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Preface

Professor Enrique Castillo was born on October 17, 1946, in Santiago de Compostela,
Spain. His parents, Mr. Enrique Castillo Latorre, an industrial engineer, and Mrs.
Pastora Ron Noya, a school teacher, have four sons: Maŕıa del Carmen, Enrique, Maŕıa
José, and Francisco.

This biographical summary includes Professor Castillo’s family, education, and pro-
fessional career and accomplishments, as well as the human side of Professor Castillo
and his wife Maŕıa del Carmen.

Family: Professor Castillo’s own family started on July 17, 1970, when he got
married to Maŕıa del Carmen Sánchez Hidalgo. They now have five children: (1) Maŕıa
del Carmen, who was born in 1972 and now holds a Ph.D. Degree in Civil Engineering;
(2) Enrique, who was born in 1973 and is now a civil engineer; (3) Eva, who was born
in 1974 and is currently a school teacher specializing in English and special education;
(4) Puri, who was adopted in 1978 and is now a hairdresser; and (5) Sergio, a child
with a physical disability who was adopted in 1982.

Professor Castillo’s family increased even further when his daughter Puri got mar-
ried to José, his daughter Eva got married to Pepe, and his son Enrique got married to
Gloria. Professor Castillo and his wife now have two granddaughters: Andrea and Irene.

Education: Initially Professor Castillo lived in Madrid and studied at the HH.
Maristas School. He then attended the Polytechnical University of Madrid to study
Civil Engineering. The third year he started working at a consulting engineering firm
under the direction of Prof. Florencio del Pozo and was devoted to bridge design. Two
years later he moved to another important consulting firm called Intecsa.

After getting his Bachelor of Science degree in Civil Engineering in 1969, he started
his Ph.D. program of study with Professor Jiménez Salas, a member of the Span-
ish Academy of Sciences, in Geotechnics. Professor Salas then facilitated Professor
Castillo’s joining the Northwestern University’s Geotechnical Program, with Professor
Raymond Krizek, a member of the National Academy of Engineering in the United
States of America.

In July 1970, Professor Castillo and Maŕıa del Carmen travelled together to Chicago,
where Professor Castillo started his Ph.D. Program at Northwestern University. Pro-
fessor Castillo was the first person to go directly to the Ph.D. Program without going
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through a Master’s program in Geotechnics. He obtained the maximum grades and fin-
ished his Ph.D. degree in 1972 in record time (15 and one half months) at Northwestern
University. He then returned to Spain in December 1972.

In 1973 he obtained a second Ph.D. degree in Geotechnics from the Polytechnical
University of Madrid.

In 1974 he finished his Bachelor’s of Science degree in Mathematics (in only one year
he finished all the courses after some transfer of credits due to his degree in engineering).

Professional Career: In September 1973, he moved to Santander, Spain, and
started teaching at the University of Santander (now University of Cantabria), changing
from the Geotechnical field to the field of mathematics. In 1976 he became a Full
University Professor in Algebra and Statistics. He has also served as the Head of the
Department of Applied Mathematics (1975-1984), Vice Dean of the School of Civil
Engineering (1975-1982), and Vice Rector of the University of Cantabria (1977-1978).

During the 1985-1986 academic year, Professor Castillo was invited by Professor
Janos Galambos to spend a sabbatical year at Temple University with all his family.
During this year, Professor Castillo wrote his first book on Extremes as well as some
papers. In 2000-2001, he spent a year at the University of Castilla La Mancha in Ciudad
Real, Spain, where he helped in the creation of the new School of Civil Engineers.

In 2006-2007 he spent another sabbatical year alternating between Santander and
Ciudad Real to continue his collaboration. This time his job was more focused on
research duties and on starting new research groups in several areas.

Professor Castillo has also visited several universities in Europe (e.g., ETH Zürich,
Manchester University in the United Kingdom and Lorand Eotvos University in Bu-
dapest), USA (e.g., Northwestern, Temple and Cornell Universities), Argentina (e.g.,
San Juan University, the National University of Nordeste in Corrientes, the National
University of Technology in Resistencia, and the National University of Misiones in
Posadas), and the Catholic University of Valparaiso in Chile. He was also invited as a
Distinguished Visiting Professor at the American University in Cairo, Egypt.

Professor Castillo has also been a member of several professional and honorary
societies including the Spanish Academy of Engineering, the American Statistical As-
sociation, the International Statistical Institute, the American Mathematical Society,
the Spanish Society of Civil Engineering, the Spanish Society of Numerical Methods
for Engineering, and the Spanish Society of Operations Research, Statistics, and Infor-
matics.

Teaching and Mentoring: Professor Castillo is an excellent teacher and an exem-
plary mentor who is genuinely interested in his students. His door is always open to his
students. So far he has supervised 29 Ph.D. theses in Engineering, Mathematics, Statis-
tics, Medicine and Economics. He has taught many courses in various fields such as
Mathematics (e.g., Numerical and Symbolic Calculus, Functional Analysis, Functional
Equations, and Optimization), Probability and Statistics (e.g., Statistical Inference,
Time Series Analysis, Analysis of Variance and Experimental Design, Regression Anal-
ysis, Extreme Value Theory, Biostatistics, and Simulation), Computer Science (Data
Bases, Multimedia and Authoring Languages, Expert Systems and Artificial Intelli-
gence).
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Research and Scholarly Activities: Professor Castillo is an extraordinary re-
searcher and a prolific writer. One most amazing aspect is that Professor Castillo is
an expert in so many different areas of science—from engineering to mathematics. He
has published more than 165 papers in 95 different scientific journals, 137 papers in
conference proceedings. He is also the author and co-author of 13 books in English
(John Wiley & Sons (3), Springer-Verlag (5), Academic Press (1), Kluwer (1), Elsevier
(2), and Marcel Dekker(1)) and 15 books in Spanish. Obviously, Professor Castillo’s
research record is outstanding and impressive. In recognition of his achievements, for
example, he has been inducted to the Spanish Academy of Engineers and has been
awarded the Doctor Honoris Causa by the University of Oviedo. His curriculum vitae
does not actually reflect the scope, depth, and impact of his research and scholarly activ-
ities, but some details can be seen in his web site at http://personales.unican.es/castie/.

Scholarly Awards: Professor Castillo has received several awards in recognition
of his extraordinary work. These include:

• Extraordinary Ph. D. Prize, Polytechnical University of Madrid (1973)
• Entrecanales Prize for the best Ph.D. Thesis in Geotechnics, Polytechnical Univer-

sity of Madrid (1974).
• Founding Member of the Spanish Royal Academy of Engineering (1994).
• Doctor Honoris Causa by the University of Oviedo, Spain (1999).
• Gold Medal of the University of Castilla La Mancha (2001)
• Silver Medal of Cantabria University (2005).

The Human Side: Last, but perhaps most important, is the human side of Pro-
fessor Castillo and his wife, Maŕıa del Carmen. For obvious reasons, this side cannot
be seen in his professional resume. While engaging in all of his professional activities,
Professor Castillo and his wife can find the time, resources, and kind hearts to help the
poor and the needy out of the goodness of their hearts. For example, they have taken
care of two homeless people, initiating the Informatics Chair in Dueso Penance Center,
to help inmates in Spanish prisons, and, perhaps most important of all, adopting two
disabled children: Puri, a three year-old, mixed-race girl in 1982, and Sergio, a four
year-old with a mental disability as a result of maltreatment in 1986.

Professor Castillo also has a genuine interest in international collaboration and
cooperation and in helping students, researchers, and scholars from various countries
in the world. He is especially interested in helping people from underdeveloped countries
(e.g., countries in Latin America and Africa).

Together with Melecio Agúndez and Jesús Flórez, he created the Theology Chair
at the University of Cantabria. He also collaborated in a Master’s Program at the
University of Cantabria for South American students, but because some of them stay
in Spain after finishing, he has been offering the courses in South America. Thus,
he founded in collaboration with other professors from the University of Cantabria
and the collaboration of the Castilla-La Mancha University, the Itinerant Master’s
Program in Informatics, to help universities without enough means to have this
program.
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This includes Northeast National University (Corrientes) and the Misiones National
University (Posadas) in Argentina, and National University of Pilar (Pilar) and East
National University (Ciudad del Este) in Paraguay, where he received the Pin of the
University.

Ciudad Real Barry C. Arnold
July 2007 N. Balakrishnan

José Maŕıa Sarabia
Roberto Mı́nguez
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Spain
antonio.cofino@unican.es

Antonio J. Conejo
Department of Electrical Engineering
University of Castilla-La Mancha
Spain
Antonio.Conejo@uclm.es

Pedro Corcuera
Department of Applied Mathematics and
Computational Sciences
University of Cantabria, Spain
pedro.corcuera@unican.es

Ulf Cormann
Department of Mathematics
University of Siegen, Germany
ulf.cormann@web.de

Carles M. Cuadras
Department of Statistics
University of Barcelona
Spain
ccuadras@ub.edu



xxii List of Contributors

Michel Denuit
Institute of Actuarial Sciences
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Enrique Castillo’s Contributions

to Conditional Specification

Barry C. Arnold

Department of Statistics, University of California, Riverside

Abstract: Enrique Castillo and his coworkers have made extensive contributions to our
understanding of conditionally specified distributions. In addition to the development
of a broad panoply of models, careful development of efficient appropriate inference
procedures has been provided. A survey of this corpus of work is provided. Enrique’s
skills in stochastic modelling, simulation, graphical presentation, optimization and cre-
ative approaches to estimation and inference have found opportunities to be manifested
in this aspect of his research career.

Keywords and phrases: Conditional densities, compatibility, near compatibility

1.1 Introduction

A bivariate density function will be said to be conditionally specified if its corresponding
families of conditional densities (of X given Y and of Y given X) are either specifically
prescribed or are postulated to be members of given parametric families of densities.

The classical example of this phenomenon is the class of bivariate densities with
normal conditionals. For this we require that for each y ∈ IR, the conditional density
of X given Y = y should be a normal density with mean μ1(y) and standard deviation
σ2(y) (i.e., the conditional mean and variance are functions of y). In addition it is
postulated that for each x ∈ IR, the conditional density of Y given X = x is a normal
density with mean μ2(x) and standard deviation σ2(x). Such densities will be said to
be of the normal conditionals form. Interest in such densities dates back at least to
Bhattacharyya (1943). He discussed such distributions in the context of determining
sufficient additional conditionals to guarantee that a model with normal conditionals
should be a classical bivariate normal model.

In 1987, a joint paper by Enrique Castillo and Janos Galambos provided a complete
characterization of the form of all normal conditionals densities (Castillo and Galambos,
1987). The solution was attractively simple. The class of normal conditionals densities
formed an 8 parameter exponential family of densities. This opened the way for the
development of appropriate inference procedures. However the high dimensionality of
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4 B.C. Arnold

the parameter space meant that considerable creativity was required on the part of
Enrique and other researchers in order to implement effective estimation strategies.

We may ask why Castillo and Galambos were able to completely resolve the issue
of identifying the precise nature of the class of all normal conditionals densities. It
is remarkable that Bhattacharrya 44 years earlier had come very close to identifying
the solution. He provided a quite general form of densities with normal conditionals.
However he did not verify that his model included all possible normal conditionals
densities, nor did he discuss necessary constraints on the parameters in his model to
ensure that it would represent a proper (integrable) density. Castillo and Galambos
tied up all the loose ends.

The solution involves setting up and solving a functional equation – a problem that
was naturally attractive to Castillo given his great interest in and understanding of
functional equations. In the normal conditionals case it turned out that the functional
equation in question was a special case of a classical functional equation dating back
to the beginning of the twentieth century. Castillo and Galambos solved the equation
independently of the earlier work but the subsequent recognition of its relation to more
general fundamental equations opened up wide avenues for extension of the normal
conditionals ideas to encompass a broad spectrum of conditionally specified models. We
will document some of these developments in the present paper. It should be remarked
that the field is far from exhausted. Many questions remain open. For example even
if we restrict attention to the natural extension of the normal-conditionals model to
3 dimensions, the complete specification of the natural parameter space is not readily
available.

Castillo to a much broader class of distributions, but also he has considered difficult
questions involving partial and/or imprecise conditional specification. The most exten-
sive discussion of material related to Castillo’s work on conditional specification may be
found in the book (Arnold et al., 1999) and the more recent survey article (Arnold et al.,
2001a). Reference to current issues of Math. Reviews will reveal continued extensions
and further contributions by Enrique, his coworkers and other researchers attracted to
this fascinating field of inquiry.

1.2 Conditionals in Given Exponential Families

It is natural to begin the discussion by considering the question of when two families of
conditional densities are compatible in the sense that there exists a joint density with
the prescribed conditional densities as its conditional densities. Assume that (X,Y ) is
a random vector that has a joint density with respect to some product measure μ1×μ2

on S(X) × S(Y ), where S(X) denotes the set of possible values of X and S(Y ) the
set of possible values of Y . For example, one variable could be discrete and the other
absolutely continuous with respect to Lebesgue measure. The marginal, conditional
and joint densities are denoted by fX(x), fY (y), fX|Y (y|x), fX,Y (x, y) and the sets of
possible values S(X) and S(Y ) can be finite, countable or uncountable.

In all our examples μ1 and μ2 correspond to either one-dimensional Lebesgue mea-
sure or to counting measure on some finite or countably infinite set. Nevertheless it is
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good to keep in mind that natural extensions to more general measure spaces can be
readily accommodated.

Consider two candidate families of conditional densities a(x, y) and b(x, y). We ask
when is it true that there will exist a joint density for (X,Y ) such that

fX|Y (x|y) = a(x, y), x ∈ S(X), y ∈ S(Y )

and
fY |X(y|x) = b(x, y), s ∈ S(X), y ∈ S(Y ).

If such a density exists we will say that a and b are compatible families of conditional
densities.

A simple resolution to this problem was documented in Arnold and Press (1989).
A joint density fX,Y (x, y) with a(x, y) and b(x, y) as its conditional densities will exist
if and only if:

(i) {(x, y) : a(x, y) > 0} = {(x, y) : b(x, y) > 0} = N , say,
and

(ii) There exist functions u(x) and v(y) such that for every (x, y) ∈ N ,

a(x, y)
b(x, y)

= u(x)v(y) (1.1)

where u(x) is integrable.

Careful discussion of the possible uniqueness of such a joint density fX,Y (x, y) may be
found in Arnold et al. (1999, 2001a).

Most statistical applications involve a parametric formulation of possible models.
With this in mind, it is appropriate to extrapolate from the precise compatibility
question just described, to discuss the case in which the conditional densities are not
completely specified but are postulated to belong to given parametric families of den-
sities.

Consider a k-parameter family of densities in IR with respect to μ1 denoted by
{f1(x; θ) : θ ∈ Θ}, where Θ ⊂ IRk. Also consider a second l-parameter family of
densities {f2(y; τ) : τ ∈ T }, where T ⊂ IR l. We wish to identify, if possible, all of the
joint densities for a random variable (X,Y ) which have all their conditional densities
given by f1 and f2. Thus, we require that for every y ∈ S(Y ) we have

fX|Y (x|y) = f1(x; θ(y)) (1.2)

and for every x ∈ S(X) we have

fY |X(y|x) = f2(y; τ (x)) (1.3)

for certain functions θ : S(Y ) → Θ and τ : S(X) → T . If (1.2) and (1.3) are to hold,
there must exist marginal densities for X and Y (fX and fY ) such that

fY (y)f1(x; θ(y)) = fX(x)f2(y; τ(x)) ∀x ∈ S(X), y ∈ S(Y ). (1.4)

Our problem then is to solve the functional equation (1.4) for the functions fX(x), fY (y),
θ(y) and τ (x), given the families of densities f1 and f2. An expert on functional equa-
tions will be especially equipped to resolve such issues. Enter Castillo.
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It must be remarked that just writing down a functional equation leaves us a long
way from solving it. Only for special cases of f1 and f2, will (1.4) be amenable to solu-
tion. However the choices of f1 and f2 in which solution is feasible are quite varied and
include many examples commonly discussed in the statistical literature. For example,
the case in which f1 and f2 are quite general exponential families is readily solvable.
This of course includes the normal conditionals model as a prototypical case.

Let {f1(x; θ) : θ ∈ Θ} denote an l1-parameter exponential family of densities with
respect to μ1 on S(X), i.e.,

f1(x; θ) = r1(x)β1(θ) exp

{

l1
∑

i=1

θiq1i(x)

}

. (1.5)

Here Θ ⊂ IR l1 is the natural parameter space (all θ’s such that (1.5) is integrable)
and the q1i’s are linearly independent. Consider also a second l2-parameter exponential
family of densities with respect to μ2 on S(Y ).

f2(y; τ ) = r2(y)β2(τ ) exp

⎧

⎨

⎩

l2
∑

j=1

τjq2j(y)

⎫

⎬

⎭

. (1.6)

The class of all bivariate densities with conditionals in the families (1.5) and (1.6) may
then be shown to be itself an exponential family of densities. Specifically we have the
following result of Arnold and Strauss (1991).

Theorem 1. Let f(x, y) be a bivariate density whose conditional densities satisfy

f(x|y) = f1(x; θ(y))

f(y|x) = f2(y : τ(x))

for some function θ(y) and τ (x) where f1 and f2 are defined in (1.5) and (1.6). It
follows that f(x, y) is of the form

f(x, y) = r1(x)r2(y) exp{q(1)(x)Mq(2)(y)′}, (1.7)

in which
q(1)(x) = (q10(x), q11(x), q12(x), . . . , q1l1(x)),

q(2)(y) = (q20(y), q21(y), q22(y), . . . , q2l2(y)),

where q10(x) = q20(y) ≡ 1 and M is a matrix of parameters of appropriate dimensions
[i.e., (l1 + 1) × (l2 + 1)] subject to the requirement that

∫

S(X)

∫

S(Y )

f(x, y)dμ1(x)dμ2(y) = 1.

For convenience we can partition the matrix M as follows:

M =

⎛

⎜

⎜

⎜

⎜

⎝

m00 | m01 · · · m0l2

−− + −− −− −−
m10 |
· · · | M̃
ml10 |

⎞

⎟

⎟

⎟

⎟

⎠

. (1.8)

Note that the case of independence is included; it corresponds to the choice M̃ ≡ 0.
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The proof of this result consists of writing the joint density of (X,Y ) as a product
of a marginal and a conditional density in two ways to obtain the relation

r1(x)r2(y) exp

⎡

⎣

l2
∑

j=0

τj(x)q2j(y)

⎤

⎦ = r1(x)r2(y) exp

[

l1
∑

i=0

θi(y)qli(x)

]

, (1.9)

where we have defined
τ0(x) = log[g(x)β2(τ (x))/r1(x)],

θ0(y) = log[h(y)β1(θ(y))/r2(y)].

Cancelling r1(x)r2(y) from both sides of (1.9) we reduce to an equation whose
solution is given directly by the following classical theorem.

Theorem 2 (Stephanos (1904); Levi-Civita (1913); Suto (1914)). All solutions
of the equation

r
∑

i=1

fi(x)φi(y) =
s
∑

j=1

gj(y)ψj(x), x ∈ S(X), y ∈ S(Y ), (1.10)

where {φi}r
i=1 and {ψj}s

j=1 are given systems of linearly independent functions, are of
the form

f(x) = Cφ(x)

and
g(y) = Dφ(y).

where D = C′.

For details on this and related functional equations see Castillo and Ruiz-Cobo
(1992).

Using the notation of Theorem 1, the totality of bivariate densities with normal
conditionals are those of the form

fX,Y (x, y) = exp

⎧

⎨

⎩

(1, x, x2)

⎛

⎝

m00 m01 m02

m10 m11 m12

m20 m21 m22

⎞

⎠

⎛

⎝

1
y
y2

⎞

⎠

⎫

⎬

⎭

(1.11)

subject to the constraint that the mij ’s be chosen such that (1.11) is integrable.
The conditional expectations and variances are

E[Y |x] = − m01 + m11x + m21x
2

2(m02 + m12x + m22x2)
, (1.12)

Var[Y |x] = − 1
2(m02 + m12x + m22x2)

, (1.13)

E[X |y] = − m10 + m11y + m12y
2

2(m20 + m21y + m22y2)
, (1.14)

Var[X |y] = − 1
2(m20 + m21y + m22y2)

. (1.15)
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Densities of the form (1.11), the normal conditionals densities, form an 8 parameter
exponential family. The coefficient m00 is a normalizing constant, determined by the
other mij ’s to ensure that the density integrates to 1.

Sufficient conditions for integrability of (1.11) are that the mij ’s satisfy one of the
following two sets of conditions:

(I) m22 = m21 = m12 = 0, m20 < 0, m02 < 0 and m2
11 < 4m02m20, (1.16)

(II) m22 < 0, 4m22m02 > m2
12, 4m22m20 > m2

21. (1.17)

Case I corresponds to classical bivariate normal densities. In the non-Gaussian case
(i.e., when (1.17) holds) the regression functions are non-linear and consequently they
can intersect more than once. It follows that the corresponding joint densities can be
bimodal or even trimodal!

Theorem 1 provides a simple specification of the form of joint densities with con-
ditionals in prescribed exponential families. However the determination of the natural
parameter space for the joint density is frequently a non-trivial exercise. The reader is
referred to Castillo and Galambos (1989) for discussion of the constraints on the mij ’s
appearing in (1.7) necessary to ensure integrability when the conditional densities are
in the normal and the gamma family.

Of course if the supports of X and Y are bounded then no constraints are required
on the mij ’s to ensure integrability. See Arnold and Sen Gupta (2004) for such an
example, involving circular normal (or von Mises) conditional densities.

1.3 Conditionals in Given Non-Exponential Families

Recall again the key functional equation (1.4) for determining all bivariate densities
with conditionals in parametric families (1.2) and (1.3), i.e.,

fY (y)f1(x; θ(y)) = fX(x)f2(y; τ(x)), x ∈ S(X), y ∈ S(Y ).

As we have seen, cases in which f1 and f2 are exponential families of densities yield a
simple solution of this functional equation using the Stephanos-Levi-Civita-Suto theo-
rem. Enrique Castillo and coworkers identified several other choices for f1 and f2 that
were not exponential families but that lent themselves to straightforward solutions of
the functional equation (1.4). The list of such models includes

(i) Pareto conditionals. Suppose that

f1(x;α, σ) =
α

σ
(1 +

x

σ
)−(α+1) I(x > 0). (1.18)

Suppose that α > 0 is fixed and we seek all densities with conditionals of X given
Y and of Y given X in the family (1.18). Upon setting up the corresponding
functional equation (1.4) and transforming it to form (1.10) we readily identify
the desired class of densities to be of the form

fX,Y (x, y) ∝ 1
(λ00 + λ10x + λ01y + λ11xy)α+1

(1.19)
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for suitable choices of λ00, λ10, λ01 and λ11 (chosen to ensure non-negativity and
integrability).

(ii) Cauchy conditionals. The Cauchy density is of the form

fX(x;μ, σ) = [πσ(1 + (
x− μ

σ
)2)]−1, x ∈ IR (1.20)

where μ ∈ IR and σ ∈ IR+. The by-now-familiar functional equation route leads
to the following class of bivariate densities with Cauchy conditionals

fX,Y (x, y) ∝ [(1, x, x2)M(1, y, y2)′]−1 (1.21)

where the mij ’s are chosen to ensure non-negativity and integrability of the den-
sity.

See Arnold et al. (1999) for a more extensive list of examples. Notably absent from
the list in which solution is obtainable is the case of logistic conditionals. To identify
the general class of bivariate densities with all conditionals in the logistic family one
would need to solve the following innocuous looking functional equation:

φ(y) cosh(
x − μ1(y)

2σ1(y)
) = ϕ(x) cosh(

y − μ2(x)
2σ2(x)

). (1.22)

It is possible to solve (1.22) in the trivial case in which σ1(y) = σ1 and σ2(x) = σ2,
but even Enrique is not able to solve the general equation.

1.4 Truncated and Weighted Distributions

Many cases in which it is possible to identify all bivariate densities with conditionals
in families f1 and f2 also allow for straightforward resolution of the problem in which
the conditionals are required to be members of truncated and/or weighted versions of
f1 and f2. See Arnold et al. (2005) for details on this.

1.5 A Digression on Improper Models

There are situations in which improper models are judged to be useful. For example
in Bayesian inference settings it is not uncommon to use improper priors. In such a
setting both sets of conditional densities (the likelihood and the posterior density) are
proper but one marginal (the prior) and the joint density are improper.

If one wishes to use fiducial inference techniques, analogous problems arise. For
example if X ∼ N(μ, 1), then the fiducial distribution of μ, having observed X = x,
will be μ ∼ N(x, 1). Interpreting these as conditional densities we have X |μ ∼ N(μ, 1)
and μ|X = x ∼ N(x, 1). No integrable joint density for (X,μ) will exist with these
conditional densities. Here too the improper model may be deemed to be still useful
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for inference purposes. Several other instances of improper models, many in the context
of fatigue models, are discussed in Castillo et al. (1985) and Castillo (1988).

1.6 Characterizations of Classical Models Via Conditional
Specifications

Bhattacharyya’s (1943) introduction of models with normal conditionals was motivated
by a search for characterizations of the classical bivariate normal model beginning with
assumptions about the families of conditional densities of a bivariate density. He and,
subsequently, Castillo and Galambos (1989) investigated what additional conditions,
besides normal conditionals, were needed to characterize the classical model. In addition
to normal conditionals, any one of the following properties is sufficient to guarantee a
classical bivariate normal distribution for (X,Y ).

(i) var(X |Y ) = y) = c ∈ IR+

(ii) var(Y |X) = x) = c ∈ IR+

(iii) limy→∞ y2 var(X |Y = y) = ∞
(iv) limx→∞ x2 var(Y |X = x) = ∞
(v) E(Y |X = x) = ax + b with a �= 0
(vi) E(X |Y = y) = ay + b with a �= 0.

Each of these conditions is sufficient to guarantee that m22 = 0 in (1.11) and conse-
quently that the model is of the classical bivariate normal type.

It is of course possible to define a k-variate joint density with normal condition-
als and to investigate how such distributions are related to classical k-variate normal
densities. For discussion of such issues see Arnold et al. (1994b,c).

Parallel discussion of the multivariate Pareto model may be found in Arnold et al.
(1994a).

1.7 Back to the Bayesian Scenario

The usual setting for Bayesian inference involves data X whose distribution is described
by a family of densities {f(x; θ) : θ ∈ Θ} where Θ ⊂ IRk. A suitable prior density is
selected for θ and attention is focused on the posterior density of θ, i.e., f(θ|x). Typically
a prior density for θ, say f(θ), is selected to approximately reflect prior beliefs about
θ and to be of such a form as to ensure that the resulting posterior density f(θ|x) is
analytically tractable, or at least is of a such a nature that permits easy simulation.

Conditionally specified distributions can, in many cases, be shown to provide con-
venient conjugate prior families in settings where the parameter space is of dimension
greater than 1. Discussion of such conditionally conjugate priors may be found in
Arnold et al. (1997, 1998a,b). For normal data with unknown mean μ and unknown
precision τ(= 1/σ2), a joint prior with normal and gamma conditionals is suggested.
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With such a prior, the posterior density of (μ, τ) given X = x (given the data) is again
found to have normal and gamma conditionals. Simulation of realizations from such a
density is readily accomplished using a simple Gibbs sampler routine.

In principle, the conditional specification approach can be used in a variety of
multiparameter settings, which may be troublesome from a classical viewpoint (see
e.g., Arnold et al. (1999), p. 322–3).

1.8 Inference for Conditionally Specified Models

The typical conditionally specified multivariate model will include many parameters
and an awkward normalizing constant that is often not available in analytic form. Some
ingenuity is required to fit such models and to perform routine inference (estimation
and hypothesis testing).

Typically the awkward normalizing constant only appears in the joint and marginal
densities. It does not appear in the conditional densities. In view of this, Arnold and
Strauss (1988) (and earlier, Besag (1974)) suggested maximizing the so-called pseudo-
likelihood (or conditional likelihood function). Thus we choose values of Θ to maximize

PL(θ) =
n
∏

i=1

fX|Y (xi|yi; θ)fY |X(yi|xi; θ). (1.23)

Estimates obtained in this way are consistent and asymptotically normal and sometimes
remarkably efficient.

Several alternative estimation strategies have been proposed. For example,
Moschopoulos and Staniswallis (1994) utilize Poisson regression programs to deal with
discrete and/or grouped data from distributions with conditionals in exponential fam-
ilies. Several variations on the method of moments have been proposed. A promising
recent proposal is that of Arnold et al. (2001b), who utilize an extension of a well
known lemma of Charles Stein to develop systems of equations suitable for estimation
via the method of moments.

1.9 Incomplete and Imprecise Conditional Specification

Rather than having precise knowledge of all the conditional distributions of a given
bivariate model, it may well be the case that only partial and/or imprecise knowledge
is available about some features of the bivariate distribution. In such a situation we
naturally seek a joint distribution that is compatible with the given information or,
failing that, one which is in some sense minimally incompatable. In this section we will
restrict attention to finite discrete models.

Thus we consider a bivariate random variable (X,Y ) where X has possible values
1, 2, . . . , I and Y has possible values 1, 2, . . . , J . We consider first the case where full
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conditional information is available, i.e., we suppose that two candidate conditional
distribution matrices are given

A = (aij)

B = (bij)

both of dimension I × J . In these matrices

aij = P (X = i|Y = j)

bij = P (Y = j|X = i).

The columns of A sum to 1 and the rows of B sum to 1. We say A and B are compatible
if there exists

P = (pij)

with pij ≥ 0 ∀i, j and
∑

ij pij = 1 such that

aij = pij/p·j ∀i, j

and

bij = pij/pi· ∀i, j
(here pi· =

∑

j pij and p·j =
∑

j pij). The interpretation is that

pij = P (X = i, Y = j)

where (X,Y ) has conditional distributions given by A and B. A discrete version of
criterion (1.1) is available. Thus A and B are compatible if

(i) aij �= 0 iff bij �= 0 (i.e., same incidence matrix) and
(ii) there exist vectors τ and η such that

τibij = ηjaij ∀i, j. (1.24)

(Except for normalization τ and η corresponds to marginal densities for X and Y ).

There are other compatibility criteria available. For example under the assumption
that aijbij > 0 ∀i, j, A and B are compatible if any one of the following conditions is
true.

(i) all cross product ratios of A are equal to the corrresponding cross product ratios
of B.

(ii) A and B have identical uniform marginal representations (obtained by successive
row and column adjustments; iterative proportional fitting).

(iii) The matrix C with elements cij = aij/bij is of rank one.

If, instead, we make no assumptions about the incidence sets of A and B then we can
phrase our search for a corresponding matrix P as one involving non-negative solutions
of systems of linear equations.



1 Castillo’s Contributions to Conditional Specification 13

Three formulations are possible:

(I) Seek P = (pij) such that

pij − aij(
∑

i

pij) = 0 ∀i, j

pij − bij(
∑

j

p·j) = 0 ∀i, j

and
pij ≥ 0 ∀i, j.

(II) Seek two vectors τ and η such that

ηjaij − τibij = 0 ∀i, j
∑

i

τi = 1

∑

j

ηj = 1

and
τi ≥ 0 ∀i, ηj ≥ 0 ∀j.

These vectors τ and η are in fact appropriate marginal distributions for a com-
patible distribution P which can be obtained from τ and B (or from η and A).

(III) Seek one vector τ such that

aij

∑

i′
τi′bi′j − τibij = 0 ∀i, j

∑

i

τi = 1

and
τi ≥ 0 ∀i.

This vector τ will be an appropriate marginal distribution for a compatible dis-
tribution P .

All three methods can be viewed as linear programming problems. From this view-
point method III, involving fewer constraints and fewer unknowns, would appear to
be the most attractive alternative. In all three cases an algorithm provided by Castillo
et al. (1999) can be used to identify the class of all possible solutions.

Of course there is no guarantee that the given matrices will be compatible. This
will be especially true if A and B represent subjective evaluations of conditional prob-
abilities since subjective probability assessments are notorious for disobeying the rules
of probability! It thus seems better to restate (I), (II) and (III) in such a way that
instead of seeking a solution to the given equations we seek values of the unknowns
that are minimally incompatible with the given conditional information. In this way, if
a solution exists we will find it, but if it does not, we will have at hand a compromise
that comes close to having the desired properties.
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In this spirit, Arnold et al. (2001c) introduced the concepts of ε-compatiblity and
η-compatibility. The idea of ε-compatibility for formulation I is as follows:

For a fixed δ > 0 seek P such that

|pij − aij

∑

i

pij | ≤ δ ∀i, j

|pij − bij

∑

j

pij | ≤ δ ∀i, j

∑

i

∑

j

pij = 1

and
pij ≥ 0 ∀i, j.

Then try and pick δ as small as possible to satisfy this.
This can be viewed as a linear programming problem with objective functions

f(p, δ) = δ to be minimized. If the minimum value of this objective function is ε, we
say that A and B are ε-compatible. If A and B are incompatible, but are ε-compatible,
any ε-compatible solution could be taken as a minimally incompatible one. Analogous
versions of ε-compatibility are availble for formulations (II) and (III).

The idea of η-compatibility arises when one tries to interpret the meaning of the
quantity ε in an epsilon compatible distribution. It does not give us a bound on the
difference between the given conditional probabilities (the aij ’s and bij ’s) and the con-
ditional probabilities associated with the minimally incompatible matrix P . The η-
compatibility criterion does provide such a bound.

For it, we modify formulation I in terms of the differences between the conditional
distributions of P and the given matrices A and B. Thus for a fixed λ we seek a matrix
P such that

∣

∣

∣

∣

pij
∑

i pij
− aij

∣

∣

∣

∣

≤ λ, ∀i, j
∣

∣

∣

∣

∣

pij
∑

j pij
− bij

∣

∣

∣

∣

∣

≤ λ, ∀i, j
∑

i

∑

j

pij = 1

and
pij ≥ 0, ∀i, j.

We then try to pick λ as small as possible to satisfy the above constraints. We will say
that A and B are η-compatible if the smallest possible satisfactory value of λ is η. In
this context η does indeed represent the maximal deviation between the conditional
probabilities of the optimal choice of P (the minimally incompatible P ) and the corre-
sponding elements of A and B. The problem is no longer a linear programming problem
but is readily resolved using, for example, the GAMS system described in Castillo et al.
(2001).

Of course other distance measures can be used to quantify the discrepency between
the conditional probabilities determined by P and the corresponding elements A and
B. A survey of such approaches may be found in Arnold et al. (1999), Chap. 2.
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In many situations only partial or imprecise information is provided about the
distribution of (X,Y ). This information may come in the form of marginal and/or
conditional probabilities or marginal and/or conditional expected values. We begin
by considering partial but precise information. Suppose that we are provided with
information of the following kind regarding the distribution of (X,Y ).

(i) P ((X,Y ) ∈ Ai) = δi, i = 1, 2, . . . , n1 for specified subsets
Ai of I × J

(ii) P (X,Y ) ∈ Bi|(X,Y ) ∈ Ci) = ηi, for specified sets Bi and
Ci, i = 1, 2, . . . , n2 (1.25)

(iii) E(εi(X,Y )) = ζi, i = 1, 2, . . . , n3 for specified functions
ε1, ε2, . . . , εn3

(iv) E(ϕi(X,Y )|φi(X,Y ) = λi) = wi, for specified functions
ϕi, φi and constants λi, i = 1, 2, . . . , n4

All of these requirements can be stated in terms of linear equalities that the elements
of P (the pij ’s) must satisfy. For example

P ((X,Y ) ∈ Bi|(X,Y ) ∈ Ci) = ηi

is equivalent to
∑

(i,j)∈Bi∩Ci

pij − ηi

∑

(i,j)∈Ci

pij = 0.

Consequently if we rewrite the matrix P as a vector p of dimension I×J , all the given
information can be summarized in a statement of the form

Ap = b (1.26)

where A, a matrix of dimension M × (I × J)),and b are known. We will thus seek
non-negative solutions to (1.26) (the constant

∑

i

∑

j pij = 1 can be included in the
formulation of the matrix A in (1.26)). Techniques for solving such systems and for
identifying all possible solutions are available in Castillo et al. (1999).

However, when A has many rows (i.e., when many pieces of information are pro-
vided), especially when the information is subjectively determined, it is unlikely that
any non-negative solution p exists for (1.26). Here once more it is appropriate to seek
a minimally incompatible non-negative vector p (probably insisting that the elements
in the vector sum exactly to 1). Consequently we can state that we are searching for a
vector p to satisfy

Ap ≈ b

with p ≥ 0 and
∑I×J

k=1 pk = 1.
As objective functions we might consider using one of the following:

d1(Ap, b) =
M
∑

i=1

(A(i)p− bi)2
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or
d2(Ap, b) =

∑

|A(i)p− bi| (1.27)

or
d3(Ap, b) = max |A(i)p− bi|.

Use of the third objective function in (1.27) can be reformulated in the sense of ε-
compatibility as follows.

We will say that p is ε-compatible with the system of equation (1.25) if ε is the
smallest value of δ such that the system

|A(·)p− bi| < δ i = 1, 2, . . . , I × J

has a solution with pi ≥ 0 and p′1 = 1. But this again is just a linear programming
problem with objective function δ.

In practice we are likely to be given bounds rather than precise values for the
quantities in (1.25). Thus our information about the distribution of (X,Y ) is likely to
be of the form:

(i) δ′i ≤ P ((X,Y ) ∈ Ai) ≤ δ′′i , i = 1, . . . , n1 for specified sets
A1, . . . , An1 .

(ii) τ ′i ≤ P ((X,Y ) ∈ Bi|(X,Y ) ∈ Ci) ≤ τ ′′i , i = 1, . . . , n2 for specified sets
B1, . . . , Bn2 and C1, . . . , Cn2 . (1.28)

(iii) ξ′i ≤ E(εj(X,Y )) ≤ ξ′′i , i = 1, . . . , n3 for specified functions
ε1, . . . , εn3 .

(iv) w′i ≤ E(ϕi(X,Y )|φi(X,Y ) = λi) ≤ w′′i , i = 1, . . . , n4 for
specified functions ϕ1, . . . , ϕn4 , φ1, . . . , φn4 and specified
constants λ1, . . . , λn4 .

All of the constraints in (1.28) can be rewritten as equivalent linear inequality
constraints on the pij ’s). Again we arrange the elements of P ( the pij ’s ) in a single
column vector p. We will be able to phrase our problem as a search for a vector p
satisfying

Dp ≤ b (1.29)

where D and b are known. Of course (1.29) is not guaranteed to have a solution so that
we may search for an ε-compatible solution where ε is the smallest value of δ such that

Dp ≤ b + δ1. (1.30)

has a solution. Once again, we are faced with a straightforward linear programming
problem and reference to Castillo et al. (1999) will enable us to identify all appropriate
solutions to this problem.

To conclude this section, we will mention the existence of a straightforward tech-
nique for identifying all possible compatible matrices P when precise partial information
is available about A and B (the conditional probability matrices). We will utilize the
concept of rank one completion. A positive matrix P will be of rank one if it is express-
ible in the form a′b for two vectors a > 0 and b > 0 (equivalently if all cross product ra-
tios are equal to 1). The compatibility result (1.1) can be rephrased in terms of such ma-
trices. We have that A and B will be compatible if {(i, j) : aij > 0} = {(i, j) : bij > 0}
and if there exists a positive matrix C of rank one such that
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cij = aij/bij ∀(i, j) with cij > 0.

C is said to be a rank one completion of the incomplete matrix with (i, j)’th entry
equal to aij/bij , for those (i, j)’s for which aij > 0.

If instead we have only partial information about the aij ’s and bij ’s we can formally
fill out an I × J matrix C by putting in cij = aij/bij for any (i, j) for which positive
values are provided for both aij and bij , putting in cij = aij/xij if only a positive value
of aij is provided, putting in cij = yij/bij if only a positive value of bij is provided
and finally putting cij = zij for any (i, j) for which neither a positive value for aij

or for bij was provided. Our matrix C thus involves several unknown xij ’s, yij ’s and
zij ’s. We then will need to write the conditions necessary for C to be a positive matrix
of rank one in terms of these unknown xij ’s, yij ’s and zij ’s and solve. In this fashion
all compatible joint probability distribution matrices can be identified. Some examples
and further discussion may be found in Arnold et al. (2004).

1.10 Future Prospects

The bibliography of this paper contains a fairly complete catalog of Enrique Castillo’s
work on problems related to conditional specification. The field has been mined exten-
sively but there still exist many intriguing open questions. Many more opportunities
exist for Castillo to utilize his extensive skills as a developer of algorithms as a linear
algebra expert, as a modeller, simulator, optimizer and master of graphical display.
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Abstract: The triangular distribution, although simpler than the beta distribution
both for mathematical treatment and for natural interpretation, has not been widely
used in the literature as a modelling tool. Applications of this distribution as an alter-
native to the beta distribution appear to be limited in financial contexts and specifically
in the assessment of risk and uncertainty and in modelling prices associated with trad-
ing single securities. One of the basic reasons is that it can have only a few shapes.
In this paper, a new class of distributions stemming from finite mixtures of the tri-
angular distribution is introduced. Their polygonal shape makes them appealing for
modelling purposes since they can be used as simple approximations to several distri-
bution functions. Properties of these distributions are studied and parameter estimation
is discussed. Further, the distributions arising when using the triangular distribution
instead of the beta distribution as the mixing distribution in the case of two well-
known beta mixtures, the beta-binomial and the beta-negative binomial distribution,
are examined.

Keywords and phrases: Triangular distribution, binomial mixtures, negative bino-
mial mixtures, triangular-binomial distribution

2.1 Introduction

The probability density function (pdf) of the triangular distribution is given by

f(x | θ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2x
θ ,

2(1−x)
1−θ ,

0,

0 ≤ x ≤ θ

θ ≤ x ≤ 1

elsewhere

(2.1)

with “0/0” interpreted as 1. The above definition restricts the random variable X in
the interval [0, 1]. One can define in a similar manner triangular distributions in a finite
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interval [α, β] by considering the transformation Y = X−α
β−α . From (2.1), one can see

that the density is linearly increasing in the interval [0, θ) and linearly decreasing in
the interval [θ, 1] (θ is the mode of the distribution). The distribution is not symmet-
ric except for the case θ = 1/2. The parameter θ is allowed to take the values 0 and
1, using the appropriate part of the definition given in (2.1). More details about the
triangular distribution can be found in van Dorp and Kotz (2004) and the references
therein. Johnson (1997) and Johnson and Kotz (1999) refocused interest in the trian-
gular distribution, which appeared to have been ignored as a modeling tool over the
last decades, one of the most probable basic reasons being that it can have only a few
shapes.

In this paper, a new class of distributions is introduced stemming from finite mix-
tures of the triangular distribution. Contrary to the triangular distribution, the mem-
bers of this class have a shape flexibility that makes them appealing for modeling
purposes. Because of their shape, which is polygonal, these distributions are termed in
the sequel polygonal distributions.

The paper is organized as follows. Following a brief presentation of the triangular
distribution in Section 2.2, the polygonal distribution is defined as a finite mixture of
triangular component distributions in Section 2.3. Properties of it and estimation are
discussed. In Section 2.4, mixture distributions arising when using the triangular as
an approximation to a beta mixing distribution are examined. In particular, the cases
of beta mixtures of binomial and negative binomial distributions are considered. The
paper concludes with some remarks in Section 2.5.

2.2 The Triangular Distribution

We briefly review some properties of the triangular distribution that can have potential
use in the context of polygonal distributions.

The triangular distribution consists of two parts that are truncated forms of the
Beta(α, β) distribution with density

f(x) =
1

B(α, β)
xα−1(1 − x)β−1, 0 ≤ x ≤ 1, α, β > 0, B(α, β) =

Γ (α)Γ (β)
Γ (α + β)

. (2.2)

In particular, the first part is a tail truncated Beta(2, 1) distribution, while the second
part a head truncated Beta(1, 2) distribution, both truncated at θ. The triangular
distribution also arises as the distribution of the mean of two uniform random variables.

The s− th simple moment of the distribution is given by

μs =
2(1 − θs+1)

(s + 1)(s + 2)(1 − θ)
. (2.3)

The above expression holds for not necessarily integer values of s, which enables com-
putation of non-integral moments of a triangular variate.

Noting that 1 − θs+1 = (1 − θ)
s
∑

i=0

θi, for integer s ≥ 0, simple moments can be

rewritten as
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μs =
2

s
∑

i=0

θi

(s + 1)(s + 2)
, s = 1, 2, . . . (2.4)

and can be computed recursively using

μs+1 =
2θs+1

(s + 2)(s + 3)
+
(

s + 1
s + 3

)

μs (2.5)

for s = 0, 1, . . . with μ0 = 1. It can easily be verified that

E(X) =
(1 + θ)

3
and V ar(X) =

(1 − θ + θ2)
18

implying that the mean ranges from 1/3 to 2/3 and the variance becomes minimum at
θ = 0.5. It holds also that the first inverse moment has the form

μ−1 = E(X−1) =
−2 log(θ)
(1 − θ)

,

and that the second inverse moment does not exist since the corresponding integral
diverges.

Random variate generation from the triangular distribution is simple via the in-
version method. Finally, ML estimation is described in Johnson and Kotz (1999) and
van Dorp and Kotz (2004). Note that since the ML estimate is necessarily one of the
observations, it suffices to evaluate the likelihood at all the observations to locate the
maximum. Some references about the triangular distribution can be found in Johnson
and Kotz (1999) and van Dorp and Kotz (2004).

2.3 The Polygonal Distribution

Let fj(x | θj), j = 1, 2, . . . , k be the probability densities of k independent triangular
variables on [0, 1] with parameters θj, j = 1, . . . , k. A broad family of distributions
stemming from these densities with interesting properties arises from a mixture of
them defined by the probability density function

fk(x) =
k
∑

j=1

pjfj(x | θj) (2.6)

with mixing proportions {pj}k
j=1 satisfying pj > 0, 1 ≤ j ≤ k and

∑k
j=1 pj = 1.

This distribution has a polygonal form with at most k points of inflection. Some
members of the family of distributions are depicted in figure 2.1. Observe that the
densities are piecewise linear, a feature that offers great flexibility as far as shape is
concerned. The probability density function defined by (2.6) and (2.1) can take shapes
which are not common in other distributions. For example, a 2-polygonal distribution
with p = 0.5 and θ1 = 0.25, θ2 = 0.75 is flat over the interval (0.25, 0.75), having a



24 D. Karlis and E. Xekalaki

x

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

4
0.

8
1.

2

a

x

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

b

x

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

c

x

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

d

x

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

e

x

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

5
1.

0
1.

5

f

Figure 2.1. Examples of polygonal distributions. The depicted densities correspond to the
following choices of parameter values: (a) p1 = p2 = p3 = 1/3 and θ1 = 0.1, θ2 = 0.5, θ3 = 0.9,
(b) p1 = 0.4, p2 = 0.4, p3 = 0.2 and θ1 = 0.1, θ2 = 0.2, θ3 = 0.9, (c) p1 = 0.8, p2 = 0.1, p3 = 0.1
and θ1 = 0.25, θ2 = 0.5, θ3 = 0.25, (d) p1 = p2 = 0.5 and θ1 = 0.25, θ2 = 0.75, (e) p1 = p2 =
p3 = p4 = 1/4 and θ1 = 0.1, θ2 = 0.5, p3 = p4 = 1/4 and θ1 = 0.7, θ2 = 0.8, θ3 = 0.9, θ4 = 0.95

modal interval, rather than a mode. When components are close together and their
number becomes larger and larger, the density approaches a smooth curve.

In the sequel, the distribution with k triangular components defined above is inter-
changeably referred to as the k-polygonal distribution or as the polygonal distribution.
We also assume for simplicity that its components are ordered with respect to the
values of their parameters θi.

The mean and variance of the polygonal distribution are given by

E(X) =
1
3

+
1
3

k
∑

j=1

pjθj and

V ar(X) =
1
6
− 1

18

k
∑

j=1

pjθj +
1
6

k
∑

j=1

pjθj
2 − 1

9

⎛

⎝

k
∑

j=1

pjθj

⎞

⎠

2

,

respectively. It can be seen that the mean lies in the interval (1/3, 2/3).
Monotonicity It can be easily verified that the polygonal distribution has always

a unique mode. This is supported by the fact that the segments of its density function
over the intervals (θj , θj+1) given by

fk(x) =
k
∑

i=j+1

pi
2x
θi

+
j
∑

i=1

pi
2(1 − x)
(1 − θi)

, j = 0, . . . , k, θ0 = 0; θk+1 = 1 (2.7)
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have derivatives given by

f ′k(x) = 2

⎛

⎝

k
∑

i=j+1

pi

θi
−

j
∑

i=1

pi

(1 − θi)

⎞

⎠ . (2.8)

Hence, the derivative of fk(x) is constant in each interval (θj , θj+1). It starts from a
positive value, implying that the density is increasing in the first interval and, since
in (2.8) at each interval a negative quantity replaces a positive one, continues to be
increasing, but with a smaller and smaller slope over the following subintervals. As
a result, the derivative corresponding to any of the sub-intervals is smaller than the
derivative of the preceding sub-interval. The mode of the distribution occurs at the
interval where the derivative becomes negative for the first time.

The position of the mode depends on the mixing proportions and it is not easy to
be determined for general k. However, the mode is necessarily one of the θ′s or a modal
interval from θj to θj+1. For the mode of the 2-polygonal distribution, in particular,
the following result holds

Proposition 1. For a 2-polygonal distribution if p1 > 1−θ1
θ2−θ1+1 , the mode is located at

the point θ1, otherwise, the mode is located at the point θ2 . When p1 = 1−θ1
θ2−θ1+1 the

distribution has a modal interval (the interval (θ1, θ2)) instead of a mode.

For a proof, note that in accordance with the above, the density of the distribution
is increasing in the first interval and decreasing in the third interval. Hence, the mode
will be located at θ1 or at θ2 according as the derivative of the density over the second
interval (θ1, θ2) given by f ′k(x) = 2

(

p2
θ2

+ p1
(1−θ1)

)

is negative or positive; equivalently,

according as p1 exceeds or is exceeded by 1−θ1
θ2−θ1+1 . Note that if p1 = 1−θ1

1−θ1+θ2
, the

derivative f ′k(x) equals 0, and thus the distribution has a modal interval from θ1 to θ2,
where the density takes a constant value. Such a distribution will have a trapezoidal
shape. Note that letting θ1 → 0, while θ2 → 1, the distribution tends to a uniform
distribution.

2.3.1 Estimation

ML estimation can be carried out using the finite mixture representation via an EM
algorithm. This comprises the following steps.

Step 1 (E-step): Given the current values for the parameters, say θj
old and pj

old,
j = 1, . . . , k, calculate

wij =
pj

oldf(xi | θj
old)

fk(xi)
,

where f(x | θ) and fk(x) are given in (2.1) and (2.6) respectively.
Step 2 (M-step): For each component j, j = 1, . . . , k update pj by

pnew
j =

n
∑

i=1

wij/n,

then update θj by solving Lj(θ) =
n
∑

i=1

wij log f(xi | θ).
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The maximization can be easily carried out, since the solution is one of the obser-
vations and thus evaluating Lj at all the observations suffices to locate the maximum.
Note that wij ’s do not depend on the estimate and hence the monotonicity of the
likelihood holds as in Johnson and Kotz (1999).

2.4 The Polygonal Distribution as a Mixing Density

This section looks at the polygonal distribution as a mixing distribution in mixtures of
discrete distributions {pθ(x);x = 0, 1, . . . ,m},m ∈ Z+ ∪{0} with parameter θ ∈ (0, 1).
These can obviously be seen as finite mixtures of triangular mixtures on θ of pθ(·)
due to the associative property of finite mixtures. This is particularly appealing in the
context of applications since then one can focus on triangular mixtures that are of a
simpler structure. The application potential of the triangular and hence the polygonal
distribution, is particularly enhanced in the area of mixtures by Johnson’s (1997) re-
sult, which shows that any beta distribution can always be closely approximated by a
triangular distribution.

In the remainder of this section we discuss the distributions to which two well known
beta mixtures, the beta-binomial and the beta-negative binomial, are converted when
the beta form of their mixing density is transitioned to a triangular form.

2.4.1 The binomial–triangular distribution

The binomial distribution is a prominent member of the family of discrete distribu-
tions. Mixtures of the binomial distribution with respect to the parameter p have been
considered in the literature. Such mixtures have probability functions of the form

P (X = x) =
(

n
x

)
1
∫

0

px(1 − p)n−xdG(p), x = 0, 1, . . . , n. (2.9)

Note that G(p) denotes a generic mixing distribution that can be either a finite step
distribution giving positive probabilities at only a finite number of points or a con-
tinuous distribution. Some identifiability problems arise for small values of n (see, for
example, Follmann and Lambert (1991)). The distribution is identifiable only up to the
first n moments of the mixing distribution.

The beta-binomial (B-B) is the best known member of the family of binomial mix-
ture distributions. It arises when the parameter p follows a beta distribution (see, for
example, Tripathi and Gurland (1994) and the references therein). Only a few other bi-
nomial mixtures have been developed, mainly due to numerical difficulties (see Alanko
and Duffy (1996), Horsnell (1957), Brooks et al. (1997)).

Assume that the parameter p has a triangular distribution given in (2.1). Then the
resulting probability function is given by

P (X = x) = 2
(

n
x

)

⎛

⎝

1
θ

θ
∫

0

px+1(1 − p)n−xdp +
1

1 − θ

1
∫

θ

px(1 − p)n−x+1dp

⎞

⎠ . (2.10)
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Both integrals are in fact incomplete beta integrals (see Abramowitz and Stegun (1974))
defined as Bx(α, β) =

∫ x

0
tα−1(1 − t)β−1dt. Using the representation

Ix(α, β) =
Bx(α, β)
B(α, β)

,

with Ix(α, β) = 1 − I1−x(β, α) and Ix(α, β) = xIx(α− 1, β) + (1 − x)Ix(α, β − 1), and
after tedious algebraical manipulations one can write the probability function of the
binomial-triangular (B-T) distribution as

P (X = x) = 2
(

n
x

)

(θ−1Bθ(x + 2, n− x + 1) +

+ (1 − θ)−1B(x + 1, n− x + 2) + (1 − θ)−1Bθ(x + 1, n− x + 2)).

This probability function is quite awkward for calculations as it involves incomplete
beta functions. One can improve by considering recurrence relationships for beta inte-
grals and incomplete beta integrals. A simpler method can be used for calculating the
probabilities, based on a finite series representation of the probability mass function.

Sivaganesan and Berger (1993) showed that for a general G(p) the resulting mixed
binomial distribution can be written as

P (X = k) =
n
∑

j=k

h(j, k)E(pj), k = 0, 1, . . . , n, (2.11)

where h(j, k) = (−1)j−k n!
k!(j−k)!(n−j)! for j ≥ k and 0 if j < k, E(pr) denotes the r− th

simple moment of the mixing distribution. For the case of the triangular distribution,
we obtain

P (X = k) =
n
∑

j=k

h(j, k)
2

j
∑

i=0

θi

(j + 1)(j + 2)
, k = 0, 1, . . . , n. (2.12)

Computationally, this form is particularly convenient,since the coefficients h(j, k) can
be easily computed recursively using

h(0, 0) = 1, h(j + 1, j + 1) =
n− j

j + 1
h(j, j), j = 0, 1, . . . , n and

h(j + 1, k) = − n− j

j − k + 1
h(j, k), j = k =, . . . , n− 1,

while the moments of the triangular distribution can be derived recursively. Evaluation
of the probability function using the above form is easy and inexpensive. Even for large
values of n near 200, no overflows were encountered for the entire range of values of θ.

A graphical comparison of the resulting distribution to the B-B distribution with
the same mean and variance indicates a close agreement (see figure 2.2).

The mean and the variance of the B-T distribution are given by

E(X) = nE(p) =
n(1 + θ)

3
and V ar(X) =

n(n + 3)
18

− n(n− 3)θ(1 − θ)
18

,
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Figure 2.2. Plots of the probability function of the B-T distribution for n = 15 and
θ = 0.5, 0.25, 0.75, 0.1 superimposed by plots of the B-B with the same mean and variance

respectively. Note that there is a symmetry analogous to that existing in the case of
the simple binomial distribution. So if X follows a B-T distribution with parameter θ,
then Y = 1 −X follows a B-T distribution with parameter 1 − θ.

The simple moments can be derived easily from the simple moments of the binomial
distribution. It holds, in particular, that the simple moments of the B-T distribution
are given by

μr = 2
r
∑

j=0

S(r, j)n!
(n− r)!

j
∑

i=0

θi

(j + 1)(j + 2)
,

where S(r, j) denote the Stirling numbers of the second kind .
Moment estimates of the parameter θ can be obtained through equating the mean

with the sample mean. This yields the unbiased estimator θ̂ = 3n−1x̄− 1, which leads
to parameter estimates whenever x̄ is in the range (n/3, 2n/3). The variance of the
moment estimator is given by V ar(θ̂) = 9

n2
V ar(X)

N , where N denotes the sample size.
From (2.12), we can see that the probability function is a polynomial with respect

the parameter θ. The same is true for the likelihood. Direct maximization is not easy be-
cause of the sum involved in the probability function, but grid search is not prohibitive
since we have only one parameter distribution in a limited range of values.

2.4.2 An application

As an application of the B-T distribution illustrating a notable closeness to the B-B
distribution, consider the data in table 2.1. The data refer to the numbers of courses
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taken by a class of 65 students from the first year of the Department of Statistics
of Athens University of Economics. The students enrolled in this class attended 8
courses during the first year of their study. The total numbers of successful examinations
(including resits) were recorded. For this data set, n = 8 and x̄ = 5.2.

The binomial distribution with p̂ = 0.65 provided a very poor fit. This was expected
since it would not be reasonable to consider the probability of success p to be constant
for all the students. Considering the students as having different probability of success
according to their ability would be more natural.

Assuming that the probability of success varies according to a triangular distribu-
tion, the B-T distribution was fitted to the data. The moment estimate of θ was found
to be 0.95. The likelihood was maximized at θ̂ = 1. The maximized loglikelihood was
-134.85. Assuming a beta distribution for p and fitting the data by the B-B distribution
with parameter estimates α̂ = 1.825 and β̂ = 0.968, yielded a maximized loglikelihood
of -134.76. It is evident that the improvement of the loglikelihood from the B-T model
to the B-B model is very small, taking into account that one parameter is added. The
fits as judged by the χ2 goodness of fit test give some indication of the closeness of the
B-T distribution to the B-B distribution

Sivaganesan and Berger (1993) showed that for a general G(p) the resulting posterior
expectation of θ can be obtained as

E(θ | X = k) =

n
∑

j=k

h(j, k)E(pj+1)

P (X = k)
, k = 0, 1, . . . , n,

where P (X = k) is given in (2.11), and it can be useful for Bayesian approaches, beyond
the well known case of a conjugate Beta prior distribution. The values of E(θ | x) given
in table 2.1 are indicative of a linear behavior, which is not in general true, and it is
due to the value of θ estimated to be equal to 1.

Table 2.1. Data concerning the number of passed courses for a class of 65 students at the
Dept. of Statistics, Athens University of Economics (n = 8). (The asterisk indicates grouped
cells)

x observed expected E(θ | x)
BB BT Binomial

0 1 1.80 1.45 0.01* 0.1818
1 4 3.28 2.89 0.22* 0.2727
2 4 4.65 4.35 1.41* 0.3636
3 8 5.97 5.78 5.25 0.4545
4 9 7.25 7.23 12.18 0.5455
5 6 8.51 8.67 18.10 0.6364
6 8 9.78 10.12 16.82 0.7273
7 12 11.11 11.56 8.92 0.8182
8 13 12.65 12.97 2.08 0.9091

χ2 1.45 3.15 105.4
df 6 7 5

p-value 0.96 0.88 0.00
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2.4.3 The negative binomial–triangular distribution

The triangular distribution can be also used as the mixing distribution for some other
discrete distributions, having a parameter defined in the interval [0, 1]. Such exam-
ples are the geometric and the negative binomial distributions. The negative binomial
distribution has probability function given by

P (X = x) =
Γ (α + x)
Γ (α)x!

pα(1 − p)x, x = 0, 1, . . . , n, α > 0, 0 ≤ p ≤ 1. (2.13)

Mixtures of the negative binomial distribution with respect the parameter p can be
developed by allowing the parameter p to vary according to some distribution G(p).
Such a mixture has probability function of the form

P (X = x) =
Γ (α + x)
Γ (α)x!

1
∫

0

pα(1 − p)xdG(p), x = 0, 1, . . . , n. (2.14)

The literature on mixtures of the negative binomial is rather sparse. Note that one
can define mixtures with respect to either of the parameters α and p. Allowing G(p)
to have a beta(α, β) form, the generalized Waring distribution arises (see for example,
Xekalaki (1983)).

Expanding (1 − p)x in (2.14), one obtains that

1
∫

0

pα(1 − p)xdG(p) =

1
∫

0

pα
x
∑

k=0

(

x
k

)

(−1)x−kpx−kdG(p) =

=

1
∫

0

x
∑

k=0

(

x
k

)

(−1)x−kpα+x−kdG(p)

=
x
∑

k=0

(

x
k

)

(−1)x−k

1
∫

0

pα+x−kdG(p) =
x
∑

k=0

(

x
k

)

(−1)x−kE(pα+x−k),

thus leading to

P (X = x) =
Γ (α + x)
Γ (α)x!

x
∑

k=0

(

x
k

)

(−1)x−kE(pα+x−k).

In other words, the probability density function can be written as a finite series of
non-integral moments of the mixing distribution.

Assuming a triangular distribution as a mixing distribution, one obtains the nega-
tive binomial-triangular distribution with probability function given by

P (X = x) =
Γ (α + x)
Γ (α)x!

x
∑

k=0

(

x
k

)

(−1)x−k2(1 − θα+x−k+1)
(α + x− k + 1)(α + x− k + 2)(1 − θ)

.

The above formula can be used for calculating the probability function. A similar
scheme as the one proposed for the binomial-triangular distribution is applicable. How-
ever, since now the values of x are not restricted in a finite range, minor anomalies may



2 The Polygonal Distribution 31

x

lo
g(

pr
ob

)

0 5 10 15 20

-6
-4

-2
NB-T
NB-B

a=1,   theta=0.5

x

lo
g(

pr
ob

)

0 10 20 30

-6
-4

-2

NB-T
NB-B

a=1,   theta=0.25

x

lo
g(

pr
ob

)

0 10 20 30

-8
-6

-4
-2

NB-T
NB-B

a=1,   theta=0.75

x

lo
g(

pr
ob

)

0 10 20 30

-7
-6

-5
-4

-3
-2

-1

NB-T
NB-B

a=1,   theta=0.1

Figure 2.3. Plots of the probability function in log scale of the NB-T distribution for
α = 1 and θ = 0.5, 0.25, 0.75, 0.1 superimposed by plots of the Generalized Waring (NB-B)
distribution with the same mean

be found at the tail. Alternatively, the probability function can be written via incom-
plete beta functions in a similar manner as for the simple binomial case.

From figure 2.3, there appears a close agreement between the NB-T distribution
and the NB-B (Generalized Waring) distribution with the same mean for α = 1 and
different values of θ.

Setting α = 1, a geometric-triangular mixture is obtained. Now the moments used
are of integral order and thus the recursive relationships for the moments of the tri-
angular distribution can be used. Similar is the case when the Pascal distribution is
considered.

The mean of the negative binomial-triangular distribution is

E(X) =
∫ 1

0

α(1 − p)
p

g(p)dp = αE(p−1) − α = α

(−2 log(θ)
1 − θ

− 1
)

.

Since 0 ≤ θ ≤ 1, it holds that E(X) > α for every value of θ. The variance does not
exist, since it involves the second inverse moment of the triangular distribution which
does not exist. The distribution exhibits a very long tail.

Note that mixtures of the negative binomial distribution with respect to the pa-
rameter p are in fact mixtures of the Poisson distribution, with mixing distribution
a gamma mixture. For example, the negative binomial-triangular distribution defined
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above is a Poisson mixture with mixing distribution the mixture of a Gamma density
with a triangular mixing density.

2.5 Discussion

A new class of distributions has been introduced stemming from the triangular dis-
tribution. Their polygonal shape offers them an appealing application potential and
enhances their plausibility as modelling tools in areas ranging from risk analysis as-
sessment, where its simplest member, the triangular distribution has been used, to
developing envelope functions for rejection algorithms in simulation studies and as
approximations to the beta distributions.

A notable feature is that the members of this family have always one mode (or modal
interval), and the number of angles of the polygon depicting their density depends on
the number of triangular components used in their finite mixture representation. In
this sense, the polygonal distribution generalizes the trapezoidal distribution studied
by van Dorp and Kotz (2003)

Finally, one may expand the definition of polygonal distributions beyond the in-
terval [0, 1] over a more general interval [α, β] using the transformation y = x−α

β−α .
Alternatively, one may expand the polygonal distribution to the positive real line by
the transformation y = x

1−x .
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Abstract: In recent years, an important part of Enrique Castillo’s research work has
been focused on statistical applications of models with conditional specification. The
present paper introduces some new developments and applications of these kinds of
models to be studied in the near future. Firstly, some new and some old bivariate
discrete distributions specified by conditionals are presented. Models of bivariate dis-
tributions where one of the conditional distributions is discrete and the other one is
continuous have important applications in risk theory and actuarial statistics. In this
sense, some of these mixture models are proposed. Distributions for modelling bivari-
ate income distributions are reviewed. Certain conditionally specified densities are also
shown to provide convenient flexible conjugate prior families in certain multiparameter
Bayesian settings. We propose prior distributions for inference with incomplete count
data and in certain hurdle models. Finally, we describe the construction of flexible bi-
variate continuous distributions based on specification of some prescribed conditional
hazard functions.
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3.1 Introduction

In recent years, an important part of Enrique Castillo’s research work has been fo-
cused on statistical applications of models with conditional specification. From his
pioneer work on conditional distributions presented in 1985 in the “Conference on
Weighted Distributions” held at Penn. State University, and published later in Castillo
and Galambos (1987a,b, 1989) important advances have taken place. Part of the work
about models with conditional specification can be found in Arnold et al. (1992, 1999,
2001) and in Kotz et al. (2000). The present paper introduces some new developments
and applications of this kind of models to be studied in a near future.

The paper is organized as follows. In Section 3.2 some new and some old bivari-
ate discrete distributions specified by conditionals are presented. Models of bivariate
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distributions where one of the conditional distributions is discrete and the other one
is continuous have important applications in risk theory and actuarial statistics. Some
of these mixture models are introduced in Section 3.3. Bivariate income distributions
with conditional specification are reviewed in Section 3.4. Certain conditionally speci-
fied densities are also shown to provide convenient flexible conjugate prior families in
certain multiparameter Bayesian settings. We propose prior distributions for inference
with incomplete count data and in certain hurdle models in Section 3.5. Finally in
Section 3.6, we describe the construction of flexible bivariate continuous distributions
based on specification of some prescribed conditional hazard functions.

3.2 Bivariate Power Conditionals Distribution

The purpose of this section is to study a new class of bivariate discrete distribution
called bivariate power conditionals distribution. The first bivariate power conditionals
distributions were described by Arnold and Strauss (1991), and they included the
bivariate Poisson, binomial and geometric conditionals distribution.

3.2.1 Bivariate Poisson conditionals distribution

The bivariate Poisson conditionals distribution has the following joint density,

Pr(X = x, Y = y) = k(λ1, λ2, λ3)
λx

1

x!
λy

2

y!
λxy

3 , x, y = 0, 1, 2, . . . (3.1)

with λ1, λ2 > 0 and 0 < λ3 ≤ 1. The conditional distribution of X given y is Po(λ1λ
y
3)

and Y given x is Po(λ2λ
x
3 ). If λ3 = 1, X and Y are independent and if 0 < λ3 < 1, X

and Y are negatively correlated with correlation coefficient range ρ(X,Y ) ∈ (−1, 0).
The marginal distributions of (3.1) are,

Pr(X = x) = k
λx

1

x!
exp(λ2λ

x
3), x = 0, 1, 2, . . .

Pr(Y = y) = k
λy

2

y!
exp(λ1λ

y
3), y = 0, 1, 2, . . .

which are not Poisson except in the independence case. If we denote (Z)k = Z(Z −
1) · · · (Z − (k − 1)) we have,

E[(X)r(Y )s] = λr
1λ

s
2λ

rs
3

k(λ1, λ2, λ3)
k(λ1λs

3, λ2λr
3, λ3)

.

The cross-moments can be written as,

E(XrY s) =
E(Zr

1Z
s
2λ

Z1Z2
3 )

E(λZ1Z2
3 )

,

where Z1 and Z2 are independent Poisson random variables with parameters λ1 and λ2

respectively. Wesolowski (1996) has characterized this distribution using a conditional
distribution and the other conditional expectation.
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3.2.2 Bivariate binomial conditionals distribution

The bivariate binomial conditionals distribution has the following joint density

Pr(X = x, Y = y) = k

(

n1

x

)

px
1(1 − p1)n1−x

(

n2

y

)

py
2(1 − p2)n2−yrxy, (3.2)

where x = 0, 1, . . . , n1 and y = 0, 1, . . . , n2, 0 < p1, p2 < 1 and r > 0. The conditional
distributions of (3.2) are,

X |Y = y ∼ Bin
(

n1, p̃1 =
p1r

y

1 − p1(1 − ry)

)

,

Y |X = x ∼ Bin
(

n2, p̃2 =
p2r

x

1 − p2(1 − rx)

)

.

The case r = 1 corresponds to independence, and the correlation is positive if r > 1
and negative if r < 1 and is not limited. This is an important property required in
practical situations. The marginal distribution are respectively,

Pr(X = x) = k

(

n1

x

)

px
1(1 − p1)n1−x [1 − p2(1 − rx)]n2 , x = 0, 1, . . . , n1,

Pr(Y = y) = k

(

n2

y

)

py
2(1 − p2)n2−y [1 − p1(1 − ry)]n1 , y = 0, 1, . . . , n2.

The cross-moments are given by,

E(XrY s) =
E(Zr

1Z
s
2r

Z1Z2)
E(rZ1Z2)

,

where Z1 and Z2 are independent binomial random variables with parameters (n1, p1)
and (n2, p2) respectively.

3.2.3 A general class

The class of power series distributions includes many of the common distributions. A
distribution is said to be a power series distribution if its probability mass function can
be written in the form,

Pr(X = x) =
a(x)θx

η(θ)
, x = 0, 1, 2, . . . ; θ > 0, (3.3)

where a(x) > 0 and η(θ) =
∑∞

x=0 a(x)θx < ∞. The most bivariate discrete distribution
with conditionals of the form (3.3), takes the form,

Pr(X = x, Y = y) =
1

η(θ)
a1(x)a2(y)θx

1 θ
y
2θ

xy
3 , x, y = 0, 1, 2, . . . ,

where η−1 is the normalizing constant, θi > 0, i = 1, 2, 3 and the case θ3 = 1 corre-
sponds to the independent model. Properties of this distribution and estimation meth-
ods have been studied by Sarabia et al. (2006).
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3.3 Mixture Conditional Models with Applications to Actuarial
Statistics

Mixture conditional distributions are distributions where one of the conditional dis-
tributions is discrete and the other one is continuous. These models have important
applications in risk theory in the classical collective model (Sarabia et al. (2004) and
Sarabia and Guillén (2006)).

As an important model, we ask for the most general bivariate distribution (X,N)
whose conditional distributions X |N and N |X are log-normal and Poisson respectively,
that is,

X |N = n ∼ LN (μ(n), σ2(n)), (3.4)
N |X = x ∼ Po(λ(x)), (3.5)

where μ(n) : N → R, σ(n) : N → R+ and λ(x) : R+ → R+ are unknown functions.
We have the following theorem.

Theorem 1. The most general bivariate distribution with conditional distributions
(3.4) and (3.5) is given by,

f(x, n;M) = (xn!)−1 exp{u�x Mvn}, x > 0; n = 0, 1, 2, . . . , (3.6)

where the vectors ux and vn are given by,

ux = (1 , log x , log2 x)�

vn = (1 , n)

and M = {mij}, i = 0, 1, 2, j = 0, 1 is a parameter matrix. The parameter m00 is
the normalizing constant and must be satisfy

∑

n

∫

f(x, n;M)dx = 1. The parameters
{mij} must be selected to satisfy

∫

x
f(x, n;M)dx < ∞ or

∑

n f(x, n;M) < ∞.

Expanding equation (3.6), the following bivariate density is obtained,

f(x, n;M) = (xn!)−1 exp{m00 + m10 log x + m20 log2 x + m01n

+m11n log x + m21n log2 x}, x > 0; n = 0, 1, . . . ,

where m20 < 0 and m21 ≤ 0. The conditional parameters are given by,

μ(n) = − m10 + m11n

2(m20 + m21n)
,

σ2(n) = − 1
2(m20 + m21n)

,

and
λ(x) = exp(m01 + m11 log x + m21 log2 x).

The marginal distributions are,

fX(x;M) = x−1 exp{m00 + m10 log x + m20 log2 x + λ(x)}, x > 0,
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and

fN (n;M) =
√

2πem00

n!
√−2(m20 + m21n)

exp
{

− (m10 + m11n)2

2(m20 + m21n)

}

, n = 0, 1, . . .

3.4 Bivariate Income Distributions

A recent application of these kinds of distributions is the specification of bivariate
income distributions. The list of bivariate income distributions is very limited and many
times reduces to the bivariate lognormal distribution. Unfortunately this distribution
presents some shortcomings; for instance, the range of the correlation coefficient is
limited and is more narrowed than the normal case. As an alternative to this model,
Sarabia et al. (2006) have proposed bivariate distributions with lognormal conditionals,
where the joint pdf is given by

f(x, y; δ,M) = (x− δ1)−1(y − δ2)−1 exp
{−uδ1(x)�M uδ2(y)

}

, (3.7)

if x > δ1, y > δ2 and uδi(·) denotes the vector

uδi(z) = (1 , log(z − δi) , [log(z − δi)]2)�, i = 1, 2,

and M = {mij} is a 3 × 3 matrix of parameters. This new distribution is very broad
and contains as a particular case the classical bivariate lognormal distribution. The
properties of (3.7), as well as an application with real data, can be found in Sarabia
et al. (2006).

Other relevant models correspond to bivariate distributions with Pareto condition-
als. The first model was proposed by Arnold (1987), where classical Pareto distribution
is considered. This model was extended in Arnold et al. (1993a) to distributions with
generalized Pareto conditionals, according to the hierarchy of Pareto distributions in-
troduced by Arnold (1983).

3.5 Flexible Conjugate Prior Families

An important application of the models with conditional specification is the specifica-
tion of conjugate prior distributions in a Bayesian framework. This methodology has
been used for the Bayesian estimation of the parameters of classical distributions (see
Arnold et al. (1993b, 1998a) and Sarabia et al. (2005)) and in the Bayesian estimation
of ratios of gamma scale parameters (Arnold et al. (1998b) and Moschopoulos and Sha
(2005)). In this section we propose two new applications.



40 J. M. Sarabia, M. Sarabia, and M. Pascual

3.5.1 Hurdle count data models: Bayesian analysis

Hurdle models were introduced by Mullahy (1986) and are useful in econometrics be-
cause of their interpretation as a two-stage decision process. These models allow indi-
viduals below and above the hurdle to have different statistical behavior. The common
hurdle count data is hurdle at zero, in which case the outcome is a reparametized
zero-modified distribution (see Johnson et al. (2005)).

Suppose that α and 1 − α are the probabilities of failing and crossing the hurdle.
Let as assume also that the conditional distribution of nonzero observations is a zero-
truncated distribution for which the probabilities are {px}, x = 0, 1, 2, . . . Then the
hurdle model has probabilities,

Pr(X = 0) = α,

Pr(X = x) =
(1 − α)px

1 − p0
, x = 1, 2, . . .

Assume that {px} belongs to the power series distribution with pmf px = η(θ)−1a(x)θx,
x = 0, 1, 2, . . . In consequence, we obtain the hurdle model,

Pr(X = 0) = α, (3.8)

Pr(X = x) =
(1 − α)a(x)θx

η(θ) − a(0)
, x = 1, 2, . . . (3.9)

If we take a random sample X1, . . . , Xn from (3.8)-(3.9), we obtain the likelihood,

�(α, θ;X) ∝ αn0(1 − α)n−n0 [η(θ) − a(0)]−(n−n0)θ
∑

Xi≥1 Xi ,

where n0 denotes the zero frequency. Bayesian analysis requires the specification of
prior distribution for the parameters α and θ. We want a conjugate prior distribution
with dependence between parameters. Then, if θ is known, a conjugate prior for α is
the classical beta distribution and if α is known, a conjugate prior for α is π(θ) ∝
θb−1[η(θ) − a(0)]−c, and we will denote θ ∼ PC(b, c). In consequence, we look for the
most general bivariate distribution with conditionals,

α|θ ∼ B(p(θ), q(θ)), (3.10)
θ|α ∼ PC(b(α), c(α)), (3.11)

where p(·), q(·), b(·) and c(·) are unknown functions. The most general bivariate dis-
tribution satisfying (3.10) and (3.11) is given by

π(α, θ;M) = [α(1 − α)]−1 exp
{

u�Mv
}

,

where u = (1, logα, log(1−α))� and v = (1, log θ, log[η(θ)−a(0)])�. The hurdle Poisson,
binomial and geometric are tractable models and can be used in practical applications.

3.5.2 Estimating with incomplete count data

The second application corresponds to estimating with incomplete count data. Assume
that xt is an homogeneous Poisson process Po(λt), where t is a time interval, λ is
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unknown and xt is unobservable. Let us suppose the available sample information is
variable yt, which is an unknown proportion of xt. In practice, xt might represent the
number of violent crimes in a given period of time t or the number of accidents caused
by the customers of a given insurance company during time t. The data yt might be
the actual number of reported violent crimes or the claims to the company. These are
standard situations in criminology and actuarial statistics.

Assuming that the number of incidents xt that are reported independently of each
other with probability θ, the same for all incidents, a possible model might be

f(xt|λ) =
(λt)xt

xt!
exp(−λt), xt = 0, 1, 2, . . .

f(yt|xt, θ) =
(

xt

yt

)

θyt(1 − θ)xt−yt , yt = 0, 1, . . . , xt,

where λ > 0 and 0 < θ < 1. Well known probabilistic computations led to

f(yt|λ, θ) =
(λθt)yt

yt!
exp(−λθt).

Then, the number of reported counts conditional on (λ, θ) is Poisson distributed with
parameter λθt. This likelihood is unable to distinguish among the pairs (λ, θ) with the
same product. We need the specification of a prior for the pair (λ, θ). Moreno and Girón
(1998) have proposed a prior distribution assuming independency between parameters.
However, a conjugate prior distribution with dependence between parameters can be
specified as in the previous section. Now, λ given θ is a gamma distribution and θ given
λ a truncated gamma distribution.

3.6 Conditional Hazard Functions

In this section we describe the construction of bivariate continuous distribution (X,Y )
based on the specification of conditional hazard functions. We consider several possi-
bilities.

A first possibility is by conditioning on events of the form {X = x}, that is

X |Y = y ∼ λ1(x|y),
Y |X = x ∼ λ2(y|x),

where λ1(x|y) and λ2(y|x) are the conditional hazard functions. This problem has been
studied by Balakrishnan et al. (2004) and led to the joint probability density function
fX,Y (x, y).

A second possibility is by conditioning on events of the form {X > x} in the next
way

Pr(X > x|Y > y) = exp[−α1(y)Λ1(x)],
Pr(Y > y|X > x) = exp[−α2(x)Λ2(y)],
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where Λi(x), i = 1, 2 are the integrated hazard functions (which are known) and αi(z) :
R+ → R+, i = 1, 2 are unknown functions. The solution to this problem given in terms
of the joint survival function is

Pr(X > x, Y > y) = exp[−α1Λ1(x) − α2Λ2(y) − α12Λ1(x)Λ2(y)].

For this model the bivariate hazard function λ(x, y) = f(x, y)/Pr(X > x, Y > y) is

λ(x, y) = λ1(x)λ2(y)[γ0 + γ1Λ1(x) + γ2Λ2(y) + γ12Λ1(x)Λ2(y)],

where λi(x) = Λ′i(x), i = 1, 2 γ0 = α1α2 + α12, γi = αiα12, i = 1, 2 and γ12 = α2
12.

Assume now linear conditional hazard functions of the form,

λ1(x|y) = α11(y) + 2α12(y)x,
λ2(y|x) = α21(x) + 2α22(x)y,

and conditioning on events of the form {X > x}. Then we obtain the joint survival
function

Pr(X > x, Y > y) = exp(a10x + a01y + a11xy + a20x
2 + a02y

2

+a12xy
2 + a21x

2y + a22x
2y2),

where we need some constraints about the parameters aij . More flexible bivariate sur-
vival functions can be obtained using mixture hazard function proposed by Shaked
(1977) with the specification

Pr(X > x|Y > y) = exp [−α11(y)Λ11(x) − α12(y)Λ12(x)] ,
Pr(Y > y|X > x) = exp [−α21(x)Λ21(y) − α22(x)Λ22(y)] .
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Abstract: The aim of the paper is to propose a new model for panel data. In a recent
paper, the authors showed that the hurdle model is an interesting alternative to Poisson
and Negative Binomial for the analysis of the number of claims reported by an insured
driver. We generalize the hurdle model to account for longitudinal data under the
assumption that covariates are time independent. Predictive distributions are shown
to be easily computed analytically, as well as future premiums that can be calculated
using the classical credibility theory.
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4.1 Introduction

The basis for insurance agreements is risk-sharing between individuals, so that each one
contributes economically to constitute a fund that is used to re-establish the wealth
of the one that suffers a loss. This is the principle of mutualization. In automobile
insurance, for example, when an accident occurs, the responsible driver is liable for the
damages caused to others, but since third-party liability automobile insurance is com-
pulsory in most countries, the insurance company takes up the economic compensation
for losses. If accident occurrence were completely hazardous and the insured risk was
the same (i.e., they all share the same characteristics), all insureds would agree to pay
the same price (premium) to sign an insurance contract. Risk factors come into play
because there exists a heterogeneity in risk exposure due to the vehicle, the driver, the
mileage or even the geographical location.

The aim of statistics in insurance is to predict future claims conditional on risk
factors. Claims amounts (or economic compensations to be paid) are more difficult to
predict than claiming frequency (the number of accidents for a given period of time).
Nowadays, panel data that contain information on the number of claims reported by
insureds each year (or month) together with their characteristics, are the main source of
information for insurers to derive models that should be used to estimate the expected
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number of claims conditional on the information on the risk covariates. The number of
individuals is usually very large, compared to the time framework for which information
is available. Covariates (i.e., the risk characteristics) may change over time and insureds
are also free to cancel an insurance contract to go to a competitor.

In this paper we discuss models suitable to this situation. We also show the practical
difficulties of applying them in practice and illustrate with real data examples from the
Spanish insurance market. We note that the kind of data that we present here are
central in insurance and quantitative risk management, but they are also very frequent
in many other microeconomic problems. Some examples from different contexts are:
repeated purchase of products made by a consumer, number of visits to doctors, number
of patents written by an industry.

We especially want to stress that our contribution is in the way we address the
excess-of-zeros phenomenon that is common in this kind of data sets.

4.1.1 Data used

In this paper, we worked with a sample of the automobile portfolio of a major company
operating in Spain. Only private use cars have been considered in this sample. The
panel data contains information from 1991 until 1998. Our sample contains 15,179
policyholders that stay in the company for seven complete periods, resulting in 106,253
insurance contracts. We have 5 exogeneous variables (see table 4.1) that are kept in
the panel plus the yearly number of accidents. For every policy we have the initial
information at the beginning of the period and the total number of claims at fault that
took place within this yearly period. The average claim frequency of the portfolio is
6.8412%.

To analyse these data, we make the following assumption: All covariates used are
the ones observed at the beginning of year 1. Thus, all regressors can be seen as time in-
dependent. Nevertheless, this assumption is not so restricting as it might seem. Indeed,
the majority of the time dependent covariates that are used in insurance involve the
age of the insured or the length of stay in the company. These variables do not evolve
randomly in time since the change can already be known in advance. Other covariates
can also change in time, such as the city or the type of vehicle of the driver but this
kind of major change often involves the creation of another policy.

In this paper, the exogenous variables shown in table 4.1 are used to model the pa-
rameters of the distributions. The characteristics of the insureds are expressed through
some functions h(β0 + x′iβ), where β0 is the intercept, β′ = (β1, ..., βp) is a vector of
regression parameters for explanatory variables xi = (xi,1, ..., xi,p).

Table 4.1. Exogenous variables

Variable Description

v1 equals 1 for women and 0 for men
v2 equals 1 if the client was in the company between 3 and 5 years
v3 equals 1 if the client was in the company for more than 5 years
v4 equals 1 if the insured is 30 years old or younger
v5 equals 1 if power is larger or equal to 5500 cc
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4.2 Cross Section versus Panel Data

Usually, data are analysed by cross-sectional analysis, where each observation, here each
annual a contract, is considered to be mutually independent. Thus, in this situation,
we worked with N × T independent observations. However, it is clear that insurance
data is a repetition of one-year contract for an insured, where some dependence over
contracts of the same insured exists. Longitudinal data (or panel data) consists of
repeated observations of individual units that are observed over time. Each individual is
assumed to be independent, but correlation between observation of the same individual
is permitted. This fact must be regarded as an advantage and must be used in the
construction of frequency models.

4.2.1 Modelling

There exist many models that imply time dependence, but the most popular way of
dealing with these data is the use of a common individual term (Hausman et al.,
1984) that affects all contracts of the same insured. To illustrate, this random effects
model can represent individual specificities not captured by the covariates, such as
swiftness of reflexes, aggressiveness behind the wheel, consumption of drugs, etc. Given
the insured-specific random effect term θi, the annual claim numbers Ni,1, Ni,2, . . . , Ni,T

are independent. The joint probability function of Ni,1, ..., Ni,T is thus given by

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T ] (4.1)

=
∫ ∞

0

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T |θi]g(θi)dθi

=
∫ ∞

0

(

T
∏

t=1

Pr[Ni,t = ni,t|θi]

)

g(θi)dθi. (4.2)

Many conditional distributions for the random variables Ni,t can be chosen as well
as a distribution for the random effect θi, as we will see in the following sections.

Endogeneous regressors and fixed effects

In linear regression, correlation between the regressors and the random effect term
leads to inconsistency of the estimated parameters (Mundlak (1978), or for a general
overview, Hsiao (2003)). The same problem exists for the count data regression when
E[θ|xi] �= E[θ] Mullahy (1997), and it leads to biased estimates of parameters. In
insurance, correlation between regressors and error term is often present (Boucher and
Denuit, 2006) and may be caused by omitted variables that are correlated with the
included ones.

As noted in Winkelmann (2003), consistent estimates may be found if corrections
are made to the standard estimation procedures. However, as shown by Boucher and
Denuit (2006), for insurance applications, standard methods of estimation can still be
used. Indeed, the resulting estimates of parameters, while being biased, represent the
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apparent effect on the frequency of claim, which is the real interest when the correlated
omitted variables cannot be used in classification.

4.3 Poisson Distribution

4.3.1 Overview

Commonly, the starting point for the modelling of the number of reported claims is the
Poisson distribution:

fNi,t(ni,t) =
λ

ni,t

i e−λi

ni,t!
(4.3)

where covariates are included in the model by the parameter λi = exp(x′iβ)
(Dionne and Vanasse, 1989). The Poisson distribution is equidispersed since its mean
and variance are both equal to λi. Because the Poisson distribution has some severe
drawbacks that limit its use, other distributions can be used, such as zero-inflated or
hurdle models (Boucher et al., 2007), which is analyzed in the next section.

4.3.2 Panel data

To generalize the Poisson distribution for panel data, an individual random effect term
θi is added to its mean parameter. Formally, we can express the classic Poisson random
effects model as:

Ni,t|θi ∼ Poisson(θiλi), i = 1, ..., N t = 1, ..., T

where i represents an insured and t his covered period. As for the heterogeneity models
of the cross-sectionnal model (Boucher et al., 2007), many possible distribution for
the random effects can be chosen. The use of a gamma heterogeneity is a natural
possibility because it can express the joint distribution in a closed form since the
gamma is conjugated to the Poisson distribution. Formally, the joint distribution of
the number of claims, when the heterogeneity term follows a gamma distribution of
mean 1 and variance α, is equal to (Hausman et al., 1984):

Pr(ni,1, ..., ni,T ) =

[

T
∏

t=1

(λi)ni,t

ni,t!

]

Γ (
∑T

i=1 ni,t + 1/α)
Γ (1/α)

(

1/α
Tλi + 1/α

)1/α

×(Tλi + 1/α)−
∑T

i=1 ni,t (4.4)

This distribution is known as a Multinomial Negative Binomial or negative multi-
nomial, which has been often applied (see Chapter 36 of Johnson et al. (1996), for
an overview). Note that this distribution can also be seen as the generalization of
the bivariate Negative Binomial of Marshall and Olkin (1990). For this distribution,
E[Ni,t] = λi and V ar[Ni,t] = λi + αλ2

i , so overdispersion can be accounted. Maxi-
mum likelihood estimations of parameters and variances of these estimates are straight-
forward.
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The generalization of the Negative Multinomial to other kinds of Multivariate Neg-
ative Binomial distributions can also be done. If we suppose that the random effects
are following a gamma distribution with both parameters equal to λ1−k

i /α, the joint
distribution can be expressed as:

Pr(ni,1, ..., ni,T ) =

[

T
∏

t=1

(λi)ni,t

ni,t!

]

Γ (
∑T

i=1 ni,t + λ1−k
i /α)

Γ (λ1−k
i /α)

(4.5)

×
(

λ1−k
i /α

Tλi + λ1−k
i /α

)λ1−k
i /α

(Tλi + λ1−k
i /α)−

∑T
i=1 ni,t ,

where k = 1 is the standard negative multivariate distribution (MVNB2), k = 0 is
the multivariate NB1 equivalence (MVNB1). The variable k can also be numerically
estimated, which can be used to construct a method of discriminating between the
MVNB2 and the MVNB1 models. This method, used by Boucher et al. (2007) is based
on the creation of a hypermodel, where the additional parameter, here the random
variable k, is used to test whether MVNB2 or MVNB1 is statistically the better by doing
a simple confidence interval. Expressed in its general form, the MVNBk distribution
has the following moments:

E[Ni,t] = E[E[Ni,t|θi]]
= λi (4.6)

V ar[Ni,t] = E[V ar[Ni,t|θi]] + V ar[E[Ni,t|θi]]
= λi + αλk+1

i (4.7)

Cov[Ni,t, Ni,t+j ] = Cov[E[Ni,t|θi], E[Ni,t+j |θi]] + E[Cov[Ni,t, Ni,t+j |θi]]
= Cov[λiθi, λiθi] + 0
= αλk+1

i , j > 0 (4.8)

As for the cross-sectional data, other distributions can be chosen to model the
random effects, such as the Inverse Gaussian or the LogNormal distributions, which
result in distributions having the same form for the two first moments, distinctions
found using higher moments. Note that the MVNB2 and MVNB1 models are nested
to the Poisson distribution in the case when α → 0.

