
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It is worth stressing that the analysis developed in this chapter is based
on assumption 6.2.1 of Section 6.2, which has to be verified for the specific
system which is object of the modelling process. Generalizations of the
mathematical approach with the above assumption removed do not appear
to be tractable. On the other hand, using the same approach to derive
macroscopic equations from underlying microscopic descriptions for models
technically different from those dealt with in the preceding chapters appears
to be an interesting research perspective, which may possibly lead to a
deeper understanding of the mathematical structure of biological growing
tissues. Possibly even the traditional approach of continuum mechanics
may take advantage of some ideas proposed in this chapter.

It is worth mentioning that the several biological phenomena which have
a macroscopic appearance, such as pattern formation or tumor growth, are
characterized by the time evolution of biological functions. Therefore the
overall description of the system is given by equations which change in type,
along the various model equations reported in Section 6.3.

The above reasoning is even more crucial in the case of the multiscale
approach proposed by Alarcon, et al. (2004, 2005). Their approach de-
scribes the overall system of cancer modelling as a system of systems, each
at different scales. Consequently the influence of the evolution of biological
functions over the evolution of each specific subsystem is a specific pecu-
liarity of the mathematical description. An interplay between the above-
mentioned multiscale approach and the mathematical analysis proposed in
this chapter is definitely an interesting research perspective.



7

Critical Analysis

and Forward Perspectives

... mathematical models cannot be designed on the basis of a purely heuristic

approach. They should be referred to well-defined mathematical structures,

which may act as a mathematical theory.

— Bellomo and Forni (2006)

7.1 Critical Analysis

A general mathematical approach to the modelling of multicellular systems
in view of applications to the mathematical description of complex biolo-
gical systems has been developed in this book.

The modelling of the immune response is the application which has
been analyzed in detail, with a focus also on interactions between cancer
and immune cells. The modelling concerns a more detailed description of
the phenomena developed at the cellular scale with respect to models which
provide an overall macroscopic description. In particular, various mathem-
atical models proposed in Chapter 3 are able to describe the competition
between the immune system and pathogenic cells. One of them describes
the progression of specific tumor cells in competition with the immune cells,
as we have seen in Chapter 5.

Models have been derived on the basis of methods of mathematical ki-
netic theory to describe the evolution of the distribution function over the
microscopic biological state of two cell populations, according to the general
framework proposed in Chapter 2. Microscopic interactions modify the bio-
logical state of the interacting pairs and generate proliferation/destruction
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processes. The evolution equations are derived from suitable balance equa-
tions related to the elementary volume of the state space. The inlet and
outlet flux of cells is computed starting from the above-mentioned micro-
scopic interactions.

A qualitative analysis of the initial value problems related to the appli-
cation of the models to real biological phenomena has been developed in
Chapter 4 to obtain a detailed description of the evolution of the immune
competition. The overall analysis has been completed by the simulations
and biological interpretations proposed in Chapter 5, which have given a de-
tailed picture of the above qualitative behavior. The model has been shown
to describe several interesting phenomena related to well-defined biological
situations.

The above mathematical description provides a useful background for
modelling the application of therapeutic actions, because it gives some in-
dication of the parameters which have to be modified in order to recover
the desired output of the competition. Of course, only medicine can appro-
priately modify the parameters of the model, while mathematics can only
contribute to organizing and addressing the above mentioned therapeutic
actions.

A crucial issue still remains: identifying the phenomenological para-
meters of the model. The analysis of Chapter 5 has shown how these
parameters can be technically identified by suitable comparisons with ex-
perimental data. In principle, as suggested in Bellomo and Forni (2006),
developing a mathematical theory of the immune competition may lead to
the characterization of the above parameters by theoretical methods based
on methods of immunology.

Chapter 6 has been devoted to the derivation of macroscopic equations
from the microscopic kinetic equations. Several models of continuum me-
chanics for tumors growing in vivo have been developed: a variety of mac-
roscopic models are reviewed, among others, by Bellomo, De Angelis, and
Preziosi (2003). The models are obtained by different methodological ap-
proaches. All of them should be regarded as heuristic models considering
that the evolution equations require a description of the material behavior
from phenomenological models. On the other hand, the asymptotic theory
dealt with in Chapter 6 has shown how different macroscopic models can be
obtained according to different ways of modelling microscopic interactions.
Therefore, a precise link between microscopic and macroscopic description
is stated.

The immune competition, as reported in the review paper by Delves
and Roitt (2000), involves several complex phenomena which occurr at the
cellular and subcellular scale; moreover, some biological functions may be
statistically distributed in the cell population; see Greller, Tobin, and Poste
(1996). These features suggest, as already discussed in Chapter 1, the de-
velopment of methods of nonequilibrium statistical mechanics, following the
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suggestions given in the papers by Bellomo and Forni (2006) and Hartwell,
Hopfield, Leibner, and Murray (1999). The variety of phenomena described
in the models analyzed in Perelson and Weisbuch (1997) is a valuable ref-
erence framework.

A critical analysis is developed in this final chapter addressed to certain
aspects of modelling. Moreover, some suggestions for alternative mathem-
atical frameworks will be given. Finally, referring to the above-mentioned
paper by Bellomo and Forni (2006), a critical analysis on the interplay
between mathematical and biological sciences is brought to the reader’s
attention.

7.2 Developments Toward New Models

The class of mathematical models proposed in Chapter 3, although quite
general, should be regarded as the conceptual background to be further
developed toward relatively more sophisticated models designed to describe
additional phenomena.

Reasoning about conceivable developments and research perspectives,
we can point out the following:

• The number of populations of immune cells can be enlarged with the aim
of specializing the biological functions within each population, rather
than modelling the collective behavior of the whole system as one popu-
lation only.

• The modelling of therapeutic actions can be obtained by adding further
populations of particles which may activate the immune response, or
which have the pharmakinetic ability to weaken cells which are carriers
of a pathology (abnormal cells).

A specific development of these suggestions has been initiated in a re-
cent paper by Bellouquid and Delitala (2005), where some examples of
mathematical models are proposed referring specifically to the competition
between immune and tumor cells. Here, we simply report one of the models
proposed in this paper.

