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Preface

The XV-th International Congress on Mathematical Physics took place in Rio de
Janeiro, on August 5–11, 2006. I believe it was a very successful and enjoyable
meeting. It is very fortunate for our community that Latin America, and especially
Brazil, in decades has become the place where all fields of intellectual activity
which are traditionally regarded as part of Mathematical Physics are developing
with steady pace and remarkable quality. Another important aspect of this develop-
ment is that besides areas which already have worldwide recognition and long stand-
ing tradition in Brazil such as Dynamical Systems, Statistical Mechanics, Probabil-
ity Theory, etc., there is intensive growth in other directions such as String Theory
and Algebraic Geometry. Brazil’s major universities and research institutes such as
IMPA and CBPF are successfully bringing up a new generation of researchers in our
field. Thus it was especially pleasant to see that among more than 500 participants
of the Congress, the majority was constituted by young researchers and graduate
students.

Given the enormous range of subjects covered during the Congress, and the di-
versity of scientific contributions, it would be pointless to summarize the contents
here—the quality is reflected in these pages.

Traditionally, besides its very intense scientific program, the Congress was the
occasion for the award of the Henri Poincaré Prizes of the IAMP, sponsored by
the Daniel Iagolnitzer Foundation. The Laureates for the year 2006 were Ludwig
Faddeev, David Ruelle and Edward Witten.

As with any other period between successive IAMP Congresses, this one was
witnessing scientific excitement and important developments in many areas. Perel-
man’s proof of the Poincaré conjecture and progress in geometrization program
were the central topic of many discussions, seminars, talks and meetings. I also
would like to mention the spectacular developments in the area of Random Matri-
ces and the progress made by F. Guerra and M. Tallagrand in spin-glasses. Perhaps
it would not be an exaggeration to say that the development of Stochastic Schramm-
Loewner Evolution and understanding of two-dimensional critical systems and its
connections with Conformal Field Theory continue to be one of the most fascinating
chapters of contemporary Probability Theory and Statistical Mechanics. A few days
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vi Preface

after the Congress in Rio, Wendelin Werner, the plenary speaker of the XVth ICMP,
was awarded the Fields medal for his contribution to this field. And in the spring
of 2007 Srinivasa Raghu Varadhan, the chair of the International Scientific Com-
mittee of the XV ICMP, was awarded the Abel Prize. I believe this speaks not only
about the recognition of the increasing role of Probability Theory and appreciation
of its mathematical depth, but also about importance of all our community, since
research performed by W. Werner and S.R. Varadhan, and the origins of questions
they answer, are deeply rooted in the fields of Mathematical Physics.

However it was also the time when with great sadness we learned in September
2008 about the untimely death of Oded Schramm, the inventor of SLE and the 2003
Poincaré Prize recipient.

The preparation of the Congress as usual has taken a huge amount of work. On
the scientific side I must thank all the members of the International Scientific Com-
mittee. I would like also to express my deep gratitude and affection to David Bry-
dges, the President of International Association of Mathematical Physics during the
period 2003–2005, who was the visionary, driving force and first aid help at all oc-
casions. Among the local organizers I have to single out first of all Prof. J.F. Perez
and Profs. C. Camacho, J. Palis and M. Viana who were pivotal for the success of
the meeting. And last but no least, all my thanks and appreciation to the whole team
of logistic and administrative support of DAC, masterfully conducted by Mme. S.
Lima.

The Congress could not have happened without the generous support of numer-
ous sponsors and efforts of many individuals, who are listed on the homepage of the
congress (http://www.iamp.org/). I’m most grateful to them all. The reader also will
find there the list of participants of the meeting.

Finally a few words on the organization of the book. We were not seeking to
produce a standard “Proceedings” book. To document the content of the plenary
talks and invited talks in all specialized sessions, in the Appendix to the book we
include the abstracts of the meeting as they stood in August 2006, so that the in-
terested reader can trace back the contents of all talks. As for the main part of the
book, we invited all plenary speakers and invited speakers of specialized sessions
to contribute with articles that they find appropriate for this volume, reflecting the
current state of the art in Mathematical Physics, and which are written according
to their own vision of the development of their fields. Thus, as a result, the reader
will find here the original research articles, extensive reviews, as well as extended
versions of talks.

Vladas Sidoravičius

http://www.iamp.org/


Foreword

Mathematical Physics has on occasion weathered the label of being a curious sub-
set of Theoretical Physics confined to “esoteric” questions such as exchanges of
limits, measurability of sets, existence of solutions to equations, in other words, an
obsession with issues that deserve little or no mention at all. In my view this is a
destructive attitude and it has to be made clear that the distinction should be, and is,
between interesting and not interesting or physically relevant and irrelevant and that
there is a virtue in the clear formulation of problems and a clear distinction between
assumptions and results.

It is a fact that these goals have not generated any damage to research, as the main
and best known contributions to Physical theories prove (Ptolemaic and Copernican
astronomy, Keplerian and Newtonian mechanics, ergodic hypothesis, electromag-
netism, relativity, quantum mechanics, condensed matter, quantum field theory, sta-
bility of matter, symmetries in atomic and particle Physics, . . . ): the key works, even
when not formulated in mathematical terms, have always kept an extremely lucid
distinction between assumptions and consequences and have been influential and
recognized by all.

Nevertheless the above mentioned attitudes have led to problems that inevitably
generate difficulties in jobs hiring, obtaining grants, priority recognition, impact
factor comparison, and more: so that IAMP has the scope of helping the rather large
community that looks at problems and subjects their analysis to rigorous criticism.
In the end this amounts to a distinction between hypotheses, deductions and results
when reading the “book of Nature”, which is recognized by all of us, with Galilei
and his predecessors and followers, to be written in mathematical characters.

The ICMP’s meetings have been designed to inform all of the IAMP members of
the status of our work, to provide to the entire Physics community evidence of the
relevance of the results and to show the close interest that we pay to the evolution
of Theoretical Physics.

The Rio meeting is the most recent example of the width of the interests and
the open mindedness of its members. A glimpse at the conference titles shows that
the most varied subjects have been presented in the plenary talks and in the par-
allel sessions. From geometry, to string theory, to general relativity, to statistical

vii
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mechanics in equilibrium (classical and quantum) and nonequilibrium fluctuations,
to dynamical systems, to symmetries, to PDE’s . . . .

The three Henri Poincaré prizes, that the Iagolnitzer Foundation sponsors and
the IAMP awards, recognize exceptional contributions and honor three colleagues,
for their great contributions to Physics and for providing examples that we will try
to imitate on how to look at problems that we cherish.

We think that the wide variety of session and plenary talks will provide, through
the publication of the present proceedings, inspiration for new challenging prob-
lems, and confidence, to the many young colleagues who want to continue the ex-
citing experience of those of us who have followed the developments from the early
‘960’s and can feel the immense difference between what was known at the time
and today.

Finally IAMP thanks the local organizers of the meeting in Rio for the effort they
made to make easy and agreeable participation by our colleagues, particularly those
who undertook a long journey to attend our meeting.

It has been decided that ICMP09 will be held in Prague and we are sure that it
will continue the tradition of excellence that this and earlier ICMP meetings have
bequeathed to us.

Giovanni Gallavotti
IAMP President 2006–2008
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The Henri Poincaré Prize

The Henri Poincaré Prize is awarded by the International association of Mathemat-
ical Physics (IAMP) and is sponsored by Fundation Culturelle Daniel Iagolnitzer
(Paris). The 2006 Laureates were Ludwig Faddeev (Russia), David Ruelle (France),
Edward Witten (USA).

Ludwig Faddeev

For his many deep and important results to the theory of quantum fields, quanti-
zation of non-commutative gauge theories, scattering in quantum mechanics and
quantum field theory, and the theory of integrable systems.

Laudatio by Professor F. Smirnov

It would be not enough to say that Ludwig Dmitrievich Faddeev works in the field
of mathematical physics. Rather he is one of the creators of modern mathematical
physics. In the late fifties when he started his scientific career, different branches
of what we now call mathematical physics were essentially unrelated. It should be
taken into account, for example, that at that time Quantum Mechanics was younger
than String Theory is today. For me the main feature of Faddeev as a scientist is his
belief that mathematical beauty is the most important guiding principle in physics.

xiii



xiv The Henri Poincaré Prize

For that reason I consider him as a great idealist. Certainly Faddeev had predecessors
who shared the same point of view. He himself cites in that respect P.A.M. Dirac,
H. Weyl and V.A. Fock. Our generation takes many things for granted. We know
that Quantum Mechanics is a deformation of Classical Mechanics, we understand
the importance of Hamiltonian Methods in that respect, we know that the functional
integral is not just a fancy idea of Feynman but an important tool in Quantum Field
Theory, that geometry plays a role in Quantum Field Theory along with the theory
of Lie groups, that classical nonlinear equations admit non-trivial solutions which
give rise to new particles after quantization, and hence it is not necessary for every
particle to correspond to its own field. All that was taught to us, but for Faddeev this
was a result of personal development. He had to understand all these matters himself
and often in a hostile environment. That is why he understands them deeper than we
do. Let me describe the main works of Faddeev. He started with the study of Quan-
tum Mechanics in the framework of functional analysis as was usual at the time.
The PhD thesis of Faddeev is devoted to the inverse problem for one-dimensional
Schrödinger operator. Profound knowledge of the subject turned out, much later, to
be of central importance in relation to the Korteweg-deVries equation. I think the
main discovery of his early work was the recognition of the importance of functional
determinants. I remember, at a later point, when I was surprised that the formulae for
the form factors in integrable models are given by determinants, Faddeev told me:
“Solution to any good problem is given by a determinant.” Certainly, this was a joke,
but it is true that we find several remarkable determinants in Faddeev’s works. Then
comes the three body problem with the famous Faddeev’s equations. This work
combines an elegant original idea with very sophisticated techniques. Faddeev him-
self considered this work as a mathematical solution of a difficult physical problem.
Actually its importance is much wider: all computer calculations needed for appli-
cations today are done using Faddeev’s equations. The sixties was a period of very
diverse and successful scientific activity for Faddeev. It is difficult to establish an
exact chronology because at that time he was working very actively in many differ-
ent fields. For an ordinary person it would be impossible to deal with such different
matters simultaneously. I have already said that I consider mathematical beauty as
the main source of Faddeev’s inspiration in physics, but the opposite is also true:
believing that physics is described by beautiful mathematics he naturally comes to
the conclusion that a good problem in physics must provide new insight into pure
mathematics. A realization of this idea is presented by his remarkable derivation of
the Selberg trace formula by the methods of scattering theory. Determinants once
again! The theory of automorphic functions is so far from his original area that once
again he had to understand the subject by himself, and it is impressive how deep
and clear this understanding is. Yet another work from the same period concerns
the three-dimensional inverse problem. In all the years that followed very little was
added to Faddeev’s work on the subject, and it remains a rare example of elegance
in mathematical physics. Now comes the jewel of the scientific career of Faddeev:
quantization of the Yang-Mills theory. I remember long ago C. Itzykson told me:
“We were doing the usual perturbation theory, Faddeev taught us the functional in-
tegral.” I think this is the main discovery of Faddeev in Quantum Field Theory: the
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functional integral and the measure of integration in it should be taken seriously.
This discovery led him (with V.N. Popov) to the discovery of one more determinant
which will surely stay in Quantum Field Theory forever. In the seventies Faddeev
was one of the first to recognize the importance of the newly discovered solutions of
non-linear PDE—solitons. He was not interested in applications to hydrodynamics,
rather to Quantum Field Theory, being convinced that solitons would allow for the
reduction of the number of fields in Lagrangians. The program which he developed
with his colleagues and students was logically clear: to develop the Hamiltonian ap-
proach as the first step towards quantization, to find integrable relativistic models,
to perform semi-classical quantization, to quantize exactly. All this was done during
the seventies-eighties. As a result, unexpected connections have been found with
works by H. Bethe, C.N. Yang, R. Baxter, and an entire new field of mathematics,
the theory of Quantum Groups, appeared. In the early seventies Faddeev started to
look for multidimensional solitons. He returned to this problem and to Yang-Mills
theory in the nineties, and has been working in this direction up till the present time.
I wish him many new achievements and I hope everybody will join me in echoing
this sentiment. Congratulations Ludwig Dmitrievich!
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David Ruelle

For his outstanding contributions to quantum field theory, both classical and quan-
tum statistical mechanics, and dynamical systems theory.

Laudatio by Professor G. Gallavotti

Professor David Ruelle’s scientific carrier is remarkable for his various contri-
butions and for the conceptual continuity of the development through them. He has
been among the first to realize the relevance of a rigorous derivation of the properties
of equilibrium Statistical Mechanics as an essential step towards understanding the
theory of phase transitions. His work has been an important guide to the scientists
who in the sixties were attempting accurate measurements of thermodynamic quan-
tities, like critical exponents, in various statistical mechanics models using the newly
available electronic computational tools in conjunction with the use of rigorous re-
sults for assessing the correctness and reliability of the computations. The treatise
on Statistical Mechanics, 1969, has become a classic book and it is still the basis
of the formation of the new generations of scientists interested in the basic aspects
of the theory. He has written several other monographs which are widely known
and used. His critical work on the structure of Equilibrium Statistical Mechanics led
him to undertake in 1969 the analysis of the theory of turbulence. The first publi-
cation on the subject was the epoch making paper “On the nature of turbulence” in
collaboration with Takens. The paper criticized the theory of Landau, based on the
increasing complexity of quasi periodicity arising from successive bifurcations in
the Navier Stokes equations. The main idea that only “generic” behavior should be
relevant was a strong innovation at the time: this is amply proved by the hundreds
of papers that followed on the subject, theoretical, numerical and experimental. The
works making use of Ruelle’s ideas stem also, and perhaps mainly, from the inno-
vative papers Ruelle wrote (and continues to write) after the mentioned one. There
he developed and strongly stressed the role that dynamical systems ideas would
be relevant and important in understanding chaotic phenomena. The impact on ex-
perimental works has been profound: one can say that after the first checks were
performed, some by notoriously skeptical experimentalists, and produced the ex-
pected results we rapidly achieved, by the end of the seventies, a stage in which the
“onset of turbulence” was so well understood that experiments dedicated to check
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the so called “Ruelle-Takens” ideas on the onset of turbulence were no longer worth
being performed as one would know what the result would be. The very fact that a
study of the onset of turbulence was physically interesting was new at the time (the
sixties). The ideas had been independently worked out by Lorenz, earlier (in a 1963
paper): this became clear almost immediately. However I think that Ruelle’s view,
besides reviving the interest in Lorenz’ work, which had not been appreciated as it
should have, were noticed by physicists and mathematicians alike, and perhaps had
more impact, because they were more general and ambitious in scope and aimed
at understanding from a fundamental viewpoint a fundamental problem. In 1973 he
proposed that the probability distributions that describe turbulence be what is now
called the “Sinai-Ruelle-Bowen” distribution. This was developed in a sequence of
many technical papers and written explicitly only later in 1978. In my view this is
the most original contribution of Ruelle: it has not been well understood for years
although it has been quoted in impressively many works on chaos. It had impact
mostly on numerical works, but it proposes a fundamental solution to one of the
most outstanding theoretical questions: what is the analog of the Boltzmann-Gibbs
distribution in non equilibrium statistical mechanics? His answer is a general one
valid for chaotic systems, be them gases of atoms described by Newton’s laws or
fluids described by Navier Stokes equations (or other fluid dynamics equations). To-
day the idea is still a continuous source of works both theoretical and experimental.
Since the beginning of his work he has studied also problems concerning other fields
like operator theory and operator algebras obtaining results remarkable for original-
ity and depth: I mention here only his results on the LeeYang theorem on the location
of the zeros of polynomials (a subject to which he continued to add new results and
applications) and the Haag-Ruelle theory of scattering in relativistic quantum fields,
very widely studied and applied, which is still today virtually the only foundation
for relativistic scattering theory, employed in mathematical Physics, high energy
phenomenology and theoretical Physics. In the last few years he has also provided
important impulse to the development of non-equilibrium statistical mechanics: his
work continues in this direction at the highest level. He has developed foundational
papers for the theory of non-equilibrium Thermodynamics particularly with respect
to the concept of entropy. The work of Ruelle is of mathematical nature: but it is an
example of how important a conceptually rigorous and uncompromising approach
can be fruitful and lead to progress in very applied fields like experimental fluid me-
chanics or numerical molecular dynamics simulations. His work is in the tradition
of the 1800’s fundamental investigations in Physics. His work, books and papers,
is always very careful, clear and polished: every word, however, is important and
requires attention. The awarding of the prize recognizes the cultural influence that
he has exercised in the last thirty years or so: and we are all here united in this
recognition.
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Edward Witten

For his work on string theory which laid down the foundation of this subject. His
work has been most influential and inspiring also in mathematical subdisciplines
like geometry and topology.

Laudatio by Professor A. Jaffe

Edward Witten is in the midst of an enormously productive career as a mathe-
matical physicist. Born in 1951 in Baltimore, he began his undergraduate studies by
majoring in history. Edward certainly had the opportunity for prior exposure to so-
phisticated physics as his father Louis is a noted expert on relativity and gravitation.
After his undergraduate studies, Edward returned to physics, working with David
Gross at Princeton, and receiving his doctorate in 1976.

Edward’s early work left an immediate impression on experts. He discovered a
new class of instanton solutions to the classical Yang-Mills equations, very much a
central subject at the time. He pioneered work on field theories with N-components
and the associated “large-N limit” as N tends to infinity. Three years later as a Junior
Fellow at Harvard he had already established a solid international reputation both in
research and as a spell-binding lecturer. That year several major physics departments
took the unusual step, at the time an extraordinary one, to attempt to recruit a young
post-doctoral fellow to join their faculty as a full professor! At that point Edward
returned to Princeton with Chiara Nappi, my post-doctoral fellow and Edward’s new
wife. Edward has been in great demand ever since.

Edward already became well-known in his early work for having keen mathe-
matical insights. He re-interpreted Morse theory in an original way and related the
Atiyah-Singer index theorem to the concept of super-symmetry in physics. These
ideas revolved about the classical formula expressing the Laplace-Beltrami opera-
tor in terms of the de Rham exterior derivative, � = (d + d∗)2. This insight was
interesting in its own right. But it inspired his applying the same ideas to study
the index of infinite-dimensional Dirac operators D and the self-adjoint operator
Q = D +D∗, known in physics as super-charges, related to the energy by the rep-
resentation H = Q2 analogous to the formula for �. This led to the name “Witten
index” for the index of D, a terminology that many physicists still use.

In 1981 Witten also discovered an elegant approach to the positive energy theo-
rem in classical relativity, proved in 1979 by Schoen and Yau. What developed as
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Witten’s hallmark is the insight to relate a set of ideas in one field to an apparently
unrelated set of ideas in a different field. In the case of the positive energy theo-
rem, Witten again took inspiration from super-symmetry to relate the geometry of
space-time to the theory of spin structures and to an identity due to Lichnerowicz.
The paper by Witten framed the new proof in a conceptual structure that related it
to old ideas and made the result immediately accessible to a wide variety of physi-
cists and mathematicians. In 1986 Witten’s had a spectacular insight by giving a
quantum-field theory interpretation to Vaughan Jones’ recently-discovered knot in-
variant. Witten showed that the Jones polynomial for a knot can be interpreted as the
expectation of the parallel transport operator around the knot in a theory of quantum
fields with a Chern-Simons action. This work set the stage for many other geometric
invariants, including the Donaldson invariants, being regarded as partition functions
or expectations in quantum field theory. In most of these cases, the mathematical
foundations of the functional integral representations can still not be justified, but
the insights and understanding of the picture will motivate work for many years in
the future.

With the resurgence of “super-string theory” in 1984, Witten quickly became
one of its leading exponents and one of its most original contributors. His 1987
monograph with Green and Schwarz became the standard reference in that subject.
Later Witten unified the approach to string theory by showing that many alternative
string theories could be regarded as different aspects of one grand theory.