4.4 Hurdle Models

4.4.1 Overview

Because the vast majority of the insureds reports less than 2 claims per year, Boucher
et al. (2007) proposed to model the number of reported claims by two different pro-
cesses. Firstly, a dichotomic distribution to differentiate insureds with and without
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claim. Secondly, another process that precises, conditionally on having reported at
least one time, the number of reported claims. The distribution that uses two processes
to determine the number of reported claims can be driven by the same explanatory
variables, which may be interpreted differently depending on the process involved. This
kind of modelling looks like the double modelling of the amount of claims, where the
limited costs and the excess-of-loss costs (costs above a certain value) are modelized
separately.

The most popular distribution implying the assumption that the data come from
two separate processes is the hurdle count models that were introduced by Mullahy
(1986). The hurdle model is characterized by the process below the hurdle and the one
above. Obviously, the most widely used hurdle model is the one that sets the hurdle at
zero. Formally, the hurdle-at-zero model is expressed as:

P (Ni = ni) =
f1(0) for ni = 0
1−f1(0)
1−f2(0)f2(ni) = Φf2(ni) for ni = 1, 2, ... (4.9)

The variable Φ can be interpreted as the probability of crossing the hurdle, or more
precisely in case of insurance, the probability to report at least one claim. Clearly, the
model collapses to f if f1 = f2 = f . Expected values and variance of this hurdle model
are expressed as:

E[Ni] =
1 − f1(0)
1 − f2(0)

∞
∑

k=0

kf2(k) (4.10)

V ar[Ni] = Φ

∞
∑

k=1

k2f2(k) − [Φ
∞
∑

k=1

k2f2(k)]2, (4.11)

where Φ = (1 − f1(0))/(1 − f2(0)). Consequently, the model can be over or underdis-
persed, depending on the values of the parent processes. Many possibilites exist for
the choice of the processes f1 and f2. Nested models where f1 and f2 come from the
same distribution, such as the Poisson distribution (Mullahy, 1986) or the Negative
Binomial (Pohlmeier and Ulrich, 1995), which is by far the most popular hurdle model
(Winkelmann, 2000), are possible. However, non-nested models (Grootendorst (1995),
(Gurmu, 1998), or Winkelmann (2003)) can also be used. These models do not nest with
a standard count distributions such as the Poisson or the NB types, but are overlapping
Vuong (1989) since models can be equivalent for certain parameter restrictions.

Estimation of the parameters by maximum likelihood is easy. The log-likelihood
function of a hurdle model can be expressed as:

� =
n
∑

i=1

I(ni=0) log(f1(0; θ1)) + I(ni>0) log(1 − f1(0; θ1))

+
n
∑

i=1

I(ni>0) log(f2(ni; θ1)/(1 − f2(0; θi)) (4.12)

The hurdle model is interesting because it allows us to estimate the parameters
by two separate steps. Indeed, the zero-part parameters can be estimated using MLE
on the first part of the loglikelihood equation while the other parameters only use the
second part, only composed with non-zero elements. This characteristic of the model
is very useful to save computer time in the estimation.
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Unobserved heterogeneity

To add some uncertainty due to the absence of important classification variables, an
heterogeneity term can be added to the distribution. The standard approach is to
integrate the heterogeneity prior to the conversion into a hurdle model:

f̂1(ni) =
∫

f1(ni|θ)g1(θ)dθ (4.13)

f̂2(ni) =
∫

f2(ni|θ)g2(θ)dθ (4.14)

P (Ni = ni) =
f̂1(0) for ni = 0
1−f̂1(0)

1−f̂2(0)
f̂2(ni) for ni = 1, 2, ...

(4.15)

However, as noted by Santos Silva (2003), it seems more natural to estimate the
heterogeneity on the positive part and on the zero part of the model. Formally,

P (Ni = ni) =

∫

f1(0|θ)g1(θ)dθ for ni = 0
(∫

(1 − f1(0|θ))g1(θ)dθ
)

(

∫ f2(ni|θ)
1−f2(0|θ)g2(θ)dθ

)

for ni = 1, 2, ... (4.16)

Conceptually, models (4.15) and (4.16) differ in interpretation. As noted in Santos
Silva (2003) and reviewed in Winkelmann (2003), the zero and positive processes of the
hurdle model are evaluated separately and possesses their own heterogeneity. Conse-
quently, model (4.16) seems to be more intuitive since we avoid the step of needing to
compute

∫

f2(0|θ)g2(θ)dθ although the zeros are supposed to be generated by another
process.

When a heterogeneity term is chosen for model (4.16), closed expression can be
found using a transformation. Indeed, a new random variable ni∗ = ni − 1 can be used
to model the second part of the hurdle model with standard count models, such as a
Poisson distribution or other variations.

Model interpretation

The hurdle models are quite popular for modelling health care demands. Indeed, it is
generally accepted that the demand for certain types of health care services depends
on two processes: the decisions of the individual and the one of the health care provider
(Stoddart and Barer (1981), Pohlmeier and Ulrich (1995), Mullahy (1997), Santos Silva
and Windmeijer (2001)). Consequently, conditionally on certain assumptions, the use
of a hurdle model is intuitive, and the parameters can have a structural interpretation.

Many direct applications of this model can be used for insurance data, such as the
amount of coverage implied for a claim, the number of injured people or the number
of implicated third parties. Such modellings using separate processes are appropriate
since these processes are not the same as the one that drives the number of accidents.

However, beside these specific examples, such modelling can also have a natural
interpretation for the number of reported claims. Indeed, since there exists a reluctance
from some insureds to report their accident since they would lose their good bonus-
malus rating, we can suppose that the behavior of the insureds is not the same when
they already have reported a claim.
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4.4.2 Panel data

The hurdle model can be directly generalized to panel data using the transformation
n∗i = ni − 1:

P (Ni,1, ..., Ni,t) =
∫

∏

t

f1(0|θi,1)
I(ni,t=0) (1 − f1(0|θi,1))

1−I(ni,t=0) g1(θi,1)dθi,1

×
∫

∏

t

f∗2 (n∗i,t|θi,2)
1−I(ni,t=0)g2(θi,2)dθi,2. (4.17)

As for the cross-sectional data, the hurdle model is interesting because it allows us to
estimate the parameters on two separate steps. The transformation of the positive part
allows us to fit the data using standard Poisson random effects models seen in Section
4.3, where the mean variable can be expressed as γi = exp(xiδ). For the zero-part of the
model, instead of using the classic Poisson parametrization approach that results in a
complicated form for the joint distribution expression, a more intuitive model could be
the use of a Bernouilli distribution where the parameter is beta distributed to account
for the invidual specificities.

Using a Bernouilli-Beta combination for the zero part, the joint distribution of the
variable Zi,t, which can take values of 0 or 1, is well known and can be expressed as:

P (Zi,1, ..., Zi,t) =
∫

∏

t

θ
zi,t

i (1 − θi)
1−zi,t

Γ (ai + b)
Γ (ai)Γ (b)

θai−1
i (1 − θi)

b−1
dθi

=
Γ (ai + b)
Γ (ai)Γ (b)

Γ (
∑

t zi,t + ai)Γ (T −∑t zi,t + b)
Γ (T + ai + b)

(4.18)

The covariates can be included in the model as ai = exp(xiβ). Having the upper
part modeled with the transform random variable n∗i and basing the computations on
equations (4.10) and (4.11), the complete hurdle model involves the following moments:

E[Ni,t] =
ai

ai + b

∞
∑

j=0

(1 + j)fn∗
i
(j)

=
ai

ai + b
(1 + γi) (4.19)

E[N2
i,t] =

b

ai + b

∞
∑

j=0

(1 + j)2fn∗
i
(j)

=
ai

ai + b

[

1 + 3γi + αγk+1
i − γ2

i

]

(4.20)

V ar[Ni,t] = E[N2
i,t] − E[Ni,t]2 (4.21)

Cov[Ni,t, Ni,t+j] = (1 + γi)2
aib

(ai + b + 1)(ai + b)2

+
γk+1

i

α

(

aib

(ai + b + 1)(ai + b)2
+
(

ai

ai + b

)2
)

, j > 0.

(4.22)
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4.5 Predictive Distribution

For the Poisson and the hurdle models for panel data, at each insured period, the
random effects θi and pi can be updated for past claims experience, revealing some
individual information. Formally, the predictive distribution can be found using the
following development:

Pr[ni,T+1|ni,1, ..., ni,T ] =
Pr(ni,1, ..., ni,T+1)
Pr(ni,1, ..., ni,T )

=
∫

Pr(ni,1, ..., ni,T+1, θi)dθi
∫

Pr(ni,1, ..., ni,T , θi)dθi

=
∫

Pr(ni,T+1|θi)
(

Pr(ni,1, ..., ni,T |θi)g(θi)
∫

Pr(ni,1, ..., ni,T |θi)g(θi)dθi

)

dθi

=
∫

Pr(ni,T+1|θi)
(

[
∏

t Pr(ni,t|θi)] g(θi)
∫

[
∏

t Pr(ni,t|θi)] g(θi)dθi

)

dθi

=
∫

Pr(ni,T+1|θi)g(θi|ni,1, ..., ni,T )dθi, (4.23)

where g(θi|ni,1, ..., ni,T ) is the a posteriori distribution of the random effects θi, re-
flecting the past claims experience of insured i. If this a posteriori distribution can be
expressed in closed form, moments of the predictive distribution can be found easily
by conditioning on the random effects θi.

4.5.1 Poisson

As it is well known, we found that the a posteriori distribution of the random effect
term is also a Gamma distribution having parameters equal to Tλi + λ

(1−k)
i /α and

∑T
t ni,t + λ

(1−k)
i /α. The two first moments of the predictive distributions are equaled

to:

E[Ni,t+1|Ni,1, ..., Ni,t] = λi

∑T
t ni,t + λ

(1−k)
i /α

Tλi + λ
(1−k)
i /α

(4.24)

V ar[Ni,t+1|Ni,1, ..., Ni,t] = λi

∑T
t ni,t + λ

(1−k)
i /α

Tλi + λ
(1−k)
i /α

+ λ2
i

∑T
t ni,t + λ

(1−k)
i /α

(Tλi + λ
(1−k)
i /α)2

.

(4.25)

We see that the future premium only depends on the sum of the number of reported
claims. Additionally, we observe that the premium of insured i goes to its average
number of reported claims if the number of insured periods goes large. For models
where the variable k is different than 1, the variance of the heterogeneity distribution
depends on characteristics of the insureds. Then, the impact on a premium of having a
claim is more important for low variance heterogeneity and thus, premium modifications
for negative composants of λi are more severe.
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4.5.2 Hurdle

The same development can be done for the two processes of the hurdle distribution,
since the panel hurdle model can be expressed as:

P (Ni,1, ..., Ni,t) =
∫

∏

t

f1(0|pi)zi,t (1 − f1(0|pi))
1−zi,t g(pi)dpi

×
∫

∏

t

f∗2 (n∗i,t|θi)
1−I(ni,t=0)h(θi)dθi. (4.26)

Because the two processes can be analyzed separately, the a posteriori distribution
of the random effect term of the first process can be found as follows:

g[pi|zi,1, ..., zi,T ] ∝ p
∑T

t zi,t

i (1 − pi)T−∑T
t zi,t

Γ (ai + b)
Γ (ai)Γ (b)

pa−1
i (1 − pi)b−1dpi

∝ p
∑T

t zi,t+ai−1
i (1 − pi)T−∑T

t zi,t+b−1dpi.

From which, we can see that it is beta distributed with parameters
∑T

t zi,t + ai

and T −∑T
t zi,t + b. For the first part of the distribution, the expected value of the

predicted distribution is then calculated as:

E[zi,T+1|zi,1, ..., zi,T ] =
∑T

t zi,t + ai

T + b + ai
(4.27)

The second process N∗i = Ni − 1 of the hurdle distribution is following a MVNB
distribution. Then, the a posteriori distribution of the random effect term can be found
using the same development as Section 4.5.1, and thus the expected value of the second
process is equal to:

E[ni,J+1|ni,J+1 > 0, ni,1, ..., ni,J ] = 1 + E[N∗i,J+1 = n∗i,J+1|ni,1, ..., ni,J ]

= 1 + γi

∑J
t ni,t + γ

(1−k)
i /α

Jγi + γ
(1−k)
i /α

, (4.28)

where J is equaled to the number of insured period where the insured has reported at
least one claim. Combining equations (4.27) and (4.28) leads to the predictive expected
value of the count distribution, while the variance of the model can be computed using
equations (4.11) and (4.21):

E[nT+1|n1, ..., nT ] =
∑T

t zi,t + ai

T + b + ai

(

1 + γi

∑J
t ni,t + γ

(1−k)
i /α

Jγi + γ
(1−k)
i /α

)

(4.29)

E[n2
T+1|n1, ..., nT ] =

∑T
t zi,t + ai

T + ai + b

[

1 + 3γi

∑J
t ni,t + γ

(1−k)
i /α

Jγi + γ
(1−k)
i /α

+γ2
i

∑J
t ni,t + γ

(1−k)
i /α

(Jγi + γ
(1−k)
i /α)2

−
(

γi

∑J
t ni,t + γ

(1−k)
i /α

Jγi + γ
(1−k)
i /α

)2 ]

.

(4.30)
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As opposed to the Multivariate Negative Binomial models, the future premium not
only depends on the sum of reported claims, but also on the number of insured periods
without claim. Additionally, when the insured period goes to infinite, the premium of
the insured does not converge to the average number of reported claims, but on the
product of two limited values: the average number of time periods with at least one
claim and the average of the number of reported claims greater or equal to one.

4.5.3 Linear credibility

Predictive and a posteriori distributions used Bayesian theory and are strongly related
to credibility theory (Bühlmann (1967), Bühlmann and Straub (1970), Hachemeister
(1975), Jewell (1975)). Linear credibility is a theory used to obtain a premium based
on a weighted average of past experience and a priori premium, such as:

PT+1 = Zn̄i,t + (1 − Z) × P0, (4.31)

where n̄i,t =
∑T

t=1
ni,t

T , PT+1 is the predictive premium a time T + 1, P0 is the a
priori premium and ni,t is the number of reported claim for insured i at period t. The
coefficient Z, that gives weight to the two components, is the value that minimizes the
squared error of the predictive value (Bühlmann, 1967) which corresponds to:

Z =
Cov(N̄i,t, Nn+1)

V ar(N∗i )
.

The linear credibility model gives exact results only for conjugated distributions
Jewell (1975), such as the Poisson with gamma random effects or Bernoulli with Beta
parameters. Then, using standard results of the credibility theory, it is possible to
obtain the same premium as the one obtained in equation (4.29).

4.6 Insurance Application

The models seen in the preceding sections can be used to calculate the impact of the
covariates on the number of reported claims, but can also be used to calculate a priori
premiums or predictive premiums of the frequency part of an insurance premium. The
amount of claims is the other part of a standard insurance premium. The a priori
premium represents the premium that a new insured must paid to be covered. By
opposition, the predictive premium is the premium of the other insureds, that depends
on the experience of each insured.

4.6.1 Estimations

Applications of the Poisson and the hurdle models on our insurance data lead to the
results shown in table 4.2 for the models based on Poisson generalization, while tables
4.3 and 4.4 refer to the hurdle model since it can be decomposed in two parts.

For the Multivariate Negative Binomial models, the estimated parameters are quite
the same for all models. Not surprisingly, we see that women exhibit fewer claims than
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Table 4.2. Multivariate negative binomial models

Parameter MVNB2 MVNB1 MVNBk

b0 −2.6600 (0.0352) −2.6635 (0.0341) −2.6646 (0.0337)
b1 0.1087 (0.0409) 0.1170 (0.0387) 0.1166 (0.0380)
b2 −0.1805 (0.0327) −0.1731 (0.0314) −0.1684 (0.0326)
b3 −0.2103 (0.0370) −0.2068 (0.0358) −0.2022 (0.0368)
b4 0.0471 (0.0346) 0.0599 (0.0329) 0.0613 (0.0324)
b5 0.0990 (0.0316) 0.0931 (0.0305) 0.0904 (0.0305)
α 0.8832 (0.0432) 0.0610 (0.0031) 0.0339 (0.0426)
k . . . . −0.2188 (0.4682)

LogLike 26,703.0 26,699.4 26,699.3

men, while new insureds in the company seem to have a worse loss experience than
older clients. In the presence of other covariates, we can also see that young drivers
exhibit a better claim experience, but it is not statistically significant. To finish, we
observe that insureds with powerful vehicles suffer more accidents than other drivers.
A look at the p-values of the parameters implying time dependence between contracts
of the same insured leads to the conclusion that it improves the model. However, more
statistical tests must be done to conclude that the introduction of this term improves
the Poisson models since it cannot be negative, and the tested hypothesis is on the
boundary of the parameter space. Indeed, when a parameter is bounded by the H0

hypothesis, the estimate is also bounded and the asymptotic normality of the MLE no
longer hold under H0.

By comparison of the log-likelihoods, we see that the form of the random effects
do not really modify the fitting of the data. The confidence interval implied by the
k variable of MVNBk model concludes that the MVNB2 and the MVNB1 are both
accepted.

For the hurdle models, we have to notice that the parameters obtained cannot
be compared directly to the ones obtained with the multivariate negative binomial
distributions since they do have the same impact on the expected value (See equations
(4.19) and (4.6)). However, by the sign of the estimated parameters of the zero-part
of the hurdle model (table 4.3), we can reach the same conclusions as the ones done
with the MVNB distribution for the probability to report at least one claim in a
time period. As opposed to the Poisson generalization models, the time dependence
assumption cannot be analyed directly with this parametrization.

The parameters of table 4.4 allow us to observe what kinds of insureds are most
likely to report a high number of claim in a single time period. The result is a little bit
strange since only the insureds that were in the company between 3 and 5 years at the
beginning of the study are statistically better than the others. The α parameter seems
to be quite significant and the k variable seems to favor the MVNB2 distribution, even
if its confidence interval accepts both models.

4.6.2 Premiums

Difference between models can be analyzed through the mean and the variance of some
insured profiles. Several profiles have been selected and are described in table 4.5. The
first profile is classified as a good driver, while the last one usually exhibits bad loss
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Table 4.3. Hurdle models: Zero part

Parameter Beta

b0 0.3066 (0.0682)
b1 0.1298 (0.0401)
b2 −0.1726 (0.0325)
b3 −0.2124 (0.0370)
b4 0.0616 (0.0341)
b5 0.0975 (0.0315)
b 19.9640 (1.2279)

Loglike. 24,637.9

Table 4.4. Hurdle Models: Positive part

Parameter MVNB2 MVNB1 MVNBk

b0 −2.3688 (0.0525) −2.3695 (0.0524) −2.3687 (0.0526)
b2 −0.1951 (0.0933) −0.1922 (0.0933) −0.1953 (0.0935)
α 0.8122 (0.2070) 0.0718 (0.0183) 0.6955 (4.7872)
k . . . . 0.9359 (2.8422)

Loglike. 2,050.80 2,050.85 2,050.80

experience. The other profile is medium risk. The results are given in table 4.6. This
table shows that the expected values of all profiles are quite the same for the 4 models
studied. The biggest differences lie in the variance values, where the hurdle models
exhibit higher values.

Table 4.7 shows the predictive premiums of the 2nd profile for MVNB2 and hurdle-
MVNB2 (chosen arbitrarily between available models), which depends on the sum of
reported claims and on the number of insured periods with at least one reported claim
(t = T−T0). To illustrate, we selected a loss experience of 10 years, but other situations
can be easily illustrated since equations (4.24) and (4.29) are simple to use.

Interesting conclusions can be done from the analysis of predictive premiums. In-
deed, we can see that the number of insured periods with a claim have a greater im-
pact on the next year’s premium than the total number of reported claims. Indeed, the

Table 4.5. Profiles analyzed

Profile Number Kind of Profile v1 v2 v3 v4 v5

1 Good 0 0 1 0 0
2 Average 1 1 0 0 0
4 Bad 1 0 0 1 1

Table 4.6. A priori premiums

1st Profile 2nd Profile 3rd Profile
Models Mean Variance Mean Variance Mean Variance

MVNB2 0.0567 0.0595 0.0651 0.0688 0.0902 0.0974
MVNB1 0.0567 0.0601 0.0659 0.0699 0.0911 0.0966

H. Be-MVNB2 0.0570 0.0667 0.0659 0.0753 0.0911 0.1065
H. Be-MVNB1 0.0570 0.0667 0.0659 0.0753 0.0911 0.1065
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Table 4.7. Predictive premiums

Sum of claims
Models t 0 1 2 3 4 10 20

PG2 . 0.0413 0.0778 0.1143 0.1509 0.1874 0.4064 0.7715
H. PG2 0 0.0448 . . . . .

1 . 0.0790 0.0833 0.0876 0.0920 0.1180 0.5067
2 . . 0.1128 0.1187 0.1246 0.1598 0.5345
3 . . . 0.1465 0.1538 0.1972 0.5623
4 . . . . 0.1800 0.2309 0.5901
10 . . . . . 0.3786 0.7570
20 . . . . . 0.7393 1.0351

premium increases only by 16.4% if the insured reports 4 claims instead of one in a
single insured period. On the other hand, if the insured reports his 4 claims on 4 dif-
ferent time periods instead of only one, his premium increases by more than 95%. For
insureds who reported 1 claim or less, the hurdle model offers a discount that is smaller
than the MVNB model. For higher claims reporters, we can see that the hurdle model
exhibits a wide panel of premium values that go from 0.3 to 1.8 times the MVNB’s
premiums.

4.7 Conclusion

The behavior of the insureds toward their bonus-malus scheme seems to influence their
probability to report a claim. Models such as the hurdle distribution use this feature to
model the number of reported claims and provide good fitting. The generalization of
the Hurdle model to panel data can be done directly and shows interesting properties,
such as the discrimination of the insureds depending on the number of reported claims
and the number of insured periods without claim. The choice of the best distribution
describing our data must be supported by specification tests for nested or non-nested
models and should be the subject of further analysis. There is also a general feeling in
the insurance industry that drivers have either good claiming behavior (never claim) or
a bad claiming behavior (claim a lot). Indeed many marketing strategies are designed
to capture good customers and let the bad drivers go to the competitor. This paper
shows that this classification must go a little beyond where the number of insured
periods without claim has some importance.
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Distance-Based Association and Multi-Sample Tests

for General Multivariate Data

Carles M. Cuadras
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Abstract: Most multivariate tests are based on the hypothesis of multinormality. But
often this hypothesis fails, or we have variables that are non quantitative. On the
other hand we can deal with a large number of variables. Defining probabilistic models
with mixed data is not easy. However, it is always possible to define a measure of
distance between two observations. We prove that the use of distances can provide
alternative tests for comparing several populations when the data are of general type.
This approach is illustrated with three real data examples. We also define and study
a measure of association between two data sets and make a Bayesian extension of the
so-called distance-based discriminant rule.

Keywords and phrases: Statistical distances, multivariate association, discriminant
analysis, MANOVA, ANOQE, permutation test, large data sets

5.1 Introduction

Let Ω = {ω1, ω2, ..., ωn} be a finite set with n individuals. Let δii′ = δ(ωi, ωi′) =
δ(ωi′ , ωi) ≥ δ(ωi, ωi) = 0 a distance or dissimilarity function defined on Ω. We suppose
that the n×n distance matrix Δ = (δii′ ) is Euclidean. Then there exists a configuration
x1, . . . ,xn ∈ Rp, with xi = (xi1, . . . , xip)′, i = 1, . . . , n, such that

δ2
ii′ =

p
∑

j=1

(xij − xi′j)2 = (xi − xi′ )′(xi − xi′ ). (5.1)

These coordinates constitute an n×p matrix X =(xij) such that the Euclidean distance
between two rows i and i′ equals δii′ .

A way of obtaining X from Δ is as follows. Compute A = − 1
2Δ

(2)and G = HAH,

where Δ(2) = (δ2
ii′ ) and H = In − n−11n1′n is the centering matrix. Then Δ is Eu-

clidean with dimension p =rank(G) if and only if G ≥ 0. The spectral decomposition
G = UΛ2U′ gives X = UΛ. Thus G = XX′ and the relation between Δ(2) and G is
given by Δ(2) = 1g′+g1′−2G, where the n×1 vector g contains the diagonal entries
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in G. Note that if S = (sii′ ) is a similarity matrix and we define the squared distance
δ2
ii′ = sii + si′i′ − 2sii′ , then G = HSH.

Matrices X and U contain the principal and standard coordinates, respectively.
This method is called classic multidimensional scaling or principal coordinate analysis
(Cox and Cox (1994); Gower (1966); Mardia et al. (1979)).

Classic multivariate inference is mainly based on the hypothesis of normality. But
often this hypothesis fails or we have non-quantitative variables. On the other hand, we
can deal with a large number of variables. The main aim of this paper is to present two
distance-based methods, on the basis of general data (quantitative, qualitative, binary,
nominal, mixed), for comparing several populations. This distance-based approach ex-
tends some results by Cuadras and Fortiana (2004) and is in the line of Cuadras (1989,
1992), Cuadras and Arenas (1990), Cuadras et al. (1996, 1997a,b), Rao (1982) and Liu
and Rao (1995). See Arenas and Cuadras (2002) for a general perspective.

Firstly, let us comment on some distance-based aspects of multivariate association
and discrimination.

5.2 Multivariate Association

Suppose that we have two data sets D1 and D2 on the same Ω. The task of associating
D1 and D2 has been well studied when two quantitative data matrices are available.
Thus, if X and Y are two centered data matrices of orders n× p and n× q, Escoufier
(1973) introduced the generalized correlation

RV(X,Y) = tr(S12S21)/
√

tr(S2
11)tr(S2

22),

where S11 = X′X,S22 = Y′Y,S12 = X′Y,S21 = Y′X. This correlation is quite related
to the Procrustes statistics (Cox and Cox, 1994)

R2 = 1 − {tr(X′YY′X)1/2}2/{tr(X′X)tr(Y′Y)}.

Yanai et al. (2006) employ determinants of rectangular matrices to introduce a
measure Re(X,Y) of association, where

Re(X,Y)2 = det
[

X′X X′Y
Y′X Y′Y

]

/[det(X′X) det(Y′Y)].

We have RV(X,Y) = 1, R2 =Re(X,Y)2 = 0 if X = TY (T orthogonal) and
RV(X,Y) = 0, R2 = Re(X,Y)2 = 1 if X′Y = 0.

Next, let us show that we can use principal coordinates to define association with
general data when a distance function is available. In this case, we may obtain X,Y by
considering a distance between observations, which provides the n×n distance matrices
Δx and Δy. By spectral decomposition of the corresponding inner product matrices
Gx= UΛ2

xU
′, Gy= VΛ2

yV
′, we can obtain the standard coordinates U,V and the

principal coordinates X = UΛx,Y = VΛy.
We define the association between D1 and D2 by
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η2(D1,D2) = det(U′VV′U). (5.2)

For the sake of simplicity, we write η2(X,Y).
This association coefficient satisfies the following properties:

1. 0 ≤ η2(X,Y) = η2(Y,X) ≤ 1.
2. η2(X,Y) = det(X′YY′X)/[det(X′X) det(Y′Y)].
3. η2(X,Y) does not depend on the configuration matrices X,Y.
4. If y is a vector and X is a matrix, both quantitative, then R2(y,X) = η2(y,X),

where R is the multiple correlation coefficient.
5. If rj , j = 1, · · · , q are the canonical correlation coefficients between X and Y, then

η2(X,Y) =
q
∏

j=1

r2
j .

We outline the proof. Write W = UV′, where the columns of U and V are or-
thonormal. Then 1) follows from 0 ≤ det(WW′) = det(W′W) ≤ 1. As Λx,Λy are
diagonal, 2) reduces to det(U′VV′U). Similarly, if S and T are p × p nonsingular
matrices, then η2(X,Y) = η2(XS,YT). In particular S and T can be orthogonal ma-
trices and XS,YT define the same distance matrices Δx,Δy. To prove 4), note that
Λx/

√
n contains the standard deviations of the columns of X = UΛx. If y =

√
nsyv

and r =Λ−1
x X′ys−1

y is the vector of simple correlations between y and X, as Rxx= I,
then:

R2(y,X) = r′R−1
xx r

= s−2
y y′XΛ−1

x Λ−1
x X′y

= v′UU′v.

Finally, the canonical correlations satisfy det(RxyR−1
yy Ryx−r2

jRxx) = 0, with
Rxx= Ryy= I and Rxy= R′yx= U′V and 5) follows.

The association measure (5.2) is similar to the measure used in Arenas and Cuadras
(2004) for studying the agreement between two representations of the same data. This
measure can be computed using only distances and is given by

θ(X,Y) = 2[1 − tr(Gxy)/tr(Gx + Gy)],

where Gxy = Gx + Gy − (G1/2
x G1/2

y + G1/2
y G1/2

x )/2. Normalizing Gx,Gy to
tr(Gx)=tr(Gy)=tr(Λ2

x) =tr(Λ2
y) = 1, this measure reduces to

θ(X,Y) = tr(UΛxU′VΛyV′).

5.2.1 Example of multivariate association

Is there a relation between trade and science? table 5.1 is a matrix reporting trade and
scientific relations between 10 countries. The lower triangle contains 1 if significant
trade occurred between two countries, 0 otherwise. The diagonal and upper triangle
contains, for every pair of countries, the number of papers (mathematics and statistics,
period 1996-2002) published in collaboration. Thus, Spain published 8597 papers with-
out collaboration, 692 collaborating with USA, 473 with France, etc. The upper matrix
Q is standardized to S = D−1Q, where D =diag(S). Thus S has ones in the diagonal.
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Table 5.1. Trade (1 if significant, 0 otherwise) and scientific relation (number of papers of
mathematics and statistics in collaboration during 1996-2002) among ten countries

USA Spa Fra U.K. Ital GerCan Jap Chi Rus

USA 63446 692 2281 2507 16422812273310391773 893
Spain 1 8597 473 347 352 278 163 69 104 177
France 1 1 17155 532 916 884 496 269 167 606
U.K. 1 1 1 12585 490 810 480 213 339 365
Italy 0 1 1 0 13197677 290 169 120 512
Germany 1 1 1 1 1 16588499 350 408 984
Canada 1 0 0 1 0 0 7927 228 601 204
Japan 1 0 0 0 0 0 1 20001371 193
China 1 0 0 0 0 0 1 1 39140 64
Russia 0 0 0 0 0 0 0 0 1 18213

The lower matrix is transformed to a matrix of similarities using the Jaccard coefficient,
as explained in Cox and Cox (1994), p. 73. Then we obtain the spectral decomposition
G = HSH for each similarity matrix, and considering all principal dimensions (i.e.,
nine), we get η2(D1,D2) = 0.0816. This coefficient reveals a weak association between
trade and science.

5.3 The Proximity Function

Let X be a random vector with pdf f(x) with respect to a suitable measure and support
S. Since the results below can be generalized easily, we may suppose the Lebesgue
measure. If δ is a distance or dissimilarity function between the observations of X, we
define the geometric variability of X with respect to δ as

V δ (X) =
1
2

∫

S×S

δ2 (x,y) f (x) f (y) dxdy. (5.3)

The proximity function of an observation x to the population Π represented by X
is defined by

φ2
δ (x,Π) =

∫

S×S

δ2(x,y)f(y)dy−V δ (X) . (5.4)

Suppose that ψ : S → L is a representation of S in a Euclidean (or separable Hilbert)
space L such that δ2(x,y) = ||ψ(x)−ψ(y)||2. The interest of V δ (X) and φ2

δ (x) comes
from the following properties:

1. We can interpret V δ (X) as a generalized variance and φ2
δ (x) as the squared dis-

tance from x to an ideal mean of X :

V δ (X) = E||ψ(X)||2 − ||E(ψ(X)||2,
φ2

δ (x,Π) = ||ψ(x)−E(ψ(X))||2.
(5.5)

In fact, if δ is the ordinary Euclidean distance, then V δ (X) = tr(Σ).
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2. If we transform the distance: ˜δ2 = aδ2+b, then ˜V δ = aV δ +b/2 and ˜φ2
δ = aφ2

δ +b/2.
3. If δ2 = δ2

1 + δ2
2 then φ2

δ = φ2
δ1

+ φ2
δ2
.

4. By suitable choices of a, b we may transform δ and generate the probability density

fδ(x) = exp(−φ2
δ (x,Π)).

Then:
I(f ||fδ) = V δ (X) −H(f) ≥ 0,

where I(f ||fδ) is the Kullback-Leibler divergence and H(f) is the Shannon entropy.
5. Given g populations Π1, . . . , Πg, where X has pdf fk(x) when x comes from Πk,

we can allocate an individual ω ∈ Π1 ∪ · · · ∪Πg by using the distance-based (DB)
discriminant rule (Cuadras et al., 1997b):

allocate ω to Πi if φ2
δ (x,Πi) = min

1≤k≤g
{φ2

δ (x,Πk)}.

5.4 The Distance-based Bayes Allocation Rule

Here we extend the above rule. Suppose that Π1, . . . , Πg have probabilities “a priori”
P (Πj) = qj , with

∑

qj = 1. The DB discriminant rule is equivalent to the Bayes rule
by using the dissimilarity

δ2(x,y) = log[fj(x)fj(y)] + 2 log qj if x,y comes from Πj .

Then φ2
δ (x,Πj) = log fj(x) + log qj and the Bayes rule

allocate ω to Πi if qifi(x) = max
1≤k≤g

{qkfk(x)},

is equivalent to the DB rule

allocate ω to Πi if log fi(x) + log qi = min
1≤k≤g

{log fk(x) + log qk}.

However, the DB rule has interest when we can define a proper distance between
observations without using the pdf. For example, suppose that Πj is multivariate nor-
mal Np(μj ,Σ). The Mahalanobis distance M2(x,y) = (x − y)′Σ−1 (x − y) between
observations provides VM = p and φ2

M = (x − μj)′Σ−1(x − μj).
By adding an additive constant

˜M2(x,y) = (x − y)′Σ−1(x − y) − 4 log qj if x,y comes from Πj ,

then ˜φ2
M (x,Πj) = (x − μj)′Σ−1(x − μj) − 2 log qj , and the DB rule

allocate ω to Πi if d(x, μi, qi) = min
1≤k≤g

{d(x, μk, qk)},

where d(x, μj , qj) = (x − μj)′Σ−1(x − μj)−2 log qj , is equivalent to the Bayes discrim-
inant rule.
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5.5 Multivariate Multiple-Sample Tests

The comparison of several populations can be approached under parametric models. A
non-parametric general method, which extends that of Cuadras and Fortiana (2004) is
next proposed.

Suppose that D1, . . . ,Dg are g ≥ 2 independent data sets coming from the pop-
ulations Π1, . . . , Πg. These data can be general (quantitative, qualitative, nominal,
mixed). We wish to test

H0 : Π1 = · · · = Πg.

Under H0 all data come from the same underlying distribution.
First, we assume that, by means of a distance function between observations, we

can obtain the intra-distance matrices Δ11, . . . ,Δgg, and the inter-distance matrices
Δ12, . . . , Δg−1g. Thus we have the n× n super-distance matrix

Δ =

⎡

⎢

⎣

Δ11 · · · Δ1g

...
. . .

...
Δg1 · · · Δgg

⎤

⎥

⎦
,

where Δij is ni × nj .
Next, we compute, via principal coordinate analysis, the matrices G and X such

that G = XX′. We write the full X as

X =

⎡

⎢

⎣

X1

...
Xg

⎤

⎥

⎦ .

The Euclidean distances between the rows of Xi and Xi′ give Δii′ . Thus the matrices
X1, . . . ,Xg may represent the g quantitative data sets, which can be compared for
testing H0.

5.5.1 Partitioning the geometric variability

The rows x1, . . . ,xn of any N × p multivariate data matrix X satisfy

∑N
i=1

∑N
i′=1(xi − xi′ )(xi − xi′ )′ = 2N

∑N
i=1(xi − x)(xi − x)′, (5.6)

where x = N−1
∑N

i=1 xi is the vector of means.
Now suppose g data matrices X1, . . . ,Xg, where each Xi has order ni × p. Recall

the identity T = B + W, with

B =
∑g

k=1 nk(xk − x)(xk − x)′,

W =
∑g

k=1

∑nk

i=1(xki − xk)(xki − xk)′,

T =
∑g

k=1

∑nk

i=1(xki − x)(xki − x)′,
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where n = n1 + · · · + ng, x′ki is a row of Xk with vector of means xk and x is the
overall mean. Matrices T,B,W are the total, between samples and within samples,
respectively.

From (5.6) we obtain:

T =
∑g

k,h=1

∑nk,nh

i,i′=1(xki − xhi′ )(xki − xhi′ )′

= 2n
∑g

k=1

∑nk

i=1(xki − x)(xki − x)′,

B =
∑g

k,h=1 nknh(xk − xh)(xk − xh)′

= 2n
∑g

k=1 nk(xk − x)(xk − x)′,

Wk =
∑nk

i,i′=1(xki − xki′ )(xki − xki′ )′

= 2nk

∑nk

i=1(xki − xk)(xki − xk)′,

which shows the following identity concerning matrices built with differences between
observations and between means:

T = B + n

g
∑

k=1

n−1
k Wk, (5.7)

where T,B and Wk are p× p matrices.
We can partition the variability in a similar way. The geometric variability of an

n× n distance matrix Δ = (δii′ ), with related inner product matrix G, is defined by

Vδ =
1

2n2

n
∑

i=1

n
∑

i′=1

δ2
ii′ = tr(G)/n,

where δ2
ii′ = (xi − xi′)′(xi − xi′ ). Vδ is the sampling version of (5.3).

By taking traces in (5.7) we obtain

tr(T) = tr(B) + n

g
∑

k=1

n−1
k tr(Wk).

We write this identity as

Vδ(total) = Vδ(between) + n−1

g
∑

k=1

nkVδ(within k). (5.8)

5.5.2 Tests with principal coordinates

The above identities (5.7) and (5.8) can be used for comparing populations. Given g
independent data sets D1, . . . ,Dg, we may obtain the super-distance matrix Δ and
the principal coordinates X1, . . . ,Xg. Then we can obtain B and T and compute two
statistics for testing H0:

a) γ1 = det(T − B)/ det(T),
b) γ2 = Vδ(between)/Vδ(total).
Both statistics lie between 0 and 1. Small values of γ1 and large values of γ2,

respectively, give evidence to the alternative hypothesis. Note that γ2 = tr(B)/tr(T) is
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a statistic based on quadratic entropy, and it is used in ANOQE (analysis of quadratic
entropy), a generalization of ANOVA (analysis of variance) proposed by C. R. Rao
in several papers. Also note that the distribution of γ1 is Wilks if the populations
are multivariate normal with the same covariance matrix and we choose the ordinary
Euclidean distance between observations.

Except for multinormal data and a few other distributions, the sample distribution
of γ1 and γ2 is unknown. The asymptotic distribution involves sequences of nuisance
parameters, which were found for very specific distances and distributions (see Cuadras
and Fortiana (1995); Cuadras and Lahlou (2000); Cuadras et al. (2006)). Liu and Rao
(1995) derives the bootstrap distribution of Vδ(between). Indeed, the use of resampling
methods, as described in Flury (1997), may overcome this difficulty.

5.5.3 Tests with proximity functions

Another test, which avoids resampling procedures, can be derived by using proximity
functions and non-parametric statistics. First note that, with quantitative data and
Mahalanobis distances, the proximity functions are

φ2
δ (x,Πk) = (x − μk)′Σ−1(x − μk), k = 1, . . . , g.

These functions are equal under H0 : μ1 = · · · = μg.
Suppose in general that x11, . . . ,x1n1

represent the n1 observations coming from
Π1 and ω is a new individual with coordinates x. The sampling counterpart of the
proximity function (5.4) is

̂φ2
1 (x) =

1
n1

n1
∑

i=1

δ2 (x,x1i) − Vδ(within 1 ),

where δ(ω, ω1i) = δ(x,x1i). Note that we do not need to find the x’s vectors.
We similarly obtain ̂φ2

2 (x) , etc. However, under H0 all the population proximity
functions are the same, see (5.5). Thus, we may work with the full proximity function

̂φ2 (x) =
1
n

g
∑

k=1

nk
∑

i=1

δ2 (x,xki) − Vδ(total).

If aki = ̂φ2 (xki) = ||xki−x||2, where xki comes from Πk, we obtain the proximity
values (computed using only distances) for each population:

Π1 : a11, . . . , a1n1 ; · · · ; Πg : ag1, . . . , agng .

Under H0 the aki follows (approximately) the same distribution. Then a Kruskal-
Wallis test can be performed to accept or reject H0. This test is based on

H = (
12

n(n + 1)
)

g
∑

k=1

R2
k

nk
− 3(n + 1),

where the n values aki are arranged and Rk is the sum of the ranks for the values in
Πk. This statistic H is asymptotically chi-square with g − 1 d.f.



5 Distance-Based Multi-Sample Tests 69

Note that this test may not work for equidistant populations, e.g., for g = 3 popula-
tions with vectors of means forming an equilateral triangle, as the vertices are equidis-
tant to the center. In particular, for g = 2 the present test based on H is not an efficient
one. In this case one can invoke the procedure in Cuadras and Fortiana (2004), which
is based on Mann-Whitney-Wilcoxon comparisons of proximity values.

5.5.4 Multivariate dispersion

We have compared means rather than dispersions. For distance-based tests compar-
ing multivariate dispersions with two samples, see Cuadras and Fortiana (2004), who
studied the significance of the ratios Vδ(X)/Vδ(Y) of geometric variabilities. Anderson
(2006) approached the multi-sample case by performing an extension of Levene’s test
on Euclidean distances or general dissimilarities.

5.5.5 Examples of multi-sample tests

We consider three real data sets covering the quantitative, mixed and nominal cases.
The first data set is the well-known Fisher Iris data with p = 4 quantitative vari-
ables, g = 3 species and nk = 50. We use the city-block distance. The student mixed
data is taken from Mardia et al. (1979), p. 294. We only consider g = 3 groups with
n1 = 25, n2 = 117, n3 = 26. There is a quantitative variable and a qualitative vari-
able and we use the distance δij =

√

1 − sij , where sij is Gower’s similarity coefficient
for mixed variables (Gower and Legendre, 1986). The DNA data, used in (Cuadras
et al., 1997b), consists of sequences of length 360 base pairs taken from a segment of
mitochondrial DNA for a set of 120 individuals belonging to g = 4 human groups,
with n1 = 25, n2 = 41, n3 = 37, n4 = 17 individuals. Since the data are large strings
of ACGT, the standard methods fail miserably, whereas the DB approach provides a
solution. Table 5.2 describes data and distances used.

We obtain the randomization distribution of γ1 and γ2 for N ′ = 10000 partitions
into subsets of sizes n1, . . . , ng and estimate the P -values. In contrast, note that the
statistic H can be obtained without resampling.

Table 5.3 reports the results obtained. There are significant differences among Iris
species, Student groups and DNA groups. It is worth noting that using the Euclidean
distance for Iris data would give γ1 = 0.0234, which under normality and H0 is dis-
tributed as Wilks Λ(4, 147, 2).

Finally, we test the performance of this method by comparing three artificial popu-
lations. Suppose the bivariate normal populations N2(c1,Σ), N2(2c1,Σ), N2(3c1,Σ).
We simulate samples of sizes n1 = n2 = n3 for c = 0 and c = 1, respectively. We
then choose the Euclidean distance, compute the Wilks statistic, the exact and the em-
pirical P -values after N = 10000 permutations. The results, summarized in table 5.4,
show that the conclusions (to accept H0 for c = 0, to reject H0 for c = 1) at level of
significance α = 0.05 are the same.

We conclude that this distance-based approach may provide multi-sample tests
when the traditional test based on multinormality is inappropriate (quantitative non-
multinormal data) or impossible (nominal data, mixed data, more variables than ob-
servations).



70 C. M. Cuadras

Table 5.2. Features and sizes of data sets used to illustrate three distance-based multisample
tests

Data Type Groups Sizes Distance

Iris Quantitative 3 50 + 50 + 50 = 150 City-block
Students Mixed 3 25 + 117 + 26 = 168 Gower
DNA Nominal 4 25 + 41 + 37 + 17 = 120 Matching

Table 5.3. Some results of three distance-based multisample tests on real data

Data γ1 P−value γ2 P−value H d.f. P−value

Iris 0.0000 0.000 0.6287 0.000 95.237 2 0.000
Students 0.5788 0.008 0.0424 0.003 7.820 2 0.020
DNA 0.0071 0.000 0.7800 0.000 27.49 3 0.000

Table 5.4. Distance-based comparison of three (simulated) bivariate normal populations using
the Euclidean distance

c = 0 c = 1

Exact Empirical
Size Wilks P -value P -value

3 0.3364 0.203 0.221
5 0.7609 0.538 0.527
10 0.8735 0.465 0.470

Exact Empirical
Size Wilks P -value P -value

3 0.2243 0.086 0.078
5 0.1835 0.001 0.001
10 0.4608 0.000 0.000
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Abstract: Bayesian Factor Analysis was introduced by Press and Shigemasu (1989)
(PS). For Bayesian analysis, the prior distribution permits the analyst to identify the
model by bringing prior information about the model to bear. In PS, it was assumed
that the parameters of the prior distribution, the hyperparameters, were known, or
would be readily assessable from a preliminary principal components analysis. In this
study, we provide an empirical Bayes (EB) way of assessing the hyperparameters from
the current data, and we show, using the AIC and BIC criteria, that it improves upon
the suggested assessment method of the PS model.

Keywords and phrases: Empirical Bayes, hyperparameters, Bayesian Factor Anal-
ysis, AIC criterion, BIC criterion

6.1 Introduction

The Bayesian Factor Analysis model (BFA) was introduced by Press and Shigemasu
(1989) (PS) to provide a Bayesian model for explaining underlying relationships among
a set of variables in terms of a few linear subsets. It had the advantages over classical
factor analysis models of having a unique solution, and of permitting the analyst to
bring prior information to bear on the solution in a constructive and flexible way. As
in all Bayesian inference approaches for the Bayesian paradigm to work it is necessary
to pre-specify complete prior distributions for the unknown parameters of the model.
PS suggested that to implement their approach it might be useful to carry out a
preliminary principal components analysis on the (same) data, to achieve preliminary
ideas of what numerical values might be likely and appropriate for completely specifying
the prior distributions of some of the unknown model parameters for beginning the
BFA modeling. Ad hoc procedures for determining preliminary likely numerical values
for the remaining model parameter prior distributions were invoked as well. Since the
prior distributions that resulted from this approach were determined from the same
data set, the approach was called “empirical Bayesian,” rather than strictly Bayesian.
That empirical Bayesian approach was illustrated in an example in PS.
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Hyashi (1997) adopted a frequentist approach to assessing numerical values for the
parameters of the BFA model. Shera (2000), and Shera and Ibrahim (1998) proposed
elicitation methods for implementing the required values for the model parameters. Lee
(1994), and Lee and Press (1998) studied the robustness of the BFA model to variations
in the model parameters. Rowe (1998) extended the BFA model to correlated data
vectors.

In this paper we introduce a new empirical Bayesian approach to assessing the BFA
model parameters for situations in which not much is known, a priori, about them. Of
course for more informative situations in which more information is available about the
BFA model parameters, perhaps from previous studies, or from theory, that additional
information should be used to structure the prior distributions (see, e.g., Press (2003),
Chapter 15; or Press (2005)).

The format of the paper is as follows. The original PS–BFA model is reviewed, in
outline form, in Section 6.2. The procedures currently being proposed for numerically
assessing the likely values of the parameters of the prior distributions of the BFA model
are presented in Section 6.3. In Section 6.4 we show how to estimate the parameters of
the BFA model in terms of the parameters of the prior distributions assessed in Section
6.3. Section 6.5 provides a numerical example (suggested originally in PS). In Section
6.5, for the case in which not much is known a priori about the model parameters, there
is a comparison of two methods for assessing likely numerical values for the parameters
of the model: (a) the method suggested in PS; and (b) the currently proposed empirical
Bayes (EB) method. The paper culminates in Section 6.6 with a comparison of methods
and a summary.

6.2 The BFA Model

In this section, to make this paper self-contained, we outline the basic model of BFA.
Define the p-variate observation vectors (x1, · · · , xn) ≡ X ′ on N objects. The means
are assumed to have been subtracted out, so that E(X) = 0. The BFA model is:

xj (p×1) = Λ(p×m)f j(m×1) + εj(p×1), j = 1, . . . , N,m < p

where Λ denotes a matrix of constants called the factor loading matrix; fj denotes
the factor score vector for subject j, F ′ ≡ (f1, . . . , fN); ε′js are assumed to be mutually
uncorrelated and normally distributed as N(0, Ψ), independent of F , for Ψ , a symmetric
positive definite matrix, i.e, Ψ > 0.

Note that Ψ is not assumed to be diagonal, as it would be in classical factor analysis,
although E(Ψ) will be taken to be diagonal. That is, while Ψ is not assumed to be
diagonal, it is taken to be diagonal on the average. So we can write the probability law
of xj as:

L(xj |Λ, fj , Ψ) = N(Λfj , Ψ)

where L() denotes probability law. Now combine results for all observations and adopt
an independent prior for all of the factor score vectors, F. We adopt the generalized
natural conjugate family of prior distributions for Λ, Ψ, F ) and take the joint pdf
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p(Λ,F, Ψ) = p1(Λ|Ψ)p2(Ψ)p3(F ),

where:
p1(Λ|Ψ) ∝ |Ψ |−m/2exp{(−1/2)tr(Λ− Λ0)H(Λ− Λ0)′Ψ−1}, (6.1)

and
p2(Ψ) ∝ |Ψ |−ν/2exp{(−1/2)trΨ−1B}, (6.2)

with B a diagonal matrix and H > 0, a positive definite matrix. Thus, we assume that
Ψ−1 follows a Wishart distribution and (ν,B) are hyperparameters to be assessed.
Moreover, we assume that (Λ|Ψ) is normally distributed, a priori, and (Λ0, H) are
hyperparameters to be assessed. Thus, the hyperparameters of the BFA problem are,
so far: (Λ0, H, ν,B).

6.3 Assessing the Hyperparameters

In this section we make a distinction between “estimation of parameters” of the basic
BFA model, and assessment of hyperparameters, that is, determining likely values for
the parameters of the prior distributions.

We note that E(Ψ) = (ν − 2p − 2)−1B, ν > 2p + 2. Now we need to assess the
hyperparameters (Λ0, H, ν,B).

6.3.1 Assessment of Λ0

We define the p× p covariance matrix, Σ > 0:

Σ = V ar(xj |Λ, Ψ) = V ar(Λfj |Λ, Ψ) + Ψ

where Λ and fj are assumed to be independent of ε, and ε ∼ N(0, Ψ), Ψ > 0.
We have independent data vectors, (x1, · · · , xN ), xj : (p× 1), j = 1, ..., N.

An estimate of Σ by sample covariance matrix is N−1
∑N

j=1 xjx
′
j . Also, we assume,

without loss of generality, that fj is distributed N(0, I).
Then since:

V ar(Λfj |Λ, Ψ) = Λ[V ar(fj |Λ, Ψ)]Λ′ = ΛΛ′,

we have
Σ = ΛΛ′ + Ψ, Ψ > 0. (6.3)

Since Σ is positive and symmetric we can write it as:

Σ = ΓDθΓ
′,

where Γ denotes an orthogonal matrix of latent vectors of Σ, so that ΓΓ ′ = I, Dθ =
diag(θ1, ...θp), and the θ′js are the (positive) latent roots of Σ, θ1 ≥ θ2 ≥ ... ≥ θp > 0.

Now drop the smallest latent roots and the latent vectors corresponding to them
and leave only the m(=number of factors in BFA)largest latent roots and the m latent
vectors corresponding to them. Next define the diagonal matrices:
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D̄(m×m) = diag(θ1, ..., θm),D = diag(θm+1, ..., θp).

Now if we define Λ0(p×m) = Γ̄p×mD̄1/2, where Γ̄p×m denotes the column orthog-
onal matrix of latent vectors corresponding to the m largest latent roots, we can say
approximately that:

Σ ≈ Λ0Λ
′
0

Since Σ has been estimated from the data, we can assess Λ0 = Γ̄p×mD̄1/2 from the
data as well.

We now assume that Λ0 has been assessed.

6.3.2 Assessment of minimal ν

If we assume that little is known about ν, we can take it to be its minimum possible
value, in order for the prior mean of Ψ to exist. Since (E(Ψ) = (ν − 2p − 2)−1B, we
must have ν > 2p + 2. So assess ν to be: ν∗ ≈ 2p + 3.

6.3.3 Assessment of B

Since E(Ψ) = B
ν−2p−2 , ν > 2p+2 and B is diagonal, we have E(Ψ) = B/(ν−2p−2) = B

with ν = 2p+ 3. Therefore in order to assess the B, we need to have an approximation
of E(Ψ).

Now from the equation (3), we have

Σ = ΛΛ′ + Ψ, Ψ > 0.

By taking Ψ ≈ Ψ∗ = Σ−Λ0Λ
′
0, we have as an approximation, E(Ψ) ≈ E(Ψ∗) ≈ Ψ∗.

So that Ψ∗ can be used as E(Ψ).
Now let Ψ∗ = (Ψ∗ij) and B = (bij). Hence we can assess bii = Ψ∗ii and bii = 0 for

i �= j.

6.3.4 Assessment of H

Now we need to assess the scale matrix, H . Let λ = V ec(Λ) = (λ′1, ..., λ
′
m)′. Then the

prior distribution for (λ|Ψ) is N(λ0, H
−1 ⊗ Ψ). Since V ar(λ|Ψ) = H−1 ⊗ Ψ we have

V ar(λ) = H−1 ⊗ E(Ψ), and Cov[(λi, λj)|Ψ ] = H−1
ij Ψ. Therefore we have:

Cov[(Ψ−1/2λi, Ψ
−1/2λj)|Ψ ] = Cov(Ψ−1/2λi, Ψ

−1/2λj) = H−1
ij Ip. (6.4)

Let Δ = (Ψ−1/2Λ)′ = (δ1(m×1), · · · , δp(m×1)). Then from the equation(4) we can
see that δi are independent. Therefore we have Cov[(δi, δj)|Ψ ] = Cov[δi, δj ] = 0 for
i �= j and Cov[(δi, δi)|Ψ ] = Cov[δi, δi] = H−1, i = 1, · · · , p.

Since we can assume Λ0 ≈ Λ from Section 6.3.1 and Ψ∗ is defined in Section 6.3.3,
Cov[δi, δi] can be evaluated as Cov[δ∗i , δ

∗
i ] where Δ∗ = (Ψ∗−1/2Λ0)′ = (δ1

∗, · · · , δp
∗).

Then we can assess H−1 = V ar(δi) ≈ p−1
∑p

i=1(δ
∗
i − δ̄∗)(δ∗i − δ̄∗)′ where

δ̄∗ = p−1
∑p

i=1 δ
∗
i . Now we have assessed the H .
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6.3.5 Iterative computation of the hyperparameters

Up to this point we proposed a new way of assessing the hyperparameters : (Λ0, ν, B,H).
Based on the theory of Section 6.3.4, the steps of the simulation algorithm for assess-
ment of Λ0, ν, B,H from the data are as follows:

Step 1: Variance-covariance matrix, Σ, is evaluated from the data and we get the initial
values of Λ0 from Σ and call it as Λ

(1)
0 . Also, we denote the covariance matrix Σ of

the original data by Σ(1) and finally we have Ψ (1) = Σ(1) − Λ
(1)
0 Λ

(1)
0

′
as the initial

values of Ψ .
Step 2: Define Ψ (2) = diag(Ψ (1)) and calculate Σ(2) = Σ(1) − Ψ (2). From Σ(2) we can

get Λ
(2)
0 : Σ(2) = Λ

(2)
0 Λ

(2)
0

′
.

Step 3: Calculate the differences of Λ(1)
0 and Λ

(2)
0 and also Ψ (1) and Ψ (2) : call them as

difλ = Λ
(1)
0 −Λ

(2)
0 and difΨ = Ψ (1) − Ψ (2). And calculate the dif2

λ = difλdif
′
λ and

dif2
Ψ = difΨdif

′
Ψ and in order to see the convergence of the matrix, the determinant

or trace of dif2
λ and dif2

Ψ are evaluated.
Step 4: Repeat steps 1 through 3 until the determinant or trace of dif2

λ and dif2
Ψ are

small enough to be convergent. Then take Λ
(i)
0 and Ψ (i) as the converged values.

Step 5: At this point if we do have the convergent values, then take Λ
(i)
0 as the assessed

values of hyperparameter, Λ0 and for Ψ (i), since Ψ > 0, we only take the positive
diagonal elements in matrix Ψ (i), which means if Ψ (i)

ii < 0 then replace them to the
’0’s’ and call it as Ψ∗.

Step 6: After assessing the hyperparameter, Λ0, we can get the convergent value of Ψ∗

and then B and H can be assessed.

For assessing the B, we take the diagonal elements of Ψ∗ and make the diagonal
matrix. For H , calculate the variance-covariance matrix of Δ∗ = (Ψ∗−1/2Λ0)′.

Now we have assessed all four hyperparameters.

6.4 Bayesian Estimation of Λ, F, Ψ

After assessing the hyperparameters, Bayesian estimators of factor analysis are obtained.
From the basic model in Section 6.2, combining the likelihood L(xj |Λ, fj , Ψ) =

N(Λfj, Ψ), and priors distribution p(Λ,F, Ψ) = p1(Λ|Ψ)p2(Ψ)p3(F ), using Bayes’ the-
orem, the joint posterior density of the parameters becomes

p(Λ,F, Ψ |X) ∝ p3(F )|Ψ |(N+m+ν)/2exp[(−1/2)tr(Ψ−1G)] (6.5)

where G = (X − FΛ′)′(X − FΛ′) + (Λ− Λ0)H(Λ − Λ0)′ + B.
Now integrating the equation(5) with respect to Ψ using Inverted Wishart density,

gives the marginal posterior density of (Λ,F ):

p(Λ,F |X) ∝ p3(F )
|RF + (Λ − ΛF )QF (Λ− ΛF )′|γ/2

(6.6)
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where

QF = H + F ′F
RF = X ′X + B + Λ0HΛ′0 − (X ′F + Λ0H)Q−1

F (X ′F + Λ0H)′

ΛF = (X ′F + Λ0H)(H + F ′F )−1

γ = N + m + ν − p− 1.

Integrating the Eqn. (6) with respect to Λ using the normalizing constant of the
matrix T-distribution gives the marginal posterior density of F :

p(F |X) ∝ p3(F )|H + F ′F |(γ−m−p)/2

|A + (F − F̂ )′(IN −XW−1X ′)(F − F ′)|γ−m)/2
(6.7)

where

F̂ = (IN −XW−1X ′)−1XW−1Λ0H

W = X ′X + B + Λ0HΛ′0
A = H −HΛ′0H

−1Λ0H − (H ′Λ′0W
−1X ′)(IN −XW−1X ′)(XW−1Λ0H).

Now consider the case in which very little is known a priori about F. As an approx-
imation we take:

p3(F ) ∝ K = constant. (6.8)

Note that if there is substantive prior information about F available, it should
be incorporated at this point as an informative prior distribution. Because F ′F =
∑N

1 fjf
′
j, by the law of large numbers, for large N , |H + F ′F | in Eqn. (7) behaves

increasingly as if it were a constant, so that because the numerator of Eqn. (7) becomes
approximately constant, p(F |X) follows approximately a matrix T distribution. Since
p(F |X) is approximately a matrix T-distribution, in large samples, the estimator of
factor score matrix, F̂ , is:

F̂ = (IN −XW−1X ′)−1XW−1Λ0H.

Now using the marginal posterior distribution of (Λ,F ), and F , the conditional
distribution of (Λ|F ) becomes the matrix T distribution. So the estimator of Λ, Λ̂ =
E(Λ|F̂ ,X)(see Eqns. (7) and (8)) is :

Λ̂ = ΛF = (X ′F̂ + Λ0H)(H + F̂ ′F̂ )−1

Lastly, for estimator of the disturbance covariance, Ψ̂ , using the joint posterior of
(Λ,F, Ψ) and the marginal posterior of (Λ,F ), the conditional density of (Ψ |Λ,F,X) is
obtained as the kernel of the Inverted Wishart distribution:

p(Ψ |Λ̂, F̂ ,X) ∝ exp[(−1/2)trΨ−1Ĝ]
|Ψ |(N+mp+ν)/2

,

where Ĝ = [(X − F̂ Λ̂′)′(X − F̂ Λ̂′) + (Λ̂− Λ0)H(Λ̂ − Λ0)′ + B].
Therefore, using the property of Inverted Wishart distribution, Ψ̂ is:

Ψ̂ =
Ĝ

(N + mp + ν + 2p− 2)
.
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6.5 Example

There are 48 applicants for a certain job, and they have been scored on 15 variables
regarding their acceptability. They are shown in table 6.1.

The correlation matrix for the 15 variables is given in (6.9). We assume the sample
size of 48 is large enough to estimate the mean well enough for it to be ignored after
subtracting it out. So we have data with p, the number of variables, equal to 15, and
sample size, N is 48 and hyperparameter ν becomes 33.
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0.24 0.04 0.31 0.11 0.23 −0.09 0.27 0.55 0.38 0.29 0.39 0.37 0.47 0.59
0.24 1 0.12 0.38 0.42 0.38 0.33 0.48 0.14 0.32 0.55 0.48 0.51 0.29 0.38
0.04 0.12 1 0.00 0.01 0.08 −0.02 0.05 0.27 0.10 0.04 0.21 0.29 −0.32 0.14
0.31 0.38 0.00 1 0.29 0.49 0.64 0.35 0.14 0.37 0.35 0.47 0.61 0.68 0.33
0.11 0.42 0.01 0.29 1 0.80 0.37 0.82 0.03 0.69 0.84 0.70 0.67 0.47 0.27
0.23 0.38 0.08 0.49 0.80 1 0.35 0.82 0.16 0.69 0.76 0.88 0.78 0.53 0.42

−0.09 0.33 −0.02 0.64 0.37 0.35 1 0.22 −0.13 0.23 0.19 0.32 0.40 0.43 0.02
0.27 0.48 0.09 0.35 0.82 0.82 0.22 1 0.24 0.81 0.85 0.77 0.74 0.55 0.55
0.55 0.14 0.27 0.14 0.03 0.16 −0.13 0.24 1 0.37 0.20 0.36 0.36 0.22 0.69
0.38 0.32 0.10 0.37 0.69 0.69 0.23 0.81 0.37 1 0.77 0.70 0.78 0.60 0.65
0.29 0.55 0.04 0.35 0.84 0.76 0.19 0.85 0.20 0.77 1 0.77 0.77 0.55 0.44
0.38 0.48 0.21 0.47 0.70 0.88 0.32 0.77 0.36 0.70 0.77 1 0.87 0.53 0.58
0.37 0.51 0.29 0.61 0.69 0.78 0.40 0.74 0.36 0.78 0.77 0.87 1 0.55 0.58
0.47 0.29 −0.32 0.68 0.47 0.53 0.43 0.55 0.22 0.60 0.55 0.53 0.55 1 0.40
0.59 0.38 0.14 0.33 0.27 0.42 0.02 0.55 0.65 0.69 0.44 0.58 0.58 0.40 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(6.9)

Now we postulate a model with 4 factors. This choice was based on a principal
components analysis in PS. (It could also be based upon Press and Shigemasu, 1999,
which depends upon maximizing the posterior probability for the number of factors.
For other related considerations, see Press (2003), Section 15.4. For assessing the hy-
perparameters, Λ0, B,H , we calculate dif2

λ defined in step 3 and we use 10−5 for the
convergence criterion. Based on the theory developed in Section 6.3, we construct the
prior factor loading matrix, Λ0, as:

Table 6.1. Names of variables

(1) Form of letter application (9) Experience
(2) Appearance (10) Drive
(3) Academic ability (11) Ambition
(4) Likeability (12) Grasp
(5) Self-Confidence (13) Potential
(6) Lucidity (14) Keenness to join
(7) Honesty (15) Suitability
(8) Salesmanship
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Λ0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.2156598 1.368708 0.4871069 −0.426764
1.0354062 −0.119182 0.0970379 0.2503054
0.2435675 0.4451025 −0.415397 1.2921365
1.6258524 −0.384803 1.9589576 0.4214353
1.8354735 −1.008388 −0.615048 −0.187176
2.6963778 −0.838522 −0.308678 0.2103994
0.845824 −1.023012 1.1766185 0.5283349

3.0477339 −0.495849 −0.860623 −0.457604
1.3548248 2.4374048 0.0292391 0.1732282
2.4643022 0.1602599 −0.351122 −0.330044
2.5364329 −0.5565 −0.694222 −0.342439
2.652991 −0.098857 −0.199276 0.5173438

2.9141746 −0.096444 0.1490095 0.8369568
1.8579476 −0.199453 1.317401 −1.176095
2.2337726 1.8324691 0.0205074 −0.087512

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(6.10)

For assessing the H , we rearrange the elements of the converged matrix Ψ with
following condition:

Ψ∗ = max[0, ψii]

as suggested in Section 6.3.5.
This condition gives all the diagonal elements of Ψ∗ nonnegative values. Then we

have the assessed value of H as following:

H =

⎛

⎜

⎜

⎝

0.5067606 0.2322973 0.037914 0.6931582
0.2322973 0.1237675 0.0164664 0.3167849
0.037914 0.0164664 0.0181701 0.0329019

0.6931582 0.3167849 0.0329019 0.979064

⎞

⎟

⎟

⎠

Now we take the diagonal element from Ψ as the assessed values of B:

B = diag( 0.0, 0.0, 0.0108292, 0.0041514, 0.0, 0.0, 0.0,
0.0006516, 0.0201611, 0.000117, 0.0, 0.0, 0.0, 0.0, 0.0)

Using the above values, Bayesian estimators of factor loading matrix, Λ̂, factor score
matrix, F̂ , and disturbance covariance matrix, Ψ̂ are evaluated.

Λ̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.2156905 1.3757201 0.4894049 −0.416805
1.0353308 −0.117702 0.0932766 0.2552337
0.1967339 0.2948986 −0.446953 1.0743623
1.6011882 −0.283249 1.564739 0.1383427
1.8360166 −1.012591 −0.615524 −0.196882
2.696299 −0.8396 −0.311727 0.2094949

0.8454201 −1.022951 1.1652667 0.53644
2.9551617 −0.470779 −0.616943 −0.383953
1.2976032 1.8499437 0.0348762 0.0338488
2.4360767 0.1225104 −0.159646 −0.259586
2.5361934 −0.556489 −0.692031 −0.349217
2.6528884 −0.098004 −0.204808 0.5186247
2.914977 −0.095403 0.1408729 0.8450765

1.8637007 −0.200152 1.3506358 −1.19945
2.2369999 1.8537076 0.016734 −0.074800

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(6.11)
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Ψ̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2.44 0.19 0.14 0.07 0.31 0.21−0.13−0.27−0.06−0.40 0.22 0.17−0.03 0.17−0.88

0.19 2.34−0.01 0.06 0.04−0.60 0.16 0.27−0.21−0.58 0.60−0.17−0.20−0.23 0.33

0.14−0.01 1.97 0.17 0.02−0.16−0.14 0.10 0.63 0.23 0.08−0.07 0.13 0.03−0.19

0.07 0.06 0.17 1.76−0.09 0.16−0.02−0.10−0.14−0.40 0.13−0.21 0.01−0.06 0.11

0.31 0.04 0.02−0.09 0.33−0.21 0.38−0.05 0.11 0.06−0.21−0.18−0.08−0.03 0.14

0.21−0.60−0.16 0.16−0.21 1.35−0.36 0.20−0.09−0.28−0.58 0.53−0.34−0.03 0.07

−0.13 0.16−0.14−0.02 0.38−0.36 1.24 0.08 0.20 0.20−0.07−0.17−0.41−0.09 0.73

−0.27 0.27 0.10−0.10−0.05 0.20 0.08 1.72−0.17 0.40−0.05−0.17−0.11−0.13 0.37

−0.06−0.21 0.63−0.14 0.12−0.09 0.20−0.17 4.22−0.09−0.14 0.03−0.04 0.02 0.06

−0.40−0.58 0.23−0.40 0.06−0.28 0.20 0.40−0.09 1.82 0.00−0.49 0.22−0.01 0.17

0.22 0.60 0.08 0.13−0.21−0.58−0.07−0.05−0.14 0.00 0.86−0.13 0.24 0.08−0.34

0.17−0.17−0.07−0.21−0.18 0.53−0.17−0.17 0.03−0.49−0.13 0.92−0.28 0.14−0.30

−0.03−0.20 0.13 0.01−0.08−0.34−0.41−0.11−0.04 0.22 0.24−0.28 0.40 0.07−0.37

0.17−0.23 0.03−0.06−0.03−0.03−0.09−0.13 0.02−0.01 0.08 0.14 0.07 0.09−0.25

−0.88 0.33−0.19 0.11 0.14 0.07 0.73 0.37 0.06 0.17−0.34−0.30−0.37−0.25 1.03

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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F̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.5441119 0.6121569 −0.986808 −1.656711

1.180791 0.1915586 −0.199083 −0.825082

0.8565437 0.3306071 −0.532051 −1.484819

−0.0074 0.1591623 0.7745533 0.9676632

0.1633761 0.8873184 1.9044676 1.3122201

0.1791155 −0.155316 0.349929 0.4845764

1.1382553 0.7975967 −0.003819 −0.459641

1.3531862 0.5427265 −0.021557 −0.920193

1.2465876 0.8386423 0.2274794 −0.728583

1.109129 0.3049835 −2.658699 0.7621033

0.6789187 −0.267292 −3.080943 0.8047847

0.9233149 −0.329226 −1.829764 1.6162558

−0.057269 0.7222003 1.4465467 0.6517656

−0.077143 0.8046151 0.4349906 0.9132892

−0.430252 0.2933901 1.1405053 1.7845993

0.7391632 0.2710406 0.0197922 0.0320599

0.4398294 0.4832092 −0.700655 −1.277928

−0.294351 −0.75315 −0.934673 −1.809066

−0.2832 −0.270987 −1.151171 −1.016825

0.8940261 −0.170256 0.706032 −0.02676

0.5532025 −0.308019 −0.11882 1.0152528

1.1506597 −0.1616 0.9177135 −0.716883

1.2600069 −0.367189 1.0147419 −0.528007

1.094753 −0.059829 1.6709679 −0.132859

−0.786572 −0.224953 1.4536752 0.6537053

−0.365028 0.7222023 0.514206 0.4977748

0.0349953 −1.471733 −0.02288 1.0073119

−1.665609 −0.671037 −0.131229 −2.001258

−1.824617 0.3396818 −0.826088 −2.884954

−0.745062 −1.503162 0.5527005 −1.825148

−0.446436 −1.143044 0.8753072 −1.461364

−0.436669 −1.48905 0.5516333 0.9144677

−0.584531 −1.722635 0.4429568 0.4194087

−1.375633 −0.302196 1.0135947 −0.194345

−1.514796 0.44609 1.4289122 −0.087323

−0.354099 −0.299241 1.3206915 0.6385668

−0.0962 −1.867837 −1.995435 0.0627968

0.0768491 −1.805829 −1.539933 −0.703392

1.4847705 0.5994364 0.9189217 −0.210801

1.5543793 0.5475245 0.4757133 −0.483608

−1.449395 3.5870505 −1.232841 0.1074385

−1.473696 3.8333912 −1.656083 −0.041145

−1.051058 1.6094415 0.357348 0.3107456

0.6096896 −0.559059 −0.956751 −0.0294

0.0594285 0.1061082 0.4312686 2.1533067

0.3210613 −0.395968 0.3595921 2.6231925

−2.160527 −1.396556 −0.309572 0.9049762

−2.166602 −1.334971 −0.415383 0.8678303
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⎟
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⎟
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⎟
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⎟
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⎟
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⎟
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⎟

⎟
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⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎟
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⎟

⎟
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6.6 Method Comparison and Summary

Bayesian Factor Analysis (BFA) was proposed originally to provide a means for intro-
ducing prior information into a factor analysis problem in a formal way, and because
of the frequent occurrence of improper solutions in maximum likelihood factor analysis
caused by over-parameterization of the model. However, carefully assessing prior infor-
mation is always an issue. Therefore, in this paper, we proposed an empirical Bayes
(EB) procedure for assessing the hyperparameters in BFA. Bayesian estimates of the
factor loading matrix, Λ, factor score matrix, F , and the disturbance covariance ma-
trix, Ψ , were calculated by using the EB method for assessing the hyperparameters
proposed in Section 6.3. Below, we compare the advantages and disadvantages of the
proposed empirical Bayes(EB) method with those of PS.

In the EB method, the Bayesian estimate of the factor loading matrix, Λ̂, becomes
pretty much the same as the hyperparameter, Λ̂0, because Λ̂|Ψ is assumed to have a
normal distribution with mean Λ0 . For the same reason, PS gives equivalent results,
but in the PS case, instead of assessing Λ0 from data, we take its value as known,
so Λ̂ is closer to Λ0 than for Λ̂PS . These results are predictable because Bayesian
estimates are represented by a weighted average of data and prior information. It is
of course not surprising that Bayesian estimates depend on the information we in-
clude in the prior. That is, both estimates, Λ̂ and Λ̂PS are similar to the assessed
hyperparameter, Λ0.

We compared the two models for assessing the hyperparameters based upon how
well the model fits the data. In order to compare the suggested models we calculate
the AIC (Akaike Information Criterion) and the BIC (Bayesian Information Criterion)
criteria.

• AIC = -2 log (maximized likelihood) + 2 (number of free, independent, parameters);
• BIC = -2 log (maximized marginal likelihood) + (log n)(number of free parameters,

including hyperparameters).

We find the results shown in table 6.2: Thus, for either criterion, the EB approach
yields the smaller value (better model fit to the data), and so is deemed superior. Of
course our showing that EB results in better outcomes than PS for one example doesn’t
prove a point, but it is suggestive.

Table 6.2. Model fit criteria

AIC Criterion BIC Criterion

PS Model 1088.16 1573.54

EB Model 822.37 1567.51
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Abstract: This paper shows the relationship between mixtures, order statistics and
coherent systems with possibly dependent components. These relationships are used to
obtain reliability properties of order statistics and systems. The results are illustrated
through a series of examples.
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7.1 Introduction

The mixtures are common models in statistics. In reliability the mixtures are used to
represent populations with different kinds of units (e.g., units with or without manu-
facturing defects). Sometimes, these models lead to distributions with bathtub shaped
hazard (failure) rate functions (see Navarro and Hernandez (2004) and Wondmageg-
nehu et al. (2005)).

The negative mixtures are mixtures with some negative weights. Some properties
and characterizations for these kind of mixtures were given in Everitt and Hand (1981),
Wu and Lee (1998, 1999), Wu (2001, 2002) and Navarro and Ruiz (2004). In practice,
they arise in several situations. For example, they are used to define new families of
distributions in Bartholomew (1969), Botta et al. (1987) and in Harris et al. (1992).
Baggs and Nagaraja (1996) and Navarro and Shaked (2006) used them to represent the
distributions of order statistics and coherent systems. They can also be used to obtain
the distribution of the MLEs of exponential parameters under step-stress models (see
Balakrishnan and Qihao Xie (2007a,b) and Balakrishnan et al. (2007)) or progressively
censored order statistics (see Kamps and Cramer (2001) and Balakrishnan and Cramer
(2006)).

The coherent systems are very important in reliability and survival theories (see,
e.g., Barlow and Proschan (1975)). The series, the parallel and, in general, the k-out-of-
n systems are particular cases of coherent systems. The lifetime of a k-out-of-n system
can be represented by the (n− k + 1)th order statistics Xn−k+1:n associated with the
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lifetimes X1, X2, . . . , Xn of the components. In particular, the series and the parallel
systems are represented by the extreme order statistics X1:n and Xn:n, respectively.
Several properties of coherent systems have been obtained when the components are
independent (see, e.g., Barlow and Proschan (1975), Lillo et al. (2001) and Boland and
Samaniego (2004)). Also, when the components are dependent, some properties were
obtained in Baggs and Nagaraja (1996), Navarro et al. (2005), Franco and Vivo (2006),
Navarro and Shaked (2006) and Navarro and Rychlik (2007).

The purpose of this paper is to show the relationships between mixtures, order
statistics and coherent systems and to use these relationships and known properties
for mixtures to obtain new properties for order statistics and systems. The results are
illustrated through a series of examples.

The paper is organized as follows. Section 7.2 shows the relationships between
mixtures, order statistics and coherent systems. In Section 7.3 some properties for
order statistics and coherent systems are obtained using known properties of mixtures.
The results are illustrated in Section 6.4 using the well known bridge structure and
different distributions for the components.

Throughout the paper, ‘increasing’ stands for ‘non-decreasing’ and ‘decreasing’
stands for ‘non-increasing.’

7.2 Relationships between Mixtures and Systems

Let (X1, X2, . . . , Xn) be a random vector representing a random sample or the life-
times of n (possibly dependent) components in a system. Then the correspond-
ing order statistics X1:n, X2:n, . . . , Xn:n represent the lifetimes of k-out-of-n systems
(i.e., systems which work when at least k components work). In particular, X1:n =
min(X1, X2, . . . , Xn) and Xn:n = max(X1, X2, . . . , Xn) represent the lifetimes of series
and parallel systems, respectively.

In general, the lifetime T of a coherent system can be written as T = φ(X1, X2, . . . ,
Xn) where φ is called the structure function (see Barlow and Proschan (1975), p. 12).
The series, the parallel and, in general, the k-out-of-n systems are coherent systems. A
set P ⊆ {1, 2, . . . , n} is a minimal path (cut) set of a coherent system (or a structure
function φ) if the system works (fails) when all the components in P work (fail). A
minimal path (cut) set is a minimal set of elements whose functioning (failure) insures
the functioning (failure) of the system. For example, the minimal path sets of a k-
out-of-n system are all the sets with k-elements. In particular, the minimal path (cut)
sets of the parallel (series) system with n components are {1}, {2}, . . . , {n} and the
unique minimal path (cut) set of the series (parallel) system with n components is
{1, 2, . . . , n}.

Barlow and Proschan (1975), p. 12, proved that the lifetime of a coherent system
T = φ(X1, X2, . . . , Xn) with minimal path sets P1, P2, . . . , Pm and minimal cut sets
C1, C2, . . . , Cs can be written as

T = max
1≤j≤m

min
i∈Pj

Xi = min
1≤j≤s

max
i∈Cj

Xi. (7.1)

If we represent the lifetime of the series system with components in the set P by
YP = mini∈P Xi and the lifetime of the parallel system with components in the set P
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by ZP = maxi∈P Xi, then (7.1) can be written as

T = max
1≤j≤m

YPj = min
1≤j≤s

ZCj . (7.2)

Thus, using the inclusion-exclusion formula, the reliability (survival) function
RT (t) = Pr(T ≥ t) of system T can be written as

RT (t) = Pr
(

max1≤j≤m YPj ≥ t
)

= Pr
(

⋃

1≤j≤m(YPj ≥ t)
)

=
m
∑

j=1

Pr
(

YPj ≥ t
)− ∑

i<j

Pr(YPj∪Pi ≥ t) + . . . + (−1)m+1 Pr(YP1∪P2∪...∪Pm ≥ t).

Hence it is a negative mixture (i.e., a mixture with some negative weights) of the
reliability functions of series systems with components in the union of its minimal path
sets. Note that the unions of the minimal path sets are path sets. This representation
can be traced to Agrawal and Barlow (1984) (see also Navarro and Shaked (2006)
or Navarro et al. (2007)). For example, if n = 2 the reliability function R2:2 of the
two-components parallel system can be written as

R2:2(t) = R1(t) + R2(t) −R1:2(t)

where R1 and R2 are the reliability functions of the components (i.e., series systems
with one component) and R1:2 is the reliability function of the two-components series
system. This relationship was used in Baggs and Nagaraja (1996) and Franco and Vivo
(2006) to obtain properties for the parallel system based on properties of series systems
and negative mixtures.

Analogously, the distribution function FT (t) = Pr(T ≤ t) of system T can be
written as

FT (t) = Pr
(

min1≤j≤s ZCj ≤ t
)

= Pr
(

⋃

1≤j≤s(ZCj ≤ t)
)

=
s
∑

j=1

Pr
(

ZCj ≤ t
)− ∑

i<j

Pr(ZCi∪Cj ≤ t) + . . . + (−1)s+1 Pr(ZC1∪C2∪...∪Cs ≤ t)

for all t. Hence it is a negative mixture of the distribution functions of parallel systems
with components in the union of its minimal cut sets.

In practice, a relevant case is when the joint distribution F (x1, x2, . . . , xn) of
(X1, X2, . . . , Xn) is exchangeable, that is, when

(X1, X2, . . . , Xn) =st (Xσ(1), Xσ(2), . . . , Xσ(2))

for any permutation σ, where =st denotes equality in law. Note that this case in-
cludes the case of independent and identically distributed (i.i.d.) components. If F is
exchangeable and P is a set with i elements, then YP =st X1:i and ZP =st Xi:i. Hence,
the reliability function of the system T can be written as

RT (t) =
n
∑

j=1

αiR1:i(t) (7.3)

where α1, α2, . . . , αn are some (unique) real numbers which only depend on the path
sets (or the structure function) of the system, satisfying

∑n
j=1 αi = 1. The vector
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(α1, α2, . . . , αn) is called the minimal signature of the system in Navarro et al. (2007).
Analogously, the distribution function of the system can be written as

FT (t) =
n
∑

j=1

βiFi:i(t) (7.4)

where β1, β2, . . . , βn are some (unique) real numbers which only depend on the cut
sets (or the structure function) of the system, satisfying

∑n
j=1 βi = 1. The vector

(β1, β2, . . . , βn) is called the maximal signature of the system in Navarro et al. (2007).
Note that if the components are i.i.d. then R1:i(t) = Ri(t) and Fi:i(t) = F i(t), where
R and F are the common reliability and distribution functions of the components,
respectively.

In particular, if the joint distribution is exchangeable, the reliability function
Rn−k+1:n of the order statistic Xn−k+1:n which represents the lifetime of the k-out-of-n
system can be written as

Rn−k+1(t) =
n
∑

j=k

(−1)j−k

(

n

j

)(

j − 1
k − 1

)

R1:j(t) (7.5)

or as

Rn−k+1(t) =
n
∑

j=n−k+1

(−1)j−n+k−1

(

n

j

)(

j − 1
n− k

)

Rj:j(t) (7.6)

(see David and Nagaraja (2003), p. 46). These expressions can be used to compute the
minimal and maximal signatures of k-out-of-n systems.

For example, the minimal and maximal signatures of the 2-out-of-4 system whose
lifetime is X3:4 are (0, 6,−8, 3) and (0, 0, 4,−3), respectively. Hence, its distribution is
a negative mixture of three series system distributions or two parallel system distribu-
tions. The minimal and maximal signatures of all the coherent systems with three or
four components can be seen in Navarro and Shaked (2006) and Navarro et al. (2007).

7.3 Properties of Mixtures and Systems

This section shows how known properties of mixtures can now be applied to order
statistics and coherent systems using the representations given in the preceding section.

We say that a distribution function F is generalized (finite) mixture of the distri-
bution functions F1, F2, . . . , Fn if

F (t) =
n
∑

i=1

piFi(t) (7.7)

for all t, where p1, p2, . . . , pn are some real numbers such that
∑n

i=1 pi = 1. If all the
weights p1, p2, . . . , pn are positive, then F is a positive or usual mixture. In this case, the
right hand side (RHS) of (7.7) always defines a distribution function. If some weights
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are negative, then we say that F is a negative mixture. In this case the (RHS) of (7.7)
does not necessarily define a proper distribution function. However, note that we will
assume that F in (7.7) is a distribution function. Also note that this is always true
when F is the distribution of an order statistic or a coherent system.

The hazard or failure rate function is a very useful tool to describe the aging process
of components and systems. The hazard function of a random variable X with density
function f and reliability function R is defined by h(t) = f(t)/R(t) for t such that
R(t) > 0. By convention, h(t) = ∞ when R(t) = 0. It is also used to define the hazard
(failure) rate order (X ≤hr Y if hX ≥ hY ) and the IFR and DFR classes.

The negatives mixtures have properties similar to that of positive mixtures. How-
ever, in general, the properties are not the same. For example, it is well known that the
positive mixtures of DFR (i.e., decreasing failure (hazard) rate function) distributions
are also DFR. However, this property is not true for negative mixtures. Actually, we
have that a negative mixture of an IFR (increasing failure rate) distribution with a
positive weight and DFR distributions with negative weights, is IFR (see Navarro and
Hernandez (2006)Navarro and Hernandez (2006)).

In general it is difficult to determine the shape of the hazard rate of a mixture
even if we know the shape of the hazard rates of the members of the mixture. The
following property shows that, under some assumptions, the limiting behaviour of the
hazard rate of a generalized mixture is equivalent to that of the best (in the hazard
rate order) member of the mixture when t → ∞. This result is included in Navarro and
Hernandez (2006)Navarro and Hernandez (2006) (see also Navarro and Shaked (2006)).
For completeness we provide the proof in the appendix.

Theorem 1. Let F be a distribution function satisfying (7.7) for absolutely continuous
distributions F1, F2, . . . , Fn such that Fi(t) < 1 for all t, and for weights p1, p2, . . . , pn

such that pi �= 0 and
∑n

i=1 pi = 1. Let h be the hazard rate function associated to F
and let hi be the hazard rate function associated to Fi, for i = 1, 2, . . . , n. If

lim inf
t→∞

hi(t)
h1(t)

> 1 (7.8)

and

lim sup
t→∞

hi(t)
h1(t)

< ∞ (7.9)

for i = 2, 3, . . . , n, then p1 > 0 and

lim
t→∞

h(t)
h1(t)

= 1. (7.10)

Moreover, condition (7.9) can be replaced by the weaker condition

lim
t→∞

fi(t)
f1(t)

= 0 (7.11)

for i = 2, 3, . . . , n, where fi(t) = F ′i (t) for i = 1, 2, . . . , n.

Now, we obtain a similar property for coherent systems using the representation
of their distributions as negative mixtures of the distributions of the series systems
obtained using their path sets.
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Theorem 2. Let T be the lifetime of a coherent system with minimal path sets
P1, P2, . . . , Pm. Let hT be the hazard rate function associated to T and let hP be the
hazard rate function associated to the series system YP = mini∈P Xi. If

lim inf
t→∞

hP (t)
hP1(t)

> 1 (7.12)

and

lim sup
t→∞

hP (t)
hP1(t)

< ∞ (7.13)

for all path set P , P �= P1, then

lim
t→∞

hT (t)
hP1(t)

= 1.

Moreover, condition (7.13) can be replaced by the weaker condition

lim
t→∞

fP (t)
fP1(t)

= 0 (7.14)

for all path set P , P �= P1, where fP is the density function of the series system YP .

The proof is easy. Note that the tail behaviour of the hazard rate of a coherent
system is equivalent to that of the hazard rate of the tail-best series system obtained
from its minimal path sets. Also note that the series systems are not necessarily hr-
ordered (see Navarro and Shaked (2006)) and hence we need to check (7.12) and (7.13)
for any path set P . However, if the components are independent and P = ∪j∈JPj for
J ⊆ {1, 2, . . . ,m}, then hP (t) =

∑

j∈J hPj (t) ≥ hPj (t) for all j ∈ J . Therefore, if the
components are independent, then (7.12) can be replaced by

lim inf
t→∞

hPi(t)
hP1(t)

> 1 (7.15)

for i = 2, 3, . . . , n. Analogously, (7.13) can be replaced by

lim sup
t→∞

hP1∪P2∪...∪Pm(t)
hP1(t)

< ∞. (7.16)

In particular, if the joint distribution of the lifetimes of the components is exchange-
able, from (7.3) and Theorem 1 we have the following result.

Theorem 3. Let T be the lifetime of a coherent system with components having ex-
changeable joint distribution. Let (0, . . . , 0, αi, αi+1, . . . , αj , 0, . . . , 0), where 1 ≤ i ≤
j ≤ n, be the minimal signature associated to T and let hT be the hazard rate function
associated to T . If

lim inf
t→∞

h1:k(t)
h1:i(t)

> 1 (7.17)

and

lim sup
t→∞

h1:k(t)
h1:i(t)

< ∞ (7.18)

for k = i + 1, i + 2, . . . , j, then
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lim
t→∞

hT (t)
h1:i(t)

= 1.

Moreover, condition (7.18) can be replaced by the weaker condition

lim
t→∞

f1:k(t)
f1:i(t)

= 0 (7.19)

for k = i + 1, i + 2, . . . , j.

In particular, if the components are i.i.d. with common hazard rate function h then

lim
t→∞

h1:k(t)
h1:i(t)

= lim
t→∞

kh(t)
ih(t)

=
k

i
. (7.20)

Hence (7.17) and (7.18) hold for k = i + 1, i + 2, . . . , j, and then

lim
t→∞

hT (t)
h(t)

= i.

For example, if T = Xn−k+1:n is the lifetime of a k-out-of-n system with i.i.d.
components with common hazard rate function h, from (7.5), we have

lim
t→∞

hn−k+1:n(t)
h(t)

= k

for k = 1, 2, . . . , n. In particular, for the parallel systems we have

lim
t→∞

hk:k(t)
h(t)

= 1

for k = 1, 2, . . . , n.
Unfortunately, in general, Theorem 1 cannot be applied to the representation of a

coherent system in terms of the parallel systems obtained from its cut sets since the
tail-behaviour of the hazard rate of a parallel system is equivalent to that of the hazard
rate of the tail-best component in the hazard rate order. Hence (7.8) does not hold.
For example, if the system has i.i.d. components, then

lim
t→∞

hk:k(t)
hi:i(t)

= 1

for k = 1, 2, . . . , n and Theorem 1 cannot be applied to representation (7.4) since (7.8)
does not hold.