Specifically, consider a system where a third population, corresponding
to cytokine signals, is added to the first two populations of the model pro-
posed in Chapter 3. The modelling can be based on the same assumptions
reported in Section 3.3 for interactions between endothelial and immune
cells, while, referring to interactions with cells of the third population, the
only interaction with nontrivial output is the encounter between an immune
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cell and an active cytokine, i.e., a particle of the third population with pos-
itive state. In particular the immune cell (either inhibited or not) increases
its state while the cytokine decreases ability of activating or inhibiting its
specific target cells.

u1, u2 ∈ IR : ϕ13 = ϕ31 = ϕ33 = δ(u − u1) . (7.2.1)

u1 > 0 , u2 ∈ IR , m32 = u1 − α32 , (7.2.2)

u1 ∈ IR , u2 > 0 , m23 = u1 + α23 . (7.2.3)

The mathematical model, in the case where only conservative encoun-
ters are significant, is obtained through calculations we have seen in the
preceding chapters. The resulting model is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f1

∂t
(t, u) = n1(t)f1(t, u + α11) − f1(t, u)n1(t) − f1(t, u)nA

2 (t)U[0,∞)(u)

+ nA
2 (t)f1(t, u + α12)U[0,∞)(u + α12) ,

∂f2

∂t
(t, u) = nT

1 (t)f2(t, u + α21)U[0,∞)(u + α21) + nA
3 (t)f2(t, u − α23)

− f2(t, u)nT
1 (t)U[0,∞)(u) − nA

3 (t)f2(t, u) ,

∂f3

∂t
(t, u) = n2(t)

[
f3(t, u + α32)U[0,∞)(u + α32) − f3(t, u)U[0,∞)(u)

]
.

(7.2.4)

The parameters α11, α12, and α21 have the same meaning as in the
model proposed in Section 3.3, while α23 corresponds to the ability of cy-
tokine signals to activate the immune defense ability and α32 is the param-
eter corresponding to the ability of immune cells to exploit cytokines to
improve their reaction state.

The interested reader could also add proliferating and destructive in-
teractions to obtain a model which can be analyzed by the qualitative and
computational methods proposed in Chapters 4 and 5.

7.3 Mean Field Interactions

The mathematical framework proposed in Chapter 3 is based on the
assumption that interactions between cells are localized in space. This may
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be true when the movement of cells is limited to small migrations. In this
case, the framework used in Chapter 6 to derive macroscopic equations is a
valid tool for dealing with multicellular systems. On the other hand, various
papers suggest the use of long-range interactions to analyze the movement
of cells which may feel the presence of signals from other cells at a distance.
It has been proposed that one could use short-range interaction schemes for
the exchange of biological functions, while long-range interaction schemes
can be used for cellular movement. This idea has generated a detailed
mathematical analysis in Bellouquid and Delitala (2005), where a class of
evolution equations has been derived referring to long-range interaction
schemes.

Bearing all of the above in mind, it is worth reporting some results
proposed in the above-cited paper, with the aim of completing the tools
which are available toward the modelling of multicellular systems.

Specifically, mechanical interactions are assumed to be of a mean field
type, considering that cells feel a reciprocal presence even at a long distance,
while biological interactions are assumed to be of a short-range type, due
to binding phenomena between cells which are possible only by contact.

Biological short-range interactions can be modelled following the same
reasoning developed in this book, while, referring to the mechanical long-
range interaction, the test cell of the ith population is assumed to be subject
to an action over the mechanical variables, Pm

ij = Pm
ij (x,x∗,u,u∗), due to

the interaction with field cells of the jth population which are in a suitable
interaction domain of the test cell.

The resultant mechanical action of the cells of the jth population
in the action domain Ω of the test particles is given by

Fm
ij [f ](t,x,u) =

∫
D

Pm
ij (x,x∗,u,u∗) fj(t,x∗,v∗,u∗) dx∗ dv∗ du∗ , (7.3.1)

where D = Ω × Dv × Du, and Ω is the interaction domain of the test cell:
hence, x∗ /∈ Ω ⇒ Pij = 0.

As in the case of the purely short-range interactions presented in this
book, the evolution equations are obtained by equating the rate of variation
of the distribution function in the elementary volume of the state space to
the inlet and outlet flux due to microscopic interactions, both mechanical
and biological. Calculations yield
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∂

∂t
fi(t,x,v,u)+v · ∇xfi(t,x,v,u)

+
n∑

j=1

Fm
ij [f ](t,x,u)∇v

(
fi(t,x,v,u)

)

=
n∑

j=1

∫
D×D

cij |v1 − v2|Bij(u1,u2;u)fi(t,x,v1,u1)

× fj(t,x,v2,u2) dv1 du1 dv2 du2

− fi(t,x,v,u)
n∑

j=1

∫
D

cij |v − v2|
[
1 − μij(u,u2)

]

× fj(t,x2,v2,u2) dv2 du2 . (7.3.2)

The general framework given in equation (7.3.2) can be used to model
systems with mixed types of interactions. This means that specific mod-
els may describe certain interactions, say mechanical, by long-range mod-
els and other, say proliferating/destructive, by localized interactions. Of
course, to build the specific model, suitable phenomenological assumptions
have to be given for the terms specifying the transition probabilities of both
mechanical and biological interactions. The guidelines are those offered in
the preceding chapters.

7.4 On the Interaction Between Biology and Mathematical
Sciences

This final section aims at reaching a deeper insight into the interactions
between mathematical and biological sciences in order to develop a bio-ma-
thematical theory for multicellular systems starting from the mathematical
tools proposed in this book. In other words, it is worth analyzing what is
still needed to obtain a mathematical theory for biological systems. Again
we refer to the paper by Bellomo and Forni (2006), which is specifically
devoted to this difficult topic.
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Some of the ideas and reasoning proposed in the above-cited paper will
be reported below and critically analyzed with reference to the contents of
this book. The analysis is related to the corresponding problem of deriving
a statistical mechanics theory for a multiparticle system belonging to living
matter.

One of the first steps in the development of a mathematical theory for
physical systems is the selection of the observation and representation scale.
In classical mechanic, the microscopic scale corresponds to particles, while
the macroscopic scale represents the continuum representation, where a
finite number of particles is contained in the elementary volume. According
to the fundamental paradigm of continuum mechanics, the ratio between
the number of particles and the measure of the volume is finite even when
the said volume tends to zero.

The dynamics at the microscopic scale are described by evolution equa-
tions, generally ordinary differential equations, which can be derived if the
interaction rules between particles can be defined on the basis of a suitable
physical theory. At the microscopic level, rather than describing the state
of each particle (which may not be individually identified), one may look
for evolution equations for the statistical distribution over the microscopic
state. Mathematical kinetic theory provides such a framework in terms of
systems of integro-differential equations. Also in this case, modelling re-
quires a mathematical description of the microscopic interactions between
particles.