Witten also pioneered the interpretation of symmetries related to the electromag-
netic duality of Maxwell’s equations, and its generalization in field theory, gauge
theory, and string theory. He pioneered the discovery of SL(2,Z) symmetry in
physics, and brought concepts from number theory, as well as geometry, algebra,
and representation theory centrally into physics.

In understanding Donaldson theory in 1995 Seiberg and Witten formulated the
equations named after them which have provided so much insight into modern
geometry. With the advent of this point of view and fueled by its rapid dissemination
over the Internet, many geometers saw progress in their field proceed so rapidly that
they could not hope to keep up.

Not only is Witten’s own work in the field of super-symmetry, string theory,
M-theory, dualities and other symmetries of physics legend, but he has trained nu-
merous students and postdoctoral coworkers who have come to play leading roles
in string theory and other aspects of theoretical physics.

I could continue on and on about other insights and advances made or suggested
by Edward Witten. But perhaps it is just as effective to mention that for all his men-
tioned and unmentioned work, Witten has already received many national and inter-
national honors and awards. These include the Alan Waterman award in 1986, the
Fields Medal in 1990, the CMI Research Award in 2001, the U.S. National Medal of
Science in 2002, and an honorary degree from Harvard University in 2005. Witten
is a member of many honorary organizations, including the American Philosophical
Society and the Royal Society. While Witten may not need any additional recog-
nition, it is an especially great personal pleasure and honor, as one of the original
founders of IAMP, to present Edward Witten to receive the Poincaré prize in 2006.
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Entropy of Eigenfunctions

Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

Abstract We study the high-energy limit for eigenfunctions of the Laplacian, on a
compact negatively curved manifold. We review the recent result of Anantharaman–
Nonnenmacher (Ann. Inst. Fourier 57(7):2465–2523, 2007) giving a lower bound on
the Kolmogorov–Sinai entropy of semiclassical measures. The bound proved here
improves that result in the case of variable negative curvature.

1 Motivations

The theory of quantum chaos tries to understand how the chaotic behaviour of a clas-
sical Hamiltonian system is reflected in its quantum counterpart. For instance, let M
be a compact Riemannian C∞ manifold, with negative sectional curvatures. The
geodesic flow has the Anosov property, which is considered as the ideal chaotic be-
haviour in the theory of dynamical systems. The corresponding quantum dynamics
is the unitary flow generated by the Laplace-Beltrami operator on L2(M). One ex-
pects that the chaotic properties of the geodesic flow influence the spectral theory of
the Laplacian. The Random Matrix conjecture [7] asserts that the large eigenvalues
should, after proper unfolding, statistically resemble those of a large random ma-
trix, at least for a generic Anosov metric. The Quantum Unique Ergodicity conjec-
ture [26] (see also [6, 30]) describes the corresponding eigenfunctions ψk: it claims
that the probability measure |ψk(x)|2dx should approach (in the weak topology) the
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2 Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher

Riemannian volume, when the eigenvalue tends to infinity. In fact a stronger prop-
erty should hold for the Wigner transform Wψ , a function on the cotangent bundle
T ∗M , (the classical phase space) which simultaneously describes the localization of
the wave function ψ in position and momentum.

We will adopt a semiclassical point of view, that is consider the eigenstates of
eigenvalue unity of the semiclassical Laplacian −�

2�, thereby replacing the high-
energy limit by the semiclassical limit � → 0. We denote by (ψk)k∈N an orthonor-
mal basis of L2(M) made of eigenfunctions of the Laplacian, and by (− 1

�
2
k

)k∈N the

corresponding eigenvalues:

−�
2
k�ψk = ψk, with �k+1 ≤ �k. (1)

We are interested in the high-energy eigenfunctions of−�, in other words the semi-
classical limit �k → 0.

The Wigner distribution associated to an eigenfunction ψk is defined by

Wk(a) = 〈Op�k
(a)ψk, ψk〉L2(M), a ∈ C∞

c (T ∗M).

Here Op�k
is a quantization procedure, set at the scale (wavelength) �k , which as-

sociates to any smooth phase space function a (with nice behaviour at infinity) a
bounded operator on L2(M). See for instance [13] or [14] for various quantizations
Op� on R

d . On a manifold, one can use local coordinates to define Op in a finite
system of charts, then glue the objects defined locally thanks to a smooth partition of
unity [11]. For standard quantizations Op�k

, the Wigner distribution is of the form
Wk(x, ξ) dx dξ , where Wk(x, ξ) is a smooth function on T ∗M , called the Wigner
transform of ψ . If a is a function on the manifold M , Op�(a) can be taken as the
multiplication by a, and thus we have Wk(a) =

∫
M

a(x)|ψk(x)|2dx: the Wigner
transform is thus a microlocal lift of the density |ψk(x)|2. Although the definition of
Wk depends on a certain number of choices, like the choice of local coordinates, or
of the quantization procedure (Weyl, anti-Wick, “right” or “left” quantization. . . ),
its asymptotic behaviour when �k → 0 does not. Accordingly, we call semiclassical
measures the limit points of the sequence (Wk)k∈N, in the distribution topology.

In the semiclassical limit, “quantum mechanics converges to classical mechan-
ics”. We will denote | · |x the norm on T ∗

x M given by the metric. The geodesic flow
(gt )t∈R is the Hamiltonian flow on T ∗M generated by the Hamiltonian H(x, ξ) =
|ξ |2x

2 . A quantization of this Hamiltonian is given by the rescaled Laplacian −�
2�
2 ,

which generates the unitary flow (Ut
�
) = (exp(it��2 )) acting on L2(M). The semi-

classical correspondence of the flows (Ut
�
) and (gt ) is expressed through the Egorov

Theorem:

Theorem 1. Let a ∈ C∞
c (T ∗M). Then, for any given t in R,

‖U−t
�

Op�(a)U
t
�
− Op�(a ◦ gt )‖L2(M) = O(�), � → 0. (2)

The constant implied in the remainder grows (often exponentially) with t , which
represents a notorious problem when one wants to study the large time behaviour of
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(Ut
�
). Typically, the quantum-classical correspondence will break down for times t

of the order of the Ehrenfest time (34).
Using (2) and other standard semiclassical arguments, one shows the following:

Proposition 2. Any semiclassical measure is a probability measure carried on the
energy layer E = H−1( 1

2 ) (which coincides with the unit cotangent bundle S∗M).
This measure is invariant under the geodesic flow.

Let us call M the set of gt -invariant probability measures on E . This set is convex
and compact for the weak topology. If the geodesic flow has the Anosov property—
for instance if M has negative sectional curvature—that set is very large. The geo-
desic flow has countably many periodic orbits, each of them carrying an invariant
probability measure. There are many other invariant measures, like the equilibrium
states obtained by variational principles [19], among them the Liouville measure
μLiouv, and the measure of maximal entropy. Note that, for all these examples of
measures, the geodesic flow acts ergodically, meaning that these examples are ex-
tremal points in M. Our aim is to determine, at least partially, the set Msc formed by
all possible semiclassical measures. By its definition, Msc is a closed subset of M,
in the weak topology.

For manifolds such that the geodesic flow is ergodic with respect to the Liouville
measure, it has been known for some time that almost all eigenfunctions become
equidistributed over E , in the semiclassical limit. This property is dubbed as Quan-
tum Ergodicity:

Theorem 3 ([27, 32, 11]). Let M be a compact Riemannian manifold, assume that
the action of the geodesic flow on E = S∗M is ergodic with respect to the Liouville
measure. Let (ψk)k∈N be an orthonormal basis of L2(M) consisting of eigenfunc-
tions of the Laplacian (1), and let (Wk) be the associated Wigner distributions on
T ∗M .

Then, there exists a subset S ⊂ N of density 1, such that

Wk → μLiouv, k →∞, k ∈ S . (3)

The question of existence of “exceptional” subsequences of eigenstates with a
different behaviour is still open. On a negatively curved manifold, the geodesic
flow satisfies the ergodicity assumption, and in fact much stronger properties: mix-
ing, K-property, etc. For such manifolds, it has been postulated in the Quantum
Unique Ergodicity conjecture [26] that the full sequence of eigenstates becomes
semiclassically equidistributed over E : one can take S = N in the limit (3). In
other words, this conjecture states that there exists a unique semiclassical measure,
and Msc = {μLiouv}.

So far the most precise results on this question were obtained for manifolds M

with constant negative curvature and arithmetic properties: see Rudnick–Sarnak
[26], Wolpert [31]. In that very particular situation, there exists a countable com-
mutative family of self-adjoint operators commuting with the Laplacian: the Hecke
operators. One may thus decide to restrict the attention to common bases of eigen-
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functions, often called “arithmetic” eigenstates, or Hecke eigenstates. A few years
ago, Lindenstrauss [24] proved that any sequence of arithmetic eigenstates become
asymptotically equidistributed. If there is some degeneracy in the spectrum of the
Laplacian, note that it could be possible that the Quantum Unique Ergodicity con-
jectured by Rudnick and Sarnak holds for one orthonormal basis but not for another.
On such arithmetic manifolds, it is believed that the spectrum of the Laplacian has
bounded multiplicity: if this is really the case, then the semiclassical equidistribution
easily extends to any sequence of eigenstates.

Nevertheless, one may be less optimistic when extending the Quantum Unique
Ergodicity conjecture to more general systems. One of the simplest example of a
symplectic Anosov dynamical system is given by linear hyperbolic automorphisms
of the 2-torus, e.g. Arnold’s “cat map”

(
2 1
1 1

)
. This system can be quantized into a

sequence of N × N unitary matrices—the propagators, where N ∼ �
−1 [18]. The

eigenstates of these matrices satisfy a Quantum Ergodicity theorem similar with
Theorem 3, meaning that almost all eigenstates become equidistributed on the torus
in the semiclassical limit [9]. Besides, one can choose orthonormal eigenbases of the
propagators, such that the whole sequence of eigenstates is semiclassically equidis-
tributed [22]. Still, because the spectra of the propagators are highly degenerate, one
can also construct sequences of eigenstates with a different limit measure [16], for
instance, a semiclassical measure consisting in two ergodic components: half of it
is the Liouville measure, while the other half is a Dirac peak on a single (unsta-
ble) periodic orbit. It was also shown that this half-localization is maximal for this
model [15]: a semiclassical measure cannot have more than half its mass carried by a
countable union of periodic orbits. The same type of half-localized eigenstates were
constructed by two of the authors for another solvable model, namely the “Walsh
quantization” of the baker’s map on the torus [3]; for that model, there exist ergodic
semiclassical measures of purely fractal type (that is, without any Liouville compo-
nent). Another type of semiclassical measure was recently obtained by Kelmer for
quantized hyperbolic automorphisms on higher-dimensional tori [20]: it consists in
the Lebesgue measure on some invariant co-isotropic subspace of the torus.

For these Anosov models on tori, the construction of exceptional eigenstates
strongly uses nongeneric algebraic properties of the classical and quantized sys-
tems, and cannot be generalized to nonlinear systems.

2 Main Result

In order to understand the set Msc, we will attempt to compute the Kolmogorov–
Sinai entropies of semiclassical measures. We work on a compact Riemannian man-
ifold M of arbitrary dimension, and assume that the geodesic flow has the Anosov
property. Actually, our method can without doubt be adapted to more general
Anosov Hamiltonian systems.
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The Kolmogorov–Sinai entropy, also called metric entropy, of a (gt )-invariant
probability measure μ is a nonnegative number hKS(μ) that describes, in some
sense, the complexity of a μ-typical orbit of the flow. The precise definition will be
given later, but for the moment let us just give a few facts. A measure carried on a
closed geodesic has vanishing entropy. In constant curvature, the entropy is maximal
for the Liouville measure. More generally, for any Anosov flow, the energy layer E
is foliated into unstable manifolds of the flow. An upper bound on the entropy of an
invariant probability measure is then provided by the Ruelle inequality:

hKS(μ) ≤
∣
∣
∣
∣

∫

E
log Ju(ρ)dμ(ρ)

∣
∣
∣
∣. (4)

In this inequality, Ju(ρ) is the unstable Jacobian of the flow at the point ρ ∈ E ,
defined as the Jacobian of the map g−1 restricted to the unstable manifold at the
point g1ρ (note that the average of log Ju over any invariant measure is negative).
The equality holds in (4) if and only if μ is the Liouville measure on E [23]. If M
has dimension d and has constant sectional curvature −1, the above inequality just
reads hKS(μ) ≤ d − 1.

Finally, an important property of the metric entropy is that it is an affine func-
tional on M. According to the Birkhoff ergodic theorem, for any μ ∈ M and for
μ-almost every ρ ∈ E , the weak limit

μρ = lim|t |→∞
1

t

∫ t

0
δgsρds

exists, and is an ergodic probability measure. We can then write

μ =
∫

E
μρdμ(ρ),

which realizes the ergodic decomposition of μ. The affineness of the KS entropy
means that

hKS(μ) =
∫

E
hKS(μ

ρ)dμ(ρ).

An obvious consequence is the fact that the range of hKS on M is an interval
[0, hmax].

In the whole article, we consider a certain subsequence of eigenstates (ψkj )j∈N of
the Laplacian, such that the corresponding sequence of Wigner distributions (Wkj )

converges to a semiclassical measure μ. In the following, the subsequence (ψkj )j∈N

will simply be denoted by (ψ�)�→0, using the slightly abusive notation ψ� = ψ�kj

for the eigenstate ψkj . Each eigenstate ψ� thus satisfies

(−�
2 �−1

)
ψ� = 0. (5)
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In [2] the first author proved that the entropy of any μ ∈ Msc is strictly positive.
In [4], more explicit lower bounds were obtained. The aim of this paper is to improve
the lower bounds of [4] into the following

Theorem 4. Let μ be a semiclassical measure associated to the eigenfunctions of
the Laplacian on M . Then its metric entropy satisfies

hKS(μ) ≥
∣
∣
∣
∣

∫

E
log Ju(ρ)dμ(ρ)

∣
∣
∣
∣−

(d − 1)

2
λmax, (6)

where d = dimM and λmax = limt→±∞ 1
t

log supρ∈E |dgtρ | is the maximal expan-
sion rate of the geodesic flow on E .

In particular, if M has constant sectional curvature −1, we have

hKS(μ) ≥ d − 1

2
. (7)

In dimension d , we always have
∣
∣
∣
∣

∫

E
log Ju(ρ)dμ(ρ)

∣
∣
∣
∣ ≤ (d − 1)λmax,

so the above bound is an improvement over the one obtained in [4],

hKS(μ) ≥ 3

2

∣
∣
∣
∣

∫

E
log Ju(ρ)dμ(ρ)

∣
∣
∣
∣− (d − 1)λmax. (8)

In the case of constant or little-varying curvature, the bound (7) is much sharper
than the one proved in [2]. On the other hand, if the curvature varies a lot (still being
negative everywhere), the right hand side of (6) may actually be negative, in which
case the bound is trivial. We believe this “problem” to be a technical shortcoming
of our method, and actually conjecture the following bound:

hKS(μ) ≥ 1

2

∣
∣
∣
∣

∫

E
log Ju(ρ)dμ(ρ)

∣
∣
∣
∣. (9)

Extended to the case of the quantized torus automorphisms or the Walsh-quantized
baker’s map, this bound is saturated for the half-localized semiclassical measures
constructed in [16], as well as those obtained in [20, 3]. This bound allows certain
ergodic components to be carried by closed geodesics, as long as other components
have positive entropy. This may be compared with the following result obtained by
Bourgain and Lindenstrauss in the case of arithmetic surfaces:

Theorem 5 ([8]). Let M be a congruence arithmetic surface, and (ψj ) an ortho-
normal basis of eigenfunctions for the Laplacian and the Hecke operators.

Let μ be a corresponding semiclassical measure, with ergodic decompo-
sition μ = ∫

E μρdμ(ρ). Then, for μ-almost all ergodic components we have
hKS(μ

ρ) ≥ 1
9 .
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As discussed above, the Liouville measure is the only one satisfying hKS(μ) =
| ∫E log Ju(ρ) dμ(ρ)| [23], so the Quantum Unique Ergodicity would be proven
in one could replace 1/2 by 1 on the right hand side of (9). However, we believe
that (9) is the optimal result that can be obtained without using much more precise
information, like for instance a sharp control on the spectral degeneracies, or fine
information on the lengths of closed geodesics.

Indeed, in the above mentioned examples of Anosov systems where the Quan-
tum Unique Ergodicity conjecture is wrong and the bound (9) sharp, the quantum
spectrum has very high degeneracies, which could be responsible for the possibility
to construct exceptional eigenstates. Such high degeneracies are not expected in the
case of the Laplacian on a negatively curved manifold. For the moment, however,
there is no clear understanding of the precise relation between spectral degeneracies
and failure of Quantum Unique Ergodicity.

3 Outline of the Proof

We start by recalling the definition and some properties of the metric entropy asso-
ciated with a probability measure on T ∗M , invariant through the geodesic flow. In
Sect. 3.2 we extend the notion of entropy to the quantum framework. Our approach
is semiclassical, so we want the classical and quantum entropies to be connected
in some way when � → 0. The weights appearing in our quantum entropy are es-
timated in Theorem 6, which was proven and used in [2]. In Sect. 3.2.1 we also
compare our quantum entropy with several “quantum dynamical entropies” previ-
ously defined in the literature. The proof of Theorem 4 actually starts in Sect. 3.3,
where we present the algebraic tool allowing us to take advantage of our estimates
(18) (or their optimized version given in Theorem 11), namely an “entropic uncer-
tainty principle” specific of the quantum framework. From Sect. 3.4 on, we apply
this “principle” to the quantum entropies appearing in our problem, and proceed
to prove Theorem 4. Although the method is basically the same as in [4], several
small modifications allow to finally obtain the improved lower bound (6), and also
simplify some intermediate proofs, as explained in Remark 12.

3.1 Definition of the Metric Entropy

In this paper we will meet several types of entropies, all of which are defined using
the function η(s) = −s log s, for s ∈ [0, 1]. We start with the Kolmogorov–Sinai
entropy of the geodesic flow with respect to an invariant probability measure.

Let μ be a probability measure on the cotangent bundle T ∗M . Let P = (E1, . . . ,

EK) be a finite measurable partition of T ∗M: T ∗M =⊔K
i=1 Ei . We will denote the

set of indices {1, . . . , K} = [[1,K]]. The Shannon entropy of μ with respect to the
partition P is defined as
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hP(μ) = −
K∑

k=1

μ(Ek) logμ(Ek) =
K∑

k=1

η
(
μ(Ek)

)
.

For any integer n ≥ 1, we denote by P∨n the partition formed by the sets

Eα = Eα0 ∩ g−1Eα1 ∩ · · · ∩ g−n+1Eαn−1, (10)

where α = (α0, . . . , αn−1) can be any sequence in [[1,K]]n (such a sequence is said
to be of length |α| = n). The partition P∨n is called the n-th refinement of the
initial partition P = P∨1. The entropy of μ with respect to P∨n is denoted by

hn(μ,P) = hP∨n(μ) =
∑

α∈[[1,K]]n
η
(
μ(Eα)

)
. (11)

If μ is (gt )-invariant, it follows from the convexity of the logarithm that

∀n,m ≥ 1, hn+m(μ,P) ≤ hn(μ,P)+ hm(μ,P), (12)

in other words the sequence (hn(μ,P))n∈N is subadditive. The entropy of μ with
respect to the action of the geodesic flow and to the partition P is defined by

hKS(μ,P) = lim
n→+∞

hn(μ,P)

n
= inf

n∈N

hn(μ,P)

n
. (13)

Each weight μ(Eα) measures the μ-probability to visit successively Eα0, Eα1 , . . . ,

Eαn−1 at times 0, 1, . . . , n − 1 through the geodesic flow. Roughly speaking, the
entropy measures the exponential decay of these probabilities when n gets large. It
is easy to see that hKS(μ,P) ≥ β if there exists C such that μ(Eα) ≤ C e−βn, for
all n and all α ∈ [[1,K]]n.