7.4 The Bridge Structure

In this section we analyze the tail behaviour of the hazard rate of a system having
the bridge structure given in figure 7.1 (see also Barlow and Proschan (1975), p. 9).
Its minimal path sets are P1 = {1, 4}, P2 = {2, 5}, P3 = {1, 3, 5} and P4 = {2, 3, 4}.
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5

3

41

2

Figure 7.1. Bridge structure

Therefore, the reliability function RT of the system can be computed from the following
negative mixture:

RT (t) = R{1,4}(t) + R{2,5}(t) + R{1,3,5}(t) + R{2,3,4}(t) + 2R{1,2,3,4,5}(t)
−R{1,2,3,4}(t) −R{1,3,4,5}(t) −R{1,2,4,5}(t) −R{1,2,3,5}(t) −R{2,3,4,5}(t)

In particular, if the lifetimes of the components have an exchangeable joint distri-
bution, then

RT (t) = 2R1:2(t) + 2R1:3(t) − 5R1:4(t) + 2R1:5(t),

that is, its minimal signature is (0, 2, 2,−5, 2).
Therefore, if the components are i.i.d. with common hazard function h, then using

the results given in the preceding section we obtain

lim
t→∞

hT (t)
h(t)

= 2,

where hT is the hazard rate of the system.
If the components are independent and satisfy the proportional hazard (PHR)

model, i.e., their hazard rate functions hi satisfy hi(t) = λih(t) for i = 1, 2, . . . , 5,
where h is a hazard rate function, then

lim
t→∞

hT (t)
h(t)

= λ,

where λ = min(λ1 + λ4, λ2 + λ5, λ1 + λ3 + λ5, λ2 + λ3 + λ4). Note that if λ1 + λ4 =
λ2 + λ5 < λ1 + λ3 + λ5 < λ2 + λ3 + λ4, then (7.15) does not hold. However, note that,
in this case, Theorem 1 can be applied to the representation

RT (t) = 2R{1,4}(t) + R{1,3,5}(t) + R{2,3,4}(t) + 2R{1,2,3,4,5}(t)
−R{1,2,3,4}(t) − R{1,3,4,5}(t) −R{1,2,4,5}(t) −R{1,2,3,5}(t) −R{2,3,4,5}(t)

and then limt→∞ hT (t)/h(t) = λ1 + λ4.
If the components have different distributions, the best tail behaviour of the hazard

rate of the system is obtained by placing the best components in positions 1 and 4 (or
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in 2 and 5), i.e., when λ1 < λ4 < λi for i = 2, 3, 5. However, the initial behaviour could
be different.

If the component lifetimes have the Farlie-Gumbel-Morgenstern (FGM) distribu-
tion with exponential marginals; that is, the joint reliability (survival) function of
(X1, X2, . . . , X5) is given by

R(x1, x2, . . . , x5) = e−
∑ 5

i=1 λixi
(

1 + α

5
∏

i=1

(1 − e−λixi)
)

for xi ≥ 0, i = 1, 2, . . . , 5, where |α| ≤ 1, then it is easy to see that the hazard function
hP of the series system YP is given by hP (t) =

∑

i∈P λi for all P ⊂ {1, 2, . . . , 5}.
However, if P = {1, 2, . . . , 5}, then a straightforward computation yields

h{1,2,..,5}(t) =
5
∑

i=1

λi −
α
∑5

i=1

(

e−λit
∏

j �=i(1 − e−λjt)
)

1 + α
∏5

i=1(1 − e−λit)
.

Note that limt→∞ h{1,2,..,5}(t) =
∑5

i=1 λi. Therefore, Theorem 3 applies to T and hence
limt→∞ hT (t) = min(λ1+λ4, λ2+λ5, λ1+λ3+λ5, λ2+λ3+λ4) and T has an asymptotic
exponential distribution.

Figure 7.2 shows all the options of hazard rate functions of a system with a bridge
structure and components having a FGM joint distribution with parameters α = 0.5
and λi = 1, 1, 2, 2, 2 for i = 1, 2 . . . , 5. Note that the limits of the hazard rate functions
of the systems are 2 or 3 and that the tail-best option is obtained by placing the best
components at positions 1 and 4 (or equivalently at 2 and 5). Also note that this is also
the best option for all t. The worst option is obtained by placing the best component
at position 3 (the ‘bridge’).

Figure 7.2. Hazard rate function of a system with a bridge structure and joint FGM dis-
tribution with parameters α = 0.5 and λ1 = λ2 = 1 and λ3 = λ4 = λ5 = 2 (dashed
line), λ1 = λ3 = 1 and λ2 = λ4 = λ5 = 2 (continuous line at the top), λ1 = λ4 = 1 and
λ2 = λ3 = λ5 = 2 (continuous line at the bottom) and λ1 = λ5 = 1 and λ2 = λ3 = λ4 = 2
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Appendix

Proof of Theorem 1. Let ε > 0 be such that lim inft→∞ hi(t)/h1(t) > 1 + ε for
i = 2, 3, . . . , n. Then there exists a ti such that

hi(t) − h1(t) > εh1(t)

for all t ≥ ti and for i = 2, 3, . . . , n. So, if Ri = 1 − Fi, for t ≥ ti we have

Ri(t)
R1(t)

= exp
{

−
∫ t

−∞
(hi(x) − h1(x)) dx

}

= exp
{

−
∫ ti

−∞
(hi(x) − h1(x)) dx

}

exp
{

−
∫ t

ti

(hi(x) − h1(x)) dx
}

≤ Ri(ti)
R1(ti)

· exp
{

− ε

∫ t

ti

h1(x) dx
}

=
Ri(ti)
R1(ti)

(

R1(t)
R1(ti)

)ε

.

Letting t → ∞, we obtain limt→∞Ri(t)/R1(t) = 0 for i = 2, 3, . . . , n.
Then, note that

R(t)
R1(t)

=
(

p1 +
n
∑

i=2

pi
Ri(t)
R1(t)

)

.

Therefore,

lim
t→∞

R(t)
R1(t)

= p1 ≥ 0 (7.21)

and hence p1 > 0, since p1 �= 0.
Moreover, note that

h(t)
h1(t)

=
R1(t)
R(t)

(

p1 +
n
∑

i=2

pi
hi(t)Ri(t)
h1(t)R1(t)

)

. (7.22)

By assumption (7.9), hi(t)/h1(t) is bounded and as limt→∞Ri(t)/R1(t) = 0 for
i = 2, 3, . . . , n and limt→∞R1(t)/R(t) = p−1

1 > 0, we have (7.10).
Finally, we note that, from (7.22), condition (7.9) can be replaced by (7.11) since

hi(t)Ri(t) = fi(t).
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Models of Ordered Data and Products of Beta

Random Variables

Eric Beutner and Udo Kamps

Institute of Statistics, RWTH Aachen University, Germany

Abstract: Generalized order statistics provide a unified approach to a variety of mod-
els of random variables arranged in ascending order of magnitude with different inter-
pretations and statistical applications. An extension to a more general family of models
of ordered random variables is proposed. Intermediate or fractional order statistics turn
out to be a particular sub-model. Their joint density may also be described as ordered
Dirichlet distribution.

Keywords and phrases: Beta distribution, Dirichlet distribution, ordered Dirichlet
distribution, generalized order statistics, intermediate order statistics, fractional order
statistics

8.1 Introduction

Generalized order statistics have been introduced as a unifying distribution theoretical
set-up for models of ordered random variables, such as order statistics and record values
(Kamps, 1995). Alternatively, generalized order statistics may be defined via products
of random variables with power function distributions (see Definition 1 below). It turned
out that this approach has some advantages when studying properties of generalized
order statistics. In what follows we consider products of beta random variables. Let
Beta(a, b) denote the beta distribution with parameters a > 0, b > 0 and density

g(x) =
xa−1(1 − x)b−1

B(a, b)
, 0 < x < 1,

where B(a, b) is the beta function.

Definition 1. (Cramer and Kamps, 2003) Let F be some distribution function,
γ1, . . . , γn be positive numbers and B1, . . . , Bn be independent random variables with
Bj ∼ Beta(γj , 1), 1 ≤ j ≤ n. Then the random variables

X
(r)
∗ = F−1(1 −

r
∏

j=1

Bj), 1 ≤ r ≤ n,
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are called generalized order statistics (based on F and γ1, . . . , γn), where F−1 denotes
the quantile function of F .

This definition of generalized order statistics may be extended to consider the random
variables W1, . . . ,Wn defined by

Wr = F−1(1 −
r
∏

j=1

Bj), 1 ≤ r ≤ n, (8.1)

where B1, . . . , Bn are independent random variables, each with a beta distribution with
parameters αi and βi, 1 ≤ i ≤ n.

It is well known that spacings of generalized order statistics based on an exponential
distribution with distribution function F (x) = 1 − e−λx, λ > 0, are independent. This
also holds for the random variables Wr, 1 ≤ r ≤ n, defined by (8.1) since Wr =
− 1

λ

∑r
j=1 logBj , which implies that Wr − Wr−1 = − 1

λ logBr. Moreover, Wr − Wr−1

has a log-beta distribution (cf. Johnson et al. (1994), p. 247)) with density

fWr−Wr−1(x) =
λ

B(αr, βr)
e−λαrx(1 − e−λx)βr−1. (8.2)

In Mathai (1993), p. 84, the density function of a product of independent beta variables
is given which directly leads to a representation of the distribution function of Wr.

Lemma 1. For r = 1, . . . , n, the distribution function of Wr is given by

FWr (w) = 1 −
r
∏

j=1

Γ (αj + βj)
Γ (αj)

×
∫ 1−F (w)

0

Gr,0
r,r

(

x
α1 + β1 − 1, . . . , αr + βr − 1

α1 − 1, . . . , αr − 1

)

dx, (8.3)

where Gr,0
r,r denotes Meijer’s G-function.

Intermediate or fractional order statistics are contained in this setup by a particular
choice of the distribution parameters αi and βi. Papadatos (1995) introduced interme-
diate order statistics (U(ã1), . . . , U(ãr)) from the uniform distribution on (0, 1) of order
ã1, . . . , ãr, where r ∈ {1, . . . , n} and 1 ≤ ã1 < . . . < ãr ≤ n, by their joint density

f(u1, . . . , ur) =
Γ (n + 1)

Γ (a1) · Γ (ã2 − ã1) · . . . · Γ (n + 1 − ãr)

× uã1−1
1 · (u2 − u1)ã2−ã1−1 · . . . · (ur − ur−1)ãr−ãr−1−1(1 − ur)n−ãr ,

0 < u1 < . . . < ur < 1. (8.4)

In the particular case ãi = i, 1 ≤ i ≤ r, we obtain the joint density of the first r
order statistics. Intermediate order statistics from an arbitrary distribution function
F are then obtained via quantile transformation. The structure of intermediate order
statistics coincides with so-called fractional order statistics defined by Stigler (1977)
(see also David and Nagaraja (2003), p. 21). The connection of intermediate order
statistics to (8.1) is illustrated by means of an ordered Dirichlet distribution.
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8.2 Intermediate Order Statistics and the Ordered Dirichlet
Distribution

Following Connor and Mosimann (1969) or James (1972), the Dirichlet distribution
can be introduced as follows.

Definition 2. The nonnegative random vector (Y1, . . . , Yn) with
∑n

i=1 Yi < 1 has a
Dirichlet distribution with parameter vector (a1, . . . , an, bn), ai > 0, 1 ≤ i ≤ n, bn > 0
if

(i) the ratios Y1,
Y2

1−Y1
, . . . , Yn

1−Y1−...−Yn−1
are independent, and

(ii)each ratio is beta distributed, the i-th ratio with parameters ai and bi, satisfying
bi−1 = ai + bi for all i = 2, . . . , n.

An alternative definition which is equivalent to the one given above is the following
(see Kotz et al. (2000)).

Definition 3. Let X1, . . . , Xn+1 be independent random variables with Xj ∼ Γ (ai, 1),
1 ≤ j ≤ n + 1, where Γ (a, 1) denotes the gamma distribution with parameters a > 0
and 1, and density

f(x) =
xa−1e−x

Γ (a)
, 0 < x < ∞.

The distribution of the random vector

(Y1, . . . , Yn) =

(

X1
∑n+1

j=1 Xj

, . . . ,
Xn

∑n+1
j=1 Xj

)

is called Dirichlet distribution.

Closely related to the Dirichlet distribution is the ordered Dirichlet distribution.

Definition 4. Let (Y1, . . . , Yn) be Dirichlet distributed with parameter vector (a1, . . . ,
an, bn). The distribution of the random vector

(Z1, . . . , Zn) = (Y1, Y1 + Y2, . . . , Y1 + Y2 + . . . + Yn) (8.5)

is called ordered Dirichlet distribution with parameter vector (a1 . . . , an, bn).

The joint density

f(z1, . . . , zn) = Γ (a1+...+an+bn)
Γ (a1)·...·Γ (an)·Γ (bn)z

a1−1
1 · (z2 − z1)a2−1

· . . . · (zn − zn−1)an−1(1 − zn)bn−1, 0 < z1 < . . . < zn < 1 (8.6)

of Z = (Z1, . . . , Zn) may be found in Wilks (1962), p. 182.
Putting n = r, aj = ãj− ãj−1, 1 ≤ j ≤ n, ã0 = 0, and bn = n+1− ãr it follows from

(8.4) and (8.6) that intermediate order statistics from the uniform distribution have
an ordered Dirichlet distribution. The next lemma shows that the ordered Dirichlet
distribution can be obtained by products of beta random variables.
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Lemma 2. Let B1, . . . , Bn be independent random variables with Bj ∼ Beta(aj , bj),
aj, bj > 0, 1 ≤ j ≤ n, where the parameters satisfy the conditions

bj−1 = aj + bj , 2 ≤ j ≤ n.

Then the random vector X = (X1, . . . , Xn) defined by

Xr = 1 −
r
∏

j=1

(1 −Bj), 1 ≤ r ≤ n, (8.7)

is ordered Dirichlet distributed with parameter vector (a1, . . . , an, bn).

Proof. From Definition 2 it follows that the joint distribution of the random variables

Y1 = B1, Yr = Br

r−1
∏

j=1

(1 −Bj), 2 ≤ r ≤ n,

where B1, . . . , Bn are independent and Bi ∼ Beta(ai, bi), 1 ≤ i ≤ n, with bi−1 = ai+bi,
i = 2, . . . , n, is a Dirichlet distribution. Using that

r
∑

j=1

(

j−1
∏

k=1

(1 −Bk)

)

Bj = 1 −
r
∏

j=1

(1 −Bj), r = 1, . . . , n,

(by convention
∏

∅
= 1) we obtain from Definition 4 that the random variables

Xr =
∑r

j=1 Yj = 1 − ∏r
j=1(1 − Bj), r = 1, . . . , n, have an ordered Dirichlet distri-

bution. This proves the assertion.

Lemma 2 implies that intermediate order statistics from the uniform distribution
on (0, 1) may be constructed via products of independent beta variates.

Corollary 1. Let (U(ã1), . . . , U(ãr)) be intermediate order statistics from the uniform
distribution on (0, 1) of order ã1, . . . , ãr where 1 ≤ ã1 < . . . < ãr ≤ n. Then

U(ãj)
d= 1 −

j
∏

k=1

Bk
d= B̃j , 1 ≤ j ≤ r, (8.8)

where B1, . . . , Br are independent and Bi ∼ Beta(n − ãi + 1, ãi − ãi−1), 1 ≤ i ≤ r,
ã0 = 0, and B̃j ∼ Beta(ãj , n − ãj + 1), 1 ≤ j ≤ r. Here d= denotes equality in
distribution.

Proof. Using Lemma 2 and noticing that 1−Beta(α, β) ∼ Beta(β, α) and Beta(α1, β1)·
Beta(α2, β2) ∼ Beta(α2, β1 + β2) if α1 = α2 + β2 we obtain 8.8.

The marginal distribution of U(ãj) may also be obtained from (8.3), since plugging
in the particular choice of αi and βi leads to

Gj,0
j,j

(

x
n, n− ã1, . . . , n− ãj−1

n− ã1, n− ã2, . . . , n− ãj

)

= G1,0
1,1

(

x
n

n− ãj

)

Mathai(1993, p. 130)
= 1

Γ (ãj)
xn−ãj (1 − x)ãj−1.
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In the introduction we mentioned that intermediate and fractional order statistics coin-
cide. Stigler (1977) introduced fractional order statistics by means of the finite dimen-
sional distributions of a Dirichlet process. From his definition it follows at once that
fractional order statistics have an ordered Dirichlet distribution. We propose to use the
term fractional order statistics since the term intermediate order statistics already has
a different meaning (cf. David and Nagaraja (2003), p. 311).

8.3 Properties of Fractional Order Statistics

The above representation allows both an easy derivation as well as some extensions
of known properties of fractional order statistics. Recall that fractional order statistics
(X(ã1), . . . , X(ãr)) from an arbitrary distribution function F are defined by

(X(ã1), . . . , X(ãr)) = (F−1(U(ã1)), . . . , F−1(U(ãr))), (8.9)

where (U(ãr), . . . , U(ãr)) are fractional order statistics from the uniform distribution on
(0, 1).

Corollary 2. Let X(ãj) = F−1(U(ãj)) be a fractional order statistic, j ∈ {1, . . . , r}.
Then

(i) X(ãj) ∼ F−1(Z), where Z ∼ Beta(ãj , n− ãj + 1).
(ii)P (X(ãj) ≤ F−1(p)) = Ip(ãj , n − ãj + 1), if F is continuous in F−1(p), where Ip

denotes the incomplete beta function

Ip(a, b) = 1
B(a,b)

p
∫

0

xa−1(1 − x)b−1dx.

Proof. This is an immediate consequence of Corollary 1 and (8.9).

For the special case r = 1, Corollary 2 (i) and (ii) is stated in Papadatos (1995) in
(2.5) and Theorem (3.1), respectively.

Since fractional order statistics can be represented by products of beta random
variables, an easy proof of the following theorem is possible representing a fractional
order statistic as a stochastic convex combination of its neighbours.

Theorem 1. (Jones, 2003) Let U(ã1), U(ã2), U(ã3) be fractional order statistics with
ã1 = j, ã2 = j + c, ã3 = j + 1, 0 < c < 1, 1 ≤ j ≤ n − 1, and C ∼ Beta(c, 1 − c)
independent of the U ′s. Then

U(ã2)
d= (1 − C)U(ã1) + CU(ã3).

Proof. By definition U(ã1) ∼ Beta(j, n+1−j), U(ã2) ∼ Beta(j+c, n+1−j−c), U(ã3) ∼
Beta(j + 1, n− j). From Corollary 1 and its proof we have

U(ã1)
d= 1 −B1 and U(ã3)

d= 1 −B1B2B3

where B1 ∼ Beta(n− j+1, j), B2 ∼ Beta(n− j− c+1, c) and B3 ∼ Beta(n− j, 1− c).
Noticing that
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(1 − C)U(ã1) + CU(ã3) = (1 − C)(1 −B1) + C(1 −B1B2B3)
= 1 −B1(1 − C(1 −B2B3))

the result follows directly since B2B3 ∼ Beta(n− j, 1), C(1−B2B3) ∼ Beta(c, n− j +
1 − c) and 1 −B1 ·Beta(n− j + 1 − c, c) d= U(ã2).

Let X1,n, . . . , Xn,n denote the order statistics from a sample of size n from the
exponential distribution. Then Y1 = X1,n, . . . , Yn = Xn,n−Xn−1,n are independent and
again exponentially distributed (cf. David and Nagaraja (2003), p. 18). The following
corollary is an immediate consequence of (8.2) and Corollary 1, and shows that spacings
of fractional order statistics based on an exponential distribution may be exponentially
distributed.

Corollary 3. Let (X(ã1), . . . , X(ãr)) be fractional order statistics of order ã1, . . . , ãr

from an exponential distribution with ãj − ãj−1 = 1, 2 ≤ j ≤ r. Then Y1 = X(ã2) −
X(ã1), . . . , Yr−1 = X(ãr) −X(ãr−1) are independent and again exponentially distributed.
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Exact Inference and Optimal Censoring Scheme

for a Simple Step-Stress Model Under Progressive
Type-II Censoring

Qihao Xie, N. Balakrishnan, and Dong-hoon Han

Department of Mathematics and Statistics. McMaster University, Canada

Abstract: In reliability and life-testing experiments, the researcher is often interested
in the effects of extreme or varying stress factors such as temperature, voltage and
load on the lifetimes of experimental units. Step-stress test, which is a special class
of accelerated life-tests, allows the experimenter to increase the stress levels at fixed
times during the experiment in order to obtain information on the parameters of the
life distribution more quickly than under normal operating conditions. In this arti-
cle, we consider a simple step-stress model under the exponential distribution when
the available data are progressively Type-II censored. We derive the maximum like-
lihood estimators (MLEs) of the parameters assuming a cumulative exposure model
with lifetimes being exponentially distributed. The exact distributions of the MLEs of
parameters are obtained through the use of conditional moment generating functions.
We then construct confidence intervals for the parameters using these exact distribu-
tions, asymptotic distributions of the MLEs and the parametric bootstrap methods,
and assess their performance through a Monte Carlo simulation study. Next, we in-
vestigate optimal progressive censoring schemes as well as optimal time for change of
stress level based on the simple step-stress model. Finally, we present two examples to
illustrate all the methods of inference discussed here.

Keywords and phrases: Accelerated testing, bootstrap method, conditional moment
generating function, coverage probability, cumulative exposure model, exponential dis-
tribution, maximum likelihood estimation, optimal censoring scheme, order statistics,
step-stress models, tail probability, progressive type-II censoring

9.1 Introduction

The accelerated life-testing (ALT) experiments have found importance in reliability
and survival analysis. Such experiments allow the experimenter to obtain adequate life
data for the product under accelerated stress conditions, which cause the products to
fail more quickly than under the normal operating conditions. Some key references in
the area of accelerated testing include Nelson (1990), Meeker and Escobar (1998), and
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Bagdonavicius and Nikulin (2002). A special class of the ALT is called step-stress test-
ing, which allows the experimenter to choose one or more stress factors in a life-testing
experiment. Stress factors can include humidity, temperature, vibration, voltage, load
or any other factor that directly affects the life of the products. In such a step-stress
testing experiment, n identical units are placed on an initial stress level s0 under a m-
step-stress model, and only the successive failure times are recorded. The stress levels
are changed to s1 , . . . , sm

at the pre-fixed times τ1 < · · · < τ
m

, respectively. The most
common model used to analyse these times-to-failure data is the “cumulative damage”
or “cumulative exposure” model.

In many situations, the experimenter might not always obtain complete informa-
tion on failure times for all experimental units. In many situations the removal of units
from the experiment is pre-planned and intentional in order to save time and cost, or
to free up testing facilities for other experiments. Conventional Type-I and Type-II
censoring schemes result in censoring only at the end of the experiment, and they do
not allow removal of units during the experiment. For this reason, we consider here
the Progressive Type-II Censoring Scheme, which allows the experimenter to remove
units from a life-test at various stages during the experiment. The concept of Progres-
sive Censoring was first introduced by Herd (1956). Cohen (1963, 1966, 1991), Nelson
(1982), Cohen and Whitten (1988), Balakrishnan and Cohen (1991), Balakrishnan and
Aggarwala (2000), Balasooriya et al. (2000), and Ng et al. (2002, 2004) have all dis-
cussed inferential procedures based on progressively censored samples. One may refer
to Balakrishnan (2007) for a recent overview of various developments relating to pro-
gressive censoring. A progressively Type-II censored sample is observed as follows. n
identical units are placed on a life-testing experiment, and r and Rk (k = 1, . . . , r− 1)
are fixed in advance. At the time of the first failure, R1 of the n − 1 surviving units
are randomly removed from the experiment; at the time of the second failure, R2 of
the n − 2 − R1 surviving units are randomly removed from the experiment, and so
on; the test continues until the rth failure occurs at which time all the remaining
Rr = n− r−R1 − · · · −Rr−1 surviving units are removed. If R1 = · · · = Rr = 0, then
n = r which corresponds to the complete sample situation. If R1 = · · · = Rr−1 = 0,
then Rr = n−r which corresponds to the conventional Type-II right censoring scheme.

We consider here a simple step-stress model with only two stress levels when the
failure time are progressively Type-II censored. This model has been studied extensively
in the literature. DeGroot and Goel (1979) proposed the tampered random variable
model and discussed optimal tests under a Bayesian framework. Nelson (1980) pro-
posed the cumulative exposure model, while Miller and Nelson (1983) and Bai et al.
(1989) discussed the determination of optimal time at which to change the stress level
from s0 to s1 . Bhattacharyya and Zanzawi (1989) proposed the tampered failure rate
model, which assumes that the effects of changing stress level is to multiply the initial
failure rate function by a factor subsequent to the change times. Madi (1993) general-
ized this tampered failure rate model from the simple step-stress model (case m = 1)
to the multiple step-stress model (case m ≥ 2). Khamis and Higgins (1998) discussed
the same generalization under the Weibull distribution. Xiong (1998) and Xiong and
Milliken (1999) considered inference under the assumption of exponential lifetimes.
They assumed that the mean life of an experimental units is a log-linear function of
the stress level, and developed inference for the two parameters of the corresponding
log-linear link function. Watkins (2001) argued that it is preferable to work with the
original exponential parameters even though the log-linear link function provides a
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simple reparametrization. Balakrishnan et al. (2007) derived the exact conditional dis-
tributions of the MLEs under the exponential distribution when the data are Type-II
censored. Gouno and Balakrishnan (2001) reviewed the developments on step-stress ac-
celerated life-tests. Gouno et al. (2004) discussed inference for step-stress models under
the exponential distribution when the available data are progressively Type-I censored.
While Balakrishnan et al. (2007) developed the exact inference for a simple step-stress
model under the exponential distribution in the presence of time constraint, Balakr-
ishnan and Xie (2007a,b) handled the cases when the available samples are Type-I and
Type-II hybrid censored in this setup.

In this paper, we consider a simple step-stress model with two stress levels based on
the exponential distribution when the available data are progressively Type-II censored.
The model is discussed in detail in Section 9.2. Due to the form of the time constraint,
the MLEs of the unknown parameters do not always exist. We then derive the con-
ditional MLEs, and their joint conditional moment generating functions (CMGF) and
their joint conditional distributions, and then discuss their properties in Section 9.3.
In Section 9.4, we discuss the exact method of constructing conditional confidence in-
tervals (CIs) for the unknown parameters as well as the asymptotic method and the
bootstrap methods. Monte Carlo simulation results are presented in Section 9.5. In
Section 9.6, we discuss optimal progressive censoring schemes through the “variance
optimality” and “mean squared error optimality” as well as the determination of the
optimal time at which to change the stress level. Finally, we present two illustrative
examples and some concluding remarks in Sections 9.7 and 9.8, respectively.

9.2 Model Description and MLEs

Suppose that the data come from a cumulative exposure model, and we consider a
simple step-stress model based on progressive Type-II censoring with only two stress
levels s0 and s1 . The lifetime distributions at s0 and s1 are assumed to be exponential
with failure rates θ1 and θ2, respectively. The probability density function (PDF) and
cumulative distribution function (CDF) are given by

f
k
(t; θk) =

1
θk

exp
{− t/θk

}

, t ≥ 0, θk > 0, k = 1, 2 (9.1)

and
Fk(t; θk) = 1 − exp

{− t/θk

}

, t ≥ 0, θk > 0, k = 1, 2, (9.2)

respectively. We then have the cumulative exposure distribution (CED) G(t) as

G(t) =

{

G1(t) = F1(t; θ1) if 0 < t < τ

G2(t) = F2

(

t− (1 − θ2
θ1

)

τ ; θ2

)

if τ ≤ t < ∞ , (9.3)

where Fk(·) is as given in (9.2). The corresponding PDF is

g(t) =
{

g1(t) = 1
θ1

exp
{− 1

θ1
t
}

if 0 < t < τ

g2(t) = 1
θ2

exp
{− 1

θ2
(t− τ) − 1

θ1
τ
}

if τ ≤ t < ∞ . (9.4)
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Based on the progressively Type-II censored sample, we have n identical units under
an initial stress level s0 . The stress level is changed to s1 at a pre-fixed time τ , and
the life-testing experiment is terminated when the rth failure time Tr:r:n occurs, where
2 ≤ r ≤ n. Let N1 be the number of units that fail before time τ at stress level s0 and
N2 be the number of units that fail after time τ at stress level s1 . With these notations,
we will observe the following progressively censored data:

t =
{

t1:r:n < · · · < t
N1:r:n ≤ τ < t

N1+1:r:n < · · · < t
r:r:n

}

(9.5)

with the corresponding progressive censoring scheme R = (R1, . . . , Rr), where
∑r

j=1 Rj = n− r.
From the CED in (9.3) and the corresponding PDF in (9.4), we obtain the likelihood

function of θ1 and θ2 based on the progressively Type-II censored sample in (9.5) as
follows:

1. If N1 = r and N2 = 0 in (9.5), the likelihood function of θ1 and θ2 is

L(θ1, θ2|t) = Cp

{

r
∏

k=1

g1

(

t
k:r:n

)

[

1 −G1

(

t
k:r:n

)

]Rk

}

=
Cp

θr
1

exp

{

− 1
θ1

r
∑

k=1

(

Rk + 1
)

t
k:r:n

}

, 0 < t1:r:n < · · · < t
r:r:n < τ,

(9.6)

where

Cp = n(n− 1 −R1)(n− 2 −R1 −R2) · · ·
(

n− r + 1 −
r−1
∑

k=1

Rk

)

=
r
∏

j=1

R�
j (9.7)

and R�
j =

∑r
k=j(Rk + 1).

2. If N1 = 0 and N2 = r in (9.5), the likelihood function of θ1 and θ2 is

L(θ1, θ2|t) = Cp

{

r
∏

k=1

g2

(

t
k:r:n

)

[

1 −G2

(

t
k:r:n

)

]Rk

}

=
Cp

θr
2

exp

{

− 1
θ2

r
∑

k=1

(

Rk + 1
)(

t
k:r:n − τ

)− 1
θ1

r
∑

k=1

(

Rk + 1
)

τ

}

,

τ < t1:r:n < · · · < tr:r:n < ∞. (9.8)

3. In all other cases, the likelihood function of θ1 and θ2 is

L(θ1, θ2|t) = Cp

{

N1
∏

k=1

g1

(

t
k:r:n

)

[

1 −G1

(

t
k:r:n

)

]Rk

}

×
{

r
∏

k=N1+1

g2

(

t
k:r:n

)

[

1 −G2

(

t
k:r:n

)

]Rk

}

=
Cp

θN1
1 θN2

2

exp

{

− 1
θ1

D1 − 1
θ2

D2

}

,

0 < t1:r:n < · · · < tN1:r:n ≤ τ < tN1+1:r:n < · · · < tr:r:n < ∞, (9.9)
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where r = N1 + N2 (2 ≤ r ≤ n) and

D1 =
N1
∑

k=1

(

Rk + 1
)

t
k:r:n + τ

r
∑

k=N1+1

(

Rk + 1
)

,

D2 =
r
∑

k=N1+1

(

Rk + 1
)(

t
k:r:n − τ

)

.

From the likelihood functions in (9.6), (9.7) and (9.8), we observe the following:

(1) If N1 = r and N2 = 0 in (9.5), the MLE of θ2 does not exist;
(2) If N1 = 0 and N2 = r in (2.5), the MLE of θ1 does not exist;
(3) If at least one failure occurs before τ and after τ in (9.5), the MLEs of θ1 and θ2

do exist, and
(

D1, D2

)

is a joint complete sufficient statistic for (θ1, θ2). In this
situation, the log-likelihood function of θ1 and θ2 is obtained from (9.9) as

l(θ1, θ2|t) = logCp −N1 log θ1 −N2 log θ2 − D1

θ1
− D2

θ2
. (9.10)

From (9.10), the MLEs of θ1 and θ2 are readily obtained as

θ̂1 =
D1

N1
and θ̂2 =

D2

N2
, (9.11)

respectively.

Remark 1. In the model considered above, we have not assumed any relationship be-
tween the mean failure times under two stress levels.

Remark 2. In some situations, we may know the mean failure time θ2 = λθ1 for a known
λ. In this situation, the MLE of θ1 exists when at least one failure occurs, and its exact
distribution can be derived explicitly. One can also use the likelihood ratio test to test
the hypothesis H0 : θ2 = λθ1 for a specified λ.

9.3 Conditional Distributions of the MLEs

To find the exact conditional distributions of θ̂1 and θ̂2, we first derive the joint con-
ditional moment generating function (CMGF) of θ̂1 and θ̂2, conditioned on the event
{

1 ≤ N1 ≤ r − 1
}

, and then obtain from it the CMGFs of θ̂1 and θ̂2. For notational
convenience, we denote M12(ν, ω|N1

)

for the joint CMGF of θ̂1 and θ̂2, and Mk

(

ω|N1

)

for the CMGF of θ̂k, k = 1, 2. Evidently, we can write

M12

(

ν, ω|N1

)

= E
{

eνθ̂1+ωθ̂2
∣

∣1 ≤ N1 ≤ r − 1
}

=
r−1
∑

i=1

Eθ1,θ2

{

eνθ̂1+ωθ̂2
∣

∣N1 = i
}

· Pθ1,θ2,c

{

N1 = i
}

(9.12)
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and

Mk

(

ω|N1

)

= E
{

eωθ̂k
∣

∣1 ≤ N1 ≤ r − 1
}

=
r−1
∑

i=1

Eθ1,θ2

{

eωθ̂k
∣

∣N1 = i
}

· Pθ1,θ2,c

{

N1 = i
}

, (9.13)

where

Pθ1,θ2,c

{

N1 = i
}

= P
{

N1 = i
∣

∣ 1 ≤ N1 ≤ r − 1
}

.

In order to obtain P
{

N1 = i
∣

∣ 1 ≤ N1 ≤ r − 1
}

, we need the following lemma.

Lemma 1. Let T1:r:n < · · · < Tr:r:n denote the progressively Type-II censored sample
from the cumulative exposure PDF g(t) given in (9.4). Then, the joint density function
of T1:r:n, . . . , Tr:r:n is [see Balakrishnan and Aggarwala (2000)]

f
(

t1 , . . . , tr

)

= Cp

{

N1
∏

k=1

g1

(

t
k

)

[

1 −G1

(

t
k

)

]Rk

}{

r
∏

k=N1+1

g2

(

t
k

)

[

1 −G2

(

t
k

)

]Rk

}

,

0 < t1 < · · · < t
N1

≤ τ < t
N1+1 < · · · < tr ≤ ∞; (9.14)

further, the probability of the event
{

N1 = i, i = 1, . . . , r − 1
}

is given by

P
{

N1 = i
}

= Cp

i
∑

k=0

r−i−1
∑

l=0

Ck,i(Si)Cl,r−i−1(Si+l)
Bl,r−i(Si+l)

· exp

{

− τ

θ1

r
∑

j=i−k+1

Sj

}

, (9.15)

where
Sj = Rj + 1, Si = (S1, . . . , Si), Si+l = (Si+1, . . . , Si+l),

Bl,r−i(Si+l) =
r−i
∑

j=r−i−l

Si+j with
0
∑

j=i

Aj ≡ 0,

Ck,i(Si) =
(−1)k

{

∏k
j=1

∑i−k+j
m=i−k+1 Sm

}{

∏i−k
j=1

∑i−k
m=j Sm

} ,

Cl,r−i−1(Si+l) =
(−1)l

{

∏l
j=1

∑r−i−l+j−1
m=r−i−l Si+m

}{

∏r−i−l−1
j=1

∑r−i−l−1
m=j Si+m

} ,

with
∏0

j=1 Aj ≡ 1 and Cp is as given earlier in (9.7).

Proof. We have

P
{

N1 = i
}

=
∫ ∞

τ

∫ tr

τ

· · ·
∫ ti+2

τ

∫ τ

0

· · ·
∫ t2

0

f
(

t1 , . . . , tr

)

dt1 · · · dtidti+1 · · · dtr

=Cp

(

∫ τ

0

· · ·
∫ t2

0

i
∏

k=1

g1

(

t
k

)

{

1 −G1

(

t
k

)

}Rk

dt1 · · · dti
)

×
(

∫ ∞

τ

∫ tr

τ

· · ·
∫ ti+2

τ

r
∏

k=i+1

g2

(

t
k

)

{

1 −G2

(

t
k

)

}Rk

dti+1 · · · dtr−1dtr

)

.
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Upon substituting the expressions for g1(·), g2(·), G1(·) and G2(·), (9.15) follows from
the identity

∫ xm+1

a

· · ·
∫ x3

a

∫ x2

a

m
∏

j=1

f
(

x
j

)

{

1 − F
(

x
j

)

}Aj−1

dx1dx2 · · · dxm

=
m
∑

k=0

Ck,m(Am )
{

1 − F
(

x
m+1

)

}Bk,m(Am )
{

1 − F (a)
}

∑m−k
j=1 Aj

, (9.16)

where f(x) and F (x) denote the PDF and CDF of an absolutely continuous random
X . Here, Aj > 0 for j = 1, . . . ,m, Am = (A1, . . . , Am),

Bk,m(Am) =
m
∑

j=m−k+1

Aj

and

Ck,m

(

Am

)

=
(−1)k

{

∏k
j=1

∑m−k+j
l=m−k+1 Al

}{

∏m−k
j=1

∑m−k
l=j Al

}

with the usual conventions that
∏0

j=1 Aj ≡ 1 and
∑0

j=i Aj ≡ 0.

From Lemma 1, we have the conditional probability of N1 = i, given 1 ≤ N1 ≤ r−1,
as

Pθ1,θ2,c

{

N1 = i
}

=
P
{

N1 = i
}

∑r−1
j=1 P

{

N1 = j
} , (9.17)

where P
{

N1 = i
}

is as presented in (9.15).

Now, for the derivation of the conditional expectation Eθ1,θ2

{

eνθ̂1+ωθ̂2
∣

∣N1 = i
}

, we
need the following lemma.

Lemma 2. The joint conditional density of T1:r:n, . . . , Tr:r:n, given N1 = i, is given by
[see Balakrishnan and Aggarwala (2000)]

f
(

t1 , . . . , tr
|N1 = i

)

=
Cp

P
{

N1 = i
}

{

i
∏

k=1

g1

(

t
k

)

[

1 −G1

(

t
k

)

]Rk

}

×
{

r
∏

k=i+1

g2

(

t
k

)

[

1 −G2

(

t
k

)

]Rk

}

, (9.18)

0 < t1 < · · · < t
i
≤ τ < t

i+1 < · · · < t
r
≤ ∞,

where P
{

N1 = i
}

is as given in (9.15).

Theorem 1. The joint CMGF of θ̂1 and θ̂2, given 1 ≤ N1 ≤ r − 1, is

M12(ν, ω|N1) = D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · e
τ
i

∑r
j=i−k+1 Sjν

(

1 − θ1
i ν
)i(1 − θ2

r−iω
)r−i , ν <

1
θ1

, ω <
1
θ2

, (9.19)
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where
D =

Cp
∑r−1

j=1 P
{

N1 = j
} ,

Dikl =
Ck,i(Si)Cl,r−i−1(Si+l)

Bl,r−i(Si+l)
· exp

{

− τ

θ1

r
∑

j=i−k+1

Sj

}

and Cp is as defined earlier.

Proof. Using (9.16) and the results in Lemmas 1 and 2 into Eq. (9.12), and simplifying
the resulting expression, we obtain (9.19).

Corollary 1. The CMGF of θ̂1, given 1 ≤ N1 ≤ r − 1, is

M1(ω|N1) = D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · e
τ
i

∑ r
j=i−k+1 Sjω

(

1 − θ1
i ω
)i , ω <

1
θ1

. (9.20)

Proof. From Theorem 1, we readily obtain (9.20).

Corollary 2. The CMGF of θ̂2, given 1 ≤ N1 ≤ r − 1, is

M2(ω|N1) = D
r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · 1
(

1 − θ2
r−iω

)r−i
, ω <

1
θ2

. (9.21)

Proof. From Theorem 1, we readily obtain (9.21).

Now, in order to obtain the exact joint conditional density of θ̂1 and θ̂2, we need
the following lemma.

Lemma 3. If X is a gamma random variable with shape parameter α and scale pa-
rameter β, then the PDF of Y = X + h is of the form

γ
(

x− h;α, β
)

=

{

1
Γ (α)βα

(

x− h
)α−1

e−(x−h)/β if x > h

0 otherwise
, (9.22)

and the MGF of Y = X + h is of the form

MY (ω) =
eωh

(

1 − βω
)α , |ω| < 1/β. (9.23)

Proof. The proof follows from the well-known properties of the gamma distribution;
see, for example, Johnson et al. (1994).

Theorem 2. The joint conditional PDF of θ̂1 and θ̂2, given 1 ≤ N1 ≤ r − 1, is

f
θ̂1,θ̂2

(x, y) = D
r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · γ
(

x− τ
ik

; i,
θ1

i

)

· γ
(

y; r − i,
θ2

r − i

)

, (9.24)

where τ
ik

= τ
i

∑r
j=i−k+1(Rj + 1) and γ(·) is as defined in (9.22).
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Proof. The result follows readily from (9.19) upon using Lemma 3.

Theorem 3. The conditional PDF of θ̂1, given 1 ≤ N1 ≤ r − 1, is

f
θ̂1

(x) = D
r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · γ
(

x− τ
ik

; i,
θ1

i

)

, (9.25)

where γ(·) is as defined in (9.22).

Proof. The result follows readily from (9.20) upon using Lemma 3.

Theorem 4. The conditional PDF of θ̂2, given 1 ≤ N1 ≤ r − 1, is

f
θ̂2

(x) = D
r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · γ
(

x; r − i,
θ2

r − i

)

, (9.26)

where γ(·) is as defined in (9.22).

Proof. The result follows readily from (9.21) upon using Lemma 3.

Remark 3. If R1 = · · · = Rr−1 = 0 and Rr = n− r, which corresponds to the conven-
tional Type-II right censoring scheme, Eq. (9.24) becomes

f
θ̂1,θ̂2

(x, y) = D∗
r−1
∑

i=1

i
∑

k=0

D∗ik · γ
(

x− τ
ik

; i,
θ1

i

)

· γ
(

y; r − i,
θ2

r − i

)

, (9.27)

where D∗ =
{

∑r−1
j=1

(

n
j

)

pj(1 − p)n−j
}−1

and D∗ik = (−1)k
(

n
i

)(

i
k

)

(1 − p)n−i+k with

p = 1 − e−τ/θ1. Furthermore, the marginal conditional densities of θ̂1 and θ̂2 in this
case become

f
θ̂1

(x) = D∗
r−1
∑

i=1

i
∑

k=0

D∗ik · γ
(

x− τ
ik

; i,
θ1

i

)

(9.28)

and

f
θ̂2

(x) = D∗
r−1
∑

i=1

(

n

i

)

pi(1 − p)n−i · γ
(

x; r − i,
θ2

r − i

)

, (9.29)

respectively. The expressions in Eqs. (9.28) and (9.29) are exactly the same expressions
as derived by Balakrishnan et al. (2007).

Corollary 3. The mean and variance of θ̂1 are given by

E
(

θ̂1

)

= θ1 + D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl τ
ik

(9.30)

and

Var
(

θ̂1

)

= D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl

(

τ2
ik

+
θ2
1

i

)

−
(

D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl τ
ik

)2

, (9.31)

respectively.
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Proof. These expressions follow readily from the conditional PDF of θ̂1 in (9.25).

Corollary 4. The mean and variance of θ̂2 are

E
(

θ̂2

)

= θ2 (9.32)

and

Var
(

θ̂2

)

= D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · θ2
2

r − i
, (9.33)

respectively.

Proof. These expressions follow readily from the conditional PDF of θ̂2 in (3.15).

Remark 4. From (9.30), we observe that θ̂1 is a biased estimator of θ1 while θ̂2 is
observed from (9.32) to be an unbiased estimator of θ2. Furthermore, from the joint
density of θ̂1 and θ̂2 in (9.24), we obtain

E
(

θ̂1θ̂2

)

= D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl

(

τ
ik

+ i
θ1

i

)[

(r − i)
θ2

r − i

]

= D
r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl

(

τ
ik

+ θ1

)

θ2

= E
(

θ̂1

)

E
(

θ̂2

)

so that Cov
(

θ̂1, θ̂2

)

= 0.

Corollary 5. The tail probabilities of θ̂1 and θ̂2, given 1 ≤ N1 ≤ r − 1, are

Pθ1

{

θ̂1 > ξ
}

= D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · Γ
(

i

θ1

〈

ξ − τ
ik

〉

; i
)

(9.34)

and

Pθ2

{

θ̂2 > ξ
}

= D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl · Γ
(

r − i

θ2

〈

ξ
〉

; r − i

)

, (9.35)

respectively, where
〈

w
〉

= max {0, w} and

Γ (w;α) =
∫ ∞

w

γ
(

x;α, 1
)

dx =
∫ ∞

w

1
Γ (α)

xα−1e−xdx.

Proof. The expressions in (9.34) and (9.35) follow by integration from (9.25) and
(9.26), respectively.
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9.4 Confidence Intervals

In this section, we present different methods of constructing confidence intervals (CIs)
for the unknown parameters θ1 and θ2. From Theorems 3 and 4, we can construct the
exact CI for θ1 and θ2, respectively. Since the exact conditional PDF of θ̂1 and θ̂2 are
quite complicated, we also present the approximate CIs for θ1 and θ2 for larger sample
sizes. Finally, we use the parametric bootstrap method to construct CIs for θ1 and θ2.

9.4.1 Exact confidence intervals

To guarantee the invertibility for the parameters θ1 and θ2, we assume that the tail
probabilities of θ̂1 and θ̂2 presented in Corollary 5 are increasing functions of θ1 and
θ2, respectively. Several authors including Chen and Bhattacharyya (1988), Kundu
and Basu (2000), and Childs et al. (2003) have used this approach to construct exact
CI in different contexts. Like all of them, we are also unable to establish the required
monotonicity, but the extensive numerical computations we carried out seem to support
this monotonicity assumption; see figure 9.3, for example.

(1) CI for θ1

The exact CI for θ1 can be constructed by solving the equations

Pθ1L

{

θ̂1 > θ̂obs

}

=
α

2
and Pθ1U

{

θ̂1 > θ̂obs

}

= 1 − α

2
for θ1L (the lower bound of θ1) and θ1U (the upper bound of θ1), respectively.
A two-sided 100(1−α)% CI for θ1, denoted by (θ1L, θ1U ), can then be obtained by
solving the following two non-linear equations (by using the bisection method):

α

2
= D

(

θ1L, θ̂2

)

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl

(

θ1L, θ̂2

) · Γ
(

i

θ1L

〈

θ̂1 − τ
ik

〉

; i
)

and

1 − α

2
= D

(

θ1U , θ̂2

)

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl

(

θ1U , θ̂2

) · Γ
(

i

θ1U

〈

θ̂1 − τ
ik

〉

; i
)

,

where D, Dikl, τ
ik

and Γ (w;α) are all as defined earlier.
(2) CI for θ2

Similarly, a two-sided 100(1−α)% CI for θ2, denoted by (θ2L, θ2U ), can be obtained
by solving the following two non-linear equations:

α

2
= D

(

θ̂1, θ2L

)

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl

(

θ̂1, θ2L

) · Γ
(

r − i

θ2L

〈

θ̂2

〉

; r − i

)

and

1 − α

2
= D

(

θ̂1, θ2U

)

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl

(

θ̂1, θ2U

) · Γ
(

r − i

θ2U

〈

θ̂2

〉

; r − i

)

,

where D, Dikl, τ
ijk

and Γ (w;α) are all as defined earlier.
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9.4.2 Asymptotic confidence intervals

For large N1 and N2, the observed Fisher information matrix of θ1 and θ2 is

Î
(

θ1, θ2

)

=
[

Î11 Î12
Î21 Î11

]

θ1=θ̂1,θ2=θ̂2

=

[

N1

θ̂2
1

0

0 N2

θ̂2
2

]

, (9.36)

where

Îij = −E

{

∂2l(θ1, θ2|t)
∂θi∂θj

}∣

∣

∣

∣

∣

θ1=θ̂1,θ2=θ̂2

, i, j = 1, 2,

and θ̂1 and θ̂2 are as in (9.11). The asymptotic variances of θ̂1 and θ̂2 can be obtained
from (9.36) as

V11 = ̂Var
(

θ̂1

)

=
θ̂2
1

N1
and V22 = ̂Var

(

θ̂2

)

=
θ̂2
2

N2
.

We can then express two-sided 100(1 − α)% approximate CIs for θ1 and θ2 as
(

θ̂1 −W
)± z1−α/2

√

V11 and θ̂2 ± z1−α/2

√

V22,

where

W = D
(

θ̂1, θ̂2

)

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl

(

θ̂1, θ̂2

)

τ
ik
,

and z1−α/2 is the upper (α/2) percentile of the standard normal distribution.

9.4.3 Bootstrap confidence intervals

In this subsection, we present several bootstrap methods to construct CIs for θ1 and θ2,
viz., Studentized-t interval, Percentile interval, and Adjusted percentile (BCa) interval;
see Efron and Tibshirani (1998) and Hall (1988) for details. First, we describe the
algorithm to obtain the progressively Type-II censored sample. This algorithm will be
utilized in the resampling needed for the bootstrap confidence intervals in the following
subsections.

Bootstrap progressively Type-II sample

Step 1. Given τ and the original progressively Type-II censored sample with the cen-
soring scheme R = (R1, . . . , Rr), we obtain θ̂1 and θ̂2 from (9.11).

Step 2. Based on n, r, R, τ, θ̂1 and θ̂2, we generate a random sample of size n from
Uniform(0, 1) distribution, and obtain the progressively Type-II censored uniform
sample (U1:r:n, . . . , Ur:r:n), using the algorithm of Balakrishnan and Sandhu (1995).

Step 3. Find N1 such that

UN1:r:n < 1 − e−τ/θ̂1 ≤ UN1+1:r:n .

Then, for 1 ≤ k ≤ N1, we set
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t∗k:r:n = −θ̂1 log
(

1 − Uk:r:n

)

and for N1 + 1 ≤ k ≤ r, we set

t∗
k:r:n

= τ − θ̂2 log
(

1 − Uk:r:n

)− θ̂2

θ̂1

τ.

Step 4. Based on r, N1, τ and the progressively Type-II censored sample
{

t∗1:r:n, . . . , t
∗
N1:r:n, t

∗
N1+1:r:n, . . . , t

∗
r:r:n

}

,

we obtain θ̂∗1 and θ̂∗2 from (2.11).
Step 5. Repeat Steps 2-4 M times and arrange all θ̂∗1 ’s and θ̂∗2 ’s in ascending order to

obtain the bootstrap sample
{

θ̂
∗[1]
k , θ̂

∗[2]
k , . . . , θ̂

∗[M ]
k

}

, k = 1, 2.

Studentized-t interval

1. First, we consider the statistic

T
∗[j]
k =

θ̂
∗[j]
k − θ̂k
√

V
(

θ̂∗k
)

, j = 1, . . . ,M, k = 1, 2.

We then obtain the ordered bootstrap sample T
∗[1]
k < · · · < T

∗[M ]
k .

2. Next, we consider all possible 100(1 − α)% CIs of the form
(

T
∗[i]
k , T

∗[(1−α)M+i]
k

)

, i = 1, . . . , αM, k = 1, 2,

and choose the interval for which the width is minimum, say
(

T ∗kL, T
∗
kU

)

.
3. A two-sided 100(1−α)% Studentized-t bootstrap confidence interval for θk is either

(

θ̂k − T ∗kL

√

V
(

θ̂k

)

, θ̂k − T ∗kU

√

V
(

θ̂k

)

)

(9.37)

or
(

θ̂k − T
∗[(1−α/2)M ]
k

√

V
(

θ̂k

)

, θ̂k − T
∗[αM/2]
k

√

V
(

θ̂k

)

)

, (9.38)

where V
(

θ̂k

)

can be estimated by the asymptotic variance from the original pro-
gressively Type-II censored sample.

It is of interest to mention here that we could use the sample variance of the
bootstrap sample of θ̂k as an estimate of V

(

θ̂k

)

instead of the asymptotic variance
in Eqs. (9.37) and (9.38). However, we found in our Monte Carlo simulations that
the use of the asymptotic variance resulted in better coverage probabilities in general.
Furthermore, of the two confidence intervals presented in (9.37) and (9.38), we found
the confidence interval in (9.37) to have better coverage probabilities in general than
the confidence interval in (9.38). Therefore, all the numerical results we have presented
in tables 9.1–9.4 and tables 9.8–9.11 are based on the formula in (9.37).
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Percentile interval

1. First, we consider all possible 100(1 − α)% CIs of the form
(

θ̂
∗[i]
k , θ̂

∗[(1−α)M+i]
k

)

, i = 1, . . . , αM, k = 1, 2,

and choose the interval with minimum width, say
(

θ̂∗kL, θ̂∗kU

)

.
2. A two-sided 100(1 − α)% Percentile bootstrap confidence interval for θk is either

(

θ̂∗kL, θ̂∗kU

)

or
(

θ̂
∗[αM/2]
k , θ̂

∗[(1−α/2)M ]
k

)

.

Adjusted percentile (BCa) interval

A two-sided 100(1 − α)% BCa bootstrap confidence interval for θk is
(

θ̂
∗[α1k

M ]

k , θ̂
∗[(1−α2k

)M ]

k

)

, k = 1, 2,

where

α1k
= Φ

{

ẑ0k
+

ẑ0k
+ z

α/2

1 − â
k
(ẑ0k

+ z
α/2)

}

and

α2k
= Φ

{

ẑ0k
+

ẑ0k
+ z1−α/2

1 − â
k
(ẑ0k

+ z1−α/2)

}

.

Here, Φ(·) is the CDF of the standard normal distribution, and

ẑ0k
= Φ−1

{

# of θ̂
∗[j]
k < θ̂k

M

}

, j = 1, . . . ,M, k = 1, 2.

A good estimate of the acceleration factor a
k

is

â
k

=

∑Nk

i=1

[

θ̂
(·)
k − θ̂

(i)
k

]3

6
{

∑Nk

i=1

[

θ̂
(·)
k − θ̂

(i)
k

]2
}3/2

, i = 1, . . . , N
k
, k = 1, 2,

where θ̂
(i)
k is the MLE of θk based on the simulated progressively Type-II censored

sample with the ith observation removed (i.e., the jackknife estimate), and

θ̂
(·)
k =

1
N

k

N
k

∑

i=1

θ̂
(i)
k , i = 1, . . . , Nk, k = 1, 2,

where N1 + N2 = r.
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9.5 Simulation Study

In this section, we present the results of a Monte Carlo simulation study carried out in
order to compare the performance of all the methods of inference described in Section
9.4. We chose the values of the parameters θ1 and θ2 to be e2.5 and e1.5, respectively; we
also chose for n the value of 20, and several different choices for τ . We then determined
the true coverage probabilities of the 90%, 95%, 99% confidence intervals for θ1 and θ2

by all the methods described in Section 9.4. These values, based on 1000 Monte Carlo
simulations and M = 1000 bootstrap replications, are presented in tables 9.1–9.4 in
the Appendix. For convenience notation in progressive censoring, we have used in these
tables and elsewhere, for example, (8, 4 " 0) to denote the progressive censoring scheme
(8, 0, 0, 0, 0).

From these tables, it is clear that the exact method of constructing confidence in-
tervals (based on the exact conditional densities of θ̂1 and θ̂2 derived in Section 9.3)
always maintains its coverage probability at the pre-fixed nominal level. The approxi-
mate method of constructing confidence intervals (based on the asymptotic normality
of θ̂1 and θ̂2) has its true coverage probability to be always less than the nominal level.
Though the coverage probability improves for large sample size, we still found it to be
unsatisfactory even for n as large as 35, particularly when τ is not too large. Therefore,
the approximate CIs should not be used unless n is considerably large.

Among the three bootstrap methods of constructing confidence intervals described
in Section 9.4, the Studentized-t interval seems to have considerably low coverage
probabilities compared to the nominal level. The percentile interval and the adjusted
percentile interval seem to have their coverage probabilities better and somewhat closer
to the nominal level. Even though the percentile method seems to be sensitive, the
method does improve a bit for larger sample size. Overall, the adjusted percentile
method seems to be the one (among the three bootstrap methods) with somewhat
satisfactory coverage probabilities and hence may be used in case of large sample sizes
when the computation of the exact CIs becomes difficult.

9.6 Optimal Censoring Scheme

With (R1, . . . , Rr) as the progressive censoring scheme in a simple step-stress test, we
may consider the determination of the optimal choice of R = (R1, . . . , Rr), denoted
by R∗ = (R∗1, . . . , R

∗
r). For determining such an optimal censoring scheme among all

possible progressive censoring schemes, we could use variance optimality, for example,
which minimizes the total variance of the MLEs. The objective function is then given by

ψ
(

R
)

= Var
(

θ̂1 + θ̂2

)

= Var
(

θ̂1

)

+ Var
(

θ̂2

)

+ 2Cov
(

θ̂1, θ̂2

)

, (9.39)

where Var
(

θ̂1

)

and Var
(

θ̂2

)

are as given in (9.31) and (9.33), respectively. Since
Cov

(

θ̂1, θ̂2

)

= 0 (see Remark 4), Eq. (9.39) becomes
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ψ
(

R
)

= D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl

(

τ2
ik

+
θ2
1

i
+

θ2
2

r − i

)

−
(

D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl τ
ik

)2

. (9.40)

Hence, the optimal censoring scheme can be found by minimizing ψ
(

R
)

, with fixed
time τ , so that

ψ
(

R∗
) ≤ ψ

(

R
)

.

However, since θ̂1 is a biased estimator of θ1 while θ̂2 is an unbiased estimator of θ2

(see Corollaries 3 and 4), it is more reasonable to consider the objective function as

ϕ
(

R
)

= MSE
(

θ̂1

)

+ Var
(

θ̂2

)

= D

r−1
∑

i=1

i
∑

k=0

r−i−1
∑

l=0

Dikl

(

τ2
ik

+
θ2
1

i
+

θ2
2

r − i

)

(9.41)

and determine the optimal censoring scheme R∗ that minimizes the function ϕ
(

R
)

in
(9.41). This is referred to as mean square error optimality.

For θ1 = e1.5 and θ2 = e0.5, we have presented in tables 9.5 and 9.6 the best and
worst censoring schemes with variance optimality and mean square error optimality,
respectively, for different choices of n, r and τ . The relative efficiency values of worst
to best censoring schemes presented in these two tables reveal the distinct advantage
of adopting an optimal censoring scheme in the simple step-stress life-test.

Furthermore, the objective function ϕ
(

R
)

in (9.41) can be utilized to determine an
optimal time τ for changing the stress level with a specified choice of n, r, R, θ1 and
θ2. Table 9.7 presents these results for different choices of n, r and R in the cases of
(1) θ1 = e1.5 and θ2 = e0.5, and (2) θ1 = e2.5 and θ2 = e1.5. These results will be quite
useful in designing an optimal simple step-stress life-test with prior information on θ1

and θ2. For example, given n = 12, r = 8, θ1 = e2.5 and θ2 = e1.5, if we had planned
to adopt R = (4, 7 " 0) as the progressive Type-II censoring scheme in the step-stress
test, then we find from table 9.7 the optimal time τ∗ = 23.347150. Figure 9.1 displays
the relationship between time τ and ϕ

(

R
)

in (9.41) for different choices of n, r, R, θ1

and θ2.
Moreover, the objective function ϕ

(

R
)

in (9.41) can also be utilized to determine
simultaneously an optimal time τ for changing the stress level and the optimal censoring
scheme R∗ for a specified choice of n, r, θ1 and θ2. In this case, we find an optimal time
τ∗ and the corresponding optimal progressive censoring scheme R∗ when the MSE is
minimum among all possible progressive Type-II censoring schemes. Figure 9.2 displays
the relationship between time τ and ϕ

(

R
)

in (9.41) when (i) n = 12, r = 6, θ1 = e1.5

and θ2 = e0.5, and (ii) n = 16, r = 8, θ1 = e2.5 and θ2 = e1.5 are fixed in advance.
From figure 9.2, we find that, in the case of (i), the optimal time is τ∗ = 5.429890, the

corresponding optimal censoring scheme is R∗ = (3"0, 6, 2"0), and the minimum MSE
is 7.866258; in the case of (ii), the optimal time is τ∗ = 13.10505, the corresponding
optimal censoring scheme is R∗ = (4 " 0, 8, 3 " 0), and the minimum MSE is 40.95032;
see figure 9.3 which, in addition to showing the optimal censoring scheme and the near
optimal censoring schemes, also shows some censoring schemes which are worst from
MSE point of view.
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Figure 9.1. Plots of time τ vs. ϕ
(

R
)

for different choices of n, r, θ1 and θ2

9.7 Illustrative Examples

In this section, we consider two examples. Example 1 presents some plots to show the
monotonicity of the tail probabilities of θ̂1 and θ̂2 presented in Corollary 5. Example
2 presents a data using which the estimation of θ1 and θ2 are illustrated for different
progressive censoring schemes.

Example 1 Although we can not prove the monotonic increasing property of the
tail probability functions given in Corollary 5, we present some plots of P

{

θ̂k > ξ
}

for
different choices of n, R and τ in figure 9.4 when (1) n = 10, R = (7"0, 4) with τ = 1,
(2) n = 20, R = (4, 15 " 0) with τ = 3, and (3) n = 35, R = (8 " 0, 4 " 1, 2, 4 " 1, 8 " 0)
with τ = 5. These plots all display the monotonicity of the probabilities of interest.

Example 2 Let us consider the following data when n = 20 with τ = 5, θ1 = e2.5

and θ2 = e1.5:
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Stress Level Times-to-Failure

e2.5 0.21 0.60 1.53 1.75 2.10 3.21

e1.5 5.38 5.62 6.42 7.30 7.34 9.17 9.92

10.15 10.20 10.21 11.09 12.00 12.61 15.79

In this case, we obtain the MLEs of θ1 and θ2 for different choices of progressive cen-
soring schemes as follows:
The MSEs of the best and worst optimal progressive censoring schemes when r = 12
are 72.58156 and 125.5496, respectively, and so the relative efficiency of worst to best
censoring schemes is 57.81%. The MSEs of the best and worst optimal progressive cen-
soring schemes when r = 16 are 71.39777 and 94.34234, respectively, and so the relative
efficiency of worst to best censoring schemes is 75.68%. The confidence intervals for θ1
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r Censoring Scheme θ̂1 θ̂2

12 (11	0, 8) 13.233333 7.431667

(8, 11	0)‡ 6.846667 1.871667

(10	0, 4, 4) 13.233333 6.211667

(4, 4, 10	0) 7.106667 1.871667

(4	0, 4	2, 4	0) 11.670000 2.205000

(2, 0, 2, 6	0, 2, 0, 2) 10.480000 4.028333

(3	0, 8, 8	0)† 8.900000 1.871667

16 (15	0, 4) 13.233330 5.255000

(4, 15	0)‡ 10.040000 3.171000

(14	0, 2, 2) 13.233330 5.253000

(2, 2, 14	0) 10.170000 3.171000

(6	0, 4	1, 6	0) 13.233330 3.643000

(1, 2	0, 1, 8	0, 1, 2	0, 1) 11.893330 4.184000

(3	0, 4, 12	0)† 11.066670 3.171000

† and ‡ correspond to the best and worst optimal progressive censoring scheme, respectively

and θ2 obtained by all five methods are presented in tables 9.8–9.11. Note that the
approximate confidence interval and the Studentized-t interval are both unsatisfactory
as mentioned earlier. We also observe that all three bootstrap methods yield confidence
intervals for θ2 to be close to the exact confidence interval for θ2, but not so for θ1.

9.8 Conclusions

In this paper, we have considered a simple step-stress model with two stress levels from
the exponential distribution when the data are progressively Type-II censored. We have
derived the conditional MLEs of the unknown parameters θ1 and θ2 and their exact
joint and marginal conditional distributions. We have discussed the optimal censoring
scheme and the optimal time for change of stress which are applicable with some
preliminary estimates of θ1 and θ2. We have also proposed several different procedures
for constructing confidence intervals for θ1 and θ2. We have carried out a simulation
study to compare the performance of all these procedures. We have observed that
the approximate method of constructing confidence intervals (based on the asymptotic
normality of the MLEs θ̂1 and θ̂2) and the Studentized-t bootstrap confidence interval
are both unsatisfactory in terms of coverage probabilities. Even though the percentile
bootstrap method seems to be sensitive for small values of τ , the method does improve
for large sample sizes. Overall, the adjusted percentile method seems to be the one
(among all three bootstrap methods) with somewhat satisfactory coverage probabilities
(not so for θ1 when τ is small). Hence, our recommendation is to use the exact method
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whenever possible, and the adjusted percentile method in case of large sample sizes
when the computation of the exact confidence interval becomes difficult. We have also
presented some examples to illustrate all the methods of inference discussed here as
well as to support the conclusions drawn.

Appendix: Tables and Figures
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Figure 9.4. Tail probability plots of θ̂1 and θ̂2
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Table 9.1. Estimated coverage probabilities (in %) of confidence intervals for θ1 based on
1000 simulations and M = 1000 replications with n = 20, r = 8, θ1 = e2.5 and θ2 = e1.5

90% C.I. 95% C.I. 99% C.I.

Censoring τ Bootstrap App. Exact Bootstrap App. Exact Bootstrap App. Exact
Scheme P St BCa P St BCa P St BCa

(7�0,12) 1 96.9 51.0 82.0 75.4 89.9 97.5 52.4 85.9 73.5 96.7 100.0 50.1 93.2 93.9 99.0
2 96.7 61.6 79.3 83.6 88.9 100.0 62.8 85.3 81.7 94.4 100.0 65.8 92.0 90.9 98.4
3 89.7 63.3 75.8 78.8 90.9 95.6 65.1 81.4 83.6 94.8 97.3 66.5 88.5 93.4 99.4
4 94.2 66.2 76.5 83.1 88.5 93.2 65.2 80.0 90.5 94.6 98.8 64.4 88.5 94.5 99.0
5 83.2 65.8 73.0 79.1 92.1 91.5 67.0 80.2 87.0 96.0 97.6 68.2 89.9 92.1 98.8
6 88.9 71.8 70.7 82.3 90.8 93.9 74.8 85.6 89.4 96.0 97.0 76.2 93.7 93.8 98.5
7 92.3 69.0 74.9 79.9 90.1 96.0 71.3 89.0 85.7 94.3 98.7 73.7 96.9 91.0 98.7
8 89.1 70.1 78.3 79.1 91.2 94.7 72.7 87.5 86.9 95.5 97.9 75.9 95.9 90.9 98.5
9 87.9 65.0 76.7 84.0 89.8 92.6 78.7 86.3 88.4 94.2 98.0 73.4 97.1 90.3 98.9

10 88.9 72.2 70.0 82.5 90.6 94.2 73.6 89.9 87.7 95.9 99.0 73.8 94.0 90.8 98.5
(12, 7�0) 1 88.8 69.0 80.7 75.7 89.2 96.4 76.3 87.6 79.4 94.8 99.1 82.3 94.5 80.9 98.9

2 96.1 69.9 83.5 79.6 89.0 97.6 76.1 89.6 84.8 95.4 99.2 77.5 91.3 86.2 99.2
3 94.2 74.7 86.8 79.5 90.0 97.4 77.7 92.8 86.1 96.0 99.2 81.8 96.1 90.7 98.9
4 90.5 75.3 87.9 82.4 90.6 96.3 80.7 94.1 83.7 93.8 99.2 83.9 97.0 91.9 99.3
5 91.5 80.2 91.8 80.5 89.0 94.3 81.2 94.4 86.6 95.0 99.0 85.4 98.0 90.8 99.2
6 88.6 78.6 86.9 84.3 91.0 94.1 84.2 93.3 84.5 95.8 99.4 86.8 97.4 92.1 99.2
7 91.5 80.1 88.0 79.3 88.8 93.5 81.1 90.8 88.0 95.2 99.4 88.5 98.4 93.6 99.2
8 89.3 77.9 86.7 81.5 90.2 95.0 82.5 91.3 87.5 95.5 98.2 86.8 96.0 91.8 99.0
9 88.4 75.8 84.1 82.0 91.7 94.1 80.1 89.4 86.8 95.9 98.9 87.1 95.5 91.2 98.7

10 89.8 75.7 85.6 82.5 90.0 94.5 81.4 90.4 86.0 95.0 99.0 87.1 95.9 92.4 99.4
(6�0, 1 97.0 50.3 79.8 75.9 89.8 99.4 53.6 86.5 74.5 94.6 99.8 57.6 92.2 92.2 98.8

6, 6) 2 96.3 70.7 83.0 81.4 89.8 99.5 72.1 87.8 83.3 95.3 100.0 72.3 92.2 91.9 98.6
3 87.8 67.3 77.4 76.4 88.5 95.0 74.4 84.1 86.3 94.8 97.8 73.1 90.6 92.9 98.7
4 92.4 63.6 76.0 82.7 90.3 94.5 67.2 83.8 88.9 95.6 98.8 76.2 92.7 92.7 98.9
5 90.5 65.4 72.7 80.1 88.1 92.6 71.1 83.3 87.3 95.2 97.9 75.2 89.9 93.4 98.2
6 88.9 69.2 69.3 82.0 89.4 93.0 75.6 79.5 88.8 94.1 96.3 76.8 88.6 93.6 98.7
7 92.8 69.8 74.5 81.9 89.2 91.1 76.1 86.9 87.4 94.5 96.8 79.4 89.5 92.9 99.1
8 87.8 67.9 79.2 83.9 89.9 93.9 73.5 86.6 88.7 95.1 99.0 73.1 91.1 91.0 98.5
9 90.8 63.2 73.1 80.5 90.0 95.9 75.2 86.9 88.8 95.3 97.8 74.4 93.5 92.0 98.8

10 92.3 63.1 73.5 81.8 89.7 96.0 74.6 85.8 88.9 95.9 99.1 76.4 93.2 92.3 99.3
(6, 6, 1 94.1 59.5 77.5 69.8 89.6 97.7 61.2 81.7 78.4 94.4 99.4 70.6 90.3 85.5 99.0

6�0) 2 92.1 69.5 85.3 79.8 91.0 95.3 73.6 89.8 83.6 94.7 99.3 74.4 94.8 89.2 99.0
3 92.3 81.1 89.3 80.2 91.3 96.7 81.3 93.5 87.3 94.8 99.6 84.9 96.6 89.5 99.2
4 89.9 79.8 85.1 83.4 91.5 94.2 81.8 92.4 84.9 95.9 99.4 86.6 98.1 90.2 99.4
5 91.3 80.8 87.5 83.7 91.4 93.9 83.5 91.5 86.9 94.8 98.6 85.9 96.4 91.4 98.9
6 88.8 78.3 86.2 83.2 90.4 95.9 83.5 90.7 87.8 95.6 98.6 87.3 97.2 92.7 99.3
7 89.7 78.9 85.9 82.3 89.2 94.9 82.9 91.9 86.7 95.9 99.1 87.5 96.8 89.6 99.3
8 88.8 78.8 85.4 84.6 90.7 94.3 82.8 90.7 88.1 94.8 99.4 89.4 97.2 92.9 99.2
9 90.4 79.0 86.4 83.2 90.9 96.1 83.7 91.5 88.5 95.5 99.0 88.9 96.3 93.2 98.8

10 92.0 81.1 86.3 85.7 90.3 96.1 80.5 89.1 88.7 94.6 99.5 89.4 96.0 92.7 99.3
(3, 0, 3, 2�0, 1 95.8 44.9 78.7 79.8 90.5 98.2 48.1 84.0 79.7 95.9 99.8 49.7 90.5 83.2 98.7

3, 0, 3) 2 95.5 75.1 85.0 77.7 89.8 97.5 73.3 88.1 83.4 95.0 99.1 78.5 93.3 90.8 99.6
3 90.5 70.2 84.8 81.8 91.4 92.2 71.2 88.7 86.6 94.0 99.5 73.2 94.3 91.2 98.8
4 88.6 69.5 82.0 83.7 89.7 96.1 75.1 89.1 86.6 94.8 98.5 79.8 94.2 91.9 98.8
5 93.9 67.5 80.3 85.6 90.4 96.0 72.3 87.0 87.6 94.8 99.7 76.3 93.1 92.9 98.5
6 92.4 70.1 78.0 86.8 90.1 98.2 74.0 86.2 90.7 93.6 99.2 79.0 92.9 95.3 99.3
7 94.7 71.6 79.3 88.5 89.1 96.3 76.3 85.3 92.3 95.1 99.5 83.9 93.8 97.5 99.8
8 92.3 73.2 76.4 91.2 90.5 96.6 79.4 84.9 94.1 95.2 99.7 86.0 93.1 98.1 98.9
9 89.4 76.1 77.1 92.1 89.4 95.1 80.5 83.8 97.7 95.6 99.2 86.3 92.5 98.2 98.1

10 82.7 76.9 69.1 95.2 90.9 91.1 81.3 80.0 98.2 95.0 98.6 83.6 90.5 99.4 99.0
(2�0,3,3, 1 93.4 52.1 82.4 74.5 89.3 96.9 54.2 85.0 75.3 95.8 99.3 58.9 92.0 89.1 98.3

3, 3, 2�0) 2 94.8 72.9 86.3 79.2 89.0 95.8 76.7 91.0 86.4 94.2 98.0 78.7 94.0 90.6 99.1
3 87.9 77.1 83.8 82.6 91.3 92.2 80.3 90.0 86.6 94.7 98.5 84.4 95.7 92.2 98.5
4 86.6 73.4 84.9 82.3 89.5 92.7 77.4 90.8 85.0 95.3 97.4 82.0 95.5 93.2 98.8
5 87.3 78.1 86.0 83.9 89.7 93.7 82.1 91.7 88.1 95.8 98.0 87.2 96.0 92.3 98.9
6 90.3 83.0 88.7 85.0 90.9 93.5 83.3 91.1 89.9 94.3 98.1 89.3 97.3 93.3 99.2
7 89.9 81.1 86.8 87.2 91.3 95.6 87.6 92.8 88.4 94.5 98.3 88.4 96.5 94.4 98.9
8 91.3 82.0 87.3 85.7 90.0 95.2 86.9 91.8 87.1 95.5 98.3 88.7 96.3 92.4 99.2
9 92.3 83.5 86.7 85.2 90.8 96.2 87.6 91.6 88.6 94.8 99.1 91.7 98.0 95.4 98.9

10 93.5 83.7 85.8 87.2 89.9 97.4 89.6 92.8 90.4 94.6 99.1 91.8 97.5 94.5 99.0
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Table 9.2. Estimated coverage probabilities (in %) of confidence intervals for θ2 based on
1000 simulations and M = 1000 replications with n = 20, r = 8, θ1 = e2.5 and θ2 = e1.5

90% C.I. 95% C.I. 99% C.I.

Censoring τ Bootstrap App. Exact Bootstrap App. Exact Bootstrap App. Exact
Scheme P St BCa P St BCa P St BCa

(7�0, 12) 1 83.6 88.8 89.7 84.1 91.3 91.1 96.1 96.7 88.4 96.1 96.1 98.6 97.6 93.2 98.6
2 84.2 89.6 90.6 83.9 91.3 88.1 94.9 95.0 87.7 95.5 94.2 99.2 97.3 90.2 99.3
3 81.4 90.5 88.9 80.7 90.7 86.1 95.5 93.5 81.2 95.4 93.2 99.6 96.3 88.4 99.1
4 80.1 90.3 86.7 77.0 88.8 83.1 95.8 91.8 81.1 95.6 91.8 99.5 94.5 85.8 99.1
5 79.3 90.1 83.5 75.6 87.5 79.6 95.3 88.5 79.7 95.4 89.0 99.6 93.6 83.8 98.6
6 78.3 90.9 83.4 74.7 90.5 79.2 94.9 88.4 79.7 93.7 87.1 99.3 91.0 82.0 99.2
7 78.4 91.5 83.1 73.1 89.6 79.1 94.6 87.1 78.4 94.9 86.5 99.4 91.4 82.9 99.3
8 77.6 89.7 80.7 73.6 89.8 78.6 95.3 86.7 78.7 95.3 85.5 98.6 89.2 81.3 99.5
9 76.3 88.8 79.8 73.6 90.0 78.3 94.3 86.1 76.2 94.9 85.9 98.9 89.5 79.4 98.6

10 76.0 89.9 79.5 72.7 91.6 77.2 95.4 85.7 75.8 94.1 84.8 98.6 88.2 78.8 98.8
(12, 7�0) 1 86.8 90.6 90.9 86.2 89.4 92.5 95.5 95.2 88.7 95.0 96.0 98.0 97.1 93.1 98.9

2 87.4 89.4 89.7 83.6 89.2 92.3 95.5 95.9 85.9 94.3 96.1 99.0 97.7 91.8 99.1
3 86.0 88.7 89.6 83.1 89.7 89.8 95.8 95.6 86.0 94.4 95.1 99.0 97.5 92.1 98.8
4 87.3 90.4 91.3 84.9 90.0 92.1 95.4 95.7 87.6 94.3 95.4 99.4 97.9 90.3 99.5
5 84.5 90.7 90.7 83.5 91.1 90.8 96.2 96.4 85.6 96.5 94.3 98.5 97.2 91.6 99.6
6 83.8 89.3 90.2 82.6 89.5 90.6 95.9 96.8 86.4 95.3 94.4 99.8 98.0 91.1 99.2
7 83.1 89.4 89.7 82.2 90.0 89.1 94.7 94.9 85.4 96.0 93.8 99.2 96.6 91.6 98.7
8 81.9 89.8 89.2 80.2 91.1 89.4 95.4 95.2 81.7 95.8 94.8 99.3 96.5 87.9 99.1
9 83.7 91.9 91.9 78.4 88.9 88.6 94.8 94.2 84.5 94.6 92.6 99.2 96.0 87.9 98.3

10 82.3 91.2 90.7 77.0 90.4 86.9 95.4 93.2 84.2 95.0 92.6 99.1 95.1 86.7 99.4
(6�0, 1 86.8 89.2 90.1 84.9 90.8 91.1 95.0 96.1 87.4 94.8 96.3 98.5 97.8 92.1 98.9

6, 6) 2 85.7 89.7 91.4 80.3 88.6 91.2 95.4 95.2 86.4 95.1 95.6 99.1 97.4 90.4 98.9
3 81.2 88.7 88.6 79.4 91.1 88.9 96.2 95.4 83.7 95.0 92.7 98.9 95.0 87.6 98.4
4 79.4 90.1 87.3 79.4 91.4 85.0 96.7 93.1 80.7 95.7 89.5 99.3 93.3 85.9 98.9
5 77.5 90.3 83.9 73.3 89.1 81.0 96.2 89.4 78.9 94.2 90.4 99.7 94.1 81.5 98.7
6 73.9 91.6 82.7 74.0 89.6 80.1 96.5 88.5 76.3 94.8 86.4 99.6 89.8 81.6 99.6
7 72.2 91.0 79.3 72.2 89.9 80.5 95.7 86.8 75.2 94.5 84.8 99.3 88.9 78.4 99.1
8 73.3 91.8 80.1 74.4 91.0 77.7 97.2 86.0 74.3 95.3 83.7 99.3 87.5 79.6 99.3
9 71.3 90.2 78.3 71.4 89.3 76.7 95.8 83.2 73.8 94.5 81.5 98.6 86.6 77.9 99.0

10 67.1 88.7 75.5 70.3 89.1 75.4 95.7 82.7 76.3 93.2 81.4 99.2 86.0 77.6 99.6
(6, 6, 1 85.9 90.6 90.1 82.9 88.3 91.2 95.0 94.5 88.0 95.5 95.0 98.8 97.0 93.5 99.0

6�0) 2 86.8 90.1 90.8 84.5 91.4 91.8 94.8 95.4 89.4 94.7 96.8 99.6 98.4 91.2 99.0
3 87.6 91.0 91.6 82.3 89.2 91.5 94.9 94.7 86.6 96.3 94.5 98.4 96.9 91.3 99.2
4 85.2 89.0 89.4 84.3 90.2 90.0 95.5 95.4 85.9 95.6 94.4 99.4 97.6 91.5 99.2
5 84.5 90.2 90.7 83.5 88.4 91.6 95.7 96.1 85.4 94.2 95.5 99.0 97.0 90.0 98.8
6 84.6 90.3 91.7 82.1 90.9 88.3 93.9 94.8 84.7 95.1 94.3 99.3 97.2 89.3 99.5
7 83.5 90.5 91.6 78.1 88.4 89.9 95.1 95.0 82.7 94.8 95.5 99.1 97.0 87.7 98.8
8 82.9 90.7 90.0 80.9 90.0 86.8 95.8 95.1 83.5 95.3 94.6 99.4 96.7 87.1 99.1
9 83.7 92.0 90.8 78.9 88.1 87.9 95.8 94.5 82.6 95.4 92.6 99.0 95.5 89.2 99.1

10 81.3 90.5 89.4 78.0 90.4 87.1 95.6 94.0 82.0 94.7 92.2 99.6 95.3 86.8 99.1
(3, 0, 3, 2�0, 1 89.3 91.7 92.5 82.1 88.6 91.0 94.7 95.1 89.1 94.6 96.5 98.9 98.3 90.9 99.0

3, 0, 3) 2 84.7 90.5 91.2 84.9 90.0 90.9 94.7 94.6 87.3 95.1 96.6 99.5 98.2 89.3 98.7
3 85.0 90.6 91.1 81.1 89.8 88.5 94.5 95.0 86.5 95.2 94.4 99.1 97.0 89.7 99.1
4 84.6 91.8 91.6 80.2 90.5 88.3 95.9 95.4 83.7 95.4 93.1 99.1 95.7 88.7 99.0
5 79.4 90.2 88.6 79.3 90.0 86.2 95.3 92.3 79.2 94.3 93.5 99.9 96.0 84.1 99.2
6 80.4 90.1 87.0 76.0 91.1 82.8 96.1 90.7 76.7 94.1 90.7 99.5 93.5 83.7 99.3
7 80.7 91.3 86.9 71.7 90.8 81.4 95.8 90.2 77.9 94.5 87.7 99.5 92.8 83.6 98.8
8 78.7 89.9 84.5 76.5 90.2 82.5 95.3 89.4 77.7 95.1 86.4 99.3 90.7 82.4 99.5
9 76.4 89.5 82.8 74.6 89.1 79.9 94.6 87.0 75.1 95.9 87.2 99.4 90.5 79.3 99.2

10 76.2 91.6 85.0 74.1 88.9 81.6 97.0 89.9 76.0 96.3 88.7 99.0 92.2 79.7 98.6
(2�0, 3, 3, 1 86.6 89.1 90.4 85.7 90.7 91.4 95.2 95.2 87.9 94.8 96.4 98.9 97.9 92.0 98.7

3, 3, 2�0) 2 86.5 90.8 91.5 83.3 90.3 89.7 94.6 95.2 85.7 95.2 95.0 98.7 97.4 89.9 99.4
3 85.2 91.5 91.3 80.6 92.7 86.4 94.9 93.7 84.9 94.7 94.1 99.0 97.6 88.6 99.4
4 83.1 88.7 88.7 79.4 90.7 84.8 95.1 92.4 85.1 94.2 93.1 99.6 96.0 86.9 99.5
5 81.6 90.1 89.5 81.3 91.1 86.8 94.7 93.3 80.2 95.2 92.8 99.3 96.0 84.3 98.3
6 81.0 88.9 88.0 77.9 89.5 83.0 95.2 92.5 83.1 94.5 90.5 98.9 93.1 84.1 99.3
7 79.5 92.0 88.9 75.5 89.4 84.2 96.8 92.7 78.5 94.6 89.9 99.4 93.9 86.5 99.2
8 76.5 89.8 86.1 74.4 90.8 84.0 96.7 92.1 78.9 94.6 89.1 99.9 92.3 82.0 98.5
9 76.4 88.4 84.5 75.1 92.1 82.7 95.5 89.9 76.1 95.2 89.0 99.1 91.9 83.2 99.1

10 78.1 91.5 85.9 71.1 90.1 80.4 94.8 88.3 76.9 95.2 87.4 99.0 91.9 79.8 99.4
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Table 9.3. Estimated coverage probabilities (in %) of confidence intervals for θ1 based on
1000 simulations and M = 1000 replications with n = 20, r = 12, θ1 = e2.5 and θ2 = e1.5

90% C.I. 95% C.I. 99% C.I.

Censoring τ Bootstrap App. Exact Bootstrap App. Exact Bootstrap App. Exact
Scheme P St BCa P St BCa P St BCa

(11�0, 8) 1 96.6 49.5 82.9 72.7 90.2 97.6 54.0 84.7 74.5 95.0 99.8 58.5 93.1 90.9 98.5
2 95.9 73.0 85.3 84.6 91.1 98.4 73.5 88.0 81.0 95.3 99.8 77.7 93.2 92.9 99.1
3 86.8 79.0 84.4 81.2 89.2 95.5 81.9 88.9 88.0 95.8 97.5 80.7 91.9 91.6 98.5
4 90.9 75.1 84.7 83.1 91.4 95.1 77.8 90.3 87.0 95.0 98.3 76.5 92.4 92.5 98.8
5 92.8 73.0 83.3 83.4 90.1 94.9 71.8 88.1 88.6 95.7 98.5 74.6 94.5 93.1 99.2
6 94.2 68.8 80.4 84.1 90.2 95.0 73.8 87.1 88.4 94.7 97.9 75.5 92.0 93.2 98.6
7 92.8 70.2 77.6 86.1 90.5 96.3 72.8 85.4 91.0 96.0 99.0 78.0 92.1 92.8 98.9
8 90.6 72.7 76.4 92.0 90.7 94.5 74.2 82.2 90.9 95.3 99.1 79.7 92.5 94.8 99.0
9 89.8 74.5 76.0 97.0 90.3 94.2 79.1 81.6 89.3 95.0 98.1 83.9 91.3 92.2 99.6

10 89.4 79.6 75.6 99.4 89.8 92.2 81.9 79.0 90.0 94.7 95.8 85.3 89.5 91.9 99.3
(8, 11�0) 1 97.2 65.5 80.2 74.5 89.3 98.8 70.6 86.5 80.6 94.9 99.8 74.3 90.1 88.0 98.6

2 96.6 62.9 85.9 76.0 90.0 98.0 66.8 88.9 85.0 95.9 99.7 67.9 92.8 88.4 99.4
3 91.4 75.8 88.9 80.2 90.2 97.7 81.4 93.5 85.7 94.2 99.7 80.8 95.8 92.1 98.9
4 89.7 77.3 85.3 83.3 90.1 92.1 81.0 90.0 88.5 94.7 98.9 83.8 96.0 91.6 99.1
5 90.3 79.6 87.8 82.9 90.4 94.6 80.6 91.3 86.5 95.0 98.6 85.6 96.1 94.2 99.1
6 88.3 81.3 87.2 83.7 89.9 93.1 82.1 90.6 88.6 95.1 98.1 87.8 96.8 93.4 99.5
7 90.2 80.7 89.3 85.8 90.9 93.1 80.8 90.6 87.2 94.5 98.5 87.4 95.9 93.3 99.4
8 87.4 81.5 86.2 85.9 90.8 94.7 86.0 93.3 90.1 94.2 98.5 91.0 97.0 94.7 99.2
9 87.5 78.3 86.9 83.7 88.8 94.5 86.8 93.4 88.7 95.0 98.3 90.5 97.3 93.5 98.8

10 86.7 80.4 86.1 84.6 90.7 93.3 86.4 92.0 88.8 96.1 99.0 89.8 96.4 94.7 99.4
(10�0, 1 96.8 49.2 81.0 75.5 91.7 97.9 52.6 86.1 71.5 94.1 99.8 57.4 90.7 91.1 99.0

4, 4) 2 95.9 72.8 84.5 84.3 91.7 99.4 73.2 88.7 81.0 94.3 99.5 77.8 92.9 92.7 99.4
3 86.8 78.2 83.9 84.7 90.2 94.8 81.2 88.0 86.3 94.7 97.6 83.5 92.3 93.4 98.9
4 91.2 77.5 86.1 83.7 89.0 93.0 77.7 89.9 85.1 95.2 99.0 80.2 94.5 93.9 99.1
5 90.7 72.2 83.7 84.6 90.1 94.3 76.1 89.7 89.6 95.2 97.8 78.7 95.1 92.0 98.4
6 92.4 73.4 83.0 83.8 90.0 96.7 75.0 89.3 89.9 95.3 98.9 80.7 94.3 94.0 98.7
7 93.5 77.0 82.8 87.6 91.6 95.7 76.7 87.3 90.5 94.1 99.2 83.0 95.1 95.1 98.8
8 92.0 74.2 79.2 87.4 89.2 96.6 78.3 86.8 92.4 94.4 98.9 83.4 93.1 98.0 99.2
9 90.7 76.8 77.4 92.1 90.1 95.8 81.7 84.9 95.4 95.7 98.6 85.8 93.6 98.7 99.1

10 86.7 78.1 74.3 94.6 89.2 94.3 84.1 84.3 97.3 95.8 98.7 88.0 92.8 99.1 98.7
(4, 4, 1 95.7 45.3 76.1 79.6 89.5 98.4 51.9 85.4 82.9 94.2 99.4 56.5 90.5 87.2 98.7

10�0) 2 95.4 72.1 85.5 79.6 89.1 98.3 77.3 90.6 86.3 94.9 99.9 77.5 93.3 90.3 98.7
3 88.8 76.7 86.3 81.7 91.3 95.7 80.1 93.0 84.1 95.8 99.1 84.0 96.4 90.0 98.8
4 91.9 79.1 87.5 81.4 89.0 94.8 81.3 91.0 85.4 95.2 98.3 84.7 94.7 93.0 98.9
5 86.0 79.5 86.4 82.9 89.3 93.2 81.9 92.0 87.5 94.8 98.5 86.3 95.8 94.1 99.0
6 88.0 80.8 86.1 85.7 91.2 94.2 86.3 93.5 89.2 94.6 98.9 90.1 96.9 94.4 98.7
7 89.0 81.5 89.2 84.9 90.4 95.3 87.6 94.4 90.7 94.8 98.1 88.8 97.1 93.1 99.2
8 89.0 83.9 88.1 86.5 90.2 94.0 87.4 93.1 89.4 95.0 97.9 90.0 97.4 93.4 98.5
9 88.0 82.3 86.9 87.6 90.1 94.2 86.2 92.9 89.0 95.4 99.0 91.4 96.3 94.0 98.9

10 86.9 80.6 85.5 85.8 90.5 93.9 86.6 92.5 88.3 94.4 98.2 90.5 96.7 93.3 99.0
(2, 0, 2, 1 95.3 49.1 81.2 80.1 90.6 99.0 50.5 85.5 77.8 94.8 99.9 52.9 90.8 84.4 99.1
6�0, 2, 0, 2) 2 94.4 72.6 84.2 74.3 91.0 97.4 79.0 89.3 86.0 95.7 99.3 80.6 94.0 91.6 98.9

3 90.1 76.0 85.4 85.9 89.9 92.4 76.4 90.3 86.8 94.9 99.8 78.9 96.1 92.2 99.0
4 86.2 73.1 84.1 85.4 90.1 94.2 80.6 91.5 85.9 94.6 98.1 81.6 95.2 94.0 98.9
5 90.0 78.9 87.2 84.0 91.0 95.4 81.5 91.3 88.6 94.7 98.5 84.0 94.7 93.3 98.8
6 88.8 77.1 84.9 85.0 89.6 93.5 82.3 90.9 88.8 95.2 98.6 84.6 95.4 93.3 98.8
7 89.2 80.0 85.8 84.5 89.9 95.3 83.2 91.9 88.2 93.9 99.0 87.4 95.4 94.1 99.2
8 91.9 77.8 85.4 84.2 89.1 96.1 82.3 90.4 89.5 94.7 99.1 87.5 96.1 95.3 99.2
9 93.2 79.2 84.5 86.7 90.1 95.9 81.7 88.4 88.6 95.3 99.6 85.9 94.0 95.1 99.3

10 95.4 81.3 86.4 87.1 89.9 96.9 81.3 87.6 90.5 95.5 99.3 87.7 95.0 95.7 99.4
(4�0, 2, 2, 1 96.8 50.9 82.5 76.7 90.2 97.9 54.5 86.6 77.3 94.7 99.4 58.4 91.8 90.7 99.1

2, 2, 4�0) 2 95.6 73.9 84.1 83.9 90.4 98.1 77.3 90.5 81.0 94.8 99.5 77.8 92.2 92.0 98.7
3 85.8 80.7 85.2 79.0 90.8 93.5 81.8 87.6 88.1 94.6 98.1 84.4 91.8 91.3 98.8
4 88.8 79.4 86.3 82.6 90.2 92.2 85.2 91.6 87.6 94.8 97.6 85.6 96.0 93.4 99.3
5 86.6 78.7 87.2 86.2 91.3 91.6 82.5 92.4 90.1 95.3 96.1 83.6 95.3 94.6 99.0
6 85.3 82.0 87.3 83.7 88.9 91.6 86.0 93.6 89.2 95.6 98.8 87.8 97.7 94.7 99.3
7 87.4 82.8 86.1 86.3 91.5 94.2 89.1 93.4 89.6 94.4 98.0 91.0 97.4 94.2 99.3
8 88.2 85.0 88.3 88.2 90.3 94.0 88.5 92.3 90.4 95.4 97.7 91.6 97.6 95.1 99.4
9 88.1 85.3 87.6 83.7 88.3 93.1 88.1 91.4 91.3 95.0 98.4 92.3 97.6 95.0 99.1

10 89.8 85.6 88.8 84.4 91.1 95.0 89.5 93.2 90.3 95.4 98.6 92.3 97.6 93.8 98.7
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Table 9.4. Estimated coverage probabilities (in %) of confidence intervals for θ2 based on
1000 simulations and M = 1000 replications with n = 20, r = 12, θ1 = e2.5 and θ2 = e1.5

90% C.I. 95% C.I. 99% C.I.