Referring to classical particles, Newtonian mechanics provides the nec-
essary background via equations describing particle interactions by attract-
ion/repulsion potentials of the interacting particles, or by mechanical col-
lisions which preserve mass, momentum, and energy. It is clear that the
theory cannot avoid experiments: for instance interaction potentials can be
obtained only from suitable experiments.

The substantial difference in dealing with multicellular systems, as op-
posed to multiparticle systems of classical mechanics, is that the micro-
scopic state includes, in addition to the mechanical microscopic state, the
biological functions of cells which have the ability to modify their mechani-
cal behavior; this feature generally modifies the rules of classical mechanics
due to the ability of cells to organize their dynamics.

This book has shown how a suitable mathematical framework can be
derived to model the behavior of the complex biological system we are deal-
ing with. Following the guidelines proposed in the above-cited paper, let us
summarize the sequential steps followed to derive the evolution equation.

The first step consists of selecting the populations which participate:
this means selecting, among a large variety of cell types, those which are
effectively involved in the phenomenon which is the object of the bio-
mathematical description. In some cases, various populations may be com-
pacted into only one population linked to a biological function which is the



158 Chapter 7. Analysis and Forward Perspectives

result of a collective behavior of various population. Indeed, this strategy
may reduce the complexity of the mathematical structure.

The second step consists of linking to each population a specific biolo-
gical function or set of functions.

The third step refers to the modelling of microscopic interactions for
each type, i.e., short-range interactions must have a suitable mathemat-
ical description. The terms for these interactions should be identified on
the basis of suitable biological theories rather then on phenomenological
assumptions.

The fourth step is technical, and essentially consists of deriving the evo-
lution equations for the distribution functions over the microscopic state of
each cell population. The derivation is obtained from suitable conservation
equations in the elementary volume of the state space.

It is clear that the crucial step is the third one. Indeed, it refers to
the attempt to transform a biological theory into a bio-mathematical one.
The application proposed in Chapter 3 fulfills, only partially, the require-
ments for obtaining such a theory. In fact, the assessment of microscopic
interaction functions is based only on a phenomenological interpretation of
physical reality. Therefore, the evolution equations should be regarded as
mathematical structures suitable for designing specific models rather than
the derivation of a proper bio-mathematical theory.

This is also the case when careful experiments are developed to identify
the parameters of the model. A procedure for developing experiments,
in the case of phenomena with predominantly biological interpretations,
and a technical identification of parameters are reported in Chapter 5 with
reference to a specific model. A careful identification of the parameters can
generate a reliable model.

An important issue is the parameter sensitivity analysis to verify if, by
a suitable selection of the parameters, a mathematical model is able to
describe phenomena of interest in biological sciences. Some of these phe-
nomena may be observed, but not quantitatively measured. Hopefully the
mathematical model can, at least in some cases, visualize events which may
be inferred, but not precisely observed. This aspect is an interesting issue
in developing a dialogue between applied mathematicians and theoretical
biologists.

However, the goal of developing a mathematical theory for biological
sciences is not yet reached, while it can be claimed that the methodological
approach which may contribute to such an ambitious aim has been pro-
posed. This can be regarded as a suggestion for research activity in the
field of theoretical biology. This means that biologists, in addition to their
traditional, valuable research activity may include the conceptual analysis
suitable for obtaining the description of the microscopic interaction terms,
according to a robust biological theory.



Appendix

Basic Tools of Mathematical
Kinetic Theory

1 Introduction

This Appendix gives a brief description of the Boltzmann equation and
provides a preliminary analysis of its fundamental properties. Additional
information on the derivation and the properties of Boltzmann equation
can be found in the pertinent literature cited in Chapter 1, e.g., the books
by Cercignani, Illner, and Pulvirenti (1994), Cercignani (1998), as well as
in the review paper by Perthame (2004).

The Appendix is organized as follows:
Section 1 deals with a phenomenological analysis and modelling of the

interaction between particles of a fluid and with the modelling of collision
dynamics.

Section 2 introduces the concept of the distribution function as a
statistical variable suitable for describing the properties of the system.

Section 3 deals with a simplified derivation of the Boltzmann equation
as a mathematical model for a large system of identical physical particles.

Section 4 deals with an analysis of the mathematical properties of
the Boltzmann equation with special attention to the characterization of
equilibrium properties and to the tendency toward equilibrium.

Section 5 shows how the continuous distribution function can be
properly discretized to generate a distribution function with discrete values.
In particular, a derivation of the discrete Boltzmann equation is proposed.
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This Appendix should be considered the mathematical background
to Chapter 2, where a generalized Boltzmann equation is derived for a
large system of interacting entities whose microscopic state is identified not
only by geometrical and mechanical variables, but also by an additional
(biological) microscopic variable which may assume different meanings cor-
responding to the specific system which is object of the modelling process.

2 Multiparticle Systems and Statistical Distribution

A physical fluid is an assembly of disordered interacting particles free to
move in all directions, inside a space domain Ω ⊆ IR3 possibly equal to the
whole space IR3. Assuming that the position of each particle is correctly
identified by the coordinates of its center of mass

xk , k = 1, . . . , N , (2.1)

the system may be reduced to a set of point masses relative to a fixed frame
of reference. For instance, when the shapes of the particles are spherically
symmetric, and hence rotational degrees of freedom can be ignored, the
microscopic state uk of each k-particle is identified by position and velocity

uk = {xk,vk} . (2.2)

The overall state of the system is given by the state of all particles, a 6×N
dimensional vector, and the modelling of the evolution of the system at the
microscopic scale means deriving 6 × N equations for the dynamics of the
particles.

An additional difficulty occurs when the domain Ω is bounded; the
particles interact with the boundaries of the domain. If Ω contains ob-
stacles, say subdomains Ω∗ ⊂ Ω which restrict the free motion, then the
particles also interact with the walls of Ω∗.