Finally, the Kolmogorov–Sinai entropy of μ with respect to the action of the
geodesic flow is defined as

hKS(μ) = sup
P

hKS(μ,P), (14)

the supremum running over all finite measurable partitions P . The choice to con-
sider the time 1 of the geodesic flow in the definition (10) may seem arbitrary, but
the entropy has a natural scaling property: the entropy of μ with respect to the flow
(gat ) is |a|-times its entropy with respect to (gt ).

Assume μ is carried on the energy layer E . Due to the Anosov property of the
geodesic flow on E , it is known that the supremum (14) is reached as soon as the
diameter of the partition P ∩ E (that is, the maximum diameter of its elements
Ek ∩ E ) is small enough. Furthermore, let us assume (without loss of generality)
that the injectivity radius of M is larger than 1. Then, we may restrict our attention
to partitions P obtained by lifting on E a partition of the manifold M , that is take
M = ⊔K

k=1 Mk and then Ek = T ∗Mk . In fact, if the diameter of Mk in M is of
order ε, then the diameter of the partition P∨2 ∩ E in E is also of order ε. This
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special choice of our partition is not crucial, but it simplifies certain aspects of the
analysis.

The existence of the limit in (13), and the fact that it coincides with the infimum,
follow from a standard subadditivity argument. It has a crucial consequence: if (μi)

is a sequence of (gt )-invariant probability measures on T ∗M , weakly converging to
a probability μ, and if μ does not charge the boundary of the partition P , we have

hKS(μ,P) ≥ lim sup
i

hKS(μi,P).

In particular, assume that for i large enough, the following estimates hold:

∀n ≥ 1, ∀α ∈ [[1,K]]n, μi(Eα) ≤ Cie
−βn, (15)

with β independent of i. This implies for i large enough hKS(μi,P) ≥ β, and this
estimate goes to the limit to yield hKS(μ) ≥ β.

3.2 From Classical to Quantum Dynamical Entropy

Since our semiclassical measure μ is defined as a limit of Wigner distributions W�,
a naive idea would be to estimate from below the KS entropy of W� and then take
the limit � → 0. This idea cannot work directly, because the Wigner transforms W�

are neither positive, nor are they (gt )-invariant. Therefore, one cannot directly use
the (formal) integrals W�(Eα) =

∫
Eα

W�(x, ξ) dx dξ to compute the entropy of the
semiclassical measure.

Instead, the method initiated by the first author in [2] is based on the following
remarks. Each integral W�(Eα) can also be written as W�(1lEα ) =

∫
T ∗M W�1lEα ,

where 1lEα is the characteristic function on the set Eα , that is

1lEα = (1lEαn−1
◦ gn−1)× · · · × (1lEα1

◦ g)× 1lEα0
. (16)

Remember we took Ek = T ∗Mk , where the Mk form a partition of M .
From the definition of the Wigner distribution, this integral corresponds formally

to the overlap 〈ψ�,Op�(1lEα )ψ�〉. Yet, the characteristic functions 1lEα have sharp
discontinuities, so their quantizations cannot be incorporated in a nice pseudodiffer-
ential calculus. Besides, the set Eα is not compactly supported, and shrinks in the
unstable direction when n = |α| → +∞, so that the operator Op�(1lEα ) is very
problematic.

We also note that an overlap of the form 〈ψ�,Op�(1lEα )ψ�〉 is a hybrid expres-
sion: this is a quantum matrix element of an operator defined in terms of the classical
evolution (16). From the point of view of quantum mechanics, it is more natural to
consider, instead, the operator obtained as the product of Heisenberg-evolved quan-
tized functions, namely

(U−n+1
�

Pαn−1U
n−1
�

)(U−n+2
�

Pαn−2U
n−2
�

) · · · (U−1
�

Pα1U�) Pα0 . (17)
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Here we used the shorthand notation Pk = 1lMk
, k ∈ [[1,K]] (multiplication op-

erators). To remedy the fact that the functions 1lMk
are not smooth, which would

prevent us from using a semiclassical calculus, we apply a convolution kernel to

smooth them, obtain functions 1lsmMk
∈ C∞(M), and consider Pk

def= 1lsmMk
(we can do

this keeping the property
∑K

k=1 1lsmMk
= 1).

In the following, we will use the notation A(t)
def= U−t

�
AUt

�
for the Heisen-

berg evolution of the operator A though the Schrödinger flow Ut
�
= exp(−it�

�
2 ).

The norm ‖ • ‖ will denote either the Hilbert norm on L2(M), or the correspond-
ing operator norm. The subsequent “purely quantum” norms were estimated in [2,
Theorem 1.3.3]:

Theorem 6 (The main estimate [2]). Set as above Pk
def= 1lsmMk

. For every K > 0,
there exists �K > 0 such that, uniformly for all � < �K , for all n ≤ K | log �|,
for all (α0, . . . , αn−1) ∈ [[1,K]]n,

‖Pαn−1(n− 1) Pαn−2(n− 2) · · ·Pα0 ψ�‖ ≤ 2(2π�)−d/2 e−
Λ
2 n(1 +O(ε))n. (18)

The exponent Λ is given by the “smallest expansion rate”:

Λ = − sup
ν∈M

∫
log Ju(ρ)dν(ρ) = inf

γ

d−1∑

i=1

λ+i (γ ).

The infimum on the right hand side runs over the set of closed orbits on E , and the
λ+i denote the positive Lyapunov exponents along the orbit, that is the logarithms of
the expanding eigenvalues of the Poincaré map, divided by the period of the orbit.
The parameter ε > 0 is an upper bound on the diameters of the supports of the
functions 1lsmMk

in M .
From now on we will call the product operator

Pα = Pαn−1(n− 1) Pαn−2(n− 2) · · ·Pα0 , α ∈ [[1,K]]n. (19)

To prove the above estimate, one actually controls the operator norm

‖Pα Op�(χ)‖ ≤ 2(2π�)−d/2 e−
Λ
2 n(1 + O(ε))n, (20)

where χ ∈ C∞
c (E ε) is an energy cutoff such that χ = 1 near E , supported inside a

neighbourhood E ε = H−1([ 1
2 − ε, 1

2 + ε]) of E .
In quantum mechanics, the matrix element 〈ψ�, Pαψ�〉 looks like the “proba-

bility”, for a particle in the state ψ�, to visit successively the phase space regions
Eα0, Eα1, . . . , Eαn−1 at times 0, 1, . . . , n − 1 of the Schrödinger flow. Theorem 6
implies that this “probability” decays exponentially fast with n, with rate Λ

2 , but this
decay only starts around the time

n1
def= d| log �|

Λ
, (21)
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which is a kind of “Ehrenfest time” (see (34) for another definition of Ehrenfest
time).

Yet, because the matrix elements 〈ψ�, Pαψ�〉 are not real in general, they can
hardly be used to define a “quantum measure”. Another possibility to define the
probability for the particle to visit the sets Eαk at times k, is to take the squares of
the norms appearing in (18):

‖Pα ψ�‖2 = ‖Pαn−1(n− 1) Pαn−2(n− 2) · · ·Pα0ψ�‖2. (22)

Now we require the smoothed characteristic functions 1lsmMi
to satisfy the identity

K∑

k=1

(
1lsmMk

(x)
)2 = 1 for any point x ∈ M. (23)

We denote by Psm the smooth partition of M made by the functions ((1lsmMk
)2)Kk=1.

The corresponding set of multiplication operators (Pk)
K
k=1

def= Pq forms a “quantum
partition of unity”:

K∑

k=1

P 2
k = IdL2 . (24)

For any n ≥ 1, we refine the quantum partition Pq into (Pα)|α|, as in (19). The
weights (22) exactly add up to unity, so it makes sense to consider the entropy

hn(ψ�,Pq)
def=

∑

α∈[[1,K]]n
η
(‖Pα ψ�‖2). (25)

3.2.1 Connection with Other Quantum Entropies

This entropy appears to be a particular case of the “general quantum entropies” de-
scribed by Słomczyński and Życzkowski [29], who already had in mind applications
to quantum chaos. In their terminology, a family of bounded operators π = (πk)

N
k=1

on a Hilbert space H satisfying

N∑

k=1

π∗k πk = IdH (26)

provides an “instrument” which, to each index k ∈ [[1,N ]], associates the following
map on density matrices:

ρ �→ I (k)ρ = πk ρ π∗k , a nonnegative operator with tr(I (k)ρ) ≤ 1.

From a unitary propagator U and its adjoint action U ρ = UρU−1, they propose to
construct the refined instrument
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I (α)ρ
def= I (αn−1) ◦ · · · ◦U ◦I (α1) ◦U ◦I (α0)ρ = U−n+1 πα ρ π∗α Un−1,

α ∈ [[1,N ]]n,
where we used (19) to refine the operators πk into πα . We obtain the probability
weights

tr(I (α)ρ) = tr(παρπ
∗
α), α ∈ [[1,N ]]n. (27)

For any U -invariant density ρ, these weights provide an entropy

hn(ρ,I ) =
∑

α∈[[1,N ]]n
η
(

tr(I (α)ρ)
)
. (28)

One easily checks that our quantum partition Pq = (Pk)
K
k=1 satisfies (26), and that

if one takes ρ = |ψ�〉〈ψ�| the weights tr(I (α)ρ) exactly correspond to our weights
‖Pαψ‖2. Hence, the entropy (28) coincides with (25).

Around the same time, Alicki and Fannes [1] used the same quantum partition
(26) (which they called “finite operational partitions of unity”) to define a different
type of entropy, now called the “Alicki–Fannes entropy” (the definition extends to
general C∗-dynamical systems). For each n ≥ 1 they extend the weights (27) to
“off-diagonal entries” to form a N n ×N n density matrix ρn:

[ρn]α′,α = tr(πα′ ρ π∗α), α,α′ ∈ [[1,N ]]n. (29)

The AF entropy of the system (U , ρ) is then defined as follows: take the Von Neu-
mann entropy of these density matrices, hAF

n (ρ, π) = tr η(ρn), then take

lim supn→∞ 1
n
hAF
n (ρ, π) and finally take the supremum over all possible finite op-

erational partitions of unity π .
We mention that traces of the form (29) also appear in the “quantum histories” ap-

proach to quantum mechanics (see e.g. [17], and [29, Appendix D] for references).

3.2.2 Naive Treatment of the Entropy hn(ψ�,Pq)

For fixed |α| > 0, the Egorov theorem shows that ‖Pαψ�‖2 converges to the clas-
sical weight μ((1lsmMα

)2) when � → 0, so for fixed n > 0 the entropy hn(ψ�,Pq)

converges to hn(μ,Psm), defined as in (11), the characteristic functions 1lMk
being

replaced by their smoothed versions (1lsmMk
)2. On the other hand, from the estimate

(20) the entropies hn(ψ�,Pq) satisfy, for � small enough,

hn(ψ�,Pq) ≥ n
(
Λ+ O(ε)

)− d| log �| + O(1), (30)

for any time n ≤ K | log �|. For large times n ≈ K | log �|, this provides a lower
bound

1

n
hn(ψ�,Pq) ≥

(
Λ+ O(ε)

)− d

K
+ O(1/| log �|),
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which looks very promising since K can be taken arbitrary large: we could be
tempted to take the semiclassical limit, and deduce a lower bound hKS(μ) ≥ Λ.

Unfortunately, this does not work, because in the range {n > n1} where the
estimate (30) is useful, the Egorov theorem breaks down, the weights (22) do not
approximate the classical weights μ((1lsmMα

)2), and there is no relationship between

hn(ψ,Pq) and the classical entropies hn(μ,Psm).
This breakdown of the quantum-classical correspondence around the Ehrenfest

time is ubiquitous for chaotic dynamics. It has been observed before when studying
the connection between the Alicki–Fannes entropy for the quantized torus automor-
phisms and the KS entropy of the classical dynamics [5]: the quantum entropies
hAF
n (ψ�,Pq) follow the classical hn(μ,Psm) until the Ehrenfest time (and there-

fore grow linearly with n), after which they “saturate”, to produce a vanishing en-
tropy lim supn→∞ 1

n
hAF
n (ψ�,Pq).

To prove Theorem 4, we will still use the estimates (20), but in a more subtle
way, namely by referring to an entropic uncertainty principle.

3.3 Entropic Uncertainty Principle

The theorem below is an adaptation of the entropic uncertainty principle conjectured
by Deutsch and Kraus [12, 21] and proved by Massen and Uffink [25]. These au-
thors were investigating the theory of measurement in quantum mechanics. Roughly
speaking, this result states that if a unitary matrix has “small” entries, then any of
its eigenvectors must have a “large” Shannon entropy.

Let (H , 〈., .〉) be a complex Hilbert space, and denote ‖ψ‖ = √〈ψ,ψ〉 the as-
sociated norm. Consider a quantum partition of unity (πk)

N
k=1 on H as in (26). If

‖ψ‖ = 1, we define the entropy of ψ with respect to the partition π as in (25),
namely hπ(ψ) = ∑N

k=1 η(‖πk ψ‖2). We extend this definition by introducing the
notion of pressure, associated to a family v = (vk)k=1,...,N of positive real num-
bers: the pressure is defined by

pπ,v(ψ)
def=

N∑

k=1

η
(‖πk ψ‖2)−

N∑

k=1

‖πk ψ‖2 log v2
k .

In Theorem 7, we actually need two partitions of unity (πk)
N
k=1 and (τj )

M
j=1, and

two families of weights v = (vk)
N
k=1, w = (wj )

M
j=1, and consider the corresponding

pressures pπ,v(ψ), pτ,w(ψ). Besides the appearance of the weights v, w, we bring
another modification to the statement in [25] by introducing an auxiliary operator O .

Theorem 7 ([4, Theorem 6.5]). Let O be a bounded operator and U be an isometry
on H .

Define c(v,w)
O (U )

def= supj,k wj vk‖τjU π∗k O‖, and V = maxk vk , W = maxj wj .
Then, for any ε ≥ 0, for any normalized ψ ∈ H satisfying
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∀k = 1, . . . ,N , ‖(Id − O) πk ψ‖ ≤ ε, (31)

the pressures pτ,w(U ψ), pπ,v(ψ) satisfy

pτ,w(U ψ)+ pπ,v(ψ) ≥ −2 log
(
c
(v,w)
O (U )+N V W ε

)
.

Example 8. The original result of [25] corresponds to the case where H = C
N ,

O = Id , ε = 0, N = M , vk = wj = 1, and the operators πk = τk are the
orthogonal projectors on some orthonormal basis (ek)

N
k=1 of H . In this case, the

theorem asserts that

hπ(U ψ)+ hπ(ψ) ≥ −2 log c(U )

where c(U ) = supj,k |〈ek,U ej 〉| is the supremum of all matrix elements of U in
the orthonormal basis (ek). As a special case, one gets hπ(ψ) ≥ − log c(U ) if ψ is
an eigenfunction of U .

3.4 Applying the Entropic Uncertainty Principle to the Laplacian
Eigenstates

In this section we explain how to use Theorem 7 in order to obtain nontrivial infor-
mation on the quantum entropies (25) and then hKS(μ). For this we need to define
the data to input in the theorem. Except the Hilbert space H = L2(M), all other
data depend on the semiclassical parameter �: the quantum partition π , the operator
O , the positive real number ε, the weights (vj ), (wk) and the unitary operator U .

As explained in Sect. 3.2, we partition M into M = ⊔K
k=1 Mk , consider open

sets Ωk � Mk (which we assume to have diameters ≤ ε), and consider smoothed
characteristic functions 1lsmMk

supported respectively inside Ωk , and satisfying the
identity (23). The associated multiplication operators on H are form a quantum
partition (Pk)

K
k=1, which we had called Pq . To alleviate notations, we will drop the

subscript q.
From (24), and using the unitarity of U�, one realizes that for any n ≥ 1, the

families of operators P∨n = (P ∗
α )|α|=n and T ∨n = (Pα)|α|=n (see (19)) make up

two quantum partitions of unity as in (26), of cardinal Kn.

3.4.1 Sharp Energy Localization

In the estimate (20), we introduced an energy cutoff χ on a finite energy strip E ε,
with χ ≡ 1 near E . This cutoff does not appear in the estimate (18), because, when
applied to the eigenstate ψ�, the operator Op�(χ) essentially acts like the identity.

The estimate (20) will actually not suffice to prove Theorem 4. We will need
to optimize it by replacing χ in (20) with a “sharp” energy cutoff. For some fixed
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(small) δ ∈ (0, 1), we consider a smooth function χδ ∈ C∞(R; [0, 1]), with
χδ(t) = 1 for |t | ≤ e−δ/2 and χδ(t) = 0 for |t | ≥ 1. Then, we rescale that function
to obtain the following family of �-dependent cutoffs near E :

∀� ∈ (0, 1), ∀n ∈ N, ∀ρ ∈ T ∗M,

χ(n)(ρ; �) def= χδ

(
e−nδ

�
−1+δ(H(ρ)− 1/2)

)
.

(32)

The cutoff χ(n) is supported in a tubular neighbourhood of E of width 2�
1−δ enδ .

We will always assume that this width is � �
1/2 in the semiclassical limit, which is

the case if we ensure that n ≤ Cδ| log �| for some 0 < Cδ < (2δ)−1 − 1. In spite
of their singular behaviour, these cutoffs can be quantized into pseudodifferential
operators Op(χ(n)) described in [4] (the quantization uses a pseudodifferential cal-
culus adapted to the energy layer E , drawn from [28]). The eigenstate ψ� is indeed
very localized near E , since it satisfies

∥
∥
(
Op(χ(0))− 1

)
ψ�

∥
∥ = O(�∞)‖ψ�‖. (33)

In the rest of the paper, we also fix a small δ′ > 0, and call “Ehrenfest time” the
�-dependent integer

nE(�)
def=
⌊
(1 − δ′)| log �|

λmax

⌋

. (34)

Notice the resemblance with the time n1 defined in (21). The significance of this
time scale will be discussed in Sect. 3.4.5.

The following proposition states that the operators (P ∗
α )|α|=nE , almost preserve

the energy localization of ψ�:

Proposition 9. For any L > 0, there exists �L such that, for any � ≤ �L, the
Laplacian eigenstate satisfies

∀α, |α| = nE,
∥
∥(Op(χ(nE))− Id

)
P ∗

α ψ�

∥
∥ ≤ �

L‖ψ�‖. (35)

We recognize here a condition of the form (31).

3.4.2 Applying Theorem 7: Step 1

We now precise some of the data we will use in the entropic uncertainty princi-
ple, Theorem 7. As opposed to the choice made in [4], we will use two different
partitions π, τ .

• The quantum partitions π and τ are given respectively by the families of oper-
ators π = P∨nE = (P ∗

α )|α|=nE , τ = T ∨nE = (Pα)|α|=nE . Notice that these
partitions only differ by the ordering of the operators Pαi (i) inside the products.
In the semiclassical limit, these partitions have cardinality N = KnE � �

−K0

for some fixed K0 > 0.
• The isometry will be the propagator at the Ehrenfest time, U = U

nE
�

.
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• The auxiliary operator is given as O = Op(χ(nE)), and the error ε = �
L, where

L will be chosen very large (see Sect. 3.4.4).
• The weights vα, wα will be selected in Sect. 3.4.4. They will be semiclassically

tempered, meaning that there exists K1 > 0 such that, for � small enough, all
vα, wα are contained in the interval [1, �

−K1 ].
The entropy and pressures associated with a state ψ ∈ H are given by

hπ(ψ) =
∑

|α|=nE

η
(‖P ∗

α ψ‖2), (36)

pπ,v(ψ) = hπ(ψ)− 2
∑

|α|=nE

‖P ∗
α ψ‖2 log vα. (37)

With respect to the second partition, we have

hτ (ψ) =
∑

|α|=nE

η
(‖Pα ψ‖2), (38)

pτ,w(ψ) = hτ (ψ)− 2
∑

|α|=nE

‖Pα ψ‖2 logwα. (39)

We notice that the entropy hτ (ψ) exactly corresponds to the formula (25), while
hπ(ψ) is built from the norms

‖P ∗
α ψ‖2 = ‖Pα0Pα1(1) · · ·Pαn−1(n− 1) ψ‖2.