Censoring τ Bootstrap App. Exact Bootstrap App. Exact Bootstrap App. Exact
Scheme P St BCa P St BCa P St BCa

(11�0, 8) 1 88.1 89.7 90.6 86.3 89.9 92.6 95.3 95.7 90.7 95.2 97.6 98.6 97.9 95.2 99.1
2 88.3 90.4 91.6 86.5 92.1 93.1 95.5 95.5 90.1 94.7 97.0 99.1 98.5 92.6 99.5
3 88.0 89.1 90.3 85.6 90.6 93.2 96.5 96.1 89.3 94.7 96.4 99.3 98.0 93.6 99.3
4 84.7 90.8 91.5 85.2 90.7 89.7 95.0 95.6 86.8 94.7 96.2 99.3 98.6 91.9 98.6
5 83.9 89.3 91.6 83.2 89.4 89.9 95.4 95.8 87.7 96.1 96.6 99.6 98.4 91.6 99.0
6 83.2 88.8 88.2 82.4 88.8 86.9 94.5 93.0 84.6 94.4 93.9 99.2 97.2 88.9 98.8
7 82.2 89.3 87.7 81.3 90.3 86.6 95.6 94.2 85.5 96.5 92.4 99.5 98.7 87.3 99.1
8 82.3 91.3 87.7 79.2 90.6 85.7 95.7 92.3 85.1 93.7 91.1 99.0 97.2 86.6 98.8
9 80.3 90.3 86.3 78.4 90.7 84.9 95.2 90.3 84.6 94.7 91.0 99.3 96.8 86.6 99.1

10 80.1 89.9 86.6 78.4 91.4 84.0 95.9 91.2 84.9 95.0 90.5 99.0 96.9 81.2 98.5
(8, 11�0) 1 86.5 88.7 89.3 88.1 91.1 90.9 95.3 95.0 90.6 95.1 97.9 98.9 99.0 95.2 99.1

2 88.1 90.4 90.6 86.9 91.5 93.7 95.8 95.9 90.4 95.3 96.2 98.8 97.8 94.6 99.4
3 87.4 90.8 91.0 86.1 90.0 91.3 94.1 94.8 88.6 94.6 97.6 99.1 98.7 95.3 99.2
4 88.1 90.1 91.5 86.0 90.1 92.7 94.5 94.4 89.1 94.5 96.2 99.3 98.1 94.2 98.9
5 87.4 89.0 90.2 85.0 88.5 92.6 95.5 96.2 91.7 95.9 96.6 98.7 98.4 94.6 98.9
6 88.7 90.3 92.0 86.4 90.8 93.4 95.3 95.0 88.1 95.2 95.1 99.4 97.6 92.9 99.2
7 87.1 91.7 92.0 85.9 90.9 90.9 95.7 96.0 88.2 94.2 96.7 98.8 98.4 91.2 99.0
8 87.9 90.7 90.8 82.4 89.1 90.8 94.5 95.0 88.5 95.1 96.8 99.1 98.6 90.9 99.1
9 86.7 89.1 89.3 83.1 90.1 89.5 94.0 94.3 87.5 95.0 95.3 98.9 97.5 90.8 98.4

10 85.9 89.9 91.4 82.9 88.8 90.9 95.0 96.0 84.9 94.4 95.7 99.1 97.7 91.2 99.6
(10�0, 1 88.1 89.3 89.4 87.3 89.5 92.4 94.9 95.4 90.5 95.5 96.4 99.2 97.9 94.1 98.9

4, 4) 2 87.7 91.9 92.8 86.0 91.3 91.3 95.5 95.6 88.8 94.4 97.0 98.5 97.6 93.4 98.6
3 87.3 88.6 89.7 85.8 90.8 92.4 95.9 96.4 87.8 95.4 97.0 99.0 98.1 92.7 99.2
4 86.7 89.3 90.2 85.0 91.3 90.7 95.1 95.8 89.7 94.7 96.7 98.6 98.4 92.8 98.6
5 86.4 90.5 90.6 80.7 90.6 90.7 95.4 96.3 85.8 95.3 96.0 99.4 98.2 91.5 98.7
6 85.0 90.8 90.2 83.0 89.1 89.1 96.5 95.2 82.9 95.7 95.7 99.6 97.8 88.7 99.1
7 83.3 91.2 90.2 79.4 89.5 86.7 96.8 95.0 82.8 94.7 93.3 99.6 96.7 87.6 99.1
8 78.3 91.3 87.1 76.7 88.2 85.7 95.0 91.5 80.6 94.8 90.9 99.2 94.7 85.7 99.1
9 78.6 89.7 84.6 77.0 90.7 83.5 96.8 90.9 79.6 94.0 90.2 99.7 93.6 86.0 99.6

10 77.0 90.6 82.2 76.9 90.2 79.2 95.0 86.3 78.9 94.8 87.5 99.7 92.7 81.4 99.6
(4, 4, 1 89.3 92.0 91.6 89.4 90.9 92.3 94.6 94.3 88.8 95.3 96.6 98.7 97.4 94.1 98.6

10�0) 2 88.3 89.6 89.7 87.6 90.6 92.6 95.6 96.2 90.9 96.1 97.5 99.0 98.8 92.5 99.1
3 88.2 89.5 89.9 85.9 89.1 92.8 95.9 95.7 89.9 94.4 96.2 99.4 98.5 93.9 98.7
4 86.8 88.7 89.7 87.1 90.8 92.0 96.5 95.4 89.1 94.3 97.0 99.1 98.1 94.5 99.1
5 88.2 92.0 92.2 84.7 90.9 93.4 95.2 96.1 89.4 94.8 96.7 99.4 98.4 92.1 99.6
6 85.7 87.8 88.9 85.6 90.6 91.9 95.2 95.8 89.8 94.5 97.1 99.5 98.6 93.5 99.0
7 86.9 91.6 91.8 83.6 91.2 92.0 95.0 95.2 87.5 95.0 96.0 98.9 97.9 91.7 99.3
8 86.4 91.0 91.4 84.9 89.9 91.0 95.9 96.2 86.5 94.7 95.5 99.0 97.6 91.7 98.2
9 85.2 89.3 89.8 83.6 89.9 90.2 94.6 94.8 87.8 95.0 94.6 99.0 97.0 90.9 98.9

10 86.4 91.8 92.5 80.5 91.1 90.1 95.2 94.7 86.8 94.6 95.3 99.3 97.5 91.6 99.2
(2, 0, 2, 1 88.9 89.7 90.6 85.4 88.5 93.8 96.0 96.0 90.8 95.9 96.8 99.2 98.1 94.0 99.1
6�0, 2, 0, 2) 2 86.7 89.4 90.5 87.4 90.4 92.2 94.1 94.6 91.1 95.7 97.0 99.1 98.8 92.8 99.4

3 89.4 90.7 91.9 86.7 88.9 91.9 95.5 95.8 89.5 94.4 96.9 99.6 98.4 93.4 99.3
4 85.4 90.1 91.3 85.9 90.0 92.4 94.5 95.4 88.1 95.4 97.1 99.4 98.1 92.7 99.2
5 87.2 90.4 91.4 85.3 89.1 92.4 94.9 96.2 87.0 95.3 97.1 99.5 98.1 92.2 99.4
6 86.2 93.4 93.3 83.8 89.3 90.4 95.5 96.2 86.2 95.7 95.7 99.6 98.4 90.9 99.5
7 84.7 91.5 92.0 83.4 87.4 91.1 96.5 96.9 85.7 95.3 94.8 99.1 97.2 89.8 99.6
8 82.9 90.3 90.1 79.6 89.1 88.0 96.3 95.0 85.1 95.1 93.4 99.4 96.7 87.9 99.0
9 81.2 89.5 88.9 79.1 91.4 88.5 97.6 94.5 83.2 95.9 94.0 99.2 96.1 87.4 99.2

10 80.9 91.1 89.2 80.3 89.8 84.1 97.0 93.4 83.5 95.6 92.9 99.3 96.1 86.8 99.6
(4�0, 2, 2, 1 90.1 89.6 90.1 87.7 89.9 93.2 95.7 95.4 90.4 95.6 96.8 99.0 98.3 94.7 98.9

2, 2, 4�0) 2 87.0 91.9 91.9 84.8 90.0 93.5 95.1 95.6 90.5 94.1 96.4 98.9 98.0 94.5 98.7
3 88.0 91.2 92.2 86.7 91.3 91.2 95.2 95.3 88.7 94.9 96.1 98.9 98.0 94.5 98.9
4 84.6 87.9 88.7 83.0 88.0 92.4 95.7 96.0 88.4 94.6 95.4 99.1 97.6 91.6 99.2
5 86.5 88.1 89.5 85.1 89.7 91.4 96.5 95.9 88.4 95.7 96.4 99.0 98.6 92.2 99.1
6 83.8 90.2 90.1 82.3 90.2 89.0 96.1 95.6 86.5 94.6 96.2 99.0 98.4 91.9 99.2
7 83.1 91.2 90.7 81.1 87.2 90.2 94.9 94.4 85.7 95.5 94.6 99.4 97.5 89.1 99.0
8 82.3 90.2 89.8 82.3 90.2 88.8 95.6 94.9 84.6 95.6 94.8 98.6 96.7 88.9 98.9
9 82.9 89.3 88.8 81.2 88.9 86.6 93.0 92.4 82.1 94.6 92.0 99.4 96.3 90.3 99.8

10 85.0 89.8 89.2 79.1 90.4 88.9 95.9 94.8 81.8 94.4 91.1 99.3 95.6 88.1 98.9
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Table 9.5. The optimal censoring scheme under variance optimality when θ1 = e1.5 and
θ2 = e0.5 are fixed

n r τ Best Censoring Variance Worst Censoring Variance Relative
Scheme Scheme (%) Efficiency (%)

10 4 1 (6, 3�0) 6.6727 (0, 6, 2�0) 11.4759 58.1454
3 (0, 6, 2�0) 16.1995 (3�0, 6) 27.3317 59.2700
5 (2�0, 6, 0) 11.1018 (3�0, 6) 28.7591 38.6028
7 (2�0, 6, 0) 9.5829 (3�0, 6) 25.9970 36.8617
9 (2�0, 6, 0) 9.4267 (3�0, 6) 22.8246 41.3007

6 1 (4, 5�0) 6.9724 (0, 4, 4�0) 10.1330 68.8085
3 (0, 4, 4�0) 14.8958 (4, 5�0) 19.7418 75.4531
5 (3�0, 4, 2�0) 8.4993 (4, 5�0) 13.9872 60.7647
7 (3�0, 4, 2�0) 6.9918 (4, 5�0) 10.1147 69.1257
9 (3�0, 3, 0, 1) 6.7351 (4, 5�0) 8.4086 80.0981

8 1 (2, 7�0) 7.8990 (0, 2, 6�0) 9.3971 84.0574
3 (2�0, 2, 5�0) 14.1761 (2, 7�0) 16.8237 84.2629
5 (3�0, 2, 4�0) 7.3983 (2, 7�0) 9.4502 78.2870
7 (4�0, 1, 2�0, 1) 5.7126 (2, 7�0) 6.7263 84.9295
9 (7�0, 2) 5.2843 (1, 5�0, 1, 0) 5.9111 89.3970

12 6 1 (6, 5�0) 8.8650 (0, 6, 4�0) 13.2089 67.1138
3 (2�0, 6, 3�0) 11.7538 (6, 5�0) 19.3985 60.5913
5 (3�0, 6, 2�0) 7.2209 (6, 5�0) 13.3790 53.9722
7 (3�0, 5, 0, 1) 6.6979 (6, 5�0) 9.8590 67.9368
9 (3�0, 4, 0, 2) 6.6551 (6, 5�0) 8.3026 80.1562

8 1 (4, 7�0) 9.7988 (0, 4, 6�0) 12.4552 78.6724
3 (2�0, 4, 5�0) 11.0070 (4, 7�0) 16.1089 68.3286
5 (4�0, 3, 2�0, 1) 6.0520 (4, 7�0) 8.9574 67.5640
7 (4�0, 2, 2�0, 2) 5.2297 (4, 7�0) 6.5859 79.4070
9 (4�0, 1, 2�0, 3) 5.0820 (3, 5�0, 1, 0) 5.8779 86.4595

10 1 (2, 9�0) 10.8169 (2�0, 2, 7�0) 12.0106 90.0607
3 (3�0, 2, 6�0) 10.6109 (2, 9�0) 12.9132 82.1712
5 (9�0, 2) 5.4010 (2, 9�0) 6.4747 83.4170
7 (9�0, 2) 4.4593 (8�0, 2, 0) 5.0836 87.7205
9 (9�0, 2) 4.2934 (8�0, 2, 0) 4.9774 86.2583

16 8 2 (2�0, 8, 5�0) 12.4683 (8, 7�0) 19.2231 64.8613
4 (4�0, 6, 2�0, 2) 5.5620 (8, 7�0) 10.8427 51.2971
6 (4�0, 3, 2�0, 5) 5.0132 (8, 7�0) 7.1757 69.8644
8 (3�0, 1, 1, 2�0, 6) 5.0050 (8, 7�0) 6.0342 82.9431

10 (2, 6�0, 6) 5.0485 (7, 5�0, 1, 0) 5.7532 87.7510
10 2 (2�0, 5, 6�0, 1) 12.1242 (6, 9�0) 17.5246 69.1836

4 (5�0, 6, 4�0) 4.8650 (6, 9�0) 7.8610 61.8872
6 (5�0, 1, 3�0, 5) 4.1519 (6, 9�0) 5.3362 77.8071
8 (9�0, 6) 4.0965 (3, 7�0, 3, 0) 5.0449 81.2004

10 (9�0, 6) 4.1734 (3, 7�0, 3, 0) 4.9841 83.7334
12 2 (11�0, 4) 11.8977 (4, 11�0) 15.4878 76.8197

4 (5�0, 4, 6�0) 4.4038 (4, 11�0) 5.9742 73.7133
6 (11�0, 4) 3.6505 (10�0, 4, 0) 4.5211 80.7428
8 (11�0, 4) 3.6233 (10�0, 4, 0) 4.5502 79.6290

10 (11�0, 4) 3.7310 (10�0, 4, 0) 4.5498 82.0030
20 10 2 (3�0, 8, 5�0, 2) 8.4432 (10, 9�0) 16.7017 50.5527

4 (5�0, 4, 3�0, 6) 4.2271 (10, 9�0) 7.5217 56.1985
6 (5�0, 1, 3�0, 9) 4.0393 (10, 9�0) 5.2656 76.7106
8 (1, 8�0, 9) 4.0891 (7, 7�0, 3, 0) 5.0372 81.1779

10 (3, 8�0, 7) 4.1885 (7, 7�0, 3, 0) 4.9817 84.0786
12 2 (3�0, 4, 7�0, 4) 8.1759 (8, 11�0) 14.4642 56.5255

4 (6�0, 1, 4�0, 7) 3.7239 (8, 11�0) 5.7208 65.0935
6 (11�0, 8) 3.4959 (1, 9�0, 7, 0) 4.6220 75.6359
8 (11�0, 8) 3.5874 (3, 9�0, 5, 0) 4.5676 78.5407

10 (11�0, 8) 3.7234 (3, 9�0, 5, 0) 4.5500 81.8334
16 2 (15�0, 4) 7.8617 (4, 15�0) 10.5172 74.7509

4 (7�0, 4, 8�0) 3.0856 (4, 15�0) 3.7742 81.7557
6 (8�0, 4, 7�0) 2.8102 (14�0, 4, 0) 3.5043 80.1930
8 (3, 6�0, 1, 8�0) 2.9742 (14�0, 4, 0) 3.8680 76.8932

10 (4, 15�0) 3.1557 (14�0, 4, 0) 4.0119 78.6583
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Table 9.6. The optimal censoring scheme under MSE optimality when θ1 = e1.5 and θ2 = e0.5

are fixed
n r τ Best Censoring MSE Worst Censoring MSE Relative

Scheme Scheme Efficiency (%)

10 4 1 (6, 3�0) 6.6861 (0, 6, 2�0) 11.6232 57.5239
3 (0, 6, 2�0) 17.4733 (3�0, 6) 68.4492 25.5274
5 (2�0, 6, 0) 14.0161 (3�0, 6) 150.7494 9.2976
7 (2�0, 6, 0) 15.0415 (3�0, 6) 274.8084 5.4734
9 (2�0, 6, 0) 18.4278 (3�0, 6) 444.7415 4.1435

6 1 (4, 5�0) 7.0630 (0, 4, 4�0) 10.4003 67.9115
3 (2�0, 4, 3�0) 15.6672 (5�0, 4) 21.8711 71.6346
5 (3�0, 4, 2�0) 9.2602 (5�0, 4) 26.6702 34.7212
7 (3�0, 4, 2�0) 8.5444 (5�0, 4) 45.3267 18.8507
9 (3�0, 4, 2�0) 9.6248 (5�0, 4) 75.6365 12.7250

8 1 (2, 7�0) 8.2403 (0, 2, 6�0) 9.8242 83.8780
3 (2�0, 2, 5�0) 14.9405 (2, 7�0) 18.0579 82.7366
5 (3�0, 2, 4�0) 7.7356 (2, 7�0) 9.9645 77.6312
7 (4�0, 2, 3�0) 6.3094 (7�0, 2) 10.4581 60.3299
9 (4�0, 2, 3�0) 6.5303 (7�0, 2) 15.2085 42.9385

12 6 1 (6, 5�0) 9.2057 (2�0, 6, 3�0) 13.9979 65.7646
3 (2�0, 6, 3�0) 12.1921 (5�0, 6) 24.6396 49.4816
5 (3�0, 6, 2�0) 7.9370 (5�0, 6) 43.2473 18.3527
7 (3�0, 6, 2�0) 8.3719 (5�0, 6) 84.8345 9.8685
9 (2, 2�0, 4, 2�0) 9.6266 (5�0, 6) 146.2384 6.5828

8 1 (4, 7�0) 10.5137 (2�0, 4, 5�0) 13.4514 78.1603
3 (2�0, 4, 5�0) 11.4579 (4, 7�0) 17.2163 66.5526
5 (4�0, 4, 3�0) 6.3131 (7�0, 4) 11.9590 52.7895
7 (4�0, 4, 3�0) 5.9694 (7�0, 4) 20.7164 28.8149
9 (1, 2�0, 1, 2, 3�0) 6.5141 (7�0, 4) 36.0754 18.0569

10 1 (2, 9�0) 11.8325 (2�0, 2, 7�0) 13.1238 90.1602
3 (3�0, 2, 6�0) 11.0928 (2, 9�0) 13.6951 80.9980
5 (4�0, 2, 5�0) 5.5700 (2, 9�0) 6.7247 82.8295
7 (5�0, 2, 4�0) 4.8283 (9�0, 2) 6.5828 73.3470
9 (5�0, 2, 4�0) 5.0255 (9�0, 2) 9.3537 53.7279

16 8 2 (2�0, 8, 5�0) 12.9156 (8, 7�0) 21.0105 61.4718
4 (4�0, 8, 3�0) 5.7315 (7�0, 8) 18.4851 31.0061
6 (4�0, 8, 3�0) 5.6963 (7�0, 8) 44.8061 12.7131
8 (4, 2�0, 1, 3, 3�0) 6.2036 (7�0, 8) 88.9667 6.9729

10 (6, 2�0, 1, 1, 3�0) 6.8775 (7�0, 8) 149.0573 4.6140
10 2 (2�0, 6, 7�0) 12.6996 (6, 9�0) 19.0171 66.7800

4 (5�0, 6, 4�0) 4.9477 (6, 9�0) 8.1961 60.3670
6 (5�0, 6, 4�0) 4.5543 (9�0, 6) 14.8544 30.6594
8 (3, 4�0, 3, 4�0) 4.8472 (9�0, 6) 30.0448 16.1334

10 (5, 3�0, 1, 5�0) 5.2338 (9�0, 6) 51.9260 10.0793
12 2 (2�0, 4, 9�0) 12.6024 (4, 11�0) 16.6980 75.4726

4 (5�0, 4, 6�0) 4.4919 (4, 11�0) 6.1988 72.4641
6 (6�0, 4, 5�0) 3.8446 (11�0, 4) 5.8876 65.3005
8 (1, 3�0, 1, 0, 2, 5�0) 4.0288 (11�0, 4) 10.3097 39.0774

10 (4, 11�0) 4.2959 (11�0, 4) 17.5642 24.4585
20 10 2 (3�0, 17�0) 8.6806 (10, 9�0) 18.0305 48.1437

4 (5�0, 15�0) 4.3825 (9�0, 10) 13.5660 32.3051
6 (2, 3�0, 1, 7, 4�0) 4.5426 (9�0, 10) 37.2891 12.1822
8 (7, 4�0, 3, 4�0) 4.8494 (9�0, 10) 77.1804 6.2832

10 (9, 3�0, 1, 5�0) 5.2376 (9�0, 10) 131.6731 3.9778
12 2 (3�0, 8, 8�0) 8.4912 (8, 11�0) 15.5191 54.7146

4 (6�0, 8, 5�0) 3.7665 (11�0, 8) 6.1571 61.1732
6 (1, 5�0, 7, 5�0) 3.7939 (11�0, 8) 14.8794 25.4979
8 (6, 5�0, 2, 5�0) 4.0302 (11�0, 8) 31.9149 12.6280

10 (8, 11�0) 4.2998 (11�0, 8) 56.2560 7.6433
16 2 (4�0, 4, 11�0) 8.2964 (4, 15�0) 11.1870 74.1609

4 (7�0, 4, 8�0) 3.1363 (4, 15�0) 3.8880 80.6654
6 (8�0, 4, 7�0) 2.8388 (14�0, 4, 0) 3.6107 78.6215
8 (3, 6�0, 1, 8�0) 3.0273 (15�0, 4) 5.5949 54.1078

10 (4, 15�0) 3.2745 (15�0, 4) 9.3924 34.8628



9 Exact Inference and Optimal Censoring Scheme 133

Table 9.7. The optimal-time with minimum MSE when n, r, R, θ1 and θ2 are fixed

θ1 = e1.5 and θ2 = e0.5 θ1 = e2.5 and θ2 = e1.5

n r Censoring Scheme Optimal-time min. MSE Optimal-time min. MSE

10 4 (3�0, 6) 0.497247 3.774531 1.351752 27.890224
(6, 3�0) 6.917718 24.93450 18.804600 184.242430

(2, 1, 1, 2) 0.536917 4.090915 1.459510 30.228000
(3, 2�0, 3) 0.572172 3.985142 1.555255 29.446441
(0, 3, 3, 0) 5.661822 14.922759 15.390590 110.265100

6 (5�0, 4) 3.286667 21.790941 8.934054 161.014485
(4, 5�0) 8.787287 11.016664 23.886290 81.402750

(1, 0, 1, 1, 0, 1) 5.563263 12.115872 15.122720 89.524860
(2, 4�0, 2) 4.939339 17.089034 13.426430 126.271830

(2�0, 2, 2, 2�0) 6.461862 8.619150 17.565470 63.687380
8 (7�0, 2) 5.535736 9.186648 15.048050 67.880650

(2, 7�0) 8.744945 6.873914 23.771070 50.791740
(0, 1, 4�0, 1, 0) 7.613914 7.108081 20.696700 52.522010

(1, 6�0, 1) 6.629429 8.022364 18.020720 59.277700
(3�0, 1, 1, 3�0) 7.485085 6.320418 20.346550 46.701920

12 6 (5�0, 6) 0.407177 3.387775 1.106907 25.032460
(6, 5�0) 8.629530 10.896890 23.457460 80.517720

(2, 0, 1, 1, 0, 2) 4.410210 14.159480 11.988590 104.625200
(3, 4�0, 3) 3.977177 18.621750 10.811110 137.597160

(2�0, 3, 3, 2�0) 5.602603 8.055846 15.229430 59.525100
8 (7�0, 4) 4.125926 10.873441 11.215420 80.344460

(4, 7�0) 8.588989 6.823374 23.347150 50.418290
(1, 0, 1, 2�0, 1, 0, 1) 5.766066 7.419517 15.673870 54.823230

(2, 6�0, 2) 5.348949 8.879327 14.539540 65.609850
(3�0, 2, 2, 3�0) 6.417017 5.970594 17.443040 44.117050

10 (9�0, 2) 5.631031 5.928696 15.306910 43.807470
(2, 9�0) 8.406206 5.094936 22.850350 37.646770

(0, 1, 6�0, 1, 0) 7.201301 5.353277 19.574970 39.555670
(1, 8�0, 1) 6.638238 5.495566 18.044140 40.607040

(4�0, 1, 1, 4�0) 7.249650 4.844249 19.706610 35.794430
16 8 (7�0, 8) 2.754655 13.103435 7.488088 96.822019

(8, 7�0) 8.416617 6.769414 22.878680 50.019580
(2, 0, 2, 2�0, 2, 0, 2) 4.259059 7.663110 11.577480 56.623150

(4, 6�0, 4) 3.909109 10.150602 10.625930 75.003370
(3�0, 4, 4, 3�0) 5.021862 5.610600 13.650850 41.457040

10 (9�0, 6) 3.559850 7.230336 9.676677 53.425358
(6, 9�0) 8.226907 5.065642 22.363060 37.430320

(2, 0, 1, 4�0, 1, 0, 2) 4.925676 5.706721 13.389370 42.167280
(3, 8�0, 3) 4.741041 6.151359 12.887440 45.452730

(4�0, 3, 3, 4�0) 5.535666 4.557247 15.047520 33.673760
12 (11�0, 4) 4.493343 4.769220 12.214110 35.240040

(4, 11�0) 7.869169 4.111233 21.390640 30.378130
(1, 0, 1, 6�0, 1, 0, 1) 5.909970 4.302062 16.064980 31.788180

(2, 10�0, 2) 5.624875 4.416294 15.289940 32.632250
(5�0, 2, 2, 5�0) 6.010544 3.861178 16.338340 28.530460

20 10 (9�0, 10) 2.639540 8.117453 7.174925 59.980313
(10, 9�0) 8.128679 5.050435 22.096030 37.317950

(3, 0, 2, 4�0, 2, 0, 3) 3.918498 5.840517 10.651550 43.155910
(5, 8�0, 5) 3.737177 6.657241 10.158710 49.190730

(4�0, 5, 5, 4�0) 4.477177 4.404244 12.170290 32.543210
12 (11�0, 8) 3.215065 5.302418 8.739480 39.179860

(8, 11�0) 7.762102 4.100461 21.099500 30.298540
(2, 0, 1, 0, 1, 2�0, 1, 0, 1, 0, 2) 4.654535 4.271674 12.652350 31.563640

(4, 10�0, 4) 4.380831 4.693092 11.908370 34.677520
(5�0, 4, 4, 5�0) 4.803153 3.712437 13.056220 27.431410

16 (15�0, 4) 4.728859 3.149274 12.854350 23.270160
(4, 15�0) 6.894444 2.979400 18.741080 22.014950

(1, 2�0, 1, 8�0, 1, 2�0, 1) 5.724124 3.048205 15.559860 22.523360
(2, 14�0, 2) 5.658468 3.059654 15.381320 22.607960

(7�0, 2, 2, 7�0) 5.560621 2.831259 15.115370 20.920330
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Table 9.8. Interval estimation for θ1 based on the data in Example 2 when n = 20, r = 12
and τ = 5 for different progressive censoring schemes

Censoring Scheme Method 90% 95% 99%

(11�0, 8) Bootstrap (P) (7.6192, 30.6300) (7.0170, 31.2968) (6.1664, 49.1116)
(ST) (7.9323, 25.5874) (7.8356, 28.3682) (7.7060, 33.7679)

(BCa) (7.7022, 31.0159) (7.4645, 47.4902) (6.7018, 99.3545)
Approximation (1.8022, 19.5748) (0.0998, 21.2771) (0.0000, 24.6043)

Exact (6.7551, 26.4410) (5.9857, 31.0852) (4.7131, 43.8428)

(8, 11�0)‡ Bootstrap (P) (3.5444, 14.2814) (3.3792, 16.3905) (2.5526, 27.1662)
(ST) (3.9892, 14.8601) (3.8481, 15.8082) (3.7015, 22.4038)

(BCa) (3.9624, 18.0095) (3.7556, 21.9938) (3.1813, 61.6967)
Approximation (1.3653, 10.5605) (0.4846, 11.4413) (0.0000, 13.1627)

Exact (3.7957, 14.1406) (3.4280, 16.6016) (2.8302, 23.3008)
(10�0, 4, 4) Bootstrap (P) (7.6641, 31.0573) (6.8046, 45.9254) (5.8634, 96.3478)

(ST) (7.9039, 25.2230) (7.7977, 29.7070) (7.6935, 35.7553)
(BCa) (7.8097, 31.2686) (7.0459, 47.6600) (6.2765, 99.7112)

Approximation (1.8336, 19.6062) (0.1312, 21.3086) (0.0000, 24.6358)
Exact (6.8890, 26.4432) (6.1505, 31.0852) (4.9405, 43.8428)

(4, 4, 10�0) Bootstrap (P) (3.7920, 13.9467) (3.5969, 18.4519) (2.3967, 26.1617)
(ST) (4.2487, 14.7487) (3.9500, 15.5997) (3.7317, 26.0164)

(BCa) (4.2737, 18.7861) (3.8351, 20.1726) (3.3187, 36.6394)
Approximation (1.4857, 11.0300) (0.5714, 11.9443) (0.0000, 13.7311)

Exact (3.9483, 14.7708) (3.5657, 17.3578) (2.9439, 24.4287)
(4�0, 2, 2, 2, 2, 4�0) Bootstrap (P) (5.8335, 23.4714) (5.2811, 30.7903) (4.4210, 49.6410)

(ST) (6.9205, 25.8092) (6.5870, 28.7427) (6.4750, 34.6064)
(BCa) (6.4304, 31.0234) (6.3702, 48.4823) (5.0651, 99.7232)

Approximation (2.2362, 17.9092) (0.7349, 19.4105) (0.0000, 22.3446)
Exact (6.5358, 24.2108) (5.9136, 28.4491) (4.9084, 40.0830)

(2, 0, 2, 6�0, 2, 0, 2) Bootstrap (P) (5.7044, 25.0609) (5.1417, 26.9826) (4.3019, 41.7131)
(ST) (6.1685, 21.6505) (5.9779, 24.5269) (5.7198, 30.5802)

(BCa) (5.9333, 26.9192) (6.0312, 42.7513) (5.0517, 48.0536)
Approximation (1.8669, 15.9418) (0.5188, 17.2899) (0.0000, 19.9249)

Exact (5.6962, 21.5512) (5.1228, 25.3516) (4.1867, 35.8105)
(3�0, 8, 8�0)† Bootstrap (P) (4.7232, 18.1680) (4.2184, 20.3091) (3.4659, 31.1892)

(ST) (5.1448, 18.1312) (4.8177, 20.9644) (4.4267, 25.9902)
(BCa) (5.2925, 31.1765) (4.8851, 46.8117) (4.6630, 99.5848)

Approximation (2.0845, 14.0373) (0.9396, 15.1823) (0.0000, 17.4200)
Exact (4.9359, 18.9557) (4.4518, 22.3907) (3.6679, 31.9482)

† and ‡ correspond to the best and worst optimal progressive censoring scheme, respectively

Table 9.9. Interval estimation for θ2 based on the data in Example 2 when n = 20, r = 12
and τ = 5 for different progressive censoring schemes

Censoring Scheme Method 90% 95% 99%

(11�0, 8) Bootstrap (P) (2.9197, 13.9012) (2.2737, 15.4757) (1.2029, 19.1343)
(ST) (4.3684, 17.8598) (3.7036, 21.8055) (3.2409, 30.6980)

(BCa) (4.1206, 22.4190) (3.5766, 23.1080) (2.9650, 25.3142)
Approximation (2.4412, 12.4221) (1.4852, 13.3781) (0.0000, 15.2466)

Exact (4.0903, 19.3707) (3.6078, 24.9707) (2.7612, 51.8994)

(8, 11�0)‡ Bootstrap (P) (0.7069, 3.4105) (0.5734, 3.8266) (0.3063, 4.9397)
(ST) (1.1011, 4.6370) (1.0141, 5.4108) (0.7822, 9.9626)

(BCa) (1.0573, 4.8731) (0.8153, 6.0384) (0.6392, 8.6880)
Approximation (0.6148, 3.1285) (0.3740, 3.3693) (0.0000, 3.8399)

Exact (1.0308, 4.7848) (0.9140, 6.0010) (0.7178, 10.6030)
(10�0, 4, 4) Bootstrap (P) (2.3507, 11.5815) (1.9436, 12.8934) (0.8473, 15.5043)

(ST) (3.6280, 15.0959) (3.2017, 17.4813) (2.5272, 29.7463)
(BCa) (3.4104, 15.4120) (2.9497, 20.0069) (2.0473, 27.1174)

Approximation (2.0405, 10.3829) (1.2414, 11.1819) (0.0000, 12.7437)
Exact (3.4146, 16.2793) (3.0090, 21.0889) (2.2949, 45.1611)

(4, 4, 10�0) Bootstrap (P) (0.7597, 3.3935) (0.6315, 3.8579) (0.2945, 4.6152)
(ST) (1.0753, 4.2903) (0.9770, 5.1445) (0.7936, 9.5134)

(BCa) (0.9690, 4.5006) (0.8847, 5.3209) (0.6593, 7.2495)
Approximation (0.6148, 3.1285) (0.3740, 3.3693) (0.0000, 3.8399)

Exact (1.0318, 4.7673) (0.9154, 5.9628) (0.7202, 10.4199)
(4�0, 2, 2, 2, 2, 4�0) Bootstrap (P) (0.8970, 4.0304) (0.7043, 4.5353) (0.4326, 5.1445)

(ST) (1.2614, 5.1032) (1.1344, 6.4068) (1.0015, 9.9530)
(BCa) (1.0772, 4.8804) (1.0049, 6.1737) (0.7415, 6.3388)

Approximation (0.7243, 3.6857) (0.4407, 3.9693) (0.0000, 4.5237)
Exact (1.2224, 5.5020) (1.0879, 6.7883) (0.8670, 11.0791)

(2, 0, 2, 6�0, 2, 0, 2) Bootstrap (P) (1.7490, 7.2193) (1.2287, 8.2428) (0.5398, 11.9232)
(ST) (2.3513, 9.0882) (2.1360, 11.7481) (1.7936, 23.0902)

(BCa) (2.1919, 9.1754) (1.9217, 15.4783) (1.4421, 17.3095)
Approximation (1.3233, 6.7334) (0.8051, 7.2516) (0.0000, 8.2644)

Exact (2.2157, 10.4214) (1.9589, 13.2550) (1.5185, 25.2881)
(3�0, 8, 8�0)† Bootstrap (P) (0.7405, 3.3836) (0.5818, 3.7401) (0.4078, 4.8563)

(ST) (1.1026, 4.4840) (0.9732, 5.8714) (0.7799, 7.0224)
(BCa) (1.0459, 4.6043) (0.9624, 6.0527) (0.7540, 6.3487)

Approximation (0.6148, 3.1285) (0.3740, 3.3693) (0.0000, 3.8399)
Exact (1.0422, 4.6208) (0.9286, 5.6882) (0.7403, 9.3213)

† and ‡ correspond to the best and worst optimal progressive censoring scheme, respectively
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Table 9.10. Interval estimation for θ1 based on the data in Example 2 when n = 20, r = 16
and τ = 5 for different progressive censoring schemes

Censoring Scheme Method 90% 95% 99%

(15�0, 4) Bootstrap (P) (7.7205, 31.0638) (7.2833, 46.5117) (6.1618, 48.7250)
(ST) (7.8785, 24.9563) (7.7689, 27.8029) (7.6913, 34.7115)

(BCa) (8.2103, 32.1004) (7.4564, 47.3957) (6.4107, 96.5373)
Approximation (1.8831, 19.6557) (0.1807, 21.3581) (0.0000, 24.6853)

Exact (7.1480, 26.4453) (6.4679, 31.0852) (5.3601, 43.8428)

(4, 15�0)‡ Bootstrap (P) (5.3282, 24.0386) (4.8693, 26.9841) (4.2137, 40.9931)
(ST) (5.8845, 21.5367) (5.7643, 23.8038) (5.6449, 28.8365)

(BCa) (5.5550, 24.6928) (5.3355, 39.4726) (4.7075, 82.4953)
Approximation (1.7027, 15.1866) (0.4112, 16.4782) (0.0000, 19.0025)

Exact (5.5236, 20.3805) (5.0008, 23.9203) (4.1562, 33.5889)
(14�0, 2, 2) Bootstrap (P) (7.4699, 30.5301) (6.9216, 31.9434) (5.5611, 48.7172)

(ST) (7.9447, 26.5075) (7.7987, 28.8120) (7.6864, 38.5929)
(BCa) (7.6898, 30.9446) (7.2449, 47.1811) (6.0841, 99.8929)

Approximation (1.8832, 19.6558) (0.1808, 21.3581) (0.0000, 24.6853)
Exact (7.1507, 26.4453) (6.4717, 31.0852) (5.3693, 43.8428)

(2, 2, 14�0) Bootstrap (P) (5.7763, 23.6235) (4.9931, 25.4672) (4.1218, 42.2223)
(ST) (5.9695, 19.9079) (5.8391, 23.8068) (5.5879, 30.3764)

(BCa) (6.0477, 25.3383) (5.2593, 39.3973) (4.6981, 45.0710)
Approximation (1.8002, 15.4587) (0.4919, 16.7670) (0.0000, 19.3240)

Exact (5.6082, 20.7202) (5.0770, 24.3304) (4.2187, 34.2041)
(6�0, 1, 1, 1, 1, 6�0) Bootstrap (P) (7.3080, 31.2168) (6.2011, 31.9030) (5.1995, 48.1872)

(ST) (7.8832, 26.4767) (7.7799, 32.9499) (7.7191, 40.9189)
(BCa) (7.5467, 31.4499) (6.4568, 47.2244) (5.8610, 97.5159)

Approximation (1.9275, 19.7001) (0.2251, 21.4025) (0.0000, 24.7297)
Exact (7.1553, 26.4453) (6.4801, 31.0852) (5.3906, 43.8428)

(1, 2�0, 1, 8�0, 1, 2�0, 1) Bootstrap (P) (6.5878, 27.7176) (6.1081, 29.8341) (5.2458, 49.4007)
(ST) (7.0962, 24.1443) (6.8439, 26.7152) (6.7381, 32.2997)

(BCa) (6.6201, 28.4727) (6.5875, 44.4735) (5.4979, 97.5127)
Approximation (1.9282, 17.9011) (0.3982, 19.4311) (0.0000, 22.4214)

Exact (6.5247, 24.1702) (5.9064, 28.4064) (4.9054, 40.0488)
(3�0, 4, 12�0)† Bootstrap (P) (6.0557, 22.3669) (5.2670, 30.0157) (4.3681, 48.1113)

(ST) (6.5452, 22.6138) (6.1842, 27.1483) (5.9840, 34.8190)
(BCa) (6.8388, 30.7426) (6.1729, 45.9260) (5.6860, 99.2218)

Approximation (2.1269, 16.9896) (0.7032, 18.4132) (0.0000, 21.1957)
Exact (6.1448, 22.9205) (5.5604, 26.9751) (4.6170, 38.1689)

† and ‡ correspond to the best and worst optimal progressive censoring scheme, respectively

Table 9.11. Interval estimation for θ2 based on the data in Example 2 when n = 20, r = 16
and τ = 5 for different progressive censoring schemes

Censoring Scheme Method 90% 95% 99%

(15�0, 4) Bootstrap (P) (2.7866, 7.9334) (2.4479, 8.8422) (1.8304, 10.4831)
(ST) (3.5748, 9.8201) (3.2255, 11.2764) (2.8688, 15.1626)

(BCa) (3.4420, 10.0787) (3.1213, 12.5051) (2.6220, 11.9991)
Approximation (2.5216, 7.9884) (1.9980, 8.5120) (0.9745, 9.5355)

Exact (3.2999, 9.9950) (3.0145, 11.4789) (2.5281, 15.5835)

(4, 15�0)‡ Bootstrap (P) (1.7472, 4.8536) (1.4680, 5.5189) (0.9051, 6.3976)
(ST) (2.1087, 5.7230) (1.8459, 6.5634) (1.6037, 10.8823)

(BCa) (2.0115, 5.7987) (1.7200, 6.4434) (1.5072, 8.1269)
Approximation (1.5216, 4.8204) (1.2056, 5.1364) (0.5881, 5.7539)

Exact (1.9889, 6.0384) (1.8176, 6.9272) (1.5277, 9.3396)
(14�0, 2, 2) Bootstrap (P) (2.7246, 8.1049) (2.3914, 8.9676) (1.3873, 10.6279)

(ST) (3.3663, 9.9867) (3.1185, 11.1234) (2.7329, 16.9733)
(BCa) (3.1730, 9.7300) (3.0033, 10.7044) (2.2676, 16.3365)

Approximation (2.5207, 7.9853) (1.9972, 8.5088) (0.9742, 9.5318)
Exact (3.2986, 9.9911) (3.0133, 11.4758) (2.5268, 15.5835)

(2, 2, 14�0) Bootstrap (P) (1.7215, 5.0009) (1.3441, 5.5100) (0.9355, 6.7688)
(ST) (2.0506, 5.8740) (1.9056, 7.0181) (1.6112, 9.9742)

(BCa) (1.9822, 5.9733) (1.6555, 6.9376) (1.4157, 7.3832)
Approximation (1.5216, 4.8204) (1.2056, 5.1364) (0.5881, 5.7539)

Exact (1.9884, 6.0406) (1.8172, 6.9295) (1.5277, 9.3396)
(6�0, 1, 1, 1, 1, 6�0) Bootstrap (P) (2.0153, 5.7452) (1.6665, 6.2160) (1.4218, 7.8402)

(ST) (2.3377, 6.5351) (2.1432, 7.6423) (1.8363, 8.6357)
(BCa) (2.2275, 6.1985) (2.1258, 7.5606) (1.7220, 9.7381)

Approximation (1.7481, 5.5379) (1.3851, 5.9009) (0.6756, 6.6104)
Exact (2.2935, 6.8867) (2.0978, 7.8854) (1.7663, 10.5664)

(1, 2�0, 1, 8�0, 1, 2�0, 1) Bootstrap (P) (2.1555, 6.5910) (2.0295, 7.6299) (1.3209, 8.2178)
(ST) (2.7670, 8.1150) (2.4158, 8.5607) (2.1197, 11.3166)

(BCa) (2.5255, 7.7236) (2.3689, 8.6886) (1.9080, 11.1337)
Approximation (2.0077, 6.3603) (1.5908, 6.7772) (0.7759, 7.5921)

Exact (2.6247, 7.9682) (2.3982, 9.1458) (2.0142, 12.3669)

(3�0, 4, 12�0)† Bootstrap (P) (1.5736, 5.1370) (1.4143, 5.3534) (1.2943, 6.2831)
(ST) (2.0191, 6.1451) (1.8971, 6.8944) (1.6676, 7.1841)

(BCa) (1.8129, 5.7948) (1.8495, 6.7222) (1.4934, 8.6884)
Approximation (1.5216, 4.8204) (1.2056, 5.1364) (0.5881, 5.7539)

Exact (1.9893, 6.0326) (1.8188, 6.9119) (1.5314, 9.2786)

† and ‡ correspond to the best and worst optimal progressive censoring scheme, respectively
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Abstract: Most power system state estimators consider measurements as independent
Gaussian random variables and use a weighted least squares approach to estimate the
most likely system state. More often than not, in practice the Gaussian and indepen-
dent measurements assumptions do not hold. In this paper we relax these questionable
assumptions and develop techniques to accurately estimate the system state through
appropriate transformations of correlated non-Gaussian measurements. An example il-
lustrates the proposed estimation technique. In addition to its generality to include
more complex statistical models, the results show that the proposed estimation tech-
nique is more accurate and more robust with respect to outliers than the weighted least
squares approach.

Keywords and phrases: Cholesky decomposition, maximum likelihood, non-gaussian
random variables, Nataf transformation, orthogonal transformation, Rosenblatt trans-
formation, weighted least squares estimation

10.1 Introduction

Owing to the complexities of operating large, interconnected networks, more and more
electric utilities replace their traditional dispatch offices with modern Energy Manage-
ment System (EMS). The purpose of an EMS is to monitor, control, and optimize the
transmission and generation facilities with advanced computer technologies. The aim of
the state estimation is to get the best estimate of the current system states processing
a set of real-time redundant measures and network parameters available in the EMS
database. The performance of state estimation, therefore, depends on the accuracy of
the measured data as well as the parameters of the network model. The measured data
are subject to noise or errors in the metering system and the communication process.
Large errors in the analog measurements, the so-called bad data, may happen in prac-
tice. Network parameters such as impedence of transmission lines may be incorrect
as a result of inaccurate data provided by the manufacturer, error in calibration, etc.
In addition, due to the lack of field information and possible errors in calculations,
transformer tap positions may be erroneous.
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The purpose of a state estimator is to filter all these errors to achieve the best
possible estimate of the state of the system. Background on state estimation can be
found, for instance, in Larson et al. (1970), Schweppe and Wildes (1970), Schweppe
and Rom (1970), Schweppe (1970), Garćıa et al. (1979), Holten et al. (1988), Monticelli
and Garćıa (1990), Monticelli (2000), and Abur and Expósito (2004).

This paper is related to and partly motivated by state estimation in distribution
networks where the number of available real time measurements is generally low and
load predictions are used as pseudomeasurements. Past work on statistical modeling of
the states of distribution networks has shown that loads are not normally distributed,
Borkowska (1974), Allan and Al-Shakarchi (1976), Dopazo et al. (1975), EPRI Report
EA-3467 (1984), Anders (1990), and Herman and Kritzinger (1993), i.e., loads are not
generally Gaussian random variables. It is also recognized that certain measurements,
such as voltage and active and reactive power injections at a given bus, are correlated
in both transmission and distribution networks. Due to these reasons variables in state
estimation cannot be modeled as independent Gaussian random variables.

A general weighted-least-squares (WLS) state estimator that does not require the
measurements to be either Gaussian or statistically independent is proposed. It is based
on the maximum likelihood estimation using appropriate statistical transformations.

This paper is organized as follows. In Section 10.2 the maximum likelihood esti-
mation method and associated statistical assumptions are presented. In Section 10.4
the likelihood estimation using different transformations (Transformed Likelihood Es-
timation, TLE) is explained. In Section 10.5 the TLE method is applied to the power
system state estimation problem (General State Estimation, GSE). In Section 10.6 a
method for bad data detection is provided. Section 10.7 gives results from an illustra-
tive example to demonstrate the functioning of the method. And finally, Section 10.8
provides some conclusions.

10.2 Maximum Likelihood Estimation

The objective of the state estimation is to determine the most likely state of a system
based on the quantities that are measured, i.e., measurements. One way to accomplish
this is by the maximum likelihood estimation (MLE), a method widely used in statistics.

Suppose we have a vector z = (z1, z2, . . . , zm)T of m measurements. These measure-
ments are assumed to have a known probability distribution with unknown parameters,
that is, the joint probability density function of z is given by

fZ(z; θ) = fZ(z1, z2, . . . , zm; θ), (10.1)

where θ is a vector containing the parameters of the probability density function.
Viewed as a function of θ given the measurements z, (10.1) can be written as

fZ(z; θ) = L(θ; z). (10.2)

The function L(θ; z) is referred to as the likelihood function and will attain its peak
value if the unknown parameters are selected to be closest to their actual values. Hence,
an optimization problem can be set up in order to maximize the likelihood function
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as a function of the unknown parameters. The solution gives the maximum likelihood
estimates for the parameters of interest.

The objective of the maximum likelihood estimation is to maximize the likelihood
function (10.1) by varying the assumed parameters θ. In determining the maximum
likelihhod estimate of θ, the likelihood function is commonly replaced by its logarithm
in order to simplify the optimization procedure. The modified function

�(θ; z) = logL(θ; z) (10.3)

is called log-likelihood function. Thus, the likelihood estimation problem can be stated
as:

maximize
θ

�(θ; z). (10.4)

The solution of (10.4) gives the maximum likelihood estimates for the parameters of
interest.

The complexity of the log-likelihood function depends on the assumed joint proba-
bility density and on whether the independents are independent. Its expression can be
very simple when the variables are assumed independent. In this case, the log-likelihood
function in (10.3) becomes

�(θ; z) =
m
∑

i=1

log fZi(zi; θ), (10.5)

where fZi(zi; θ) is the marginal probability density function of the ith measurement
Zi.

In addition to the assumption of independence, the measurements are also custom-
arily assumed to have a Gaussian distribution. These two assumptions are made only to
simplify the form of the log-likelihood. In practical state estimation problems, these two
assumptions do not hold, and the general form of the log-likelihood function in (10.3)
is much more complex than in its special case in (10.5) because the joint probability
density function (10.1) must be completely described.

In this paper we relax both the independence and normality assumptions and show
that it is possible, through appropriate transformation, to obtain a set of independent
normal random variables which may then be used with regression methods, hence
reducing substantially the complexity of the general state estimation problem.

10.3 Transformation of Random Variables

Consider the general vector z of random variables with known joint probability density
function (10.1) which is related to another vector of random variables y (Freeman
(1963)) by a known function:

y = y(z)

having unique (i.e., one to one) inverse

z = z(y).
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Then
fY (y; θ) = fZ(z; θ)|J |, (10.6)

where J is the Jacobian of the transformation whose elements are Jij = ∂zj/∂yi.
Transformation (10.6) is valid provided its uniqueness.

In this context the next subsections present several methods for transforming arbi-
trary random variables into independent standard normal variables.

10.3.1 Rosenblatt transformation

Consider a vector of uniformly distributed random variables denoted by U . Let these
be the intermediaries between the random variables in the original space Z, and the
standardized normal variables Y . Provided that the joint probability distribution func-
tion FZ(z) it is known, its conditional distributions Fi(zi|z1, z2, . . . , zi−1) are available.
The Rosenblatt (1952) transformation in the m-dimensional space becomes:

Φ(y1) = u1 = F1(z1),
Φ(y2) = u2 = F2(z2|z1),

...
Φ(ym) = um = Fm(zm|z1, z2, . . . , zm−1),

(10.7)

where Φ(·) is the standard normal cumulative distribution function and u1, . . . , um are
the uniformly distributed variables U(0, 1). The component of the vector Y can be
obtained by successive inversion:

y1 = Φ−1[F1(z1)],
y2 = Φ−1[F2(z2|z1)],

...
ym = Φ−1[Fm(zm|z1, z2, . . . , zm−1)].

(10.8)

We also need to obtain the jacobian of the transformation. For simplicity, the inverse
of the Jacobian is obtained first:

J−1
ij =

∂yi

∂zj
=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, if i < j,
fi(zi|z1, . . . , zi−1)

φ(yi)
, if i = j,

1
φ(yi)

∂Fi(zi|z1, . . . , zi−1)
∂zi

, if i > j,

(10.9)

where the Jacobian is given in terms of z. Note that J−1 and J are lower triangular
matrices, where J can be obtained from J−1 by back substitution.

10.3.2 Nataf transformation

If only marginal probability distributions and correlation data are available, even for
non-normal random variables, the Nataf transformation may be applied to give a set
of independent normal random variables. Note that because there is no information
about the conditional distributions, the Rosenblatt transformation cannot be applied.
This transformation creates an approximation based on a joint normal distribution.
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Considering the marginal cumulative distribution functions FZi(zi) the transforma-
tion in (10.8) becomes:

y1 = Φ−1[F1(z1)],
y2 = Φ−1[F2(z2)],

...
ym = Φ−1[Fm(zm)].

(10.10)

It is now assumed that Y is jointly normal, with m-dimensional standard normal
probability density function φm(y,ρ) having zero means, unit standard deviations and
correlation matriz ρ = {ρij}. The Nataf (1962) approximation for the joint probability
density function is given by:

fZ(z; θ) = φm(y,ρ; θ)|J |, (10.11)

where the Jacobian determinant |J | is obtained, taking into account (10.9), by:

|J | =
φ(y1)φ(y2) · · ·φ(ym)

fZ1(z1)fZ2(z2) · · · fZm(zm)
. (10.12)

Methods for obtaining ρ are shown in Liu and Der Kiureghian (1986).
Note that the resulting distribution may be transformed to an independent stan-

darized distribution φm(t, I) through the orthogonal transformation shown below.

10.3.3 Orthogonal transformation of normal random variables

Let Z be a correlated vector of random variables, with mean μZ and covariance ma-
trix CZ . This matrix is diagonal if the variables are uncorrelated. This is a sufficient
measurement of dependence for normal distributions. An uncorrelated vector U , and
a linear transformation matrix A, is now sought, such that

U = AZ. (10.13)

It is desirable that the transformation in (10.13) is also orthogonal so that the Euclidean
distances remain unchanged. From matrix theory (Golub (1996)), this implies that
AT = A−1.

Under the linear transformation (10.13) the covariance matrix of U becomes

CU = ACZAT . (10.14)

To obtain an uncorrelated vector U , the matrix CU has to be strictly diagonal. This
can be achieved by finding the characteristic values (eigenvalues) of CZ , which can be
transformed into:

CZ = AZCUAT
Z , (10.15)

where matrix CU contains the characteristic values λii and the columns of matrix AZ

are the characteristic vectors. Proceeding in this way matrix A in (10.14) is equal to
AZ .

Note that under the transformation in (10.13) the inverse of the Jacobian becomes
matrix A, which is orthogonal. It follows readily that in this case |J−1| = ±1.

There is another alternative manner to get an orthogonal transformation. Note
that the standard deviations of CU (λ1/2

ii ) must all be positive, since they have no
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physical meaning otherwise. This means that CZ must be a positive definite matrix,
thus Cholesky decomposition can be applied

CZ = LLT .

Substituting this expression in (10.14) and considering that our aim is to get CU = I
we have:

CU = ACZAT

= (AL)
(

LT AT
)

= I.
(10.16)

For expression (10.16) to hold A must be equal to L−1. This way matrix A will
be lower-triangular. The last step is to transform the variables U ∼ N(μZ , I) into the
standardized normal random variables Y ∼ N(0, I) by means of:

Y = A(Z − μZ). (10.17)

Using transformation (10.17) equation (10.6) becomes:

m
∏

i=1

fYi(yi; θ) = fZ(z; θ)|A|, (10.18)

where the Jacobian J corresponds to matrix A.

10.4 The Transformed Likelihood Estimation Problem

An alternative formulation of the Maximum Likelihood Estimation problem (10.4) con-
sists of transforming a vector Z of random variables into an independent standardized
normal random vector Y using the transformations stated in Section 10.2.

Thus using expression (10.6) problem (10.4) becomes:

maximize
θ

log(fY (y; θ)/|J |) (10.19)

subject to

y = T (z; θ), (10.20)
θmin ≤ θ ≤ θmax, (10.21)

where (10.20) is the transformation, i.e., Rosenblatt (10.8), Nataf (10.10) or the orthog-
onal transformation (10.17), J is the Jacobian of the corresponding transformation, and
(10.21) is the constraint fixing limits for the parameters involved.

As in the transformations above, Y is a vector of standardized normal random
variables, the objective function (10.19) is equivalent to:

minimize
θ

m
∑

i=1

y2
i . (10.22)
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10.5 General State Estimation (GSE) Formulation

Most state estimation models in practical use are formulated as overdetermined systems
of nonlinear equations. Consider the nonlinear measurement model

z = h(xtrue) + e, (10.23)

where z is the vector of measurements, xtrue is the true state vector, i.e. the parameters
in the above statistical model (θ), h is a nonlinear function vector relating measure-
ments to states, and e is the measurement error. There are m measurements and n
state variables, n < m.

In general, the state estimation problem can be formulated mathematically as an
optimization problem including equality and inequality constraints as:

minimize
x

m
∑

i=1

y2
i subject to

⎧

⎨

⎩

y = T (z; h(x)),
c(x) = 0,
g(x) ≤ 0,

(10.24)

where x is the vector of state variables (parameters to be obtained), h(x) are the non-
linear functions relating measurements to states, i.e., power flow quantities (dependent
variables), c(x) are the equality constraints representing very accurate measurements
(zero injections), and g(x) are inequality constraints normally used to represent phys-
ical operating limits. Note that constraint (10.21) is included in the last constraint in
(10.24).

Note that in this paper we consider as state variables nodal voltages and angles.
Power flows in branches that follow Kirchoff’s laws are dependent variables and can
be determined from the state variables. However, in branches where the application of
Kirchoff’s law is not fruitful, such as branches with unknown impedances, flows can be
introduced as additional state variables.

10.5.1 Independent gaussian probability density function

Traditionally, measurement errors in state estimation are assumed to be independent
and to have a Gaussian (Normal) distribution. Under these assumptions, and consid-
ering (10.17), problem (10.24) becomes:

minimize
x

m
∑

i=1

y2
i subject to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yi =
zi − hi(x)

σi
,

c(x) = 0,
g(x) ≤ 0,

(10.25)

where the first constraint corresponds to the Rosenblatt transformation for this par-
ticular statistical assumption.

Considering the residual as r = z − h(x) and the weights wi = σ−2
i , the above

problem can be expressed as:

minimize
x

m
∑

i=1

wir
2
i subject to

⎧

⎨

⎩

ri = zi − hi(x),
c(x) = 0,
g(x) ≤ 0,

(10.26)

which is the constrained weighted least squares formulation.
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10.5.2 Dependent gaussian probability density function

If measurement errors are assumed to be dependent and have a Gaussian (Normal)
distribution with correlation matrix ρ and known standard deviation vectors σ, the
problem in (10.24) becomes:

minimize
x

m
∑

i=1

y2
i subject to

⎧

⎨

⎩

y = A(z − h(x)),
c(x) = 0,
g(x) ≤ 0,

(10.27)

where matrix A is the inverse of the Cholesky transformation matrix of the covariance
matrix whose elements are σiσjρij .

10.5.3 Dependent non-gaussian probability density function

The most general case corresponds to the case where measurement errors are assumed
to be dependent and to have a non-Gaussian distribution. This case corresponds to
problem (10.24).

10.6 Bad Data Detection

One advantage of the proposed method is that the Chi-square test can be applied in
a simple manner. Note that the transformation (10.20) allows us to obtain a set of
independent standard normal random variables Yi ∼ N(0, 1), and considering that the
objective function (10.22) of the transformed likelihood estimation problem is the sum
of squares of the Yi variables, therefore, the objective function has a χ2 distribution with
at most (m− n) degrees of freedom, since in power systems, at least n measurements
will have to satisfy the power balance equations. Thus, χ2 test for detecting bad data
can be used as follows:

1. Solve the estimation problem and obtain the objective function optimal value
∑m

i=1 y
2
i .

2. Get the value of the Chi-square distribution function corresponding to a detection
confidence with probability α, χ2

m−n,α.
3. Check if

∑m
i=1 y

2
i ≥ χ2

m−n,α; if yes, bad data is suspected; else, data are assumed
to be free of error.

10.7 Illustrative Example

The 6-bus electric energy system depicted in figure 10.1 is considered in this example
(Sheblé (1999)). The data of a power flow for this system is provided in Conejo et al.
(2005). Note that a power flow provides all variables to define a state of the system.
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Bus 3

(PRODUCTION 2)
Bus 2 (PRODUCTION 3)

(DEMAND 3)

(DEMAND 1)

(DEMAND 2)

Bus 4

Bus 5

(PRODUCTION 1)
Bus 1

Bus 6

Figure 10.1. Six-bus system

The measurements considered are the following:

1. Voltage magnitude for every node
2. Active and Reactive power injection at every node
3. Active and Reactive power flow at both ends of every line or transformer

Hence the total number of measurements and the number of degrees of freedom for
this 6-bus system are: 6+2× 6+2× 2× 11 = 62, and 62− 2× 6+1 = 51, respectively.

10.7.1 Statistical assumptions

To show the importance of the dependency between measurements in the estimation
process the following statistical model has been used and the results are compared
with those obtained using a model that uses the traditional independent normal ran-
dom variable assumption. Note that the proposed model has been selected for illus-
tration purposes, as additional research is needed on the right estimation of the best
measurements probability distribution.

The formula used by the American Electric Company for determining variance
values for measurements in its state estimator is (Allemong et al. (1982)):

σi = 0.0067Si + 0.0016FSi (10.28)

where

Si =

⎧

⎪

⎨

⎪

⎩

√

P 2
Fkm

+ Q2
Fkm

, for flow k −m,
√

P 2
k + Q2

k, for bus k,
vk, for voltage k,

(10.29)

and PFkm
, QFkm

are the active and reactive power flow magnitudes, respectively, Pk,
Qk are the active and reactive power injection magnitudes, respectively; and vk and δk
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are the voltage magnitude and voltage angle in bus k, respectively; and FSi is the scale
factor, which in this paper will be taken as max(PFkm

, QFkm
) for flow measurements,

max(Pk, Qk) for power injection measurements, and max(vk) for voltage measurements,
respectively.

Additionally, measurement systems generally establish a correlation between volt-
age measurements and the remainder measurements (active and reactive power injec-
tions, active and reactive power flows) in the same bus. Therefore, dependency between
voltage measurements and the remainder measurements is considered. To model this
complex mechanism, a correlation coefficient ρ is used, so that, ρ = ±1 implies the max-
imum correlation possible (positive or negative), whereas ρ = 0 implies independence.
Figure 10.2 shows the pattern of the covariance matrix using this model.

Additionally, as the voltage measurements are positive variables they are modeled
using random variables with a log-normal distribution ln(Vi) ∼ N(μln Vi , σ

2
ln Vi

) whose
parameters can be obtained form those corresponding to the normal variable as follows:

μln Vi = ln
vi

√

(1 +
(

σV
i /vi

)2)
and σ2

ln Vi
= ln(1 +

(

σV
i /vi

)2
). (10.30)

where σV
i is the standard deviation for bus i obtained using (10.28).
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Figure 10.2. Covariance matrix pattern for the six-bus system example
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The General State Estimation (GSE) problem in (10.24) for this particular example,
and considering the following sets definition:

Ωi Set of buses adjacent to bus i
Ω0 Set of transit nodes associated with zero injections
ΩV Set of available voltage magnitude measurements
ΩPi Sets of available active power injection measurements, where subindex i = g, d, b

refers to only generation, only demand and both
ΩQi Sets of available reactive power injection measurements, where subindex i = g, d, b

refers to only generation, only demand and both
ΩPF Set of available active power flow measurements
ΩQF Set of available reactive power flow measurements

Is stated below:

Minimize
vi, δi, Pi, Qi; i = 1, . . . , 6; PFij , QFij ; (i, j) ∈ ΩPF

J(x), (10.31)

where

J(x) =
∑

i∈ΩV

(yV
i )2 +

∑

i∈ΩP

(yP
i )2 +

∑

i∈ΩQ

(yQ
i )2 +

∑

(i,j)∈ΩPF

(yPF

ij )2 +
∑

(i,j)∈ΩQF

(yQF

ij )2,

subject to

yV
i =

ln(vm
i ) − ln

(

vi
√

1 + (σV
i /vj)2

)

√

ln(1 + (σV
i /vi))2

; i ∈ ΩV , (10.32)

yP
i =

Pm
i − Pi − ρσPQ

i yV
i

σPQ
i

√

1 − ρ2
; i ∈ ΩP , (10.33)

yQ
i =

Qm
i −Qi − ρσPQ

i yV
i

σPQ
i

√

1 − ρ2
; i ∈ ΩQ, (10.34)

yPF

ij =
Pm

Fij
− PFij − ρσPQF

ij yV
i

σPQF

ij

√

1 − ρ2
; (i, j) ∈ ΩPF , (10.35)

yQF

ij =
Qm

Fij
−QFij − ρσPQF

ij yV
i

σPQF

ij

√

1 − ρ2
; (i, j) ∈ ΩQF , (10.36)

Pi = vi

∑

j

vj (Gij cos(δi − δj) + Bij sin(δi − δj)) ;

i = j; (i, j) ∈ Ωi; i = 1, . . . , 6, (10.37)

Qi = vi

∑

j

vj (Gij sin(δi − δj) −Bij cos(δi − δj)) ;

i = j; (i, j) ∈ Ωi; i = 1, . . . , 6, (10.38)
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PFij = vivj(Gij cos(δi − δj) + Bij sin(δi − δj))

−Gijv
2
i ; (i, j) ∈ ΩPF , (10.39)

QFij = vivj(Gij sin(δi − δj) −Bij cos(δi − δj))

+v2
i (Bij − bs

ij/2); (i, j) ∈ ΩQF , (10.40)

Pmin
i ≤ Pi ≤ Pmax

i ; i = 1, · · · , 3, (10.41)

Qmin
i ≤ Qi ≤ Qmax

i ; i = 1, · · · , 3, (10.42)

−π ≤ δi ≤ π ; i = 2, · · · , 6, (10.43)

δ1 = 0, (10.44)

where (10.31) is the objective function including the sums of the squares of the nor-
malized errors corresponding to voltage, active and reactive power injection, and active
and reactive power flow measurements, respectively. The constraints in (10.32)–(10.36)
are the equations corresponding to the Rosenblatt transformation, where σV

i , σPQ
i , and

σPQF

ij are the standard deviation values associated with voltage, active and reactive
power injection, and active and reactive power flow measurements, respectively, which
are obtained using (10.28). The constraints in (10.37)–(10.40) are the active and reac-
tive power injections and flows equations, and the last constraints are physical limits,
such as minimum and maximum reactive power generation and angle extreme values
(−π,π). Note also that Gij , Bij , and bS

ij are the ijth element of the real part of the
admittance matrix, the ijth element of the imaginary part of the admittance matrix,
and the charging susceptance of the ijth line, respectively. Note that the admittance
matrix is a constant matrix dependent of the geometry and physical components of the
network, it relates nodal current injections and nodal voltages.

The measurements vm, Pm, Qm, PF
m and QF

m are synthetically generated by
adding randomly generated errors to the true values vtrue, Ptrue, Qtrue, PF

true and
QF

true. Note that this process is done by generating independent standard normal
random numbers and using the inverse of the Rosenblatt transformation to obtain the
measurements.

Several synthetically generated measurements using different values of the correla-
tion factor ρ have been performed. Next, the general state estimation problem (10.31)–
(10.44) and the usual weighted least squares estimation problem (WLS), considering
independent normal random variables, are solved. The corresponding objective func-
tions J(x) and the regression curves for both approaches are shown in figure 10.3 (a).
In figure 10.3 (b) the true quadratic errors defined as etrue =

∑m
i=1(x

est
i − xtrue

i )2, i.e.,
the sum of squares over the total number of measurements of the difference between
the true and the estimated values. The following observations can be made:

1. For ρ = 0 the objective function and the true quadratic error are almost the same,
the small difference being due to the use of the log-normal distribution for the
voltage measurements in the GSE model.

2. The WLS objective function decreases if the absolute value of the correlation factor
increases, whereas the GSE objective function increases slightly. Note that the
maximum differences in the WLS and GSE objective functions occur for ρ = −1
and ρ = 1, the optimal values are 51.39 and 25.31 for ρ = −1, and 51.29 and 31.49
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Figure 10.3. Graphical illustration of the the estimation state performance considering WLS
and GSE: (a) Objective function, (b) true quadratic error

for ρ = 1. These results could suggest that the WLS is a better approach because
the chi-square value (objective function) is smaller for all the ρ-values, but the true
errors (etrue) are clearly smaller for the GSE estimation, as shown in figure 10.3 (b).

3. True errors decrease if the correlation absolute value increases, and the maximum
difference between errors using both approaches occurs for ρ± 1.

Additionally, to check the behavior of both models if outliers (bad measurements)
exist, a bias over the measurement in the voltage for bus 1 (a typical bus) equal to 6
standard deviations (a clear outlier) is introduced. The corresponding objective func-
tions J(x) and the regression curves for both the WLS and GSE models are shown
in figure 10.4 (a), whereas in figure 10.4 (b) the true quadratic errors are shown. The
following observations can be made:

1. The behavior of the objective function for both models is analogous to the previous
case (see figure 10.3 (a)) but with a larger objective function value due to the outlier.

2. Figure 10.4 (a) also shows horizontal lines corresponding to the χ2
(m−n),α distri-

bution function corresponding to a detection confidence with probability α. Note
that the WLS estimation fails to detect suspicious data if the correlation coefficient
absolute value increases. For instance, if the confidence probability is 96%, WLS
estimation fails to detect bad data if ρ ≤ −0.5 and ρ ≥ 0.525 because in both
intervals holds that

∑m
i=1 y

2
i ≥ χ2

m−n,α. The range where the WLS estimation fails
to detect bad data increases with the confidence probability. On the other hand
GSE model detects bad data for all values of ρ and α considered.

3. The WLS true error is always greater than the GSE true error. The difference
increases as the correlation factor deviates from 0, attaining the maximum value
(0.0091) when ρ = −1.

4. The GSE is more robust because the maximum difference between the true error
with and without outlier is ≈ 13.1% whereas in the WLS model the difference is
≈ 83.6%.
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Figure 10.4. Graphical illustration of the state estimation performance considering WLS
and GSE when an outlier exists: (a) Objective function and horizontal lines representing the
χ2 distribution function values for different confidence probabilities and 51 degrees of freedom
χ2(51, α), (b) true quadratic error

Unlike common practice in state estimation, the proposed method is directly based
on solving an optimization problem. We advocate this approach due to the versatil-
ity, efficiency and robustness of currently available software. We emphasize that the
available optimization codes efficiently account for sparsity and possible numerical ill-
conditioning.

10.8 Conclusions

This paper provides a procedure for solving the state estimation problem consider-
ing that the measurements are non-Gaussian and can be statistically correlated. The
method is useful to increase the confidence level of the model and its predictions. It
has the following advantages with respect the standard WLS model:

1. It is more robust with respect to outliers.
2. It increases accuracy in identifying bad data.
3. It is flexible allowing the use of complex statistical models.

An example is used to illustrate the performance of the method.
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Statistics Applied to Wave Climate

on a Beach Profile
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1 Civil Engineering Department, University of Castilla-La Mancha, Ciudad Real, Spain
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Abstract: One of the most important subjects in coastal engineering is the forecasting
of wave climate evolution along a beach profile and its associated probability.

Many authors have dealt with this problem proposing different CDFs (Cumulative
Distribution Functions) and statistical descriptors evolution. One of these works sug-
gests that, for a given sea state, the parameters of the local (at a given point of the
profile) wave height CDF depend on the local value of kh and offshore wave parame-
ters. Therefore, it is possible to describe the evolution of the probability distribution of
wave heights on a beach profile provided its geometry is known as well as the statisti-
cal descriptors of wave oscillation approaching the beach profile (offshore the depth of
closure). This model has been validated for waves approaching the beach with normal
incidence.

This paper intends to step forward on this work by describing the statistical prop-
erties of other local wave parameters such as the maximum wave height. Conditional
distributions are also described for two consecutive local wave heights, for consecu-
tive offshore wave parameters (wave height or wave period) and for the most relevant
offshore wave parameters (wave height and wave period).

All the information provided in this model will be useful for estimating sediment
transport and, therefore, how a beach profile and planform will evolve in time.

Keywords and phrases: Wave climate, maximum wave height, statistics, beach pro-
file distributions

11.1 Introduction

Propagating wave climate along a beach profile is a very interesting subject in coastal
engineering since it can be applied to breakwater design, sediment transport or predic-
tion of shoreline evolution.

Castillo (2004) stated that, for a given sea state, local distributions of water column
components depend only on local value of kh and offshore wave climate. Castillo et al.
(2004) applied the model to wave height and Castillo and Losada (2005) to wave energy
dissipation.
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The input for the model consists of the beach profile at the beginning of the sea state
and offshore wave climate characteristics. The output are the probabilities associated
with different values of variables such as wave height, short wave oscillation and long
wave oscillation or probabilities of breaking events (see Castillo and Losada (2000)) at
any point of the profile for the given sea state. This means that the probabilities are
conditional probabilities to the input conditions.

This paper intends to advance into a more complete model including probabilities
for offshore wave climate, in order to transform conditional probabilities to absolute
probabilities, and the analysis of other local variables as the maximum wave height.

The paper is organized as follows. Section 11.2 deals with offshore wave climate
probabilities. In Section 11.3, local wave height analysis is done. Section 11.4 is devoted
to correlation between consecutive waves, and Section 11.5 defines local maximum wave
height. Finally, some conclusions are stated.

11.2 Offshore Wave Climate

Offshore wave climate is part of the input of the model together with the beach profile
at the beginning of the sea state. Wave climate on a sea state will be defined by three
variables (statistical descriptors of the sea state):

• Significant wave height HS : mean of the N/3 highest waves
• Zero up-crossing mean period Tz: waves are defined by the zero up-crossing method

so time between two consecutive zero up-crossing defines a wave period
• Peak period Tp: most energetic period

The model should include another variable, which is the sea level, but since data
used for validation keep the level constant, it will not be taken into account for the
moment.

All three variables are defined positive. After analyzing all the available information
from the Spanish coast, some conclusions about these variables were driven:

• All of them were found to be lognormal (see some examples in figure 11.1).
• All of them are correlated

Therefore, their PDFs (Probability Density Functions) and CDFs are:

• Significant wave height:

fHS (x) =
1√

2πσsx
exp

{

− (lnx− μs)
2

2σ2
s

}

(11.1)

FHS (x) = Φ

(

lnx− μs

σs

)

(11.2)
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Figure 11.1. Mean zero up-crossing wave period and significant wave height on lognormal
scales

• Zero up-crossing mean period:

fTz
(x) =

1√
2πσzx

exp

{

− (lnx− μz)
2

2σ2
z

}

(11.3)

FTz
(x) = Φ

(

lnx− μz

σz

)

(11.4)

• Peak period

fTp (x) =
1√

2πσpx
exp

{

− (ln x− μp)
2

2σ2
p

}

(11.5)

FTp (x) = Φ

(

lnx− μp

σp

)

(11.6)

For correlation analysis, some properties of normal variables will be used. A variable
X is lognormal if the variable Y = lnX is normal. Conditional distributions for a
normal variable X

(

μx, σ
2
x

)

given the normal variable Y
(

μy, σ
2
y

)

= y, X |Y = y, is also
a normal variable with mean and variance:

μ = μx +
σxy

σ2
y

(y − μy) (11.7)

σ2 =
σ2

yσ
2
x − σ2

xy

σ2
y

(11.8)

Conditional distribution for a normal variable Z
(

μz, σ
2
z

)

given the normal variables
Y
(

μy, σ
2
y

)

= y and X
(

μx, σ
2
x

)

= x, Z| (X = x, Y = y), is also a normal variable with
mean and variance:
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μ = μz +
σxzσ

2
y − σxyσyz

σ2
xσ

2
y − σ2

xy

(x− μx) +
σyzσ

2
x − σxyσxz

σ2
xσ

2
y − σ2

xy

(y − μy) (11.9)

σ2 =
σ2

xσ
2
yσ

2
z + 2σxyσxzσyz − σ2

xσ
2
yz − σ2

yσ
2
xz − σ2

zσ
2
xy

σ2
xσ

2
y − σ2

xy

(11.10)

For lognormal variables, the results are similar, that is, conditional variables are
also lognormal with values for μ and σ shown in Eq. (11.7) to Eq. (11.10).

Therefore, the resulting CDFs are:

• Significant wave height:

FHS (x) = Φ

(

lnx− μs

σs

)

(11.11)

• Peak period given significant wave height:

FTp|Hs=y (x) = Φ

(

lnx− μ

σ

)

(11.12)

with

μ = μp +
σsp

σ2
s

(y − μs)

σ2 =
σ2

sσ
2
p − σ2

sp

σ2
s

• Zero up-crossing period given significant wave height and peak period:

FTz |(HS=y,Tp=x) (z) = Φ

(

ln z − μ

σ

)

(11.13)

with

μ = μz +
σpzσ

2
s − σspσsz

σ2
pσ

2
s − σ2

sp

(x− μp) +
σszσ

2
p − σspσpz

σ2
pσ

2
s − σ2

sp

(y − μs)

σ2 =
σ2

pσ
2
sσ

2
z + 2σspσpzσsz − σ2

pσ
2
sz − σ2

sσ
2
pz − σ2

zσ
2
sp

σ2
pσ

2
s − σ2

sp

The number of waves in the sea state is defined as N = d/Tz (rounded to the closest
integer) where d is the sea state duration.

Prob [N = n] = Prob

[

n− 0.5 ≤ d

Tz

< n + 0.5
]

(11.14)

Prob [N = n] = Fd/Tz
(n + 0.5) − Fd/Tz

(n− 0.5) (11.15)
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with

Fd/Tz
(x) = Prob

[

d

Tz

≤ x

]

= Prob

[

Tz ≥ d

x

]

= 1 − FTz

(

d

x

)

(11.16)

Therefore:

Prob [N = n] = FTz

(

d

n− 0.5

)

− FTz

(

d

n + 0.5

)

(11.17)

11.3 Local Wave Height Description

11.3.1 Conditional probabilities

This section provides local wave height description for a given sea state, that is, for a
given set of wave climate values

(

Hs, Tp, Tz

)

. Therefore, all the probabilities defined
are conditional probabilities to a given sea state’s characteristics.

Castillo et al. (2004) showed that local wave height at any fixed point of a beach
profile is a Weibull for minima variable with location parameter λ = 0, and scale
and shape parameters δ, β depend on local value of kh and an offshore wave height
parameter as shown in figure 11.2. Figure 11.3 shows the validation of the model for
some of the SUPERTANK data from Kraus and Smith (1994).

Local CDFs and PDFs are given by:

FH (x) = 1 − exp
{

−
(x

δ

)β
}

(11.18)

for x > 0

fH (x) =
βxβ−1

δβ
exp

{

−
(x

δ

)β
}

(11.19)

for x > 0
These equations allow us for the evaluation of local wave height parameters:

• Mean wave height: H

H =
∫ ∞

0

xfH (x) dx = δΓ

(

1 +
1
β

)

(11.20)

• Root mean squared wave height: Hrms

H2
rms =

∫ ∞

0

x2fH (x) dx = δ2Γ

(

1 +
2
β

)

(11.21)
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Figure 11.2. Local wave height parameters

Figure 11.3. Wave height parameters along a beach profile
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• Significant wave height: HS . It is a particular case of the parameter H1/n (mean of
the N/n highest waves) for n = 3 with N the number of waves in the sea state.

H1/n =

∞
∫

Hu

xfH (x) dx

∞
∫

Hu

fH (x) dx
(11.22)

where Prob [H > Hu] = N/n
N = 1/n, which for Weibull for minima becomes:

exp

{

−
(

Hu

δ

)β
}

=
1
n

(11.23)

Therefore, Hu = δ (lnn)1/β . Operating,

H1/n = δ

[

(lnn)1/β +
n

β
Γ

(

1
β
, lnn

)]

(11.24)

So, significant wave height HS = H1/3 will result in:

HS = δ

[

(ln 3)1/β +
3
β
Γ

(

1
β
, ln 3

)]

(11.25)

When kh > π/3, β = 2 which means the Weibull for minima is transformed into a
Rayleigh distribution. In this case:

• Mean wave height: H

H = 0.886δ (11.26)

• Root mean squared wave height: Hrms

Hrms = δ (11.27)

• Significant wave height: HS .

HS = 1.41δ (11.28)

Offshore wave height must satisfy β = 2. Therefore, Hrms,off/δoff = 1 as stated on
Eq. (11.27). Figure 11.2 shows how δ/Hrms,off tends asymptotically to 1 as it should
be for kh > π, that is deep water depth, where waves do not feel the bottom so, if
there are no other boundaries affecting wave propagation, CDF should not change. Eq.
(11.26) and (11.28) are also related to the asymptotic values of δ/Hoff and δ/HS,off ,
respectively. They are the inverse of the numerical values shown in the equations.

11.3.2 Absolute probabilities

This section is devoted to analyzing absolute probabilities associated with local wave
height. Applying the total probability theorem:
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FH (x) = Prob [H ≤ x] =
∑

Prob [H ≤ x| (N = n,HS = h, Tp = t)]

×Prob [N = n,HS = h, Tp = t] (11.29)

where Prob [H ≤ x| (N = n,HS = h, Tp = t)] = FH,c (x) is the CDF in Eq. (11.18).

FH (x) =
∑

FH,c (x)Prob [HS = h]Prob [(N = n, Tp = t) |HS = h]

=
∑

FH,c (x)Prob [HS = h]Prob [Tp = t|HS = h]

Prob [N = n| (Tp = t,HS = h)]

=
∑

FH,c (x) fHS (h) fTp|HS=h (t)

Prob

[

n− 0.5 ≤ d

Tz

< n + 0.5| (Tp = t,HS = h)
]

=
∑

FH,c (x) fHS (h) fTp|HS=h (t)

×
[

FTz |(Tp=t,HS=h)

(

d

n− 0.5

)

− FTz |(Tp=t,HS=h)

(

d

n + 0.5

)]

(11.30)

FH (x) =
∑

n

∞
∫

0

∞
∫

0

FHmax,nfHS (h) fTp|HS=h (t)
[

FTz |(Tp=t,HS=h)

(

d
n−0.5

)

− FTz |(Tp=t,HS=h)

(

d
n+0.5

)]

dhdt (11.31)

11.4 Consecutive Wave Heights

Usually, waves propagate in groups of higher and lower heights. Therefore, correlation
between consecutive waves has been analyzed by an independence test. The results are
shown in figure 11.4.

Correlation between waves decreases as they are more separated in time. It is clear
that correlation between a wave and the previous one is very strong but it is not that
clear when related to the two previous waves or the three previous ones. The model
will only consider correlation between a wave and the previous one.

Castillo (2004) used the conditional probability of two correlated Weibull for minima
variables based on the joint survival function GX,Y (x, y) described by Arnold et al.
(1999).

GX,Y (x, y) = Prob [X > x, Y > y] (11.32)

FX,Y (x, y) = Pr [X ≤ x, Y ≤ y] = GX,Y (x, y) + FX (x) + FY (x) − 1 (11.33)

This distribution is applied to a wave height given the previous one is known as
both of them are Weibull for minima. The conditional CDF is defined as:
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Figure 11.4. Independence test results for consecutive wave heights

FHi|Hi−1=x (y) = 1 − exp
{

−
[

1 + θ
(x

δ

)β
]

(y

δ

)β
}[

1 + θ
(y

δ

)β
]

(11.34)

with x, y > 0
Estimating the value of θ, it was found that it depends on local value of kh as it

happened with the rest of the parameters of local wave height. Figure 11.5 shows the
dependence of θ on kh.

Figure 11.5. Correlation parameter
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Figure 11.6. Survival function for consecutive wave heights. Comparison between data and
the model

Figure 11.6 shows the comparison between the survival function attained from the
data and the one resulting from the model for one of the cases that were analyzed. It
shows good agreement between data and the model.

11.5 Maximum Wave Height

Maximum wave height is a very important parameter for designing in coastal engineer-
ing. There will be two case studies: the first one under the hypothesis that waves in a
sea state are uncorrelated and the second one using the results in Section 11.4.

11.5.1 Conditional probabilities

This section is dedicated to analyzing probabilities associated to maximum wave height
provided the number of waves in the sea state N and the offshore wave parameters Hs

and Tp are known.

Uncorrelated waves

If waves in a sea state are independent, the CDF for the maximum wave height out of
N (number of waves in the sea state) is defined by:

FHmax,N (x) = Prob [Hmax,N ≤ x] = Prob [H1 ≤ x,H2 ≤ x, . . . , HN ≤ x] =

Prob [H1 ≤ x] · Prob [H2 ≤ x] · . . . · Prob [HN ≤ x] = [FH (x)]N (11.35)
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Correlated waves

If consecutive wave heights and only them are correlated:

FHmax,N (x) = Prob [Hmax,N ≤ x] = Prob [H1 ≤ x,H2 ≤ x, . . . , HN ≤ x] =
Prob [H1 ≤ x]Prob [(H2 ≤ x, . . .HN ≤ x) |H1 ≤ x] =

Prob [H1 ≤ x]Prob [H2 ≤ x|H1 ≤ x] . . . P rob [HN ≤ x|HN−1 ≤ x] (11.36)

Applying conditional probability:

FHmax,N (x) = FH1 (x)
FH1,H2 (x, x)

FH1 (x)
. . .

FHN−1,HN (x, x)
FHN−1 (x)

= FH (x)
[

FH,H (x, x)
FH (x)

]N−1

(11.37)

which finally gives:

FHmax,N (x) =
[FH,H (x, x)]N−1

[FH (x)]N−2
(11.38)

where FH (x) is defined in equation (11.18) and FH,H (x, x) can be derived from equa-
tion (11.34).

11.5.2 Absolute probabilities

This section is dedicated to analyzing absolute probabilities associated to maximum
wave height. Applying the total probability theorem:

FHmax (x) = Prob [Hmax ≤ x]

=
∑

Prob [Hmax,n ≤ x]Prob [N = n,HS = h, Tp = t] (11.39)

where Prob [Hmax,n ≤ x] is the CDF in Section 11.5.1.

FHmax (x) =
∑

FHmax,nProb [HS = h]Prob [(N = n, Tp = t) |HS = h] =
∑

FHmax,nProb [HS = h]Prob [Tp = t|HS = h]

Prob [N = n| (Tp = t,HS = h)] =
∑

FHmax,nfHS (h) fTp|HS=h (t)

Pr

[

n− 0.5 ≤ d

Tz

< n + 0.5| (Tp = t,HS = h)
]

=
∑

FHmax,nfHS (h) fTp|HS=h (t) ×
[

FTz |(Tp=t,HS=h)

(

d

n− 0.5

)

− FTz |(Tp=t,HS=h)

(

d

n + 0.5

)]

(11.40)

FHmax (x) =
∑

n

∞
∫

0

∞
∫

0

FHmax,nfHS (h) fTp|HS=h (t)
[

FTz |(Tp=t,HS=h)

(

d
n−0.5

)

− FTz |(Tp=t,HS=h)

(

d
n+0.5

)]

dhdt (11.41)
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11.6 Conclusions

A model is proposed for establishing wave climate at any point of a beach profile for a
given sea state. Therefore, probabilities of local wave height and local maximum wave
height assuming both correlated or uncorrelated consecutive waves are derived.

A model is also defined for offshore wave climate that is defined by significant wave
height, peak period and zero up-crossing mean period (related to the number of waves
of a sea state).

Both models have been combined in order to derive absolute probabilities of wave
climate at any point of the beach profile.

The model can be applied to design of breakwaters or to the estimation of how a
beach profile and planform will evolve in time.

Acknowledgements. The authors are indebted to the University of Castilla-La Man-
cha for partial support under project EVOCARTEMPLA.
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Extreme Value Theory
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On Some Dependence Measures for Multivariate

Extreme Value Distributions

Ishay Weissman

Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology,
Israel

Abstract: This paper deals with the dependence structure of multivariate extremes.
Two particular measures of dependence among the components are proposed. They are
suitable for any (finite) dimension, and are invariant under increasing transformations
of the marginal distributions. It is shown that both have a desired property that other
coefficients of dependence lack. That is, for the mixture model, mixture between com-
plete dependence and total independence, both measures are equal to the weight of the
complete dependence model. Other properties are discussed and illustrated through
examples.

Keywords and phrases: Coefficient of dependence, extremal coefficient, extremal
index, Pickands dependence function

12.1 Introduction

Let X = (X1, X2, · · · , Xd) ∈ Rd be a random vector G-distributed, where G is a mul-
tivariate extreme value distribution (MEVD). The purpose of this paper is to propose
two coefficients of dependence τ1 and τ2, which will measure the degree of dependence
among the components Xj of X. We are interested in coefficients that are invariant
under increasing transformations, that is, independent of the marginal distributions of
the Xj.

Background. It is well known (see Tiago de Oliveira (1962), Marshall and Olkin
(1983)) that

d
∏

j=1

Gj(xj) ≤ G(x) ≤ min
1≤j≤d

Gj(xj), (12.1)

where Gj is the marginal distribution function of Xj . The inequality on the right
holds true for every multivariate distribution. The inequality on the left is a property
of MEVD, called positive quadrant dependence (when d=2) and it implies positive
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association. The two bounds of (12.1) are both special cases of MEVD — complete
dependence on the right and total independence on the left.