Consider the relatively simpler case of a fluid in an unbounded do-
main. In most fluids of practical interest, the state of each particle, atom,
or molecule evolves according to the laws of classical mechanics which, for
a system of N particles, correspond to the following set of ordinary differ-
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ential equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dxk

dt
= vk ,

mk
dvk

dt
= Fk(t,xk) = fk +

N∑
k′=1

fk′k(xk,xk′) ,

(2.3)

where it has been assumed that interactions depend only on the positions
of the particles and that only pair interactions are relevant. Fk is the
force corresponding to the mass mk acting on each particle and it may be
expressed as the superposition of an external field fk and of the force fk′k

acting on the k-particle due to the action of all other particles. In general,
these forces are regular functions on the phase space, and fk′k may be
allowed to exhibit point discontinuities when the distance between particles
is zero. Technically these forces are computed from suitable models of pair
interaction potentials.

The evolution of the whole system is obtained by solving system (2.3)
with initial conditions

xk(0) = xk0 , vk(0) = vk0 , k = 1, ..., N . (2.4)

This approach requires that the system of equations (2.3) can be solved,
and that the macroscopic properties of the fluid can be obtained as averages
involving the microscopic information contained in such solutions.

However, it is very hard or even impossible, to obtain a numerical
solution, without the introduction of suitable simplifications. Indeed, un-
avoidable inaccuracies in our knowledge of the initial conditions, the large
value of N , and the mathematical complexity result in the impossibility of
retrieving and manipulating all the microscopic information obtained from
(2.3) and (2.4) and contained in {xk,vk} for k = 1, . . . , N .

Indeed, our interest is in extracting the information sufficient to com-
pute the time and space evolution of a restricted number of macroscopic
observables such as the following quantities:

Number density: n = n(t,x);

Mass velocity: U = U(t,x);

Temperature: Θ = Θ(t,x);

Stress tensor: P = P(t,x) = [pij(t,x)], with i, j = 1, 2, 3.

However, recovering the macroscopic observables using the solutions to
equation (2.3) is an almost impossible task, not only due to the initial
difficulty in dealing with a large system of ordinary differential equations,
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but also to the difficulty of computing the averages which correctly de-
fine the macroscopic quantities. For instance, the mean mass density E(ρ)
should be obtained, for a system of identical particles, by examining the
ratio

E(ρ) = m
Δn

Δx
(2.5)

when the volume Δx tends to zero and the number of particles remains
sufficiently large. Obviously, fluctuations cannot be avoided. Additional
difficulties are related to the computation of the other macroscopic vari-
ables. Thus constitutive relations are needed.

Continuum fluid dynamics is another possible approach; see C. Trues-
dell and K.R. Rajagopal (2000). It consists of deriving the evolution equa-
tions related to the above macroscopic observables under several strong
assumptions, including the hypothesis of continuity of matter (continuum
assumption). This constitutes a good approximation of a real system only
if the mean distance between pairs of particles is small with respect to the
characteristic lengths of the system, e.g., the typical length of Ω or of Ω∗.
Conversely, if the intermolecular distances are of the same order of such
lengths, then the continuum assumption is no longer valid, and a discrep-
ancy is expected between the description of continuum fluid dynamics and
that obtained from equation (2.3).

An alternative way to understand the phenomenology of particle in-
teractions and hence their mathematical description is offered by mathem-
atical kinetic theory. Let us consider the interaction of two particles with
equal mass in the absence of an external force field. The first one will be
called the test particle with velocity v, while the second one, with velocity
w, will be called the field particle.

A simple kinetic model, still related to laws of classic mechanics, is
the localized collision model, in which particles move (in the absence of
an external force field) along straight lines until a localized collision obliges
them to change suddenly directions, like a pair of billiard balls. The model
leads to the derivation of the Boltzmann equation.

The collision model, which should be considered an approximation
of physical reality, is based on the assumption that two interacting par-
ticles with velocities v and w follow a straight line until a local collision
occurs; after the collision, they assume velocities v′ and w′, respectively,
as sketched in Figure 1.

Considering that collisions are assumed to be elastic and that mass,
momentum, and energy are preserved, the conservation equations for a
collision process of two particles of simple gas (v,w) �→ (v′,w′) can be
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Fig. 1. Test and field particle interaction.

written as follows: {
v + w = v′ + w′ ,

|v|2 + |w|2 = |v′|2 + |w′|2 .
(2.6)

Moreover, conservation of angular momentum can be used to com-
pute the post-collision velocities. In fact, the system (2.6) provides four
equations, while six equations are necessary for six scalar unknowns. The
solution can be formally written as follows:

{
v′ = v + C n ,

w′ = w − C n ,
(2.7)

where C is a scalar quantity and n is the unit vector in the direction of the
axis through the centers of the two interacting particles, bisecting the angle
between the relative velocities q = w − v and q′ = w′ − v′. Substituting
(2.7) into equation (2.6) and performing some calculations yields

{
v′ = v + n(n · q) ,

w′ = w − n(n · q) .
(2.8)
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3 The Distribution Function

As we have seen in Section 2 it appears necessary to look for a model
different from those of continuum fluid dynamics or of classical particle dy-
namics. Boltzmann’s idea was to introduce the one-particle distribution
function

f = f(t,x,v) : IR+ × IR3 × IR3 → IR+ , (3.1)

where IR+ means the set {t ∈ IR , t ≥ 0}. The distribution function, under
suitable integrability assumptions, is such that the total number of particles
is

N(t) =

∫
IR3

×IR3
f(t,x,v) dx dv . (3.2)

To simplify the notations, we will suppress the integration limits where
obvious, e.g., equation (3.2) is written as

N(t) =

∫ ∫
f(t,x,v) dx dv .

The knowledge of the above distribution function leads to the com-
putation of the physical quantities needed in a large variety of applications.
The Boltzmann equation is an evolution equation for such a distribution.
Indeed, if f is known and vf and v2f are in L1(IR

3 × IR3), then the mac-
roscopic observables can be computed as expectation values of the corre-
sponding microscopic functions. In particular

n(t,x) =

∫
f(t,x,v) dv , (3.3)

and

U(t,x) =
1

n(t,x)

∫
vf(t,x,v) dv (3.4)

are, respectively, the mass density and the mass velocity. The internal
energy is given by

E(t,x) =
1

2 n(t,x)

∫ [
v − U

]2
f(t,x,v) dv . (3.5)
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In equilibrium conditions, for a monatomic gas (of identical parti-
cles), the energy can be related, according to Boltzmann’s principle, to the
temperature Θ,

E =
3

2
k Θ , (3.6)

where k is the Boltzmann constant. Far from equilibrium it is reasonable
to deal with mechanical energy rather than with temperature.