If ψ is an eigenfunction of U�, the above norm can be obtained from (22) by
exchanging U� with U−1

�
, and replacing the sequence α = (α0, . . . , αn−1) by

ᾱ
def= (αn−1, . . . , α0). So the entropies hπ(ψ) and hτ (ψ) are mapped to one an-

other through the time reversal U� → U−1
�

.
With these data, we draw from Theorem 7 the following

Corollary 10. For � > 0 small enough consider the data π , τ , U , O as defined
above. Let

c
v,w
O (U )

def= max
|α|=|α′|=nE

(
wα′ vα ‖Pα′ U

nE
�

Pα Op(χ(nE))‖). (40)

Then for any normalized state φ satisfying (35),

pτ,w(U
nE
�

φ)+ pπ,v(φ) ≥ −2 log
(
c
v,w
O (U )+ hL−K0−2K1

)
.

From (35), we see that the above corollary applies to the eigenstate ψ� if � is small
enough.

The reason to take the same value nE for the refined partitions P∨nE , T ∨nE
and the propagator UnE

�
is the following: the products appearing in c

v,w
O (U ) can be

rewritten (with U ≡ U�):
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Pα′ U
nE Pα = U−nE+1Pα′nE−1

U · · ·UPα′0UPαnE−1U · · ·UPα0 = UnE Pαα′ .

Thus, the estimate (20) with n = 2nE already provides an upper bound for the
norms appearing in (40)—the replacement of χ by the sharp cutoff χ(nE) does not
harm the estimate.

To prove Theorem 4, we actually need to improve the estimate (20), as was done
in [4], see Theorem 11 below. This improvement is done at two levels: we will use
the fact that the cutoffs χ(nE) are sharper than χ , and also the fact that the expansion
rate of the geodesic flow (which governs the upper bound in (20)) is not uniform,
but depends on the sequence α.

Our choice for the weights vα , wα will then be guided by the α-dependent upper
bounds given in Theorem 11. To state that theorem, we introduce some notations.

3.4.3 Coarse-Grained Unstable Jacobian

We recall that, for any energy λ > 0, the geodesic flow gt on the energy layer
E (λ) = H−1(λ) ⊂ T ∗M is Anosov, so that the tangent space TρE (λ) at each
ρ ∈ T ∗M , H(ρ) > 0 splits into

TρE (λ) = Eu(ρ)⊕ Es(ρ)⊕ RXH(ρ)

where Eu (resp. Es) is the unstable (resp. stable) subspace. The unstable Jacobian
Ju(ρ) is defined by Ju(ρ) = det(dg−1

|Eu(g1ρ)
) (the unstable spaces at ρ and g1ρ are

equipped with the induced Riemannian metric).
This Jacobian can be “discretized” as follows in the energy strip E ε ⊃ E . For

any pair of indices (α0, α1) ∈ [[1,K]]2, we define

Ju
1 (α0, α1)

def= sup{Ju(ρ) : ρ ∈ T ∗Ωα0 ∩ E ε, g1ρ ∈ T ∗Ωα1} (41)

if the set on the right hand side is not empty, and Ju
1 (α0, α1) = e−R otherwise,

where R > 0 is a fixed large number. For any sequence of symbols α of length n,
we define

Ju
n (α)

def= Ju
1 (α0, α1) · · · Ju

1 (αn−2, αn−1). (42)

Although Ju and Ju
1 (α0, α1) are not necessarily everywhere smaller than unity, there

exists C, λ+, λ− > 0 such that, for any n > 0, for any α with |α| = n,

C−1 e−n(d−1) λ+ ≤ Ju
n (α) ≤ C e−n(d−1) λ− . (43)

One can take λ+ = λmax(1 + ε), where λmax is the maximal expanding rate in
Theorem 4. We now give our central estimate, easy to draw from [4, Corollary 3.4].

Theorem 11. Fix small positive constants ε, δ, δ′ and a constant 0 < Cδ <

(2δ)−1 − 1. Take an open cover M = ⋃
k Ωk of diameter ≤ ε and an associated

quantum partition P = (Pk)
K
k=1. There exists �0 such that, for any � ≤ �0, for any

positive integer n ≤ Cδ| log �|, and any pair of sequences α, α′ of length n,
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∥
∥Pαα′ Op(χ(n))

∥
∥ = ∥∥Pα′ U

n
�
Pα Op(χ(n))

∥
∥ ≤ C �

− d−1
2 −δ enδ

√
Ju
n (α) J

u
n (α

′).
(44)

The constant C only depends on the Riemannian manifold (M, g). If we take n =
nE , this takes the form

‖Pα′ U
nE
�

Pα Op(χ(nE))‖ ≤ C �
− d−1+cδ

2

√
Ju
nE

(α) J u
nE

(α′), (45)

where c = 2 + 2λ−1
max.

The idea of proof in Theorem 11 is rather simple, although the technical imple-
mentation is cumbersome. We first show that for any normalized state ψ , the state
Op(χ(n))ψ can be essentially decomposed into a superposition of �

−d | suppχ(n)|
normalized Lagrangian states, supported on Lagrangian manifolds transverse to
the stable foliation. In fact the Lagrangian states we work with are truncated δ-
functions, supported on Lagrangians of the form

⋃
t g

tS∗zM . The action of the oper-
ator UnPαα′ = Pα′n−1

U · · ·UPα0 on such Lagrangian states can be analyzed through
WKB methods, and is simple to understand at the classical level: each application
of the propagator U stretches the Lagrangian along the unstable direction (the rate
of stretching being described by the local unstable Jacobian), whereas each operator
Pk “projects” on a piece of Lagrangian of diameter ε. This iteration of stretching and
cutting accounts for the exponential decay. The αα′-independent factor on the right
of (45) results from adding together the contributions of all the initial Lagrangian
states. Notice that this prefactor is smaller than in Theorem 6 due to the condition
Cδ < (2δ)−1 − 1.

Remark 12. In [4] we used the same quantum partition P∨nE for π and τ in The-
orem 7. As a result, we needed to estimate from above the norms ‖P ∗

α′ U
nE Pα ×

Op(χ(nE))‖ (see [4, Theorem. 2.6]). The proof of this estimate was much more
involved than the one for (45), since it required to control long pieces of unstable
manifolds. By using instead the two partitions P(n), T (n), we not only prove a
more precise lower bound (6) on the KS entropy, but also short-circuit some fine
dynamical analysis.

3.4.4 Applying Theorem 7: Step 2

There remains to choose the weights (vα, wα) to use in Theorem 7. Our choice
is guided by the following idea: in (40), the weights should balance the variations
(with respect to α,α′) in the norms, such as to make all terms in (40) of the same
order. Using the upper bounds (45), we end up with the following choice for all α

of length nE :

vα = wα
def= Ju

nE
(α)−1/2.

From (43), there exists K1 > 0 such that, for � small enough, all the weights
are contained in the interval [1, �

−K1 ], as announced in Sect. 3.4.2. Using these
weights, the estimate (45) implies the following bound on the coefficient (40):
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∀� < �0, c
v,w
O (U ) ≤ C �

− d−1+cδ
2 .

We can now apply Corollary 10 to the particular case of the eigenstates ψ�. We

choose L such that L−K0 − 2K1 > − d−1+cδ
2 , so from Corollary 10 we draw the

following

Proposition 13. Let (ψ�)�→0 be our sequence of eigenstates (5). In the semiclassi-
cal limit, the pressures of ψ� satisfy

pP∨nE ,v(ψ�)+ pT ∨nE ,w(ψ�) ≥ − (d − 1 + cδ)λmax

(1 − δ′)
nE +O(1). (46)

If M has constant curvature we have log Jn
α ≤ −n(d − 1)λmax(1−O(ε)) for all

α of length n, and the above lower bound can be written

hP∨nE (ψ�)+ hT ∨nE (ψ�) ≥ (d − 1)λmax
(
1 + O(ε, δ, δ′)

)
nE.

As opposed to (30), the above inequality provides a nontrivial lower bound for the
quantum entropies at the time nE , which is smaller than the time n1 of (21), and
will allow to connect those entropies to the KS entropy of the semiclassical measure
(see below).

3.4.5 Subadditivity Until the Ehrenfest Time

Even at the relatively small time nE , the connection between the quantum entropy
h(ψ�,P

∨nE ) and the classical h(μ,P∨nE
sm ) is not completely obvious: both are

sums of a large number of terms (� �
−K0 ). Before taking the limit � → 0, we will

prove that a lower bound of the form (46) still holds if we replace nE � | log �|
by some fixed no ∈ N, and P∨nE by the corresponding quantum partition P∨no .
The link between quantum pressures at times nE and no is provided by the fol-
lowing subadditivity property, which is the semiclassical analogue of the classical
subadditivity of pressures for invariant measures (see (12)).

Proposition 14 (Subadditivity). Let δ′ > 0. There is a function R(no, �), and a
real number R > 0 independent of δ′, such that, for any integer no ≥ 1,

lim sup
�→0

|R(no, �)| ≤ R

and with the following properties. For any small enough � > 0, any integers no,
n ∈ N with no + n ≤ nE(�), for any ψ� normalized eigenstate satisfying (5), the
following inequality holds:

pP∨(no+n),v(ψ�) ≤ pP∨no ,v(ψ�)+ pP∨n,v(ψ�)+ R(no, �).

The same inequality is satisfied by the pressures pT ∨n,w(ψ�).
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To prove this proposition, one uses a refined version of Egorov’s theorem [10] to
show that the non-commutative dynamical system formed by (Ut

�
) acting (through

Heisenberg) on observables supported near E is (approximately) commutative on
time intervals of length nE(�). Precisely, we showed in [4] that, provided ε is small
enough, for any a, b ∈ C∞

c (E ε),

∀t ∈ [−nE(�), nE(�)],
∥
∥[Op�(a)(t),Op�(b)]

∥
∥ = O(�cδ′), � → 0,

and the implied constant is uniform with respect to t . Within that time interval, the
operators Pαj (j) appearing in the definition of the pressures commute up to small
semiclassical errors. This almost commutativity explains why the quantum pres-
sures pP∨n,v(ψ�) satisfy the same subadditivity property as the classical entropy
(12), for times smaller than nE .

Thanks to this subadditivity, we may finish the proof of Theorem 4. Fixing no,
using for each � the Euclidean division nE(�) = q(�) no + r(�) (with r(�) < no),
Proposition 14 implies that for � small enough,

pP∨nE ,v(ψ�)

nE
≤ pP∨no ,v(ψ�)

no
+ pP∨r ,v(ψ�)

nE
+ R(no, �)

no
.

The same inequality is satisfied by the pressures pT ∨n,w(ψ�). Using (46) and the
fact that pP∨r ,v(ψ�) stays uniformly bounded when � → 0, we find

pP∨no ,v(ψ�)+ pT ∨no ,w(ψ�)

no
≥ −2(d − 1 + cδ)λmax

2(1 − δ′)
− 2R(no, �)

no

+Ono(1/nE). (47)

We are now dealing with quantum partitions P∨no , T ∨no , for n0 ∈ N independent
of �. At this level the quantum and classical entropies are related through the (finite
time) Egorov theorem, as we had noticed in Sect. 3.2.2. For any α of length no, the
weights ‖Pα ψ�‖2 and ‖P ∗

α ψ�‖2 both converge to μ((1lsmMα
)2), where we recall that

1lsmMα
= (1lsmMαno−1

◦ gno−1)× · · · × (1lsmMα1
◦ g)× 1lsmMα0

.

Thus, both entropies hP∨no (ψ�), hT ∨no (ψ�) semiclassically converge to the clas-
sical entropy hno(μ,Psm). As a result, the left hand side of (47) converges to

2
hno(μ,Psm)

no
+ 2

no

∑

|α|=no

μ
(
(1lsmMα

)2) log Ju
no
(α). (48)

Since μ is gt -invariant and Ju
no

has the multiplicative structure (42), the second term
in (48) can be simplified:

∑

|α|=no

μ
(
(1lsmMα

)2) log Ju
no
(α) = (no − 1)

∑

α0,α1

μ
(
(1lsmM(α0,α1)

)2) log Ju
1 (α0, α1).
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We have thus obtained the lower bound

hno(μ,Psm)

no
≥ −no − 1

no

∑

α0,α1

μ
(
(1lsmM(α0,α1)

)2) log Ju
1 (α0, α1)

− (d − 1 + cδ)λmax

2(1 − δ′)
− R

no
. (49)

At this stage we may forget about δ and δ′. The above lower bound does not depend
on the derivatives of the functions 1lsmMα

, so the same bound carries over if we replace

1lsmMα
by the characteristic functions 1lMα . We can finally let no tend to +∞, then

let the diameter ε tend to 0. The left hand side converges to hKS(μ) while, from
the definition (41), the sum in the right hand side of (49) converges to the integral∫
E log Ju(ρ)dμ(ρ) as ε → 0, which proves (6).
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Stability of Doubly Warped Product Spacetimes

Lars Andersson �

Abstract Nonlinear stability for a class of doubly warped spacetimes is proved. The
background spacetimes have negative Einstein factors. It shown that for dimension
D ≥ 11 there is a full parameter family of solutions to the vacuum Einstein equa-
tions which has Kasner-like singularity and Friedmann like asympotics in the future.
In particular, these spacetimes have crushing singularity and are globally foliated by
constant mean curvature Cauchy hypersurfaces.

1 Introduction

The goal of this paper is to prove the existence of a full parameter family of future
complete spacetimes with quiescent singularity. In the paper [1], written jointly with
Mark Heinzle, we studied a class of generalized Kasner spacetimes. These are D =
m + n + 1 dimensional Lorentzian doubly warped product spacetimes of the form
R×M ×N with line element

−dt2 + a2(t)g + b2(t)h,

where (M, g) and (N, h) are m- and n-dimensional Einstein spaces. We shall here
consider only the case where M,N are negative Einstein spaces.

The paper [1] showed that the spacetimes under consideration have a Kasner-
like singularity, while the future asympotics is Friedmann-like. In that paper it was
demonstrated that for dimension D ≥ 10, a Kaluza-Klein dimensional reduction
gives a spacetime with eternal acceleration. Further, and most importantly for the
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Department of Mathematics, University of Miami, Coral Gables, FL 33124, USA and Albert Ein-
stein Institute, Am Mühlenberg 1, 14476 Golm, Germany, e-mail: larsa@math.miami.edu

� Supported in part by the NSF, with grants DMS-0407732 and DMS-0707306 to the University
of Miami.
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application in the present paper, it was demonstrated in [1] that the singularity allows
AVTD deformations exactly when D ≥ 11. This is the case we consider here.

In a recent paper of the author with Vincent Moncrief [4], we proved the nonlin-
ear stability to the future for a class of Lorentz cone spacetimes. The background
spaces considered are Lorentz cones over negative Einstein spaces. The work in [4]
allows general dimension and further allows the Riemannian Einstein factor to have
a non-trivial Einstein moduli space. A 3 + 1 dimensional case of this situation was
considered in [4], there rigidity was assumed. This condition has later been removed
in the 3 + 1 dimensional case by Martin Reiris [10].

In the present paper, we apply the results of [3] as well as the analysis in [1],
together with the Fuchsian techniques developed with Alan Rendall in [5], see also
[7] for the higher dimensional case, to demonstrate for D ≥ 11, the existence of a
full parameter family of nonlinearly stable deformations of the generalized Kasner
spacetimes studied in [1]. These deformations have dynamics and geometry which
is controlled globally from the singularity to the infinite future. In particular, they
have crushing singularity, admit a global foliation by CMC Cauchy hypersurfaces,
and are future causally geodesically complete. This is the first result of its type.

2 Warped Product Spacetimes

Let (M, γM), (N, γ N) be m- and n-dimensional compact negative Einstein spaces
with

RicγM = −(m+ n− 1)γM, RicγN = −(m+ n− 1)γ N .

We consider line elements on a D = m+ n+ 1 dimensional spacetime R×M ×N

of the form
−dt2 + a2(t)γM + b2(t)γ N . (1)

The vacuum Einstein equations for the line elements of the form (1) were analyzed
in [1] in terms of scale invariant variables. Let

p = − ȧ

a
, q = − ḃ

b
.

The mean curvature τ is given by

τ = mp + nq.

The scale invariant variables are2

P = p

τ
, Q = q

τ
, A = − 1

aτ
, B = − 1

bτ
.

2 In [1], mean curvature is denoted by H and the time variable τ used there is related to the
proper time by ∂τ = H−1∂t . With this definition, T/τ is a negative constant. Here, we use notation
adapted to [2].
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Here A,B may be viewed as curvature variables. Define the scale invariant time
coordinate T by

∂T = −τ−1∂t = −τ∂τ .

The Einstein equations in terms of the time T for P , Q, A, B forms an autonomous
system, and the evolution equation for τ decouples.

The phase space of the scale invariant system resulting from the Einstein equa-
tions for the line element (1), with M,N negative Einstein spaces, is a topologically
a disc. There are five equilibrium points, four of which (F1), (F2) and (FA), (FB)

are on the boundary, where AB = 0, and one (F∗) is in the interior, where AB > 0.
See Fig. 1 for a schematic of the phase portrait for the case D ≥ 11, in which case
(F∗) is a stable node. In this note, we shall be interested only in this case.

Fig. 1 Phase portrait for D ≥ 11, see [1]

The equilibrium points on the boundary correspond to cosmological singularities
with asymptotically Kasner-like behavior. Generic past directed orbits tend to one
of the two equilibrium points (F1,2) which are characterized by the relations

A = B = 0, mP 2 + nQ2 = 1, mP + nQ = 1,

All future directed orbits tend to the equilibrium point (F∗), characterized by

A = B = P = Q = 1

m+ n



26 Lars Andersson

with asymptotically Friedmann-like behavior. In particular the spacetime geometry
is asymptotic in the expanding direction to the Lorentz cone

−dt2 + t2

(m+ n)2
γ, (2)

where
γ = (m+ n)2(γM + γ N

)
(3)

is an Einstein metric with constant −(m+ n− 1)/(m+ n)2 on M ×N . The t-level
sets are constant mean curvature hypersurfaces, and as we shall see the warped prod-
uct spacetimes under consideration are, up to a time reparametrization, in CMCSH
gauge with respect to γ .

2.1 Asymptotic Behavior

By the results of [1, Sect. 3.4], a, b have, in the case of spacetime dimension D ≥ 11,
the following asymptotic form in the expanding direction, i.e. at (F∗), as t ↗∞,

a = t
[
1 + nc0t

−λ∗ +O(t−2λ∗)
]
, (4a)

b = t
[
1 −mc0t

−λ∗ +O(t−2λ∗)
]

(4b)

cf. [1, (3.8)], as t →∞, where λ∗ > 0 is given by

λ∗ = 1

2
(m+ n− 1 −√(m+ n− 1)(m+ n− 9)).

The induced metric on the Cauchy surface M ×N at time t is given by

a2(t)γM + b2(t)γN . (5)

The Christoffel symbol of this metric contains no mixed terms, and due to the scale
invariance of the Christoffel symbol it is identical to the Christoffel symbol of the
metric (3). It follows that the tension field defined with respect to the metric (5)
and γ vanishes and hence (1) is automatically in CMCSH gauge with respect to the
background metric γ . The second fundamental form is

pa2γM
ij + qb2γ N

ij (6)

and from (4), we have

τ = −(m+ n)t−1 +O(t−1−2λ∗).

Recall from [4, Sect. 4] that the scale invariant Cauchy data (g,Σ) are related to the
metric and second fundamental form by
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gij = τ 2g̃ij , Σij = τ

(

K̃ij − τ

n+m
g̃ij

)

.