Let λ = − logG, λj = − logGj be the respective exponent functions, yj = 1/λj(xj)
and

λ∗(y) = λ(λ−1
1 (1/y1), · · · , λ−1

d (1/yd)).

Then, Equation (12.1) becomes

max
1≤j≤d

y−1
j ≤ λ∗(y) ≤ Σd

j=1y
−1
j . (12.2)

The proximity of G to one of its bounds (or λ∗ to its bounds) can serve as a measure
of dependence. Indeed, Pickands (1981) defined a dependence function on the simplex

Ω = Ωd = {v ∈ Rd−1 : vj ≥ 0, Σd−1
j=1 vj ≤ 1 }

by
A(v) = λ∗(v−1

1 , v−1
2 , · · · , v−1

d ) (v ∈ Ω),

where here and in the sequel, vd = 1 −Σd−1
j=1 vj . It follows that for y ∈ Rd

+,

λ∗(y) = A(v)
d
∑

j=1

y−1
j (vj =

y−1
j

Σd
i=1y

−1
i

, j = 1, 2, · · · , d).

The function A is convex and invariant under increasing transformations of the Xj .
The transformation from λ to λ∗ is for convenience and is equivalent to transform-
ing Xj to Yj = 1/λj(Xj) which are unit-Fréchet distributed, namely, P{Yj ≤ y} =
exp(−1/y) (y > 0).

Looking back at Equation (12.2), this is equivalent to

1
d
≤ A0(v) := max

1≤j≤d
vj ≤ A(v) ≤ 1 (v ∈ Ω), (12.3)

A ≡ 1 corresponds to total independence and A ≡ A0 to complete dependence. We note
in passing that if ej ∈ Ω is the unit vector with 1 at its jth position and 0 elsewhere
(j = 1, 2, · · · , d− 1) and ed = 0, then A(ej) = 1 for all j.

A famous example of MEVD is the logistic model, for which

A(v) = (Σd
1v

1/α
j )α (0 < α ≤ 1).

When α = 1 we have independence and as α ↓ 0, A → A0 (complete dependence).
Figure 12.1 shows graphically the function A for several values of α for the case d = 2.

12.2 Dependence Coefficients

The function A depicts the dependence structure among the Xj (or the Yj). Let v∗ =
(d−1, · · · , d−1) ∈ Ω, then η = A(v∗) has an interesting interpretation:
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Figure 12.1. Pickands dependence function for the Logistic Model, A(v) = (v1/α + (1 −
v)1/α)α with α = 0, .25, .50, .75, 1

P{maxYj ≤ y} = exp(−λ∗(yv∗) = exp(−dη/y) (12.4)

= (P{Y1 ≤ y})dη (y > 0).

Namely, the maximum of d random variables Yj behaves as the maximum of θ =
dη = dA(v∗) independent ones. Clearly, 1 ≤ θ ≤ d, θ = 1 corresponds to complete
dependence and θ = d to total independence. Smith (1990) and later Schlather and
Tawn (2002, 2003) use the term extremal coefficient for θ and use it as a measure of
dependence.

Remark. Suppose X is a sequence (i.e., d = ∞) and Pickands dependence function for
the first n components of X is An. Then, the so called extremal index of X (if exists)
is limn→∞ An(n−1, n−1, · · · , n−1) (see Leadbetter et al (1983)).

Other coefficients of dependence often used (for bivariate extremes) are Kendall’s
τ (here τK), Spearman’s ρ,

ρS = corr(G1(X1), G2(X2)) = corr(e−1/Y1 , e−1/Y2)

and
ρ = corr(λ1(X1), λ2(X2)) = corr(1/Y1, 1/Y2)

(see Beirlant et al. (2004), pp. 274–275). One obvious advantage of θ is that it can be
used for any model with d ≥ 2. To be on the same scale as the other coefficients of
dependence, we define

τ1 =
d− θ

d− 1
=

d(1 − η)
d− 1

, (12.5)

for which τ1 = 0 or 1 according as the Xj are totally independent or completely
dependent. Another coefficient of a similar nature is

τ2 =

∫

Ωd
(1 −A(v))dv

∫

Ωd
(1 −A0(v))dv

=:
Sd(A)
Sd(A0)

, (12.6)
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which is the ratio between the volume enclosed between the function A and its upper
bound 1 and the largest possible volume. This ratio is equal to 0 when A ≡ 1 (total
independence) and to 1 when A ≡ A0 (complete dependence). The coefficient τ2 is
briefly mentioned by Tiago de Oliveira:97, p. 319, in the context of bivariate extremes.
We advocate its use for any d ≥ 2.

Since the denominator in τ2 depends on d only, while the numerator is case-specific,
it would be useful to have a formula for Sd(A0):

Sd(A0) =
∫

Ωd

(1 −A0(v))dv =
1

(d− 1)!
− 1

d!

{

1 +
1
2

+ · · · + 1
d

}

. (12.7)

The proof appears in Onn and Weissman (2006).
The question which one is preferred has no definite answer. It is clear that one co-

efficient cannot preserve all the information about the function A. A similar question
might be raised in the context of mode vs mean as representatives of a whole distribu-
tion. However, we might require that a coefficient of dependence of MEVD will satisfy a
simple condition. Let V0, V1, V2, · · · be a sequence of independent unit-Fréchet random
variables and consider the mixture model for some α ∈ [0, 1]:

Xj = max{αV0, (1 − α)Vj} (j = 1, 2, · · · , d).

Then X = (X1, X2, · · · , Xd) has unit-Fréchet margins and its A function is given by

A(v) = αA0(v) + (1 − α) · 1,

a mixture between complete dependence and total independence. A reasonable require-
ment is that a coefficient of dependence equals α in this case. Indeed, τ1 = τ2 = α for
all d ≥ 2. For comparison, when d = 2, one can show that

τK = ρ =
α

2 − α
≤ ρS =

3α
4 − α

≤ α = τ1 = τ2.

Hence, in this respect of fulfilling the intuitive condition, τ1 and τ2 are preferred. To be
fair, if (X1, X2) has a mixture distribution (not a mixture exponent), that is, for some
independent and identically distributed random variables U, V , the pair (X1, X2) =
(U, V ) with probability 1 − α and = (U,U) with probability α, then ρS = ρ = α (the
distribution of (X1, X2) cannot be MEVD if 0 < α < 1). This example shows that
in the context of multivariate extremes, τ1 and τ2 are more intuitive coefficients of
dependence.

12.3 Examples

1. Mixed model. For α ∈ [0, 1], the exponent function is given by

λ(x, y) =
1
x

+
1
y
− α

x + y
,
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from which we get
A(v) = 1 − α(1 − v)v (0 ≤ v ≤ 1)

τ1 =
1
2
α, τ2 =

2
3
α

τK =
8tan−1(α/(4 − α))1/2

α1/2(4 − α)1/2
− 2

ρ =
8tan−1(α/(4 − α))1/2

α1/2(4 − α)3/2
− 2 − α

4 − α

ρS = 12
{

8tan−1(α/(8 − α))1/2

α1/2(8 − α)3/2
+

1
8 − α

}

− 3.

Table 12.1 gives the coefficients of dependence in increasing order.
We notice that in this model, complete dependence is impossible.

2. de Haan-Resnick model. The exponent function is given by

λ(x, y, z) =
1
2
{max(x−1, y−1) + max(x−1, z−1) + max(y−1, z−1)}.

This means

X1 = max(V1, V2)/2, X2 = max(V1, V3)/2, X3 = max(V2, V3)/2,

A(v) =
1
2
{max(v1, v2) + max(v1, v3) + max(v2, v3)}.

Thus we conclude that

η = A(1/3, 1/3, 1/3) = 1/2, τ1 = (3/2)(1 − η) = 3/4

τ2 =
36
7

· 1
8

=
9
14

= .642857

τ1(1, 2) = τ2(1, 2) = 1/2

(Introducing X3 to the system increases the dependence).

Table 12.1. Coefficients of dependence for the mixed model

α τK ρ τ1 ρS τ2

0 0 0 0 0 0
.25 .0877 .0901 .1250 .1299 .1667
.50 .1853 .1958 .2500 .2702 .3333
.75 .2947 .3215 .3750 .4222 .5000
1 .4184 .4728 .5000 .5874 .6667
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Table 12.2. Coefficient of dependence for the Cross-Over Model, d = 3

h
∫

Ω
(1 − A) τ2 τ1

0 0 0 0
.1 99/2000 .25457 .15
.2 12/125 .49371 .30
.3 273/2000 .70200 .45
.4 21/125 .86400 .60
.5 3/16 .96429 .75
.6 97/500 .99771 .90

2/3 7/36 1 1

3. Cross-over model. The exponent function is given by

λ(x, y) = max(hx−1, (1 − h)y−1) + max((1 − h)x−1, hy−1).

This means

X1 = max(hV1, (1 − h)V2), X2 = max((1 − h)V1, hV2),

A(v) = max(A0(v), 1 − h) (0 ≤ v ≤ 1, 0 ≤ h ≤ 1/2).

Thus we conclude that

η = A(1/2) = 2h, τ2 = 4h(1 − h) = 1 − (1 − τ1)2.

This model can be defined for d ≥ 2 as follows:

A(v) = max(A0(v), 1 − h) (v ∈ Ωd, 0 ≤ h ≤ d/(d− 1).

The Xj can be defined as

Xj = max{(1 − h)Vj , h(d− 1)−1 max
1≤i≤d, i�=j

Vi} (j = 1, 2, · · · , d).

Here τ1 = dh/(d − 1) and τ2 is computed via Equations (12.6) and (12.7). Table 12.2
gives the coefficient of dependence for some values of h and d = 3.

12.4 Relation between τ1 and τ2

Theorem 1. For d = 2, τ1 ≤ τ2.

Proof. Given an MEVD, let A be its Pickands dependence function (the red graph
in figure 12.2) and let h = 1 − A(1/2), so that τ1 = 2h. Define the mixture model
whose Pickands dependence function (the green graph) is A∗(v) = 2hA0(v) + 1 − 2h,
for which τ∗1 = τ1 = τ∗2 . Since A is convex, A ≤ A∗ (equality at v = 1/2),
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Figure 12.2. Pickands dependence functions A (red) and A∗ (green)

∫

Ω

(1 −A(v))dv ≥
∫

Ω

(1 − A∗(v))dv = τ1

∫

Ω

(1 −A0(v))dv,

hence,

τ2 =

∫

Ω(1 −A(v))dv
∫

Ω(1 −A0(v))dv
≥ τ1.

This completes the proof.

This is a proper proof for d = 2. For d ≥ 3, figure 12.2 is misleading, namely, A ≤ A∗

is not necessarily true. The de Haan-Resnick model (d = 3) is a counter example. For
v1 ≥ v2 ≥ v3, v1 + v2 + v3 = 1,

A(v) = v1 +
1
2
v2, A∗(v) =

3
4
v1 +

1
4
.

Since v2 > v3 if and only if v1 + 2v2 − 1 > 0, it follows that

A(v) −A∗(v) =
1
4
v1 +

1
2
v2 − 1

4
=

1
4
(v1 + 2v2 − 1) > 0.

Indeed, in this case, τ1 = 3/4 > τ2 = 9/14. On the other hand, the logistic model
(d = 3) is a model for which τ1 ≤ τ2, as is demonstrated by the table 12.3.
Here τ1 = (3 − 3α)/2 and τ2 =

∫

Ω(1 −A)36/7.

Going back to the case d = 2, we ask how big can the difference τ2 − τ1 be?
Consider all the (symmetric) models for which A(1/2) = 1 − h.

Clearly, the one with the largest area enclosed between A and 1 is the one pertains to
the cross-over model (the red graph in figure 3) Aco(v) = max(A0(v), 1 − h). The one
with the smallest area pertains to the mixture model A∗(v) = 2hA0(v) + 1 − 2h (the
green graph). For both models τ1 = 2h, while τ2 = τ1 = 2h for the mixture model and

τ2 = 4h(1 − h) = 1 − (1 − τ1)2
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Table 12.3. Coefficients of dependence for the Logistic Model, d = 3

α τ1 τ2

0 1 1
1/4 .8420 .9457
1/2 .6340 .7670
3/4 .3602 .4559
1 0 0

for the cross-over model. Hence for every A between these cases,

τ1 = 2h ≤ τ2 ≤ 4h(1 − h) = 1 − (1 − τ1)2.

It follows that
max

0≤h≤1/2
(τ2 − τ1) =

1
4
,

and this max is attained at h = 1/4, τ1 = 1/2, τ2 = 3/4. It turns out that this is also
the largest possible difference for all A (including asymmetric ones), but we skip the
details.

One could hold τ2 constant (i.e. the area) and let τ1 vary. For instance, for all
triangles with height h (h ∈ [0, 1/2]), τ2 = 2h while

h

1 − h
≤ τ1 ≤ 2h.

This has maximum range of 3 − 23/2 = .17157 at h = 1 − 2−1/2 = .29289.
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Figure 12.3. Pickands dependence functions A∗ (green) and Aco (red)
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12.5 Combining Two Independent Models

Let X = (x1, · · · , Xk), Y = (Y1, · · · , Ym) be two independent MEVD random vectors,
with unit-Fréchet margins. We combine them into

Z = (X1, · · · , Xk, Y1, · · · , Ym) (k + m = d)

and want to compute τ1Z , τ2Z on the basis of τ1X , τ2X , τ1Y , τ2Y . For convenience we
denote

Bk = 1 +
1
2

+
1
3

+ · · · + 1
k
.

Theorem 2. If X ∈ Rk, Y ∈ Rm are independent, MEVD , then

τ1Z =
k − 1
d− 1

τ1X +
m− 1
d− 1

τ1Y (12.8)

and
τ2Z =

k −Bk

d−Bd
τ2X +

m−Bm

d−Bd
τ2Y . (12.9)

Proof. The proof of (12.8) is straightforward. The independence assumption implies
that

θZ = θX + θY . (12.10)

Using Equation (12.5) to substitute θZ = d− (d− 1)τ1Z etc. in Equation (12.10) leads
to Equation (12.8).

To prove the second assertion, we write the Pickands dependence function for Z as

AZ(v) = tAX(u) + (1 − t)AY (w) (v ∈ Ωd, u ∈ Ωk, w ∈ Ωm), (12.11)

where

t = v1 + v2 + · · · + vk; ui =
vi

t
, i = 1, 2, · · · , k; wi =

vi+k

1 − t
, i = 1, 2, · · · ,m.

The Jacobian of the transformation

(v1, v2, · · · , vd−1) �→ (t, u1, · · · , uk−1, w1, · · · , wm−1)

is
J = tk−1(1 − t)m−1 (t ∈ [0, 1])

and
1 −AZ(v) = t(1 −AX(u)) + (1 − t)(1 −AY (w)).

Hence,

Sd(AZ) =
∫

Ωd

(1 −AZ(v))dv =

=
∫ 1

0

∫

Ωk

∫

Ωm

(1 −AZ(v))dudwtk−1(1 − t)m−1dt
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=
1

(m− 1)!

∫ 1

0

tk(1 − t)m−1dt

∫

Ωk

(1 −AX(u))du

+
1

(k − 1)!

∫ 1

0

tk−1(1 − t)mdt

∫

Ωm

(1 −AY (w))dw

=
k!
d!

Sk(A0)τ2X +
m!
d!

Sm(A0)τ2Y .

Division by Sd(A0) completes the proof.

We note that τ1Z and τ2Z are “almost” weighted averages; “almost” because the
sums of the respective weights are less than 1. However, for k and m large, these sums
tend to 1. Two special cases of interest are k ≥ 2, m = 1 and k = m = 2. For the first
case we have

τ1Z =
k − 1
k

τ1X , τ2Z =
k −Bk

k + 1 −Bk+1
τ2X .

For k = m = 2 we have

τ1Z =
1
3
(τ1X + τ1Y ), τ2Z =

6
23

(τ2X + τ2Y ).

Expressions (12.8) and (12.9) are exact for independent X, Y, but they can serve
as lower bounds for dependent pairs X, Y. Inequalities of this kind concerning the
extremal coefficients are dealt with by Schlather and Tawn (2002, 2003). Given 2d

numbers {θB}, corresponding to all subsets B ⊆ {1, 2, · · · , d}, Schlather and Tawn
(2002, 2003) give necessary and sufficient conditions on {θB} so that they can be self-
consistent as extremal coefficients of all sub-vectors of the MEVD X ∈ Rd. These
conditions imply analog conditions on τ1B.
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Ratio of Maximum to the Sum for Testing Super

Heavy Tails
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Abstract: An extreme value approach to the modeling of rare and damaging events
quite frequently involves heavy tailed distributions associated with power decaying
tails. The positive counterpart of this power, which determines the tail heaviness of
the distribution function pertaining to the sample observations, is consensually known
as the tail index. In this paper, we allow the tail index α to be zero so as to embrace
the class of super-heavy tailed distributions. We then present a test statistic consisting
of the ratio of maximum to the sum of log-excesses in order to discern between distri-
butions with heavy and super-heavy tails. Under suitable yet reasonable assumptions,
we cast an account of consistency of the Hill estimator for α equal to zero from the
asymptotic features of the referred testing procedure.

Keywords and phrases: Extreme value theory, Hill estimator, max-domains of at-
traction, regular variation theory, test of hypothesis

13.1 Introduction

The potential of Extreme Value theory in assessing statistical models for tail-related
values has gained widespread recognition in fields ranging from hydrology to insur-
ance, finance and, more recently, in telecommunications and teletraffic engineering. In
extreme value analysis the main concern is not towards the accumulation of many
events, none of these being dominant (in which case the Central Limit Theorem would
serve our purposes), but the interest goes instead to a single event capable of com-
promising the integrity of a certain system, making therefore the normal distribution
inadequate to describe the small set of data arising with such individual large and thus
dominant contributors. The Fisher-Tippett Theorem of extreme values (Fisher and
Tippett, 1928) states that all possible non-degenerate weak limit distributions of max-
ima of independent and identically distributed (i.i.d.) random variables X1, X2, . . . , Xn

with the same parent distribution function F are Extreme Value distributions. It can
be considered the fundamental result in Extreme Value theory, detaining the same
prominent status in the study of partial maxima of i.i.d. sequences of random variables
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as the Central Limit Theorem holds in the study of partial sums. Assuming there are
normalizing constants an > 0 and bn ∈ R such that

lim
n→∞P

{

a−1
n

(

max(X1, . . . , Xn) − bn

)

≤ x
}

= lim
n→∞Fn(an x + bn) = G(x), (13.1)

for all x ∈ R with G a non-degenerate distribution function, then the Fisher and Tippett
theorem asserts that we can redefine the constants in such a way that the distribution
function F is in the domain of attraction of the Generalized Extreme Value distribution
Gγ = G (notation: F ∈ D(Gγ)), i.e.,

lim
n→∞Fn(an x + bn) = Gγ(x) := exp(−(1 + γx)−1/γ), (13.2)

for 1+γx > 0, where γ ∈ R is the extreme value index. The Generalized Extreme Value
distribution Gγ comprises three classes of distributions discriminated by the extreme
value index sign: Weibull (γ < 0), Gumbel (γ = 0) and Fréchet (γ > 0).

The particularly interesting case of Fréchet domain of attraction contains distri-
butions with polynomially decaying tails. These are heavy-tailed distributions with
infinite endpoint, for which there exists a tail index α = 1/γ, such that the tail distri-
bution function F := 1−F satisfies limt→∞ F (tx)/F (t) = x−α, for every x > 0. Then,
we say that F is of regular variation near infinity with index −α (notation: F ∈ RV−α),
meaning that F can be decomposed as F (x) = x−αL(x) where L is of slow variation,
i.e., limt→∞ L(tx)/L(t) = 1, for any x > 0, which entails L ∈ RV0 (see, e.g., 5. in
Section 13.3).

Although most classical distribution functions admit sequences an > 0 and bn ∈ R

such that a non-degenerate limit is attained in (13.1), the existence of such sequences
is not guaranteed. In fact, it can be shown that if F is of slow variation, there is no
possibility of normalizing the sequence of partial maxima in order to make (13.1) to
hold mainly because there is too much weight on the tail. Therefore, the term super-
heavy can be fairly assigned to the tail distribution function F . A common example is
the log-Pareto distribution function (its expression gives an explanation for the term
log-Pareto)

F (x) = 1 − (log x)−1, x ≥ e.

It is also worthwhile to mention that super-heavy tailed distributions do not possess
finite moments of any order and, as a consequence, any statistical inference based
on empirical moments is meaningless for these kinds of models. Altogether, with any
distribution function F such that F ∈ RV−α, the tail index α ≥ 0 gives the order of
finite moments.

The theory of Regular Variation has been a prolific contributor to Extreme Value
theory as it provides a formal framework for a more systematic study of relevant prop-
erties of distribution functions belonging to extreme domains of attraction. With this
respect, we refer to de Haan and Ferreira (2006). In particular, a necessary and sufficient
condition for F ∈ D(Gγ) is the extended regular variation property:

lim
t→∞

U(tx) − U(t)
a(t)

=
xγ − 1

γ
, (13.3)

for every x > 0 and some positive measurable function a, where U stands for a quantile
type function pertaining to F defined by the generalized inverse
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U(t) :=
( 1

1 − F

)←
(t) = inf

{

x : F (x) ≥ 1 − 1
t

}

.

Moreover, γ = 1/α > 0 and a(t) = tU(t)/q(t) yield the equivalence of (13.3) to the
following regular variation property

lim
t→∞

U
(

t + x q(t)
)

U(t)
= (1 + αx)

1
α (13.4)

for all 1 + αx > 0, α ≥ 0, with a positive measurable function q such that

lim
t→∞

q
(

t + x q(t)
)

q(t)
= 1 + αx

(cf. Lemma 1 below). This function q is called auxiliary function for U . If α = 0,
the right hand side of (13.4) should be understood in the limiting sense as ex while q
becomes a self-neglecting function. According to de Haan (1970), Definition 1.5.1, we
then say that the tail quantile function U belongs to the class Γ of functions of rapid
variation (notation: U ∈ Γ ). We emphasize that super-heavy tailed distributions are
here addressed by this relation. Owing to condition (13.4), we find appropriate to use
a suitably normalized version of the test statistic

Tn(k) =
log(Xn,n) − log(Xn−k,n)

k−1
∑

i=0

(

log(Xn−i,n) − log(Xn−k,n)
)

, (13.5)

where X1,n ≤ X2,n ≤ . . . ≤ Xn,n are the order statistics corresponding to the random
sample X1, X2, . . . , Xn, with the ultimate aim of distinguishing between heavy and
super-heavy tails. In Section 13.2, we present some results concerning the asymptotic
behavior of Tn(k) for large n, which allows us to establish eventually a critical region for
the test at a certain nominal level α. The remainder of this paper unfolds as follows. In
Section 13.3 we display some simulation results concerning not only estimated power
but also type I error of the test. A brief application to two published data sets in
teletraffic and seismology fields is also given. Section 13.4 comprises results on regular
variation required to obtain the asymptotic statements involving the testing procedure.
Finally, Section 13.5 contains the proofs of the main results formulated in Section 13.2.
There is also a proof for consistency of the Hill estimator in the super-heavy tailed case
that hinges on the proof given for the main theorem.

13.2 Main Results

The present section concentrates on the asymptotic behavior of the test statistic intro-
duced in (13.5). While the main theorem below encloses a general result for distributions
with heavy or super-heavy tails, thus suggesting a possible normalization for the test
statistic to attain a non-degenerate limit, on the other hand, results (i) and (ii) of its
corollary expound eventual differences in stochastic behavior between the two classes
of distributions, accounting for power and consistency of the test, respectively.
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Theorem 1. Suppose the function U is such that condition (13.4) holds for some α ≥
0. Let k = kn be an intermediate sequence, i.e., a sequence of positive integers such
that kn → ∞ and kn = o(n) as n → ∞. Then

Tn(k) = Op

( 1
log k

)

,

with Tn(k) as defined in (13.5).

Corollary 1. Under the conditions of Theorem 1,

(i) if α = 0,

log k Tn(k) d−→
n→∞T ∗, (13.6)

where the limiting random variable T ∗ has a Fréchet distribution function Φ(x) =
exp

(−x−1
)

, x ≥ 0;
(ii)if α > 0,

log k Tn(k) P−→
n→∞ 0. (13.7)

Therefore, taking only the k most extreme observations from a sample of size n such
that k/n amounts to a small top sample fraction, the critical region for the one-sided
test H0 : α = 0 versus H1 : α > 0 of nominal size α is given by R : log k Tn(k) <
Φ−1(α), where Φ−1 denotes the inverse of the Fréchet distribution function.

13.3 Simulation Results and Real Data Analysis

It should be noticed at this point that we are dealing with a test of asymptotic size
α, where in fact the closeness of the true actual size of the test to the nominal one
is determined by how precise the approximation to the Fréchet law is. Under these
circumstances, simulations are generally needed to gain insight. In this section, we
present small sample Monte Carlo simulations in order to study more thoroughly the
behavior of the testing procedure, taking the following distributions as key examples:

1. Consider a random variable Y with standard Pareto distribution function F (y) =
1−y−1, all y ≥ 1. We say that a random variable W follows a log-Pareto distribution
with parameter β > 0 if and only if W = eβY . The tail quantile function pertaining
to W is simply UW (t) = eβt. Thus, condition (13.4) holds with α = 0 and q(t) =
1/β.

2. A random variable X has a log-Fréchet distribution with parameter β > 0 if and
only if Y = logX/β has a Fréchet distribution function

Φ(x) = exp{−x−1}, x > 0.

Since U(t) = exp
{−β/ log(1 − 1/t)

}

, for t ≥ 1, then condition (13.4) holds with
α = 0 and auxiliary function q(t) = 1/β.
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3. Let X be a random variable with log-Weibull distribution function

F (x) = 1 − exp{−(log x)β}, x ≥ 1, 0 < β < 1.

Then U ∈ Γ with auxiliary function q(t) = βt(log t)1−1/β .
4. A random variable X is said to have a log-Cauchy distribution if and only if Y =

logX is a Cauchy random variable for which UY (t) = tan(π/2 − π/t) admits the
expansion UY (t) = t/π + π/3t−1 + o(t−1), t → ∞. Hence, UY satisfies (13.4) with
α = 1 and q(t) = t whereas (13.4) holds immediately for UX with α = 0 and
q(t) = π once we notice that UX = expUY .

5. A random variable X has a log-Gamma distribution with parameters β > 0 and
α > 0 if it has probability density function

fβ,α(x) =
αβ

Γ (β)
(log x)β−1x−α+1, x > 1.

In other words, X is log-Gamma distributed for X > 1 if and only if Z = logX
is Gamma distributed for Z > 0. Then L’Hopital ascertains that 1 − F (x) ∼
x−α(log x)β−1 (x → ∞). The case β = 1 reduces to the Pareto distribution function
F (x) = 1 − x−α, for all x ≥ 1, while for other values of β we have essentially a
Pareto distribution contaminated by the slowly varying function L(x) = (log x)β−1.

Furthermore, we shall draw comparisons of the now proposed test with the test
introduced in Fraga Alves et al. (2006), liable to the test statistic

Sn(k) :=
√

24
(

k−1
∑

i=0

Xn−k,n

Xn−i,n

)1/2
(

k−1
∑

i=0

(

Xn−k,n/Xn−i,n

)2

k−1
∑

i=0

Xn−k,n/Xn−i,n

− 1
2

)

. (13.8)

Under suitable and reasonable restrictions upon the growth of the intermediate se-
quence k = kn, the statistic Sn(k) is asymptotically standard normal. The cor-
responding rejection region of the test at a significance level α is thus given by
R : Sn(k) > z1−α, where zε denotes the standard normal ε-quantile. Figures 13.1
and 13.2 display the relative frequency of rejections for each one of the models speci-
fied above as a function of the number k of the most extreme observations in samples
of size n = 1000, obtained by generating 5000 samples from each one of the parent
distributions specified above. Concerning empirical power, it seems that any trajectory
determined by the test based on Tn(k) will tend to agree with the ones displayed in
figure 13.1 (a). This is particularly true for Fréchet and Pareto distributions, where
the parameter β can be disregarded. On the contrary, the statistic Sn(k) yields a great
variety of patterns for the empirical power as the true value of α changes and only
surpasses the now proposed test for α greater than, say, 0.5. Regarding simulated Type
I error in figure 13.2, the test based on Tn(k) is somewhat conservative. However this
may not be all disadvantageous, specially if we look at the less heavy distributions lying
in the class of super-heavy tails, since, under these distributions, the number of wrong
rejections is likely to raise high above the nominal level of the test just as happens with
the log-Cauchy. Moreover, for log-Pareto and log-Fréchet models, the statistic Tn(k) is
parameter-free, i.e., its distribution does not depend on the particular parameter β in
1. or 2.
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Figure 13.1. (a) Empirical power of log k Tn(k) and (b) empirical power of Sn(k), at a nominal
level α = 0.05 and built on 5000 samples of size n = 1000, all plotted against k = 1, 2, . . . , 200
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Figure 13.2. (a) and (c) Estimated Type I error of log k Tn(k), (b) and (d) Estimated Type I
error of Sn(k) at a nominal level α = 0.05, built on 5000 samples of size n = 1000, all plotted
against k = 1, 2, . . . , 200
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As illustrative examples, consider the 36 699 file lengths in bytes included in the In-
ternet Traffic Archive (http://ita.ee.lbl.gov/index.html) along with seismic data
consisting of seismic moment for California seismicity, for magnitude m ≥ 5.5, during
the last two centuries (1800-1999). The seismic data set was extracted from Toppozada
et al. (2000) earthquake catalog, available at http://www.consrv.ca.gov/CGS/rghm/
quakes/ms49epicenters.txt. These referred magnitudes were then converted into
seismic moments (for further details, see Zaliapin et al. (2005)).

In figure 13.3 we depict the trajectories resulting from the application of both test
statistics to the data together with the corresponding critical values for α = 0.05. In
what concerns the teletrafic data, we distinctly reject a distribution with super-heavy
tail as underlying the data. The decision on whether we should reject the super-heavy
tailed case is not so clear anymore when we consider the seismic data. The test statistic
Sn(k) exhibits a very erratic behaviour around the critical line, contrasting with the
smooth sample path for the new test statistic log k Tn(k), which for a wide range of
values of k, returns values below the critical line; therefore it is reasonable to reject
a super-heavy tailed distribution to model underlying the seismic data. The proposed
T -test reveals to be a valuable complement to the S-test. Attending to the relatively
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Figure 13.3. Sample paths and straight lines corresponding respectively to: log k Tn(k) and
Φ−1(0.05) � 0.334 in (a) and (c); Sn(k) and q0.95 � 1.96 in (b) and (d), against k
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Figure 13.4. α-Hill plot of: (a) file lengths (in bytes) and (b) seismic data

stable regions of the Hill-plots in figure 13.4 subject to small values of k, we can pinpoint
α̂ = 1.0 and α̂ = 0.6 as valid estimates for the tail index with respect to the teletraffic
data and seismic data, respectively. To sum up, the models underlying these two data
sets reveal a considerable tail weight, and for that reason the use of empirical moments
for statistical inference, as means and variances for instance, should be avoided.

13.4 Auxiliary Results

In this section, we gather some results on the theory of Regular Variation, necessary
for the proof of the main theorem.

Lemma 1. Suppose the function U is such that relation (13.4) holds with some α ≥ 0.
Then, the auxiliary function q satisfies

lim
t→∞

q(t)
t

= α (13.9)

and

• if α > 0, then U(∞) := lim
t→∞U(t) = ∞ and U is of regular variation near infinity

with index 1/α, i.e., U ∈ RV1/α;
• if α = 0, then U(∞) = ∞ and U is ∞-varying at infinity.

Furthermore, for α = 0,

lim
t→∞

(

logU
(

t + x q(t)
) − logU(t)

)

= x, for every x ∈ R. (13.10)

Proof. In case α > 0, the first part of the Lemma follows directly from (13.4) whereas
in case α = 0 it is ensured by Lemma 1.5.1 and Theorem 1.5.1 of de Haan (1970).
Relation (13.10) follows immediately from (13.4) with respect to α = 0.
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Proposition 1. Suppose condition (13.4) holds for some α ≥ 0.

(i) If α > 0, then for any ε > 0 there exists t0 = t0(ε) such that for t ≥ t0, x ≥ 0,

(1 − ε) (1 + αx)
1
α−ε ≤ U

(

t + x q(t)
)

U(t)
≤ (1 + ε) (1 + αx)

1
α +ε. (13.11)

(ii)If (13.4) holds with α = 0 then, for any ε > 0, there exists t0 = t0(ε) such that for
t ≥ t0, for all x ∈ R,

U(t + x q(t))
U(t)

≤ (1 + ε) exp
(

x(1 + ε)
)

. (13.12)

Proof. Inequalities in (13.11) follow immediately from Proposition 1.7 in Geluk and
de Haan (1987) when we settle q(t) = αt (see also (13.9) in Lemma 1) while (13.12)
was extracted from Beirlant and Teugels (1989), p. 153.

Lemma 2.

(i) If U ∈ RV1/α, α > 0, then for any ε > 0 there exists t0 = t0(ε) such that for t ≥ t0,
x ≥ 1,

(1 − ε)
1
α

log x ≤ logU(tx) − logU(t) ≤ (1 + ε)
1
α

log x. (13.13)

(ii)If U ∈ Γ then, for any ε > 0, there exists t0 = t0(ε) such that for t ≥ t0, for all
x ∈ R,

logU
(

t + x q(t)
)− logU(t) ≤ ε + x(1 + ε). (13.14)

Proof. Notice that once we apply the logarithmic transformation to relation (13.11)
for large enough t, it becomes

(1 − ε) log(1 + αx)
1
α ≤ logU

(

t + x q(t)
)− logU(t) ≤ (1 + ε) log(1 + αx)

1
α .

As before, the precise result is obtained by taking q(t) = α t with the concomitant
translation of (13.4) for α > 0 into the regularly varying property of U (cf. Lemma 1
again). The proof for (13.14) is similar and therefore obviated.

13.5 Proofs

Proof of Theorem 1. Let
{

Yi,n

}n

i=1
be the order statistics corresponding to the in-

dependent and identically distributed random variables
{

Yi

}n

i=1
with standard Pareto

distribution function 1 − y−1, for all y ≥ 1. Taking into account the equality in distri-
bution

{

Xi,n

}n

i=1

d=
{

U(Yi,n)
}n

i=1
, (13.15)
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and defining

Q(i)
n :=

Yn−i,n − Yn−k,n

q(Yn−k,n)
, i = 0, 1, . . . , k − 1 (13.16)

and

M (1)
n :=

1
k

k−1
∑

i=0

logU(Yn−i,n) − logU(Yn−k,n), (13.17)

we get in turn

Tn(k) d=
logU(Yn,n) − logU(Yn−k,n)

kM
(1)
n

(13.18)

=
logU(Yn,n) − logU(Yn−k,n)

k−1
∑

i=0

(

logU(Yn−i,n) − logU(Yn−k,n)
)

=
logU

(

Yn−k,n + Q
(0)
k,n q(Yn−k,n)

)− logU(Yn−k,n)
k−1
∑

i=0

(

logU
(

Yn−k,n + Q
(i)
k,n q(Yn−k,n)

)− logU(Yn−k,n)
)

. (13.19)

Bearing on the fact that the almost sure convergence Yn−k,n
as−→

n→∞∞ holds with an

intermediate sequence k = kn (cf. Embrechts et al. (1997), Proposition 4.1.14), we can
henceforth make use of condition (13.4). For ease of exposition, we shall consider the
cases α > 0 and α = 0 separately.
• Case α > 0: As announced, the core of this part of the proof lies at relation (13.4).
Added (13.13) from Lemma 2, we obtain the following inequality for any ε > 0 and
sufficiently large n:

M (1)
n =

1
k

k−1
∑

i=0

logU
( Yn−i,n

Yn−k,n
Yn−k,n

)

− logU(Yn−k,n)

≤ (1 + ε)
1
k

k−1
∑

i=0

1
α

(

logYn−i,n − logYn−k,n

)

.

Owing to Rényi’s important representation for exponential spacings,

Ek−i,k
d=En−i,n − En−k,n = log(Yn−i,n) − log(Yn−k,n), (13.20)

where En−i,n, i = 0, 1, . . . , k − 1, are the order statistics pertaining to independent
standard exponential random variables Ei = logYi, we thus obtain

M (1)
n =

1
k

k−1
∑

i=0

logU(Yn−i,n) − logU(Yn−k,n) ≤ 1
α

(1 + ε)
1
k

k−1
∑

i=0

logYk−i,k. (13.21)

We can also establish a similar lower bound. Now, the Law of Large Numbers ensures
the convergence in probability of the term on the right hand side of (13.21) since, for
an intermediate sequence k = kn,
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1
k

k−1
∑

i=0

logYi
P−→

k→∞

∫ ∞

1

log y
dy

y2
= 1.

In conjunction with with (13.9), the latter entails

Ln(k) :=
q(Yn−k,n)
Yn−k,n

M (1)
n = 1 + op(1). (n → ∞) (13.22)

Hence, using (13.13) followed by (13.20) upon (13.18), we obtain as n → ∞

Tn(k) d=
1
k

q(Yn−k,n)
Yn−k,n

logU(Yn,n) − logU(Yn−k,n)
Ln(k)

=
1
k

(Ek,k − log k)
(

1 + op(1)
)

+
log k

k

(

1 + op(1)
)

. (13.23)

Finally, noticing that Ek,k − log k
d−→

k→∞
Λ, where Λ is denoting a Gumbel random vari-

able, we obtain a slightly stronger result than the one stated in the theorem. More
specifically, we get from (13.23) that Tn(k) = op(k−1/2), for any intermediate sequence
k = kn.
• Case α = 0: The proof concerning this case of super-heavy tailed distributions,
virtually mimics the steps followed in the heavy tailed case (α > 0). We get from
(13.19) that M

(1)
n as defined in (13.17) can be written as

M (1)
n =

1
k

k−1
∑

i=0

logU
(

Yn−k,n + Q
(i)
k,n q(Yn−k,n)

)− logU(Yn−k,n).

Giving heed to the fact that, for each i = 0, 1, . . . , k − 1,

Q
(i)
k,n =

Yn−k,n

q(Yn−k,n)

( Yn−i,n

Yn−k,n
− 1

)

is stochastically bounded away from zero (see Lemma 1), we can thus apply relation
(13.14) from Lemma 2 in order to obtain, for any intermediate sequence k = kn,

1
k

k−1
∑

i=0

logU
(

Yn−k,n + Q
(i)
k,n q(Yn−k,n)

)− logU(Yn−k,n) ≤ (1 + ε)
1
k

k−1
∑

i=0

Q
(i)
k,n,

as n → ∞. Using Rényi’s representation (13.20), we get

q(Yn−k,n)
Yn−k,n

M (1)
n ≤ (1 + ε)

1
k

k−1
∑

i=0

(

Yk−i,k − 1
)

. (13.24)

It is worth noticing at this point that with constants a∗k > 0, b∗k ∈ R such that a∗k ∼ kπ/2
and b∗ka

∗
k/k ∼ log k as k → ∞, this new random variable S∗k

S∗k :=
1
a∗k

k−1
∑

i=0

(

Yi − 1
)− b∗k, (13.25)
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converges in distribution to a sum-stable law (cf. Geluk and de Haan (2000)). Em-
bedding S∗k defined above in the right hand side of (13.24), we ensure that Ln(k) as
introduced in (13.22) satisfies Ln(k) = Op(log k). Therefore, in view of (13.19), the
proof is concluded by showing that is possible to normalize the maximum of the log-
spacings in a way to exhibit a non-degenerate behavior eventually. Since U ∈ Γ we get
in a similar way as before, for large enough n,

q(Yn−k,n)
k Yn−k,n

(

logU
(

Yn−k,n + Q
(0)
k,n q(Yn−k,n)

)− logU(Yn−k,n)
)

= k−1
( Yn,n

Yn−k,n
− 1

)

(

1 + op(1)
)

= k−1
(

Yk,k − 1
)(

1 + op(1)
)

= Op(1).

Remark 1. Notice that if α > 0, then the consistency property of the well-know Hill
estimator for γ = α−1,

γ̂H
n (k) :=

1
k

k−1
∑

i=0

logXn−i,n − logXn−k,n

holds for an intermediate sequence k = kn, i.e.,
(

γ̂H
n (k)

)−1 P−→
n→∞α and with a further

restriction upon the growth of k, the Hill estimator is asymptotically normal (see,
e.g., de Haan and Ferreira (2006)). Because the Hill estimator is always positive, we
must inevitably consider a normalization in location if we want to attain the normal
limit for α = 0. However, Examples 1 and 2 below serve to show that even so the
Hill estimator is sometimes asymptotically normal and sometimes not. Despite the
asymptotic normality is not always achieved, the Hill estimator enjoys the consistency
property even for super-heavy tails. The latter is sustained on the proof of Theorem 1.
Notice that, since we have the identity in distribution γ̂H

n (k) d=M (1)
n with M

(1)
n defined

in (13.17), we get from (13.24) and subsequent text, for any ε > 0 and large enough n,

q(Yn−k,n)
Yn−k,n

1
log k

γ̂H
n (k) < (1 + ε)

( S∗k
log k

+
2
π

+ o(1)
)

,

meaning that the left hand-side of the above inequality is with high probability con-
tained in the interval (0, 2/π+ε), eventually. Lemma 1 ascertains that q(Yn−k,n)/Yn−k,n

= op(1) for any intermediate sequence k = kn. Hence 1/γ̂H
n (k) is also op(1).

The following examples arise in the sequence of Remark 1.

Example 1. Consider a random sample taken from a standard log-Pareto population
X = eY , with Y denoting a standard Pareto random variable. Then, the Hill estimator
acquires the simple form

γ̂H
n (k) =

1
k

k−1
∑

i=0

Yn−i,n − Yn−k,n
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Since (k/n)Yn−k,n
P−→

n→∞ 1, with k = kn an intermediate sequence (see, e.g., Wellner,

1978), we get that

γ̂H
n (k) d= Yn−k,n

(1
k

k−1
∑

i=0

Y ∗i − 1
)

=
n

k

(

S∗k + bk

)(

1 + op(1)
)

,

with {Y ∗i }k−1
i=0 denoting i.i.d. standard Pareto random variables independent of the

random threshold Yn−k,n, bk = O(log k) and where S∗k is the random variable (13.25)
with limiting sum-stable distribution.

Example 2. Considering the log-Weibull distribution with 0 < β < 1, the Hill estimator
may be written as

Hn(k) =
1
k

k−1
∑

i=0

(

log Yn−i,n

)1/β − (logYn−k,n

)1/β

Similarly as in Example 1, we can replace the random threshold Yn−k,n by the fraction
n/k and ultimately obtain that

Hn(k) d=
(

log Yn−k,n

)1/β−1 1
β

(1
k

k
∑

i=1

logY ∗i + op(1)
)

= k−1/2
(

log
n

k

)1/β−1 1
β

(

Sk +
√
k
)(

1 + op(1)
)

,

where Sk converges to a standard normal random variable.

Proof of Corollary 1.
(i) For α = 0, the last part of the proof of Theorem 1 emphasizes that, as n → ∞,

log k Tn(k) d=
k−1

(

logU(Yn,n) − logU(Yn−k,n)
)

Ln(k)/ log k

q(Yn−k,n)
Yn−k,n

=
(

T ∗ + op(1)
)

/
(

1 + op(1)
)

= T ∗
(

1 + op(1)
)

because, after suitably normalization by ak = k−1, the maximum of a sample of size k
with standard Pareto parent distribution is attracted to a Fréchet law.
(ii) The precise result follows from (13.23) by straightforward calculations.
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Tail Behaviour: An Empirical Study
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Abstract: In many areas of application, like for instance statistical quality control,
insurance and finance, a typical requirement is to estimate a high quantile, i.e., the
Value at Risk at a level p, high enough, so that the chance of an exceedance of that
value is equal to p, small. In this paper we provide an empirical data analysis of log-
returns associated to a set of financial data, through the use of reduced-bias tail index
and associated high quantile estimators. These tail index estimators depend on two
second order parameters, and in order to achieve a reduction in bias without any
inflation of the asymptotic variance, the second order parameters in the bias are both
estimated at a level of a higher order than the one used for the estimation of the
tail index. A percentile method for quantile estimation and a heuristic adaptive choice
of the threshold for reduced-bias estimators are considered, and their finite sample
properties are studied via small-scale Monte Carlo simulations.

Keywords and phrases: Heavy tails, high quantiles, value at risk, semi-parametric
estimation, percentile estimation, statistics of extremes

14.1 Introduction

In risk management it is crucial to evaluate adequately the risk of a big loss that
occurs very rarely. The risk is generally expressed as the Value at Risk (VaRp), i.e., a
high quantile χ1−p := F←(1 − p) of a probability distribution function (d.f.) F , with
F←(y) := inf {x : F (x) ≥ y}, the generalized inverse function of F . Let us denote U(t)
the inverse function of 1/(1−F ). Then, for small p, we want to estimate the parameter

VaRp = U (1/p) , p = pn → 0, n pn ≤ 1.

Usually, we have in fact n pn < 1, i.e., we want to extrapolate beyond the sample. Since
we are dealing with a small probability, we may confine ourselves to modeling the tail.
Moreover, since in financial applications we find generally heavy tails, we shall assume
that the d.f. underlying the data satisfies, for some positive constant C,

B.C. Arnold et al. (eds.), Advances in Mathematical and Statistical Modeling,

DOI: 10.1007/978-0-8176-4626-4 14,
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1 − F (x) ∼ (x/C)−1/γ
, as x → ∞, with γ > 0. (14.1)

Weissman et al. (1978) proposed the following semi-parametric estimator of a high
quantile (i.e., the Value-at-Risk):

Q
(p)
γ̂ (k) := Xn−k+1:n (k/(np))γ̂

, (14.2)

where Xn−k+1:n is the k-th top order statistic (o.s.), γ̂ any consistent estimator for
γ and Q stands for the quantile function. Further details on semi-parametric estima-
tion of extremely high quantiles for a general tail index γ ∈ � may be found in de
Haan and Rootzén (1993) and, more recently, in Ferreira et al. (2003) and Matthys
and Beirlant (2003). Matthys et al. (2004), Gomes and Pestana (2007a), Gomes and
Figueiredo (2006) and Beirlant et al. (2006), among others, dealt with reduced-bias
quantile estimation. Interesting references on parametric quantile estimation, also used
in this paper, are Castillo and Hadi (1994, 1995). As usual in semi-parametric estima-
tion of parameters of extreme events, we need to work with an intermediate sequence
of integers, i.e., with

k ∈ [1, n) : k = kn → ∞ and k = o(n) as n → ∞. (14.3)

For heavy tails, the classical semi-parametric tail index estimator, usually the one
which is used in (14.2) for a semi-parametric quantile estimation, is the Hill estimator
γ̂ = γ̂(k) =: H(k) (Hill, 1975), with the functional expression,

H(k) :=
1
k

k
∑

i=1

Ui, Ui := i (lnXn−i+1:n − lnXn−i:n) , 1 ≤ i ≤ k. (14.4)

If we insert in (14.2) the Hill estimator, H(k), we get the so-called classical quantile
estimator, Q(p)

H
(k). In order to be able to study the asymptotic non-degenerate behavior

of Q(p)
H

(k), as well as of alternative V aRp-estimators, it is useful to impose a second
order expansion on the tail function 1 − F or on the quantile function U . We shall
assume that we are working in Hall-Welsh class of models (Hall and Welsh, 1985),
where, with C, γ > 0, ρ < 0 and β non-zero,

U(t) = Ctγ (1 + γ β tρ/ρ + o (tρ)) , as t → ∞. (14.5)

We shall further use the notation

A(t) := γ β tρ, γ > 0, β �= 0, ρ < 0. (14.6)

The class in (14.5) is a wide class of models that contains heavy-tailed parents like the
Fréchet, the Generalized Pareto and the Student’s t.

From the results of de de Haan and Peng (1998), we may say that in Hall-Welsh
class of models in (14.5) and for intermediate k,

H(k) − γ
d= γ Pk/

√
k + A(n/k)(1 + op(1))/(1 − ρ), (14.7)

with A(·) the function in (14.6) and Pk an asymptotically standard normal r.v.

Regarding semi-parametric quantile estimation: under condition (14.5), the asymp-
totic behavior of Q(p)

H
(k) is also well-known:
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√
k
(

Q(p)
H

(k)/VaRp − 1
)

/ ln(k/(np)) d−→
n→∞ Normal

(

λ/(1 − ρ), γ2
)

,

provided the sequence k = kn is intermediate, ln(k/(np)) = o(
√
k) and

limn→∞
√
k A(n/k) = λ ∈ �, finite, with A(·) the function in (14.6).

On the basis of the results in Gomes and Figueiredo (2006), Gomes and Pestana
(2007a) and Beirlant et al. (2006), we here proceed to the use in (14.2) of specific
reduced-bias tail index estimators. Those tail index estimators and associated quan-
tile estimators are described in Section 14.3, after a brief review, in Section 14.2, of
a possible methodology to build asymptotic confidence intervals (CI’s) for the tail in-
dex and the V aR on the basis of classical semi-parametric estimators. Section 14.4
is dedicated to the description, in an algorithmic way, of procedures dedicated to the
semi-parametric estimation of the second order parameters (β, ρ), of the tail index γ
and of an extreme quantile or V aR. In Section 14.5, we perform a small-scale Monte
Carlo simulation to illustrate the performance of the percentile method, devised in a
parametric set-up, and to present some simulated properties of the heuristic adaptive
choice considered for the tail estimation through reduced-bias estimators. Finally, in
Section 14.6, we provide an empirical data analysis of log-returns associated to the
Euro-Great Britain Pound (EGBP) daily exchange rates, collected from January 4,
1999, until November 17, 2005, representative of other log-returns data analysed in
Gomes and Pestana (2007a).

14.2 Asymptotic CI’s for the Tail Index and the VaR

Let ak := 1.96/
√
k + β(n/k)ρ/(1 − ρ) and bk := 1.96/

√
k − β(n/k)ρ/(1 − ρ). Since

from (14.7), together with the definition of A(t) in (14.6), we may guarantee that√
k {H(k)/γ − 1 − β(n/k)ρ/(1 − ρ)} ≈ Normal(0, 1), provided that

√
k (n/k)ρ → λ,

finite, we may get approximate 95% CI’s for γ, given by
(

H(k)/(1 + ak), H(k)/(1 − bk)
)

=:
(

LCL
H

(k), UCL
H

(k)
)

. (14.8)

If λ = 0, we may replace in (14.8) the bias summand β(n/k)ρ/(1 − ρ) by 0. Moreover,
for models in (14.5) the optimal k-value for the tail index estimation through the Hill
estimator, in (14.4), is well approximated by

kH
0 ≡ kH

0 (n;β, ρ):=arg min
k

{

1
k

+
β2(n/k)2ρ

(1 − ρ)2

}

=
(

(1 − ρ)n−ρ

β
√−2ρ

)2/(1−2ρ)

, (14.9)

and
√

kH
0

(

n/kH
0

)ρ → (1− ρ)/
(

β
√−2ρ

)

. If we use H(kH
0 ) to build a CI for γ, we may

thus replace in (14.8) the bias summand β(n/k)ρ/(1 − ρ) by 1/
√−2ρk.

Similarly to what has been done for the Hill estimator, we may estimate, now
numerically, the “optimal” threshold for the VaR estimation through Q

H
,

k
Q

H
0 ≡ k

Q
H

0 (n, p;β, ρ) := argmin
k

{

ln2

(

k

np

)(

1
k

+
β2(n/k)2ρ

(1 − ρ)2

)}

. (14.10)
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We may also find approximate CI’s for VaRp on the basis of Q(p)
H

(k) and for any
level k such that

√
k A(n/k) → λ, finite. A 95% CI, dependent on γ, is given by

(

Q
H

(k) (k/(np))−γak , Q
H

(k) (k/(np))γbk
)

. In order to have a guarantee of a coverage
probability at least equal to 95%, and with LCL

H
(k) and UCL

H
(k) given in (14.8),

we shall work with

LCLQ
H

(k) = Q
H

(k) min
(

(k/(np))−akLCL
H

(k)
, (k/(np))−akUCL

H
(k)
)

, (14.11)

UCLQ
H

(k) = Q
H

(k) max
(

(k/(np))bkLCL
H

(k)
, (k/(np))bkUCL

H
(k)
)

. (14.12)

14.3 Reduced Bias Tail Index and Quantile Estimators

14.3.1 Tail index estimation

We shall work here with the reduced-bias tail index estimators in Caeiro et al. (2004)
and Gomes et al. (2005). The estimator in Caeiro et al. (2004), also used in Gomes and
Pestana (2007a) for quantile estimation, is given by

H β̂,ρ̂(k) := H(k)
(

1 − β̂ (n/k)ρ̂ /(1 − ρ̂)
)

, (14.13)

where (β̂, ρ̂) is an adequate consistent estimator of (β, ρ), with both β̂ and ρ̂ based on a
number of top o.s. k1 of an order larger than k, the number of top o.s. used for the tail
index estimation. Note that the estimator in (14.13) is a bias-corrected Hill estimator:
the dominant component of the bias of Hill’s estimator, provided in (14.7) and given by
γ β(n/k)ρ/(1 − ρ), is estimated through H(k) β̂ (n/k)ρ̂/(1 − ρ̂) and directly removed
from the Hill estimator in (14.4).

Apart from the class of estimators in (14.13), we shall also consider the reduced-
bias class of estimators in Gomes et al. (2005). Such a class is of the same type as the
one in (14.13), but it has been inspired in the tail index estimator provided in Gomes
and Martins (2002), i.e., it is based on an approximate maximum likelihood approach
associated to the scaled log-spacings Ui in (14.4). With the same notation as before,
we shall work with the tail index estimator

MLβ̂,ρ̂(k) := H(k) − β̂ (n/k)ρ̂
Dk (ρ̂) , Dk(α) :=

1
k

k
∑

i=1

(i/k)−α
Ui. (14.14)

This is another example of a bias-corrected Hill estimator, where we are using Dk(ρ̂)
as an estimator of γ/(1 − ρ). We may state the following:

Proposition 1 (Caeiro et al. (2004); Gomes et al. (2005)). For models in (14.5),
let us assume that (14.3) holds and that, with A(t) given in (14.6),√
k A(n/k) → λ, finite and non necessarily null, as n → ∞. Then, with T denoting

either H in (14.13) or ML in (14.14),
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√
k (Tβ,ρ(k) − γ) d−→

n→∞ Normal
(

0, γ2
)

.

This same limiting behaviour holds if we replace Tβ,ρ by Tβ̂,ρ̂, provided that we consider

a ρ-estimator ρ̂, such that ρ̂ − ρ = op(1/ lnn), and we choose β̂ consistent for the
estimation of β. More specifically, and with V T

k an asymptotically standard normal
r.v., we may write

Tβ̂,ρ̂(k) d= γ + γ V T
k /

√
k + op(A(n/k)).

Remark 1. Contrarily to what happens in Drees’ class of functionals (Drees, 1998),
where the minimal asymptotic variance of a reduced-bias tail index estimator is given
by (γ(1 − ρ)/ρ)2, here we have been able to obtain a reduced-bias tail index estimator
with an asymptotic variance equal to γ2, the asymptotic variance of Hill’s estimator,
which is indeed the maximum likelihood estimator of γ for the strict Pareto model
F (x; γ, C) = 1 − (x/C)−1/γ , x ≥ C, γ > 0.

14.3.2 Asymptotic CI’s for γ based on second order reduced-bias
tail index estimation

On the basis of the statistics H and ML in (14.13) and (14.14), respectively, with
a∗k = 1 + 1.96/

√
k, b∗k = 1− 1.96/

√
k, for levels k such that

√
k (n/k)ρ → λ, finite, and

again with T denoting any of the estimators in either (14.13) or (14.14), Proposition 1
enables us to get the following 95% approximate CI for γ,

(LCL
T
(k), UCL

T
(k)) = (T (k)/a∗k, T (k)/b∗k) . (14.15)

14.3.3 Adaptive choice of the level for reduced-bias estimators

Here, we have decided to use the heuristic adaptive choice of k suggested in Gomes and
Pestana (2007a). Up to now, we do not have simple techniques to estimate the optimal
threshold of second order reduced-bias estimators. If we plot the 95% approximate
confidence region in (14.8) as a function of k, the Hill estimate is sooner or later
going to cross this region. We have thus decided to use such a k-value for the tail index
estimation through the second order reduced-bias tail index estimator H(k) and ML(k)
in (14.13) and (14.14), respectively, as well as for the associated VaR estimation. Such
a crossing level is solution of the equation |β| (n/k)ρ/(1 − ρ) = 1.96/

√
k, i.e., we get

k01 ≡ k01(n;β, ρ) =
(

1.96(1 − ρ)n−ρ/|β|)2/(1−2ρ)
. (14.16)

For levels of this type,
√
k A(n/k) → λ, finite, i.e., they are not yet optimal for the tail

index estimation through second order reduced-bias tail index estimators. However,
with a tail index estimator of the type of the ones in (14.13) and (14.14) we are safe
for all k, and the level in (14.16) has revealed to provide an interesting adaptive choice
of the threshold.
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14.3.4 Extreme quantile or VaR estimation

We shall now consider the alternative VaRp estimators Q
(p)

H
and Q

(p)
ML, with Q

(p)
γ̂ , H

and ML given in (14.2), (14.13) and (14.14), respectively. Under the same conditions
as before, i.e., under conditions (14.3), (14.5) and provided that ln(k/(np)) = o(

√
k)

and limn→∞
√
k A(n/k) = λ, finite, if we work with any of the reduced-bias tail index

estimators H or ML, generally denoted T , we get
√
k
(

Q(p)
T

(k)/VaRp − 1
)

/ ln(k/(np)) d−→
n→∞ Normal

(

0, γ2
)

,

even when λ �= 0. Note that with a “classical” reduced-bias tail index estimator, i.e.,
a tail index estimator of the type of the ones used for quantile estimation in Gomes
and Figueiredo (2006), we were able to also get a null bias, but at expenses of a higher
asymptotic variance.

14.3.5 Asymptotic CI’s for VaRp on the basis of reduced-bias estimators

Whenever working with Q
T
, with T denoting either H in (14.13) or ML in (14.14),

levels k such that
√
k A(n/k) → λ, finite, and with UCL

T
given in (14.15), we shall

use the CI,
(

LCLQ
T
, UCLQ

T

)

= Q
T
×
(

(k/(np))−
1.96 UCL

T√
k , (k/(np))

1.96 UCL
T√

k

)

. (14.17)

14.4 An Algorithm for Semi-Parametric Tail Estimation

We propose the following algorithm:

1. Given a sample (X1, X2, · · · , Xn), and for k = 1, 2, · · · , n0, with n0 the number of
positive values in the sample, plot, for τ = 0 and τ = 1, the estimates

ρ̂τ (k) := min
{

0,
(

3(T (τ)
n (k) − 1)

)

/
(

T (τ)
n (k) − 3

)}

, (14.18)

where, with M
(j)
n (k) := 1

k

∑k
i=1 {lnXn−i+1:n − lnXn−k:n}j , j = 1, 2, 3, and the

notation abτ = b ln a whenever τ = 0,

T (τ)
n (k) :=

(

M
(1)
n (k)

)τ

−
(

M
(2)
n (k)/2

)τ/2

(

M
(2)
n (k)/2

)τ/2

−
(

M
(3)
n (k)/6

)τ/3
, τ ∈ �.

2. Consider {ρ̂τ (k)}k∈K, for large k, say k ∈ K =
([

n0.995
0

]

,
[

n0.999
0

])

, and compute
their median, denoted χτ . Next choose the tuning parameter

τ∗ := arg min
τ

∑

k∈K
(ρ̂τ (k) − χτ )2 .



14 Tail Behaviour: An Empirical Study 201

3. Work then with (ρ̂τ∗ , β̂τ∗) := (ρ̂τ∗(k1), β̂ρ̂τ∗ (k1)), where,

k1 =
[

n0.995
0

]

, (14.19)

and

β̂ρ̂(k) :=
(

k

n

)ρ̂
dk(ρ̂) Dk(0) −Dk(ρ̂)
dk(ρ̂) Dk(ρ̂) −Dk(2ρ̂)

, dk(α) :=
1
k

k
∑

i=1

(i/k)−α, (14.20)

being Dk(α) and ρ̂τ (k) given in (14.14) and (14.18), respectively.
4. Plot the classical Hill estimates H(k), given in (14.4), and adaptively consider

H(k̂H
0 ), k̂H

0 = kH
0 (n; β̂τ∗ , ρ̂τ∗), kH

0 (n;β, ρ) given in (14.9), together with the 95%
approximate CI, (LCLH (k̂H

0 ), UCLH (k̂H
0 )), given in (14.8) for a general k.

5. Plot also the reduced-bias tail index estimates H ≡ Hτ∗(k) and ML ≡ MLτ∗(k),
associated to the estimates (ρ̂τ∗ , β̂τ∗) obtained in step 3. Adaptively consider
H(k̂01), ML(k̂01), k̂01 = k01(n; β̂τ∗ , ρ̂τ∗), k01(n;β, ρ) given in (14.16), and with T

standing either for Hτ∗ or MLτ∗, obtain the 95% CI (LCL
T
(k̂01), UCL

T
(k̂01)),

provided in (14.15) for a general k.
6. Choose the tail index estimate providing the smallest 95% confidence size. Let us

denote Γ the associated estimator (either H , H or ML).
7. Plot the classical VaR estimates QH (k), with Qγ̂(k) and H given in (14.2) and

(14.4), respectively, and adaptively consider Q
H

(k̂
Q

H
0 ), where k̂

Q
H

0 = k
Q

H
0 (n, p; β̂τ∗ ,

ρ̂τ∗), with k
Q

H
0 (n, p;β, ρ) given in (14.10). Consider also the approximate CI,

(LCLQ
H

(k̂
Q

H
0 ), UCLQ

H
(k̂

Q
H

0 )), given in (14.11) and in (14.12) for a general k;
8. If the estimator Γ chosen in step 6. is one of the reduced-bias estimators, plot

Q
(p)
Γ (k) and adaptively consider Q

(p)
Γ (k̂01), k̂01 = k01(n; β̂τ∗ , ρ̂τ∗), with k01(n;β, ρ)

given in (14.16), together with the CI in (14.17) at k = k̂01.

Remark 2. For asymptotic and finite sample details on the estimators of ρ in (14.18), see
Fraga Alves et al. (2003). The estimator of β in (14.20) has been introduced in Gomes
and Martins (2002), where conditions that enable its asymptotic normality have been
set, whenever ρ is estimated at a level k1 of a larger order than the level k used for
the estimation of β. Details on the asymptotic distribution of β̂ρ̂(k)(k) may be found
in Gomes et al. (2004).

Remark 3. Steps 1 and 2 of the algorithm lead in almost all situations to the tuning pa-
rameter τ∗ = 0 whenever |ρ| ≤ 1 and τ∗ = 1, otherwise. Such an educated guess usually
provides better results than a possibly “noisy” estimation of τ , and it is highly recom-
mended in practice. For details on this and similar algorithms for the ρ-estimation, see
Gomes and Pestana (2007b).

14.5 The Use of a Parametric Quantile Method in Tail Index
and Quantile Estimation

Castillo and Hadi (1994, 1995) introduced a percentile (P ) method for the estimation
of parameters and quantiles of the Extreme-Value (EV ) d.f., given by EVγ(x) :=
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exp(−(1 + γx)−1/γ), 1 + γx > 0, γ ∈ �. Whenever γ > 0, i.e., whenever we are dealing
with heavy-tailed models, the EVγ parent is usually called Fréchet. Here, we shall work
with a standard Fréchetγ d.f., F (x) = exp

(− x−1/γ
)

, x ≥ 0. Apart from the Fréchet,
we shall work with Generalized Pareto GP parents, with d.f. F (x) = 1− (1 + γx)−1/γ ,
x ≥ 0.

The estimation procedure considered by Castillo and Hadi consists of a two-stage
P -method. In a first stage we obtain initial estimates γ̂ijr of γ, applying the P -method,
through the use of the o.s., xi:n, xj:n and xr:n, the quotient (xj:n − xr:n)/(xi:n − xj:n)
and the bisection method. We fix the levels i = 1 and r = n and, in a second stage,
compute the median of the (n − 2)-vector of estimates γ̂1jn, j = 2, · · · , n − 1. The
final estimate is denoted γ̂

P
. The estimate of the quantile of probability 1 − p is then

χ̂(p)
P

:= (− ln(1−p))−γ̂
P for Fréchet models and χ̂(p)

P
:= (p−γ̂

P −1)/γ̂
P

for GPγ models.
We shall proceed here to a small-scale Monte Carlo comparison of the tail index

P -estimators with Hill’s estimator computed at the estimated value of kH
0 in (14.9),

as well as with the reduced-bias estimators H and ML, in (14.13) and (14.14), re-
spectively, both computed at the estimated value of k01 in (14.16). The simulation
results were obtained on the basis of 1000 runs, from the above mentioned parents
with γ = {0.2, 0.5, 1 and 2} and samples of size n = 1000. The estimates obtained
are summarized in table 14.1. The values in brackets are the simulated mean squared
errors (MSE) for each estimator and each value of γ. The underlined values are the
ones providing minimum squared bias, that correspond in all cases to minimum MSE.

The ln-V aRp-estimates presented in table 14.2 have been obtained again on the
basis of 1000 runs, for the same parents as before, for sample size n = 1000 and
p = 0.001. Once again the values in brackets are the simulated MSE’s for each estimator
and each value of γ and the underlined values are the ones leading to minimum bias,
again correspondent to minimum MSE.

Tables 14.1 and 14.2 clearly show, overall, that the P -estimators of tail index and
high quantiles are, for Fréchet parents, better than any of the adaptive semi-parametric
estimators. Indeed, apart from quantile estimation for γ = 2, they exhibit simul-
taneously minimum bias and minimum MSE. For other parents, things may work

Table 14.1. Simulated mean values (mean squared errors) of the γ-estimators under
comparison

γ 0.2 0.5 1.0 2.0

Fréchetγ parent: (ρ = −1)

γ̂P 0.2003 (1.3E-7) 0.5000 (7.2E-8) 0.9987 (1.8E-6) 1.9934 (4.3E-5)

H(k̂H
0 ) 0.2228 (5.2E-4) 0.6282 (0.0164) 1.1420 (0.0203) 2.2210 (0.0488)

H(k̂01) 0.2103 (1.1E-4) 0.5779 (0.0061) 1.0048 (2.3E-5) 2.0689 (0.0047)

ML(k̂01) 0.2101 (1.0E-4) 0.5763 (0.0058) 1.0077 (6.0E-5) 2.0528 (0.0028)

GPγ parent: (ρ = −γ)

γ̂P 0.3748 (0.0313) 0.6120 (0.0129) 1.0418 (0.0018) 1.9488 (0.0027)

H(k̂H
0 ) 0.4391 (0.0572) 0.5638 (0.0041 1.0773 (0.0060) 2.3532 (0.1247)

H(k̂01) 0.4031 (0.0413) 0.5531 (0.0028) 1.0021 (4.5E-6) 1.9496 (0.0025)

ML(k̂01) 0.3987 (0.0395) 0.5484 (0.0023) 0.9932 (5.6E-5) 1.9600 (0.0016)
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Table 14.2. Simulated mean values (mean squared errors) for the different estimators of
lnV aRp under comparison, p = 0.001

γ 0.2 0.5 1.0 2.0

Fréchetγ parent: (ρ = −1)

ln-V aRp 1.3815 3.4536 6.9073 13.8145

ln χ̂(p)
P

1.3835 (6.4E-6) 3.4539 (3.5E-6) 6.8986 (8.6E-5) 13.7691 (0.0021)

ln QH(k̂
QH
0 ) 1.5364 (0.0240) 4.0833 (0.3965) 7.5201 (0.3756) 14.8708 (1.1157)

lnQH (k̂01) 1.4247 (0.0019) 3.7841 (0.1092) 6.7719 (0.0183) 13.8907 (0.0058)

ln QML(k̂01) 1.4237 (0.0018) 3.7744 (0.1029) 6.7888 (0.0140) 13.8004 (2.0E-4)

GPγ parent: (ρ = −γ)

ln-V aRp 2.7017 4.1149 6.9068 13.1224

ln χ̂(p)
P

3.4934 (0.6449) 4.7045 (0.3581) 7.1547 (0.0636) 12.7949 (0.1097)

ln QH(k̂
QH
0 ) 2.8574 (0.0242) 4.7683 (0.4270) 7.1303 (0.0500) 14.6295 (2.2713)

lnQH (k̂01) 2.7728 (0.0050) 4.0123 (0.0105) 6.7724 (0.0180) 12.8383 (0.0807)

ln QML(k̂01) 2.7503 (0.0024) 4.0156 (0.0099) 6.7264 (0.0325) 12.8971 (0.0507)

differently. For instance, for GP parents, the reduced-bias estimators have an overall
better performance. Also, we cannot forget that we are comparing two different ap-
proaches on quantile and tail index estimation, and we are not being totally fair to the
semi-parametric approach. Indeed in a parametric context, like the one in this simula-
tion study, we would expect to observe a even higher performance of the P -estimators,
specifically devised for a specific model. Note further that, both in terms of minimum
squared bias and minimum MSE, the choice of either H(k̂01) or ML(k̂01) has always
led to a better performance than the one achieved by H(k̂H

0 ). This is thus a point in
favor of the reduced-bias estimators here proposed.

14.6 Financial Data Analysis

14.6.1 Second order parameter estimation

The number of positive log-returns of the EGBP data is n0 = 835. The sample paths of
the ρ-estimates associated to τ = 0 and τ = 1 lead us to choose the estimate associated
to τ = 0, on the basis of any stability criterion for large k, like the one in step 2 of
the algorithm. The estimates obtained are

(

ρ̂0, β̂0

)

= (−0.686, 1.047). In figure 14.1,
for the EGBP data, we picture the sample paths of the estimators of the second order
parameters.

14.6.2 Tail index and V aRp estimation

The sample paths of the classical Hill estimator H in (14.4), the second order reduced-
bias tail index estimators H0 = H β̂0,ρ̂0

and ML0 = MLβ̂0,ρ̂0
, provided in (14.13)

and (14.14), respectively, as well as the associated Varp estimators, for p = 0.001, are
pictured in figure 14.2.
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Figure 14.1. Estimates of ρ, through ρ̂τ (k) in (14.18), τ = 0 and 1 (left) and of β, through
β̂ρ̂0(k) in (14.20) (right), for the positive log-returns on EGBP data
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Figure 14.2. Estimates provided through H , H0 and ML0 in (14.4), (14.13) and (14.14)
(left) and the associated ln-VaRp estimates, for the positive log-returns on EGBP data and
p = 0.001

From a theoretical point a view the chosen estimate in step 6 of the algorithm should
be H0(k̂01) or ML0(k̂01). Indeed, for this data set, we have been led to the choice
ML0(k̂01). Relevant characteristics, related to both tail index and quantile estimates
are presented in table 14.3.

14.6.3 Graphical illustration of the adaptive threshold choice for tail index
and V aR estimation

In figure 14.3 (left) we illustrate graphically steps 4-6 in the algorithm, for the data
set under analysis. Figure 14.3 (right) exhibits steps 7-8, in the algorithm. Again, the
VaR0.001 estimate is denoted χ̂0.999 and is associated to ML0.
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Table 14.3. Estimates of the different parameters characterising the tail behaviour of the
data set

(k̂H
0 , k̂01) = (65, 130) H(k̂H

0 )) = 0.286 H0(k̂01) = 0.291 ML0(k̂01) = 0.288

(LCL•, UCL•) (0.211,0.332) (0.249, 0.352) (0.246, 0.346)

k̂
Q

H
0 = 47 Q

H
(k̂

Q
H

0 ) = 2.803 Q
ML

(k̂01) = 2.808

(LCLQ• , UCLQ•) (1.726, 3.729) (2.077, 3.796)

14.6.4 The use of a percentile method in quantile estimation

The direct application of the P -method in Section 14.5 to the data set has not been
successful, in the sense that we could not adequately fit to the data a model with a
closed form for the quantile function. The better fit has been provided by Student-t
models, and for such models the P -method is computationally expensive and not at all
promising.

We have here used a mixed technique based upon the percentile P -method in
Castillo and Hadi, but estimating γ only on the basis of high quantiles of prob-
ability 1 − p = 0.9, 0.95, 0.975, 0.990 and 0.995. On the basis of the approxima-
tion in (14.1), or equivalently the approximation U(t) = Ctγ , the use of any pair
of p-values, (p1, p2), in the above mentioned set, enables us to get γ-estimates,
γ̂•

P
:= − ln

(

X[n(1−p1)]+1:n/X[n(1−p2)]+1:n

)

/ ln
(

p1/p2

)

. The median of these estimates,
denoted γ̂∗

P
, was then considered as the overall estimate of γ provided by this tech-

nique. The estimation of C through the percentile method led us to very large esti-
mates of C, based upon estimates ĈP := X[n(1−p1)]+1:n(p1)

γ̂∗
P , very large high quan-

tile estimates, and was consequently discarded. We have then used a least squares
technique based on the points

(

qi = − ln(1 − i/(n + 1)), (lnXn−i+1:n − lnC)/γ̂∗
P

)

,
for large i, getting an estimate Ĉ

LS
. A high quantile of probability 1 − p is then

estimated through χ̂∗
P

= Ĉ
LS

p−γ̂∗
P . The estimates of γ, C and χ0.999 provided

by this method are now summarised, together with the estimates obtained through
the Hill estimator H and the ML0 estimator,

(

γ̂
H
, γ̂

ML0
, γ̂∗

P
, Ĉ

LS
, χ̂H , χ̂ML0 , χ̂

∗
P

)

=

130 0
130 0,356

65 0
65 0,286
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Figure 14.3. Confidence intervals for γ (left) and VaRp, p = 0.001 (right) (EGBP data)
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(0.30, 0.29, 0.32, 0.283, 2.80, 2.83, 2.60). From these results we see that, in this case, the
percentile method seems to provide a slight overestimation of the tail index and un-
derestimation of high quantiles. When we compare the methodologies in what regards
the size of associated CI ′s, the method based on reduced-bias tail index estimation
seems indeed to be, among the techniques considered in this paper, the one providing
the best results.
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An Example of Real–Life Data Where the Hill

Estimator is Correct

Rolf–Dieter Reiss and Ulf Cormann

Department of Mathematics, University of Siegen, Germany

Abstract: We assume that the normalized excesses over a fixed threshold are dis-
tributed according to a Pareto distribution with unknown shape and scale parameters.
If the scale parameter is equal to one, then the famous Hill estimator is the maxi-
mum likelihood estimator and, therefore, the asymptotically optimal estimator for the
shape parameter. Otherwise, the performance of the Hill estimator can be very bad.
We present a real-life data set where is evidence that the 1–parameter modeling can be
justified. Within the 2–parameter model, we apply the maximum likelihood estimator
and modifications of an estimator proposed in Castillo and Hadi (1997).

Keywords and phrases: Exceedances, Hill estimator, modified Pickands estimators,
Pareto models, plankton species data, heavy tails

15.1 Introduction

If the original data are distributed according to a random variable X with distribution
function (df) F , then the exceedances over a threshold u are distributed according to
the exceedance df

F [u](x) = P (X ≤ x|X > u)

=
F (x) − F (u)

1 − F (u)
, x ≥ u.

Notice that F [u] is the truncation of F left of the threshold u.
The possible continuous, limiting dfs of the exceedance dfs F [u], as u goes to the right

endpoint of the support of F , are the generalized Pareto dfs (GPDs) with real-valued
shape parameter γ which is called the tail index. This is the mathematical justification
for the replacement of the actual df F [u] by some GPD, where, in addition, location
and/or scale parameters μ and σ must be added.

Despite the nice mathematical theory, one has to justify the use of GPDs in sta-
tistical analysis either by applying a goodness–of–fit test or by finding some empirical
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evidence for this choice of parametric dfs. In the next step, statistical inference for the
actual dfs may be carried out within a parametric model of GPDs. The present article
is focused on those GPDs that possess a heavy upper tail and, therefore, we merely deal
with Pareto dfs with tail indices γ > 0. We refer to the books by Reiss and Thomas
(1997) and Falk et al. (1994) for a practical and theoretically oriented introduction to
exceedances and GPDs.

For estimating the heavy tailed Pareto dfs, theoretically oriented probabilitists and
statisticians prefer the Hill estimator because of its simple structure, which facilitates
the verification of mathematical results. In addition, this is the maximum likelihood
estimator with respect to a restricted Pareto model, cf. (15.1) and (15.3). This makes
the Hill estimator also attractive for practitioners. However, this can have serious con-
sequences if the choice of the restricted Pareto model is unsuitable.

The article is organized as follows: in Section 15.2 we introduce the restricted and
the full Pareto model for normalized excesses, and explain in Section 15.3 why the Hill
estimator has such poor performance within the full Pareto model. In Section 15.4 we
introduce certain scale–invariant estimators for the tail index γ > 0 and estimators
of the scale parameter which are related to those in Pickands (1975) and Castillo and
Hadi (1997). In Section 15.5 we analyze a data set that is exceptional in two directions:
Firstly, the use of the Hill estimator can be justified and, secondly, an estimate γ̂ > 0.5
of the tail index is obtained which yields that the underlying df possesses very heavy
tails. The article is concluded in Section 15.6 with some remarks about the performance
of different modified Pickands estimators and computational aspects.

15.2 The Pareto Modeling

If the statistical inference for the upper tail of a distribution is based on the exceedances
xi, i = 1, . . . , k, over a threshold u > 0, then one basic statistical model is that of Pareto
dfs

Hγ(x/u) = 1 − (x/u)−1/γ , x ≥ u, (15.1)

where γ > 0 is called the tail index. By taking xi/u in place of xi one gets the statistical
model of dfs

Hγ(x) = 1 − x−1/γ , x ≥ 1.

Alternatively, one may consider the normalized excesses

yi = (xi − u)/u (15.2)

which correspond to the dfs

Fγ(x) = 1 − (1 + x)−1/γ , x ≥ 0. (15.3)

One gets the full Pareto model for the normalized excesses yi by adding a scale
parameter σ > 0. This model consists of the dfs

Fγ,σ(x) = 1 − (1 + x/σ)−1/γ , x ≥ 0. (15.4)

We also note the pertaining quantile function
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F−1
γ,σ(q) = σ

(

(1 − q)−γ − 1
)

, 0 < q < 1, (15.5)

which will be used in Section 15.4 for the construction of modified Pickands estimators.
We remark that a continuous parametrization of the unified GPD family with real

tail index γ is achieved by dfs of the form

Wγ(x) = 1 − (1 + γx)−1/γ for

⎧

⎨

⎩

0 < x, γ > 0;
if

0 < x < 1/|γ|, γ < 0.
(15.6)

where, in addition, W0(x) = limγ→0 Wγ(x) is the exponential df. For γ > 0 one again
gets Pareto dfs, and for γ < 0 one has to deal with certain beta dfs.

The use of Pareto dfs in the form (15.4) can facilitate the construction of estimators
as, e.g., in Castillo and Hadi (1997) and in the subsequent Section 15.4, or in Reiss and
Thomas (1999) in conjunction with certain Bayesian estimators.

15.3 The Hill Estimator

An estimator for the tail index γ > 0 of Pareto dfs proposed by Hill (1975)—based on
the exceedances xi over a threshold u—plays an important role within the statistical
extreme value theory. This estimator has the simple form

γH =
1
k

k
∑

i=1

log
xi

u
. (15.7)

We will shortly explain the behavior of the Hill estimator within the enlarged model
(15.4). The Hill estimator, expressed by the normalized excesses yi in (15.2), is given
by

γH =
1
k

k
∑

i=1

log
xi

u
=

1
k

k
∑

i=1

log(1 + yi)

which is closely centered around the unknown tail index γ according to the excellent
performance of the Hill estimator with respect to the models (15.1) and (15.3), respec-
tively.

If a scale parameter σ > 0 is included as in (15.4), then one observes the data

zi = σyi, (15.8)

and the Hill estimator based on the zi is of the form

γH =
1
k

k
∑

i=1

log(1 + zi) =
1
k

k
∑

i=1

log(1 + σyi).

One realizes that the Hill estimator is not invariant under the scale parameter σ
which entails that the performance can be poor if σ �= 1. If σ > 1 (σ < 1) then one
overestimates (underestimates) the tail index γ.
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Thus, the Hill estimator is “correct” if the restricted Pareto model (15.3) is correct.
If this is not the case, there is the possibility of carrying out the statistical inference with
estimators tailored for the enlarged model (15.4) of Pareto dfs where a scale parameter
is added.

For a further discussion of the poor performance of the Hill estimator we refer
to Reiss and Thomas (1997), pages 117 and 149 in the 1st edition, pages 143–144 in
the 2nd edition (the latter reference includes an illustration of simulated densities of
the Hill estimator as presented by the first author at the Gothenburg meeting about
Extremes—Risk and Safety in the year 1998), and to Fraga Alves (2001).

15.4 Modified Pickands Estimators

In view of the discussion in Section 15.3 we define estimators of the tail index γ that
are invariant under the scale parameter σ. We make use of estimators which can be
represented in a closed form based on certain order statistics.

For the Pareto quantile function F−1
γ,σ in (15.5) the following two equations hold:

log

(

F−1
γ,σ(q2) − F−1

γ,σ(q1)

F−1
γ,σ(q1)

)/

log(1/a) = γ (15.9)

and
(

F−1
γ,σ(q1)

)2

F−1
γ,σ(q2) − 2F−1

γ,σ(q1)
= σ (15.10)

for q1 = 1 − a, q2 = 1 − a2 and 0 < a < 1 (cf. also Reiss and Thomas (1997), pp. 118,
for this choice of values qi).

Therefore, one may deduce closed–form estimators of γ and σ for each 0 < a < 1
by plugging in appropriate order statistics. Let

γ̂a = log
(

zj(a,k):k − zi(a,k):k

zi(a,k):k

)/

log(1/a) (15.11)

and

σ̂a =
z2

i(a,k):k

zj(a,k):k − 2zi(a,k):k
(15.12)

where i(a, k) = [k(1 − a)] and j(a, k) = [k(1 − a2)].
For a = 1/2 one gets the Pickands (1975) estimators. Convex combinations of several

Pickands estimators were studied by Falk (1994) and Drees (1995). Likewise one may
take the median of such estimators as it was done by Castillo and Hadi (1997). In the
latter article, the estimators are established as numerical solutions of certain equations,
cf. (15.16), with the Pickands estimators mentioned as special cases.

We make use of the medians

γMP = median{γ̂a(i) : i = [k/4], . . . , [3k/4]} (15.13)

and
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σMP = median{σ̂a(i) : i = [k/4], . . . , [3k/4]} (15.14)

where the a(i) are given by i = k(1− a(i)) for i = 1, . . . , k. Thus, we have i(a(i), k) = i
in (15.11) and (15.12). We refer to Section 15.6 for a discussion about this choice of
initial estimators γ̂a(i) and σ̂a(i).

It is apparent that the estimators γ̂a and γMP of γ are invariant under the scale
parameter σ.

15.5 Analyzing the Long Term Copepod Data

We continue the analysis in the article by Schmitt et al. (2006) of certain copecod data
where the Hill estimate of the tail index γ is applied, giving the value γ̃H = 0.8. This
indicates an extraordinary case in so far that for tail indices γ > 0.5 the pertaining
Pareto distribution does not possess a finite variance.

15.5.1 The data set

The data are deduced from weekly measurements of the abundance of a plankton species
(a copepod called Centropages typicus) from January 1967 to December 1997 in the
Villefranche Bay near Nice, France. The samples were collected by Serge Dallot using
a Juday-Bogorov net and the countings were done by Juan Carlos Molinero. Countings
were separately made for females and males. The data set mentioned above concerns
the product of the countings for females and males. This product is an index for the
mating encounter rate, which is regarded as a critical issue in plankton ecology.

The data set is of size n = 1353. The data range from 0 to 908,782. According
to the visual insight gained from Q–Q–plots, sample excess functions and diagrams
of estimates we choose a threshold u = 34, 000 which entails a number of k = 100
exceedances x1, . . . , x100. The data set, which has to be analyzed, therefore consists of
the normalized excesses yi = xi/34, 000− 1.

15.5.2 Parametric estimates for the copepod data

Based on the yi one gets the Hill estimate γH = 0.84 (it is understood that σ = 1)
and the modified Pickands estimates γMP = 0.78 and σMP = 1.08. The latter estimate
indicates that the underlying df is sufficiently close to the restricted Pareto model
(15.3) so that the Hill estimate of γ can be correct. The estimates γH and γMP are
sufficiently close together and confirm the estimate γ̃H = 0.8 in Schmitt et al. (2006).
The maximum likelihood estimates in the 2-parameter model are γML = 0.68 and
σML = 1.43, which is within a reasonable agreement with the previous estimates.

It is remarkable that there is a strong evidence of a df with a tail index γ > 0.5.
This incident occurs for the first time to the 1st author after having analyzed a greater
number of data sets from finance, hydrology, insurance, telecommunication, ecology,
etc. There are rumours that there are real–life data (business interruption and, as
recently mentioned in a talk by Paul Embrechts, operational risk data in an Italian
bank) having such very heavy tails, yet these data are not available to the public.
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15.5.3 Median excess functions

This above mentioned evidence is supported by empirical investigations. In the follow-
ing lines we compare parametric excess functions pertaining to the Hill estimate and
the modified Pickands estimates to a sample excess function. The excess df above the
threshold u, pertaining to a df F , is

F (u)(x) = F [u](u + x), x ≥ 0.

The mean and median excess functions are given by the means and, respectively,
medians of excess dfs as functions in u. Because the present data set is related to a
very heavy–tailed df we merely deal with the median excess function

mF (u) =
(

F (u)
)−1

(1/2), u > 0. (15.15)

Excess functions of GPDs are straight lines. For the df Fγ,σ in (15.4) one gets the
median excess function

mFγ;σ(u) = σ(2γ − 1)(1 + x/σ), u > 0.

A sample version of the median excess function is obtained by plugging in the sample
df.

In figure 15.1, one realizes that there is a good correspondence between the esti-
mated parametric and the sample median excess functions.

When looking at the plots in figure 15.1 one should keep in mind that 56 (re-
spectively, 80) excesses out of total number of n = 100 excesses are smaller than 1
(respectively, smaller than 3). One cannot expect that sample excess functions are
smooth in the upper range because they are neither monotone nor close to a constant
(like sample dfs or sample densities).

We remark that Q–Q–plots, in conjunction with estimated tail indizes and unknown
location and scale parameters, support the previous conclusions.

0.0 1 2 3 4 5 6 7 8 9
0.0

5

10

Figure 15.1. Median excess functions: sample version, Hill (solid) and modified Pickands
(dashed) based on 100 normalized excesses
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15.6 Computational Aspects

As mentioned above, the modified Pickands estimates in (15.13) and (15.14) applied
to the normalized excesses of the copepod data are 0.78 for γ and 1.07 for σ. These
estimates are based on pairs (yi:k, yj:k) with i between [k/4] and [3k/4] and j satisfying
a certain condition.

The choice [k/4] ≤ i ≤ [3k/4] was made because simulations show that the initial
estimators in (15.11) and (15.12) are inaccurate if i is too close to 1 or k. The plot
of simulated medians of γ̂a(i) against i is downward U–shaped, below γ and near to
γ for �1/4 k� ≤ i ≤ �3/4 k�. As a consequence the estimator γMP in (15.13) has a
tendency to underestimate γ. Because our estimator is given in a closed form it should
be possible to construct an improved version of this estimator. The estimator σMP in
(15.14) of σ is amazingly accurate.

Castillo and Hadi (1997) study in detail the case of negative tail indices γ. We
briefly mention the required modifications to get estimators for positive γ. From
Fγ,σ(F−1

γ,σ(q)) = q, 0 < q < 1, one gets the equations

log(1 + F−1
γ,σ(q)/σ) = −γ log(1 − q) (15.16)

which yield the equations (15.9) and (15.10) for the specific choice of values q1 and q2.
To get the estimator in Castillo and Hadi (1997),

• plug in the order statistics yi:k and yj:k in place of F−1
γ,σ(qi) and F−1

γ,σ(qj), with
qi = i/(k + 1) and qj = j/(k + 1), for each pair i < j;

• compute numerical solutions of each pair of equations in order to get initial estimates
of γ and σ,

• establish the final estimator by taking again the median of the initial estimates.

For the copepod data, the Castillo–Hadi estimates are 0.85 for γ and 1.04 for σ.

Acknowledgements. Thanks are due to François Schmitt for providing the copepod
data and to Marie–Françoise Barme for organizing the “Extreme Days” meeting in
Lille which enabled a discussion with François Schmitt about the capepod data and
the Hill estimator.
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Birkhäuser, Basel (2nd ed. 2001). With Academic Xtremes included on CD-ROM.

Reiss, R. D., and Thomas, M. (1999). A New Class of Bayesian Estimators in Excess–
Of–Loss Reinsurance. Astin Bulletin, 29:339–349.

Schmitt, F. G., and Molinero, J. C., and Brizard, S. Z. (2006). Nonlinear Dynamics and
Intermittency in a Long Term Copepod Time Series. Communications in Nonlinear
Science and Numerical Simulations, in press.



Part VI

Business and Economics Applications



16

Deriving Credibility Premiums Under Different

Bayesian Methodology
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Spain

Abstract: Credibility theory is a set of quantitative methods that allows an insurer to
adjust future premiums based on past experience. Generally, the credibility expression
obtained is written as a weighted sum of the sample mean and the collective premium,
the premium to be charged to a collective of policyholders in a portfolio. The weighted
factor is referred to as the credibility factor. In this paper, a review of credibility
theory is presented and new credibility formulae are obtained in a simple and extensive
Bayesian methodology.

Keywords and phrases: Credibility, Bayes, loss function, premium, regret

16.1 Introduction

Credibility theory is an experience rating technique in actuarial science used usually
in automobile insurance, worker’s compensation premium, loss reserving and IBNR
(Incurred But Not Reported) claims to the insurer–where credibility theory can be
used to estimate the claim size amount. Experience rating is the process whereby the
experience of an individual risk is used to calculate the premium rate for that individual.
Under this theory, the premium for an individual risk is computed by combining the
experience of the individual (contract or policyholder) with the experience of a collective
(portfolio).

In this sense, credibility theory is used to determine the expected claims experience
of an individual risk when those risks are not homogeneous, given that the individual
risk belongs to a heterogeneous collective. The main objective of the credibility theory is
to calculate the weight that should be assigned to the individual risk data to determine
a fair premium to be charged.