Similar calculations lead to the pressure tensor with elements

pij(t,x) =

∫
(vi, Ui)(vj − Uj)f(t,x,v) dv , (3.7)

corresponding to the (i, j)th components of v and U.

Actually, one has to accept that the above kinetic type of modelling
only approximates physical reality. For instance, the state of an N -particle
gas is statistically described by the N -particle distribution function

fN = fN (t,x1,v1, . . . ,xk,vk, . . . ,xN ,vN ) . (3.8)

The one-particle distribution function is obtained as the marginal density of
the N -particle distribution function. A rigorous derivation of the evolution
equation leads to a hierarchy of equations, the BBGKY hierarchy, involving
all distributions from the first to the last one. Then, an evolution equation
for the one-particle distribution function may only be an approximation,
however useful, of physical reality.

In particular, the phenomenological derivation of the equation re-
quires the assumption of factorization of the two-particle distribution func-
tion of the two particles involved in the collision, the so-called molecular
chaos assumption,

f2 = f2(x1,v1,x2,v2) = f1(x1,v1)f1(x2,v2) . (3.9)

However, the above assumption is valid only for special initial con-
ditions and short time intervals. Consequently the Boltzmann equation
is not rigorously referred to Newtonian mechanics, but is intended as an
approximation developed to model large systems of interacting particles.
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4 On the Derivation of the Boltzmann Equation

The phenomenologic derivation of the Boltzmann equation is obtained by
a continuity equation within the elementary volume dx dv at the point
x,v of the six-dimensional phase space, i.e., the space of the physical and
velocity coordinates. The above elementary volume contains all particles
in [x, x + dx] with velocity [v, v + dv]. Thus, the time derivative of f
in a reference volume dx dv is equated to the difference between the gain
and loss terms of the particles which, due to the collisions, enter into the
volume and leave it:

df

dt
dx dv = (G[f, f ] − L[f, f ]) dx dv = J [f, f ]dx dv , (4.1)

where the total derivative (the material time derivative) comprises
local and convective effects:

df

dt
=

∂f

∂t
+ v · ∇xf , (4.2)

where the first term denotes the change of f for fixed x and the second one
describes the change of f due to the motion.

To compute gains and losses, one has to determine the total number of
collisions per unit time and unit volume. The detailed analysis of this task
should include a technical analysis of the mechanics and geometry of the
collision processes which goes beyond the scope of this book. Here, referring
to the already cited technical literature for details, we briefly recall some of
main steps of a phenomenological derivation of the Boltzmann equation.

The total number of collisions per unit time and unit volume is
taken to be equal to the total number of field particles per unit volume
(f(t,x,w)dw) multiplied by the probability that any of them have a col-
lision. This probability is proportional to the number of test particles per
unit volume (f(t,x,v)dv) times the “arrival volume” (dv′ dw′). Thus

total number of collisions

(unit volume) (unit time)

= W(v,w;v′,w′)f(t,x,v)f(t,x,w)dv dw dv′ dw′ ,

(4.3)

where W takes into account the collision process (v,w) �→ (v′,w′) and is
determined from analytical mechanics by solving the collision problem for
a given intramolecular force. Moreover, it is a symmetric function,

W(v,w;v′,w′) = W(v′,w′;v,w) . (4.4)
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This is a consequence of the hypothesis that at equilibrium the num-
ber of collisions (v,w) �→ (v′,w′) is equal to the number of collisions
(−v′,−w′) �→ (−v,−w) (symmetry of the equations of classical mechanics
under time reversal) and this assumption is also adopted in the nonequilib-
rium settings. Moreover, the N -particle distribution function, as remarked
in the last part of Section 3, is factorized according to the hypothesis of
“molecular chaos.”

The loss term takes into account all collisions where a particle with
velocity in the range dv exits this range after the collision. Collisions of
this type, occurring in dx per unit time, are expressed by

dx dv

∫ ∫ ∫
W(v,w;v′,w′)f(t,x,v)f(t,x,w) dw dv′ dw′ . (4.5)

The gain term takes into account all collisions which bring, into a
velocity range dv, particles which originally were outside, (v′,w′) �→ (v,w)
with all possible w, v′, and w′. The total number of such collisions per
unit time is given by

dx dv

∫ ∫ ∫
W(v′,w′;v,w)f(t,x,v′)f(t,x,w′) dw dv′ dw′ . (4.6)

Therefore, the collision operator J [f, f ], according to the symmetry
property of W discussed above is written as

J(f, f) =

∫ ∫ ∫
W(v,w;v′,w′)[f(t,x,v′)f(t,x,w′)

− f(t,x,v)f(t,x,w)] dw dv′ dw′ . (4.7)

As already mentioned, W is still in a general form and takes into
account the mechanics of the collision. To obtain a specific model, one
has to give some assumptions on the collision. For a monatomic gas, this
expression can be simplified by making some further assumptions about the
collision process.

The so-called collision kernel B can be introduced. It can be speci-
fied by defining the interaction potential of the chosen collision model, and
it has to satisfy some general properties: nonnegativity and explicit depen-
dence at most on n · q and |q|. For instance, an important collision kernel
is the one corresponding to the hard sphere potential.

Denoting with S
2
+ the integration domain of n,

S
2
+ = {n ∈ IR3 : |n| = 1 , n · q ≥ 0} , (4.8)
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the collision operator is written as

J(f, f) =

∫
IR3

∫
S

2

+

B(n, |q|)[f(t,x,v′)f(t,x,w′)

− f(t,x,v)f(t,x,w)] dw dn . (4.9)

Thus, the Boltzmann equation, in the absence of an external force
field, can be written as follows:

∂f

∂t
+ v · ∇xf = J [f, f ] . (4.10)

On the other hand, when an external field is applied, particles do not
follow straight lines between two successive collisions and their trajectories
are determined by laws of classical mechanics. The equation is then written
as follows:

∂f

∂t
+ v · ∇xf + F · ∇vf = J [f, f ] , (4.11)

where F = F(x) is the external positional field acting on each of the iden-
tical particles, and the collision operator is the same as above.

We have to point out that the idea behind this balance of losses and
gains in the volume element dxdv due to free streaming or collisions of
particles is that the size of this volume element must be on the one hand
so large that the number of particles contained in it justifies the use of
statistical methods, and on the other hand so small that the information in
it has a local character. In general, these two features are not compatible.
Nevertheless, in the cases of practical interest, the molecular size falls in
a range of values which are small when compared to those of the volume
element dxdv, while it can be considered microscopic with respect to the
observation scale.