Let (ĝ, Σ̂) be the scale invariant data corresponding to the metric (5) and the second
fundamental form (6). A calculation using (4) gives

Σ̂ = t−λ∗(1 − λ∗)c0
[
nγM −mγN

]+O(t−2λ∗), (7a)

ĝ − γ = t−λ∗(m+ n)2c0
[
nγM −mγN

]+O(t−2λ∗). (7b)

The scale invariant time is T = − log(−τ/(m + n)). Due to the fact that there are

no spatial degrees of freedom in (ĝ, Σ̂), the asymptotic form the Cauchy data given
in (7) immediately allows us to estimate the Sobolev distance of the scale invariant
data (ĝ, Σ̂) from the background data (γ, 0). We have for any s ≥ 1,

‖ĝ − γ ‖Hs + ‖Σ̂‖Hs−1 = O(e−λ∗T ) (8)

or equivalently
‖ĝ − γ ‖Hs + ‖K̂ + γ ‖Hs−1 = O(e−λ∗T ),

where K̂ = τK̃ is the scale invariant second fundamental form. Similarly, inserting
the calculated form of Σ̂ , ĝ − γ into the energies Es , we have for s ≥ 1,

Es = O(e−2λ∗T ),

which tends to zero as T →∞.
Next we consider the asymptotic behavior of a generic orbit in the collapsing

direction, asymptotic to one of the equilibrium points (F1), (F2). A generic solution
is of the form

a = a0t
P
[
1 +O(tδ)

]
, b = b0t

Q
[
1 +O(tδ)

]
(9)

for constants a0, b0, P ,Q, and for some δ > 0. Here P,Q are solutions to

mP + nQ = 1, mP 2 + nQ2 = 1. (10)

It follows from these equations that |P | < 1, |Q| < 1.

3 Fuchsian Method

The generalized Kasner exponents can be defined as the eigenvalues of the scale-
invariant second fundamental form Ki

j , with one index raised using the scale in-
variant spatial metric gij . By [1, Theorem 3.1] and [1, Proposition 3.2], t = 0 corre-
sponds to a cosmological singularity, in the sense that a(t), b(t) → 0, as t → 0 so
that the induced metric on the t-level sets collapses. Further, the singularity at t = 0
is Kasner like, i.e. the generalized Kasner exponents converge as t → 0.
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The Fuchsian method allows one to construct families of solutions to the Ein-
stein equations, with controlled behavior at a cosmological singularity, under con-
dition that the behavior at the singularity is asymptotically velocity dominated. This
means roughly that asymptotically at the singularity, spatial derivatives become in-
significant and the dynamics of the Einstein equations approaches that of a family
of Bianchi I spacetimes, one for each spatial point. This method was first applied to
Gowdy models by Kichenassamy and Rendall [9]. The first treatment of case of the
Einstein equations without symmetry was given by Andersson and Rendall [5], for
the 3 + 1 dimensional Einstein equations minimally coupled with a massless scalar
field. The application of the Fuchsian method to the vacuum Einstein equations in
D = d + 1 spacetime dimensions was carried out by Damour, Henneaux, Rendall
and Weaver [7].

The Fuchsian method applies a singular version of the Cauchy-Kowalevski the-
orem, and therefore requires the velocity dominated data to be real analytic in the
spatial direction. Although real analytic functions are dense in C∞ in a compact
manifold this is an important restriction, and it is desirable to generalize the results
discussed here to cover smooth data or data with finite regularity. In particular it is
important to prove a stability type result that shows that there is an open set of ini-
tial data, in Sobolev norm, which leads to spacetimes with asymptotically velocity
dominated behavior. This was shown by Ringstrom for the Gowdy case, see [11].

The main result of the Fuchsian analysis in the case we are interested in, is that
given a velocity dominated solution which satisfies certain restrictions, see below,
there is a unique solution to the vacuum Einstein equations, which has the same as-
ymptotic generalized Kasner exponents at each point as those of the velocity domi-
nated solution. Further, the solution produced by the Fuchsian method is asymptotic
to the velocity dominated solution at the singularity.

Let p1 ≤ p2 ≤ · · · ≤ pd be limiting Kasner exponents as t → 0, in increas-
ing order. By [1, Sect. 4], for D ≥ 11, the generic spacetime of the form (1) has
generalized Kasner exponents whose limit at the singularity satisfy

1 + p1 − pd − pd−1 > 0. (11)

This is precisely those doubly warped product spacetimes which are past asymp-
totic to one of the equilibrium points (F1,2). According to the results of [7], see
in particular [7, Sect. 3], this implies that one may apply the Fuchsian method to
construct a full parameter family of non-homogeneous spacetimes deforming the
warped product ones.

3.1 Velocity Dominated Equations

In order to construct the approximating spacetime, we must specify a “velocity dom-
inated” seed solution. This is defined from initial data (0gij ,

0Ki
j ) which satisfy the

velocity dominated constraint equations [5], see [7, Sect. 2.3] for the case of space-
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times of general dimension. These are in the vacuum case,

−0Ki
j 0Kj

i + (tr 0K)2 = 0, (12)
0∇̃j

0Kj
i − 0∇̃i (tr

0K) = 0 (13)

a truncated form of the Einstein vacuum constraints. By a modification of the confor-
mal method, one may construct a full parameter family of solutions to the velocity
dominated constraints.

The velocity dominated solution is constructed by solving the velocity dominated
evolution equations

∂t
0gij = −20Kij , (14a)

∂t
0Ki

j = (tr 0K)0Ki
j . (14b)

Again, this system is a truncated form of the full Einstein evolution equations. Equa-
tions (14) has, up to time-reparametrization, solutions of the form

0Ka
b(t) = −t−1κa

b, (15)
0gab(t) = 0gac(t0)

[
(t/t0)

2κ]c
b, (16)

tr κ = 1. For each spatial point, the equations are just the equations modelling a
Bianchi I, or Kasner spacetime.

3.2 Velocity Dominated Solution

The velocity dominated solution which correspond to the warped product space-
times with the Kasner-like behavior at the singularity given by (9) has spatial metric

0ĝ = a2
0 t

2P γM + b2
0t

2QγN, (17a)

and the covariant second fundamental form is

0K̂ = −t−1(Pa2
0 t

2P γM +Qb2
0t

2P γ N
)
. (17b)

There is a unique spacetime asymptotic to the velocity dominated solution at the sin-
gularity, provided (11) holds. By [1, Sect. 4] this condition is satisfied for the warped
product spacetimes of the form (1), asymptotic in the past to one of the equilibrium
points (F1,2), if D ≥ 11. The solution to the Einstein equations corresponding to
the velocity dominated data (17) is, by uniqueness, the warped product spacetime
with this asymptotic behavior. This is a one-parameter family of spacetimes, up to a
trivial rescaling.
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Fix a0, b0 and let (ĝ, K̂) be the scale-invariant data for the warped product metric
with velocity dominated data given by (17). The map from the velocity dominated

data (0g(t0),
0K(t0)) to the data (g̃, K̃) at t0 for the vacuum spacetime constructed

by the Fuchsian method with seed solution (0g, 0K) is continuous at the background
data velocity dominated data (0ĝ, 0K̂), in terms of the natural topology on the space
of real analytic tensors on M . See [5, 7] for details, and in particular [6] for analytical
details concerning the singular form of the Cauchy-Kowalewski theorem.

The construction gives a full parameter set of real analytic spacetimes close to
the background spacetime. The topology on the space of analytic functions is finer
than the Hs Sobolev topology for any s. Hence, the scale invariant data (g,Σ) are
Hs close to (ĝ, Σ̂). We summarize this discussion in the following lemma.

Lemma 1. Fix t0 > 0. For each s ≥ 1, ε > 0, there is a full parameter set of velocity
dominated data (0g(t0),

0K(t0)) close to the background velocity dominated data of
the form (17), such that

‖g(t0)− ĝ(t0)‖s + ‖K(t0)− K̂(t0)‖s−1 < ε,

where (g,K) are scale invariant data for the vacuum spacetime with velocity dom-
inated data (0g, 0K) and (ĝ, K̂) are the scale invariant data corresponding to the
warped product background metric with velocity dominated data given by (17).

4 Stability

The spacetime with rescaled data (g̃, K̃) given by Lemma 1 is not CMC foliated
in the time coordinate t . We will now show that the spacetimes can be refoliated in
CMC time, with the small data condition still valid.

Lemma 2. Assume the Einstein spaces M,N are stable, with smooth deformation
spaces. Fix τ0 < 0. For each s ≥ 1, ε > 0, there is a t0 > 0 and a full parame-
ter set of velocity dominated data (0g(t0),

0K(t0)) close to the background velocity
dominated data of the form (17), such that the spacetime produced by the Fuchsian
method from the velocity dominate data contains a CMC foliation with mean cur-
vature τ taking values in an interval containing (−∞, τ0), and such that at mean
curvature time τ0 we have

‖g(τ0)− ĝ(τ0)‖s + ‖K(τ0)− K̂(τ0)‖s−1 < ε, (18)

where (g,K) are scale invariant data for the vacuum spacetime with velocity dom-
inated data (0g, 0K) and (ĝ, K̂) are the scale invariant data corresponding to the
warped product background metric with velocity dominated data given by (17). Fur-
ther, (g,K) are satisfy the CMCSH gauge condition and the shadow metric condi-
tion with respect to the background metric γ on M ×N .

Proof. The spacetime produced by the Fuchsian method is asymptotically Kasner-
like at the singularity, and in particular the singularity is crushing. Recall that the
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time t0 in Lemma 1 is arbitrary. The mean curvature for the warped product back-
ground metric takes all values in (−∞, 0) and for velocity dominated data suffi-
ciently close to the background data, we have by a suitable choice of t0 in Lemma 1,
trg̃ K̃(t0) > τ0. This means that the Cauchy surface at time t0 is a barrier for the
mean curvature equation, and hence by [8], there is a CMC foliation with mean cur-
vature taking values in an interval containing (−∞, τ0). Due to the elliptic nature of
the CMC equation, the smallness condition (18) is satisfied for velocity dominated
data sufficiently close to the background.

By assumption the Einstein spaces M,N are stable, with smooth deformation
space. By [4, Sect. 3] that this is true also for (M × N, γ ). By the work in [4,
Sect. 4.2], we may after possibly decreasing ε and acting on the background warped
product metric with a time-independent diffeomorphism, assume that the data pro-
duced above satisfies the CMCSH gauge and the shadow-metric condition with re-
spect to an Einstein metric γ̄ close to γ and in the deformation space V of γ . Due to
the local uniformization result [4, Proposition 2.4] γ̄ is of the form (3) with respect
to two Einstein metrics γ̄ M, γ̄ N close to γM, γ N . The Einstein equations for the
warped product spacetimes are independent of the choice of Einstein metric. Hence
this modified background has the same dynamics as the original one and we may
without loss of generality assume the CMCSH and shadow metric condition is sat-
isfied with respect to the original background data. This completes the proof of the
lemma.  !

We are now ready to apply the above construction of a CMC foliated, quiescent
spacetime, together with the main result of [4], to prove the existence of a full para-
meter family of quiescent, future complete spacetimes. In Sect. 2.1 we proved that
the data (ĝ, Σ̂) corresponding to the warped product background spacetime tends,
in Sobolev norm, to the data corresponding to the Lorentz cone metric (2). Together
with the smallness estimate in Lemma 2 this means that by suitable choosing τ0, ε,
the data for the quiescent spacetime constructed by the Fuchsian method satisfies, at
CMC time τ0, the conditions of the stability theorem [4, Theorem 7.1]. This gives

Theorem 3. Assume M,N are stable with smooth deformation space. Further, as-
sume D ≥ 11. Then, there is a full parameter set of velocity dominated data
(0g, 0K) close to the velocity dominated data (0ĝ, 0K̂), corresponding to a warped
product spacetime of the form (1), with a Kasner-like initial singularity with gener-
alized Kasner exponents close to P,Q satisfying equation (10), such that the quies-
cent spacetime constructed using the Fuchsian method admits a global CMC folia-
tion, and is asymptotic to the Lorentz cone spacetime with line element (2).
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Rigorous Construction of Luttinger Liquids
Through Ward Identities

Giuseppe Benfatto

Abstract There are up to now two different ways to prove the key property on
which our Luttinger liquid rigorous construction rests, the vanishing of the leading
part of the Beta function. The first one was developed in the last years and is based
in an essential way on the exact Mattis-Lieb solution of the Luttinger model. More
recently, we found a new proof, based on the Ward identities obtained by a chiral lo-
cal gauge transformation, applied to a Luttinger model with ultraviolet and infrared
cutoffs. This is an old approach in the physical literature, but its implementation
in an RG scheme is not trivial at all, because the ultraviolet and infrared cutoffs
destroy local gauge invariance and produce “correction terms” with respect to the
formal Ward identities. We discover however a new set of identities, called “Correc-
tion Identities”, relating the corrections to the Schwinger functions. By combining
Ward and Correction identities with a Dyson equation, the vanishing of the Beta
function follows, so that the infrared cutoff can be removed. As a byproduct, even
the ultraviolet cutoff can be removed, after a suitable ultraviolet renormalization, so
that a Quantum Field Theory corresponding to the Thirring model is constructed,
showing the phenomenon of Chiral anomaly.

1 Introduction

There are many fermion models (one-dimensional Fermi gas at low temperature [1],
XYZ model [2], a large class of classical two-dimensional spin systems, like Ashkin-
Teller model [6]), whose rigorous infrared RG analysis is based on two key proper-
ties:

(1) The flow of the effective coupling (the beta function) is the same, up to expo-
nentially small terms, as the analogous flow for the spinless Tomonaga model

Giuseppe Benfatto
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(that is the Luttinger model with ultraviolet cutoff and local interaction, which
is equivalent to the Thirring model with fixed ultraviolet cutoff).

(2) The beta function for this special model (which is not solvable) is asymptoti-
cally vanishing, so that the effective coupling on large scales is essentially con-
stant and of the same order of the coupling on small scales.

Up to now there are two different ways to prove property (2). The first one was
developed in the last years and is based in an essential way on the exact Mattis-Lieb
solution of the Luttinger model [1, 2]. More recently, we found a new proof, based
on the Ward identities obtained by a chiral local gauge transformation, applied to
the Tomonaga model with infrared cutoff [3, 4]. This is an old approach in the phys-
ical literature, but its implementation in an RG scheme is not trivial at all, because
the ultraviolet and infrared cutoffs destroy local gauge invariance and produce not
negligible correction terms with respect to the formal Ward identities.

The solution of the problem is in the use of a new set of identities, called “Correc-
tion Identities”, relating the corrections to the Schwinger functions and showing the
phenomenon of chiral anomaly. By combining Ward and Correction identities with
a Dyson equation, the vanishing of the Beta function follows, so that the infrared
cutoff can be removed.

As a byproduct, even the ultraviolet cutoff can be removed, after a suitable ultra-
violet renormalization, so that a Euclidean Quantum Field Theory corresponding to
the Thirring model at imaginary time is constructed, for any value of the mass [5].

2 The Tomonaga Model with Infrared Cutoff

The model is not Hamiltonian and can be defined in terms of Grassmannian vari-
ables. It describes a system of two kinds of fermions with linear dispersion rela-
tion interacting with a local potential. Let D be the set of space-time momenta
k = (k, k0), with k = 2π

L
(n + 1

2 ) and k0 = 2π
β
(n0 + 1

2 ). With each k ∈ D we

associate four Grassmannian variables ψ̂σ
k,ω, σ, ω ∈ {+,−}. The free model is de-

scribed by the measure

P(dψ) = Dψ

N exp

{

−Z0

Lβ

∑

ω=±1
k∈D

Ch,0(k)(−ik0 + ωk)ψ̂+
k,ωψ̂

−
k,ω

}

(1)

where N is a normalization constant, Dψ is the Lebesgue Grassmannian measure,
Z0 is a fixed constant, that we shall put equal to 1, and [Ch,0(k)]−1 is a smooth
function, which has support in the interval {γ h−1 ≤ |k| ≤ γ }, γ > 1, and is equal
to 1 in the interval {γ h ≤ |k| ≤ 1}. The measure (1) is a Gaussian Grassmannian
measure with propagator

ĝω(k) = 1

Lβ

∑

k

[Ch,0(k)]−1

(−ik0 + ωk)
. (2)
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The correlation functions of density and field operators for the Tomonaga model
with infrared cutoff can be obtained by the generating functional

W(φ, J ) = log
∫

P(dψ)e
−V (ψ)+∑ω

∫
dx
[
Jx,ωZ

(2)
0 ψ+

x,ωψ
−
x,ω+φ+x,ωψ−

x,ω+ψ+
x,ωφ

−
x,ω

]

(3)

where

V (ψ) = λ(Z0)
2
∫

dxψ+
x,+ψ−

x,+ψ+
x,−ψ−

x,−, Z
(2)
0 = Z0 = 1. (4)

The correlation functions will be graphically represented as in the examples of
Fig. 1. They are of course well defined, if γ h is large enough; we want to discuss
how to control the limit h →−∞.

Fig. 1 Graphical representation of a few correlation functions

3 The RG Analysis

We shall perform a multi-scale analysis of the functional (3), by using the identity

[Ch,0(k)]−1 =
0∑

j=h

fj (k) (5)

where the fj (k) are smooth functions defined so that

supp fj (k) = {γ j−1 ≤ |k| ≤ γ j+1}, h ≤ j ≤ 0. (6)

The decomposition (5) implies the following decomposition of the covariance (2) in
single scale covariances:

ĝω(k) =
0∑

j=h

ĝ(j)ω (k), ĝ(j)ω (k) = 1

Lβ

∑

k

fj (k)
(−ik0 + ωk)

(7)
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as well as a corresponding factorization of the measure (1) as the product of the
Gaussian Grassmannian measures with propagators ĝ(j)ω (k). Hence, we can perform
iteratively the integration over the different scales, starting from j = 0. Moreover,
after any integration step, we absorb in the remaining part of the free measure the
terms linear in the momentum, so that at step j we get an expression of the type, see
[4] for details:

eW(φ,J ) = e−LβEj

∫
P
Z
(h)
j ,Ch,j

(dψ)e−V (j)(ψ)+B(j)(ψ,φ,J ) (8)

where P
Z
(h)
j ,Ch,j

has roughly the same form as (1), with the field renormalization

constant Z(h)
j in place of Z0, and the cutoff function

[Ch,j (k)]−1 =
j∑

i=h

fj (k) (9)

in place of [Ch,0(k)]−1; moreover,

V (j)(ψ) = λ
(h)
j (Z

(h)
j )2

∫
dx ψ+

x,+ψ−
x,+ψ+

x,−ψ−
x,− + · · · (10)

B(j)(ψ, φ, J ) = Jx,ωZ
(2,h)
j ψ+

x,ωψ
−
x,ω + φ+x,ωψ−

x,ω + ψ+
x,ωφ

−
x,ω + · · · (11)

where · · · denotes the remainder, made of irrelevant terms, λ(h)j is the running cou-

pling and Z
(2,h)
j is the density renormalization constant.