In credibility theory, it is assumed that the risk X ∈ X follows a probability density
function f(x|θ) depending on an unknown risk parameter θ ∈ Θ. Now the unknown
premium P ≡ P (θ), called the risk premium, can be obtained by minimizing the
expected loss Ef [L1(θ, P )], with P ∈ P , the action space. L1 is taken usually as the
weighted squared–error loss function (WLF henceforth), i.e. L1(a, x) = h(x)(x − a)2.
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Using different functional forms for h(x) we have different premium principles. For
example for h(x) = 1 and h(x) = exp{cx}, c > 0, we have the net and Esscher premium
principles respectively (Heilmann, 1989), (Gómez Déniz et al., 2006), among others.

If experience is not available, the actuary computes the collective premium, PC,
which is given by minimizing the risk function, i.e., minimizing Eπ [L1(P (θ), PC)] .
Finally, if experience is available, the actuary takes a sample x from the random vari-
ables Xi, i = 1, 2, . . . , t, assuming Xi i.i.d., and uses this information to estimate
the unknown risk premium P (θ), through the Bayes premium PB, obtained by min-
imizing the Bayes risk, i.e., minimizing Eπx [L1(P (θ), PB)]. Here, πx is the posterior
distribution of the risk parameter, θ ∈ Θ, given the sample information x.

If the practitioner uses the quadratic loss function the risk, collective and Bayes
net premiums are given by (see Eichenauer et al. (1988), Heilmann (1989) and Gómez
Déniz et al. (2006)).

P (θ) =
∫

X
xf(x|θ)dx, (16.1)

P (π) =
∫

Θ

P (θ)π(θ)dθ, (16.2)

P (πx) =
∫

Θ

P (θ)πx(θ)dθ, (16.3)

respectively.
Suppose now we have a portfolio of k policyholders. The problem of credibility

theory is how to compute a fair premium to the policyholder in class j, j = 1, . . . , k,
by using his own information and the information of the whole portfolio. The following
solution was suggested by Whitney (1918).

M c
j = Premiumj = (1 − Z)m + ZMj, (16.4)

where

• Premiumj is the credibility adjusted premium.
• m is the overall mean.
• Mj is the mean for individual risk j.
• Z is the credibility factor, a number between 0 and 1.

Under this approach, a compromise M c
j is computed by (16.4) and graphically (see

figure 16.1) we see that M c
j is somewhere on the line segment between m and Mj.

The main problem now is how to choose the credibility factor Z. In order to do this,
some useful results, which we do not present here, have been proposed: limited fluctu-
ation credibility, Hachemeister random coefficient regression model, multi–dimensional
credibility, Hilbert spaces methods, etc. The most important contribution in this matter
was proposed by Bühlmann (1967) in a simple and elegant form. This result is known

m MzMj
c

Figure 16.1. Credibility premium



16 Deriving Credibility Premiums 221

as the classical model of Bühlmann. Firstly, Bailey (1950) and later some approaches
to the credibility problem were obtained under the Bayesian methodology.

The paper is organized as follows. In Section 16.2, the classical model of Bühlmann
is presented. Credibility premiums under standard Bayesian methodology and based on
robust Bayesian analysis are showed in Section 6.3 and 16.4 respectively. New credibility
premiums are obtained under a more general loss function than the squared–error loss
in Section 16.5. Finally, some concluding remarks are made in Section 6.6.

16.2 Classical Model of Bühlmann

The idea of the Bühlmann model is to derive a premium

E (P (θ)|X1, X2, . . . , Xt) ,

based on the observations X1, X2, . . . , Xt by minimizing the squared–error loss function

E

[

P (θ) − c0 −
t
∑

r=1

Xr

]2

,

i.e., the premium is a linear function of the observed data.
Defining:

• P (θ) = E (X |θ), the risk net premium
• m = ETotal (X) = E [P (θ)], the collective net premium
• a = Var [E (X |θ)] = Var [P (θ)], the variance of the hypothetical means. It measures

the heterogeneity of the portfolio.
• s2 = E [Var (X |θ)], expected values of the process of variance

He found that

cr =
a

s2 + at
=

Z

t
,

where

Z ≡ Z(t) =
at

s2 + at
=

tVar [E (X |θ)]
tVar [E (X |θ)] + E [Var(X |θ)] , (16.5)

and c0 = [1 − Z(t)]m. Hence

E [P (θ)|X1, . . . Xt] = Z(t)X̄ + [1 − Z(t)]m.

The main advantage of this approach is that this relation does not make any as-
sumption about the type of distributions governing the individual risks or the prior
distribution function of the parameters. In actuarial science, it is said that exact cred-
ibility exists when the credibility premium has the same credibility factor as in (16.5).
Observe that Z(t) is a function of t with Z(t) → 1 when t → ∞, and Z(t) → 0 when
t → 0. Furthermore, Z(t) is a decreasing function of s2 and an increasing function of
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a. Thus, the larger the variation associated with the individual combinations of risk
characteristics is, the less weight is given to the current observations and the more
weight is given to the prior mean.

A generalization of the Bühlmann model is the Bühlmann–Straub model (see
Bühlmann (1967)), in which natural weights are assigned to the data and are allowed to
vary with time. Again, credibility premium in a distribution free approach is obtained.

16.3 Standard Bayesian Credibility

Expression (16.4) can also be thought as a compromise between the mean of the current
observations, the data, and the prior mean, an estimate based on the actuary’s prior
opinion. In this sense, that expression includes the concept of prior data, in the spirit
of the Bayesian paradigm. Bailey (1950) showed that if the likelihood is the binomial
distribution and the prior is the beta distribution, exact credibility occurs. In the same
paper, Bailey also demonstrated credibility expression in the Poisson–Gamma case.
Similar results were obtained by Mayerson (1964). Finally, Jewell (1974) generalized
these results showing that for the exponential family of distributions and its conju-
gate priors, exact credibility premiums were derived. In this case, by using the single
exponential family with parametrization,

f(x|θ) =
p(x)e−θx

q(θ)
, (16.6)

where q(θ) and p(x) are arbitrary functions such that f(x|θ) is a proper density and
the conjugate prior distribution

π(θ) =
q(θ)−t0e−θx0

c(t0, x0)
, (16.7)

Jewell (1974) proved that the Bayesian net premium is given by,

P (πx) =
x0 +

∑t
i=1 xi

t0 + t
= [1 − Z(t)]m + Z(t)x̄.

Here, Z(t) = t/(t0 + t), while m =
∫

Θ
P (θ)π(θ)dθ = x0/t0. It is easy to show that

this credibility factor admits the same formulation as the Bühlmann credibility factor
in (16.5).

Example 1. In table 16.1 some natural conjugate prior distributions are showed. Now,
using (16.1), (16.2) and 16.3) it is straightforward to show that Bayesian premiums for
the conjugate distributions in table 16.1 are given by expressions which appear in table
16.2.



16 Deriving Credibility Premiums 223

Table 16.1. Conjugate distributions

Likelihood
Prior

Posterior

X|θ ∼ Po(θ)
θ ∼ G(a, b)

G(a + t, b + tx̄)

X|θ ∼ NB(r, θ)
θ ∼ B(a, b)

B(a + tr, b + tx̄)

X|θ ∼ Bi(m, θ)
θ ∼ B(a, b)

B(a + tx̄, b + mt − tx̄)

X|θ ∼ G(θ, ν)
θ ∼ G(a, b)

G(a + tx̄, b + tν)

X|θ ∼ N (θ, σ2)
θ ∼ N (a, τ 2)

N
(

aσ2+tx̄τ2

σ2+tτ2 , σ2τ2

σ2+tτ2

)

Po: Poisson, G: Gamma, NB: Negative binomial,
Bi: Binomial, B: Beta, N : Normal

Table 16.2. Credibility premiums under net premium principle

Likelihood
Prior

P (π) P (πx) Z(t)

X|θ ∼ Po(θ)
θ ∼ G(a, b)

a
b

a+tx̄
b+t

t
b+t

X|θ ∼ NB(r, θ)
θ ∼ B(a, b)

r b
a−1

r b+nx̄
a+nr−1

rt
b+tr−1

X|θ ∼ Bi(m, θ)
θ ∼ B(a, b)

m a
a+b

m a+nx̄
a+b+mn

mt
a+b+mt

X|θ ∼ G(θ, ν)
θ ∼ G(a, b)

ν a
b−1

ν a+tx̄
b+tν−1

tτ2

a+tν−1

X|θ ∼ N (θ, σ2)
θ ∼ N (a, τ 2)

a aσ2+tx̄τ2

σ2+tτ2
tτ2

σ2+tτ2

16.4 Credibility Based on Robust Bayesian Analysis

Another approach to the Bayes setup analyzed above occurs when practitioners suppose
that a correct prior π exists, but they are unable to apply the pure Bayesian assumption,
perhaps because they are not sure or are unable to specify it totally. Thus, they assign
a prior π to the risk parameter θ, which represents a well approximation of the true
prior. This situation can also be considered when the question must be solved by two
or more decision–makers and they do not agree about the prior distribution to be used.
A common approach to prior uncertainty in Bayesian analysis is to choose a class Γ of
prior distributions and to compute the range of Bayes actions as the prior ranges over Q.
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This is known as robust Bayesian methodology. A new alternative consists of choosing
a procedure that lies between the Bayes action and the Bayes robust methodology. This
hybrid approach is known as the Γ–minimax regret principle, or the posterior regret
Γ–minimax principle (PRGM, henceforth).

If ρ(πx, P ) is the posterior expected loss of an action P under πx, the posterior
regret of P is defined as (Rı́os et al. (1995) and Zen and DasGupta (1993))

r(πx, P ) = ρ(πx, P ) − ρ(πx, P (πx)),

which measures the loss of optimality by choosing P instead of the optimal action
P (πx).

Now RP (πx) ∈ P is the PRGM action if

inf
P∈P

sup
π∈Q

r(πx, P ) = sup
π∈Q

r(πx, RP (πx)).

It is easy to show (see Rı́os et al. (1995) and Zen and DasGupta (1993)) that if we
choose h(x) = 1, i.e., the premium to be considered is the net premium principle, the
PRGM action is the midpoint of the interval

[

infπ∈Q P (πx), supπ∈Q P (πx)
]

.
The PRGM procedure is based on the line that the optimal action minimizes the

supremum of the function over distributions in class Γ . Therefore, the actuary would
be wise to ensure that the largest possible increase in risk resulting from making the
wrong choice of prior distribution should be kept as small as possible.

Suppose that (16.6) is the likelihood function and θ is a single unknown parameter,
with prior distribution (16.7), but the investigator is unable to specify completely the
parameter of this prior distribution; or perhaps two or more decision–makers may not
be agreed with the prior distribution to be used. Thus, we use the following classes of
prior distributions:

Q1 =
{

π(θ) : x(1)
0 ≤ x0 ≤ x

(2)
0 , t0 fixed

}

, (16.8)

Q2 = {π(θ) : γ1 ≤ m ≤ γ2, t0 fixed} , (16.9)

Q3 =
{

π(θ) : t(1) ≤ t0 ≤ t(2)
}

. (16.10)

Now the PRGM premiums under the classes Qj , j = 1, 2, 3 are given in the following
result.

Theorem 1. Consider the single–parameter exponential family (16.6) and the conju-
gate prior distribution (16.7), then the posterior regret Γ−minimax net premium under
Qj, j = 1, 2, 3, classes are given by:

RP (π;Qj) =
Xj +

∑t
i=1 xi

Tj + t
, j = 1, 2, 3 (16.11)

where,

X1 =
1
2

(

x
(1)
0 + x

(2)
0

)

, T1 = t0, (16.12)
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X2 =
1
2

(γ1 + γ2) t0, T2 = t0, (16.13)

X3 =
x

(1)
0 t

(1)
0 + x

(2)
0 t

(2)
0 +

(

x
(1)
0 + x

(2)
0

)

t

t
(1)
0 + t

(2)
0 + 2t

, T3 =
2t(1)0 t

(2)
0 +

(

t
(1)
0 + t

(2)
0

)

t

t
(1)
0 + t

(2)
0 + 2t

.

(16.14)

Proof. By computing infπ∈Qj P (π) and supπ∈Qj
P (π), j = 1, 2, 3, it is simple to

obtain the desired result by choosing

RP (π;Qj) =
1
2

(

inf
π∈Qj

P (π) + sup
π∈Qj

P (π)

)

.

Since closed intervals on the real line are connected sets, using Proposition 3.2 in
Rı́os et al. (1995) we can conclude that RP (π;Qj), j = 1, 2, 3, are Bayes actions.

Corollary 1. If we assume the single–parameter exponential family (16.6) and the
conjugate prior distribution (16.7) with parameters (Xj , Tj) , j = 1, 2, 3 as in (16.12),
(16.13) and (16.14) respectively, then the Bayesian premiums RP (π;Qj), j = 1, 2, 3
in (16.11) can be rewritten as a credibility formula with the credibility factor as in
(16.5).

Proof. It is simple.

The above study can be extended by using the ε–contaminated class (Rı́os et al.
(1995), Rı́os and Rı́os and Ruggeri (2000); Gómez Déniz et al. (2006); among others).
If π is the base elicited prior, the ε–contaminated class is given by

Γ ε = {g(θ) : g(θ) = (1 − ε)π(θ) + εq(θ), q ∈ Q} , (16.15)

where Q is called the contamination class.
In order to compute PRGM premiums under this class, we first need the following

result, which appears in Gómez Déniz et al. (2006).

Theorem 2. Under the ε–contaminated class Γ ε, the PRGM net premium is given by

RP (π;Γ ε) = (1 − ε)RP (πx) + εRP (qx), (16.16)

where RP (πx) is the Bayes premium obtained under πx, and RP (qx) is the PRGM
premium under the class Q given by

RP (qx) =
1
2

(

inf
q∈Q

P (qx) + sup
q∈Q

P (qx)
)

.

Consider now the following ε−contaminated class,

Γ ε
j = {g(θ) : g(θ) = (1 − ε)π(θ) + εqj(θ), qj ∈ Qj} , j = 1, 2, 3,

where Qj , j = 1, 2, 3 as in (16.8), (16.9) and (16.10), respectively. Then, we have the
following result.
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Theorem 3. If we assume the single–parameter exponential family (16.6) and the base
elicited prior (16.7) and taking the classes Γ ε

j , j = 1, 2, 3 the PRGM net premium is
given by

RP (g;Γ ε
j ) = (1 − ε)

x0 +
∑t

i=1 xi

t0 + t
+ ε

Xj +
∑t

i=1 xi

Tj + t
, (16.17)

where Xj , Tj, j = 1, 2, 3, as in Theorem 1.

Proof. It is straightforward by using Theorems 1 and 2.

Observe that this new situation can be thought of as a compromise between the
pure Bayes option (ε = 0) and the pure PRGM criterion studied (ε = 1). Intermediate
situations can be thought of as hybrid positions between the two procedures.

Next proposition is a direct consequence of Proposition 3 and by using the class Γ ε
1 .

Proposition 1. For Γ ε
1 the PRGM net premium in Theorem (3) can be written as

PΓ ε
1

M = Z(t)x + [1 − Z(t)]

[

(1 − ε)
x0

t0
+ ε

x
(1)
0 + x

(2)
0

2t0

]

, (16.18)

then is a credibility formula, with credibility factor Z(t) as in (16.5).

Proof. First, the risk premium P (θ) under the single–parameter exponential fam-
ily (16.6) and the base elicited prior (16.7), see Jewell (1974), is given by P (θ) =
−c′(θ)/c(θ). Now, using the fact that under the class Γ ε

1 the contamination distribu-

tion is as in (16.7) with parameters
(

x
(1)
0 +x

(2)
0

2 , t0

)

, we have that the risk premium is

given by

∫ −c′(θ)
c(θ)

[(1 − ε)π0(θ) + εq(θ)] dθ = (1 − ε)
x0

t0
+ ε

x
(1)
0 + x

(2)
0

2t0
.

Now, using (16.17) we have that

P
Γ ε

1
M = (1 − ε)

x0 + tx̄
t0 + t

+ ε

(

x
(1)
0 + x

(2)
0

)

/2 + tx̄

t0 + t

=
tx̄

t0 + t
+

[

(1 − ε)
x0

t0
+ ε

x
(1)
0 + x

(2)
0

2t0

]

t0
t0 + t

.

16.5 Beyond the Loss Function

In this section, generalization of the credibility premiums obtained by Heilmann (1989)
are derived by using the weighted balanced loss function (WBLF henceforth),

L2(a, x) = wh(x)(δ0 − a)2 + (1 − w)h(x)(x − a)2, (16.19)
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where 0 ≤ w ≤ 1 is a weighting factor determined by the practitioner, h(x) is a positive
weight function and δ0(X) is a function of the observed data.

WBLF is a generalized loss function introduced by Zellner (see Gupta and Berger
(1994), p. 371–390, and which appears also in Dey et al. (1999) and Farsipour and
Asgharzadhe (2004). This loss includes as a particular case the WLF, L1, when w is
chosen to equal 0.

Proposition 2. Under WBLF and prior π, the risk and collective balanced premiums
are given by

PL2(θ) = w
Ef(x|θ) [δ0(X)h(X)]

Ef(x|θ) [h(X)]
+ (1 − w)

Ef(x|θ) [Xh(X)]
Ef(x|θ) [h(X)]

, (16.20)

PL2(π) = wδ∗0 + (1 − w)
Eπ [PL2(θ)h(PL2 (θ))]

Eπ [h(PL2(θ))]
, (16.21)

respectively and where δ∗0 is a target estimator for the risk premium PL2 .

Proof. It is simple.

Now, the Bayes balanced premium PL2(πx) is obtained replacing in (16.21) π by
πx.

Now, new credibility expression is derived by using the WBLF as we show in next
result.

Theorem 4. If the Bayes net premium obtained under L1(a, x) is a credibility formula,
the Bayes balanced net premium obtained under WBLF is also a credibility formula in
the form:

PL2(π
x) = Z(t) · l (PL2(π)) + [1 − Z(t)] · l(x̄), (16.22)

where Z(t) ∈ [0, 1] and l(x) = (1 − w)2x + w(1 − w)Eπx(θ)

[

Ef(x|θ) (δ0(X |θ))]+ wδ∗0 .

Proof. Using (16.20) and (16.21) with h(x) = 1 we have that

PL2(θ) = wE [δ0(X)|θ] + (1 − w)Ef(x|θ) (X |θ)

and

PL2(π) = wδ∗0 + (1 − w)Eπ

[

wEf(x|θ) [δ0(X)|θ] + (1 − w)Ef(x|θ) (X |θ)]

= wδ∗0 + w(1 − w)Eπ

{

Ef(x|θ) [δ0(X |θ)]}

+(1 − w)2Eπ

[

Ef(x|θ)δ0(X)|θ] .

Therefore

PL2(π
x) = wδ∗0 + w(1 − w)Eπx

{

Ef(x|θ) [δ0(X)|θ] + (1 − w)2PL1(π
x)
}

.

Now, if PL1(πx) is a credibility formula in the form

PL1(π
x) = Z(t)PL1(π) + [1 − Z(t)] x̄,
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then

PL2(π
x) = wδ∗0 + w(1 − w)Eπx

{

Ef(x|θ) [δ0(X)|θ]}

+ (1 − w)2 {Z(t)PL1(π) + [1 − Z(t)] x̄}
= Z(t)

[

(1 − w)2PL1(π) + w(1 − w)Eπx

{

Ef(x|θ) [δ0(X)|θ]}+ wδ∗0
]

+ [1 − Z(t)]
[

(1 − w)2x̄ + wδ∗0 + w(1 − w)Eπx

{

Ef(x|θ) [δ0(X)|θ]}

= Z(t)l(PL2(π)) + [1 − Z(t)] l(x̄).

Finally, it is simple to derive the following corollary.

Corollary 2. If we assume the exponential family of distributions as the likelihood and
its conjugate prior, then the Bayes balanced net premium is also a credibility formula.

To end this section, we merely point out that we can obtain new a credibility formula
under WBLF and the posterior regret Γ−minimax technique.

16.6 Discussion

The results of the work presented here show that the Bayesian procedure is a rich
and flexible method to obtain credibility premiums whose results are attractive for the
community of actuaries. For decades, standard Bayesian methodology has been used
to derive, under appropriate conjugate families, credibility formulae.

In this paper, first we have showed that by combining standard Bayesian and global
robust analysis, new credibility formulae can be derived. Obviously, this study can be
extended to other classes of distributions instead of the one used here. Second, we
have used the WBLF to obtain new credibility premiums richer than the previous ones
because they include more parameters than the classical credibility premiums. The
methodology used here is very simple, and credibility formulas are straightforwardly
obtained.

Obviously, these techniques can be extended to other premium calculation prin-
ciples, such as the Esscher or variance, see Heilmann (1989) for details. Finally, a
distribution free approach similar to the classical Bühlmann’s model can be made by
using the WBLF.
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Gómez Déniz, E., Pérez, J.M., and Vázquez, F.J. (2006). On the use of posterior

regret Γ−minimax actions to obtain credibility premiums. Insurance: Mathematics
and Economics, 39:115–121.

Heilmann, W. (1989). Decision theoretic foundations of credibility theory. Insurance:
Mathematics and Economics, 8(1):77–95.

Jewell, W.S. (1974). Credible means are exact Bayesian for exponential families. Astin
Bulletin, 8(1):77–90.

Mayerson, A.L. (1964). A Bayesian view of credibility. Proceedings of the Casualty
Actuarial Society, 51:85–104.

Rı́os, D., and Ruggeri, F., and Vidakovic, B. (1995). Some results on posterior regret
Γ–minimax estimation. Statistics & Decisions, 13:315–331.

Rı́os, D., and Ruggeri, F. (2000). Robust Bayesian Analysis. Lecture Notes in Statistics,
Springer, New York.

Whitney, A. (1918). The theory of experience rating. Proceedings of the Casualty
Actuarial Society, 4:274–292.

Gupta, S.S., and Berger, J.O. (1994). Statistics Decision Theory and Related Topics.
Springer, New York.

Zen, M.M., and DasGupta, A. (1993). Estimating a binomial parameter: is robust
Bayes real Bayes? Statistics & Decisions, 11:37–60.



17

The Influence of Transport Links on Disaggregation

and Regionalization Methods in Interregional
Input-Output Models Between Metropolitan

and Remote Areas

Fernando Escobedo1 and Jose M. Ureña2

1 Department of Building and Civil Engineering, University of Castilla-La Mancha, Spain
2 Department of Geography, City and Regional Planning, University of Cantabria, Spain

Abstract: This paper expounds a new method of regionalization and disaggregation,
based on potential methods, which takes into account the Gross Added Value of each
economic sector in every region and the transport infrastructure used by those, empha-
sizing the high speed train and air transport infrastructures. This method is specially
suitable for input-output analysis between regions that are linked by a few means of
transportation. The method is developed for an Interregional Input-Output Analysis of
two regions and then applied for Ciudad Real and Madrid Provinces in Spain. The data
come from the Castilla La Mancha (Region which includes Ciudad Real Province) and
Madrid Province Input-Output Tables of 1995 and 1996, respectively, and as a result of
the contrast between both tables an Interregional Input-Output Table of twenty-seven
economic sectors is created. Finally one of the main conclusions is that the method
depends largely on the availability of the data of Gross Added Value and its level of
disaggregation.

Keywords and phrases: Input-output analysis, regionalization methods, disaggre-
gation methods, peripheral areas, metropolitan areas, high speed transport infrastruc-
tures

17.1 Introduction

It is known that the development of interregional input-output models entails many
more difficulties than a single region model would. One of the main difficulties is to
obtain the non-diagonal submatrixes that express the economic exchanges between the
regions that take part in the model. The achievement of those submatrixes usually takes
a double process of regionalization and disaggregation of already existing input-output
tables, and those processes involve a certain amount of error, Lahr and Stevens (2002).
The regionalization process is necessary if the starting input-output tables are of a
larger territory, usually the national tables, Jackson and Comer (1993), than the one
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which is studied. The disaggregation process is necessary as it is very rare that there
is a specific Intermediate Demand imported from territory B Table in the input-output
tables of territory A if we are doing the model between territories A and B.

Apart from well known regionalization methods, Comer and Jackson (1997), Rey
and Dev (1997), like RAS, Isard et al. (1998), and Location Quotients, Sawyer and
Miller (1983), the disaggregation methods are normally based on potential methods,
where the flows of goods between the different territories are referred to their relative
sizes and the distance between them, Van der Linden (1999). These gravitational models
are like this:

Fij = k
mimj

d2
ij

(17.1)

Nevertheless, this formula has been generally modified when it has been applied to
human and economic interactions, so gravitation is presented as an increasing function
with the weight and a decreasing function with the distance, Batten and Boyce (1987).
Therefore the formula of these potential models is:

Vi = k
∑

j

mj

dij
(17.2)

From a spatial point of view, the methods of disaggregation are more suitable because
they include the distance between the territories that take part in the model, as the
distance is one of the most important spatial characteristics of a territorial relation.
A debate ensues as to which distance to take if there are different means of transport
between the two territories and specially if there are conventional means (i.e., sea
transport, two lane highways or normal speed railway lines) and high speed or capacity
means (i.e., four lane divided highways, high speed train and air transport).

For that reason it would be very relevant to develop a new method of regionaliza-
tion that includes the distance as a new parameter. But, even more, it would be very
useful to elaborate methods of regionalization and disaggregation that use not only
the distance but the type of transport infrastructure used to overcome that distance.
Therefore, the main goal of this paper is to develop and evaluate a new method of
regionalization and disaggregation applied to intermediate demand tables for achiev-
ing the non-diagonal matrixes at interregional input-output models for two regions
connected by conventional and high speed transport infrastructures.

17.2 Methodology

The goal of the process is to get an approximation of the purchases of one territory in
another one. For this aim the best starting point would be the availability of updated
input-output tables of the first territory; nevertheless, this is not very frequent, so it
is necessary to make use of the input-output tables of a larger territory, normally the
nation which that territory is in. Besides, in the habitual input-output tables, the table
of interindustry sales with origin in the rest of the country is not disaggregated so hence
a double process has to be carried out: a) disaggregation of the imports with origin
in the rest of the country; b) regionalization of the disaggregated value. Therefore the
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departure point is that we try to measure the purchases of the economic sectors of a
remote subregion C of a region R in metropolitan subregion M of the region Q. That
is, the table of interindustry sales of subregion C with origin in the subregion M , zMC ,
being Z the Interregional Input-Output Transactions Matrix.

Z =
(

zCC zCM

zMC zMM

)

For this calculation we can use the value of the purchases of the region R to the
rest of the country E. The subregions C and M can be linked by different transport
infrastructures such as harbors, airports, two lane highways, four lane divided highways,
conventional railways, and high speed railways.

These means of transport are much less complex to determine in the generic ter-
ritorial situation that we are going to study, which consists of a relatively isolated
subregion that is well connected only with a metropolitan subregion and not with their
intermediate area or the rest of the country. In this situation, the intermediate area
between the two regions is not very relevant to appear in the interregional analysis since
it is very sparsely populated and since the fast connections between the two regions
have no stops in them.

Hence if we take the table of interindustry sales of region R (composed by p sub-
regions) with origins in the rest of the country E (composed by e subregions) , zij

represents the imports that sector j of region R does to sector i of country E. This
value may be decomposed in the following way, Escobedo (2005):

zij ⇐⇒

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

z11
ij z12

ij ... z1C
ij ... z1p

ij

z21
ij z22

ij ... z2C
ij ... z2p

ij

... ... ... ... ... ...

zM1
ij zM2

ij ... zMC
ij ... zMp

ij

... ... ... ... ... ...

z
(e−p)1
ij z

(e−p)2
ij ... z

(e−p)C
ij ... z

(e−p)p
ij

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(17.3)

Each element zrs
ij in this matrix (r = 1 . . . e−p ; s = 1 . . . p) represents the purchases of

sector j of subregion s to sector i of subregion r. From these (e−p)p values we need zMC
ij ,

which represents the imports of sector j of subregion C from sector i of subregion M . We
propose to obtain these values in two stages trough two matrixes, the Regionalization
Location Quotients Matrix and the Disaggregation Location Quotients Matrix.

Regionalization location quotients matrix

In the first stage we assess the total value of the purchases of sector j of subregion C
to sector i of the e− p other subregions from the rest of the country E,

zE−R,C
ij =

e−p
∑

r=1

zrC
ij

Hence we search a location quotient which expresses the relation

lC,R,E
j =

zE−R,C
ij

zE−R,R
ij
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which considers that there is a relationship between the import potential of sector j of
subregion C respect import potential of sector j of region R.

This potential can be expressed using the potential models exposed above. The

potential of sector j of subregion C will be expressed in the way GAV C
j

dC,E−R
j

, where GAV C
j

is a measure of the economic output such as the Gross Added Value, GAV , of sector j
of subregion C, and where dC,E−R

j represents the distance from the subregion C to the
rest of the country E, E−R, for each economic sector j. Each economic sector usually
sends its goods or staff by specific means of transport. In this paper we take this fact
into account and we classify the economic sectors in two main groups, the heavy and
light economic sectors (see table 17.1).

We will allocate the distance by two lane highway (dtlh), conventional railway (dcr),
ship (ds), four lane divided highway (dfldh), high speed railway (dhsr) or airplane (da)
to the sectors of these groups depending more or less on the suitability of each means
of transport for the types of goods of those sectors, which uses to be heavy, low value,
etc., in the first group and light, high value, etc., in the second group.

All of those distances can be referred to the most common means of transport: the
two lane highway. So in that way we will have

dcr = adtlh; ds = bdtlh; dfldh = cdtlh; dhsr = edtlh; da = fdtlh (17.4)

if a, b, c, e, f are coefficients that will depend on the spatial features of each case study.
For example, in the case of light economic sectors, it will be probably fulfilled that
1 > a > b > c > e > f .

In a similar way the potential of sector j of region R can be expressed by GAV R
j

dR,E−R
j

.

But if we want to keep a consistent formulation the potential will be expressed

GAV C
j

dC,E−R
j

+
GAV R

j −GAV C
j

dR−C,E−R
j

that is, the potential of region R is the sum of the potential of subregion C and the
potential of the rest of region R, R− C.

The location quotient of subregion C with respect to region R in sector j with
respect to the rest of the country E −R will be as follows:

Table 17.1. Economic sectors based on NAICS-02 divided in heavy and light groups. Source:
Paper Authors

Heavy Sectors Light Sectors
Agriculture, Forestry, Fishing and Hunting Information
Mining Finance and Insurance
Manufacturing Real Estate and Rental and Leasing
Utilities Professional, Scientific, and Technical Services
Construction Management of Companies and Enterprises
Wholesale and Retail Trade Administrative and Support Services
Transportation and Warehousing Educational Services
Accommodation and Food Services Health Care and Social Assistance

Arts, Entertainment, and Recreation
Public Administration
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lC,R,E
j =

GAV C
j

dC,E−R
j

GAV C
j

dC,E−R
j

+
GAV R

j −GAV C
j

dR−C,E−R
j

. (17.5)

As can be seen, there are two different types of distances. First dC,E−R
j , which

represents the distance from subregion C to the rest of the subregions of country E.
This distance is assessed as the arithmetic average of the distances from the capital of
subregion C, gravity center of the subregion, to the capitals of the rest of each e − p
other subregions of the country E,

dC,E−R
j =

∑e−p
w=1 d

w,C
j

e− p
. (17.6)

The second distance represents the space between the p− 1 subregions of region R
to the rest of e − p other subregions of the country E. We can simplify this distance
dR−C,E−R

j as the arithmetic average of the distances between the regional capital of
region R with the capitals of the other t− 1 regions of country E, t being the number
of regions of country E. Here this is,

dR−C,E−R
j =

∑t−1
w=1 d

w,R−C
j

t− 1
. (17.7)

In this formula R − C is referred to the subregion that hosts the regional capital of
region R.

Once we have defined the location quotient lC,R,E
j and the procedure to get it we

can establish the first diagonal location quotients matrix, the regionalization location
quotients matrix:

lC,R,E =

⎛

⎜

⎜

⎝

lC,R,E
1 0 ... 0

0 lC,R,E
2 ... 0

... ... ... ...
0 0 ... lC,R,E

n

⎞

⎟

⎟

⎠

. (17.8)

Disaggregation location quotients matrix

In a second stage, the beginning point consists in the purchases of subregion C to the
rest of the country E, zE−R,C

ij . This term has to be divided in two parts: One part is
necessary for our model, zM,C

ij , what subregion C imports from subregion M , and the
another part is what subregion C imports from the rest of the country E, region R and
subregion M excluded, zE−R−M,C

ij , so we have

zE−R,C
ij = zE−R−M,C

ij + zM,C
ij . (17.9)

If we introduce coefficients so all the terms depends on one variable, we have

zE−R,C
ij = cE−R−M,C

i zE−R,C
ij + cM,C

i zE−R,C
ij (17.10)

when cE−R−M,C
i + cM,C

i = 1.
These coefficients have to be proportional to the attractivity of the geographical

areas represented, noted like a, and must be normalized. Here this is
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cE−R−M,C
i =

aE−R−M,C
i

aE−R−M,C
i + aM,C

i

and cM,C
i =

aM,C
i

aE−R−M,C
i + aM,C

i

. (17.11)

These attractivities are going to be assessed in a way similar to former location quo-
tients so

aM,C
i =

GAV M
i

dM,C
i

and aE−R−M,C
i =

GAV E
i −GAV R

i −GAV M
i

dE−R−M,C
i

(17.12)

when GAV E
i , GAV R

i , GAV M
i are the gross added values in sector i in country E,

region R and subregion M respectively. So the location quotient needed will be:

lM,C
i =

GAV M
i

dM,C
i

GAV M
i

dM,C
i

+ GAV E
i −GAV R

i −GAV M
i

dE−R−M,C
i

. (17.13)

As in former coefficients we have two new distances. First, dM,C
i , which represents the

distance between M and C subregion capitals. Second, dE−R−M,C
i , which represents the

distance from subregion C to the rest of subregions of country E excluded subregions
belonging to region R and subregion C. This distance is approached by means of
an arithmetic average of the distances from subregion C to the mentioned e − p − 1
subregions of country E, weighted by the Gross Subregion Output, GSO. In this way

dE−R−M,C
i =

∑e−p−1
w=1 dw,C

i GSOw

GSOE −GSOR −GSOM
. (17.14)

So once the location quotient lM,C
i and the procedure to obtain it have been defined, we

get the following second location quotients diagonal matrix, the disaggregation matrix:

lM,C
i =

⎛

⎜

⎜

⎝

lM,C
1 0 ... 0
0 lM,C

2 ... 0
... ... ... ...
0 0 ... lM,C

n

⎞

⎟

⎟

⎠

. (17.15)

Finally, if we want to get the intermediate consumption table with origin in subregion
M we must carry out the following procedure:

ZMC = lM,CZE,RlC,R,E. (17.16)

17.3 Results and Discussion

This method of regionalization and disaggregation has been tested with the Provinces
of Madrid and Ciudad Real in Spain. Their centers are separated by around 185 kilo-
meters and they represent two types of territories, Ureña et al. (2005). Madrid Province
and/or its metropolitan area has 8, 028 km2, about 5,000,000 inhabitants, and is a very
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important tertiary economic center. On the other hand Ciudad Real Province, which
is a part of Castilla La Mancha Region, has 19, 813 km2 with 487,670 inhabitants
and mainly rural features. The capital of this province is Ciudad Real, a small city
with 70,000 inhabitants. At the time the study was undertaken there were four main
transport infrastructures connecting Ciudad Real and Madrid:

• An electrified conventional railroad line of 261 km
• A road of 184 km (four lane divided highway, 70 km, and two lane highway, 114

km)
• A road of 204 km (four lane divided highway, 171 km, and two lane highway, 33

km)
• A high speed railway line of 171 km, with no intermediate stations

The proposed model uses the 1995 input-output tables of the region of Castilla
La Mancha, which includes Ciudad Real Province (there are no I-O tables of this
province), and the 1996 input-output tables of the province of Madrid, which includes
the metropolitan area of the capital of Spain. These tables were considered more ap-
propriate than national ones, because in the first case the regionalization gap would be
smaller, and in the second case there was no need for regionalization.

To generate the interregional input-output model with two regions, and previously
to the above mentioned regionalization and disaggregation procedures, an aggregation
of economic sectors had to be made. We had to confront the 56 economic sectors of the
1996 I-O Table of Madrid with the 39 economic sectors of the 1995 I-O Table of Castilla
La Mancha. This confrontation resulted in a proposal of 27 economic sectors, see table
17.2. This level of disaggregation is acceptable but in the 27th sector, which represents
Professional, and Technical Services we realize that the aggregation may be too strong,
as in one entry there are together economic activities as diverse as Motion Picture and
Sound Recording Industries, Real Estate and Rental and Leasing, Computer Systems
Design, Investigation and Security Services, Hospitals, etc.

The example that we are going to use to develop and evaluate the proposed method
of regionalization and disaggregation is the approximation to the purchases that the
economic sectors of Ciudad Real Province carry out in Madrid Province. Our starting
data are the purchases that the economic sectors of Castilla La Mancha Region carry
out in the rest of Spain, that is, the Intermediate Demand imported from the rest of
Spain Table of 1995 Castilla La Mancha Input-Output Tables. As seen in Section 17.2,
we need to do a double process of Regionalization and Disaggregation and to calculate
two location quotients matrixes.

For the regionalization matrix, the first data we need are the GVA of Castilla La
Mancha Region and the GVA’s of Ciudad Real Province for the 27 economic sectors.
The Statistics National Institute of Spain provided the data for Castilla La Mancha
with a level of segregation of 30 economic sectors, something suitable for our model,
but the data for Ciudad Real Province has a level of segregation of only 6 sectors,
INE (2001). So we adopted the hypothesis that the relative distribution of GVA at the
provincial level is the same than at the regional level. This involves an additional source
of possible error because Castilla La Mancha has five provinces, and every one has two
or three main specific and different strong economic sectors, so the regional economic
structure is different from the economic structures of the five provinces. In the province
of Ciudad Real the main two sectors are Beverage Manufacturing, specially wineries,
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and Petrochemical Manufacturing. Therefore, the importance of these two sectors will
be reduced with the hypothesis adopted.

On the other hand, we need to estimate two distances. The first one is the distance
between the capital of Ciudad Real and the rest of Spain excluding the Region of
Castilla La Mancha. Following the methodology expounded we assess the arithmetical
average of the distance between Ciudad Real and the capitals of the rest of provinces
of Spain in 542 km. Obviously, there should have been different distances for each
economic sector, but as Ciudad Real does not have an operating airport at this time
and the high speed rail network only links Ciudad Real with three capitals out of forty-
six, we realized that their influence on the final value of the arithmetical average would
be very small.

The second distance represents the separation between the other four provinces of
Castilla La Mancha and the rest of the Spain, Ciudad Real Province excluded. To
assess it, we take the distances between the regional capital, Toledo, with the regional
capitals of the other sixteen regions of Spain. As Toledo, at the time that this research
was undertaken, had neither high-speed rail nor an airport, the distance is the same
for all the economic sectors. This distance is 545 km, a very similar value to the first
one.

Following the procedure indicated in Section 17.2 we obtain the regionalization lo-
cations quotients (see table 17.2). Almost all the values except two are very similar,
running from 0.241 to 0.266. This value is normal although maybe less than expected
as, for example, the weight of the population and the personal income of Ciudad Real
Province in the region is 28% in both cases. On the other hand many sectors have the
same location quotient, as the level of disaggregation in the GVA’s of the Province
of Ciudad Real was low. As a last comment, two sectors have a much higher location
quotient than the rest, 0.593, which are the sectors of Mining and Petroleum Manufac-
turing, reflecting the importance of the petrochemical complex.

The second location quotients matrix is the disaggregation matrix, which in our
case will represent the balance between the weight as an exporter of Madrid Province
to Ciudad Real Province and the weight as an exporter of Spain minus Castilla La
Mancha Region to Ciudad Real Province. The first data we need are the GVA’s of
Castilla La Mancha Region, Madrid Province and Spain for the 27 economic sectors,
data obtained with a level of segregation of 30 economic sectors, something suitable
for our model, from INE (2001).

In this case, two types of distances will have to be assessed. The first one is the
distance between Madrid and Ciudad Real. We will take for the heavy sectors (see
table 17.1) the shorter distance by road, that is, 184 km, as we suppose there is no sig-
nificant difference for truck transport between two and four lane highways and because
conventional railway has larger distances and more scarce services. On the other hand,
for the light sectors, we will choose the high speed railway distance. The travel time
by this mean of transport between Madrid and Ciudad Real is slightly less than the
half than the road trip time, so according to Equation 17.4 we will take the parameter
e = 1

2 , that is, dhsr = 92 km.
The second distance represents the separation from Ciudad Real to Spain minus

Madrid and Castilla La Mancha Regions. To assess that distance we need the values
of the Gross Subregion Output of the provinces of Spain, data that is obtained in INE
(2001). On the other hand these GSO weight the distances from Ciudad Real to the
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Table 17.2. Disaggregation location quotient, lme, and regionalization location quotient, lcre,
according to economic sectors based on NAICS-02. Source: Paper Authors

Economic Sectors lme lcre

1 Agriculture, Forestry, Fishing and Hunting (11) 0,03277 0,26614
2 Mining (21) 0,25061 0,59299
3 Animal Slaughtering and Processing (3116) 0,24057 0,24120
4 Dairy Product Manufacturing (3115) 0,24057 0,24119
5 Other Food, Beverage and Tobacco Manufacturing (r311, 312) 0,24057 0,24120
6 Textile Product Mills and Apparel Manufacturing (313-315) 0,22809 0,24120
7 Leather and Allied Product Manufacturing (316) 0,22809 0,24120
8 Wood Product Manufacturing (321) 0,17346 0,24119
9 Paper Manufacturing and Printing Activities (322-323) 0,56222 0,24120
10 Utilities. Petroleum and Coal Manufacturing (22, 324) 0,37680 0,59299
11 Chemical Manufacturing (325) 0,42419 0,24120
12 Plastics and Rubber Products Manufacturing (326) 0,26128 0,24121
13 Nonmetallic Mineral Product Manufacturing (327) 0,26160 0,24120
14 Primary and Fabricated Metal Manufacturing (331-332) 0,21665 0,24120
15 Machinery Manufacturing (333) 0,31472 0,24120
16 Computer, Electronic and Electrical Manufacturing (334-335) 0,59222 0,24120
17 Transportation Equipment Manufacturing (336) 0,33334 0,24120
18 Furniture and Miscellaneous Manufacturing (337-339) 0,34746 0,24119
19 Construction (23) 0,39838 0,31183
20 Wholesale and Retail Trade (42-45) 0,38235 0,26105
21 Accommodation and Food Services (72) 0,38366 0,26105
22 Transportation and Warehousing (48, r49) 0,45894 0,26105
23 Postal Service and Telecommunications (491, 517) 0,45894 0,26105
24 Finance and Insurance (52) 0,69432 0,26105
25 Public Administration (92) 0,64252 0,26041
26 Educational Services (61) 0,53085 0,26051
27 Professional, and Technical Services (r51, 53-56, 62, 71, 81) 0,63979 0,26087

capitals of the rest of provinces of Spain, Madrid and the rest of provinces of Castilla
la Mancha excluded. This distances are obtained in DPW (2004), and in this way the
final weighted distance is 603 km. As we pointed out above this value is not exact as
Ciudad Real Province has some high speed relations with other provinces of Spain,
apart from Madrid, such as Sevilla and Cordoba. Nevertheless this would represent a
very small difference, so we take the simplification and we do not take into account
these two specific relations.

Once we have the different GAV and have calculated the equivalent distances, we can
get the disaggregation location quotients (see table 17.2). The highest values, around
64%-69%, come from tertiary activities such as Finance and Insurance, Public Ad-
ministration, Professional, and Technical Services, which reveal the importance of the
capital of Spain as the core of those activities in the country. Several intermediate
values are found in Educational Services, High Added Value Manufacturing (Com-
puter, Electronic and Electrical), and Printing Activities, also strong sectors in Madrid
Province, whose values are about 53%-59%. Transportation and Warehousing, Postal
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Service and Telecommunications and Chemical Manufacturing are in the environs of
45%-42%, the last of these reflecting the administrative dependence of petrochemical
complex on Madrid. We can emphasize too the economic sectors of low added value
manufacturing, sectors 2-8 in table 17.2, which are mainly in the rank of 23%-25% and
therefore, do not show a strong dependence on Madrid. Finally the lowest value comes
from Agriculture, Forestry, Fishing and Hunting, which shows a very weak dependence
on Madrid, only 3%.

17.4 Conclusions

The accuracy of the regionalization and disaggregation location quotients depends
largely (i) on the available disaggregated Gross Added Values (GVA) of the territo-
ries that are considered in the interregional input-output analysis and (ii) on the level
of disaggregation of the economic sectors in the interregional input-output table. If
the level of disaggregation of the GVA data of a territory is similar to the number
of economic sectors of the Input-Output Table, it may represent more precisely the
economic structure of that territory, which means a strengthening to the effectiveness
of the model. On the other hand, if there is one main economic sector in every single
entry of the interregional input-output table, each location quotient will be applied to
one specific economic sector so that the economical significance of the results will be
more accurate.

This method is especially suitable to study subregions that have high speed means
of transport, such as high speed ground transportation and air transport. Besides, if
these subregions are inserted in dense and diverse networks of transport, there will be
significant different distances for the different economic sectors, and the influence of
the different transport infrastructures on the model will be notorious.

In our case, the highest regionalization location quotients normally show the main
economic sectors of underdeveloped or very peripheral regions, which did not used
to belong to high technology sectors. On the other hand, the highest disaggregation
location quotients correspond to economic sectors of very peripheral regions that show
a stronger dependence on metropolitan economic structures. These economic sectors
belong to high added value manufacturing and tertiary services, which used to be the
main economic sectors of metropolitan areas.
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Jackknife Bias Correction of a Clock

Offset Estimator

Daniel R. Jeske
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Abstract: Internet telephony and wireless geolocation prediction are two examples of
many data networking applications that require synchronization among independent
network clocks. An approach to estimating the offset between two clocks in the presence
of variable network delays involves exchanging timing messages between the clocks.
A well known clock offset estimator based on this approach can be interpreted as
the maximum likelihood estimator when the underlying network delay distributions
are assumed to be exponential. Several studies on network delay characteristics show
that no single distribution adequately characterizes delays. Not only are delays highly
dependent on the nature of traffic, but they are also time varying. Therefore, robustness
with respect to the assumed underlying network delay distribution is an important
property for any clock offset estimator.

Previous work used the bootstrap technique to obtain an estimator of the bias of
the well known estimator, and a new bias-corrected estimator was proposed. The effec-
tiveness of the new estimator was demonstrated across a wide variety of distribution
assumptions. In this paper, the jackknife technique is used to derive an alternative
bias-corrected estimator. The effectiveness of the jackknife estimator is compared to
the effectiveness of the bootstrap estimator using a variety of distributions. Recent
studies of Internet traffic show that delay distributions can be heavy-tailed, and thus
special attention is given to the performance of the two estimators in the context of
heavy tailed network delays.

Keywords and phrases: Bootstrap, jackknife, heavy tail distributions

18.1 Introduction

A classic sampling scheme to gather data for estimating clock offset is based on a se-
quence of so-called timing message exchanges. Figure 18.1 illustrates the i-th exchange
between two clocks, A and B, that begins with A sending a message to B which in-
cludes a time stamp T 0

i indicating the time as known at A when the message is sent.
Immediately upon receipt of this message, B puts a time stamp T 1

i in the received
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Figure 18.1. Timing message exchange

message. Just before B sends the message back to A it places another time stamp T 2
i

on the message. When A receives the returned message from B, it records another time
stamp T 3

i on the message. After n such exchanges, A has the sequence of observations
{T 0

i , T
1
i , T

2
i , T

3
i }n

i=1 from which to estimate the clock offset between itself and B.
Define θ to be the (unknown) offset of clock B, relative to clock A. It follows that if

at a given instant clock B shows time tB and clock A shows time tA, then tB = tA + θ.
The sojourn times for the A → B and B → A timing messages are Xi = T 1

i − T 0
i and

Yi = T 3
i − T 2

i , respectively. Apart from the offset of clock B from clock A, two other
components of the message sojourn times are propagation delay and network delay.
Propagation delay is the time required for the message to travel across the transmission
medium connecting the two clocks if there were no other intervening delays. In general,
the propagation delay is quite small, on the order of nanoseconds, for example, and it
is typically assumed that the propagation delay is the same in both directions, say d.
Network delay arises due to message queuing that occurs at various points along the
path that the message takes to get from origin to destination. Network delay can range
from milliseconds to seconds, and is the variable component of sojourn times. Let eAB

i

and eBA
i denote the network delays associated with the A → B and B → A timing

messages, respectively.
It follows from the preceding definitions, that Xi = d+θ+eAB

i and Yi = d−θ+eBA
i ,

where both d and θ are unknown. We assume that {eAB
i }n

i=1 is a sequence of (non-
negative) independent and identically distributed random variables from a distribution
function FAB(·), and is independent of the sequence {eBA

i }n
i=1, which are (non-negative)

independent and identically distributed random variables from a distribution function
FBA(·). In general, FAB �= FBA since the A → B and B → A transmission paths
through the network typically have different traffic characteristics and thus the network
delays in each path are potentially different [see, for example, Claffy et al. (1993)].

Alternative estimators of θ based on timing message exchange samples have been
proposed. A frequently used estimator proposed by Paxson (1998) is θ̂ = (X(1)−Y(1))/2,
where X(1) and Y(1) denote the minimum of the {Xi}n

i=1 and {Yi}n
i=1, respectively. Jeske

and Sampath (2003) examined the bias of the Paxson estimator and derived a closed
form expression for the bootstrap bias-corrected version, θ̂BS , of the estimator. In the
context of exponential network delays, it was shown analytically that θ̂BS has smaller
mean squared error than θ̂. Jeske and Sampath (2003), and Jeske and Chakravartty
(2006) examined the robustness of θ̂BS and several other estimators including the
ordered-BLUEs under the exponential and Pareto models for network delays. Under
a variety of alternative models, including lognormal, gamma, Weibull and a class of
heavy-tail models derived from stable distributions, θ̂BS emerged as the most robust
of all the estimators.
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In this paper, the effort to improve the performance of θ̂ using bias-correction
techniques is extended to consideration of the jackknife technique. The rest of this paper
is organized as follows. In Section 18.2, the derivation of θ̂ and θ̂BS is reviewed and
the jackknife bias-corrected estimator θ̂JK derived. In Section 18.3, the mean squared
error of the three estimators θ̂, θ̂BS and θ̂JK is examined under the exponential and
Pareto models for network delay. In Section 18.4, the robustness of the estimators is
examined more broadly by comparing their MSE under a variety of models for network
delay.

18.2 Candidate Clock Offset Estimators

18.2.1 Paxson’s estimator

The Paxson (1998) estimator is θ̂ = (X(1) −Y(1))/2. The mean of Paxson’s estimator is
E(θ̂) = θ + [E(eAB

(1) ) − E(eBA
(1) )]/2. Provided that both of the distributions FAB(·) and

FBA(·) have support on the interval (0,∞), θ̂ is asymptotically unbiased. However, with
a finite number of samples, the estimator is biased since, in general E(eAB

(1) ) �= E(eBA
(1) ).

Jeske (2005) showed that Paxson’s estimator is the maximum likelihood estimator
under the assumption that network delays are exponentially distributed. As previously
discussed, we cannot expect any distribution assumption for network delays to be valid
all the time and as such the objective in the search for a good estimator of θ is that it
exhibit robustness to whatever the underlying distribution actually is. It is reasonable,
therefore, to consider modifications to θ̂ that reduce the bias that will inevitably exist
when they are used in ‘hostile’ contexts.

18.2.2 Bootstrap bias-correction

Consider the class of estimators of the form T =
∑n

i=1 wi[X(i) − Y(i)], for a suitable
choice of weights {wi}n

i=1 which have the property
∑n

i=1 wi = 1/2. Paxson’s estimator
is clearly of this form where w1 = 1/2 and wi = 0 (2 ≤ i ≤ n). Jeske and Chakravatty
(2006) show that the bootstrap bias-corrected form of T is

TBS =
n
∑

k=1

w∗k[X(k) − Y(k)].

Where w∗k = 2wk −∑n
i=1 wi[uk(i) − uk+1(i)] and

uk(i) =
i−1
∑

j=0

Cn
j (k − 1)j(n− k + 1)n−j/nn.

The weights for the bias-corrected version of Paxson’s estimator are w∗1 = 1/2 + [(n−
1)/n]n/2 and w∗k = −[(n − k + 1)/n]n/2 + [(n − k)/n]n/2, (2 ≤ k ≤ n), while the
estimator itself is θ̂BS =

∑n
k=1 w

∗
k[X(k) − Y(k)].
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18.2.3 Jackknife bias-correction

Given an estimator θ̂ that depends on n observations, the general form of the jackknife
bias-corrected estimator is θ̂JK = nθ̂− (n− 1)θ̂(·), where θ̂(·) =

∑n
i=1 θ̂(i)/n and where

θ̂(i) is the value of θ̂ using all but the i-th observation. For application to Paxson’s
estimator, we consider the observations to be the pairs {(Xi, Yi)}n

i=1. When considering
the possible values for θ̂(i), two cases need to be considered: 1) X(1) and Y(1) appear in
the same observation, and 2) X(1) and Y(1) do not appear in the same observation.

In the first case, two possible values among {θ̂(i)}n
i=1 will arise. When the observation

(X(1), Y(1)) is deleted, then the value of θ̂(i) = (X(2) − Y(2))/2 arises. For any of the
other n − 1 observation, the value θ̂(i) = θ̂ arises. Hence, it follows that θ̂(·) = [(n −
1)θ̂ + (X(2) − Y(2))/2]/n. In the second case, three possible values for {θ̂(i)}n

i=1 will
arise. When the deleted observation includes neither X(1) nor Y(1) (which will be the
case n− 2 times), the value θ̂(i) = θ̂ will arise. When the deleted observation includes
X(1), the value θ̂(i) = (X(2) − Y(1))/2 will arise and when it includes Y(1), the value
θ̂(i) = (X(1) − Y(2))/2 will arise. Hence, it follows that

θ̂(·) = [(n− 2)θ̂ + (X(1) − Y(2))/2 + (X(2) − Y(1))/2]/n

= [(n− 1)θ̂ + (X(2) − Y(2))/2]/n

and thus we get the same value for θ̂(·) in either case. Consequently,

θ̂JK = nθ̂ − (n− 1)[(n− 1)θ̂ + (X(2) − Y(2))/2]/n

=
2n− 1

2n
(X(1) − Y(1)) − n− 1

2n
(X(2) − Y(2)).

18.3 Mean Squared Error Under Exponential and Pareto
Distributions

18.3.1 Exponential distribution

We now evaluate the mean and variance of θ̂, θ̂BS and θ̂JK under the assumption that
network delays in the A → B direction are Exp(λAB) and network delays in the B →
A direction are Exp(λBA). Using standard results on order statistics of exponential
distributions [see, for example, Arnold et al. (1992)] it follows that E(X(i)) = d + θ +

μi/λAB, where μi =
n
∑

j=n−i+1

j−1, and V ar(X(i)) = σ2
i /λ

2
AB, where σ2

i =
n
∑

j=n−i+1

j−2.

Similarly, E(Y(i)) = d− θ + μiλBA and V ar(Y(i)) = σ2
i /λ

2
BA. It follows that

E(θ̂) = θ +
λ−1

AB − λ−1
BA

2n

V ar(θ̂) =
λ−2

AB + λ−2
BA

4n2
.
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For θ̂JK , we find

E(θ̂JK) = θ

V ar(θ̂JK) =
λ−2

AB + λ−2
BA

2n2

and it can be seen that the jackknife method eliminates the bias in θ̂. However, the
variance is doubled relative to θ̂ it is easily verified that MSE(θ̂) ≤ MSE(θ̂JK). For
θ̂BS , it is convenient to use the representation θ̂BS =
∑n

i=1 w
∗
i [X(i) − Y(i)] and the results (for r < s) Cov(X(r), X(s)) = V ar(X(r)) and

Cov(Y(r), Y(s)) = V ar(Y(r)), to show

E(θ̂BS) = θ +
(

n
∑

i=1

w∗i μi

)

× (λ−1
AB − λ−1

BA)

V ar(θ̂BS) = (λ−2
AB + λ−2

BA) ×
n
∑

i=1

[

(w∗i )2 + 2
n
∑

k=i+1

w∗i w
∗
k

]

σ2
i .

It can be shown that MSE(θ̂BS) ≤ MSE(θ̂), and thus we have the ordering
MSE(θ̂BS) ≤ MSE(θ̂) ≤ MSE(θ̂JK). Table 18.1 illustrates this ordering by showing
the absolute bias, standard deviation and root mean squared error (RMSE) of the esti-
mators for the case where the mean delay in the A → B direction is one and the mean
delay in the B → A direction is ten.

18.3.2 Pareto distribution

We now evaluate the mean and variance of θ̂, θ̂BS and θ̂JK under the assumption that
network delays follow a translated Pareto distribution. The cumulative distribution
function of the translated Pareto distribution is F (x) = 1−( k

k+x )a, for k > 0, a > 0, x ≥
0. We denote this distribution with the notation Pareto(k, a). Provided a > 1 the mean
of the distribution is k/(a−1), and provided a > 2 the variance is ak2/[(a−1)2(a−2)],
respectively. It follows from results in Arnold et al. (1992) that the mean of the r-th
order statistic from a sample of n observations is kvr, where vr = Γ (n+1)Γ (n−r+1−1/a)

Γ (n−r+1)Γ (n+1−1/a) −
1. The variance-covariance matrix of the order statistics is V = k2Σ, where Σ is
the n × n symmetric matrix whose (r, s) (s ≥ r) element is urs − (vr + 1)(vs + 1),
where urs = Γ (n+1)Γ (n−s+1−1/a)Γ (n−r+1−2/a)

Γ (n−s+1)Γ (n−r+1−1/a)Γ (n+1−2/a) . We assume that eAB
i are independent

and identically distributed random variables that follow a Pareto(kAB, a) distribution.
Similarly, we assume that eBA

i are independent and identically distributed random
variables that follow a Pareto(kBA, a) distribution.

Table 18.1. A → B network delays are Exp(1) and B → A network delays are Exp(0.1)

n
Absolute Bias Standard Deviation Root Mean Squared Error

θ̂BS θ̂ θ̂JK θ̂BS θ̂ θ̂JK θ̂BS θ̂ θ̂JK

10 .192 .450 0 .543 .502 .711 .576 .675 .711

20 .095 .225 0 .271 .251 .355 .287 .337 .355

40 .047 .113 0 .135 .126 .178 .143 .169 .178
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Table 18.2. A → B network delays are Pareto(2,3) and B → A network delays are
Pareto(20,3)

n
Absolute Bias Standard Deviation Root Mean Squared Error

θ̂BS θ̂ θ̂JK θ̂BS θ̂ θ̂JK θ̂BS θ̂ θ̂JK

10 .121 .310 .012 .385 .359 .510 .404 .474 .510

20 .062 .153 .0027 .186 .173 .245 .196 .231 .245

40 .031 .076 .00065 .092 .085 .120 .097 .114 .120

All of the estimators θ̂, θ̂BS and θ̂JK are expressible in the form

T =
n
∑

i=1

wi[X(i) − Y(i)]

for a suitable choice of weights {wi}n
i=1 that have the property

∑n
i=1 wi = 0.5. It

follows that E(T ) = θ + (kAB − kBA)w′v and V ar(T ) = (k2
AB + k2

BA)w′Σw. Thus,
under the translated Pareto assumption for network delays the MSE of each estimator
in Section 18.2 can be calculated from the formula MSE(T ) = [(kAB − kBA)w′v]2 +
(k2

AB + k2
BA)w′Σw by simply substituting the appropriate weight vector for w.

Table 18.2 shows bias, standard deviation, and root mean squared error (RMSE)
for the cases where (kAB , a) = (2, 3) and (kBA, a) = (20, 3), which correspond to mean
network delays of 1 and 10 in the A → B direction and B → A direction, respectively.
We can see in this case that θ̂JK again has achieved greater bias reduction than θ̂BS ,
and in fact has nearly eliminated it completely once again. But in terms of RMSE, we
once again have MSE(θ̂BS) ≤ MSE(θ̂) ≤ MSE(θ̂JK).

18.4 Additional Mean Squared Error Comparisons via
Simulation

18.4.1 Lognormal, gamma and Weibull distribution

Let LN(μ, σ) denote the lognormal distribution whose mean is exp(μ + σ2/2),
Gamma(r, λ) denote the gamma distribution whose mean is r/λ, and Weibull(β, θ)
denote the Weibull distribution whose mean is θΓ (1 + 1/β). When network delays fol-
low these distributions, the mean squared errors of the estimators do not have simple
closed form expressions. Figures 18.2–18.4 show the RMSE of the estimators θ̂, θ̂BS

and θ̂JK that were obtained by simulating 100,000 sets of n message exchanges. The
simulation size of 100,000 was selected based on good agreement between simulation
results and analytic calculations that are available in the exponential case. Each mes-
sage exchange was simulated by generating the pair of one-way sojourn times (Xi, Yi)
from the formulas Xi = d + θ + eAB

i and Yi = d − θ + eBA
i , where the {eAB

i }n
i=1 and

{eBA
i }n

i=1 are simulated from the selected distribution. Since each of the estimators is of
the form T =

∑n
i=1 wi[X(i) − Y(i)], we take d = 0 and θ = 0 without loss of generality.
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Figure 18.2. RMSE When A → B Delays are LN(−0.35, 0.83) and B → A Delays are
LN(1.96, 0.83)
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Figure 18.3. RMSE When A → B Delays are Gamma(2, 2) and B → A Delays are
Gamma(2, 0.2)

In figures 18.2–18.4, the mean network delays in the A → B direction and B → A
directions are 1 and 10, respectively. For the lognormal distribution, σ = 0.83 was
chosen to make the coefficient of variation unity and μ was then selected to achieve
the desired mean. For the gamma distribution, and r = 2 was chosen and λ was then
selected to achieve the desired mean. Finally, for the Weibull distribution β = 2 was
chosen and θ was then selected to achieve the desired mean. Conclusions drawn from
simulations based on other parameter values for the lognormal, gamma and Weibull
distributions produce are consistent with what we discuss in light of figures 18.2-18.4.

Figures 18.2–18.4 show that θ̂BS and θ̂JK essentially have the same RMSE, and
both offer significant improvements over θ̂. Not shown by the figures is the fact that
θ̂JK is significantly more effective at bias reduction than θ̂BS , but those gains are offset
in terms of RMSE by the associated increased variance.
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Figure 18.4. RMSE When A → B Delays are Weibull(2, 1.13) and B → A Delays are
Weibull(2, 11.3)

18.4.2 Heavy tailed distributions

The network delay model utilized in this section is |X |, where X has a Stable
(α, 0, γ, 0) distribution [see, for example, Nolan (2005)]. Although the distribution of |X |
is not stable, it does have a heavy tail provided that α < 2. We utilize the absolute value
transformation to impose the non-negativity constraint we have for network delays,
and select β = 0 to allow skewness to be solely introduced by the absolute value
transformation (avoiding the possibility that the resulting distribution is multimodal).
Selecting δ = 0 enables the use of E|X | = 2Γ (1 − 1/α)γ/π and thus γ can be selected
to set the mean at a desired level [see, for example, Samorodnitsky (1994)].

A simulation study was used to investigate the bias and mean squared error prop-
erties of θ̂, θ̂BS and θ̂JK under the proposed heavy tail distribution for network delays.
A sample size of n = 20 and means of 1 and 10 for network delays in the A → B
and B → A directions, respectively, were selected. The value of α was varied among
the values {1.5, 1.6, 1.7, 1.8, 1.9, 2.0} with corresponding values of γ chosen from the
relation E|X | = 2Γ (1 − 1/α)γ/π. The first four choices of α produce a distribution
with tails heavier than the Pareto(20, 3) distribution. The choice α = 2 corresponds to
a folded normal distribution. Observations for X , and hence |X | were simulated using
the algorithm described in Chambers et al. (1976, 1987). The number of simulations
used was 5 million, and it was verified by using a larger number of simulations that
this was sufficient to estimate the bias to within three significant digits.

Figure 18.5 shows the absolute bias of θ̂, θ̂BS and θ̂JK as a function of α. In each
case the mean network delay in the A → B and B → A directions are one and ten,
respectively. Figure 18.5 shows once again that both θ̂BS and θ̂JK are effective at
reducing bias, and θ̂JK again nearly eliminates it. Figure 18.6 shows the RMSE of the
estimators and it is evident that θ̂JK loses its advantage over θ̂ due to the variance
increase that comes along with its bias reduction. On the other hand, θ̂BS continues
to outperform θ̂.
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Figure 18.5. Absolute Bias When A → B Delays are |Stable(α, 0, γ, 0)| with γ = 0.5πΓ−1(1−
1/α) and B → A Delays are |Stable(α, 0, γ, 0)| with γ = 5πΓ−1(1 − 1/α)
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Figure 18.6. RMSE When A → B Delays are |Stable(α, 0, γ, 0)| with γ = 0.5πΓ−1(1− 1/α)
and B → A Delays are |Stable(α, 0, γ, 0)| with γ = 5πΓ−1(1 − 1/α)

18.5 Summary

Previous work identified the bootstrap bias-corrected version of the Paxson (1998)
estimator of clock offset to be robust in terms of mean squared error properties over a
wide variety of alterative distributions for network delays. In this paper, we explored
whether jackknife bias-correction of the Paxson estimator would offer similar, or even
better, performance. We have seen that the jackknife bias-corrected estimator does a
better job at reducing bias (even eliminating it completely for the case of exponential
delays), but that for the most part the gains in reduced absolute bias are eroded by
the variance increase. Thus, the recommended estimator from an overall point of view
remains the bootstrap bias-corrected version of Paxson’s estimator.
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Abstract: In this paper, we study a preliminary test estimator based on phi-divergence
measures for the vector of parameters in the Polytomous Logistic Regression Model
when additional linear restrictions on the parameter vector are assumed to hold.

Keywords and phrases: Phi-divergence test statistics, unrestricted and restricted
minimum phi-divergence estimator, preliminary test estimation

19.1 Introduction

Consider a response random variable Y belonging to one of J distinct categories
C1, ..., CJ , which is observed together with p+1 explanatory variables xT =(1, x1, ..., xp)
∈ R

p+1. For convenience x0 = 1. Let πj(x) = Pr(Y ∈ Cj | x), j = 1, ..., J, denotes the
probability that the random variable Y belongs to the category Cj , j = 1, ..., J, when
the explanatory variable is x. More specifically suppose that the dependence between
Y and x can be modeled by the multinomial logistic regression model

πj (x) = exp
(

βT
j x
)/

J
∑

l=1

exp
(

βT
l x
)

, j = 1, ..., J, (19.1)

where βT
j = (β0j , ..., βpj) , j = 1, ..., J − 1, is a vector of unknown parameters and βJ

is a (p + 1)-dimensional vector of zeros, for convenience. The vector

βT =
(

βT
1 , ...,β

T
J−1

)

(19.2)

is ν-dimensional with ν = (J − 1) (p + 1). The parameters β0j , j = 1, ..., J − 1, are
intercept parameters and (β1j , ..., βpj) are regression parameter vectors, j = 1, ..., J−1.
The model described in (19.1) is the classical Polytomous Logistic Regression Model

B.C. Arnold et al. (eds.), Advances in Mathematical and Statistical Modeling,

DOI: 10.1007/978-0-8176-4626-4 19,
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(PLRM). For more details about this model see Liu and Agresti (2005) and references
there in. In the following we shall denote

Θ ={β:βT =
(

βT
1 , ...,β

T
J−1

)

,

βT
j = (β0j , ..., βpj) , j = 1, ..., J − 1 : βsj ∈ R, s = 0, ..., p}, (19.3)

the parameter space associated with the PLRM.
Assume that N different values of the vector of explanatory variables,

xT
i = (1, xi1, ..., xip) , i = 1, ..., N,

are available. Let n (xi) be the number of observations considered when the explanatory
variable x has the value xi, in such a way that if x is fixed at xi we have a multinomial
distribution with parameters

{n (xi) ;π1 (xi) , ..., πJ (xi)} , i = 1, ..., N.

Vectors of probabilities are denoted by π (xi)= (π1 (xi) , ..., πJ (xi))
T and total sample

size by n = n (x1) + ... + n (xN ). Given the explanatory variable xi, denote by ysi the
number of observations in the class Cs, s = 1, ..., J. It is clear that n (xi) =

∑J
s=1 ysi. To

estimate βjs (j = 0, ..., p; s = 1, ..., J − 1) Gupta et al. (2006) considered the minimum
φ-divergence estimator defined by

̂β
φ ≡ argmin

βββ∈Θ
Dφ

(

̂β,p (β)
)

, (19.4)

where
p̂ =

(y11

n
, ...,

yJ1

n
,
y12

n
, ...,

yJ2

n
, ...,

y1N

n
, ...,

yJN

n

)T

,

p (β) =
(

n(xxx1)
n (π1 (x1) , ..., πJ (x1)) , ...,

n(xxxN )
n (π1 (xN ) , ..., πJ (xN ))

)T

(19.5)

and Dφ (p̂,p (β)) is the φ-divergence measure between the probability vectors p̂ and
p (β), given by

Dφ (p̂,p (β)) ≡
J
∑

j=1

N
∑

i=1

πj (xi)
n (xi)

n
φ

(

yji

πj (xi)n (xi)

)

;φ ∈ Φ∗, (19.6)

where Φ∗ is the class of all convex functions φ (x) , x > 0, such that at x = 1, φ (1) =
φ′ (1) = 0, φ′′ (1) > 0, at x = 0, 0φ (0/0) = 0 and 0φ (p/0) = p limu→∞ φ (u) /u. Some
properties of φ-divergence measures can be found in Cressie and Pardo (2003) and
Pardo (2006).

In the particular case of φ (x) = x log x − x + 1 we obtain the Kullback-Leibler
divergence, DKull(p̂,p (β)). It is not difficult to establish that

DKull (p̂,p (β)) = c− 1
n

log
N
∏

i=1

J
∏

l=1

πl (xi)
yli ≈ − logL (β) ,

where L (β) is the likelihood function associated with the model under consideration
and c is independent of β. Therefore the maximum likelihood estimator can be seen
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as the minimum Kullback-Leibler divergence estimator. In this sense the minimum φ-
divergence estimator, defined in (19.4), can be considered as a generalization of the
maximum likelihood estimator.

In addition to the sample information contained in the model, information in the
form of r linear hypotheses about β may be denoted as KT β=m or, if the linear
hypotheses are incorrect as KT β−m=δδδ, where m is a known vector, KT is a r ×
(J − 1) (p + 1) known matrix of rank r and δδδ is an unknown r × 1 vector representing
specification errors in the linear hypotheses or perceived information. Making use of
both the sample and exact prior information in KT β=m we can get the restricted
minimum φ-divergence estimator,

̂β
H0

φ ≡ arg min
βββ∈Θ0

Dφ (p̂,p (β)) , (19.7)

being Θ0 =
{

β ∈ Θ : KT β=m
}

.
In order to test the compatibility of the restricted and unrestricted estimates, H0 :

β ∈ Θ0 or H0 : KT β=m, we can use a φ-divergence test statistic,

T φ1,φ2
n =

2n
φ′′1 (1)

Dφ1

(

p
(

̂βφ2

)

,p
(

̂β
H0

φ2

))

. (19.8)

If the linear hypotheses are correct the φ-divergence test statistic has asymptotically
a chi-square distribution with r degrees of freedom. Under contiguous alternative hy-
potheses (see (19.13) or (19.14)) the φ-divergence test statistic has asymptotically a
non-central chi-square with r degrees of freedom and a given noncentrality parame-
ter (see Theorem 2). A procedure that we can follow is to test the null hypothesis
that KT β=m by using a φ-divergence test statistic defined in (19.8) and if we accept
KT β=m, we use the restricted minimum φ-divergence estimator as our estimate of
β; otherwise the conventional or unrestricted minimum φ-divergence estimator is used.
Now we use the test statistic (19.8) as well as the sample information to define an

alternative estimator to the estimators ̂βφ2
and ̂β

H0

φ2
for β. We shall consider the

preliminary φ-divergence test estimator, defined by

̂β
pre

φ1,φ2
= ̂β

H0

φ2
I(0,χ2

r,α)(T
φ1,φ2
n ) + ̂βφ2

I[χ2
r,α,∞)(T

φ1,φ2
n ),

where IA(y) denotes the function taking the value 1 if y ∈ A and 0 if y /∈ A. Preliminary
test estimation was introduced by Bancroft (1944). Since then many papers studying
the behaviour of this procedure of estimation have been published. An interesting study
about preliminary test estimation in different statistical problems can be seen in Saleh
(2006). In Section 19.2 some asymptotic distributional results are given. In Section

19.3 we present the asymptotic distributional quadratic risk for ̂βφ2
, ̂β

H0

φ2
and ̂β

pre

φ1,φ2
.

Finally, Section 19.4 presents a comparison among ̂βφ2
, ̂β

H0

φ2
and ̂β

pre

φ1,φ2
under null and

contiguous alternative hypotheses.

19.2 Preliminaries and Notation

The expression of the Fisher information matrix in the PLRM is
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IF,n (β) = XT V n (β)X =
N
∑

j=1

n(xxxj)
n XT

j V j (β) Xj

where XT =
(

XT
1 , ...,X

T
N

)

(p+1)(J−1)×(J−1)N
,

Xi =

⎛

⎜

⎜

⎝

xT
i 0T ... 0T

0T xT
i ... 0T

. . . .
0T 0T ... xT

i

⎞

⎟

⎟

⎠

(J−1)×(J−1)(p+1)

(19.9)

and the matrix V n (β) is defined by

V n (β) = diag
(

n(xxx1)
n V 1 (β) , ..., n(xxxN )

n V N (β)
)

N(J−1)×N(J−1)
(19.10)

with

V i (β)(J−1)×(J−1) = (πs (xi) (δst − πt (xi)))s,t=1,...,J−1 , i = 1, ..., N,

where δst is the Kronecker delta.
We denote

V ∗n (β) = diag
(

n(xxx1)
n C1 (β) , ..., n(xxxI)

n CI (β)
)

JN×N(J−1)

with

Ci (β)(J−1)×(J−1) = (πs (xi) (δst − πt (xi))) s=1,...,J
t=1,...,J−1

, i = 1, ..., I. (19.11)

In Gupta et al. (2006) it was established that

̂βφ2
= β0 +

(

XT V n (β0)X
)−1

XT V ∗n (β0)
T diag

(

p (β0)
−1/2

)

(p̂ − p (β0))

+ ‖p̂ − p (β0)‖α1 (p̂;p̂−p (β0)) ,

where β0 is the true value of the parameter and the function α1 : R
JN → R

(J−1)(p+1)

verifies α1 (p; p − p (β0)) → 0 as p → p (β0). Let φ2 (t) be twice differentiable function
at t > 0 and n (xi) → ∞, i = 1, ..., N, such that n (xi) /n → λi > 0, i = 1, ..., N. In
the cited paper of Gupta et al. (2006) it was established that

√
n
(

̂βφ2
− β0

)

L→
n→∞ N

(

0,
(

XT V λ (β0)X
)−1

)

,

being
V λ (β0) = diag (λ1V 1 (β0) , ..., λNV N (β0)) = lim

n→∞V n (β0) .

Based on Pardo et al. (2002) we get the following expansion for the restricted

minimum φ2-divergence estimator ̂β
H0

φ2
,
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̂β
H0

φ2
= β0 + Hn (β0)

(

XT V n (β0)X
)−1

XT V ∗n (β0)

× diag
(

p (β0)
−1/2

)

(p̂ − p (β0)) + ‖p̂ − p (β0)‖α2 (p̂;p̂−p (β0)) , (19.12)

where

Hn (β0) = I−
(

XT V n (β0)X
)−1

K

(

KT
(

XT V n (β0)X
)−1

K

)−1

KT

and α2 is a function verifying α2 (p; p − p (β0)) → 0 as p → p (β0).

19.3 Contiguous Alternative Hypotheses

Let βn ∈ Θ − Θ0 be a given alternative and let β be the element in Θ0 closest to βn

in the Euclidean distance sense. A first possibility to introduce contiguous alternative
hypotheses is to consider a fixed ΔT∈R

(J−1)(p+1) and allowing βn to move towards β
as n increases in the following way

H1,n : βn = β + n−1/2Δ. (19.13)

A second approach is to relax the condition g (β) = KT β − m=0 defining Θ0. Let
δT∈R

r be and consider the following sequence, βn, of parameters approaching Θ0

according to
H∗1,n : g (βn) = n−1/2δ. (19.14)

Note that a Taylor series expansion of g (βn) around β ∈ Θ0 yields

g (βn) = g (β) + KT (βn − β) + ‖βn − β‖α3 (βn; βn − β) , (19.15)

being α3 a function verifying α3 (βn; βn − β) → 0 as βn → β. By substituting βn =
β + n−1/2Δ in (19.15) and taking into account that g (β) = 0, we obtain

g (βn) = n−1/2KT Δ + ‖βn − β‖α3 (βn; βn − β) ,

so that the equivalence in the limit is obtained for δ=KT Δ.
The following result will be important in the next section.

Theorem 1. Under H∗1,n we have

√
ng
(

̂β
H0

φ2

)

L−→
n→∞ N

(

δ,KT ΣUUUK
)

and under H1,n √
ng
(

̂β
H0

φ2

)

L−→
n→∞ N

(

KT Δ,KT ΣUUUK
)

,

where ΣUUU =
(

XT V λ (β0)X
)−1

.
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Proof. A Taylor series expansion of g
(

̂βφ2

)

around βn yields

g
(

̂βφ2

)

= g (βn) + KT
(

̂βφ2
− βn

)

+
∥

∥

∥

̂βφ2
− βn

∥

∥

∥α4

(

̂βφ2
; ̂βφ2

− βn

)

,

where α4 (β∗; β∗ − βn) → 0 as β∗ → βn. From (19.15) we have

g
(

̂βφ2

)

= n−1/2KT Δ+KT
(

̂βφ2
− βn

)

+
∥

∥

∥

̂βφ2
− βn

∥

∥

∥α4

(

̂βφ2
; ̂βφ2

− βn

)

+ ‖βn − β‖α3 (βn; βn − β) .

As n1/2
∥

∥

∥

̂βφ2
− βn

∥

∥

∥ is bounded in probability and, under H1,n, ̂βφ2

P→
n→∞ βn we have,

n1/2
∥

∥

∥

̂βφ2
− βn

∥

∥

∥α4

(

̂βφ2
; ̂βφ2

− βn

)

P→
n→∞ 0.

Similarly n1/2 ‖βn − β‖α3 (βn; βn − β) P→
n→∞ 0. Therefore,

√
ng
(

̂βφ2

)

L−→
n→∞ N

(

KT Δ,KT ΣUUUK
)

,

because under H∗1,n √
n
(

̂βφ2
− βn

)

L−→
n→∞ N (0,ΣUUU ) .

Now from the relationship δ = KT Δ, if g (βn) = n−1/2δ, then

√
ng
(

̂βφ2

)

L−→
n→∞ N

(

δ,KT ΣUUUK
)

.

The following theorem presents the asymptotic distribution of T φ1,φ2
n , given in

(19.8), under H∗1,n.

Theorem 2. Under H∗1,n the asymptotic distribution of T φ1,φ2
n is chi-squared with r

degrees of freedom and noncentrality parameter

μ = δT
(

KT ΣUUUK
)−1

δ. (19.16)

Proof. It is not difficult to establish that

T φ1,φ2
n =

√
n
(

̂βφ2
− ̂β

H0

φ2

)T

IF,n (β0)
√
n
(

̂βφ2
− ̂β

H0

φ2

)

+ op(1).

Now we are going to look for another expression for ̂βφ2
− ̂β

H0

φ2
. By (19.12) we have,
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̂β
H0

φ2
= β0 + Hn (β0)

(

XT V n (β0) X
)−1

XT V ∗n (β0) diag
(

p (β0)
−1/2

)

(p̂ − p (β0))

+ ‖p̂ − p (β0)‖α2 (p̂; p̂ − p (β0))

= β0 +

(

I−
(

XT V n (β0)X
)−1

K

(

KT
(

XT V n (β0)X
)−1

K

)−1

KT

)

×
(

XT V n (β0)X
)−1

XT V ∗n (β0) diag
(

p (β0)
−1/2

)

(p̂ − p (β0))

+ ‖p̂ − p (β0)‖α2 (p̂; p̂ − p (β0))

= β0 +
(

XT V n (β0)X
)−1

XT V ∗n (β0) diag
(

p (β0)
−1/2

)

(p̂ − p (β0))

−
(

XT V n (β0)X
)−1

K

(

KT
(

XT V n (β0)X
)−1

K

)−1

KT
(

XT V n (β0)X
)−1

× XT V ∗n (β0) diag
(

p (β0)
−1/2

)

(p̂ − p (β0)) + ‖p̂ − p (β0)‖α2 (p̂; p̂ − p (β0))

= ̂βφ2
−
(

XT V n (β0)X
)−1

K

(

KT
(

XT V n (β0)X
)−1

K

)−1

KT
(

̂βφ2
− β0

)

+ ‖p̂ − p (β0)‖ (α2 (p̂; p̂ − p (β0)) − α1 (p̂; p̂ − p (β0)))

= ̂βφ2
−
(

XT V n (β0)X
)−1

K

(

KT
(

XT V n (β0)X
)−1

K

)−1
(

KT
̂βφ2

− m
)

+ ‖p̂ − p (β0)‖ (α2 (p̂; p̂ − p (β0)) − α1 (p̂; p̂ − p (β0))) .

Therefore we get,

T φ1,φ2
n =

√
n
(

KT
̂βφ2

− m
)T
(

KT
(

XT V n (β0)X
)−1

K

)−1 √
n
(

KT
̂βφ2

− m
)

+ op(1).

Now the result follows from Theorem 1 and Lemma in (Ferguson (1996), p. 63).

Remark 1. We denote

Un =
√
n
(

̂βφ2
− βn

)

and Zn =
√
n
(

̂β
H0

φ2
− βn

)

.

The random vectors U and Z obtained as

Un
L−→

n→∞ U and Zn
L−→

n→∞ Z,

respectively, are distributed normally with mean vectors and variance covariance ma-
trices given by

μUUU = 0, ΣUUU =
(

XT V λ (β0)X
)−1

(19.17)

and

μZZZ = −ΣUUUK
(

KT ΣUUUK
)−1

δ, ΣZZZ = ΣUUU − ΣUUUK
(

KT ΣUUUK
)−1

KT ΣUUU ,

(19.18)
respectively.
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If we denote Y n =
√
n
(

KT
̂βφ2

− m
)

, the random vector
(

UT
n ,Y

T
n

)T

converges

in law to a normal distribution with mean vector
(

0T , δT
)T

and variance-covariance
matrix

(

ΣUUU ΣUUUK

KT ΣUUU KT ΣUUUK

)

.

Therefore the asymptotic distribution of the random vector U conditioned to Y = y
is normal with mean vector

μUUU/YYY =yyy = ΣUUUK
(

KT ΣUUUK
)−1

(y−δ)

and variance-covariance matrix

ΣUUU = ΣUUU − ΣUUUK
(

KT ΣUUUK
)−1

KT ΣUUU = ΣZZZ .

19.4 Asymptotic Distributional Quadratic Risk of ̂βφ2
, ̂β

H0

φ2

and ̂β
pre

φ1,φ2

In the following theorem we are going to get the asymptotic distribution of the random
vector

W n =
√
n
(

̂β
pre

φ1,φ2
− βn

)

.

By Gr (x;μ) we shall denote the distribution function of a noncentral chi-square random
variable with r degrees of freedom and noncentrality parameter μ evaluated at x and
by ΦN(aaa,ΣΣΣ) (x) the distribution function of a normal random variable with mean vector
a and variance-covariance matrix Σ evaluated at x.

Theorem 3. Under H∗1,n the random vector W n converges in law to the random vector
W whose distribution function is given by

FWWW (x) = ΦN(000,ΣΣΣZZZ) (x + Lδ)Gr

(

χ2
r,α;μ

)

+
∫

E(δδδ)

ΦN(000,ΣΣΣZZZ) (x − Ls) dΦN(000,KKKTΣΣΣUUUKKK) (s) ,

where
L =ΣUUUK

(

KT ΣUUUK
)−1

(19.19)

and

E (δ) =
{

s : (s+δ)T
(

KT ΣUUUK
)−1

(s+δ) > χ2
r,α

}

.

By χ2
r,α we are denoting the value verifying Pr

(

χ2
r ≤ χ2

r,α

)

= α and χ2
r is a chi-square

random variable with “r” degrees of freedom.
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Proof. The result follows by Remark 1.

Let ̂β
∗

be a suitable estimator of β, and M a given positive semi-definite matrix.
The standard quadratic loss function is

L
(

̂β
∗
,β
)

=
(

̂β
∗ − β

)T

M
(

̂β
∗ − β

)

and the asymptotic distributional quadratic risk (ADQR), R
(

̂β
∗
; M

)

, of ̂β
∗
, under

H∗1,n, is defined by

lim
n→∞E

[√
n
(

̂β
∗ − βn

)T

M
√
n
(

̂β
∗ − βn

)

]

.

The following theorem presents the ADQR for ̂βφ2
, ̂β

H0

φ2
and ̂β

pre

φ1,φ2
.

Theorem 4. Under H∗1,n and assuming that φ1 and φ2 are twice differentiable contin-
uously at x > 0, we have:

R
(

̂βφ2
; M

)

= tr (MΣUUU ) ,

R
(

̂β
H0

φ2
; M

)

= tr (MΣZZZ) + δT LT MLδ

and

R
(

̂β
pre

φ1,φ2
; M

)

= tr (MΣUUU ) − tr

(

MΣUUUK
(

KT ΣUUUK
)−1

KT ΣUUU

)

Gr+2

(

χ2
r,α;μ

)

+ δT LT MLδ
[−Gr+4

(

χ2
r,α;μ

)

+ 2Gr+2

(

χ2
r,α;μ

)]

.

Proof. Under H∗1,n the random vector Un =
√
n
(

̂βφ2
− βn

)

is asymptotically normal

with mean vector 0 and variance-covariance matrix ΣUUU . Therefore the result for ̂βφ2

follows immediately.
The asymptotic distribution of the random vector Zn=

√
n
(

̂β
H0

φ2
− β0

)

is normal
with mean vector μZ and variance-covariance matrix ΣZZZ , given in (19.18). Therefore,

R
(

̂β
H0

φ2
; M

)

= tr (MΣZZZ) + μT
ZZZMμZZZ ,

and μT
ZZZMμZZZ = δT LT MLδ. The result follows for ̂β

H0

φ2
.

In relation with ̂β
pre

φ1,φ2
we have,
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R
(

̂β
pre

φ1,φ2
; M

)

=
∫

xT MxdFWWW (x)

= Gr

(

χ2
r,α;μ

)

(

tr (MΣZZZ) + δT LT MLδ
)

+
∫

E(δδδ)

(∫

xT MxφN(000,ΣΣΣZZZ) (x − Ls) dx
)

dΦN(000,KKKT ΣΣΣUUUKKK) (s)

= Gr

(

χ2
r,α;μ

)

(

tr (MΣΣΣZZZ) + δT LT MLδ
)

+
∫

E(δδδ)

(

tr (MΣZZZ) + sT LT MLs
)

dΦN(000,KKKTΣΣΣUUUKKK) (s) .

By Sen (1979), we have
∫

E(δδδ)

tr (MΣZZZ) dΦN(000,KKKT ΣΣΣUUUKKK) (s) = tr (MΣZZZ)
(

1 −Gr

(

χ2
r,α;μ

))

and
∫

E(δδδ)s
T LT MLsdΦN(000,KKKT ΣΣΣUUUKKK)(z) =

(

1 −Gr+2

(

χ2
r,α;μ

))

× tr(MΣUUUK(KT ΣUUUK)−1
KT ΣUUU )

− δT LT MLδ{Gr

(

χ2
r,α;μ

)− 2Gr+2

(

χ2
r,α;μ

)

+ Gr+4

(

χ2
r,α;μ

)}.

Now the result follows for ̂β
pre

φ2
.

19.5 Comparison of ̂βφ2
, ̂β

H0

φ2
and ̂β

pre

φ1,φ2

Under H0 : KT β=m it is immediate to get

R
(

̂β
H0

φ2
; M

)

< R
(

̂β
pre

φ1,φ2
; M

)

< R
(

̂βφ2
; M

)

,

because δ=0.
In order to study the behavior of the ADQR’s under contiguous alternative hy-

potheses we are going to assume that M = XT V λ(β0)X. In this case we have

R
(

̂βφ2
; M

)

= (p + 1)(J − 1)

and
R
(

̂β
H0

φ2
; M

)

= (p + 1)(J − 1) − r + μ,

where μ was defined in (19.16). Therefore
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R
(

̂β
H0

φ2
; M

)

≤ R
(

̂βφ2
; M

)

if μ < r, i.e., if the noncentrality parameter, μ, is less than r the estimator ̂β
H0

φ2
performs

better than ̂βφ.
On the other hand

R
(

̂β
pre

φ1,φ2
; M

)

= (p + 1)(J − 1) − r
{

Gr+2(χ2
r,α;μ)

+ μ
[

Gr+4(χ2
r,α;μ) − 2Gr+2(χ2

r,α;μ)
] 1
r

}

.

Therefore
R
(

̂β
pre

φ1,φ2
; M

)

≤ R
(

̂β
H0

φ2
; M

)

,

i.e., ̂β
pre

φ1,φ2
performs better than ̂β

H0

φ2
if the noncentrality parameter μ verifies,

μ >
r
(

1 −Gr+2(χ2
r,α;μ)

)

1 −Gr+4(χ2
r,α;μ) + 2Gr+2(χ2

r,α;μ)
.
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A Unified Approach to Model Selection,

Discrimination, Goodness of Fit and Outliers
in Time Series

Daniel Peña1 and Pedro Galeano2

1 Department of Statistics, Carlos III University of Madrid, Spain
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Spain

Abstract: This article presents a unifying approach of several procedures in time
series. First, we show that quadratic discrimination provides a framework for deriving
model selection criteria for time series. Second, we establish a connection between
model selection criteria and goodness of fit tests. Finally, we show that the outlier
detection problem in ARIMA models can be seen as a particular case of model selection.
Therefore, the problems of model selection, discrimination, goodness of fit tests and
outliers in time series can be treated under the same principles.