5 Mathematical Properties of the Boltzmann Equation

Solving the mathematical problems related to the Boltzmann equation gives
the distribution function and consequently the macroscopic observable.

Let us define the collision invariants as functions such that

∫
J(f, f)φ(v) dv = 0 . (5.1)
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It can be proved that the following property holds true:

∫
J(f, f)φ(v) dv =

1

4

∫ ∫ ∫
B(n, |q|)

× [f(t,x,v′)f(t,x,w′) − f(t,x,v)f(t,x,w)]

× [φ(v) + φ(w) − φ(v′) − φ(w′)] dn dv dw . (5.2)

Then the collision invariants correspond to functions φ such that

[φ(v) + φ(w) − φ(v′) − φ(w′)] = 0 . (5.3)

The Boltzmann–Gronwall theorem can be proved. This theorem
states that the most general form of the collision invariants is

φ(v) = a + b · v + c|v|2 , (5.4)

where a and c are constant scalars and b is a constant vector. The gen-
eral collision invariant is a linear combination of five elementary collision
invariants:

φ0(v) = 1 , φi(v) = vi i = 1, 2, 3 , φ4(v) = |v|2 , (5.5)

which correspond to conservation of mass, momentum, and energy. In fact,
multiplying the Boltzmann equation by φ, chosen as above in (5.5), and
integrating over the velocities, we have formally:

• Conservation of mass:

∫ ∫
f(t,x,v) dx dv = constant =

∫ ∫
f(0,x,v) dx dv , (5.6)

• Conservation of momentum:

∫ ∫
vf(t,x,v) dx dv = constant =

∫ ∫
v f(0,x,v) dx dv , (5.7)

• Conservation of energy:

∫ ∫
|v|2f(t,x,v) dx dv = constant =

∫ ∫
|v|2 f(0,x,v) dx dv

(5.8)
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In order to study some features of irreversibility of the Boltzmann
equation it is useful to show that the Boltzmann inequality

S =

∫ ∫
J(f, f) ln fdv ≤ 0 (5.9)

holds true.

Proof. Let φ(v) = ln f in the expression (5.2); we have

4S =

∫ ∫ ∫
B(n, |q|)[f(t,x,v′)f(t,x,w′) − f(t,x,v)f(t,x,w)]

×
[
ln

f(t,x,v)f(t,x,w)

f(t,x,v′)(t,x,w′)

]
dn dv dw , (5.10)

which can be rewritten as

S =
1

4

∫ ∫ ∫
B(n, |q|)f(t,x,w′)f(t,x,v′)[1 − μ] lnμ dn dv dw , (5.11)

where

μ =
f(t,x,v)f(t,x,w)

f(t,x,v′)(t,x,w′)
.

Due to the property

y, z > 0 → (z − y) ln
y

z
≤ 0 , (5.12)

inequality (5.9) is true for f ≥ 0.

The equality sign in (5.9) holds true if z = y, thus if and only if

f(t,x,v)f(t,x,w) = f(t,x,v′)f(t,x,w′) . (5.13)

Taking the logarithms on both sides of this equation, we obtain that
φ(v) satisfies (5.3); thus in particular φ can be written, recalling the Boltz-
mann–Gronwall theorem, in the general form (5.4). Inverting φ(v) = ln f
yields

f(v) = exp(a + b · v + c|v|2) . (5.14)

which is the Maxwellian. Thus the functions which satisfy the equation
S = 0, i.e., are such that J(f, f) = 0, are Maxwellian.
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Recalling that mass, momentum, and energy are constant in a sys-
tem, i.e., (5.6)–(5.8), a natural Maxwellian can be constructed so that its
macroscopic variables have exactly those values:

M(t,x,v) =
n(t,x)

(2π k Θ(t,x))3/2
exp

[
− (v − U(t,x))2

2 k Θ(t,x)

]
, (5.15)

where n, Θ, and U are the macroscopic observables, density, temperature,
and mean velocity, and k is the Boltzmann constant.

An obvious consequence of the inequality (5.9) is the H Theorem
which states that the entropy functional

H =

∫ ∫
f ln f dv , (5.16)

in the spatially homogeneous situation, is monotone decreasing:

dH
dt

≤ 0 . (5.17)

Proof: Multiplying both sides of the Boltzmann equation by ln f and
integrating over the velocities, one has

∂

∂t

∫
f ln f dv + ∇x ·

∫
v f ln f dv ≤ 0 , (5.18)

due to inequality (5.9). In the spatially homogeneous case, this reduces to
equation (5.17).

Thus in the spatially homogeneous case, when there is no microscopic
flow of H through the boundaries, H is a decreasing function in time and,
recalling (5.15), it is constant only if f is a Maxwellian, i.e. the source term
S is zero. Thus the entropy is monotone decreasing in time towards the
stable equilibrium configuration (equality holds only at equilibrium). Of
course in the general case, one has to integrate over the space domain and
should take into account the boundary conditions.

This theorem shows the irreversibility of the Boltzmann equation.
This is in apparent contrast to the fact that the molecules constituting the
gas follow the reversible laws of the classical mechanics: it is due to the
probabilistic character of the Boltzmann equation.
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6 The Discrete Boltzmann Equation

This section provides an outline of some methods of discretizing classical
models of the kinetic theory of gases. A specific model of mathematical
kinetic theory is the so-called discrete Boltzmann equation which is based
on the discretization of the velocity variable, amounting to the admissibility
of only a finite number of discrete velocities.

The effect of the discretized approach is that the original continu-
ous Boltzmann equation, which is an integro-differential equation, is trans-
formed into a suitable set of partial differential equations, each one corre-
sponding to a discrete velocity.

The discrete Boltzmann equation is generally designed to reduce the
computational complexity of the original Boltzmann equation and to make
it more flexible for modelling. The mathematical theory of discrete kinetic
theory was systematically developed in the lecture notes by Gatignol (1975)
and by Cabannes (1980), which provide a detailed analysis of the relevant
aspects of the discrete kinetic theory: modelling, analysis of thermodynamic
equilibrium, and application to fluid dynamics problems. The contents
mainly refer to a simple monatomic gas and to the related thermodynamic
aspects. After such a fundamental contribution, several developments have
been proposed in order to deal with more general physical systems: gas
mixtures, chemically reacting gases, particles undergoing multiple collisions
and so on, as is documented, for instance, in various contributions edited in
Bellomo and Gatignol (2003). The qualitative analysis of the initial value
and of the initial-boundary value problem has been an object of continuous
interest to applied mathematicians.