Let us put Z(1,h)
j = Z

(h)
j ; it is easy to see, by using the definitions and the support

properties of the single scale propagators, that, if h′ < h,

λ
(h′)
j = λ

(h)
j , Z

(i,h′)
j = Z

(i,h)
j , j = 0, . . . , h+ 1 (12)

Moreover, one can show that, if we put εh = max0≤j≤h |λ(h)j |,

λ
(h′)
h = λ

(h)
h +O(ε2

h), Z
(i,h′)
h /Z

(i,h)
h = 1 +O(ε2

h). (13)

Finally, if εh stays small for h →−∞, one can remove the infrared cutoff and show
that [4]

λj ≡ λ
(−∞)
j −−−−→

j→−∞ λ−∞(λ) (14)

Z
(i)
j−1

Z
(i)
j

≡ Z
(i,−∞)
j−1

Z
(i,−∞)
j

−−−−→ j →−∞ηi(λ−∞) (15)

λ−∞(λ) and ηi(λ−∞) being analytic functions. Moreover λ−∞(λ) is odd in λ and
ηi(λ−∞) is even in λ−∞.
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4 The Dyson Equation

To prove (14) is not an easy task, since the interaction is marginal, from the RG point
of view, and indeed the bounds following from the RG analysis show a divergence
linear in h. In order to clarify the origin of this apparent divergence and explain how
to use Ward identities to solve the problem, it is convenient to consider the following
Dyson equation:

−Ĝ4+(k1,k2,k3,k4) = λĝ−(k4)

[

Ĝ2−(k3)Ĝ
2,1
+ (k1 − k2,k1,k2)

+ 1

Lβ

∑

p

G
4,1
+ (p; k1,k2,k3,k4 − p)

]

(16)

whose graphical representation is given in Fig. 2.

Fig. 2 Graphical representation of the Dyson equation (16)

The RG analysis allows us to get rigorously dimensional bounds on the correla-
tion functions. In particular, if we fix the external momenta in the Dyson equation
so that

k1 = k4 = −k2 = −k3 = k̄, |k̄| = γ h (17)

and εh is small enough, we get [3]

Ĝ2
ω(k̄) =

1

Z
(1,h)
h Dω(k̄)

[1 +O(ε2
h)], Dω(k) = −ik0 + ωk (18)

Ĝ2,1
ω (2k̄, k̄,−k̄) = − Z

(2,h)
h

(Z
(1,h)
h )2Dω(k̄)2

[1 +O(ε2
h)] (19)

Ĝ4+(k̄,−k̄,−k̄, k̄) = 1

(Z
(1,h)
h )2|k̄|4

[−λ
(h)
h +O(ε2

h)]. (20)



38 Giuseppe Benfatto

Then the l.h.s. of the Dyson equation is equal to

1

(Z
(1,h)
h )2|k̄|4

[λ(h)h +O(ε2
h)] (21)

while the first term in the r.h.s. is equal to

Z
(2,h)
h

(Z
(1,h)
h )3|k̄|4

λ[1 +O(ε2
h)]. (22)

As we shall explain below, by using the local gauge invariance of the interaction it
is possible to show that

Z
(2,h)
h

Z
(1,h)
h

= 1 +O(εh). (23)

Were we able to bound the second term in the r.h.s. as

C
ε2
h

(Z
(1,h)
h )2|k̄|4

(24)

then, by a simple iterative argument, we could prove that, if λ is small enough,

|λ(h)j | ≤ 2|λ|, ∀h and j ≥ h (25)

implying that the Tomonaga model is well defined.
However, the RG analysis only allows us to bound such term as

C
εh

(Z
(1,h)
h )2|k̄|4

[γ Cεh|h| − 1] (26)

which is of course not sufficient.
The natural guess is that the origin of the problem is in the fact that one is not

taking into account some crucial cancellations related with the gauge invariance.
Hence, inspired by the analysis in the physical literature [7], we rewrite Ĝ4,1

ω in
terms of Ĝ4+ by suitable Ward identities, that is the identities obtained by applying
the chiral gauge transformation

ψ±
x,+ → e±iαxψ±

x,+, ψ±
x,− → ψ±

x,− (27)

in the generating functional.
As we shall discuss, this is not enough, because the corrections to the formal

WI related with the cutoffs satisfy bounds of the same type of the previous one.
The problem is finally solved by using other identities, which we call correction
identities.



Rigorous Construction of Luttinger Liquids Through Ward Identities 39

5 The First Ward Identity

By doing in (3) the chiral gauge transformation (27), one obtains [3] the Ward iden-
tity, see Fig. 3,

D+(p)G2,1
+ (p,k,q) = G2+(q)−G2+(k)+Δ

2,1
+ (p,k,q). (28)

Fig. 3 Graphical representation of the Ward identity (28); the small circle in Δ̂
2,1
+ represents the

function C+ of (30)

We used the definitions

Δ
2,1
+ (p,k,q) = 1

βL

∑

k

C+(k,k − p)
〈
ψ̂+

k,+ψ̂
−
k−p,+; ψ̂−

k,+ψ̂
+
q,+
〉T

(29)

and

Cω(k+,k−) = [Ch,0(k−)− 1]Dω(k−)− [Ch,0(k+)− 1]Dω(k+). (30)

At graph level, the Ward identities follow from the trivial identity

1

Dω(k)
− 1

Dω(k + p)
= Dω(p)

Dω(k)Dω(k + p)
. (31)

One could guess that the correction term Δ
2,1
+ is negligible. However, this is not

true, but we have the first correction identity where ν+, ν− are O(λ) and weakly
dependent on h. Moreover, the term H

2,1
+ is indeed negligible, in the sense that, if

we can make the limit h →−∞, its contribution goes to 0 as the external momenta
go to 0 (of course staying much larger than γ h).

If we insert the correction identity in the WI, we get

(1 − ν+)D+(p)Ĝ2,1
+ (p,k,q)− ν−D−(p)Ĝ2,1

− (p,k,q)

= Ĝ2+(q)− Ĝ2+(k)+ Ĥ
2,1
+ (p,k,q). (32)
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Fig. 4 The first Correction Identity; the filled point in the last term represents the function
C+(k,k − p)−∑ω νωDω(p)

The presence of G
2,1
+ in the correction identity is not a problem. In fact, this

function satisfies another Ward identity and a corresponding correction identity, in-
volving the same constants ν+, ν−, and we get

(1 − ν+)D−(p)Ĝ2,1
− (p,k,q)− ν−D+(p)Ĝ2,1

+ (p,k,q) = Ĥ
2,1
− (p,k,q). (33)

Hence, we can represent Ĝ2,1
+ as a linear combination of propagators, as in the case

of the formal WI, up to negligible terms.
The first WI can be used to prove that

Z
(2)
h

Z
(1)
h

= 1 +O(εh). (34)

In order to get this result, we put k = −q = k̄, with |k̄| = γ h. For these values of
the external momenta, Ĥ 2,1

− (p,k,q) is not negligible, but one can show [3] that

∣
∣
∣
∣
∣
Δ̂

2,1
+ (2k̄, k̄,−k̄)

D+(2k̄)

∣
∣
∣
∣
∣
≤ Cγ−2hεh

Z
(2)
h

(Z
(1)
h )2

. (35)

6 The Second Ward Identity

Another WI that plays an important role is that graphically represented in the fol-
lowing picture.

If one inserts this identity in the Dyson equation, the two terms containing the
four point function give the right bound, but the correction term Δ

4,1
+ /D+(p) has the

same bad bound as the original one, so making apparently useless the WI. However,
there is again a correction identity, see Fig. 6, that allows us to solve this problem.

This identity involves also the correlation function G
4,1
− ; hence, as before, in

order to get a relation involving only G
4,1
+ , G4+ and some negligible terms, one has

to use also another WI and the corresponding correction identity.
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Fig. 5 The second Ward Identity; the small circle in the last term represents the function
C+(k,k − p)

Fig. 6 The second Correction Identity; the filled point in the last term represents the function
C+(k,k − p)−∑ω νωDω(p)

However, to show that the contribution of Ĥ
4,1
+ has the right bound is not so

simple, since we need to evaluate it for external momenta of order γ h. It turns out
that we have to evaluate a correlation very similar to the four point function with
one of the external vertices substituted with a suitable “correction vertex”, see [4]
for the very technical details.

7 The Euclidean Thirring Model

It is a the Euclidean version of a relativistic two dimensional model, formally de-
fined by the Grassmannian measure

dψ̄ dψ exp

{

−
∫

dx
[
−ψ̄xiγ

μ∂μψx ++μψ̄xψx + λ(ψ̄xψx)
2
]}

(36)

{γ μ, γ ν} = −2δμ,ν. (37)

In order to give a meaning to the model, one has to introduce an u.v. and an i.r.
cutoff, together with suitable field strength and interaction renormalization.
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Let us consider the massless case, μ = 0. By a suitable field transformation, one
can show that the model can be written as the Tomonaga model with free measure

P(dψ) = Dψ

N exp

⎧
⎨

⎩
−Z

(1)
N

Lβ

∑

ω=±1

∑

k∈D
Ch,N(k)(−ik0 + ωk)ψ̂k,ωψ̂k,ω

⎫
⎬

⎭

and interaction

V (ψ) = λN

∫
dx ψ+

x,+ψ−
x,+ψ+

x,−ψ−
x,−.

The Schwinger functions can be calculated by the generating functional

W(φ, J ) = log
∫

P(dψ)e
−V (ψ)+∑ω

∫
dx
[
Jx,ωZ

(2)
N ψ+

x,ωψ
−
x,ω+φ+x,ωψ−

x,ω+ψ+
x,ωφ

−
x,ω

]

.

The analysis of the Tomonaga model implies that the cutoffs can be removed if

λN = λ
(
Z

(1)
N

)2

Z
(1)
N = c1(λ)γ

−Nη(λ∗), Z
(2)
N = c2(λ)γ

−Nη(λ∗), λ∗ = λ−∞(λ)

where ci(λ) are two arbitrary analytic functions such that ci(0) are strictly positive
numbers. They have to be chosen by fixing the values of some correlations at finite
values of their external momenta. Note that we have essentially already fixed the
interaction strength at physical momentum scales of order one; it is given by λ∗.

In Ref. [5], which we refer to even for relevant references to the huge literature
on the Thirring model, it is shown that all the field correlation functions are well de-
fined, in the limit of removed cutoffs, and that they satisfy the Osterwalder–Schrader
axioms. Hence, we are able to get results in agreement with known ones, obtained
by different techniques. However, our approach can be extended, with a relatively
minor effort, to the massive Thirring model (μ > 0), which was up to now an open
problem, at least from the point of view of Mathematical Physics.

In order to understand the type of results one can get, let us consider the two
point function Sω(k) in the massless case. Simple scaling arguments, based on the
structure of its tree expansion after the cutoffs removal, imply that

Sω(k) = |k|η(λ∗)
Dω(k)

f (λ∗)
c1(λ)

(38)

where f (λ∗) is a suitable analytic function of λ∗ (hence of λ), independent of c1(λ).
If we put the renormalization condition

Dω(k)Sω(k) = 1/mη, if |k| = 1 (39)

we get the well known formula
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Sω(k) = |k/m|η(λ∗)
Dω(k)

. (40)

Let us now consider the first WI for the Thirring model; we have

Z
(1)
N

Z
(2)
N

[
(1 − ν+)D+(p)Ĝ2,1

+ (p,k,q)− ν−D−(p)Ĝ2,1
− (p,k,q)

]

= Ĝ2+(q)− Ĝ2+(k)+
Z

(1)
N

Z
(2)
N

Ĥ
2,1
+ (p,k,q). (41)

If we put c2(λ) = c1(λ) and we remove the cutoffs, we get, for any non zero values
of the external momenta

(1 − ν+)D+(p)Ĝ2,1
+ (p,k,q)− ν−D−(p)Ĝ2,1

− (p,k,q) = Ĝ2+(q)− Ĝ2+(k) (42)

which shows the well known fact that the formal Ward identity is not satisfied, but
anomalous terms are present, related to the non zero constants ν+ and ν−.
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New Algebraic Aspects of Perturbative
and Non-perturbative Quantum Field Theory

Christoph Bergbauer and Dirk Kreimer

Abstract In this expository article we review recent advances in our understanding
of the combinatorial and algebraic structure of perturbation theory in terms of Feyn-
man graphs, and Dyson-Schwinger equations. Starting from Lie and Hopf algebras
of Feynman graphs, perturbative renormalization is rephrased algebraically. The
Hochschild cohomology of these Hopf algebras leads the way to Slavnov-Taylor
identities and Dyson-Schwinger equations. We discuss recent progress in solving
simple Dyson-Schwinger equations in the high energy sector using the algebraic
machinery. Finally there is a short account on a relation to algebraic geometry and
number theory: understanding Feynman integrals as periods of mixed (Tate) mo-
tives.

1 Introduction

As elements of perturbative expansions of Quantum field theories, Feynman graphs
have been playing and still play a key role both for our conceptual understanding and
for state-of-the-art computations in particle physics. This article is concerned with
several aspects of Feynman graphs: First, the combinatorics of perturbative renor-
malization give rise to Hopf algebras of rooted trees and Feynman graphs. These
Hopf algebras come with a cohomology theory and structure maps that help under-
stand important physical notions, such as locality of counterterms, the beta function,
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certain symmetries, or Dyson-Schwinger equations from a unified mathematical
point of view. This point of view is about self-similarity and recursion. The atomic
(primitive) elements in this combinatorial approach are divergent graphs without
subdivergences. They must be studied by additional means, be it analytic methods
or algebraic geometry and number theory, and this is a significantly more difficult
task. However, the Hopf algebra structure of graphs for renormalization is in this
sense a substructure of the Hopf algebra structure underlying the relative cohomol-
ogy of graph hypersurfaces needed to understand the number-theoretic properties of
field theory amplitudes [6, 5].

2 Lie and Hopf Algebras of Feynman Graphs

Given a Feynman graph Γ with several divergent subgraphs, the Bogoliubov recur-
sion and Zimmermann’s forest formula tell how Γ must be renormalized in order
to obtain a finite conceptual result, using only local counterterms. This has an ana-
lytic (regularization/extension of distributions) and a combinatorial aspect. The ba-
sic combinatorial question of perturbative renormalization is to find a good model
which describes disentanglement of graphs into subdivergent pieces, or dually inser-
tion of divergent pieces one into each other, from the point of view of renormalized
Feynman rules. It has been known now for several years that commutative Hopf
algebras and (dual) Lie algebras provide such a framework [26, 14, 15] with many
ramifications in pure mathematics. From the physical side, it is important to know
that, for example, recovering aspects of gauge/BRST symmetry [40, 38, 31, 39] and
the transition to nonperturbative equations of motion [11, 28, 29, 37, 3, 35, 32, 36,
4] are conveniently possible in this framework, as will be discussed in subsequent
sections.

In order to introduce these Lie and Hopf algebras, let us now fix a renormal-
izable quantum field theory (in the sense of perturbation theory), given by a local
Lagrangian. A convenient first example is massless φ3 theory in 6 dimensions. We
look at its perturbative expansion in terms of 1PI Feynman graphs. Each 1PI graph
Γ comes with two integers, |Γ | = |H1(Γ )|, its number of loops, and sdd(Γ ), its
superficial degree of divergence. As usual, vacuum and tadpole graphs need not be
considered, and the only remaining superficial divergent graphs have exactly two or
three external edges, a feature of renormalizability. Graphs without subdivergences
are called primitive. Here are two examples.

Both are superficially divergent as they have three external edges. The first one has
two subdivergences, the second one is primitive. Note that there are infinitely many
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primitive graphs with three external edges. In particular, for every n ∈ N one finds
a primitive Γ such that |Γ | = n.

Let now L be the Q-vector space generated by all the superficially divergent
(sdd ≥ 0) 1PI graphs of our theory, graded by the number of loops | · |. There is
an operation on L given by insertion of graphs into each other: Let γ1, γ2 be two
generators of L. Then

γ1 � γ2 :=
∑

Γ

n(γ1, γ2, Γ )

where n(γ1, γ2, Γ ) is the number of times that γ1 shows up as a subgraph of Γ and
Γ/γ1 ∼= γ2. Here are two examples:

This definition is extended bilinearly onto all of L. Note that � respects the grading
as |γ1 � γ2| = |γ1| + |γ2|. The operation � is not in general associative. Indeed, it is
pre-Lie [14, 17]:

(γ1 � γ2) � γ3 − γ1 � (γ2 � γ3) = (γ1 � γ3) � γ2 − γ1 � (γ3 � γ3). (1)

To see that (1) holds observe that on both sides nested insertions cancel. What re-
mains are disjoint insertions of γ2 and γ3 into γ1 which do obviously not depend on
the order of γ2 and γ3. One defines a Lie bracket on L:

[γ1, γ2] := γ1 � γ2 − γ2 � γ1.

The Jacobi identity for [·, ·] is satisfied as a consequence of the pre-Lie property (1)
of �. This makes L a graded Lie algebra. The bracket is defined by mutual insertions
of graphs. As usual, U(L), the universal enveloping algebra of L is a cocommuta-
tive Hopf algebra. Its graded dual, in the sense of Milnor-Moore, is therefore a
commutative Hopf algebra H. As an algebra, H is free commutative, generated by
the vector space L and an adjoined unit I. By duality, one expects the coproduct of
H to disentangle its argument into subdivergent pieces. Indeed, one finds

Δ(Γ ) = I⊗ Γ + Γ ⊗ I+
∑

γ�Γ

γ ⊗ Γ/γ. (2)

The relation γ � Γ refers to disjoint unions γ of 1PI superficially divergent sub-
graphs of Γ. Disjoint unions of graphs are in turn identified with their product in H.

For example,
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The coproduct respects the grading by the loop number, as does the product (by
definition). Therefore H = ⊕∞

n=0 Hn is a graded Hopf algebra. Since H0 ∼= Q it
is connected. The count ε vanishes on the subspace

⊕∞
n=1 Hn, called augmentation

ideal, and ε(I) = 1. As usual, if Δ(x) = I ⊗ x + x ⊗ I, the element x is called
primitive. The linear subspace of primitive elements is denoted Prim H.

The interest in H and L arises from the fact that the Bogoliubov recursion is
essentially solved by the antipode of H. In any connected graded bialgebra, the
antipode S is given by

S(x) = −x −
∑

S(x′)x′′, x /∈ H0 (3)

in Sweedler’s notation. Let now V be a C-algebra. The space of linear maps
LQ(H, V ) is equipped with a convolution product (f, g) �→ f ∗ g = mV (f ⊗ g)Δ

where mV is the product in V. Relevant examples for V are suggested by regulariza-
tion schemes such as the algebra V = C[[ε, ε−1] of Laurent series with finite pole
part for dimensional regularization (space-time dimension D = 6 + 2ε.) The (un-
renormalized) Feynman rules provide then an algebra homomorphism φ : H → V

mapping Feynman graphs to Feynman integrals in 6 + 2ε dimensions. On V there
is a linear endomorphism R (renormalization scheme) defined, for example mini-
mal subtraction R(εn) = 0 if n ≥ 0, R(εn) = εn if n < 0. If Γ is primitive,
as defined above, then φ(Γ ) has only a simple pole in ε, hence (1 − R)φ(Γ ) is a
good renormalized value for Γ. If Γ does have subdivergences, the situation is more
complicated. However, the map S

φ
R : H → V

S
φ
R(Γ ) = −R

(
φ(Γ )−

∑
S
φ
R(Γ

′)φ(Γ ′′)
)

provides the counterterm prescribed by the Bogoliubov recursion, and (S
φ
R ∗ φ)(Γ )

yields the renormalized value of Γ. The map S
φ
R is a recursive deformation of φ ◦

S by R, compare its definition with (3). These are results obtained by one of the
authors in collaboration with Connes [26, 14, 15].