Keywords and phrases: Akaike information criterion, ARIMA models, Bayesian
information criterion, discrimination, portmanteau tests, robust estimation

20.1 Introduction

Model selection criteria are widely used for selecting the model that better fits the data
among a set of candidates. These criteria have been derived from different points of
view, and it is usual to classify them into two different groups. The first one is formed
by the consistent criteria, which, under certain conditions and the assumption that
the true model is in the set of candidates, asymptotically select the true one. Two
consistent criteria are the Bayesian information criterion (BIC), derived by Schwarz
(1978), which selects the model with highest posterior probability, and the Hannan-
Quinn criterion (HQC), derived by Hannan and Quinn (1979), which was designed to
have the fastest convergence rate to the true model. The second group is formed by the
efficient criteria, which, under certain conditions, asymptotically select the model that
produces the least mean square prediction error. Three efficient criteria are the final
prediction error criterion (FPE), derived by Akaike (1969), which selects the model that
minimizes the one step ahead square prediction error; the Akaike information criterion
(AIC), derived by Akaike (1973), which is an estimator of the expected Kullback-Leibler
divergence between the true and the fitted model; and the corrected Akaike information

B.C. Arnold et al. (eds.), Advances in Mathematical and Statistical Modeling,

DOI: 10.1007/978-0-8176-4626-4

c©2008 Birk  h  auser Boston, a part of  Springer Science+Business Media, LLC

20,



268 D. Peña and P. Galeano

criterion (AICc), derived by Hurvich and Tsai (1989), which is a bias correction form
of the AIC that appears to work better in small samples.

All these criteria have the general form:

MSC = −2 × (maximized log-likelihood) + r × C(T, r),

where r is the number of estimated parameters in the prediction function of the model,
T is the sample size, and C(T, r) = log(T ), for the BIC, C(T, r) = 2c log log(T ) with
c > 1, for the HQC, C(T, r) = (T/r) log((T + r)/(T − r)) for the FPE, C(T, r) = 2 for
the AIC, and C(T, r) = 2T/(T − r − 1) for the AICc.

The discrimination problem appears when it is known that the data have been
generated by one of the members of a set of models and the objective is to classify
the data into the generating population. When the data are Gaussian distributed,
the classification is usually made by using either the quadratic discrimination rule or
the Bayesian posterior probabilities. The first purpose of this paper is to show the
connection between discrimination and model selection in linear Gaussian time series.

Goodness of fit tests are a useful tool for checking whether the data are well fitted by
a chosen model. These tests proceed by using a test statistic and some cut-off value that
takes into account the potential loss incurred if the model is wrongly rejected. Some
authors (see Pukilla, Koreisha and Kallinen, 1990, and Koreisha and Pukilla (1995))
have proposed to substitute goodness of fit tests for model selection procedures, but
the relationship between these two approaches is not well understood. We show that
there is a close connection between model selection criteria and the powerful goodness
of fit test proposed by Peña and Rodŕıguez (2006).

Real data are often affected by the presence of outliers, which may have serious
effects on the statistical analysis of the data. Usual methods to detect the presence of
outliers are based on a likelihood ratio test and the distribution of the test statistic is
computed by Monte Carlo and depends on the model and the sample size. The third
contribution of this paper is to show that the detection of outliers in a linear Gaussian
time series can be seen as a model selection problem, and thus model selection criteria
provide objective rules for outlier detection.

The rest of this paper is organized as follows. Section 20.2 briefly presents the nota-
tion and some estimation results for the class of autoregressive moving average Gaussian
time series models. Section 20.3 discusses the connection between the quadratic dis-
criminant rules in linear Gaussian time series and model selection criteria, from both
the maximum likelihood and the Bayesian approach. Section 6.4 proves the connection
between the goodness of fit test proposed by Peña and Rodŕıguez (2006) and model
selection criteria. Finally, Section 20.5 shows that the problem of outlier detection in
time series can be seen as a model selection problem and suggests new suitable solutions
to this problem.

20.2 Estimating ARMA Time Series Models

In what follows we assume that a time series given by x = (x1, ..., xT )′ has been
generated by the autoregressive moving average Gaussian process, ARMA(p, q), given
by the equation:
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xt − φ1xt−1 − . . .− φpxt−p = at − θ1at−1 − . . .− θqat−q, (20.1)

where at is a sequence of independent Gaussian distributed random variables with zero
mean and variance σ2

p,q. The ARMA(p, q) model, denoted by Mp,q, has the (p + q + 1)×
1 vector of parameters αp,q =

(

β′p,q, σ
2
p,q

)′ where βp,q = (φ1, . . . , φp, θ1, . . . , θq)
′, and is

assumed to be causal, invertible, stationary and such that the polynomials 1 − φ1B −
. . .− φpB

p and 1 − θ1B − . . .− θqB
q have no common roots.

The likelihood function of x under the model Mp,q is given by:

p (x | Mp,q) = (2π)−
T
2 |Σp,q|−

1
2 exp

(

−1
2
x′Σ−1

p,qx

)

, (20.2)

where Σp,q is the T × T covariance matrix of x under the model Mp,q, which can
be written as Σp,q = σ2

p,qQp,q, where Qp,q is a T × T matrix which only depends on
the parameters βp,q. The vector of innovations can be written as ap,q = L−1

p,qx, where
Qp,q = Lp,qL

′
p,q is the Cholesky decomposition of Qp,q.

The maximum likelihood estimators of the parameters αp,q in the model Mp,q are

denoted by α̂p,q =
(

̂β′p,q, σ̂
2
p,q

)′
and are obtained after maximizing the log-likelihood of

x under model Mp,q, given by:

log p (x | Mp,q) = −T

2
log 2π − 1

2
log |Σp,q| − 1

2
x′Σ−1

p,qx.

The estimated covariance matrix of x under the model Mp,q is written as ̂Σp,q =
σ̂2

p,q
̂Qp,q, where ̂Qp,q is the matrix Qp,q with βp,q replaced by ̂βp,q. The vector of resid-

uals of the fit can be written as âp,q = ̂L−1
p,qx, where ̂Qp,q = ̂Lp,q

̂L′p,q is the Cholesky
decomposition of ̂Qp,q.

20.3 Quadratic Discrimination of ARMA Time Series Models

The discrimination problem in time series can be stated as follows (see, Galeano and
Peña (2000)). Suppose it is known that the time series x = (x1, . . . , xT )′ has been
generated by one of the models Mp,q, in which p ∈ {0, . . . , pmax} and q ∈ {0, . . . , qmax},
where pmax and qmax are some fixed upper bounds. The objective of discrimination
is to select the true data generating model of the time series x, which is denoted by
Mp0,q0 and has the (p0 + q0 + 1) × 1 vector of parameters αp0,q0 =

(

β′p0,q0
, σ2

p0,q0

)′.
This is equivalent to consider the set of hypothesis Mp,q : x ∈ NT (0, Σp,q). The stan-
dard quadratic classification rule will select the model which maximizes the likelihood
(20.2), while the Bayesian classification rule will select the model which maximizes the
posterior probability p (Mp,q | x) = cp (Mp,q) p (x | Mp,q), where p (Mp,q) is the prior
probability of the model Mp,q and c is a constant.

In practice, the vector of parameters αp,q is unknown. Following the maximum
likelihood approach, if the unknown parameters, αp,q, are replaced by its maximum
likelihood estimates, α̂p,q = α̂p,q(x), the rule (20.2) will always choose the model with
the largest number of parameters. A first attempt to avoid this problem is to compute
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the expected likelihood rather than the observed likelihood. Thus, we may select the
model that maximizes the expectation with respect to a new realization of the process,
y, of the same size than x, and generated by the true model with parameters αp0,q0 ,
given by:

Eαp0,q0
[log p(y|α̂p,q)] =

∫

log p(y|α̂p,q)p(y|αp0,q0)dy.

Note that this approach takes into account the uncertainty about new observations
but not the uncertainty in the parameter estimates. Galeano and Peña (2007a) showed
that this expectation can be computed as:

Eαp0,q0
[log p(y|α̂p,q)] = −T

2
(log 2π + 1) − 1

2
log
∣

∣

∣

̂Σp,q

∣

∣

∣

− T (p + q + 1)
T − (p + q + 1) − 1

+ Op(1),

and includes terms that have the same order, Op(1), as the penalty term, and can
not be avoided. Suppose then that we also include in the expectation the uncertainty
about the parameter estimates, that is, we also take the expectation with respect to
the distribution of the estimate, α̂p,q. This leads us to select the model that attains the
largest value of:

Eα̂p,q

[

Eαp0,q0
[log p(y|α̂p,q)]

]

=
∫ ∫

log p(y|α̂p,q)p(y|αp0,q0)f(α̂p,q|αp0,q0)dydα̂p,q (20.3)

where f(α̂p,q|αp0,q0) is the distribution of the estimate and α̂p,q and y are assumed to be
independent. Therefore, this rule selects the model that maximizes the expected value
with respect to the two sources of uncertainty: the distribution of future observations
and the distribution of the estimate. The rule (20.3) can be written as follows (see,
Galeano and Peña (2000)):

Eα̂p,q

[

Eαp0,q0
[log p(y|α̂p,q)]

]

= −T

2
(log 2π + 1) − 1

2
log
∣

∣

∣

̂Σp,q

∣

∣

∣

− T (p + q + 1)
T − (p + q + 1) − 1

+ o(1),

which is equivalent to the expression of the AICc criterion for ARMA models derived
by Hurvich et al. (1990). Note also that the rule (20.3) selects the model that minimizes
the expected Kullback-Leibler divergence of a new realization of the process to the true
one, which is given by:

Eα̂p,q

[

Eαp0,q0

[

log
p(y|αp0,q0)
p(y|α̂p,q)

]]

=
∫ ∫

log
p(y|αp0,q0)
p(y|α̂p,q)

p(y|αp0,q0)f(α̂p,q|αp0,q0)dydα̂p,q,

and this was the approach followed by Akaike (1973) to derive the AIC criterion. Thus,
both the AIC and the AICc may be derived by the standard quadratic discriminant
rule.



20 A Unified Approach of Several Problems in Time Series 271

On the other hand, the Bayesian approach of computing the posterior probabilities
of each model automatically takes into account the two sources of uncertainty previ-
ously discussed. In fact, the logarithm of the posterior probability of the model Mp,q

can be written, by using the Laplace approximation (see, Galeano and Peña (2007b)),
as follows:

log p(Mp,q|x) = −p + q + 1
2

log
(

T

2π

)

− T

2
(log 2π + 1) − 1

2
log
∣

∣

∣

̂Σp,q

∣

∣

∣

+ log
{

p(α̂p,q|Mp,q) |H (α̂p,q)| + Op(T−
p+q+1

2 −1)
}

+ log p (Mp,q) − log p (x) , (20.4)

where p(α̂p,q|Mp,q) and |H (α̂p,q)| are the prior probability of the parameters and the
Hessian of the log-likelihood at the maximum likelihood parameters, respectively. Now,
deleting constants and terms that are op (1) and taking the same prior probabilities
for all the set of candidate models, (20.4) leads to the expression of the BIC criterion
proposed by Schwarz (1978).

In summary, it has been shown that the quadratic discriminant rules lead to model
selection criteria, such as the AIC, AICc and BIC. Thus, model selection problems and
discrimination problems are solving the same problem and can be analyzed by using
the same procedures.

20.4 Goodness of Fit for ARMA Time Series Models

The goodness of fit tests in time series work as follows. After selecting a model to fit
the time series x = (x1, . . . , xT )′, a goodness of fit test checks whether the data are
reasonable well fitted by the chosen model by using a test statistic which measures the
quality of the fit. The more often used goodness of fit test for linear time series uses a
function of a statistic of the form:

ts = T

{

δ
s
∑

i=1

wig(r̂2
i ) + (1 − δ)

s
∑

i=1

ωig(π̂2
i )

}

(20.5)

where r̂i and π̂i are the autocorrelation and partial autocorrelation coefficients of the
residuals and δ, wi and ωi are some constant weights. See Ljung and Box (1978), Monti
(1994), Velilla (1994) and Peña and Rodŕıguez (2002). In this section, we analyze the
connection between these goodness of fit tests and model selection criteria. We will
use the test proposed by Peña and Rodŕıguez (2006), which is of the form (20.5) with
g(x) = − log(1 − x), δ = 0 and ωi = (s + 1 − i)/(s + 1) and seems to be the most
powerful test of this family. The test can also be presented as a test of the log of
the determinant of the s autocorrelation matrix of the residuals. This matrix is an
estimation of the autocorrelation matrix of the estimated residuals âp,q assuming that
the largest possible autocorrelation different from zero appears at lag s.

Let ̂Rp,q be the autocorrelation matrix of the residuals defined as:

̂Rp,q =
âp,qâ

′
p,q

T σ̂2
p,q

,
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and taking into account that x = ̂Lp,qâp,q, the sample covariance matrix of x can be
written as:

xx′

T
=
̂Lp,qâp,qâ

′
p,q
̂L′p,q

T
= σ̂2

p,q
̂Lp,q

̂Rp,q
̂L′p,q,

which shows that,

∣

∣

∣

∣

xx′

T

∣

∣

∣

∣

=
∣

∣

∣σ̂2
p,q
̂Lp,q

̂Rp,q
̂L′p,q

∣

∣

∣ =
∣

∣

∣

̂Σp,q

∣

∣

∣

∣

∣

∣

̂Rp,q

∣

∣

∣ , (20.6)

because
∣

∣

∣

̂Σp,q

∣

∣

∣ =
∣

∣

∣σ̂2
p,q
̂Lp,q

̂L′p,q

∣

∣

∣. Now, taking logs in (20.6), the following expression
holds:

log
∣

∣

∣

∣

xx′

T

∣

∣

∣

∣

= log
∣

∣

∣

̂Σp,q

∣

∣

∣+ log
∣

∣

∣

̂Rp,q

∣

∣

∣ ,

and the model selection criteria can be written in terms of this matrix as follows:

MSC (Mp,q) = log
∣

∣

∣

∣

xx′

T

∣

∣

∣

∣

− log
∣

∣

∣

̂Rp,q

∣

∣

∣+ (p + q + 1)C (T, p + q + 1) .

Therefore, taking into account that the sample covariance matrix of the time series
x is constant for all the candidate models, any of the model selection criteria will
select the models that have a significatively larger value of the estimated correlation
determinant of the residuals, which is the goodness of fit test statistic proposed by Peña
and Rodŕıguez (2006). In practice the test is made by approximating | ̂Rp,q|, which is
squared of order T and cannot be computed, by | ̂Rs|, which is of order s and includes
the first s autocorrelation coefficients of the residuals.

It is important to stress that model selection criteria is penalized by the number of
parameters, whereas goodness of fit criteria do not introduce this correction. However,
as we have shown, the same measures of fitting appear in a natural way in model
selection and model checking. This results in two interesting implications. First, the
model chosen by a model selection criterion is not always the model with the most
significant goodness of fit statistic. Second, the term log | ̂Σp,q| can also be seen as a
measure of the goodness of fit of the model Mp,q to the series x.

This analysis clarifies the connection between model checking and model selection.
Some authors (see Pukkila et al. (1990)) have proposed to check the fitted model by
finding the order of the best autoregressive model fitted to the residuals. If the selected
order is zero, it can be assumed that the residuals are white noise. Koreisha and Pukilla
(1995) showed that the BIC criterion worked well for this objective. However, in general,
both model selection and model checking are needed. First the model selected may not
be an acceptable model by the goodness of fit test. This may happen when the model
chosen is the best in a given family of models, but the data have been generated by
a model that does not belong to the class considered. Second, several models may be
acceptable by a goodness of fit test. Then the values of the goodness of fit statistic do
not provide a good ground for selecting the model, which should be chosen by model
selection criteria, accounting for the number of fitted parameters.
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20.5 Outliers in ARMA Time Series Models

Outliers in time series can arise for several reasons. First, outliers may be gross errors
such as measurement, recording and typing mistakes. Second, outliers may be real
data generated by a different pattern than the rest of observations, for instance, caused
for unknown intervention events. The presence of outliers in time series can seriously
affect the estimation of the parameters of the model and produce poor forecasts. Since
the seminal paper of Fox (1972), outliers in time series have received considerable
attention, and several papers have analyzed their effects and proposed methods for
their detection in univariate linear time series. See for instance, Tsay (1986), Chang
et al. (1988), Chen and Liu (1993), Le et al. (1996), Luceño (1998), and Sánchez and
Peña (2003), among others. Much of these works have been focused on the framework
of statistical hypothesis testing. In particular, the procedure proposed by Chen and Liu
(1993) is widely used and has been implemented in several time series packages, such
as TRAMO and SCA. This and other procedures rely on the use of likelihood ratio
tests with critical values obtained via simulation, and which depend on the sample
size and the model. In this section we show that the outlier detection problem can be
formulated as a model selection problem and can be solved by using model selection
criteria. These criteria provide objective rules to decide whether a set of observations
are outliers or not, avoiding the use of simulation to obtain critical values.

Let x = (x1, . . . , xT )′ be a time series generated by an ARMA(p, q) process as
in (20.1), where, for simplicity, the orders p and q are assumed known. Assume that
instead of observing x, we observe a time series y = (y1, . . . , yT )′ defined as follows:

yt =
{

xt t �= t1, . . . , tm
xt + zt t = t1, . . . , tm

,

where m is the number of outliers in the time series, t1, . . . , tm are their locations,
which verify 1 ≤ t1 < · · · < tm ≤ T , and zt1 , . . . , ztm are their sizes. For simplicity we
will only consider additive outliers in this section.

In practice, the parameters of the ARMA(p, q) model and the number, locations
and sizes of the outliers are unknown, and have to be estimated from the data. In
this section, it is shown that the outlier detection problem can be stated as a model
selection problem, for which model selection criteria can be applied. For that, let Mτm

be the ARMA(p, q) model with m outliers with locations at the vector time indices
τm = (t1, . . . , tm)′. The problem of joint estimation of the model parameters, number
of outliers, their locations and their sizes can be now stated as the selection of the
true model among the set of candidate ones. This set includes the model without
outliers, denoted by Mτ0 , the T models with one outlier, denoted by Mτ1 , where τ1 =
1, . . . , T , and so on. In general, there are

(

T
m

)

candidate models with m outliers with
all the possible

(

T
m

)

locations of the m outliers, and calling mmax ≤ T/2 the maximum
number of outliers, the total number of candidate models is kmmax =

(

T
0

)

+ · · ·+( T
mmax

)

,
which is of order Tmmax . As it is assumed that the set of candidate models includes
the true one, the BIC criterion, which is the most widely used consistent criteria,
is adequate. Therefore, given the model Mτm , which assumes m outliers at locations
τm = (t1, . . . , tm)′, the parameters to estimate are the (p + q + 1)×1 vector of unknown
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parameters of the ARMA(p, q) model, αp,q, and the m× 1 vector of unknown sizes of
the outliers, μτm = (zt1 , . . . , ztm)′. In summary, the model has p + q +m + 1 unknown
parameters, which are included in the (p + q + m + 1) × 1 vector γτm =

(

α′p,q, μ
′
τm

)′.
The maximum likelihood estimators of the vector of parameters γτm of the model Mτm

are denoted by γ̂τm =
(

α̂′p,q, μ̂
′
τm

)′ and are obtained after maximizing the log-likelihood
given by:

log p (y | Mτm) = −T

2
log 2π − 1

2
log |Στm | − 1

2
(y − δτm)′Σ−1

τm
(y − δτm) ,

where Στm is the T × T covariance matrix of y under the model Mτm and δτm is a
T × 1 vector whose components are, the outliers sizes, zt1 , . . . , ztm , at the components
t1, . . . , tm, and are 0, elsewhere. The posterior probability of the model Mτm can be
written as follows by using the Laplace approximation (see, Galeano and Peña (2007b)):

log p(Mτm |y) = log p (y | γ̂τm) − p + q + m + 1
2

log
T

2π
+ log p (Mτm)

− log p (y) + log
{

p(γ̂τm |Mτm) |H (γ̂τm)| + Op(T−
p+q+1

2 −1)
}

,(20.7)

where log p (y | γ̂τm) is the maximized log-likelihood of y under the Mτm model, and
p(γ̂p,q|Mp,q) and |H (γ̂p,q)| are the prior probability of the parameters and the Hessian
of the log-likelihood at the maximum likelihood parameters, respectively.

We consider three alternative approaches to the outlier problem based on the ap-
proximation (20.7). The first approach assumes that all the models are equally probable
and therefore, p (Mτm) = 1/(kmmax + 1). Thus, after deleting constants and terms that
are op (1), (20.7) leads to the BIC criterion for this first approach, denoted by BIC1:

BIC1 (Mτm) = −2 log p (y | γ̂τm) + (p + q + m + 1) logT. (20.8)

From (20.8), we can obtain the BIC1 approximations of the posterior probabilities
p(Mτm |y) which are given by:

p1 (Mτm |y) =
exp

(

−BIC1(Mτm )
2

)

mmax
∑

i=0

∑

τi

exp
(

−BIC1(Mτi)
2

) =
p (y | γ̂τm)T−

p+q+m+1
2

mmax
∑

i=0

∑

τi

p (y | γ̂τi)T−
p+q+i+1

2

. (20.9)

The second approach assumes that all the possible numbers of outliers are equally
probable. Thus, taking equal prior probabilities for the mmax + 1 models with 0, 1, . . . ,
mmax outliers, respectively, and equal prior probabilities for all the models with m
outliers, the prior probabilities of the models Mτm are given by:

p (Mτm) =
1

mmax + 1
1
(

T
m

) ,

while its logarithm can be written as follows:

log p (Mτm) = − log (mmax + 1) +
m
∑

j=1

log j −
T
∑

j=T−m+1

log j.
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Replacing this term and deleting constants and terms that are op (1), (20.7) leads to
the BIC criterion for this second approach, which is denoted by BIC2:

BIC2 (Mτm) = −2 log p (y | γ̂τm) + (p + q + m + 1) logT

+2

⎛

⎝

T
∑

j=T−m+1

log j −
m
∑

j=1

log j

⎞

⎠ .

Note that BIC1 and BIC2 are related by the expression:

BIC2 (Mτm) = BIC1 (Mτm) + 2

⎛

⎝

T
∑

j=T−m+1

log j −
m
∑

j=1

log j

⎞

⎠ ,

which shows that BIC2 (Mτm) can be written as BIC1 (Mτm) plus an additional pe-
nalization term by the number of outliers. Thus, BIC2 will select models with less
number of outliers than BIC1.

In this case, the BIC2 approximations to the posterior probabilities p(Mτm |y) are
given by:

p2 (Mτm |y) =
exp

(

−BIC2(Mτm )
2

)

mmax
∑

i=0

∑

τi

exp
(

−BIC2(Mτi)
2

)

=
p (y | γ̂τm)T−

p+q+m+1
2 m! (T −m)!

mmax
∑

i=0

∑

τi

p (y | γ̂τi)T−
p+q+i+1

2 i! (T − i)!
. (20.10)

The third possibility takes into account the hierarchical structure of the problem. In
other words, the idea is to derive a BIC criterion for selecting the number of outliers,
m, and then make inference on: (1) the outlier locations given m, τm, and, (2) the
parameters given m and τm. To do that, note that the marginal distribution of the
number of outliers and the posterior probability of the model Mτm given the series are
given by:

p (m|y) =

∑

τm

p (Mτm) p (y|Mτm)

mmax
∑

i=0

∑

τi

p (Mτi) p (y|Mτi)
,

and

p (Mτm |y) =
p (Mτm) p (y|Mτm)

mmax
∑

i=0

∑

τi

p (Mτi) p (y|Mτi)
,

respectively. Thus, the posterior probability of the number of outliers, p (m|y), can be
written as follows:

p (m|y) =
∑

τm

p (Mτm |y) ,

which is independent of the prior probabilities p (Mτm). Now, the posterior probabilities
p (Mτm |y) can be approached by either (20.9) or (20.10), providing two alternative
approximations of log p (m|y) given by:
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log p (m|y) � log

(

∑

τm

p (y | γ̂τm)

)

− p + q + m + 1
2

logT

− log

(

mmax
∑

i=0

∑

τi

p (y | γ̂τi)T
−p+q+i+1

2

)

,

and

log p (m|y) � log

(

∑

τm

p (y | γ̂τm)

)

− p + q + m + 1
2

logT

−
⎛

⎝

T
∑

j=T−m+1

log j −
m
∑

j=1

log j

⎞

⎠− log

(

mmax
∑

i=0

∑

τi

p (y | γ̂τi)T
−p+q+i+1

2

)

,

which, after deleting constants and terms that are op (1), leads to us define two new
BIC criteria for the number of outliers in the time series given by:

BIC1 (m) = −2 log

(

∑

τm

p (y | γ̂τm)

)

+ (p + q + m + 1) log T,

and

BIC2 (m) = −2 log

(

∑

τm

p (y | γ̂τm)

)

+ (p + q + m + 1) logT

+2

⎛

⎝

T
∑

j=T−m+1

log j −
m
∑

j=1

log j

⎞

⎠ ,

respectively. In summary, the number of outliers is selected as the value that provides
the minimum value of either the criterion BIC1 (m) or the criterion BIC2 (m). Note
that as in the previous approaches, BIC1 and BIC2 are related as follows:

BIC2 (m) = BIC1 (m) + 2

⎛

⎝

T
∑

j=T−m+1

log j −
m
∑

j=1

log j

⎞

⎠ ,

and thus, BIC1 (m) is expected to select a smaller number of outliers than BIC2 (m).
After selecting the number of outliers, m, inference on the vector of unknown loca-

tions, τm, is done by comparing the values of the likelihood of the models Mτm with
m outliers, p (y | γ̂τm). In other words, the estimates of the unknown locations, τm, are
the ones that attain the largest value of p (y | γ̂τm). Finally, estimation of the vector of
parameters once that m and τm have been selected is carried out with the maximum
likelihood estimates γ̂τm =

(

α̂′p,q, μ̂
′
τm

)′.
Galeano and Peña (2007b) provide an extensive analysis of the behavior of these

alternative approaches. Also, in order to avoid the computation of the maximum like-
lihood estimates of all the models involved in the analysis, these authors proposed
an algorithm that only requires to compute the maximum likelihood estimates of the
models with largest posterior probabilities.
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Generalized Linear Models Diagnostics for Binary

Data using Divergence Measures

J. A. Pardo and M. C. Pardo

Department of Statistics and Operations Research I, Complutense University of Madrid,
Spain

Abstract: The binary data appears often in different situations, and generally they
can be modeled according to a generalized linear model. In this work we focus on
checking a generalized linear model after fitting it to the data. The most common
goodness-of-fit tests to do it are the Pearson chi-square and the deviance tests. We
propose a new family of test statistics based on a divergence measure that contains
the above test statistics whose significance level and power are evaluated in small and
moderate sample situations. Finally, we introduce new diagnostic methods based on
divergences.

Keywords and phrases: Generalized linear model, binary data, divergence measures

21.1 Introduction

In many areas of application of statistical principles and procedures, from agronomy
through to zoology, one encounters observations made on individual experimental units
that take one of two possible forms. For example, a seed may germinate or fail to
germinate under certain experimental conditions; an integrated circuit manufactured
by an electronics company may be defective or non-defective; a patient in a clinical
trial to compare alternative forms of treatment may or may not experience relief from
symptoms; an insect in an insecticidal trial may survive or die when exposed to a
particular dose of the insecticide. Such data are said to be binary wherein a binomial
model may be assumed for the independent response variables Y1, ..., YI . The individual
level sample sizes are denoted by ni and the unknown probabilities of response by πi.
We assume that πi depends on k + 1 explanatory variables xi = (xi0, ..., xik) through
the linear predictor

ηi ≡ g (πi) =
k
∑

j=0

xijβj , i = 1, ..., I. (21.1)

Here g is the link function (any monotonic and differentiable function) and β =
(β0, ..., βk) is a (k + 1) × 1 vector of unknown parameters. Unless restrictions are
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imposed on β = (β0, ..., βk) we have -∞ < ηi < ∞, i = 1, ..., I. We will assume xi0 = 1,
i = 1, ..., I and we denote by X the I × (k + 1) matrix with rows xi, i = 1, .., I. We
also shall assume that rank(X) = k+1. So we consider generalized linear models with
binary data (GLM). As ηi ≡ g (πi) can be any monotonic, differentiable function, a
wide choice of link functions g (πi), i = 1, ..., I is available. However, in practice, only
a small set of link functions are actually used. In particular, links are chosen such that
the inverse link

πi = g−1 (ηi)

is easily computed. Some of them can be seen in Nelder and Wedderburn (1972) and
McCullagh and Nelder (1989). The two most well-known are the logistic function,

g1 (πi) = log
(

πi

1 − πi

)

and the probit or inverse normal function,

g2 (πi) = ψ−1 (πi) ,

where ψ is the distribution function of a normal distribution with mean 0 and variance
1. For more details of these models see Agresti (2002). All of them share the feature
that they map the unit interval onto the real line. Pregibon (1980) defined a family of
link functions, including the logit link as a particular case. Aranda-Ordaz (1981) intro-
duced two separate one-parameter families of models for symmetric and asymmetric
departures, respectively, from the logistic model. Some family members of models con-
sidered for symmetric departures approximate the probit model closely. Guerrero and
Johnson (1982) considered a one-parameter family of link functions that also contains
the logit link as a particular case. Morgan (1988) introduced two separate families of
links functions that contain the families introduced by Pregibon and Aranda-Ordaz.
Other families of link functions that contain or approximate the traditional logit and
probit link functions can be seen in Stukel (1988).

To fit model (21.1) to our binary data, for any given link function, is equivalent to
estimate the unknown parameter β. For this we consider, as a natural generalization
of the maximum likelihood estimator (MLE) for the GLM, the minimum φ-divergence
estimator given by,

̂βφ ≡ arg min
β0,β1,...,βk

Dφ (p̂,p (β)) , (21.2)

where

p̂ ≡ (p̂11, p̂12, ..., p̂I1, p̂I2)
T =

(n11

N
,
n12

N
,
n21

N
,
n22

N
, ....,

nI1

N
,
nI2

N

)T

and

p (β) ≡ (p11 (β) , p12 (β) , ..., pI1 (β) , pI2 (β))T

=
(

π
(

xT
1 β
) n1

N
,
(

1 − π
(

xT
1 β
)) n1

N
, ..., π

(

xT
I β
) nI

N
,
(

1 − π
(

xT
I β
)) nI

N

)T

(21.3)

with n11, ..., nI1 the observed values of the random variables Y1, ..., YI , ni2 = ni −
ni1, N =

∑2
j=1

∑I
i=1nij and π

(

xT
i β
)

= πi. The φ−divergence is defined by,
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Dφ (p̂,p (β)) ≡
2
∑

j=1

I
∑

i=1

pij (β)φ
(

p̂ij

pij (β)

)

;φ ∈ Φ,

where Φ is the class of all convex functions such that φ (1) = φ′ (1) = 0, φ′′ (1) > 0,
0φ (0/0) = 0 and 0φ (p/0) = p limu→∞ φ (u) /u. For more details about φ− divergence
see Vajda (1989) and Pardo (2006).

For φ (x) ≡ φ(λ) (x) = (λ (λ + 1))−1 (
xλ+1 − x

)

; λ �= 0, λ �= −1, with φ(0) (x) =
limλ→0 φ(λ) (x) = x log x − x + 1 and φ(−1) (x) = limλ→−1 φ(λ) (x) = − log x + x − 1,
we obtain the power-divergence family (see Cressie and Read (1984)).

An important step in the modeling process is assessing how well the data are de-
scribed by the model. The tests that are used to evaluate fit in this manner are referred
to as “goodness-of-fit tests”. The most common goodness-of-fit tests for generalized
linear models include the Pearson χ2 -test and the deviance test. In Section 21.2, we
propose a new family of test statistics based on the φ -divergence that contains the
above test statistics. Furthermore, we estimate the unknown parameters of the model
using the extension of the maximum likelihood estimator, the minimum φ-divergence
estimator given in (21.2). In Section 21.3 a computational study is carried out in order
to find good alternatives to the classical goodness-of-fit tests belonging to this new fam-
ily of test statistics. Finally, diagnostic tools based on the φ−divergence are introduced
in Section 21.4 to identify the nature of one lack of fit.

21.2 Checking Goodness-of-fit

After fitting the GLM, it would be useful to have a single measure that would indicate
how well these observations are explained. The Pearson chi-square and the likelihood
ratio statistics perform this role.

The Pearson chi-square statistic is defined by

X2 =
I
∑

i=1

(

ni1 − niπ
(

xT
i
̂β
))2

niπ
(

xT
i
̂β
)(

1 − π
(

xT
i
̂β
)) (21.4)

where π
(

xT
i
̂β
)

is obtained from π
(

xT
i β
)

replacing β by its MLE. The other classical
test statistic for goodness-of-fit in a GLM is the likelihood ratio test defined by

D =
I
∑

i=1

2

⎧

⎨

⎩

ni1 log
ni1

niπ
(

xT
i
̂β
) + (ni − ni1) log

ni − ni1

ni

(

1 − π
(

xT
i
̂β
))

⎫

⎬

⎭

. (21.5)

Therefore, we propose, for testing a GLM with binary data, i.e.

H0 : p = p
(

β0
) ∈ {p (β) : β = (β0, ..., βk) ,−∞ < βj < ∞, j = 0, ..., k} (21.6)

where p (β) is given in (21.3) and β0 is the true value of parameter, the family of tests
statistics,
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Tφ1,φ2 =
2N

φ′′1 (1)
Dφ1

(

p̂,p
(

̂β
φ2
))

(21.7)

which contains as particular cases the test statistics given in (21.4) and (21.5) for
φ2 (x) = x log x− x− 1, φ1 (x) = 1

2 (x− 1)2 and φ1 (x) = x log x − x − 1, respectively.
We shall establish in the following theorem the asymptotic distribution of (21.7) under
(21.6). This distribution is known to be a chi-square with I−(k+1) degrees of freedom
for (21.4) and (21.5).

Theorem 1. We consider the GLM given by ηi ≡ g (πi) =
∑k

j=0xijβj , i = 1, ..., I.
Choose functions φ1 and φ2 ∈ Φ and twice continuously differentiable. Then, under the
hypothesis given in (21.6), the test statistic Tφ1,φ2 has a chi-squared distribution with
I − (k + 1) degrees of freedom.

Proof. Denoting by

L = S2I×IX
(

XT WX
)−1

XTDiag

(

(

CT
i

)

i=1,...,I

)

Diag
(

p
(

β0
)−1/2

)

(21.8)

where

W = Diag

⎛

⎝

⎛

⎝

ni

Nπ
(

xT
i β0

) (

1 − π
(

xT
i β0

))

(

∂π
(

xT
i β0

)

∂ηi

)2
⎞

⎠

i=1,...,I

⎞

⎠ , (21.9)

Ci =
(ni

N

)1/2 ∂π
(

xT
i β0

)

∂ηi

(

π
(

xT
i β0

)−1/2

− (1 − π
(

xT
i β0

))−1/2

)

, i = 1, ..., I

and

S2I×I = Diag

⎛

⎝

(

ni

N

∂π
(

xT
i β0

)

∂ηi

(−1
1

)

)

i=1,...,I

⎞

⎠ . (21.10)

The result is obtained following the same steps that in Theorem 1 of Pardo et al.
(2006).

By this theorem the GLM is rejected as a description of the data if the level of
significance p = P

(

χ2
I−(k+1) ≥ c

)

, with c the value of Tφ1,φ2 , is sufficiently small.

Remark 1. If we consider the power-divergence of Cressie and Read, i.e., if we consider

φ (x) ≡ φ(λ) (x) = (λ (λ + 1))−1 (
xλ+1 − x

)

; λ �= 0, λ �= −1,

with

φ(0) (x) = lim
λ→0

φ(λ) (x) = x log x− x + 1

φ(−1) (x) = lim
λ→−1

φ(λ) (x) = − log x + x− 1.
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we have the power family of test statistic,

Tλ1,λ2 =
2

λ1(λ1 + 1)

⎧

⎪

⎨

⎪

⎩

2
∑

j=1

I
∑

i=1

nλ1+1
ij

(

niπ̂
φ(λ2)

ij

)λ1
− 1

⎫

⎪

⎬

⎪

⎭

,

where π̂
φ(λ2)

i1 = π
(

xT
i
̂βφ(λ2)

)

and π̂
φ(λ2)

i2 = 1−π
(

xT
i
̂βφ(λ2)

)

, that under the hypothesis
given in (21.6), has a chi-squared distribution with I − (k + 1) degrees of freedom.

To compare, on one hand, the classic test statistics with the new family of test
statistics (21.7) and, on the other hand, to find the best member of our family of test
statistics we have carried out a simulation study that we present in the next section.
We consider the power-divergence family that includes the classic test statistics, i.e.,
the test statistics given in Remark 1. The type I error rates and the powers of some
members of this family are obtained for a probit model. Alternative test statistics to
the classic ones emerge as the best.

21.3 Simulation Study

The members of the family of test statistics Tλ1,λ2 given in Remark 1 according
Theorem 1 are asymptotically equivalent, but for small and moderate samples this
is not necessary true. For this reason we present a simulation study for size as well as
for power of the test statistics Tλ1,λ2 for testing the hypothesis given in (21.6) with
p (β) defined in (21.3) for the probit model, with

ψ−1
(

π
(

xT
i β
))

= β0 + β1xi

where β =(β0, β1)
T with β0 = −1 and β1 = 2, and xi = −1(0.2)1, i = 1, ..., 11, against

the alternative hypothesis p = p (β) with p (β) defined in (21.3) for the different models
given in table 21.1.

All the computations presented here are based on M = 10000 random samples of
sizes n = (n1, ..., n11)

T ∈ N = {n1, n2, n3} with

n1 = (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20) ,
n2 = (40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40) ,
n3 = (60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60) .

We choose λ2 = 0, 2/3 and 1 for estimation since Pardo and Pardo (2007) found
that, for the probit model, the power-divergence estimators corresponding to these
values of λ2 have the best behavior. For testing we consider λ1 = −1/2, 0, 2/3, 1 and 2.

Table 21.1. Alternative hypothesis

A1 ≡ π
(

xT
i β
)

= 0.9 − 0.2x2
i A4 ≡ π

(

xT
i β
)

= 0.3 + 0.2x2
i + 0.4x3

i

A2 ≡ π
(

xT
i β
)

= 0.9 − 0.4x2
i A5 ≡ π

(

xT
i β
)

= 0.3 + 0.2x2
i + 0.1x3

i

A3 ≡ π
(

xT
i β
)

= 0.4x2
i
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Firstly, the simulated exact size at a level α for the population of size n, α̂n, is
obtained by

α̂n =
Number of T j

λ1,λ2
> χ2

9,1−α

M

where T j
λ1,λ2

, j = 1, ...,M is the test statistic Tλ1,λ2 for the jth random sample. Simu-
lated exact sizes corresponding to the test statistics Tλ1,λ2 are provided in table 21.2.

To study the closeness of the simulated exact size α̂n to the nominal size α = 0.05,
we consider the inequality proposed by Dale (1986)

|logit (1 − α̂n) − logit (1 − α)| ≤ d, (21.11)

where logit (p) = ln (p/(1 − p)) and α̂n is the simulated exact size by a sample of size n.
Dale consider that the nominal size is “close” to the simulated exact size if they satisfy
(21.11) with d = 0.35 and “fairly close” if they satisfy (21.11) with d = 0.7. Note that
for α = 0.05, d = 0.35 corresponds to α̂n ∈ [0.0357, 0.0695] , and d = 0.7 corresponds
with α̂n ∈ [0.0254, 0.0959] . The “bold numbers” in table 21.2 correspond to the values
of the simulated size verifying the criterion to be “close”, and the values verifying the
criterion to be “fairly close” are “bold numbers” jointly with “italic numbers”.

In table 21.3, we present the powers of the test statistics corresponding to the
criterion to be “close” in relation to their sizes. To obtain the powers we consider the
data generated from the models of table 21.1. From each one of these M generated
random samples, ̂βφ(0), ̂βφ(2/3) and ̂βφ(1) are calculated under the probit model. After
this, T j

λ1,λ2
, j = 1, ...,M is calculated. The simulated exact power at a level α for a

population of size n is given by the proportion of T j
λ1,λ2

that is greater than χ2
9,1−α.

From table 21.3, we can observe that the best is T0,1 and the second best is T0,2/3.
This means to use the Kullback divergence for testing but the members of the power-
divergence corresponding to λ2 = 1 or 2/3 for estimating. If we consider the criterion
“fairly close” the results are quite similar. We have considered in our study samples
with equal size but if we consider samples with different size we obtain the same results.

Table 21.2. Simulated exact sizes when β is estimated for ̂βφ(0), ̂βφ(2/3) or ̂βφ(1)

n λ1 λ2 = 0 λ2 = 2/3 λ2 = 1

−.5 .0887 .1490 .1755
0 .0270 .0373 .0456

n1 2/3 .0327 .0150 .0157
1 .0518 .0130 .0122
2 .1358 .0268 .0117

−.5 .0810 .1350 .1610
0 .0305 .0414 .0514

n2 2/3 .0402 .0231 .0241
1 .0599 .0231 .0212
2 .1450 .0490 .0263

−.5 .0803 .1275 .1502
0 .0324 .0424 .0531

n3 2/3 .0419 .0266 .0278
1 .0602 .0266 .0248
2 .1404 .0615 .0370
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Table 21.3. Simulated exact powers of Tλ1,λ2 for the alternative hypothesis A1, A2, A3, A4

and A5

λ2 λ1 A1 A2 A3 A4 A5

0 1 .3888 .9410 .9966 .5867 .2609
n1 2/3 0 .4848 .9553 .9996 .6665 .2949

1 0 .5013 .9571 .9998 .6721 .2969

0 2/3 .7509 1.000 1.000 .9381 .5397
0 1 .7475 1.000 1.000 .9329 .5367

n2 2/3 0. .7727 .9997 1.000 .9489 .5522
2/3 2 .7172 .9994 1.000 .9170 .5327
1 0 .7810 .9998 1.000 .9496 .5531

0 2/3 .9272 1.000 1.000 .9948 .7641
0 1 .9264 1.000 1.000 .9945 .7623

n3 2/3 0 .9340 1.000 1.000 .9963 .7697
2/3 2 .9164 1.000 1.000 .9934 .7613
1 0 .9372 1.000 1.000 .9963 .7703
1 2 .9108 1.000 1.000 .9932 .7604

This conclusion coincides with the results obtained in Pardo et al. (2006) for the logistic
regression models.

21.4 “Outlying” Detection Procedures

In Section 21.2 we introduced statistics for checking model fit in a global sense. The
disadvantage of these single overall test statistics of goodness-of-fit is that it will not
usually give constructive guidance on how to deal with any failure of the original
model and is likely to be insensitive in detecting specific types of departure. Therefore,
more specific tools to check models are considered such as diagnostic methods based
on residuals. These measures should readily identify observations that are not well
explained by the model. These observations are called “outlying” observations. For a
binary GLM, the most well known residuals for the fits are

ei =
ni1 − niπ

(

xT
i
̂β
)

√

niπ
(

xT
i
̂β
)(

1 − π
(

xT
i
̂β
))

.

These residuals are known as Pearson residuals, since X2 =
∑I

i=1
e2

i is the Pearson
chi-square statistic given in (21.4). These residuals therefore measure the contribution
that each observation makes to a statistic that is a summary measure of goodness-of-fit
of the fitted GLM. For this reason, they are intuitively appealing as measures of model
adequacy.
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Another type of residual can be constructed from the likelihood ratio test statistic,
D, given in (21.5). The signed square root of the contribution of the ith observation to
this overall deviance is

di = sig
(

ni1 − niπ
(

xT
i
̂β
))

× √
2

⎡

⎣

⎛

⎝ni1 log
ni1

niπ
(

xT
i
̂β
)

⎞

⎠+ (ni − ni1) log
ni − ni1

ni

(

1 − π
(

xT
i
̂β
))

⎤

⎦

1/2

.

The quantity di is known as a deviance residual and is such that the overall deviance

is D =
∑I

i=1
d2

i .
The residuals ei and di can be obtained as particular cases of the family of residuals,

cφ1,φ2
i = sig

(

ni1 − niπ
(

xT
i
̂βφ2

))

×
√

2ni

φ′′1 (1)

⎧

⎨

⎩

π
(

xT
i
̂βφ2

)

φ1

⎛

⎝

ni1

π
(

xT
i
̂βφ2

)

ni

⎞

⎠

+
(

1 − π
(

xT
i
̂βφ2

))

φ1

⎛

⎝

ni2
(

1 − π
(

xT
i
̂βφ2

))

ni

⎞

⎠

⎫

⎬

⎭

1/2

,

where π
(

xT
i
̂βφ2

)

is obtained from π
(

xT
i β
)

replacing β by its minimum φ2-divergence

estimator ̂βφ2
. We obtain ei considering φ1 (x) = 1

2 (x− 1)2 and di considering φ1 (x) =
x log x− x + 1 when φ2 (x) = x log x− x + 1.

As same as the Pearson chi-square and the deviance statistics are obtained adding
the squares of the residuals ei and di, respectively, the statistic proposes in (21.7) is
obtained adding the squares of the residual cφ1,φ2

i .
However, the standardization used in the construction of the Pearson residuals does

not yield residuals that have even approximate unit variance, since the true variance
of ni1 − π

(

xT
i
̂β
)

ni can be different from niπ
(

xT
i β0

) (

1 − π
(

xT
i β0

))

. This variance

does not take into account the variability of π
(

xT
i
̂β
)

. The same happens in general

for cφ1,φ2
i . A better procedure is to divide cφ1,φ2

i by their asymptotic standard error,

SE
(

cφ1,φ2
i

)

. In Theorem 2 we derive it.

Theorem 2. We consider the GLM given by ηi ≡ g (πi) =
∑k

j=0
xijβj , i = 1, ..., I.

Choose functions φ1 and φ2 ∈ Φ and twice continuously differentiable. Then,

SE
(

cφ1,φ2
i

)

≈
√

1 − hii

where hii are the diagonal elements of the hat matrix (Pregibon , 1981),

H = W 1/2X
(

XT WX
)−1

XT W 1/2

with W given in (21.9).
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Proof. Following the same steps used in the proof of Theorem 3 in Pardo et al. (2006)
it can be proved that

cφ1,φ2
i

L−→
N→∞

N (

0, τ2
i

)

where

τ2
i = 1 − αi

π
(

xT
i β0

) (

1 − π
(

xT
i β0

))

(

∂π
(

xT
i β0

)

∂ηi

)2

xiIF

(

β0
)−1

xT
i

being IF

(

β0
)

= XT W ∗X the Fisher information matrix with W ∗ = limN→∞W with
W is given in (21.9) and αi = limN→∞ ni/N .

Taking into account that

V ar (ni1) = niπ
(

xT
i β0

) (

1 − π
(

xT
i β0

))

, i = 1, ..., I

we have the result.

Remark 2. The standardized residual based on cφ1,φ2
i is given by

(

cφ1,φ2
i

)∗
=

cφ1,φ2
i

√

1 − ̂hφ2
ii

,

where ̂hφ2
ii is obtained replacing β0 by the minimum φ2−divergence estimator in hii.

From the above theorem, it is clear that
(

cφ1,φ2
i

)∗
≈ N (0, 1) and

(

cφ1,φ2
i

)∗
are

useful as diagnostics for detecting model deviations in GLM analysis. Their role as
diagnostics are primarily to indicate which of the observed responses contribute most
to a significant test statistics.

An alternative way for identifying an “outlying” at a designated case, say i, consists
in considering the model,

ηs =

⎧

⎪

⎨

⎪

⎩

∑k
j=0xsjβj + γs if s = i

∑k
j=0xsjβj if s �= i

, s = 1..., I. (21.12)

This model is an analogue of the mean slippage model commonly used for outlying
detection in linear regression (Cook and Weisberg (1982), p. 20). A test that observation
xi is an “outlying” is equivalent to

H0 : γi = 0 against H1,i : γi �= 0. (21.13)

If the null hypothesis is rejected, the ith observation will be an “outlying,”or if we
express the GLM given in (21.12) as the GLM binary response

ηs ≡ g (πs) =
∑k+1

j=0x
∗
sjβ
∗
j , s = 1, ..., I,

where x∗sj = xsj for j �= k + 1, x∗ik+1 = 1 and x∗sk+1 = 0 for s �= i. The vector of
parameters for this model is β∗ = (β0, ..., βk, γi) . Then, to test the hypothesis given in
(21.13) is equivalent to test
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H0 : KTβ∗ = 0 against H1,i : KTβ∗ �= 0. (21.14)

where,
KT = (0k+1, 1) .

A test statistics for testing (21.14) is given by

T φ1,φ2
N,i =

2N
φ′′(1)

Dφ1

(

p
(

̂β
H1,i

φ2

)

, p
(

̂βH0
φ2

))

(21.15)

where ̂βH1,i

φ2
and ̂βH0

φ2
are the minimum φ2−divergence estimator under the alternative

hypothesis and under the null hypothesis, respectively. The asymptotic distribution of
this statistic can be seen in the following Theorem.

Theorem 3. We consider the GLM given by (21.1). Under the null hypothesis given in
(21.14) the asymptotic distribution of the φ−divergence test statistic given in (21.15)
is a chi-squared with 1 degree of freedom.

Proof. We omit the proof because follows the same steps that Theorem 1 considered
in Menéndez et al. (2006) for a binary logit model.

When the candidate case for an “outlying” is unknown, a multiple testing procedure,
such as one based on the first Bonferroni inequality (Miller, 1966), must be used to
find significance levels. In our case, we will say that xi is an “outlying” if

T φ1,φ2
N,i ≥ χ2

1,α/I

and the probability to reject incorrectly an observation is given by

Pr

(

I
⋃

i=1

(

T φ1,φ2
N,i ≥ χ2

1,α/I

)

)

≤
I
∑

i=1

Pr

(

T φ1,φ2
N,i ≥ χ2

1,α/I

)

= α.
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Some Problems in Geometric Processing of Surfaces

Jaime Puig-Pey, Akemi Gálvez, Andrés Iglesias, Pedro Corcuera, and José Rodŕıguez

Department of Applied Mathematics and Computational Sciences, University of Cantabria,
Spain

Abstract: This paper addresses two interesting problems in geometric processing of
surfaces: (1) the determination of the curves on a surface having a constant angle with
a prescribed constant direction (helical curves) and (2) the construction of the curve
of contact between the surface and the cone circumscribing the surface, with its vertex
at the observation point (silhouette curves). Both problems are formulated by using
geometric and differential arguments leading to initial value problems of systems of
explicit first-order ordinary differential equations that can be efficiently solved through
standard step-by-step numerical integration methods. For each problem, the interesting
cases of surfaces given in implicit and parametric form are discussed. Some illustrative
examples show the good performance of the proposed methods.

Keywords and phrases: Geometric processing, differential geometry, parametric
surfaces, implicit surfaces, helical curves, silhouette curves

22.1 Introduction

During the last few years, geometric processing has become a very important and
widely researched issue in Mathematical Modeling. In its most comprehensive mean-
ing, geometric processing usually refers to the calculation of geometric properties of
entities such as curves, surfaces and solids (Barnhill, 1992). These geometric problems
are represented as equations or systems, nonlinear in general, which are often solved by
means of algebraic techniques as made by Bajaj et al. (1988), Krishnan and Manocha
(1997). But other methods based on differential equations are receiving increasing at-
tention during the last few years. Thus, Grandine (2000) formulates geometric problems
as boundary problems in systems of algebraic-differential equations. Patrikalakis and
Maekawa (2002) also apply algebraic and differential methods to some issues related
to curves and surfaces. In this paper, we also follow a geometric-differential approach
to solve two interesting problems in geometric processing of surfaces:

1. the determination of the curves on a surface having a constant angle with a pre-
scribed constant direction (helical curves) and

B.C. Arnold et al. (eds.), Advances in Mathematical and Statistical Modeling,
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2. the construction of the curve of contact between the surface and the cone circum-
scribing the surface, with its vertex at the observation point (silhouette curves).

Our approach is quite similar to that in our previous papers in Gálvez et al. (2004),
Puig-Pey et al. (2003, 2004) and Puig-Pey et al. (2005). The problems are formulated
by using geometric and differential arguments, leading in most cases to initial value
problems of systems of explicit first-order ordinary differential equations (ODEs), which
can be solved efficiently by standard step-by-step numerical integration methods, avail-
able in most numerical libraries (Press et al. (1992), The Mathworks Inc (1999), The
Netlib Repository at http://www.netlib.org). Basic definitions and properties from
classical Differential Geometry, see Struik (1988), are very important tools in this work.
We apply them to surfaces expressed in implicit form, f(x, y, z) = 0, and also to para-
metric surfaces, S(u, v) = (x(u, v), y(u, v), z(u, v)), in particular NURBS (Non Uniform
Rational B-Splines), a rational piecewise model very common for the definition of free
form curves and surfaces in Computer Aided Geometric Design (see a recent overview
of CAGD in Farin et al. (2002)). Efficient algorithms for evaluation of functions and
derivatives associated to NURBS curves and surfaces can be found in the book by Piegl
and Tiller (1997). We make use of them throughout this work.

The guidelines of this paper are as follows: Firstly, some mathematical preliminaries
on parametric and implicit surfaces are given in Section 22.2. Section 22.3 deals with
the calculation of helical curves, which maintain a constant angle with a prescribed
constant direction. The cases of helical curves on implicit and parametric surfaces
are discussed. Then, in Section 22.4 we provide an efficient method for computing the
silhouette curves (the curves of contact between the surface and the cone circumscribing
the surface, with vertex at the observation point). The method is also presented for
both the implicit and parametric surfaces. The chapter closes with the conclusions of
this work and some further remarks.

22.2 Mathematical Preliminaries

In this work we will consider differentiable surfaces given in parametric and implicit
forms. In the first case, they are described by a vector-valued function of two variables:

S(u, v) = (x(u, v), y(u, v), z(u, v)), u, v ∈ Ω ⊂ IR2 (22.1)

where u and v are the surface parameters and Ω represents the surface domain. Ex-
pression (22.1) is called a parameterization of the surface S. We shall use the notation:

Su(u, v) =
∂S(u, v)

∂u
, Sv(u, v) =

∂S(u, v)
∂v

to denote the first derivatives of S, which depend on the specific parameterization
adopted. However, all the differential geometric characteristics of the surface employed
in this paper are independent of the chosen parameterization.

At regular points, the partial derivatives Su(u, v) and Sv(u, v) do not vanish simul-
taneously. For {u = u0, v = v0}, Su and Sv are vectors on the tangent plane to the
surface at the point S(u0, v0), each being tangent to the parametric or coordinate curve
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v = v0 and u = u0, respectively. These vectors define the unit normal vector N to the
surface S:

N =
Su × Sv

||Su × Sv||2 (22.2)

where the symbol “×” is used to indicate the cross product and ||.||2 denotes the
Euclidean norm.

Any arbitrary curve C on the surface can be described in parametric form on the
surface domain Ω by {u = u(t), v = v(t)}. This expression defines a three-dimensional
curve on the surface S given by C(t) = S(u(t), v(t)). Applying the chain rule, the
tangent vector of the curve C at a point C(t) becomes:

dC(t)
dt

= Su
du

dt
+ Sv

dv

dt
(22.3)

or, as a differential arc of C(t):

dC = Su du + Sv dv. (22.4)

It is useful to consider the case in which the curve C is parameterized by the arc-
length on the surface. Its geometric interpretation is that a constant step traces a
constant distance along an arc-length parameterized curve. A practical application in
computer controlled milling operations is that the curve path followed by the milling
machine must be parameterized such that the cutter neither speeds up nor slows down
along the path. Consequently, the optimal path is that parameterized by the arc-length
s on the surface S, given by the First Fundamental Form:

E

(

du

ds

)2

+ 2 F
du

ds

dv

ds
+ G

(

dv

ds

)2

= 1 (22.5)

or, in differential form:

ds2 = E du2 + 2F du dv + Gdv2 (22.6)

where the coefficients E,F and G are given by:

E = Su.Su , F = Su.Sv , G = Sv.Sv (22.7)

and “.” is used to indicate the dot product (see Struik (1988) for details). In some cases,
it can be useful to consider s as the arc-length measured in the parametric domain for
(u, v). Then the differential relation is:

ds2 = du2 + dv2 (22.8)

For a surface given in implicit form, f(x, y, z) = 0, calling fx, fy, fz to the cor-
responding partial derivatives, the unit normal vector at a nonsingular point (i.e., a
point at which the three partial derivatives do not vanish simultaneously) is:

N =
(fx, fy, fz)

||(fx, fy, fz)||2 (22.9)
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A parametrically defined curve C(s) = (x(s), y(s), z(s)), has tangent vector:

dC(s)
ds

=
(

dx

ds
,
dy

ds
,
dz

ds

)

. (22.10)

If C(s) is lying on f(x, y, z) = 0, the tangent vector is orthogonal to the surface
normal N, and then, from (22.9) and (22.10):

fx
dx

ds
+ fy

dy

ds
+ fz

dz

ds
= 0 (22.11)

or, calling dC = (dx, dy, dz) to the differential arc of C, one has the following differential
expression:

fx dx + fy dy + fz dz = 0. (22.12)

Further, the elementary arc-length ds of differential arc dC and its components are
related by the Pythagorean relationship:

ds2 = dx2 + dy2 + dz2 (22.13)

or equivalently (the tangent vector
dC
ds

is unitary):

(

dx

ds

)2

+
(

dy

ds

)2

+
(

dz

ds

)2

= 1. (22.14)

22.3 Helical Curves on Surfaces

Helical curves are curves whose tangent vector maintains a constant angle φ with a given
constant direction D. As shown by several authors, the helical topology is important in
the generation of tool-paths for numerical controlled machining, particularly for high-
speed machining processes (see, for instance, Choi and Jerard (1998) or Patrikalakis
and Maekawa (2002)). Helical curves are also relevant for designing curves on surfaces
where the control of slopes is important, like in railways, roads, etc.

In this section we show how to obtain a helical curve C lying on a surface S and
defined by a parametric representation, C(s) = (x(s), y(s), z(s)), where s is the 3D
arc-length on S. For C(s) to be a helical curve, it must exhibit a constant angle φ
with an arbitrary given vector D, which will be the axis of such a helical curve. Since
∣

∣

∣

∣

∣

∣

∣

∣

dC
ds

∣

∣

∣

∣

∣

∣

∣

∣

2

= 1 and, without loss of generality, we can assume that ||D||2 = 1, we get:

dC
ds

.D = cos(φ) (22.15)

The cases of helical curves on implicit and parametric surfaces are discussed in the
following paragraphs.
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22.3.1 Implicit surfaces

Let S be a surface given in implicit form by f(x, y, z) = 0. In this case, we take as
unknows the components of the unit tangent vector to C(s), given by (22.10). Without
loss of generality, we can assume that D = (0, 0, 1) (the discussion is quite similar for
any other choice of the unit vector D), so from (22.15) we get:

dz

ds
= cos(φ). (22.16)

Substituting (22.16) into (22.13), combining the resulting equation with (22.12) and
making some calculations, we finally obtain:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dx

ds
=

−fx fzcos(φ) ± fy

√

(

f2
x + f2

y

)

sin2(φ) − f2
z cos2(φ)

f2
x + f2

y

dy

ds
=

−fy fzcos(φ) ∓ fx

√

(

f2
x + f2

y

)

sin2(φ) − f2
z cos2(φ)

f2
x + f2

y

dz

ds
= cos(φ)

. (22.17)

Equations (22.17) together with an initial point:
⎧

⎨

⎩

x(0) = u0

y(0) = v0

z(0) = z0

(22.18)

constitute an initial-value problem for an explicit first-order system of ordinary dif-
ferential equations. Note that there are two different systems of differential equations,
associated with the signs ± and ∓ in (22.17), respectively. They correspond to the two
different helical curves passing through a given point on the surface S for which the
value of the expression Δ =

(

f2
x + f2

y

)

sin2(φ) − f2
z cos2(φ) is positive, Δ > 0. On the

contrary, a value Δ < 0 at a point P means that there is no helical curve at that point
for the chosen direction D and the angle φ.

Example 1. Figure 22.1 shows two examples of helical curves on implicit surfaces. The
figure on the left is given by the implicit equation α(z − 1) + (x2 + y2)z = 0 (for
α = 0.04) while the figure on the right is comprised of two spheres and a cylinder.
The helical curves correspond to angles φ = 80o and φ = 85o respectively for the
vector D = (0, 0, 1) in both cases. As the reader can see, the method exhibits a good
performance even when the curve moves on a piece comprised of several surfaces (see
Section 22.5 for a more detailed discussion).

22.3.2 Parametric surfaces

In the case of a parametric surface S(u, v) given by Eq. (22.1), we obtain the helical

curve C(s) in parametric form by taking as unknowns the derivatives
du

ds
,
dv

ds
and
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Figure 22.1. Examples of helical curves on implicit surfaces

calculating u(s), v(s). The procedure is as follows: Firstly, we insert (22.3) into (22.15)
and get:

(Su.D)
du

ds
+ (Sv.D)

dv

ds
= cos(φ). (22.19)

Combining Eqs. (22.5) and (22.19) and making some calculations, we obtain:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

du

ds
=

−B ± 2(Sv.D)
√

(F 2 − EG) cos2(φ) + A

2A

dv

ds
=

−C ∓ 2(Su.D)
√

(F 2 − EG) cos2(φ) + A

2A

(22.20)

where the values A, B and C are given by

A = E (Sv.D)2 − 2F (Su.D) (Sv.D) + G (Su.D)2

B = 2 cos(φ) [F (Sv.D) −G(Su.D)]

C = 2 cos(φ) [F (Su.D) − E (Sv.D)]

and E,F and G are defined by (22.7). For system (22.20) to be completely determined
we need to consider an initial point:

{

u(0) = u0

v(0) = v0
(22.21)

on the surface domain. System (22.20)–(22.21) constitutes an initial-value problem of
explicit first-order ordinary differential equations. The signs ± and ∓ in (22.20) mean
that there are two helical curves starting at (u0, v0) associated with the two possible
φ directions at this point, provided that the discriminant (F 2 − EG) cos2(φ) + A is
positive at this point, and no solution otherwise. Once the system (22.20)–(22.21) is
solved for u and v, the x, y and z coordinates of the helical curve can be automatically
determined by a simple substitution of u and v into the surface equation S(u, v).
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Figure 22.2. Examples of helical curves on parametric surfaces

Example 2. Figure 22.2 shows two examples of helical curves on parametric surfaces.
The figure on the left is a NURBS surface of order (3, 3) defined by a mesh of 4 × 4
control points and non-periodic knot vectors for both variables u and v. The helical
curve corresponds to φ = 70o and D = (1, 0, 0). The figure on the right is the top
part of a teapot comprised of 8 bicubic Bézier surfaces. In this example, φ = 85o and
D = (0, 0, 1).

22.4 Silhouette Curve on a Surface

The general problem is equivalent to the construction of the curve of contact between
the surface and the cone circumscribing the surface, with its vertex at the observation
point. This problem appears in robotics and computer vision for control of visibility,
etc. An efficient method for calculating the silhouette of a canal surface is presented
by Kim and Lee (2003). If the vision is parallel, similar statements can be made,
referring to the cylinder circumscribing the surface, with its axis in the direction of
the observation. In the case of conic vision, the condition is that the line joining each
point of the silhouette curve with the cone vertex, must be orthogonal to the surface
normal at the considered silhouette point. The formulation for this case of conic vision
is presented in the following paragraphs.

22.4.1 Surface in implicit form

Let f(x, y, z) = 0 be the implicit equation of a surface S. At a point (x, y, z) of S placed
on the silhouette curve, with the vision point Q = (Q1, Q2, Q3), the two following
conditions must be verified:

f(x, y, z) = 0 (22.22)

((x, y, z) − Q).(fx, fy, fz) = 0
≡ (x−Q1)fx + (y −Q2)fy + (z −Q3)fz = 0
≡ g(x, y, z) = 0. (22.23)
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Figure 22.3. Examples of silhouette curves on implicit surfaces

This system (22.22)–(22.23) of 2 equations with 3 unknowns, represents the silhou-
ette, and can be understood as the intersection of two surfaces given in implicit form,
namely, f(x, y, z) = 0 and g(x, y, z) = 0. If N1 = (fx, fy, fz) and N2 = (gx, gy, gz)
denote the respective normals at an intersection point, the differential of arc of the
intersection curve, dC = (dx, dy, dz), follows the direction of the vector:

W = (W1,W2,W3) = (N1 × N2) = (fygz − fzgy, fzgx − fxgz, fxgy − fygx)

provided that the surfaces are not tangent. Consequently:

dx

W1
=

dy

W2
=

dz

W3
.

Combining these equations with Eq. (22.13) we obtain the following first-order
explicit system of ODEs that represents the silhouette curve C:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dx

ds
= ± fygz − fzgy

√

(fygz − fzgy)2 + (fzgx − fxgz)2 + (fxgy − fygx)2

dy

ds
= ± fzgx − fxgz

√

(fygz − fzgy)2 + (fzgx − fxgz)2 + (fxgy − fygx)2

dz

ds
= ± fxgy − fygx

√

(fygz − fzgy)2 + (fzgx − fxgz)2 + (fxgy − fygx)2

. (22.24)

From (22.23) the partial derivatives can be obtained as:
⎛

⎝

gx

gy

gz

⎞

⎠ =

⎛

⎝

fxx fyx fzx

fxy fyy fzy

fxz fyz fzz

⎞

⎠

⎛

⎝

x−Q1

y −Q2

z −Q3

⎞

⎠+

⎛

⎝

fx

fy

fz

⎞

⎠ (22.25)

Taking as the initial condition (x(0), y(0), z(0)) = (x0, y0, z0) for (22.24), we have an
initial value problem of ODEs. In order to obtain an initial point P0 of the intersection
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curve of f = 0 and g = 0 a combination of scalar and vector fields can be applied (see
Puig-Pey et al. (2005) for details).

Example 3. Figure 22.3 shows two examples of silhouette curves on implicit surfaces.

The figures are given by x4 + 2x2z2 − 0.36x2 − y4 +
y2

4
+ z4 = 0 (on the left) and x4 +

y4 + z4 − x2y2 − x2z2 − y2z2 − 1 = 0 (on the right). The observation points for these
examples are (−3, 0, 0) and (2,−2, 0) respectively.

22.4.2 Surfaces in parametric form

If the surface is in parametric form, S(u, v) = (x(u, v), y(u, v), z(u, v)), the points on
the silhouette hold:

(S(u, v) − Q)(Su(u, v) × Sv(u, v)) = 0 ≡ c(u, v) = 0, (22.26)

that is, the silhouette appears as an implicit equation denoted by c(u, v) = 0. Its graph-
ical representation is a plane curve in the parametric domain of the u, v parameters
of S. If c(u, v) is algebraic, González-Vega and Necula (2002) introduce a method for
deducting precisely the topology of this curve. To trace the curve we use a differential
formulation. In particular, two equations with the three differential unknowns du, dv
and ds are considered. The first one is cu du+ cv dv = 0, which represents the orthog-
onality between the differential arc of curve c(u, v) = 0 and its normal vector, both
in the domain u, v. Combining this expression with Eq. (22.8) we get the first-order
explicit system of ODEs:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

du

ds
= ± cv

√

c2u + c2v

dv

ds
= ∓ cu

√

c2u + c2v

(22.27)

where:

cu = Su.(Su × Sv) + (S − Q).(Suu × Su + Su × Svu)
cv = Sv.(Su × Sv) + (S − Q).(Suv × Sv + Su × Svv).

An initial point is needed, and it can be obtained by solving the scalar equation
(22.26) when a value is assigned to u or v. As an alternative, the idea of scalar and
vector fields can be fruitful. The scalar function c(u, v) in the (u, v) domain plays the
role of a scalar field Φ; a gradient curve is obtained in a step by step integration process,
advancing in the gradient direction, ∇Φ, with the adequate orientation, starting at a
“freely chosen” initial point (recommended to be not far from the expected silhouette
curve) in the (u, v) domain, until detecting a change in the sign of the value of c(u, v)
and, hence, getting the point verifying c(u, v) = 0, the initial point for tracing the
silhouette curve.

Example 4. Figure 22.4 shows two examples of silhouette curves on parametric surfaces.
The figure on the left is a NURBS surface of order (5, 4) defined by a mesh of 8 × 6
control points, while the surface on the right is a NURBS surface of order (3, 4) and
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Figure 22.4. Examples of silhouette curves on parametric surfaces

6 × 6 control points. The observation points are
(

−20,
15
4
, 1
)

and
(

−10,−10,
5
4

)

respectively.

22.5 Conclusions and Further Remarks

In this chapter the problem of the computation of helical and silhouette curves on
surfaces have been addressed. The presented methods are obtained by using geometric
and differential arguments that characterize the problem to be solved. In addition, the
methods can deal with surfaces given in implicit or in parametric form. The methodol-
ogy presented here has the advantage of being quite general because it is valid for any
type of smooth functions involved in the surface equations, and it does not depend on
being polynomial, or rational or other. For the formulation to have sense, it is merely
necessary that they can be differentiated. In the case of surfaces consisting of several
patches, the ODEs are valid inside each patch, and special attention has to be paid
in the transition from one patch to another, taking into account the continuity be-
tween them. If there are not strong discontinuities, one can progress smoothly between
patches, because only low order derivatives appear in the ODEs. Otherwise, the border
crossing point must be carefully identified, with the integration of the ODEs starting
from it as the initial point for traversing the next patch.

The first order explicit ODEs systems associated with initial value problems can be
treated numerically with methods that are widely available, fast and reliable. In our case
we have used the integrator function ode45 of MATLAB (The Mathworks Inc, 1999),
which is based on an adaptive step-by-step technique combining 4th- and 5th-order
Runge-Kutta methods for controlling the error and the step integration size. Values
for absolute and relative error tolerances can be specified by the user. The routine
allows for using stopping criteria in simple ways, controlling common conditions for
values of the variables or for certain functions appearing in the problem. There is no
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perfect numerical procedure for solving all cases of initial value ODEs problems, but
to our experience this integrator function has shown a very good behaviour. Let us
mention too the routines odeint, rkqs and rkck in the book Numerical Recipes by
Press et al. (1992) that are available in C and C++, Fortran 77 and 90 languages.
They are adaptive step size integration procedures based on Runge-Kutta technique as
well. In the Netlib Repository one can find a wide variety of tested computer codes for
different numerical problems, including ODEs.

Regarding stopping criteria for the step-by-step integration processes in the prob-
lems included here, one case will appear when going beyond some limit in the domain
of definition of the x, y, z variables or for the u, v parameters. The presence of singular
points on a surface (zero values for partial derivatives, undefined normals) introduces
singularities in the ODEs. Although floating point calculations make it more difficult to
obtain exact zero values, this could actually happen, leading to numerical instabilities
when the integration arrives in the neighbourhood of such points.

The explained methods are deduced from the analysis of a local behaviour at differ-
ential level. In the case of a solution curve with several components, these techniques
are not sufficient for an automatic identification of all the simple components. Any
criteria for generating different trajectories in the associated initial value problem will
be useful for approaching the different components.
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Abstract: The need to compute the generalized inverse of a matrix appears in several
statistical, mathematical and engineering problems, such as the estimation of linear
classification and regression functions, electrical circuits estimation, calculus of struc-
tures, etc. In this paper, we propose to apply an orthogonal decomposition methodology
to compute a weak generalized inverse, based on the calculus of a non-singular sub-
matrix of the given matrix. Special attention will be focussed on the updating of the
generalized inverse when some of the elements of the original matrix are modified.
The proposed method allows us to perform this updating without starting the process
from scratch. The proposed procedures will be illustrated with some examples and
their application to the estimation of linear regression coefficients when a problem of
multicollinearity is present.

Keywords and phrases: Generalized inverse updating, non full rank matrix, linear
regression, multicollinearity

23.1 Introduction

Castillo et al. (1999) have introduced a pivoting transformation for obtaining the or-
thogonal of a given linear subspace. This process decomposes the Euclidean Space in
a direct sum of the orthogonal linear subspace and its complement. This method is
applied to solve a long list of problems in linear algebra, including the resolution of
linear systems of equations. Some of these applications can be found in Castillo et al.
(2006a,b). The direct methods that arise from this transformation have a complexity
identical to that associated with the Gaussian Elimination Method (see Castillo et al.
(1999)). However, they are specially suitable for updating solutions when changes in
rows, columns, or variables are done. In fact, when changing a row, column or variable,
a single step of the process allows us to obtain (to update) the new solution, without
needing to start from scratch.

In this paper we propose to apply the pivoting transformation based on the or-
thogonal decomposition to obtain the generalized inverse A− of a matrix A ∈ Mm×n
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which verifies AA−A = A. The method is based on the calculus of the inverse of a
maximum rank submatrix of the given matrix A. We also extend this methodology to
update the generalized inverse when a row of the given matrix is modified.

The paper is structured as follows. In Section 23.2, the definition of a generalized
inverse and the theoretical calculus to obtain it are introduced. In Section 23.3, we
present the algorithm to calculate a generalized inverse of a given matrix. In Section
23.4 we present the algorithm to update the generalized inverse when a row of the
original matrix is modified. Both algorithms are illustrated with an example. In Section
23.5 we present the application of this technique to estimate the parameters of a lineal
model where multicollinearity is present. Finally, some conclusions are reported in
Section 23.6.

23.2 Generalized Inverse

In case of a rectangular matrix or a non full rank matrix, the concept of inverse matrix
must be generalized. In this paper we consider a weak generalized inverse, A−, called
simply generalized inverse of A or {1}-inverse. It is called weak since it must verify
just one condition (given in the following definition) in order to generalize the inverse
of a given matrix.

Definition 1 ({1}-inverse). Given A ∈ Mm×n, the matrix A− ∈ Mn×m is a {1}-
inverse of A if and only if AA−A = A.

There is not a unique {1}-inverse, but at least one always exists. There are different
methods to compute it, see for example Schott (2005). In particular, we will use the
following result:

Theorem 1 ({1}-inverse computation). Let A ∈ Mm×n be a matrix with rank(A)
= k ≤ min(m,n). If rank(A) = k, there exist permutation matrices R and C, such
that, the matrix A can be reordered as

RAC = B =
(

B11 B12

B21 B22

)

, (23.1)

where B11 is a non singular submatrix of order k. Then, a generalized inverse of the
matrix B can be calculated as

B− =
(

B−1
11 0k×(m−k)

0(n−k)×k 0(n−k)×(m−k)

)

(23.2)

where B−1
11 is the inverse of the submatrix B11 and 0 stands for the zero matrix. Con-

sequently, a generalized inverse of the matrix A is attained and it is computed as:

A− = CB−R. (23.3)
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23.3 The Algorithm to Obtain a Generalized Inverse

We adapt the algorithm given in Castillo et al. (1998, 2000), based on the orthogonal
decomposition of the Euclidian space, to compute the inverse of a maximum rank
submatrix in order to obtain the {1}-inverse in Eq. (23.3). The algorithm works as
follows:

Algorithm 1

Input: A matrix A of dimension m × n. The starting matrix W = In (the identity
matrix of dimension n) and the starting vector u = 0n (the null vector of dimension
n).

Output: A vector u that indicates which rows and columns of A form the submatrix
B11 and a matrix W that contains its inverse B−1

11 .
Step 1: Initial step. Set W = In. Set u = 0n. Let i = 1.
Step 2: Dot products. Calculate the dot products tj = aT

i wj, j = 1, . . . , n, that is,
the dot products of the i-th row of A by each column of W.

Step 3: Select a pivoting column. Locate the first non null tp corresponding to a null
element in the p-th position of u, which indicates the p-th column of the W to be
used as pivot. Replace the p-th component of u by i and continue with Step 4. If
there is not such a column, go to Step 6.

Step 4: Modify the pivoting column. Divide the p-th column of W by tp.
Step 5: Pivoting. For j = 1 to n, j �= p and tj �= 0 do wkj = wkj − tjwkp for k =

1, . . . , n.
Step 6: If i = m, continue with Step 7. Otherwise, increase i in one unit and go back

to Step 2.
Step 7: Output. The matrix W which contains the inverse of a submatrix of maximum

rank of A. This maximum rank submatrix is composed by the intersection of the
rows of A whose indices are the non null elements of u and the columns given by
the position of these indices in u. The inverse of this submatrix is composed by
the columns of W corresponding to the non null elements in u and the same rows.
The rank of A is equal to the number of non null elements in u.

In Step 3, not to find the pivot means that the row aT
i of matrix A, introduced in

the previous step, is linearly dependent of the rows given by the non null elements of u.
Furthermore, the coefficients of such linear combination are given by the corresponding
dot products in vector t.

The iterations of the algorithm can be organized in tabular form. Table 23.1 shows
the elements of the i-th iteration. The vector u is in the first row of the tableau and
the row of A introduced in the pivoting process is in the first column. The last row
corresponds to the dot products computed in Step 2 and W is inside the tableau.

Example 1. We apply algorithm 1 to obtain the generalized inverse of

A =

⎛

⎜

⎜

⎜

⎜

⎝

−1 1 0 1
3 −1 2 2
2 0 2 3
1 −1 0 1
3 −1 2 4

⎞

⎟

⎟

⎟

⎟

⎠

. (23.4)
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Table 23.1. i-th iteration of Algorithm 1

Iteration i

u1 u2 . . . un

ai1 w11 w12 . . . w1n

ai2 w21 w22 . . . w2n

...
...

...
...

...
ain wn1 wn2 . . . wnn

t t1 t2 . . . tn

The iterations in tabular form are shown in table 23.2. We proceed as follows:

Step 1: Initial step. The first tableau shows u equal to the null vector of dimension 4
and W equal to the identity matrix of order 4. Since i = 1, the first column in the
tableau is the first row of A, that is, aT

1 = (−1, 1, 0, 1).
Step 2: Dot products. The last row in the first tableau contains the vector t = aT

1 ·I4 =
(−1, 1, 0, 1).

Step 3: Select a pivoting column. Since t1 = −1 is the first non null component of t
corresponding to a null element in vector u, select p = 1 and the first column of
W is the pivoting column. It is given in boldface. For the same reason, the second
tableau shows that u1 = 1 and the rest of the components of u remain unchanged.

Step 4: Modify the pivoting column. The second tableau shows the first column of
W = I4 divided by t1 = −1.

Step 5: Pivoting. Since p = 1 and t3 = 0, for j = 2 and j = 4 we compute the new
wkj , k = 1, . . . , 4. For example, w12 = w14 = 0 − (−1) · 1 = 1. The rest of elements
of W remains unchanged as it is shown in the second tableau.

Step 6: Now we go back to Step 2 and after five iterations we stop and go to Step 7.
Step 7: Output. The final tableau shows u = (1, 2, 0, 4), which means that the subma-

trix of A composed by the intersection of its first, second and forth rows and the
same columns,

Table 23.2. Iterations in tabular form to obtain the inverse of a maximum rank submatrix
of A in example 1. B−1

11 is boldfaced in the Final Tableau

Iteration 1

0 0 0 0

−1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
1 0 0 0 1

t −1 1 0 1

Iteration 2

1 0 0 0

3 −1 1 0 1
−1 0 1 0 0

2 0 0 1 0
2 0 0 0 1

t −3 2 2 5

Iteration 3

1 2 0 0

2 1/2 1/2 −1 −3/2
0 3/2 1/2 −1 −5/2
2 0 0 1 0
3 0 0 0 1

t 1 1 0 0

Iteration 4

1 2 0 0

1 1/2 1/2 −1 −3/2
−1 3/2 1/2 −1 −5/2

0 0 0 1 0
1 0 0 0 1

t −1 0 0 2

Iteration 5

1 2 0 4

3 −1/4 1/2 −1 −3/4
−1 1/4 1/2 −1 −5/4

2 0 0 1 0
4 1/2 0 0 1/2

t 1 1 0 1

Final Tableau

1 2 0 4

−1/4 1/2 −1 −3/4
1/4 1/2 −1 −5/4
0 0 1 0

1/2 0 0 1/2
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B11 =

⎛

⎝

−1 1 1
3 −1 2
1 −1 1

⎞

⎠ , (23.5)

is a maximum rank submatrix. Note that the rows are determined by the non null
elements of u, that is, 1, 2 and 4, and the columns by their positions in the vector,
that is, first, second and forth. Finally, choosing the first, second, and forth rows
and columns of the matrix W in that tableau, we obtain B−1

11 .

All the tableaux show the pivoting column in boldface. Note that it does not occur
in iterations 3 and 5, since no pivot is found. This is because the third row of matrix
A is linearly dependent on the first and second rows. The coefficients of the linear
combination are the components of t associated with the non null components of vector
u in Iteration 3. That is, a3 = 1 · a1 + 1 · a2. Analogously, the fifth row of matrix A is
a5 = 1 · a1 + 1 · a2 + 1 · a4.

Note that, in this case, the generalized inverse is reached without performing any
permutation of the original matrix. After placing zeros as it is indicated in Theorem 1,
we get the generalized inverse

A− =

⎛

⎜

⎜

⎝

−1/4 1/2 0 −3/4 0
1/4 1/2 0 −5/4 0
0 0 0 0 0

1/2 0 0 1/2 0

⎞

⎟

⎟

⎠

. (23.6)

23.4 Generalized Inverse Updating Algorithm

This algorithm provides a method for updating a generalized inverse obtained by
Algorithm 1 (given in Section 23.3) when a row of the initial matrix A is modified.
The main advantage of this method is that we do not need to start the process from
the beginning.

Let A∗ be the new matrix. Under some conditions we will only need an extra
iteration to obtain the generalized inverse of A∗.

Algorithm 1

Input: The matrix W and the vector u resulting after the application of Algorithm 1
to obtain the generalized inverse of A. The modified row a∗i of A

Output: The new matrix W and a new vector u
Step 1: Initialize. Let W and u be the output of Algorithm 1 applied to matrix A.
Step 2: Dot products. Calculate the dot products tj = a∗Ti wj , j = 1, . . . , n, that is,

the dot products of the new row of A by the columns of W.
(i) If i is a component of u and the dot product associated with this column is

non null, replace i by i∗ in u, select the corresponding column as pivot and go
to Step 4.

(ii) If i is a component of u and the dot product associated with this column is
null or if i is not in vector u, continue with Step 3.
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Step 3: Find the pivoting column. Locate the first non null tp corresponding to a null
element in the p-th position of vector u, which indicates that this is the pivoting
column of W. Replace the p-th zero component of u by i∗ and continue with Step
4. If there is not such a column, go to Step 7.

Step 4: Modify the pivoting column. Divide the p-th column of matrix W by tp.
Step 5: Pivoting. For j = 1 to n, j �= p and tj �= 0 do wkj = wkj − tjwkp for k =

1, . . . , n.
Step 6: Cancel the pivoting column associated with index i. If i and i∗ are in u we

need an extra iteration to obtain the updated generalized inverse. Consider the
canonical vector es, where s is the position of the index i in vector u. Calculate
the dot products tj = eT

s wj , j = 1, . . . , n. Divide the s-th column of W by ts. For
j = 1 to n, j �= s and tj �= 0, do wkj = wkj − tjwks for k = 1, . . . , n.

Step 7: Check redundant rows of A. If the row ai is involved in the linear combina-
tions of redundant rows of the initial matrix A, apply Algorithm 1 to the redundant
rows of matrix A starting from the matrix W and vector u obtained in Step 6.

Step 8: Output. The rows and columns in matrix W corresponding to the non null
components of u contains the inverse of a non singular submatrix of A∗.

An exception occurs in Step 6, when ts is zero. We can proceed, without loss of
generality, by reordering the initial matrix in order to avoid this situation.

Example 2. Suppose that the second row of matrix A in (23.4) is modified as follows:

A∗ =

⎛

⎜

⎜

⎜

⎜

⎝

−1 1 0 1
1 −1 1 0
2 0 2 3
1 −1 0 1
3 −1 2 4

⎞

⎟

⎟

⎟

⎟

⎠

. (23.7)

Algorithm 2 is applied and the extra iteration is shown in table 23.3.

Step 1: Initial step. Let W and u those given in the Final Tableau of Table 23.2.
Step 2: Dot products. Since i = 2 is in u but its corresponding dot product is equal

to 0, t2 = 0, this column is not available for pivoting process. We continue with
Step 3.

Step 3: Find the pivoting column. Third column of W is selected as pivot.
Step 4: Modify the pivoting column. Divide the third column of W by t3 = 1.
Step 5: Pivoting. Complete the pivoting process with the rest of the columns of W.
Step 6: Cancel the pivoting column associated with index 2. Since i = 2 and i = 2∗

are in u we introduce e2 = (0, 1, 0, 0)T in a new tableau and we select the second
column of matrix W as pivot, as it is shown in table 23.4.

Table 23.3. Extra iteration to obtain the generalized inverse of matrix A∗ in (23.7)

Extra Iteration

1 2 0 4

1 −1/4 1/2 −1 −3/4
−1 1/4 1/2 −1 −5/4

1 0 0 1 0
0 1/2 0 0 1/2

t −1/2 0 1 1/2

Final Tableau

1 2 2∗ 4

−3/4 1/2 −1 −1/4
−1/4 1/2 −1 −3/4
1/2 0 1 −1/2
1/2 0 0 1/2
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Table 23.4. Extra iteration to cancel the second column of matrix W in the Final Tableau
of table 23.3

Extra Iteration

1 2 2∗ 4

0 −3/4 1/2 −1 −1/4
1 −1/4 1/2 −1 −3/4
0 1/2 0 1 −1/2
0 1/2 0 0 1/2

t −1/4 1/2 −1 −3/4

Final Tableau

1 0 2∗ 4

−1/2 1 0 1/2
0 1 0 0

1/2 0 1 −1/2
1/2 0 0 1/2

Step 7: Check redundant rows of A. The row a2 is involved in the linear combination
of the redundant rows a3 and a5 (see Example 1). Then, starting with W and u
obtained in the previous step, first, we make the pivoting process with a3, as it is
shown in table 23.5. Pivot is found and the pivoting transformation is shown in
the Final Tableau. Since vector u has non null components, the process is finished.
Otherwise, we would proceed to pivot with the fifth row a5.

Step 8: Output. In the Final Tableau of table 23.5 the inverse of a non singular subma-
trix of matrix A∗ in (23.7) is boldfaced. This non singular submatrix is composed
by the intersection of the first, second, third and forth rows and the same columns,
as indicated by the non null elements of u and its positions.
Finally, reordering the columns of matrix W as indicated by the components of u,
the generalized inverse of A∗ in (23.7) is:

A∗− =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−5/4 −1 1/2 −1/4 0

−3/4 −1 1/2 −3/4 0

1/2 1 0 −1/2 0

1/2 0 0 1/2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (23.8)

Table 23.5. Extra iteration to pivot with the third row of matrix A∗ in (23.4)

Extra Iteration

1 0 2∗ 4

2 −1/2 1 0 1/2
0 0 1 0 0
2 1/2 0 1 −1/2
3 1/2 0 0 1/2

t 3/2 2 2 3/2

Final Tableau

1 3 2∗ 4

−5/4 1/2 −1 −1/4
−3/4 1/2 −1 −3/4

1/2 0 1 −1/2
1/2 0 0 1/2
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23.5 Least Squares Estimation for Less than Full Rank Models

In this section we apply the calculus of the generalized inverse and the updating algo-
rithm proposed in this paper to estimate the parameters in less than full rank linear
regression models.

The linear regression model can be written as:

y = Xβ + ε, (23.9)

where y is the n× 1 vector of observations of the response variable, X a n× k, n > k,
matrix of observations of the regressor variables, β is the k × 1 vector of unknown
parameters, and ε the n × 1 vector of random errors with E(ε) = 0 and V ar(ε) =
σ2In. The problem is to estimate the unknown parameters β. The method of least
squares is typically used to this aim. If rank(X)=k, the least squares estimator is
β̂ = (XT X)−1XT y. But, if rank(X) < k a particular solution must be given in terms
of the generalized inverse. That is, β̃ = (XTX)− XTy.

Example 3. To illustrate the estimation of parameters in case of non full rank matrix,
consider a regression problem with five explanatory variables, X1, . . . , X5, where X4 is
linearly dependent of X1 and X3 as follows

X4 = 2X1 − 3X3 + δ, (23.10)

with δ ∼ N(0, 0.01) since non exact linear combinations are found in real cases. Let
A = XT X the matrix:

A =

⎛

⎜

⎜

⎜

⎜

⎝

36.9971 −4.0667 0.9487 71.1471 −3.0860
−4.0667 29.2428 1.0520 −11.2894 −3.2536

0.9487 1.0520 35.8975 −105.7943 1.8359
71.1471 −11.2894 −105.7943 459.6730 −11.6790
−3.0860 −3.2536 1.8359 −11.6790 39.1338

⎞

⎟

⎟

⎟

⎟

⎠

. (23.11)

To calculate the generalized inverse, Algorithm 1 is applied. The iterations in tabular
form are shown in table 23.6. It can be noticed that in Iteration 4, no pivot is found
and the dot products associated with first and third columns are the coefficients of the
linear combination assumed in (23.10).