The discrete models of the Boltzmann equation are obtained assuming
that particles are allowed to move with a finite number of velocities. The
model is an evolution equation for the number densities Ni linked to the
admissible velocities vi , for i ∈ L = {1, . . . , n}. The set N = {Ni}n

i=1

corresponds, for certain aspects, to the one-particle distribution function
of the continuous Boltzmann equation. This model is called the discrete
Boltzmann equation.

The formal expression of the evolution equation is as follows:

(
∂

∂t
+ vi · ∇x

)
Ni = Ji[N ] , (6.1)

where

Ni = Ni(t,x) : (t,x) ∈ [0, T ] × IR3 → IR+ , i = 1, . . . , n , (6.2)
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with t and x ∈ IR3 being the time and the space variables. Ji[N ] denotes
the binary collision terms

Ji[N ] =
1

2

n∑
jhk=1

Ahk
ij (NhNk − NiNj) . (6.3)

The terms Ahk
ij are the so-called transition rates corresponding to the

binary collisions

(vi,vj) �→ (vh,vk) , i, j, h, k ∈ L , (6.4)

and the collision scheme must be such that momentum and energy are
preserved. The transition rates are positive constants which, according to
the indistinguishability property of the gas particles and to the reversibility
of the collisions, satisfy the following relations:

A = Ahk
ji = Akh

ij = Akh
ji = Aij

hk . (6.5)

As for the continuous Boltzmann equation, the following definitions
can be used:

– A vector φ = {φi}i∈L ∈ IRm is defined to be collision invariant if

〈φ , J [N ]〉 = 0 , J [N ] = {Ji∈L ∈ IRm} , (6.6)

where the inner product is defined in IRm and m is the cardinality of
the set L. The set of the totality of collision invariants, denoted by
M, is called the space of the collision invariants and is a linear
subspace of IRm.

– Let Ni > 0 for any i ∈ L; then the vector N is defined to be
Maxwellian if J [N ] = 0. Moreover, let Ni > 0 for any i ∈ L; then
the following three conditions are equivalent:

i) N is a Maxwellian;

ii) {log Ni}i∈L ∈ M;

iii) J [N ] = 0.

The classical H–Boltzmann functional is defined as follows:

H =
∑
i∈L

ciNi log Ni . (6.7)

The evolution equation for the H–Boltzmann functional can be de-
rived, as in the continuous case, by multiplying the discrete Boltz-
mann equation by 1 + log Ni and taking the sum over i ∈ L. It
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can be technically verified that the time derivative of the above func-
tional is nonpositive and that the equality holds if and only if N is a
Maxwellian.

The above modelling corresponds to discretizing the velocity space
into a suitable set of points by linking a number density to each veloc-
ity. Several applied mathematicians have attempted in the last decade to
design models with an arbitrarily large number of velocities and hence to
analyze convergence of discretized models toward the full Boltzmann equa-
tion. On the other hand, the specific structure of the model depends on the
discretization scheme of the velocity variable. Several technical difficulties
have to be tackled and some problems are still at least partially open.

Some specific examples of classical applications are discussed in the
literature; see for instance Gatignol (1975). In particular there are avail-
able both regular plane models, e.g., the four-velocity model, and three-
dimensional models, e.g., the six- and eight-velocity model. Of course many
possible generalizations are possible and various applications can be de-
signed corresponding to different types of discretization. Various models
are reported in the lecture notes by Bellomo and Gatignol (2003).
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activation: the process by which morphology and functional activity of
an immune system cell is altered (lymphocytes, macrophages, etc.). It is
initiated by specific cytokines and various immunologic adjuvants.

angiogenesis: the formation of blood vessels from preexisting ones. It is
a normal physiological process in growth and in wound healing, and is the
crucial step in the transition from the early stage of tumors to a malignant
state.

antibody: a protein which identifies an antigen complex and binds to
it; each antibody recognizes a unique antigen that is specific to its target.
Antibodies are secreted by B cells and plasma cells in response to infection
or immunizations, and neutralize pathogens or prepare them for destruction
by macrophages. Antibodies are free floating through the blood as part of
the immune system.

antigen: a substance not recognized by the immune system, or recognized
as part of a virus or bacterium, that induces an immune response.

antigen-binding site: the region at the surface of the antibody that
makes physical contact with the antigen.

antigen-presenting cell (APC): a cell which can recognize pathogen
molecular patterns on the surface of foreign microorganisms, typically a
dendritic cell or a macrophage. The APC secretes molecules that behave
as signals for the activation of T cells. The APC is also activated by the
release of particular substances in virally infected cells or in necrotic cell
death.
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antigen processing: the degradation of antigen proteins into peptides
that can bind to MHC molecules for the activation of the T cells.

apoptosis: the programmed death of a cell. Apoptosis occurs when a cell
is infected with a virus or damaged beyond repair. The apoptosis can start
from the cell itself, from its surrounding tissue, or from a cell that is part
of the immune system. If a cell’s capability for apoptosis is damaged by
genetic mutation, or if the initiation of apoptosis is blocked by a virus, the
damaged cell can continue dividing without restrictions, developing into a
tumor.

B cells: lymphocytes involved in the acquired immune response. On
activation by an antigen, B cells differentiate into cells producing anti-
body molecules. Each type of B cell has a unique receptor protein on its
membrane that will bind to one particular antigen. Plasma B cells secrete
free circulating antibodies which bind to the antigen of pathogens, making
them easier targets for phagocytes, while memory B cells are specific to the
antigen(s) encountered during the primary immune response.

basophil: the least common of the white blood cells. Basophils release
inflammatory substances and are an important source of a specific cytokine,
interleukin-4, critical in the production of IgE antibody by the immune
system.

binding: a biological process that allows the linking of the specialized
immune cell to the antigen complex.

bone marrow: the tissue comprising the center of large bones, where new
blood cells are produced. It contains two types of stem cells: hemopoietic
cells, which produce leukocytes, erythrocytes, and platelets, and stromal
cells, which produce fat, cartilage, and bone. The bone marrow is the site
of B cells’ development in mammals and the source of stem cells which,
upon migration to the thymus, produce T cells.