For S
φ
R to be an algebra homomorphism again, one requires R to be a Rota-

Baxter operator, studied in a more general setting by Ebrahimi-Fard, Guo and one
of the authors in [20, 22, 21]. The Rota-Baxter property is at the algebraic origin of
the Birkhoff decomposition introduced in [15, 16]. In the presence of mass terms, or
gauge symmetries etc. in the Lagrangian, φ, Sφ

R and S
φ
R �φ may contribute to several

form factors in the usual way. This can be resolved by considering a slight exten-
sion of the Hopf algebra containing projections onto single structure functions, as
discussed for example in [15, 32]. For the case of gauge theories, a precise definition
of the coefficients n(γ1, γ2, Γ ) is given in [31].
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The Hopf algebra H arises from the simple insertion of graphs into each other in
a completely canonical way. Indeed, the pre-Lie product determines the coproduct,
and the coproduct determines the antipode. Like this, each quantum field theory
gives rise to such a Hopf algebra H based on its 1PI graphs. It is no surprise then
that there is an even more universal Hopf algebra behind all of them: The Hopf
algebra Hrt of rooted trees [26, 14]. In order to see this, imagine a purely nested
situation of subdivergences like

which can be represented by the rooted tree

To account for each single graph of this kind, the tree’s vertices should actually be
labeled according to which primitive graph they correspond to (plus some gluing
data) which we will suppress for the sake of simplicity. The coproduct on Hrt—
corresponding to the one (2) of H—is

Δ(τ) = I⊗ τ + τ ⊗ I+
∑

adm.c

Pc(τ )⊗ Rc(τ)

where the sum runs over all admissible cuts of the tree τ. A cut of τ is a nonempty
subset of its edges which are to be removed. A cut c(τ ) is defined to be admissible, if
for each leaf l of τ at most one edge on the path from l to the root is cut. The product
of subtrees which fall down when those edges are removed is denoted Pc(τ). The
part which remains connected with the root is denoted Rc(τ). Here is an example:

Compared to Hrt , the advantage of H is however that overlapping divergences are
resolved automatically. To achieve this in Hrt requires some care [27].
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3 From Hochschild Cohomology to Physics

There is a natural cohomology theory on H and Hrt whose non-exact 1-cocycles
play an important “operadic” role in the sense that they drive the recursion that de-
fine the full 1PI Green’s functions in terms of primitive graphs. In order to introduce
this cohomology theory, let A be any bialgebra. We view A as a bicomodule over
itself with right coaction (id ⊗ ε)Δ. Then the Hochschild cohomology of A (with
respect to the coalgebra part) is defined as follows [14]: Linear maps L : A → A⊗n

are considered as n-cochains. The operator b, defined as

bL := (id ⊗ L)Δ+
n∑

i=1

(−1)iΔiL+ (−1)n+1L⊗ I (4)

furnishes a codifferential: b2 = 0. Here Δ denotes the coproduct of A and Δi

the coproduct applied to the i-th factor in A⊗n. The map L ⊗ I is given by x �→
L(x)⊗ I. Clearly this codifferential encodes only information about the coalgebra
(as opposed to the algebra) part of A. The resulting cohomology is denoted HH•

ε(A).

For n = 1, the cocycle condition bL = 0 is simply

ΔL = (id ⊗ L)Δ+ L⊗ I (5)

for L a linear endomorphism of A. In the Hopf algebra Hrt of rooted trees (where
things are often simpler), a 1-cocycle is quickly found: the grafting operator B+,
defined by

B+(I) = •

B+(τ1 . . . τn) = for trees τi

joining all the roots of its argument to a newly created root. Clearly, B+ reminds
of an operad multiplication. It is easily seen that B+ is not exact and therefore a
generator (among others) of HH1

ε(Hrt ). Foissy [23, 24] showed that L �→ L(I) is
an onto map HH1

ε(Hrt ) → Prim Hrt . The higher Hochschild cohomology (n ≥ 2)
of Hrt is known to vanish [23, 24]. The pair (Hrt , B+) is the universal model for
all Hopf algebras of Feynman graphs and their 1-cocycles [14]. Let us now turn to
those 1-cocycles of H. Clearly, every primitive graph γ gives rise to a 1-cocycle B

γ
+

defined as the operator which inserts its argument, a product of graphs, into γ in all
possible ways. Here is a simple example:

See [31] for the general definition involving some combinatorics of insertion places
and symmetries.
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It is an important consequence of the B
γ
+ satisfying the cocycle condition (5) that

(S
φ
R ∗ φ)B+ = (1 − R)B̃+(Sφ

R ∗ φ) (6)

where B̃+ is the push-forward of B+ along the Feynman rules φ. In other words,
B̃

γ
+ is the integral operator corresponding to the skeleton graph γ. This is the com-

binatorial key to the proof of locality of counterterms and finiteness of renormaliza-
tion [13, 28, 2, 3]. Indeed, (6) says that after treating all subdivergences, an overall
subtraction (1 − R) suffices. The only analytic ingredient is Weinberg’s theorem
applied to the primitive graphs. In [2] it is emphasized that H is actually generated
(and determined) by the action of prescribed 1-cocycles and the multiplication. A
version of (6) with decorated trees is available which describes renormalization in
coordinate space [2].

The 1-cocycles Bγ
+ give rise to a number of useful Hopf subalgebras of H. Many

of them are isomorphic. They are studied in [3] on the model of decorated rooted
trees, and we will come back to them in the next section. In [31] one of the authors
showed that in non-Abelian gauge theories, the existence of a certain Hopf subalge-
bra, generated by 1-cocycles, is closely related to the Slavnov-Taylor identities for
the couplings to hold. In a similar spirit, van Suijlekom showed that, in QED, Ward-
Takahashi identities, and in non-Abelian Yang-Mills theories, the Slavnov-Taylor
identities for the couplings generate Hopf ideals I of H such that the quotients H/I
are defined and the Feynman rules factor through them [38, 39]. The Hopf algebra

H for QED had been studied before in [10, 34, 40].

4 Dyson-Schwinger Equations

The ultimate application of the Hochschild 1-cocycles introduced in the previous
section aims at non-perturbative results. Dyson-Schwinger equations, reorganized
using the correspondence Prim H → HH1

ε(H), become recursive equations in
H[[α]], α the coupling constant, with contributions from (degree 1) 1-cocycles. The
Feynman rules connect them to the usual integral kernel representation. We remain
in the massless φ3 theory in 6 dimensions for the moment. Let Γ ⊥ be the full 1PI
vertex function,

Γ = I+
∑

resΓ=⊥
α|Γ | Γ

SymΓ
(7)

(normalized such that the tree level contribution equals 1). This is a formal power
series in α with values in H. Here resΓ is the result of collapsing all internal lines
of Γ. The graph resΓ is called the residue of Γ. In a renormalizable theory, res can
be seen as a map from the set of generators of H to the terms in the Lagrangian. For
instance, in the φ3 theory, vertex graphs have residue⊥, and self energy graphs have
residue −. The number SymΓ denotes the order of the group of automorphisms of
Γ, defined in detail for example in [31, 39]. Similarly, the full inverse propagator
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Γ − is represented by

Γ − = I−
∑

resΓ=−
α|Γ | Γ

SymΓ
. (8)

These series can be reorganized by summing only over primitive graphs, with all
possible insertions into these primitive graphs. In H, the insertions are afforded by
the corresponding Hochschild 1-cocycles. Indeed,

Γ ⊥ = I+
∑

γ∈Prim H,res γ=⊥

α|γ |Bγ
+(Γ ⊥Q|γ |)
Sym γ

Γ − = I−
∑

γ∈Prim H,res γ=−

α|γ |Bγ
+(Γ −Q|γ |)
Sym γ

.

(9)

The universal invariant charge Q is a monomial in the Γ r and their inverses, where
r are residues (terms in the Lagrangian) provided by the theory. In φ3 theory we
have Q = (Γ ⊥)2(Γ −)−3. In φ3 theory, the universality of Q (i.e. the fact that the
same Q is good for all Dyson-Schwinger equations of the theory) comes from a sim-
ple topological argument. In non-Abelian gauge theories however, the universality
of Q takes care that the solution of the corresponding system of coupled Dyson-
Schwinger equations gives rise to a Hopf subalgebra and therefore amounts to the
Slavnov-Taylor identities for the couplings [31].

The system (9) of coupled Dyson-Schwinger equations has (7,8) as its solution.
Note that in the first equation of (9) an infinite number of cocycles contributes as
there are infinitely many primitive vertex graphs in φ3

6 theory—the second equation
has only finitely many contributions—here one. Before we describe how to actually
attempt to solve equations of this kind analytically (application of the Feynman
rules φ), we discuss the combinatorial ramifications of this construction in the Hopf
algebra. It makes sense to call all (systems of) recursive equations of the form

X1 = I±
∑

n

αk1
nB

d1
n+ (M1

n)

. . .

Xs = I±
∑

n

αksnB
dsn+ (Ms

n)

combinatorial Dyson-Schwinger equations, and to study their combinatorics. Here,
the B

dn+ are non-exact Hochschild 1-cocycles and the Mn are monomials in the
X1 . . . Xs. In [3] we studied a large class of single (uncoupled) combinatorial Dyson-
Schwinger equations in a decorated version of Hrt as a model for vertex insertions:

X = I+
∞∑

n=1

αnwnB
dn+ (Xn+1)
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where the wn ∈ Q. For example, X = I+ αB+(X2)+ α2B+(X3) is in this class. It
turns out [28, 3] that the coefficients cn of X, defined by X =∑∞

n=0 α
ncn generate

a Hopf subalgebra themselves:

Δ(cn) =
n∑

k=0

Pn
k ⊗ ck.

The Pn
k are homogeneous polynomials of degree n − k in the cl, l ≤ n. These

polynomials have been worked out explicitly in [3]. One notices in particular that
the Pn

k are independent of the wn and B
dn+ , and hence that under mild assump-

tions (on the algebraic independence of the cn) the Hopf subalgebras generated this
way are actually isomorphic. For example, X = I + αB+(X2) + α2B+(X3) and
X = I+ αB+(X2) yield isomorphic Hopf subalgebras. This is an aspect of the fact
that truncation of Dyson-Schwinger equations—considering only a finite instead
of an infinite number of contributing cocycles—does make (at least combinatorial)
sense. Indeed, the combinatorics remain invariant. Similar results hold for Dyson-
Schwinger equations in the true Hopf algebra of graphs H where things are a bit
more difficult though as the cocycles there involve some bookkeeping of insertion
places.

The simplest nontrivial Dyson-Schwinger equation one can think of is the linear
one:

X = I+ αB+(X).

Its solution is given by X = ∑∞
n=0 α

n(B+)n(I). In this case X is grouplike and
the corresponding Hopf subalgebra of cns is cocommutative [33]. A typical and
important non-linear Dyson-Schwinger equation arises from propagator insertions:

X = I− αB+(1/X),

for example the massless fermion propagator in Yukawa theory where only the
fermion line obtains radiative corrections (other corrections are ignored). This prob-
lem has been studied and solved by Broadhurst and one of the authors in [11] and
revisited recently by one of the authors and Yeats [35]. As we now turn to the ana-
lytic aspects of Dyson-Schwinger equations, we briefly sketch the general approach
presented in [35] on how to successfully treat the nonlinearity of Dyson-Schwinger
equations. Indeed, the linear Dyson-Schwinger equations can be solved by a simple
scaling ansatz [33]. In any case, let γ be a primitive graph. The following works for
amplitudes which depend on a single scale, so let us assume a massless situation
with only one non-zero external momentum—how more than one external momen-
tum (vertex insertions) are incorporated by enlarging the set of primitive elements is
sketched in [32]. The grafting operator Bγ

+ associated to γ translates to an integral
operator under the (renormalized) Feynman rules

φR(B
γ
+)(I)(p2/μ2) =

∫
(Iγ (k, p)− Iγ (k, μ))dk
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where Iγ is the integral kernel corresponding to γ, the internal momenta are denoted
by k, the external momentum by p, and μ is the fixed momentum at which we
subtract: R(x) = x|p2=μ2 .

In the following we stick to the special case discussed in [35] where only one
internal edge is allowed to receive corrections. The integral kernel φ(Bγ

+) defines a
Mellin transform

F(ρ) =
∫

Iγ (k, μ)(k
2
i )
−ρdk

where ki is the momentum of the internal edge of γ at which insertions may take
place (here the fermion line). If there are several insertion sites, obvious multiple
Mellin transforms become necessary. The case of two (propagator) insertion places
has been studied, at the same example, in [35].

The function F(ρ) has a simple pole in ρ at 0. We write

F(ρ) = r

ρ
+

∞∑

n=0

fnρ
n.

We denote L = logp2/μ2. Clearly φR(X) = 1 +∑n γnL
n. An important result

of [35] is that, even in the difficult nonlinear situation, the anomalous dimension
γ1 is implicitly defined by the residue r and Taylor coefficients fn of the Mellin
transform F. On the other hand, all the γn for n ≥ 2, are recursively defined in
terms of the γi, i < n. This last statement amounts to a renormalization group
argument that is afforded in the Hopf algebra by the scattering formula of [16].
Curiously, for this argument only a linearized part of the coproduct is needed. We
refer to [35] for the actual algorithm. For a linear Dyson-Schwinger equation, the
situation is considerably simpler as the γn = 0 for n ≥ 2 since X is grouplike [33].

Let us restate the results for the high energy sector of non-linear Dyson-
Schwinger equations [11, 35]: Primitive graphs γ define Mellin transforms via their
integral kernels B̃γ

+. The anomalous dimension γ1 is implicitly determined order by
order from the coefficients of those Mellin transforms. All non-leading log coef-
ficients γn are recursively determined by γ1, thanks to the renormalization group.
This reduces, in principle, the problem to a study of all the primitive graphs and the
intricacies of insertion places.

Finding useful representations of those Mellin transforms—even one-dimensional
ones—of higher loop order skeleton graphs is difficult. However, the two-loop prim-
itive vertex in massless Yukawa theory has been worked out by Bierenbaum,
Weinzierl and one of the authors in [4], a result that can be applied to other the-
ories as well. Combined with the algebraic treatment [11, 3, 35] sketched in the
previous paragraphs and new geometric insight on primitive graphs (see Sect. 5),
there is reasonable hope that actual solutions of Dyson-Schwinger equations will be
more accessible in the future.

Using the Dyson-Schwinger analysis, one of the authors and Yeats [36] were able
to deduce a bound for the convergence of superficially divergent amplitudes/structure
functions from the (desirable) existence of a bound for the superficially convergent
amplitudes.
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5 Feynman Integrals and Periods of Mixed (Tate) Hodge
Structures

A primitive graph Γ ∈ Prim H defines a real number rΓ , called the residue of Γ ,
which is independent of the renormalization scheme. In the case that Γ is massless
and has one external momentum p, the residue rΓ is the coefficient of logp2/μ2

in φR(Γ ) = (1 − R)φ(Γ ). It coincides with the coefficient r of the Mellin trans-
form introduced in the previous section. One may ask what kind of a number r

is, for example if it is rational or algebraic. The origin of this question is that the
irrational or transcendental numbers that show up for various Γ strongly suggest
a motivic interpretation of the rΓ . Indeed, explicit calculations [8, 9, 12] display
patterns of Riemann zeta and multiple zeta values that are known to be periods of
mixed Tate Hodge structures—here the periods are provided by the Feynman rules
which produce Γ �→ rΓ . By disproving a related conjecture of Kontsevich, Belkale
and Brosnan [1] have shown that not all these Feynman motives must be mixed Tate,
so one may expect a larger class of Feynman periods than multiple zeta values. Our
detailed understanding of these phenomena is still far from complete, and only some
very first steps have been made in the last few years. However, techniques developed
in recent work by Bloch, Esnault and one of the authors [7] do permit reasonable
insight for some special cases which we briefly sketch in the following.

Let Γ be a logarithmically divergent massless primitive graph with one external
momentum p. It is convenient to work in the “Schwinger” parametric representa-
tion [25] obtained by the usual trick of replacing propagators

1

k2
=
∫ ∞

0
dae−ak2

,

and performing the loop integrations (Gaussian integrals) first which leaves us with
a (divergent) integral over various Schwinger parameters a. It is a classical exer-
cise [25, 7, 6] to show that in four dimensions, up to some powers of i and 2π ,

φ(Γ ) =
∫ ∞

0
da1 · · · dan e

−QΓ (a,p2)/ΨΓ (a)

Ψ 2
Γ (a)

where n is the number of edges of Γ. QΓ and ΨΓ are graph polynomials of Γ , where
ΨΓ , sometimes called Symanzik or Kirchhoff polynomial, is defined as follows: Let
T (Γ ) be the set of spanning trees of Γ, i.e. the set of connected simply connected
subgraphs which meet all vertices of Γ. We think of the edges e of Γ as being
numbered from 1 to n. Then

ΨΓ =
∑

t∈T (Γ )

∏

e $∈t
ae.

This is a homogeneous polynomial in the ai of degree |H1(Γ )|. It is easily seen
(scaling behaviour of QΓ and ΨΓ ) that rΓ = ∂φR(Γ )

∂ logp2/μ2 is extracted from φ(Γ )
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by considering the ai as homogeneous coordinates of P
n−1(R) and evaluating at

p2 = 0:

rΓ =
∫

σ⊂Pn−1(R)

Ω

Ψ 2
Γ

(10)

where σ = {[a1, . . . , an]: all ai can be chosen ≥ 0} and Ω is a volume form on
P
n−1. Let XΓ := {ΨΓ = 0} ⊂ P

n−1. If |H1(Γ )| = 1, the integrand in (10) has no
poles. If |H1(Γ )| > 1, poles will show up on the union Δ = ⋃γ�Γ,H1(γ )$=0 Lγ of
coordinate linear spaces Lγ = {ae = 0 for e edge of γ }—these need to be separated
from the chain of integration by blowing up. The blowups being understood, the
Feynman motive is, by abuse of notation,

Hn−1(Pn−1 −XΓ ,Δ−Δ ∩XΓ )

with Feynman period given by (10). See [7, 6] for details. Some particularly acces-
sible examples are the wheel with n spokes graphs

Γn :=

studied extensively in [7]. The corresponding Feynman periods (10) yield rational
multiples of zeta values [8]

rΓn ∈ ζ(2n− 3)Q.

Due to the simple topology of the Γn, the geometry of the pairs (XΓn,ΔΓn) are
well understood and the corresponding motives have been worked out explicitly [7].
The methods used are however nontrivial and not immediately applicable to more
general situations.

When confronted with non-primitive graphs, i.e. graphs with subdivergences,
there are more than one period to consider. In the Schwinger parameter picture,
subdivergences arise when poles appear along exceptional divisors as pieces of Δ
are blown up. This situation can be understood using limiting mixed Hodge struc-
tures [6], see also [30, 37] for a toy model approach to the combinatorics involved.
In [6] it is also shown how the Hopf algebra H of graphs lifts to the category of
motives. For the motivic role of solutions of Dyson-Schwinger equations we refer
to work in progress. Finally we mention that there is related work by Connes and
Marcolli [18, 19] who attack the problem via Riemann-Hilbert correspondences and
motivic Galois theory.
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Exact Solution of the Six-Vertex Model
with Domain Wall Boundary Conditions

Pavel M. Bleher�

Abstract The six-vertex model, or the square ice model, with domain wall bound-
ary conditions (DWBC) has been introduced and solved for finite N by Korepin and
Izergin. The solution is based on the Yang-Baxter equations and it represents the free
energy in terms of an N × N Hankel determinant. Paul Zinn-Justin observed that
the Izergin-Korepin formula can be re-expressed in terms of the partition function
of a random matrix model with a nonpolynomial interaction. We use this observa-
tion to obtain the large N asymptotics of the six-vertex model with DWBC in the
disordered phase and ferroelectric phases, and also on the critical line between these
two phases. The solution is based on the Riemann-Hilbert approach.

1 Six-Vertex Model

The six-vertex model, or the model of two-dimensional ice, is stated on a square
lattice with arrows on edges. The arrows obey the rule that at every vertex there are
two arrows pointing in and two arrows pointing out. Such rule is sometimes called
the ice-rule. There are only six possible configurations of arrows at each vertex,
hence the name of the model, see Fig. 1.

We will consider the domain wall boundary conditions (DWBC), in which the
arrows on the upper and lower boundaries point in the square, and the ones on the
left and right boundaries point out. One possible configuration with DWBC on the
4 × 4 lattice is shown on Fig. 2.