The inverse of the non singular submatrix of A is composed by the intersection of
the first, second, third and fifth rows and columns as is shown in the Last Tableau of
table 23.6. Finally, the generalized inverse of A is:

A− =

⎛

⎜

⎜

⎜

⎜

⎝

0.0277 0.0042 −0.0010 0.0000 0.0026
0.0042 0.0352 −0.0013 0.0000 0.0033

−0.0010 −0.0013 0.0280 0.0000 −0.0015
0.0000 0.0000 0.0000 0.0000 0.0000
0.0026 0.0033 −0.0015 0.0000 0.0261

⎞

⎟

⎟

⎟

⎟

⎠

. (23.12)
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Table 23.6. Iterations in tabular form to obtain the inverse of a maximum full rank submatrix
of matrix A in (23.11)

Iteration 1
0 0 0 0 0

36.9971 1.0000 0.0000 0.0000 0.0000 0.0000
-4.0667 0.0000 1.0000 0.0000 0.0000 0.0000
0.9487 0.0000 0.0000 1.0000 0.0000 0.0000

71.1471 0.0000 0.0000 0.0000 1.0000 0.0000
-3.0860 0.0000 0.0000 0.0000 0.0000 1.0000

t 36.9971 -4.0667 0.9487 71.1471 -3.0860

Iteration 2
1 0 0 0 0

-4.0667 0.0270 0.1099 -0.0256 -1.9230 0.0834
29.2428 0.0000 1.0000 0.0000 0.0000 0.0000
1.0520 0.0000 0.0000 1.0000 0.0000 0.0000

-11.2894 0.0000 0.0000 0.0000 1.0000 0.0000
-3.2536 0.0000 0.0000 0.0000 0.0000 1.0000

t -0.1099 28.7957 1.1563 -3.4689 -3.5928

Iteration 3
1 2 0 0 0

0.9487 0.0274 0.0038 -0.0301 -1.9098 0.0971
1.0520 0.0038 0.0347 -0.0402 0.1205 0.1248

35.8975 0.0000 0.0000 1.0000 0.0000 0.0000
-105.7943 0.0000 0.0000 0.0000 1.0000 0.0000

1.8359 0.0000 0.0000 0.0000 0.0000 1.0000
t 0.0301 0.0402 35.8267 -107.4794 2.0593

Iteration 4
1 2 3 0 0

71.1471 0.0275 0.0039 -0.0008 -2.0000 0.0989
-11.2894 0.0039 0.0348 -0.0011 0.0000 0.1271

-105.7943 -0.0008 -0.0011 0.0279 3.0000 -0.0575
459.6730 0.0000 0.0000 0.0000 1.0000 0.0000
-11.6790 0.0000 0.0000 0.0000 0.0000 1.0000

t 2.0000 -0.0000 -3.0000 0.0000 0.0004

Iteration 5
1 2 3 0 0

-3.0860 0.0275 0.0039 -0.0008 -2.0000 0.0989
-3.2536 0.0039 0.0348 -0.0011 0.0000 0.1271
1.8359 -0.0008 -0.0011 0.0279 3.0000 -0.0575

-11.6790 0.0000 0.0000 0.0000 1.0000 0.0000
39.1338 0.0000 0.0000 0.0000 0.0000 1.0000

t -0.0989 -0.1271 0.0575 0.0004 38.3098

Final Tableau
1 2 3 0 5

0.0277 0.0042 -0.0010 -2.0000 0.0026
0.0042 0.0352 -0.0013 0.0000 0.0033

-0.0010 -0.0013 0.0280 3.0000 -0.0015
0.0000 0.0000 0.0000 1.0000 0.0000
0.0026 0.0033 -0.0015 0.0000 0.0261

Example 4. Suppose now that the second variable is substituted by 2X2, which implies
that the second row and the second column of matrix A have been modified. Then,
the new matrix is A∗ = X∗TX∗,

A∗ =

⎛

⎜

⎜

⎜

⎜

⎝

36.9971 −8.1335 0.9487 71.1471 −3.0860
−8.1335 116.9710 2.1040 −22.5788 −6.5072

0.9487 2.1040 35.8975 −105.7943 1.8359
71.1471 −22.5788 −105.7943 459.6730 −11.6790
−3.0860 −6.5072 1.8359 −11.6790 39.1338

⎞

⎟

⎟

⎟

⎟

⎠

. (23.13)

Starting from the last tableau in table 23.6, the generalized inverse of A∗ in (23.13)
is achieved in two steps.

• First, we consider that only the second row of matrix A has been modified as follows

A∗r =

⎛

⎜

⎜

⎜

⎜

⎝

36.9971 −4.0667 0.9487 71.1471 −3.0860
-8.1335 116.9710 2.1040 -22.5788 -6.5072

0.9487 1.0520 35.8975 −105.7943 1.8359
71.1471 −11.2894 −105.7943 459.6730 −11.6790
−3.0860 −3.2536 1.8359 −11.6790 39.1338

⎞

⎟

⎟

⎟

⎟

⎠

. (23.14)

Then, we apply Algorithm 2 to update the generalized inverse (see the iterations
in tabular form in table 23.7). The maximum rank submatrix of matrix A∗r is
composed by its first, second, third and fifth rows and columns. That is,

B∗r11 =

⎛

⎜

⎜

⎝

36.9971 −4.0667 0.9487 −3.0860
-8.1335 116.9710 2.1040 -6.5072

0.9487 1.0520 35.8975 1.8359
−3.0860 −3.2536 1.8359 39.1338

⎞

⎟

⎟

⎠

. (23.15)
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Table 23.7. Extra iteration for updating the generalized inverse after the modification of
one row

Extra Iteration

1 2 3 0 5

-8.1335 0.0277 0.0042 -0.0010 -2.0000 0.0026
116.9710 0.0042 0.0352 -0.0013 0.0000 0.0033

2.1040 -0.0010 -0.0013 0.0280 3.0000 -0.0015
-22.5788 0.0000 0.0000 0.0000 1.0000 0.0000
-6.5072 0.0026 0.0033 -0.0015 0.0000 0.0261

t 0.2444 4.0583 -0.0767 0.0002 0.1940

Final Tableau

1 2∗ 3 0 5

0.0275 0.0010 -0.0009 -2.0000 0.0024
0.0021 0.0087 -0.0006 0.0000 0.0016
-0.0009 -0.0003 0.0280 3.0000 -0.0014
0.0000 0.0000 0.0000 1.0000 0.0000
0.0024 0.0008 -0.0014 0.0000 0.0259

Its inverse is composed by the first, second, third and fifth rows and columns of W
(given in boldface in the Final Tableau of table 23.7).

• Second, the maximum rank submatrix B∗r11 is modified by the corresponding com-
ponents of the second column of matrix A∗. The result is the following

B∗11 =

⎛

⎜

⎜

⎝

36.9971 −8.1335 0.9487 −3.0860
−8.1335 116.9710 2.1040 −6.5072

0.9487 2.1040 35.8975 1.8359
−3.0860 −6.5072 1.8359 39.1338

⎞

⎟

⎟

⎠

. (23.16)

Then, we apply the updating inverse matrix algorithm in Castillo et al. (1999) and
the inverse is attained in the Final Tableau of table 23.8.
Finally, the generalized inverse is:

A∗− =

⎛

⎜

⎜

⎜

⎜

⎝

0.0277 0.0021 −0.0010 0.0000 0.0026
0.0021 0.0088 −0.0007 0.0000 0.0017

−0.0010 −0.0007 0.0280 0.0000 −0.0015
0.0000 0.0000 0.0000 0.0000 0.0000
0.0026 0.0017 −0.0015 0.0000 0.0261

⎞

⎟

⎟

⎟

⎟

⎠

. (23.17)

Table 23.8. Extra iteration for updating the inverse matrix of matrix B∗r
11 after modify its

second column

Extra Iteration

1 0 3 5

-8.1335 0.0275 0.0021 -0.0009 0.0024
116.9710 0.0010 0.0087 -0.0003 0.0008

2.1040 -0.0009 -0.0006 0.0280 -0.0014
-6.5072 0.0024 0.0016 -0.0014 0.0259

t -0.1204 0.9856 0.0378 -0.0956

Final Tableau

1 2 3 5

0.0277 0.0021 -0.0010 0.0026
0.0021 0.0088 -0.0007 0.0017

-0.0010 -0.0007 0.0280 -0.0015
0.0026 0.0017 -0.0015 0.0261
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23.6 Conclusions

We present an algorithm to calculate a generalized inverse using the methodology based
on obtaining a decomposition of the Euclidian space given in Castillo et al. (1998, 2000).
Our algorithm provides simultaneously the inverse of a maximum rank submatrix of
the given matrix A and the rows and columns of A which form that maximum rank
submatrix. Moreover, we obtain the coefficients of the linear dependencies of the rows
of A.

We also introduce an algorithm to update the generalized inverse when one row of
the initial matrix is modified. Finally, we apply both methods to the estimation of the
coefficients in linear regression when collinear data are used.
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Single and Ensemble Fault Classifiers Based

on Features Selected by Multi-Objective Genetic
Algorithms
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Abstract: The problem of identifying faults in systems and processes can be formu-
lated as a problem of partitioning objects (i.e., the measured data patterns representing
the symptoms) into classes (i.e., the types of faults causing the symptoms). In this view,
two main steps need to be carried out in order to effectively perform the fault identifica-
tion: i) the selection of the features carrying information relevant for the identification;
ii) the classification of the measured data patterns of features into the different fault
types. In this work, the two tasks are tackled by combining a multi-objective genetic
algorithm search with a Fuzzy K-Nearest Neighbors classification. Two different ap-
proaches to the development of the fault classification model are considered: a single
classifier based on a feature subset chosen a posteriori on the Pareto-front identified
by the multi-objective genetic search and an ensemble of classifiers, each one built
on a different feature subset taken from the genetic algorithm population at conver-
gence. Examples of application of the proposed approaches are given with reference
to two different industrial processes: the classification of simulated nuclear transients
in the feedwater system of a Boiling Water Reactor and of multiple faults in rotating
machinery.

Keywords and phrases: Fault classification, feature selection, multi-objective ge-
netic algorithms, fuzzy K-nearest neighbors, ensemble, diversity

24.1 Introduction

In this paper, the issue of fault diagnosis in complex engineering systems and processes
is framed as a pattern classification problem. The basis for the classification is that
different faults and anomalies lead to different patterns of evolution of the involved
process variables, hereafter called features.

The pattern classification is performed by the following two tasks: 1) the selection
of the features relevant for the classification; 2) the classification of the patterns into
different fault classes.
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The first step of feature selection is motivated by the fact that irrelevant or noisy
features are found to unnecessarily increase the complexity of the diagnostic problem
and degrade the modeling performance (Kohavi and John, 1997).

On the other hand, hundreds of parameters are monitored for operation and safety
reasons in modern industrial plants so that expert judgment alone cannot effectively
drive the feature selection.

The feature selection technique proposed in this work combines a Multi-Objective
Genetic Algorithm (MOGA) search (Holland (1975); Goldberg (1989)) with a Fuzzy
K-Nearest Neighbors (FKNN) classification algorithm (Keller et al., 1985). The per-
formance achieved by the latter is used as criterion for comparing the different feature
subsets searched by the former.

The success of the genetic algorithm search depends largely on the ability of main-
taining diversity in the population (Holland (1975); Goldberg (1989)). In this respect,
a modified Niched Pareto MOGA (Horn et al., 1994) is adopted to evolve the pop-
ulation towards alternative, equivalent solutions of feature subsets which give a well
distributed, representative description of the Pareto front of non-dominated solutions.

The second task of pattern classification is carried out exploring two possible ap-
proaches: a single FKNN classifier based on a chosen best Pareto-front feature subset
and an ensemble of FKNN classifiers working on the different feature subsets contained
in the MOGA population at convergence.

With respect to the latter approach, the motivation for developing ensembles of
classifiers is that in many instances they have been shown capable of providing accu-
racies higher than any of the single base classifiers which constitute them (Tsymbal
et al., 2001, 2005). Furthermore, reliance on different classifiers renders the classifica-
tion more robust. In fact, sensor failures or de-calibration may not permit us to trust
some of the measured features.

An important property for an ensemble to be effective is the diversity in the class
assignments of the base classifiers which constitute it, i.e., their capability of erring on
different sub-regions of the pattern space. In order to obtain diversity among classi-
fiers, a properly defined diversity function is added to the MOGA search as objective
function. A voting technique is used to effectively combine the assignments of the base
classifiers to construct the ensemble output (Tsymbal et al., 2005).

The effectiveness of the feature selection and fault classification approach is tested
on a diagnostic problem regarding the classification of simulated transients in the feed-
water system of a nuclear Boiling Water Reactor (Puska and Normann, 2002) and on a
case of multiple fault classification in rotating machinery (Kilundu and Dehombreaux,
2005).

24.2 Feature Selection for Pattern Classification

The fault identification task may be viewed as a problem of partitioning of objects
(the measured data patterns) into classes (the faults). From a mathematical point of
view, a classifier is a mapping function Φ(·) that assigns an object x in an n-dimensional
domain Ω ⊂ �n to a given class l. If one knew the exact expression of Φ(·), the question
of which features of x to use would not be of interest. In fact, in such situations adding
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features does not decrease the accuracy of the classifier, and hence, restricting to a
subset of features is never advised. However, as it is often the case in engineering,
it is not possible to determine the exact analytical expression of the function Φ(·)
due to the complexity of the systems under analysis. Hence, one resorts to empirical
classification techniques in which the classifier is built through a process based on a
set of classification example pairs {(x, l)}, each one constituted by a pattern x in the
feature space labelled by the corresponding class l.

In practice, the number of measured features is quite large and various reasons
suggest a reduction of this number for use in the classification model. First of all, irrel-
evant, non informative features result in a classification model which is not robust (Na
et al. (2002); Verikas and Bacauskiene (2002)). Second, when the model handles many
features, a large number of observation data are required to properly span the high-
dimensional feature space for accurate multivariable interpolation (Na et al. (2002);
Emmanouilidis et al. (1999)). Third, by eliminating unimportant features the cost and
time of collecting the data and developing the classifier can be reduced (Na et al.
(2002); Emmanouilidis et al. (1999)). Finally, reducing the number of selected features
permits achievement of more transparent and easily interpretable models (Kohavi and
John, 1997).

Given a labeled dataset, the objective of feature selection is that of finding a subset
of the features such that the classifier built on these features classifies the available
data with the highest possible accuracy (Kohavi and John, 1997).

24.2.1 An overview of feature selection techniques

Feature selection involves conducting a search for an optimal feature subset in the space
of possible features. The inclusion or not of a feature in the subset can be encoded in
terms of a binary variable that takes value 1 or 0, respectively. For n features, the size
of the binary vector search space is 2n. Thus, an exhaustive search is impractical unless
n is small, which is rarely the case.

Each feature subset selected during the search must be evaluated with respect
to the objective functions characteristics of the classification problem at hand, e.g.,
classification performance and number of features. In this respect, either a filter or a
wrapper approach can be undertaken (Kohavi and John, 1997).

In filter methods, the feature selector algorithm is independent of the specific al-
gorithm used for the classification and acts as a filter discarding irrelevant features, a
priori of the construction of the classifier. A numerical evaluation function quantifying
the clustering properties of the features is used to compare the feature subsets proposed
by the search algorithm. Under a conjecture that such properties govern the classifi-
cation capabilities of the features, the subset with the highest value of the evaluation
function is kept as basis for the classification.

Contrary to filter methods, in wrapper methods the feature selector behaves as a
“wrapper” around the specific algorithm used to construct the classifier, whose per-
formance is directly used to compare the different feature subsets (Kohavi and John,
1997).

The filter approach is generally computationally more efficient than the wrapper
one because for each feature subset of trial tested during the search for the optimal, the
computation of an evaluation function is less time consuming than the development
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of a complete classification model. Hence, for many practical applications the wrap-
per approach is feasible only if the classifier is a fast-computing algorithm, e.g., the
K-Nearest Neighbor (KNN) (Duran and Odell, 1974) algorithm or its fuzzy extension
(FKNN) (Keller et al. (1985); Marcelloni (2003)). On the other hand, wrapper ap-
proaches are more performing than the filter ones since the former ensure the selection
of the features more suitable for the specific classification algorithm used, whereas the
latter totally ignore the effects of the selected feature subspace on the performance of
the classifier that will actually be used.

With respect to the search algorithms, three approaches are commonly adopted:
complete, heuristic and probabilistic (Kohavi and John, 1997).

In the complete approach, the properties of a pre-defined evaluation function are
used to prune the feature space to a manageable size, thus avoiding that the complete
search is also exhaustive (Narendra and Fukunaga, 1977). Only some evaluation func-
tions give rise to a search that guarantees the optimum feature subset selection without
being exhaustive.

The heuristic approach does not guarantee that the best feature subset is achieved,
but it is less time consuming than the complete one and may be employed in combi-
nation with any evaluation function (Zio et al., 2005). At present, the most employed
heuristic methods are greedy search strategies such as the sequential forward selection
(SFS) or the sequential backward elimination (SBE) “hill climbing” methods, which
iteratively add or subtract features and at each iteration the evaluation function is
evaluated (Kohavi and John, 1997). The hill-climbing search is usually stopped when
adding or removing new features does not increase the value of the evaluation function
or when the number of features has reached a predefined threshold.

The hill climbing methods suffer from the so called “nesting effect”: if the features
added cannot be removed, a local minimum of the evaluation function may be found.
To reduce this effect, it is possible to use the so called plus-t-take-away-r method (PTA)
(Kohavi and John, 1997). In this method, after t steps of the forward selection, r steps
of the backward elimination are applied so as to allow escaping from local minima.
Still, there is no guarantee of obtaining the absolute optimum.

The probabilistic approach is based on population-based metaheuristics guided by
the goodness of the solutions iteratively explored, such as the genetic algorithms pre-
sented in this paper, or on methods like simulated annealing and tabu search algorithms
(Zhang and Sun, 2002).

24.3 GA-based Feature Selection for Pattern Classification

Genetic Algorithms (GAs) are optimization methods aiming at finding the global op-
timum of a set of real objective functions of one or more decision variables, possibly
subject to various linear or non linear constraints. Their main properties are that the
search is conducted i) using a population of multiple solution points or candidates,
called chromosomes, which are strings of numbers, generally sequences of binary digits
0 and 1, ii) using operations inspired by the evolution of species, such as breeding and
genetic mutation, iii) using probabilistic operations, iv) using only information on the
objective or search function (fitness) and not on its derivatives (Goldberg, 1989).
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In this section, a Multi-Objective Genetic Algorithm (MOGA) is adopted for search-
ing the optimal feature subset to be used as the basis for the classification of patterns
into classes. Two objective functions (fitnesses) are used for evaluating and comparing
the feature subsets during the search: the fraction of patterns correctly classified (recog-
nition rate) by a Fuzzy K-Nearest Neighbors classifier (to be maximized) and the num-
ber m of features forming the subsets (to be minimized). During the search, the evolving
feature subsets are compared in terms of dominance with respect to these two objective
functions. At convergence, this leads to the identification of the so called Pareto opti-
mal set or front of non-dominated feature subsets (Goldberg (1989); Sawaragy et al.
(1985)).

The generic chromosome representative of a given feature subset is made of n bits,
each one associated with one of the n features constituting the patterns: If the i-th
bit equals 1, then the i-th feature is included in the subset and viceversa if the bit
is 0. Thus, the number m of features in the subset is the total number of 1’s in the
chromosome.

The efficiency of the search depends on the ability to maintain genetic diversity
through the generations so as to arrive at a population of individuals that uniformly
represents the real nondominated solutions of the Pareto set (Goldberg, 1989). This can
be achieved by resorting to niching techniques, e.g., sharing (Goldberg (1989); Horn
et al. (1994)), which apply a “controlled niched pressure” in the parents selection step
of the algorithm, so that those individuals with less crowded neighborhoods (niches)
in the objective functions space are preferentially selected as parents and thus allowed
to create more offsprings in the following generations. This action spreads out the
population in the search space so that convergence is shared on different niches of the
Pareto front, which is thus evenly covered.

Regarding the evaluation of the objective function related to the FKNN classifica-
tion performance, the available labelled patterns are randomly subdivided into a set
containing 75% of the data, which are used for the classifier construction, and a tuning
set of 25% of the data, which are used to compute the performance of the classifier
in terms of its accuracy. By trial and error, a number K = 5 of neighbors has been
found to produce good classification results by the FKNN. The obtained fuzzy parti-
tion {μl(xk)} of the tuning data set, where 0 ≤ μl(xk) ≤ 1 is the membership function
of pattern xk to class l, is converted into a hard partition by assigning each pattern to
the class with highest membership value.

The subdivision of the available patterns in training and tuning sets is randomly
repeated 10 times (tenfold cross-validation) and for each tuning set the accuracy of the
FKNN classifier operating on the generic subset of features Sq is evaluated in terms
of the recognition rate (the fraction of tuning patterns correctly classified). Then, the
mean recognition rate is calculated and sent back to the GA as the fitness value of the
chromosome representative of feature subset Sq.

At convergence, a family of non-dominated chromosomes (i.e., feature subsets) with
different trade-offs of classification performance (FKNN recognition rate) and complex-
ity (number of features) is obtained. Based on these results, an informed choice can be
made on the features to be actually monitored for the pattern classification task con-
sidering also practical issues of costs, ease of data acquisition and data interpretability.
Eventually, the analyst must select the preferred solution according to some subjective
preference values.
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Finally, a validation data set, separate from the training and tuning sets used for
the feature selection task, is processed by the classifier based on the optimal feature
subset to verify the classification accuracy on new patterns (never used during the
feature selection process). This validation procedure is of paramount importance for
safety applications in critical technologies such as the nuclear one.

24.4 Classification of Transients in the Feedwater System
of a Boiling Water Reactor

As an example of application, the identification of a predefined set of 18 simulated
faults in a Boiling Water Reactor (BWR) is considered (Puska and Normann, 2002),
based on n = 369 wavelet coefficients extracted from the time measurements collected
on the plant (Strang and Nguyen, 1996). Two power levels, 50% and 80% of full power,
have been considered: the transients at 50% of full power are used for the feature
selection task, whereas the transients at 80% of full power are left out for validation of
the resulting classifier.

Given the large number of possible solutions (2369), the task of maintaining genetic
diversity in the population in order to explore more accurately the search space is
sought by using a Niched Pareto-Based Genetic Algorithm (NPGA) (Zio et al., 2002a).

Figure 24.1 shows the Pareto front and the final population found by the NPGA at
convergence. The “niching pressure” applied by the equivalence class sharing method
succeeds in spreading the population out along the Pareto optimal front: indeed, the
NPGA Pareto solutions cover from m = 0 to m = 22, with only individuals with m =
8, 9, 15 not present.

In the present case, the optimization results for the non-dominated subset with 7
features show a good compromise between high classification accuracy and low number
of features (pointing arrow in figure 24.1).

Figure 24.1. Pareto front and final population found by the NPGA at convergence
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A set of patterns taken from transients at 80% power level, never employed during
the feature selection phase, has then been used to cross-validate the performance of the
FKNN classifier resting upon the selected 7-features subset. The resulting recognition
rate of 0.9190 ± 0.0301 is significantly higher than that obtained by using all the 369
features (0.647±0.055) and by using the features arbitrarily selected by a plant expert
(0.789± 0.029).

24.5 The Ensemble Approach to Pattern Classification

An alternative technique to develop a pattern classification model is to use an ensemble
of classifiers. The motivation for developing ensembles is that in many application
domains they have been shown to provide accuracies higher than any of the single base
classifiers that constitute them (Tsymbal et al., 2001, 2005). Furthermore, reliance on
different classifiers renders the classification more robust. In fact, sensor failures or
de-calibration may not permit to trust some of the measured features. This problem
can be overcome by basing the classification, through the assignment of appropriate
weights, only on those classifiers of the ensemble whose features are correctly measured.

The development of an ensemble of classifiers entails addressing two issues: the
construction of the base classifiers that constitute the ensemble and the integration of
their class assignments to construct the ensemble output.

24.5.1 The construction of the ensemble

A possible approach for generating an ensemble of diverse classifiers h1,...,hS from
a set X of labelled patterns of the form {(xk,lk)}, k=1,2,...,N , is to base each of
them on a different feature subset (Tsymbal et al., 2001, 2005). Whereas the goal
of traditional feature selection (Holland (1975); Goldberg (1989); Chambers (1995);
Sawaragi, Nakayama and Tanino (1985); Raymer et al. (2000); Bozdogan (2003)) for
a single classifier (see Sections 24.2 and 24.3) is to find the feature subset that gives
the optimal performance of the classifier, ensemble feature selection aims instead at
finding many feature subsets upon which to construct a set of diverse base classifiers
(Tsymbal et al., 2001).

The problem of multiple feature subsets selection for generating diverse base clas-
sifiers is here tackled by means of a combination of a MOGA technique and Fuzzy
K-Nearest Neighbours (FKNN) classification (Zio et al., 2002b). Besides the two ob-
jectives previously adopted, of maximizing the classification accuracy and minimizing
the number of features forming the subsets, the maximization of the diversity among
the base classifiers is a third optimization criterion added.

In this paper, a popular pairwise diversity measure based on the correlation between
the performances of the two classifiers, i.e., the numbers of patterns correctly/wrongly
classified, is adopted. Let h1 and h2 be a pair of base classifiers: The correlation between
the outputs can be measured as (Tsymbal et al., 2005):

corrh1,h2 =
N11N00 −N01N10

√

(N11 + N10)(N01 + N00)(N11 + N01)(N10 + N00)
(24.1)
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where Nab is the number of test patterns classified correctly (a=1) or incorrectly (a=0)
by the classifier h1 and correctly (b=1) or incorrectly (b=0) by the classifier h2. The
value of corrh1,h2 varies from -1 to 1 and for statistically independent classifiers, the
expected value of corrh1,h2 is 0. Classifiers that tend to recognize the same patterns
correctly will have positive values of corrh1,h2 , whereas those which commit errors on
different patterns will render corrh1,h2 negative. A correlation-based diversity measure
between classifiers h1 and h2 can then be defined based on the correlation coefficient
of Eq. (24.1) as (Tsymbal et al., 2005):

divh1,h2 =
1 − corrh1,h2

2
(24.2)

This measure varies between 0 and 1. Obviously, classifiers that are statistically
correlated are considered less diverse and viceversa.

At convergence of the MOGA search, the S chromosomes of the last population
are used as feature subsets S1,S2,...,SS to build S diverse base classifiers h1,h2,...,hS

(figure 24.2).
Again, for validating the performance of the ensemble of classifiers, a test is made

with respect to a validation data set, different from the data set used for the MOGA
feature selection. Each base classifier hq , q=1,2,...,S, is asked to classify the specific
validation data set whose patterns are constituted by the particular features used by
that classifier to perform the classification task.

24.5.2 Integration of class assignments

The integration of the class assignments of the multiple classifiers is crucial for im-
proving the classification performance of the single classifiers. In this paper, this is
handled by means of a so-called Static Weighted Voting (SWV) combination approach.
The validation set is partitioned into a training set and a test set. According to the
SWV, a unitary vote is assigned to each base classifier hq and multiplied by a weight
wq∈ [0, 1] proportional to the accuracy of the classifier measured in terms of the Mean
Recognition Rate (MRR), i.e. the fraction of patterns of the training set it correctly
classifies (figure 24.3).

Figure 24.2. Generation of base classifiers
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Figure 24.3. Computation of base classifiers’ weights (MRRs)

Once the base classifiers weights are computed, the classification of the patterns of
the test set is performed. When the generic base classifier hq assigns the generic k-th
test pattern to the class l, its weight wq is added to the ensemble vote for that class.
By doing so, each class l of the k-th test pattern receives an ensemble vote vk

l given by
the sum of all weights assigned to that class, viz.:

vk
l =

S
∑

q=1

wq · δl,lhq
(24.3)

where δl,lhq
is 1 only if the classifier hq assigns the k-th pattern to class l. Finally, the

k-th test pattern is assigned to the class lk with the highest ensemble vote (figure 24.4):

lk = arg( max
1≤l≤c

vk
l ) (24.4)

where c is the total number of classes.

Figure 24.4. Ensemble classification of test patterns
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24.6 Application to Multiple Fault Classification

Some numerical experiments of ensemble classification have been conducted on a case
of multiple faults in rotating machinery. Literature-available time domain vibration
signals (Kilundu and Dehombreaux, 2005) are considered bases to build an ensemble
of classifiers for fault diagnosis. The combination of 4 fault types of different intensity
levels is considered. Fault 1 is characterized by 3 intensity levels, whereas the other 3
faults by 3 intensity levels each (Kilundu and Dehombreaux, 2005). A total amount
of 648 experimental labelled patterns are available for constructing, validating and
testing the ensemble of classifiers. The input part of each pattern consists of the values
of the 48 measured features (f1,...,f48) upon which to base the classification of the four
intensity levels of fault. With respect to the classification output part of the pattern,
a 1 is placed in correspondence of the intensity level of the given fault (possibly more
than one) affecting the bearing. Level 0 denotes the situation where there is no fault
(Kilundu and Dehombreaux, 2005).

The data have been split into two subsets of equal size: 324 patterns for the ensemble
feature selection procedure to generate the base classifiers and 324 patterns for building
and validating the ensemble of classifiers.

Four classification models have been developed, each one devoted to the recognition
of the intensity of a particular fault. The population of 100 chromosomes (Feature Sub-
sets) obtained at the last generation of the MOGA search is used to build the ensemble
of 100 base classifiers. The 400-generation MOGA search is performed separately for
each of the 4 faults and correspondingly 4 ensembles of base classifiers are built on the
4 final populations of 100 chromosomes (figure 24.5).

The classifications of the four ensembles, one for each fault, must then be combined
to obtain the global classification accuracy. Correct classification is achieved when the
input pattern under analysis is assigned by each ensemble to the correct intensity class
of the fault for which it is specialized. The FKNN classification performances obtained

Figure 24.5. Sketch of the multiple-fault classification procedure: For each fault, a MOGA
search is performed using the training data set; the 4 last-generation populations of chro-
mosomes thereby obtained constitute the 4 ensembles for the classification of the validation
data set
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Table 24.1. Classification results obtained by the ensemble compared with those obtained
using one single optimal classifier

Ensemble Single optimal
classifier

Accuracy (MRR) Diversity Accuracy (MRR)

Global 0.8468 ± 0.0430 / 0.7895 ± 0.0517
Fault 1 0.8882 ± 0.0358 0.3748 0.8363 ± 0.0501
Fault 2 0.9661 ± 0.0255 0.3701 0.9613 ± 0.0301
Fault 3 0.9701 ± 0.0201 0.3629 0.9405 ± 0.0299
Fault 4 0.9853 ± 0.0162 0.4017 0.9680 ± 0.0231

by the ensemble are presented in table 24.1 in terms of the Global Mean Recognition
Rate (GMRR) of the ensemble on the four faults, and of the MRR and diversity of
the ensemble of base classifiers specific for each single fault. The ensemble diversity is
computed as the mean of the diversities of the base classifiers. The performances of
the ensemble are compared with those achieved on the same validation set by the four
Pareto-front chromosomes (one for each fault) with the highest MRRs, resulting from
four specific, two-objective MOGA searches for each single fault classification.

The advantage of adopting an ensemble approach is readily demonstrated by the
obtained results: with respect to using single classifiers, a marked increase of the GMRR
is achieved by the ensemble, mostly due to a significant increase of the MRR of fault
1 which presents critical classification difficulties inherent in its data structure.

24.7 Conclusions

Fault identification is a matter of paramount importance for the safety and operation
of modern industrial plants. In this paper, this issue has been framed as a pattern
classification problem.

First of all, the problem of discerning among the several measured plant parameters
those features to be used for fault identification has been tackled. This is a crucial issue
to be resolved for the application of advanced diagnostic techniques to complex plants
where hundreds of parameters are measured. A wrapper approach which combines a
Niched Pareto genetic algorithm search with a Fuzzy K-Nearest Neighbors (FKNN)
classification algorithm has been embraced. The proposed search scheme has been ap-
plied to a task of classification of simulated transients in the feedwater system of a
Boiling Water Reactor.

Then, two different techniques for using the results obtained by the feature selector
have been compared: a single classifier based on the best Pareto-front feature subset
and an ensembles of classifiers working on the different feature subsets corresponding
to the final population of the MOGA search. The results obtained in an application
of multiple fault classification in rotating machinery show that the ensemble is more
accurate than the single best Pareto-front classifier. This is due to the fact that the
maximization of diversity among the base classifiers allows exploiting the classification
capabilities of each base classifier in a specific sub-region of the pattern space.
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Abstract: In this paper we apply the Γ -algorithm to obtain the feasibility conditions
in different engineering problems involving a parametric system of linear inequalities.
The feasibility conditions are the conditions for which the original system of linear
inequalities has a solution. The Γ -algorithm is applied to solve the following problems:
a heat transfer problem related to the finite difference method, various beam problems
related to the finite difference method and a fracture mechanics problem related to nu-
merical integration. Working with the Γ−algorithm, the feasibility conditions problem
can be reduced to find the dual of a cone.

Keywords and phrases: Feasibility conditions, dual cone, parametric systems of
linear inequalities, fracture mechanics, heat transfer, beam problem

25.1 Introduction

In this paper we study systems of linear inequalities in the following form

a11x1 +a12x2 + · · · +a1nxn ≤ b1,
a21x1 +a22x2 + · · · +a2nxn ≤ b2,
· · · · · · · · · · · · · · ·

am1x1 +am2x2 + · · · +amnxn ≤ bm,

(25.1)

where aij are numerical coefficients, xj are variables and bi are parameters (in some
problems a part of the bi values are numbers).

The study of the above systems, in the sense of obtaining the feasibility conditions
in numerical-symbolic problems of applied mechanics and engineering, has been intro-
duced by Ioakimidis (2000). In that work, the author applies the Fourier elimination
algorithm (see Duffin (1974)) to obtain the feasibility conditions of numerical problems
involving a parametric system of linear inequalities. The Fourier algorithm extends the
idea of the Gaussian elimination algorithm to systems of inequalities. Fourier treated
a system of inequalities by a method of elimination of variables; each variable is elimi-
nated by adding each pair of inequalities having coefficients of opposite sign (pairwise
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elimination). Duffin:74 did some modifications on that algorithm to study the com-
patibility of a parametric system of linear inequalities. Ioakimidis (2001), proposes the
Weispfenning computational quantifier elimination algorithms (implemented in RED-
LOG), as an alternative to the Fourier elimination algorithm, to obtain the above
feasibility conditions. In this paper, our study is restricted to the Γ−algorithm as an
alternative to the Fourier algorithm.

The application of the Γ−algorithm (see Castillo et al. (1999); Castillo and Jubete
(2004) and Castillo et al. (2006)) as an alternative to the Fourier algorithm, to analyze
a simple one dimensional heat transfer problem, has been introduced in Solares and
Chaves (2006). Working with the Γ−algorithm, the feasibility conditions problem can
be reduced to find the dual of a cone (see Castillo and Jubete (2004)). The Γ−algorithm
uses a pivoting transformation (see Castillo et al. (1999)) to obtain the dual of the
cone generated by the columns of the system matrix. This method is specially suitable
for updating dual cones when new generators are incorporated (i.e. new columns are
inserted in the matrix of the system). In fact, when adding a new generator only one
step of the process allows one to obtain the new dual cone without the need of starting
again from scratch. The Γ−algorithm is also useful to obtain the dual cone of cones
generated by some subsets of generators of the initial cone (i.e. cones generated by
some columns of the system matrix). The above are important advantages of using
the Γ−algorithm instead of the Fourier algorithm. In addition, once we obtain the
feasibility conditions with the Γ−algorithm, if we make a change in the independent
terms vector in (25.1), we can obtain directly the new feasibility conditions.

In this paper, we apply the Γ−algorithm to obtain the feasibility conditions in
the following engineering problems involving a parametric system of linear inequalities:
a heat transfer problem related to the finite difference method, a fracture mechani-
cal problem related to numerical integration and various beam problems related to
the finite difference method. Some of these problems have been previously studied by
Ioakimidis (2000, 2001). The results provide us with the feasibility conditions for which
the satisfaction of the original system of linear inequalities is possible.

The paper is structured as follows. Section 25.2 introduces the heat transfer prob-
lem. Section 25.3 introduces the fracture mechanical problem. Section 25.4 introduces
various beam problems. In Section 25.5 some conclusions are given.

25.2 The Heat Transfer Problem

In this section, we apply the Γ−algorithm in a one-dimensional boundary value problem
of the heat transfer problem. This problem has been introduced by Ioakimidis (2000).
We apply the finite difference method to the steady-state, one dimensional differential
equation for the temperature distribution φ(x) through the slab, x ∈ [0, L], of thickness
L and thermal conductivity k (see figure 25.1). We suppose that the temperature at
x = 0 takes a constant value φ(x0) = Φ0, the heat flow takes the constant value D at
x = L, dφ

dx (L) = D, and we consider the heat generation at a rate Q(x) per unit length
of the slab (see Ioakimidis (2000)). The differential equation for this problem is

−k
d2φ

dx2
= Q(x), φ(0) = Φ0,

dφ

dx
(L) = D. (25.2)
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Figure 25.1. Interval partition in the finite difference method applied to the heat transfer
problem in Section 25.2

We approximate the second order differential equation and the boundary condition in
Eq. (25.2) by the finite difference method (central difference approximation) generating
a set of n + 2 equally spaced points xi = hi, i = 0, . . . , n + 1 where h = L/(n + 1) (see
figure 25.1). From the above, we get the approximate system of linear equations

−φ2 + 2φ1 = Φ0 + h2Q1/k,

−φi+1 + 2φi − φi−1 = h2Qi/k, i = 2, . . . , n,

φn+1 − φn = h D,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(25.3)

where φi = φ(xi) and Qi = Q(xi).
Following Ioakimidis (2000), we consider that the heat generation Qi/k ≥ Q0 (i =

1, . . . , n), the temperature φi ≤ T0 (i = 1, . . . , n) and the heat flow D ≥ D0, where D0,
Q0 and T0 are constant values. We obtain the following system of linear inequalities

−φ2 + 2φ1 ≥ Φ0 + h2Q0,

−φi+1 + 2φi − φi−1 ≥ h2Q0, i = 2, . . . , n,

φn+1 − φn ≥ D0h,

φi ≤ T0, i = 1, . . . , n + 1.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(25.4)

We study the system (25.4) in the particular case n = 2 and L = 1. Using slack variables
to convert the inequalities into equalities and one more artificial variable to convert the
arbitrary variables into non negative variables, we get the equivalent system of linear
equalities
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(25.5)

with φ∗i ≥ 0, i = 1, . . . , 10. Applying the Γ−algorithm to the columns of the system
matrix A in Eq. (25.5), we obtain the dual of the cone generated by that columns,
Ap

π = Wπ, where

W =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 3 6
2 6 6
3 6 6
0 0 −6
0 −3 0

−1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (25.6)

The product of the dual cone generators (columns of W in Eq. (25.6)) and the para-
metric independent terms vector bT = (Φ0+h2Q0, h

2Q0, D0h, T0, T0, T0) with h = 1/3,
gives us the feasibility conditions

(

Φ0 + (1/9)Q0 (1/9)Q0 D0(1/3) T0 T0 T0

)

⎛

⎜

⎜
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1 3 6
2 6 6
3 6 6
0 0 −6
0 −3 0

−1 0 0
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⎟

⎟

⎟

⎟

⎟

⎠

≤ 0 (25.7)

which can be written as

T0 ≥ Φ0 + (1/3)Q0 + (3/3)D0,
T0 ≥ Φ0 + (1/3)Q0 + (2/3)D0,
T0 ≥ Φ0 + (1/9)Q0 + (1/3)D0.

(25.8)

Analogously, we obtain the feasibility conditions for other n values in (25.4). We study
the system (25.4) in the particular case n = 10, obtaining so the feasibility conditions

T0 ≥ Φ0 + (10/121)Q0 + (11/11)D0,
T0 ≥ Φ0 + (19/121)Q0 + (10/11)D0,
T0 ≥ Φ0 + (54/121)Q0 + (9/11)D0,
T0 ≥ Φ0 + (52/121)Q0 + (8/11)D0,
T0 ≥ Φ0 + (49/121)Q0 + (7/11)D0,
T0 ≥ Φ0 + (45/121)Q0 + (6/11)D0,
T0 ≥ Φ0 + (40/121)Q0 + (5/11)D0,
T0 ≥ Φ0 + (34/121)Q0 + (4/11)D0,
T0 ≥ Φ0 + (27/121)Q0 + (3/11)D0,
T0 ≥ Φ0 + (19/121)Q0 + (2/11)D0,
T0 ≥ Φ0 + (10/121)Q0 + (1/11)D0.

(25.9)
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The above conditions are related with the exact values of the temperature φ(xi)
at each node of the partition, xi = hi, i = 1, . . . , 11 where h = 1/11. The feasibility
conditions in Eq. (25.9) are the same conditions obtained by Ioakimidis (2000) using
the Fourier algorithm.

25.3 A Fracture Mechanical Problem

In this section, we consider the problem of a through crack in an infinite plane under
uniform tension, which has been analyzed by Ioakimidis (2000). Both crack edges are
assumed loaded by a tension distribution p(t). We are interested in the values of the
mode-I stress intensity factors k1,2. The stress intensity factors are used in fracture
mechanics to more accurately predict the stress state near the tip of the crack caused
by a remote load. When this stress state becomes critical a small crack grows and the
material fails.

Following Ioakimidis (2000), we will use the formula for the stress intensity factors

k1,2 =
1
π

∫ 1

−1

1 ∓ t√
1 − t2

p(t)dt, (25.10)

and we approximate the integral (25.10) by the Gauss-Chebyshev quadrature rule (with
n nodes) with respect to the weight function w(t) = 1/

√
1 − t2 on the interval [−1, 1]

k1,2 ≈ 1
n

n
∑

i=1

(1 ∓ tin)p(tin) where tin = cos
(2i− 1)π

2n
. (25.11)

Following Ioakimidis (2000), we consider the bounds for the loading values pi =
p(tin), i = 1, . . . , n

pi ≥ Pi, i = 1, . . . , n (25.12)

and for the fracture coefficients

k1 ≤ K1 and k2 ≤ K2. (25.13)

The aim of this work is to obtain the feasibility conditions of the system of linear
inequalities (25.12)-(25.13), which can be written as

n
∑

i=1

(1 − tin)pi ≤ K1,

n
∑

i=1

(1 + tin)pi ≤ K2,

pi ≥ Pi, i = 1, . . . , n,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(25.14)

where tin = cos (2i−1)π
2n , i = 1, . . . , n. We study the above system for different n values.

In the case n = 2, the system (25.14) can be written as

0.1464 p1 + 0.8535 p2 ≤ K1,
0.8535 p1 + 0.1464 p2 ≤ K2,

p1 ≥ P1,
p2 ≥ P2.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(25.15)
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Using slack variables to convert the inequalities into equalities and one more artifi-
cial variable to convert the arbitrary variables into non negative variables, the system
(25.15) is equivalent to the system of linear equalities
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⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p∗1
p∗2
p∗3
p∗4
p∗5
p∗6
p∗7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

K1

K2

P1

P2

⎞

⎟

⎟

⎠

(25.16)

with p∗1, p
∗
2, p
∗
3, p
∗
4, p
∗
5, p
∗
6, p
∗
7 ≥ 0.

Applying the Γ−algorithm to the columns of the system matrix in Eq. (25.16) we
obtain the feasibility conditions

(

K1 K2 P1 P2

)

⎛

⎜

⎜

⎝

−1.1716 0.0
0.0 −6.8284

0.1716 5.8284
1.0 1.0

⎞

⎟

⎟

⎠

≤ 0 (25.17)

which can be written as

0.1464 P1 + 0.8535 P2 ≤ K1,
0.8535 P1 + 0.1464 P2 ≤ K2.

(25.18)

Analogously, we obtain the feasibility conditions for other n values. As an example,
in the case n = 10 we obtain the feasibility conditions

K1 ≥ 0.0012 P1 + 0.0109 P2 + 0.0293 P3+
0.0546 P4 + 0.0844 P5 + 0.1156 P6+
0.1454 P7 + 0.1707 P8 + 0.1891 P9+
0.1988 P10,

K2 ≥ 0.1988 P1 + 0.1891 P2 + 0.1707 P3+
0.1454 P4 + 0.1156 P5 + 0.0844 P6+
0.0546 P7 + 0.0293 P8 + 0.0109 P9+
0.0012 P10.

(25.19)

The above are the same feasibility conditions obtained by Ioakimidis (2000), apply-
ing the Fourier algorithm. The feasibility conditions (25.19) are obviously related with
the expression of k1 (and k2) in (25.11).

25.4 The Beam Problem

In this section, we consider a one-dimensional case of beam on [0, L], which is simply
supported (roller) at x = 0 and simply supported at x = L (see figure 25.2).
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Figure 25.2. Interval partition in the finite difference method applied to the beam simply
supported (roller) at x = 0 and simply supported at x = L in Section 25.3. The load q(x) is
a linear function, q(x) = q0x/L, 0 ≤ x ≤ L

The fourth-order ordinary differential equation for this problem is

EI
d4y

dx4
= q(x), 0 ≤ x ≤ L (25.20)

where y is the deflection of the beam (positive upward), q(x) is intensity of the load
(positive upward), E is the modulus of elasticity and I is the moment of inertia of a
cross section of the beam. In this example we consider that q(x) = q(x)/(EI). The
boundary conditions for the above problem are y(0) = y(L) = 0, d2y

dx2 (0) = 0 and
d2y
dx2 (L) = 0. Following Ioakimidis (2000), we approximate the fourth order differential
equation and the boundary conditions in Eq. (25.20), by the finite difference method.
Taking n + 1 equally spaced points xi = hi, i = 0, . . . , n where h = L/n, we get the
approximate system of linear equations

yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2

h4
= qi, (25.21)

where yi = y(xi) and qi = q(xi), i = 1, 2, . . . , n− 1. The boundary conditions can be
approximated as

y(0) = 0,
d2y

dx2
(0) =

y1 − 2 y0 + y−1

h2
= 0,

y(L) = 0,
d2y

dx2
(L) =

yn+1 − 2 yn + yn−1

h2
= 0.

(25.22)

Firstly, we suppose that the load q(x) on the beam is a linear function, q(x) =
q0x/L, 0 ≤ x ≤ L (see figure 25.2). From (25.21) and (25.22) we get the system of
linear equations
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yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2

h4
= c xi, i = 1, . . . , n− 1

y0 = 0,
yn = 0,
y1 − 2y0 + y−1 = 0,
yn+1 − 2 yn + yn−1 = 0

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(25.23)

where c = q0/L, h = L/n, xi = hi, i = 0, . . . , n and yi = y(xi), i = 1, . . . , n− 1.
Following Ioakimidis (2000), we suppose that q0 is large enough and c = q0/L ≥ 1,

then we should impose that the deflection of the beam yi ≤ H0, i = 1, . . . , n − 1. We
study the feasibility conditions of the system (25.23) with the inequality constraints
yi ≤ H0, i = 1, . . . , n− 1, for different n values.

In the case n = 4, L = 1 and h = 1/4, we study the feasibility conditions of the
system

y−1 −4 y0 +6 y1 −4 y2 +y3 ≥ h4/4
y0 −4 y1 +6 y2 −4 y3 +y4 ≥ h4/2

y1 −4 y2 +6 y3 −4 y4 +y5 ≥ 3h4/4
y0 = 0

y−1 −2 y0 +y1 = 0
y4 = 0

y3 −2y4 +y5 = 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(25.24)

together with y1, y2, y3 ≤ H0.
In this example, we show how the Γ−algorithm can be applied to obtain the fea-

sibility conditions in a mixed problem with linear equalities and inequalities. Using
slack variables in (25.24) to convert the inequalities into equalities and one more arti-
ficial variable to convert the arbitrary variables into non negative variables, we get the
equivalent system of linear equalities with matrix

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 −4 6 −4 1 0 0 −1 0 0 0 0 0
0 0 1 −4 6 −4 1 0 0 −1 0 0 0 0
0 0 0 1 −4 6 −4 1 0 0 −1 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 −2 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 0 0 0 0 1 0 0
−1 0 0 0 1 0 0 0 0 0 0 0 1 0
−1 0 0 0 0 1 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (25.25)

Applying the Γ−algorithm to the columns of the matrix A, we obtain the dual cone
Ap

π = Wπ, where

W =

⎛

⎝

0.625 1. 0.875 0.25 −0.625 0.75 −0.875 0. 0. −1.
0.666 1. 0.666 0.333 −0.666 0.333 −0.666 0. −0.666 0.
0.875 1. 0.625 0.75 −0.875 0.25 −0.625 −1. 0. 0.

⎞

⎠ . (25.26)

The product of the dual cone generators (columns of W in Eq. (25.26)) and the para-
metric independent terms vector

bT = (h4(1/4), h4(1/2), h4(3/4), 0, 0, 0, 0, H0, H0, H0)
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gives us the feasibility conditions

H0 ≥ {0.00512695, 0.00683594, 0.00463867}. (25.27)

The conditions in Eq. (25.27) are approximations of the exact values of the deflection of
the beam, yi = y(xi), i = 1, 2, 3, at each point of the partition. Taking the maximum
value in Eq. (25.27), we obtain that H0 ≥ 0.00683594. Working analogously in the
cases n = 6, n = 8 and n = 10, we obtain that H0 ≥ 0.00665509, H0 ≥ 0.0065918
and H0 ≥ 0.0065625, respectively. We can see that there is a convergence to the exact
maximum value of the deflection y(x) which obtained analytically is 0.00652218.

Consider now that we make a change in the load expression. We consider the prob-
lem (25.21)-(25.22) and suppose that the load takes a constant value qi = q along the
interval [0, L]. We suppose that q is large enough q ≥ 1, and impose that the deflection of
the beam yi ≤ H0, i = 1, . . . , n−1. The only differences with the previous problem are in
the independent terms vector. Then, we don’t have to apply again the Γ−algorithm to
obtain the new feasibility conditions. To obtain the new feasibility conditions in the case
n = 4, we consider the product of the W matrix in (25.26) and the new independent
terms vector bT = (h4, h4, h4, 0, 0, 0, 0, H0, H0, H0), obtaining the feasibility conditions
H0 ≥ 0.0136719. Analogously, in the cases n = 6, n = 8 and n = 10, we obtain the fea-
sibility conditions H0 ≥ 0.0133102, H0 ≥ 0.0131836 and H0 ≥ 0.013125, respectively.
The exact maximum value of the deflection y(x), obtained analytically, is 0.0130208.

Working with the Γ−algorithm is easy to update the feasibility conditions when
we take a subset of the initial cone generators (columns of matrix A in Eq. (25.25))
or if we add new generators to the cone Aπ. Suppose that we make a change in the
above beam problem; we consider that the beam is simple supported (roller) at x = 0
and fixed at x = L. The load takes a constant value qi = q along the interval [0, L]
(see figure 25.3). The new boundary conditions are y(0) = y(L) = 0, d2y

dx2 (0) = 0 and
dy
dx(L) = 0. We only need two more iterations in the Γ−algorithm to obtain the new
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Figure 25.3. Interval partition in the finite difference method applied to the beam simply
supported (roller) at x = 0 and fixed at x = L in Section 25.3. The load q(x) is a constant
function, q(x) = q, 0 ≤ x ≤ L
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feasibility conditions in the cases n = 4 (H0 ≥ 0.0065696), n = 8 (H0 ≥ 0.0056493) and
n = 10 (H0 ≥ 0.00560448). The exact maximum value of the deflection y(x), obtained
analytically, is 0.00541612.

25.5 Conclusions

In this paper, we show how the Γ−algorithm can be applied in computational me-
chanics problems involving a parametric system of linear equalities and inequalities, to
obtain the feasibility conditions. The Γ−algorithm is presented as an alternative to the
Fourier algorithm previously studied by Ioakimidis (2000). Three different problems are
analyzed to show the capabilities of the Γ−algorithm: a heat transfer problem related
to the finite differences method, a fracture mechanics problem related to numerical
integration and various classical beam problems related to the finite difference method.
We show the application of the Γ−algorithm to obtain the feasibility conditions in one-
dimensional problems approximated by the finite difference method, but it could be
applied to problems with other dimensions, such as the two-dimensional Saint-Venant
torsion problem, or to problems approximated by the finite element method.
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Mancha (Project PAI05-044) for partial support.

References

Castillo, E., Cobo, A., Jubete, F., and Pruneda R. E. (1999). Orthogonal Sets and
Polar Methods in Linear Algebra: Applications to Matrix Calculations, Systems of
Equations and Inequalities, and Linear Programming. Wiley, New York.

Castillo, E., Conejo, A. J., Castillo, C. and Mı́nguez, R. (2006). Solving ordinary
differential equations with range conditions. Applications. SIAM Review, 48(2):
307–307.

Castillo, E. and Jubete, F. (2004). The Γ−algorithm and some applications. Interna-
tional Journal of Mathematical Education in Science and Technology, 35(3):369–389.

Duffin, R. J. (1974). On Fourier’s analysis of linear inequality systems. Mathematical
Programming Study, 1:71–95.

Ioakimidis, N. I. (2000). Derivation feasibility conditions in engineering problems under
parametric inequality constraints with classical Fourier elimination. International
Journal for Numerical Methods in Engineering, 48:1583–1599.

Ioakimidis, N. I. (2001). Finite differences/elements in classical beam problems: deriva-
tion of feasibility conditions under parametric inequality constraints with the help
of Reduce and REDLOG. Computational Mechanics, 27:145–153.

Solares, C. and Chaves, E. W. V. (2006). Feasibility conditions with the Γ−algorithm in
engineering problems. In Proceedings of the International Conference on Numerical
Analysis and Applied Mathematics (Ed., T.E. Simos), pp. 311–314, WILEY VCH,
Weinheim.



26

Forecasting Nonlinear Systems with Neural

Networks via Anticipated Synchronization

Sixto Herrera, Daniel San-Mart́ın, Antonio S. Cofiño, and José M. Gutiérrez

Department of Applied Mathematics and Computational Sciences, University of Cantabria,
Spain

Abstract: Predictability of chaotic nonlinear systems is limited by the exponential
propagation of errors characteristic of chaotic behavior. In this paper we analyze a new
nonlinear prediction scheme considering a chain of identical neural networks synchro-
nized to the original system using an anticipated setting. The neural models are fitted
to a time series obtained from an embedding of a scalar observable of the original
system (e.g., a single variable). The spatiotemporal dynamics of the resulting chain
model are analyzed and the maximum prediction horizons attainable with this scheme
are estimated. Although it is possible in theory to obtain arbitrary long forecast hori-
zons with this methodology, we show that even tiny errors (e.g., the errors introduced
in the modeling phase) limit severely the attainable prediction horizons in practical
applications.

Keywords and phrases: Predictability, nonlinear time series analysis, neural net-
works, anticipated synchronization, spatiotemporal dynamics, forecast horizon

26.1 Introduction

Forecasting the dynamics of nonlinear chaotic systems is a challenging problem with
important applications (Fan and Yao, 2005; Kantz and Schreiber, 2003). Although
chaotic behavior implies long-term unpredictability, the underlying deterministic na-
ture of these systems allows the prediction of their dynamics to some extent. From a
theoretical point of view, the inverse of the Lyapunov exponent gives a theoretical limit
for the prediction horizon attainable for a particular system. However, in practice, the
original system is unknown, and approximate models fitted to the available data have
to be used to model and forecast its nonlinear dynamics (e.g., neural networks). In
this situation, the attainable forecast horizon depends not only on the dynamics of the
original system, but also on the error of the approximate model.

Among the different methodologies introduced in the literature to forecast nonlinear
systems, anticipated synchronization has become a popular and intriguing methodology
(Voss, 2000). Synchronization of chaos refers to a process wherein a common dynamical
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behavior is imposed in two chaotic systems (either identical or approximate) using an
appropriate coupling or forcing (see, e.g., Pikovsky et al., 2001). Unidirectional master-
slave coupling is a typical synchronization framework where a slave system is forced
to follow the master dynamics after an initial transient. Anticipated synchronization is
a recently discovered master-slave synchronization regime that occurs when the slave
becomes synchronized with the master but, additionally, its signal is shifted in time; i.e.,
the slave system anticipates the future dynamics of the master. This scheme provides
a natural method for nonlinear system forecasting, since approximate models fitted
to the available data (local linear techniques, neural networks, etc., see Kantz and
Schreiber (2003)) can be synchronized to the original master model to anticipate its
future dynamics. Moreover, this synchronization regime can be obtained in cascade (the
first slave can act as the master for a second slave system, and so on), thus extending
the anticipation time.

In this paper we analyze the mechanism underlying this synchronization cascade
phenomenon and describe its limitations for practical applications, showing that even
negligible errors limit severely the attainable prediction horizons. This is an impor-
tant result for practical applications since, theoretically, in total absence of errors it is
possible to obtain arbitrarily long forecast horizons using this methodology.

This paper is organized as follows. Section 26.2 describes a synchronization method-
ology that allows us to anticipate the dynamics of nonlinear systems using chains of a
master and several slave coupled models. Section 26.3 analyzes the application of neu-
ral networks to model nonlinear time series based on an embedding framework. Section
26.4 combines anticipated synchronization and neural networks to provide a practical
setup for time series forecast. Finally, some conclusions are given in Section 26.5.

26.2 Anticipated Synchronization

Synchronization of chaos refers to a process wherein two (or many) chaotic systems
(either identical or approximate) adjust a given property of their motion to a common
behavior due to a coupling or to a forcing. Several schemes have been presented in the
literature to synchronize chaotic systems (Pikovsky et al., 2001). For instance, given a
couple of identical chaotic systems, u0

′(t) = f(u0(t)) and u1
′(t) = f(u1(t)), identical

chaotic synchronization can be achieved with a dissipative coupling of the form

u0
′(t) = f(u0(t))

u1
′(t) = f(u1(t)) + K(u0(t) − u1(t)), (26.1)

when the fixed point Δ = 0 is globally asymptotically stable for the transversal system
Δ = u0 − u1; K is a coupling parameter and the range of feasible values is given
by the above condition. In this case, the dynamics of both systems will restrict to
the synchronization manifold u0(t) = u1(t), t > T , after some transient time T and,
hence, they will exhibit identical dynamical behavior. u1 is the slave system and u0 the
master, or drive. In most of the cases, no analytical results about stability are possible,
and synchronization regimes have to be numerically obtained.

The phenomenon of anticipated synchronization, proposed recently by Voss (2000),
has attracted a lot of attention because of its counterintuitive features as well as its
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potential applications. As has been shown, anticipated synchronization appears when
the slave system becomes synchronized with the output of the master system, but
additionally its signal is shifted in time, i.e., the slave system starts to follow the future
dynamics of the master system. This is achieved using a dissipative coupling as in (26.1)
but with a delay component:

u0
′(t) = f(u0(t))

u1
′(t) = f(u1(t)) + K (u0(t) − u1(t− τ)) (26.2)

where K is a coupling parameter and τ is a delay time (which gives the anticipation
time in this case). This achronal synchronization occurs for some bounded region of
coupling parameters.

To illustrate the above concepts we consider a benchmark chaotic system, the
Rössler model, which is given by the set of differential equations (Rossler, 1976):

(x′, y′, z′) = (−y − z, x + a y, b + z (x− c)) (26.3)

with a = 0.15, b = 0.2 and c = 10, and leading Lyapunov exponent λ = 0.09, which
gives a theoretical prediction time of t = 1/λ = 11.1. In this case we used a fourth-
order Runge-Kutta algorithm with a fixed time step τ = 10−2 to integrate the model,
recording a time series consisting of 5000 sample points. This set was divided in two
parts; the first one was used for training whereas the second one was reserved for testing
the models.

For instance, figures 26.1(a)–(c) show the dynamics (time series of variable x) of a
master and a slave Rossler systems for different anticipation times τ = 0, 0.7 and 1.2,
respectively, for a coupling strength K = 0.5. From these figures, it can be shown that
for small values of τ the slave follows (figure 26.1a) or anticipates (figure 26.1b) the
master dynamics after an initial transient time. However, for large anticipation times
the dynamics of the synchronization manifold are unstable and each system evolves
differently (figure 26.1c).

To have a global vision of the combination of K and τ parameters which lead to
a synchronized behavior, figure 26.2(a) shows the stability region of the anticipated
manifold in the K − τ space by plotting in a gray scale the maximum of the cross-
correlation function between x1(t − τ) and x0(t). From this figure, we estimate that
the maximum anticipation time τ = 0.91 is reached for K = 0.5. This maximum
anticipation time is shorter than the inverse of the largest Lyapunov exponent and, in
fact, it is similar to the linear prediction time of the original system: 0.95 (obtained as
the time where the error of a linear prediction is larger than 5% of the systems range).

This anticipated sychronization can be also applied to a chain of slave systems,
where each of them acts as the slave of the previous one, and the master of the following
one. For instance, figure 26.2(b) shows the stability region for a chain of 20 slaves; in this
case, the figure shows the maximum of the cross-correlation function between x20(t−
20τ) and x0(t). Similarly, figure 26.2(c) shows the stability region for a chain of 200 slave
systems. From these figures, it can be shown that as the length of the chain grows, the
maximum individual anticipation times are smaller due to the amplification of errors
through the chain. However, the total anticipation time is substantially incremented
and, theoretically, arbitrarily long forecast times can be obtained with this cascading
approach (using identical systems and in the absence of errors).



344 S. Herrera, D. San-Mart́ın, A. S. Cofiño, and J. M. Gutiérrez

-10
-5
0
5
10

-10
-5
0
5
10

-10

0

0 4020

10

20

(a)

(b)

(c)

x(
t)

x(
t)

x(
t)

t

Figure 26.1. Time series of the master x0 (solid) and slave x1 (dashed) Rossler models for
K = 0.5 and τ = 0 (a), 0.7 (b), and 1.2 (c)
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Figure 26.2. Stability regions in the parameter space K and τ for anticipated synchronization
scheme with identical copies of (a) one Rossler slave, (b) ten slaves, (c) twenty slaves (black
indicates zero and white one correlation values)

Figure 26.3 shows the dynamics of a synchronization chain consisting of n = 100
Rossler models.

Once the synchronization coupling is switched on, the slaves progressively become
synchronized to the master, following an approximate linear front (thin solid line) until
all systems become synchronized in an anticipated form following oblique lines (such
as the thick solid line). Note that figure 26.3(b) is similar to (a) but with the times
sifted to have identical behavior in the vertical lines; moreover, the white areas in figure
26.3(c) correspond to synchronization regions in the spatiotemporal space.

Therefore, in principle, arbitrary anticipation times could be obtained using an ap-
propriate chain of identical models. However, in practical settings there is a lack of
information and, usually, the only information available is in the form of a time se-
ries of some system’s observable. Therefore, using a identical copy of the master as a
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Figure 26.3. Anticipated synchronization of a chain of n = 100 Rossler systems. The dashed
line shows the time where synchronization is switched on

slave model is not a realistic assumption in practise. To overcome this limitation, an
approximate replica of the original model can be obtained applying appropriate nonlin-
ear time series techniques to the available data. Thus, a synchronization cascade could
be obtained using the observed models as the master and the inferred approximated
models as slaves.

26.3 Nonlinear Time Series Modeling with Neural Networks

The deterministic nature of a nonlinear system allows extracting its functional structure
from observed data using appropriate nonlinear techniques (Kantz and Schreiber, 2003;
Fan and Yao, 2005). Artificial Neural Networks (NNs) have been successfully applied
to this task when complete information of the systems variables is available (Ciszak
et al., 2005). In this case, the neural network approximates the functional form of the
corresponding differential equations (26.3). However, this is not a realistic situation in
practise, since usually only a particular magnitude of the system is observable (e.g., a
single variable x) in the form of a scalar time series xn, n = 0, 1, 2, . . . .
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In this situation, according to the embedding theorem, xn is functionally related to
a delayed vector xn,δ = (xn−δ, . . . , xn−m δ), where δ is the embedding delay and m the
dimension of the embedding space. Therefore, a neural network can be trained with
input-output samples from the time series of the form xn,δ-xn. It has been shown that
the resulting approximate neural models can also reproduce the dynamical behavior and
the nonlinear characteristics of the original model, such as similar Lyapunov exponents
or fractal dimension (Cheng et al., 1997), etc.

We have considered different neural networks with increasing complexity (number
of parameters) to fit the nonlinear dynamics of the Roosler model considering a time
series xn, n = 1, . . . , 5000, sampled from the original model with a sampling time
Δ = 0.01. First, an appropriate embedding delay δ = 0.3 (corresponding to n = 30) was
obtained from the time series (see figure 26.4(a)) and an optimal embedding dimension
m = 6 was experimentally computed by increasing the number of input units in the
neural networks until no further improvement was achieved. Different neural network
topologies were trained dividing the available data in two equal parts; the first one
was used for training the model using the Levenberg-Marquad algorithm, whereas the
second one was reserved for testing the resulting models. The networks considered
were standard feed-forward neural networks (FFNN) with sigmoidal logistic and linear
activation functions for hidden and output layers, respectively. Figures 26.4(b) and (c)
show the errors obtained with a three layer 6:6:1 network (6 input, 6 hidden and a
single output). These figures show that the prediction errors for an anticipation time
of τ = 0.3 are, in average, less than 0.1% of the system’s amplitude.
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26.4 Error Growth in Synchronized Chains

Once an approximate neural model has been obtained, it can be used as a slave system
applying the anticipated synchronization framework to predict the future evolution
of the mater system (the observed time series). However, in this case it is not clear
how the resulting approximation error (see figure 26.4c) will affect the dynamics of the
synchronization chain.

First, we need to adapt the synchronization scheme given in (26.2) to consider a
master system given by a time series x0, x1, . . . . In this case, we modify the synchro-
nization algorithm as follows:

• We first define uk = xk, k = 0, . . . ,m− 1, and the delay vector v = (um−1, . . . , u0);
• then we proceed as follows for n = m,m + 1, . . .

ε = K (xn − un−1), (26.4)
un = NNet(v) + ε (26.5)
v = [un,v[1:m−1] + ε] (26.6)

where NNet is the neural function and v[1:m−1] is the vector with the first m − 1
components of v.

As in the original case, K is a coupling parameter and, in this case, the anticipation
time reduces to n = 1 (which is equivalent to τ = 0.3 due to the sampling time used
to obtain the time series).

Figure 26.5(a) shows how the error of the neural network affects the synchronization
capabilities of the chain (similar to figure 26.3(a), but in logarithmic scale). This figure
shows that the errors obtained in the chain increase from 10−2 to 102, aproximately;
moreover, the number of slave systems synchronized at each time step varies dynami-
cally. Thus, the total anticipation time attainable with this approach varies from time
to time due to the interplay between error growth and synchronization.

In order to understand the nature of this error dynamics we have also considered
a chain of perturbed Rossler slave systems. To this aim, random gaussian values with
standard deviation 10−2 and 10−4 were introduced in the parameters of the master
Rossler system (26.3) and the resulting perturbed slaves were synchronized with the
master using the synchronization approach (26.2). The evolution of the resulting syn-
chronized chains are shown in figures 26.5(b) and (c), respectively. These figures show
that the behavior of the neural chain is in between both cases, indicating that the
impact of the neural approximated models in the synchronization dynamics is similar
to the impact produced by a small difference between the master and slave systems.

Finally, we analyze the practical anticipation horizons attainable with this approach.
To this aim, an error threshold is fixed (1% of the system range) and the first slave
in the chain, N , with larger synchronization error is identified. Figure 26.6 shows the
histograms of the values N obtained from a time series of 50000 values using both neural
and perturbed Rossler slaves. This figure shows that the mean anticipation time with
the neural model is τ = 3, but it varies between τ = 1.5 and τ = 6. This distribution
of errors characterizes the practical forecast horizon attainable with this anticipation
approach.
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Figure 26.5. (a) Error (in logarithmic scale) between the n-th neural slave system xn and
the Rossler master x0. (b), (c) Errors considering perturbed Rossler models as slave models
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Figure 26.6. Histograms of the anticipation times τ = 0.3N attained with the neural (front)
and perturbed Rossler models (gray shading) using the anticipated synchronization chain
scheme
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26.5 Conclusions

We have analyzed a practical technique to anticipate the dynamics of chaotic systems
using a chain of neural network replicas of a master system combined with the antic-
ipated synchronization scheme. Theoretically, it is possible to obtain arbitrarily long
anticipation times using perfect neural network replicas; however, in practice, it is not
possible to build identical models and, hence, the anticipation time obtained with this
approach are limited. Moreover, the anticipation times vary from time to time. Thus,
a statistical characterization is required.
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The Discrete Half-Normal Distribution
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Abstract: The discrete half-normal distribution is derived as the maximum entropy
distribution on 0,1,. . . with specified mean and variance. It is a limiting q-hyper-Poisson-
I distribution that arises from the Morse M/M/1 queue with service-dependent balking.
Success runs models are reviewed. A new derivation as a mixture of Heine distributions
is given. Finally the moment and other properties are examined.

Keywords and phrases: Maximum entropy distribution, confluent q-series distribu-
tion, Morse M/M/1 queue with balking, success runs models, Heine mixture, unimodal-
ity, logconcavity, increasing failure rate

27.1 Introduction

The (continuous) half-normal distribution is N(0, σ2) folded about the origin; it can
therefore be obtained by left-truncating N(0, σ2) below zero. The discrete normal dis-
tribution of Lisman and van Zuylen (1972), Kemp (1997), Liang (1999), Szablowski
(2001), Navarro and Ruiz (2005) and Johnson et al. (2005) with probability mass func-
tion (pmf)

Pr[X = x] = px =
θxqx(x−1)/2

∑∞
x=−∞ θxqx(x−1)/2

, x = . . . ,−2,−1, 0, 1, 2, . . . (27.1)

is not symmetric however. The discrete half-normal distribution studied here has the
pmf

Pr[X = x] = px =
θxqx(x−1)/2

∑∞
x=0 θ

xqx(x−1)/2
, x = 0, 1, 2, . . . , (27.2)

0 < q < 1, 0 < θ. It is (27.1) left-truncated below zero. The probability generating
function (pgf) is
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G(z) =
∞
∑

x=0

qx(x−1)/2θxzx

/ ∞
∑

x=0

qx(x−1)/2θx

= 1φ1(q; 0; q,−θz)/ 1φ1(q; 0; q,−θ), 0 < q < 1, 0 < θ, (27.3)

using the Gasper and Rahman (2004) q-series notation.

AφB(a1, . . . , aA; b1, . . . , bB; q, z)

=
∞
∑

j=0

(a1; q)j . . . (aA; q)jz
j

(b1; q)j . . . (bB; q)j(q; q)j

[

(−1)jq(
j
2)
]B−A+1

,

where (u; q)0 = 1 and (u; q)j = (1 − u)(1 − uq) . . . (1 − uqj−1) for j = 1, 2, . . . . . When
|q| < 1 and A = B this series converges for all z.

The representation (27.3) of the pgf shows that the distribution is a member of the
q-confluent family with pgf

G(z) = 1φ1(b; c; q,−θz)/ 1φ1(b; c; q,−θ), 0 < q < 1, b < 1, c < 1, 0 < θ,

(see Kemp (2005)), and hence it is a generalization of the Heine distribution of Benkh-
erouf and Bather (1988), Kemp (1992a,b) and Johnson et al. (2005) with pgf

G(z) = 0φ0(−;−; q,−θz)/ 0φ0(−;−; q,−θ),
= 1φ1(0; 0; q,−θz)/ 1φ1(0; 0; q,−θ), 0 < q < 1, 0 < θ,

Section 27.2 explains the rationale for the name “discrete half-normal”. The (contin-
uous) half-normal distribution is the maximum entropy distribution on the nonnegative
half-line with specified mean and variance; see Kapur (1989), §3.2.2. The discrete half-
normal distribution is shown in Section 27.2 to be the analogous maximum entropy
distribution with specified mean and variance but with integer support 0,1, . . . . Its
derivation as a limiting form of C. D. Kemp’s (Kemp, 2002) q-hyper-Poisson-I distribu-
tion is explained in Section 6.3. Section 27.4 relates the distribution to the Morse (1958)
M/M/1 queue with service-dependent balking. Success runs models are described in
Section 27.5. Section 27.6 gives a new derivation as a mixture of Heine distributions;
the distribution is therefore a q-analogue of a mixed Poisson distribution. Moment and
other properties are examined in Section 27.7.

27.2 The Maximum Entropy Derivation

The maximum entropy principle implies that if only partial information about a prob-
ability distribution is available, then it should be modelled as the distribution with
maximum entropy that satisfies the known constraints. Lisman and van Zuylen (1972)
termed this “the most probable distribution” subject to the known constraints. The
abbreviation “MED” is used.

In Kemp (1997) the discrete normal distribution with pmf (27.1) was characterized
as the discrete distribution with integer support on (−∞, ∞) and specified mean and
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variance. Adopting Kapur’s method (Kapur, 1989) of undetermined multipliers for the
discrete half-normal distribution, we have the Lagrangian

L≡
∞
∑

x=0

px ln px − c1

[∞
∑

x=0

px − 1

]

− c2

[∞
∑

x=0

xpx − μ

]

− c3

[∞
∑

x=0

(x− μ)2px − σ2

]

.

Hence

0 = − ln px − 1 − c1 − c2x− c3(x− μ)2.

Therefore the MED with support 0, 1, 2, . . . and specified mean and variance has the
pmf

px = e−1−c1−c3μ2
e(−c2+2c3μ−c3)xe−c3x(x−1)

= Aθxqx(x−1)/2, x = 0, 1, 2. . . . ,

where θ = e(−c2+2c3μ−c3), q = e−2c3 and A is the normalizing constant.

27.3 The Limiting q-hyper-Poisson-I Derivation

The pgf of C. D. Kemp’s (Kemp, 2002) q-hyper-Poisson-I distribution is the special
case of (27.3) with b = q, c = qr, θ = qr−1λ, 0 < q < 1, 0 < λ. He obtained it
by truncating the first (r − 1) probabilities of the Heine distribution with parameters
(q, λ), normalizing the remaining probabilities and shifting the start of the distribution
to the origin. This gives the pgf

G(z) = 1φ1(q; qr; q,−qr−1λz)/ 1φ1(q; qr; q,−qr−1λ), 0 < q < 1, 0 < λ,

r an integer (the distribution also exists for all r > 0). The discrete half-normal distri-
bution is the limiting case as r → ∞.

27.4 The Morse M/M/1 Queue with Balking

The Heine distribution can be derived by assuming an M/M/1 queue with exponential
arrival rate α, service rate β and the restriction that when the queue length X has the
value x, then arrivals join with probability qx and the server idles with probability qx for
an exponentially distributed service period (Kemp, 1992b). The transition probabilities
are thus assumed to be

px,x−1 =
β(1 − qx)
α + β

, px,x =
α(1 − qx) + βqx

α + β
, px,x+1 =

αqx

α + β
,

for x ≥ 0, α > 0, β > 0, 0 < q < 1. Taking α/β = θ gives the Heine pmf
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px = p0
θxqx(x−1)/2

(1 − q) · · · (1 − qx)
, α/β > 0, 0 < q < 1,

for the stationary queue size. Note that the intensity rate θ can be greater than unity,
whereas 0 < θ < 1 for the M/M/1 queue without balking.

When arrivals balk as above but there is no server balking, i.e., when

p0,0 =
β

α + β
, p0,1 =

α

α + β
,

px,x−1 =
β

α + β
, px,x =

α(1 − qx)
α + β

, px,x+1 =
αqx

α + β
, x ≥ 1,

and px,j = 0 otherwise, then the stationary outcome has the pmf (27.2)

px = p0θ
xqx(x−1)/2, θ = α/β.

The parameterization ρ = θ, γ =
√
q, gives the M/M/1 queue with balking studied

in depth by Morse (1958). Here the service rate is constant but the effect of arrival
balking is to reduce the arrival rate; this will happen if new arrivals are increasingly
reluctant to join the queue as it gets longer.

In Kemp (2005) it was reinterpreted as an M/M/1 queue in which arrivals are only
allowed to join the queue when all the existing members of the queue agree; if one or
more disagree then the new arrival is not allowed to join.

27.5 Success Run Processes

Kemp (2005) also investigated stationary success run processes giving rise to the dis-
tribution. Consider the Markov chain with transition probabilities

pi,0 = 1 − λqi, pi,i+1 = λqi, i ≥ 0, pi,j = 0 otherwise.

A necessary condition for the existence of a stationary success run process is

∞
∑

k=1

k−1
∏

i=0

pi,i+1 < ∞

and also the outcome probabilities must decrease monotonically. As shown in Kemp
(2005) these conditions are satisfied provided that the extra parameter restriction 0 <
λ < 1 is made.

Distributions arising in this way can be reinterpreted as the current age distribution
for the lifetime distribution with pgf

∑∞
i=1 aiz

i when

(1−a1) = p0,1 =
p1

p0
,

(1−a1−· · ·−ax+1)
(1 − a1 · · · − ax)

= px,x+1 =
px+1

px
, x > 1.

The discrete half-normal distribution was shown to be the current age distribution for
the lifetime distribution with pgf
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G(z) = (1 − θ)z 2φ2(q, θq; θ, 0; q,−θz).

Kemp (2005) also showed that the following success run process with stagnation
yields the discrete half-normal distribution. Consider a transition probability matrix
for a Markov chain with pi,j = 0 except when j = 0, j = i, or j = i+1, i.e., there is the
possibility that trials may result neither in a success nor in a failure. A career scheme
in which each year employees are either promoted to the next higher level, remain at
the same level, or leave the company was put forward by Kemp (1992b) as a possible
scenario. The steady-state probabilities are given by

px+1 = px,x+1px + px+1,x+1px+1, x ≥ 0.

The discrete half-normal distribution is the outcome when

p0,0 = 1 − θ(1 − q), p0,1 = θ(1 − q),
pi,0 = 1 − qi(1 + θ − θqi+1), pi,i = qi, pi,i+1 = θqi(1 − qi+1), i ≥ 1,

provided that 0 < θ(1 − q) < 1 and 0 < q(1 + θ − θq2) < 1. These inequalities hold
when 0 < q < 1, 0 < θ < min[1, (5 − 3q)/4].

27.6 Mixed Heine Distribution

Using the Heine transformation

2φ1(a, b; c; q, u) =
(a; q)∞(bu; q)∞
(c; q)∞(u; q)∞

2φ1(c/a, u; bu; q, a),

Gasper and Rahman (2004), p. 13, the discrete half-normal pgf (27.3) becomes

G(z) = 1φ1(q; 0; q,−θz)/1φ1(q; 0; q,−θ)
= lim

ε→0
2φ1(q; 1/ε; 0; q,−θzε)/2φ1(q; 1/ε; 0; q,−θε)

=
(−θz; q)∞2φ1(0, 0;−θz; q; q)
(−θ; q)∞2φ1(0, 0;−θ; q; q)

(27.4)

where

GH(z|η, q) = 0φ0(−;−; q, ηz)
0φ0(−;−; q, η)

=
(−ηz; q)∞
(−η; q)∞

=
Eq(ηz)
Eq(η)

.

is the pgf for the Heine (η, q) distribution and Eq(η) is a q-exponential function. The
Heine distribution is a q-analog of the Poisson distribution.

Reformulating (27.4) in terms of the q-integral

∫ 1

0

f(t)dqt = (1 − q)
∞
∑

n=0

f(qn)qn

gives
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G(z) =
∫ 1

0

(qt; q)∞(−θt; q)∞
(−θzt; q)∞
(−θt; q)∞

dqt

/∫ 1

0

(qt; q)∞(−θt; q)∞dqt (27.5)

since

2φ1(a, b; c; q, qy) =
(a; q)∞(b; q)∞

(1 − q)(q; q)∞(c; q)∞

∫ 1

0

ty−1 (qt; q)∞(ct; q)∞
(at; q)∞(bt; q)∞

dqt;

see Gasper and Rahman (2004), Ex.1.4.iii. This shows that the discrete half-normal
distribution is a mixture of Heine distributions and therefore a q-analog of a Poisson
mixture. The nature of the mixture is clarified by expanding the 2φ1(·) series in the
numerator of (27.4). After some algebra

G(z) =
∞
∑

j=0

qj

(q; q)j (−θ; q)j
GH(z|θqj , q)

/ ∞
∑

j=0

qj

(q; q)j (−θ; q)j
. (27.6)

27.7 Properties

From (27.4)

μ =
∞
∑

x=0

xpx =
∞
∑

x=0

xθxqx(x−1)/2

/ ∞
∑

x=0

θxqx(x−1)/2 , (27.7)

μ
′
2 =

∞
∑

x=0

x2px =
∞
∑

x=0

x2θxqx(x−1)/2

/ ∞
∑

x=0

θxqx(x−1)/2 . (27.8)

and the variance is

μ2 =
∑∞

x=0 x
2θxqx(x−1)/2

∑∞
x=0 θ

xqx(x−1)/2
−
[∑∞

x=0 xθ
xqx(x−1)/2

∑∞
x=0 θ

xqx(x−1)/2

]2

. (27.9)

For numerical work the probabilities can be computed recursively, using an assumed
value C for p0 and the recurrence relation px+1 = θqxpx, giving

C, Cθ, (Cθ)θq, (Cθ2q)θq2, (Cθ3q3)θq3, · · ·
with C + Cθ + Cθ2q + Cθ3q3 + Cθ4q6 + · · · = T . Normalization gives

p0 = C/T, p1 = Cθ/T, p2 = Cθ2q/T, p3 = Cθ3q3/T, p4 = Cθ4q6/T, · · · .
The mean and variance can then be obtained from the calculated probabilities. If θ is
large and q is close to 1 then double or even quadruple precision may be needed.

The shape properties of the discrete half-normal distribution follow from those of
the (untruncated) discrete normal distribution (Kemp, 1997). The ratio of successive
probabilities is
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px+1/px = θqx, x = 0, 1, . . . .

As x increases this decreases and hence the distribution is unimodal. If θ < 1, the mode
is at the origin. For θ > 1, the mode is at [− ln(θ)/ ln(q)] where [·] denotes the integer
part. If − ln(θ)/ ln(q) is an integer, then there are joint modes at − ln(θ)/ ln(q) and
1 − ln(θ)/ ln(q).

The geometric distribution with px = (1 − q)qx, x = 0, 1, . . ., is the MED with
constrained mean only (Kapur, 1989). For this distribution px+2px/p

2
x+1 = 1, so it

is neither logconcave nor logconvex; it has a constant failure rate. The discrete half-
normal distribution (the MED for x = 0, 1, . . ., with constrained mean and variance)
has

px+2px/p
2
x+1 = q < 1.

This is constant and so the distribution can be regarded as a generalization of the
geometric distribution. Its probabilities are logconcave and therefore, as Gupta et al.
(1997) have shown, it has an increasing failure rate.

When q → 0, the distribution tends to the Bernoulli distribution with mean θ/(1+θ)
and variance θ/(1 + θ)2. For θ < 1 and q → 1, the limiting distribution is geometric
with mean θ/(1 − θ) and variance θ/(1 − θ)2. When θ ≥ 1 and q = 1 the pgf does not
converge; for θ ≥ 1 and q → 1 the mean and second factorial moment become infinite.

Two open questions remain. Firstly, for what region of the parameter space is the
variance greater than the mean? Secondly, whilst logconvexity implies infinite divis-
ibility, logconcavity does not imply the converse (consider for example the Poisson
distribution). Is there any region of the parameter space for which the distribution is
infinitely divisible?
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Abstract: Various q-hypergeometric distributions have recently been described and
examined in some detail in both the statistics and the quantum physics literatures.
The q-hypergeometric distributions are of interest as q-analogues of a wide class of
discrete distributions (the generalized hypergeometric probability distributions) which
includes, for example, the Poisson, binomial, negative binomial and logarithmic distri-
butions. The additional parameter q can be viewed as modifying the related standard
distribution (the term deforming is used in the physics literature). Parameter estima-
tion for the q-distributions has not received much attention. This paper examines the
estimation problem with special reference to q-distributions related to the logarithmic
distribution. Some simulation results for maximum-likelihood estimation are given.

Keywords and phrases: Probability distributions, q-hypergeometric distributions,
q-logarithmic distributions, parameter estimation

28.1 Introduction

Over the past decade, there has been increasing interest in distributions that are q-
analogs of standard discrete distributions. q-distributions contain a parameter q (0 <
q < 1) such that as q → 1 the q-distribution tends to the related standard distribution.

The main q-distributions that have been researched in both the statistics and
physics literature have been the q-analogs of classical distributions, such as the bino-
mial, Poisson, negative binomial, and logarithmic, that are members of A. W. Kemp’s
broad class of generalized hypergeometric probability distributions (Kemp, 1968).

The probability generating functions (pgfs) for the Kemp class of hypergeometric
distributions have the form

g(z) = AFB [λz]
AFB [λ]

(28.1)

where AFB[·] denotes the generalized hypergeometric function

AFB(a1, . . . , aA; b1, . . . , bB; z) =
∞
∑

n=0

(a1)n . . . (aA)n

(b1)n . . . (bB)n

zn

n!
, (28.2)
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and

(a)n =
{

1 n = 0
a(a + 1) . . . (a + n− 1) n = 1, 2, . . . .

(28.3)

The q-hypergeometric analogs have pgfs of the form

g(z) = AφB [λz]
AφB [λ]

(28.4)

where AφB[·] denotes the q-hypergeometric (basic hypergeometric) function

AφB(a1, . . . , aA; b1, . . . , bB; q, z)

=
∞
∑

n=0

(a1; q)n . . . (aA; q)nz
n

(b1; q)n . . . (bB ; q)n(q; q)n

[

(−1)nq(
n
2)
]B−A+1

, (28.5)

where

(a; q)n =
{

1 n = 0
(1 − a)(1 − aq) . . . (1 − aqn−1) n = 1, 2, . . . .

(28.6)

Since

lim
q→1

(qa; q)n

(1 − q)n
= a(a + 1) . . . (a + n− 1) = (a)n , (28.7)

it follows that, for example,

lim
q→1

2φ1(qa, qb; qc; q, z) = 2F1(a, b; c; z) (28.8)

(the usual Gaussian hypergeometric function).
There may be more than one q-analog of a distribution (e.g. there are three

q-Poisson distributions).
For basic information on the hypergeometric and q-hypergeometric functions, to-

gether with detailed information on individual q-series distributions, see Johnson et al.
(2005).

28.2 Special Cases and Properties

For many classical distributions it is easy to obtain simple expressions for various
features of the distribution such as the probabilities, moments, factorial moments, cu-
mulants. Unfortunately these are frequently not available for the q-analogs. This is true
of the q-distributions related to the logarithmic distribution that we now concentrate
on.

The classical logarithmic distribution has pgf

G(z) =
log(1 − θz)
log(1 − θ)

= z
2F1(1, 1; 2; θz)
2F1(1, 1; 2; θ)

= a

{

θz +
θ2z2

2
+

θ3z3

3
+ . . .

}

, (28.9)
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where 0 < θ < 1 and a = −[log(1 − θ)]−1.
Kemp (1997) replaced 2F1(1, 1; 2; θz) by 2φ1(q, q; q2; q, θz) to obtain a q-logarithmic

distribution with pmf

px =

⎧

⎪

⎨

⎪

⎩

C θx

/

x−1
∑

j=0

qj x = 1, 2, 3, . . .

0 elsewhere
, 0 < q < 1, 0 < θ < 1, (28.10)

where the normalizing constant C = [θ 2φ1(q, q; q2; q, θ)]−1.
As q → 1 it approaches the logarithmic distribution, and as q → 0 it approaches

the geometric distribution.
However, whereas the normalizing constant a for the logarithmic distribution is

the simple expression−[log(1 − θ)]−1, there is no simple summation formula for the
q-logarithmic normalizing constant C.

Similarly, no closed expressions are available for the moments.
The Euler distribution is an infinitely divisible q-analog of the Poisson distribution;

its pgf is

G(s) = 1φ0(0;−; q, θs)
1φ0(0;−; q, θ)

, 0 < q < 1, 0 < θ < 1, (28.11)

=
∞
∑

n=0

θnsn

(1 − q) · · · (1 − qn)

/ ∞
∑

n=0

θn

(1 − q) · · · (1 − qn)
(28.12)

Viewing it as a Poisson distribution of clusters, with pgf of the form

G(z) = exp(λ(h(z) − 1)),

its cluster size distribution has pgf

h(z) =
∑∞

0 θizi/[i(1 − qi)]
∑∞

0 θi/[i(1 − qi)]
, 0 < θ < 1, 0 < q < 1. (28.13)

This has the property that as q → 0 it tends to the logarithmic distribution, so it is a
q-analog in a different sense.

The generalized Euler distribution has pgf

G(z) =
∞
∏

j=0

(

1 − aθqjz

1 − aθqj

)(

1 − θqj

1 − θqjz

)

= 1φ0(a;−; q, θz)
1φ0(a;−; q, θ)

, (28.14)

where 0 < q < 1, 0 ≤ a < 1, 0 < θ < 1.
Kemp and Kemp (2006) have investigated the cluster distribution of the generalized

Euler distribution. This distribution, which they named the q-cluster distribution, has
pgf

h(z) =
∞
∑

i=1

(1 − ai)θizi

i(1 − qi)

/ ∞
∑

i=1

(1 − ai)θi

i(1 − qi)
, (28.15)

0 ≤ q ≤ 1, 0 ≤ a ≤ 1, 0 < θ < 1.
It is a q-generalization of the logarithmic distribution, which it becomes when a = q.

As a → 1 it tends to Kemp’s q-logarithmic distribution (28.10), and when a → 0 it
becomes the Euler cluster distribution (28.13).
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28.3 Estimation

Estimating θ for the logarithmic distribution is relatively straightforward. Moment
and maximum-likelihood estimation are equivalent. The ML equation has to be solved
iteratively, but this not very difficult. There is a considerable literature on the topic.
Bounds for the estimator have been found. Various alternative estimators have been
proposed. A particularly simple one is 1 − f1/x̄. This estimator has been shown to be
an approximation to the ML estimator.

The position for the q-analogs of the logarithmic distribution discussed in Section
(28.2) is far less satisfactory. No closed expressions for moments are available, so the
method of moments cannot be applied. Standard differentation techniques cannot be
applied successfully. There are no known explicit estimators. Similarly, bounds are
unknown.

We have therefore used an optimization algorithm to maximize the likelihood func-
tion. The rest of the paper is devoted to some results from an ongoing simulation
project to study the behaviour of this approach.

For any given set of parameters computation of the probabilities by use of a recur-
rence relation is the only feasible choice. An arbitrary p1 (θ is a convenient choice) is
used to start the process, which is stopped when px < ε, and the probabilities are then
normalized by summation. We used ε = 10−10.

N pseudo-random samples, each of size n were taken from the computed distribu-
tion. For each of the N samples the negative log-likelihood was then calculated, and
the parameters were estimated by the R function nlminb. Various sizes of N were tried;
in general, N = 50 seemed a reasonable choice.

Logarithmic distributions are normally fitted to long-tailed data and hence θ is
large. Once θ starts to exceed .95 the tail starts to lengthen very rapidly. So care has
to be taken in choosing the upper bound for possible θ in the optimization procedure.

Table 1 gives results for the Kemp q-logarithmic distribution. The sample size was
100, and 50 samples were taken for each of nine sets of parameter values. The results
presented are the means and standard deviations of the 50 estimates of θ and q for
each of the 9 sets. Overall, θ seems to be estimated well with means reasonably close to

Table 28.1. Means and standard deviations of estimates from 50 samples of size 100 from
the Kemp q-logarithmic distribution

θ = 0.5

q mean(θ̂) sd(θ̂) mean(q̂) sd(q̂)

0.1 0.503 0.056 0.158 0.205
0.5 0.493 0.091 0.454 0.349
0.9 0.403 0.087 0.492 0.379

θ = 0.9

q mean(θ̂) sd(θ̂) mean(q̂) sd(q̂)

0.1 0.901 0.011 0.179 0.165
0.5 0.897 0.039 0.439 0.196
0.9 0.900 0.026 0.884 0.105

θ = 0.95

q mean(θ̂) sd(θ̂) mean(q̂) sd(q̂)

0.1 0.950 0.006 0.185 0.204
0.5 0.947 0.011 0.383 0.212
0.9 0.934 0.056 0.829 0.200
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the parameter value and low standard deviations. Estimation of q gives disappointing
results. A particularly poor result is that for θ = 0.5, q = 0.9. Larger sample sizes
improve the estimates but even n = 1000 still gives a standard deviation of 0.160 for
the estimator (0.779) of q.

Results for the q-cluster distribution indicate that, as in the case of the Euler cluster
distribution, the θ estimator is reasonable but the q estimator poor. The estimator of
a also seems to have an unsatisfactorily high standard deviation.
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