cell: the structural and functional unit of living organisms. All organisms
are composed of one or more cells; all cells come from preexisting cells; all
vital functions of an organism occur within cells; cells contain the heredi-
tary information necessary for regulating cell functions and for transmitting
information to the next generation of cells. Each cell is a self-contained and
self-maintaining entity: it can take in nutrients, convert these nutrients into
energy, carry out specialized functions, and reproduce as necessary. Each
cell stores its own set of instructions for carrying out each of these activities.

cell-mediated immunity: immunity activated when a cell is infected
by a virus or shows cellular heterogeneity. The cell-mediated immunity is
performed by lymphocytes.
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chemotaxis: a bio-chemical process activated by specific proteins of the
complement system and lymphocytes: it is the attraction of a large number
of phagocytic cells to the area of the detected infection.

clonal selection: the proliferation of antigen-specific lymphocytes in
response to antigenic stimulation. The new lymphocytes then differentiate
into antigen-specific effector cells and memory cells.

complement system: the group of proteins involved in immune re-
sponse. The antigen–antibody complex starts the complement cascade, a
series of reactions which end with the membrane perforing of the offending
host.

cytokine: an extra-cellular protein, made by cells that affect the behavior
of other cells. Its main role is mediating cell–cell communication, thus
activating or inhibiting the proliferation of specific target cells.

dendritic cell: a tissue resident cell, part of the immune system. It
derives from monocytes, which, depending on the right signal, can turn
into dendritic cells or macrophages. Its main role is activating a helper T
cell which has never encountered its antigen before.

diapedesis: the movement of blood cells from blood into the tissues.

endothelium: a sheet of thin, flat cells (called endothelial cells), which
are the lining between the interior surface of blood vessels and circulating
blood.

epitope: the region of an antigen which is recognized and bound by an
antibody or by a T cell receptor.

gene: a segment of DNA which cells transcribe into RNA and translate,
at least in part, into proteins. The genes are inherited from parents during
reproduction, and encode information essential for the construction and
regulation of proteins and other molecules that determine the growth and
functioning of the organism.

humoral immunity: immunity that involves the production of specific
antibodies (IgM and IgG) by the B cells.

immunoglobulin: see antibody.

leukocyte: see white blood cell.

lymphocyte: a cell of the immune system which is found in the blood
and in the lymphatic system. Lymphocytes are B cells, T cells, and natural
killer cells.

lymphoid organ: a specialized organ of the organism where the adaptive
immune response is initiated.
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macrophage: a large mononuclear blood cell devoted to clearing for-
eign substances which are not recognized as healthy tissues. It plays a
crucial role in innate immunity and, as an effector cell, in humoral and
cell-mediated immunity; moreover, it presents antigens of the destroyed
substance on its surface, thus activating the creation of specific antibodies.

major histocompatibility complex (MHC): a large DNA region which
contains many genes involved in immune system response; among others,
the genes that encodes cell-surface antigen-presenting proteins. The pro-
teins are displayed to the receptors of T cells, and, if they are recognized
as “nonself” (antigens), the immune response is activated. T cells require
the presentation of the antigens (while the B cell receptors bind to antigens
directly); the task is performed by MHC molecules and MHC proteins.

mast cell: part of the immune system, it is a resident cell of connective
tissue; it is very similar, in shape and functions, to a basophil.

mitosis: the process of chromosome segregation and nuclear division
that follows replication of the genetic material in eukaryotic cells. It is
accompanied by cell division, and each daughter cell receives a complete
copy of the parent cell genome.

monocyte: a white blood cell which, after a short time in the blood-
stream, migrates to tissues and matures into a macrophage.

necrosis: the death of cells due to chemical or physical injury, as opposed
to apoptosis.

neutrophil: the most common leukocyte, it is an active phagocyte, capa-
ble of only one phagocytic event. Being highly motile, neutrophils quickly
congregate at the focus of infection, attracted by cytokines expressed by
activated endothelium, mast cells, and macrophages.

pathogen: a microorganism that can cause disease when it infects a host.

phagocytosis: a process in which specialized immune system cells (neu-
trophils, eosinophils, basophils, and monocytes) engulf pathogen cells and
then destroy them by cellular digestion. The cells may ingest large objects,
such as prey cells or dead organic matter, folding their membranes around
them. These are sealed off into large vacuoles and digested.

plasma cell: the output of the activation and division of B cells in
the humoral immune response. The plasma cells produce and secrete free
antibodies.

presentation: the process by which a cell, displaying on its surface
antigens of a foreign host, activates the T cells for the immune response;
the cell is called the “antigen-presenting cell.”
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protein: a complex, high–molecular weight organic compound, which
consists of amino acids joined by peptide bonds. Proteins are essential to
the structure and function of all living cells and viruses, and are one of the
classes of bio-macromolecules, the primary constituents of living matter.

repertoire: the total variety of antibody types in the body of an indi-
vidual.

stem cell: a primal, undifferentiated cell which has the potential to
produce any kind of cell. There are three types of stem cells: totipotent,
pluripotent, and multipotent (or unipotent). A single totipotent stem cell
can grow into an entire organism. Pluripotent stem cells cannot grow into
a whole organism, but they are able to differentiate into different types of
cells. Multipotent stem cells can only become certain types of cells (blood
cells or bone cells).

T cells: a subset of lymphocytes. The main types of T cells are as follows:
• cytotoxic T cells (CD8+) have on their surfaces antigen receptors that can
bind to fragments of antigens displayed by the molecules of virus-infected
cells and tumor cells
• helper T cells (CD4+) proliferate to activate many other types of cells
which act more directly in the response
• suppressor T cells turn off the immune response once an antigen has been
eliminated from the body
• regulatory T cells help to prevent the activation of self-reactive lympho-
cytes that destroy the body’s own cells.

thymus: the lymphoepithelial organ where the T cells mature.

variable region: the terminal chain of an antibody or a T cell receptor.
The antigen-binding site is in the variable region.

virus: a pathogen agent, composed of a nucleic acid genome enclosed in
a protein, which can replicate itself only in a living cell.

white blood cell: an immune system cell, circulating in the blood and
in the lymphatic system, which can be recruited into a tissue when needed.
The major types of white blood cells are as follows:
• granulocytes (neutrophils, basophils, and eosinophils) active in phagocy-
tosis and able to release inflammatory substances;
• lymphocytes: B cells, T cells, and natural killer cells;
• monocytes, which are involved in phagocytosis as are the neutrophils, and
present pieces of pathogens to lymphocytes so that an antibody response
may be activated.
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