The name of the square ice comes from the two-dimensional arrangement of
water molecules, H2O, with oxygen atoms at the vertices of the lattice and one

Pavel M. Bleher
Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis,
402 N. Blackford St., Indianapolis, IN 46202, USA, e-mail: bleher@math.iupui.edu

� The author is supported in part by the National Science Foundation (NSF) Grant DMS-
0652005.
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Fig. 1 The six arrow configurations allowed at a vertex

Fig. 2 An example of 4 × 4 configuration

hydrogen atom between each pair of adjacent oxygen atoms. We place an arrow
in the direction from a hydrogen atom toward an oxygen atom if there is a bond
between them. Thus, as we already noticed before, there are two in-bound and two
out-bound arrows at each vertex.

For each possible vertex state we assign a weight wi, i = 1, . . . , 6, and define,
as usual, the partition function, as a sum over all possible arrow configurations of
the product of the vertex weights,
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Fig. 3 The corresponding ice model

ZN =
∑

arrow configurations σ

w(σ), w(σ ) =
∏

x∈VN

wσ(x) =
6∏

i=1

w
Ni(σ )
i , (1)

where VN is the N×N set of vertices, σ(x) ∈ {1, . . . , 6} is the vertex configuration
of σ at vertex x, according to Fig. 1, and Ni(σ ) is the number of vertices of type
i in the configuration σ . The sum is taken over all possible configurations obeying
the given boundary condition. The Gibbs measure is defined then as

μN(σ) = w(σ)

ZN

. (2)

Our main goal is to obtain the large N asymptotics of the partition function ZN .
In general, the six-vertex model has six parameters: the weights wi . However, by

using some conservation laws we can reduce these to only two parameters. Namely,
first we reduce to the case

w1 = w2 ≡ a, w3 = w4 ≡ b, w5 = w6 ≡ c, (3)

and then, by using the identity,

ZN(a, a, b, b, c, c) = cN
2
ZN

(
a

c
,
a

c
,
b

c
,
b

c
, 1, 1

)

, (4)

to the two parameters, a
c

and b
c

. For details on how we make this reduction, see,
e.g., the works [1] of Allison and Reshetikhin, [11] of Ferrari and Spohn, and [7] of
Bleher and Liechty.
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Fig. 4 The phase diagram of the model, where F, AF and D mark ferroelectric, antiferroelectric,
and disordered phases, respectively. The circular arc corresponds to the so-called “free fermion”
line, where Δ = 0, and the three dots correspond to 1-, 2-, and 3-enumeration of alternating sign
matrices

2 Phase Diagram of the Six-Vertex Model

Introduce the parameter

Δ = a2 + b2 − c2

2ab
. (5)

The phase diagram of the six-vertex model consists of the following three regions:
the ferroelectric phase region, Δ > 1; the anti-ferroelectric phase region, Δ < −1;
and, the disordered phase region,−1 < Δ < 1, see, e.g., [21]. In these three regions
we parameterize the weights in the standard way: in the ferroelectric phase region,

a = sinh(t−γ ), b = sinh(t+γ ), c = sinh(2|γ |), 0 < |γ | < t, (6)

in the anti-ferroelectric phase region,

a = sinh(γ − t), b = sinh(γ + t), c = sinh(2γ ), |t | < γ, (7)

and in the disordered phase region,

a = sin(γ − t), b = sin(γ + t), c = sin(2γ ), |t | < γ. (8)

The phase diagram of the model is shown on Fig. 4.
Here we will discuss the disordered and ferroelectric phase regions, and we will

use parameterizations (8) and (6).
The phase diagram and the Bethe-Ansatz solution of the six-vertex model for pe-

riodic and anti-periodic boundary conditions are thoroughly discussed in the works
of Lieb [17–20], Lieb, Wu [21], Sutherland [25], Baxter [3], Batchelor, Baxter,



Exact Solution of the Six-Vertex Model 63

O’Rourke, Yung [2]. See also the work of Wu, Lin [27], in which the Pfaffian solu-
tion for the six-vertex model with periodic boundary conditions is obtained on the
free fermion line, Δ = 0.

3 Izergin-Korepin Determinantal Formula

The six-vertex model with DWBC was introduced by Korepin in [14], who derived
an important recursion relation for the partition function of the model. This lead
to a beautiful determinantal formula of Izergin and Korepin [12], for the partition
function of the six-vertex model with DWBC. A detailed proof of this formula and
its generalizations are given in the paper of Izergin, Coker, and Korepin [13]. When
the weights are parameterized according to (8), the formula of Izergin is

ZN = [sin(γ + t) sin(γ − t)]N2

(
∏N−1

n=0 n!)2
τN, (9)

where τN is the Hankel determinant,

τN = det

(
di+k−2φ

dti+k−2

)

1≤i,k≤N

, (10)

and

φ(t) = sin(2γ )

sin(γ + t) sin(γ − t)
. (11)

An elegant derivation of the Izergin-Korepin determinantal formula from the Yang-
Baxter equations is given in the papers of Korepin and Zinn-Justin [15] and Kuper-
berg [16].

One of the applications of the determinantal formula is that it implies that the
partition function τN solves the Toda equation,

τNτ ′′N − τ ′N
2 = τN+1τN−1, N ≥ 1, (′) = ∂

∂t
, (12)

cf. [24]. This was used by Korepin and Zinn-Justin [15] to derive the free energy
of the six-vertex model with DWBC, assuming some Ansatz on the behavior of
subdominant terms in the large N asymptotics of the free energy.

4 The Six-Vertex Model with DWBC and a Random Matrix
Model

Another application of the Izergin-Korepin determinantal formula is that τN can be
expressed in terms of a partition function of a random matrix model. The relation to
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the random matrix model was obtained and used by Zinn-Justin [29]. This relation
will be very important for us. It can be derived as follows. For the evaluation of
the Hankel determinant, it is convenient to use the integral representation of φ(t),
namely, to write it in the form of the Laplace transform,

φ(t) =
∫ ∞

−∞
etλm(λ)dλ, (13)

where

m(λ) = sinh λ
2 (π − 2γ )

sinh λ
2π

. (14)

Then
diφ

dti
=
∫ ∞

−∞
λietλm(λ)dλ, (15)

and by substituting this into the Hankel determinant, (10), we obtain that

τN =
∫ N∏

i=1

[etλim(λi)dλi] det(λi+k−2
i )1≤i,k≤N

=
∫ N∏

i=1

[etλim(λi)dλi] det(λk−1
i )1≤i,k≤N

N∏

i=1

λi−1
i . (16)

Consider any permutation σ ∈ SN of variables λi . From the last equation we have
that

τN =
∫ N∏

i=1

[etλim(λi)dλi](−1)σ det(λk−1
i )1≤i,k≤N

N∏

i=1

λi−1
σ(i). (17)

By summing over σ ∈ SN , we obtain that

τN = 1

N !
∫ N∏

i=1

[etλim(λi)dλi]Δ(λ)2, (18)

where Δ(λ) is the Vandermonde determinant,

Δ(λ) = det(λk−1
i )1≤i,k≤N =

∏

i<k

(λk − λi). (19)

Equation (18) expresses τN in terms of a matrix model integral. Namely, if m(x) =
e−V (x), then

τN =
∏N−1

n=0 n!
πN(N−1)/2

∫
dMeTr[tM−V (M)], (20)

where the integration is over the space of N × N Hermitian matrices. The matrix
model integral can be solved, furthermore, in terms of orthogonal polynomials.
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Introduce monic polynomials Pn(x) = xn + · · · orthogonal on the line with
respect to the weight w(x) = etxm(x), so that

∫ ∞

−∞
Pn(x)Pm(x)e

txm(x)dx = hnδnm. (21)

Then it follows from (18) that

τN =
N−1∏

n=0

hn. (22)

The orthogonal polynomials satisfy the three term recurrence relation,

xPn(x) = Pn+1(x)+QnPn(x)+ RnPn−1(x), (23)

where Rn can be found as

Rn = hn

hn−1
, (24)

see, e.g., [26]. This gives that

hn = h0

n∏

j=1

Rj , (25)

where

h0 =
∫ ∞

−∞
etxm(x)dx = sin(2γ )

sin(γ + t) sin(γ − t)
. (26)

By substituting (25) into (22), we obtain that

τN = hN0

N−1∏

n=1

RN−n
n . (27)

5 Asymptotic Formula for the Recurrence Coefficients

We prove the following asymptotics of the recurrence coefficients Rn.

Theorem 1 (See [4]). As n →∞,

Rn = n2

γ 2

[

R + cos(nω)
∑

j : κj≤2

cjn
−κj + cn−2 +O(n−2−ε)

]

, ε > 0, (28)

where the sum is finite and it goes over j = 1, 2, . . . such that κj ≤ 2,
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R =
(

π

2 cos πζ
2

)2

, ζ ≡ t

γ
; ω = π(1 + ζ ); κj = 1 + 2j

π
2γ − 1

, (29)

and

cj = 2γ eϕ(yj )

cos πζ
2

(−1)j sin
πj

1 − 2γ
π

, (30)

where

yj = πj
π
2γ − 1

, (31)

and

ϕ(y) = −2y

π
ln

(

2π cos
πζ

2

)

+ 2

π

[∫ ∞

0
arg(μ+ iy)f (μ)dμ+ y ln y − y

]

, (32)

where

f (μ) = π

2γ
cothμ

π

2γ
−
(

π

2γ
− 1

)

cothμ

(
π

2γ
− 1

)

− sgnμ. (33)

Also,

c = πγ 2

6(π − 2γ ) cos2 πζ
2

− π2

48 cos2 πζ
2

. (34)

The error term in (28) is uniform on any compact subset of the set
{

(t, γ ) : |t | < γ, 0 < γ <
π

2

}

. (35)

Remark. The method of the proof allows an extension of formula (28) to an asymp-
totic series in negative powers of n.

Denote

FN = 1

N2
ln

τN

(
∏N−1

n=0 n!)2
. (36)

From Theorem 1 we derive the following result.

Theorem 2. As N →∞,
FN = F +O(N−1), (37)

where

F = 1

2
ln

R

γ 2
= ln

π

2γ cos πζ
2

. (38)

This coincides with the formula of work [29], obtained in the saddle-point ap-
proximation. Earlier it was derived in work [15], from some Ansatz for the free
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energy asymptotics. For the partition function ZN in (9) we obtain from Theorem 2
the formula,

1

N2
lnZN = f +O(N−1) f = ln

(
π[cos(2t)− cos(2γ )]

4γ cos πt
2γ

)

. (39)

Let us compare this formula and asymptotics (28) with known exact results.

6 Previous Exact Results

The free fermion line, γ = π
4 , |t | < π

4 . In this case the exact result is

ZN = 1, (40)

see, e.g., [9], which implies f = 0. This agrees with formula (39), which also gives
f = 0 when γ = π

4 . Moreover, the orthogonal polynomials in this case are the
Meixner-Pollaczek polynomials, for which

Rn = 4n2

cos2 2t
= n2R

γ 2
, (41)

cf. [9]. Thus, formula (28) is exact on the free fermion line, with no error term. This
agrees with Theorem 1, because from (30), (34), cj = c = 0 when γ = π

4 .
The ASM (ice) point, γ = π

3 , t = 0. In this case we obtain from (8) that

a = b = c =
√

3

2
, (42)

hence

ZN =
(√

3

2

)N2

A(N), (43)

where A(N) is the number of configurations in the six-vertex model with DWBC.
There is a one-to-one correspondence between the set of configurations in the six-
vertex model with DWBC and the set of N × N alternating sign matrices. By defi-
nition, an alternating sign matrix (ASM) is a matrix with the following properties:

• All entries of the matrix are −1, 0, 1;
• If we look at the sequence of (−1)’s and 1’s, they are alternating along any row

and any column;
• The sum of entries is equal to 1 along any row and any column.

The above correspondence is established as follows: given a configuration of arrows
on edges, we assign (−1) to any vertex of type (1) on Fig. 1, 1 to any vertex of type
(2), and 0 to any vertex of other types. Then the configuration on the vertices gives
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rise to an ASM, and this correspondence is one-to-one. For instance, Fig. 5 shows
the ASM corresponding to the configuration of arrows on Fig. 2.

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

⎞

⎟
⎟
⎠

Fig. 5 ASM for the configuration of Fig. 2

For the number of ASMs there is an exact formula:

A(N) =
N−1∏

n=0

(3n+ 1)!n!
(2n)!(2n+ 1)! . (44)

This formula was conjectured in [22], [23], and proved by Zeilberger [28] by combi-
natorial arguments. Another proof was given by Kuperberg [16], who used formula
(9). The relation to classical orthogonal polynomials was found by Colomo and
Pronko [9], who used this relation to give a new proof of the ASM conjecture. The
orthogonal polynomials in this case are the continuous Hahn polynomials and from
[9] we find that

Rn = n2(9n2 − 1)

4n2 − 1
= 9n2

4
+ 5

16
+O(n−2). (45)

Formula (28) gives

Rn = 9n2

π2

[
π2

4
+ 5π2

144n2
+O(n−2−ε)

]

, (46)

which agrees with (45). From (44) we find that as N →∞,

A(N) = C

(
3
√

3

4

)N2

N− 5
36

(

1 − 115

15552N2
+O(N−3)

)

, (47)

where C > 0 is a constant, so that

ZN = C

(
9

8

)N2

N− 5
36

(

1 − 115

15552N2
+O(N−3)

)

, N →∞. (48)

Formula (39) gives f = ln 9
8 , which agrees with the last formula.

The x = 3 ASM point, γ = π
6 , t = 0. Here the exact result is

ZN = 3N/2

2N2 A(N; 3), (49)
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where ⎧
⎨

⎩

A(2m+ 1; 3) = 3m(m+1)∏m
k=1[ (3k−1)!

(m+k)! ]2,
A(2m+ 2; 3) = 3m (3m+2)!m!

[(2m+1)!]2 A(2m+ 1; 3).
(50)

In this case A(N; 3) counts the number of alternating sign matrices with weight 3k ,
where k is the number of (−1) entries. Formula (50) for A(N; 3) was conjectured in
[22], [23] and proved in [16]. The relation to classical orthogonal polynomials was
again found by Colomo and Pronko [9], who used it to give a new proof of formula
(50) for the 3-enumeration of ASMs. The orthogonal polynomials in this case are
expressed in terms of the continuous dual Hahn polynomials and from [9] we find
that

R2m = 36m2, R2m+1 = 4(3m+ 1)(3m+ 2). (51)

In this case the subdominant term in the asymptotics of Rn exhibits a period 2 os-
cillation. Namely, we obtain from the last formula that

Rn = 9n2 + −1 + (−1)n

2
. (52)

This perfectly fits to the frequency value ω = π for ζ = 0 in (29). Moreover,
formula (28) gives

Rn = 36n2

π2

[
π2

4
+ (−1)nc1

n2
− π2

72n2
+O(n−2−ε)

]

, (53)

which agrees with (52) and it provides with the value of c1 = π2

72 .
From (50) we find, that as m →∞,

A(2m; 3) = C3

(
3

2

)4m2

3−m(2m)
1
18

(

1 + 77

7776m2
+O(N−3)

)

, (54)

where C3 > 0 is a constant, and

A(2m+ 1; 3) = C3

(
3

2

)(2m+1)2

3−
2m+1

2 (2m+ 1)
1
18

(

1 + 131

7776m2
+O(m−3)

)

.

(55)
so that

A(N; 3) = C3

(
3

2

)N2

3−
N
2 N

1
18

(

1 + 104 − 27(−1)N

1944N2
+O(N−3)

)

, (56)

and

ZN = C3

(
3

4

)N2

N
1
18

(

1 + 104 − 27(−1)N

1944N2
+O(N−3)

)

, N →∞. (57)
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Formula (39) gives f = ln 3
4 , which agrees with the last formula.

We have the identity,
∂2FN

∂t2
= RN

N2
, (58)

see, e.g., [5], which is equivalent to the Toda equation (12). By using identity (58),
we obtain from Theorem 1 the following asymptotics.

Theorem 3. As N →∞,

∂2(FN − F)

∂t2
= 1

γ 2
cos(Nω)

∑

j : κj≤2

cjN
−κj + cN−2 +O(N−2−ε). (59)

This gives a quasiperiodic asymptotics, as N → ∞, of the second derivative of
the subdominant terms.

7 Zinn-Justin’s Conjecture

Paul Zinn-Justin conjectured in [29] that

ZN ∼ CNκeN
2f , (60)

i.e.,

lim
N→∞

ZN

CNκeN
2f

= 1. (61)

Formulae (40), (48), and (57) confirm this conjecture, with the value of κ given as

κ =

⎧
⎪⎨

⎪⎩

0, γ = π
4 , |t | < π

4 ;
− 5

36 , γ = π
3 , t = 0;

1
18 , γ = π

6 , t = 0.

(62)

Bogoliubov, Kitaev and Zvonarev obtained in [8] the asymptotics of ZN on the line
a
c
+ b

c
= 1, separating the disordered and antiferroelectric phases. This corresponds

to the value γ = 0. They found that in this case formula (60) holds with κ = 1
12 .

With the help of Theorem 1 we prove the following result.

Theorem 4. We have that

ZN = CNκeN
2f
(
1 +O(N−ε)

)
, ε > 0, (63)

where

κ = 1

12
− 2γ 2

3π(π − 2γ )
, (64)

and C > 0 is a constant.
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This proves the conjecture of Zinn-Justin, and it gives the exact value of the
exponent κ . Let us remark, that the presence of the power-like factor Nκ in the as-
ymptotic expansion of ZN in (63) is rather unusual from the point of view of random
matrix models. In the one-cut case the usual large N asymptotics of ZN in a non-
critical random matrix model is the so called “topological expansion”, which gives
ZN as an asymptotic series in powers of 1/N2. For a rigorous proof of the “topo-
logical expansion” see the work of Ercolani and McLaughlin [10] (see also [5]).

8 Large N Asymptotics of ZN in the Ferroelectric Phase

Recently Bleher and Liechty [7], [6] obtained the large N asymptotics of ZN in the
ferroelectric phase, Δ > 1, and also on the critical line between the ferroelectric
and disordered phases, Δ = 1. In the ferroelectric phase we use parameterization
(6) for a, b and c. The large N asymptotics of ZN in the ferroelectric phase is given
by the following theorem:

Theorem 5. In the ferroelectric phase with t > γ > 0, for any ε > 0, as N →∞,

ZN = CGNFN2[
1 +O

(
e−N1−ε)]

, (65)

where C = 1 − e−4γ , G = eγ−t , and F = sinh(t + γ ).

On the critical line between the ferroelectric and disordered phases we use the
parameterization b = a+1, c = 1. The main result here is the following asymptotic
formula for ZN :

Theorem 6. As n →∞,

ZN = CNκG
√
NFN2[1 +O(N−1/2)], (66)

where C > 0,

κ = 1

4
, G = exp

[

−ζ

(
3

2

)√
a

π

]

, (67)

and
F = b. (68)
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Mathematical Issues in Loop Quantum
Cosmology

Martin Bojowald

Abstract Focusing on mathematical aspects, this article gives a review of loop
quantum cosmology as an application of background independent quantization tech-
niques to cosmological models. Mathematical issues arise at two different levels.
First, the kinematical basis of loop quantum cosmology is derived as an induced
representation of loop quantum gravity. The discrete spatial geometry exhibited
by quantum gravity as a consequence of the loop quantization is then realized
also in cosmological models. Dynamical equations formulated in such models are
difference rather than differential equations, whose analysis provides the second
class of mathematical applications. Suitable solutions display typical features in
quantum regimes, where they can resolve classical space-time singularities, but
should also approach semiclassical behavior in classical regimes. Such solutions
can be found using generating function or continued fraction techniques. Semi-
classical behavior and corrections to the classical one are derived using effective
equations which approximate partial difference equations by ordinary differential
equations.

1 Introduction

In classical gravity, space-time is described as a solution of Einstein’s equation
Gab = 8πGTab, relating the Einstein tensor Gab = Rab − 1

2Rgab of a space-
time metric gab to the energy-momentum tensor Tab of matter, with a coupling
constant given by the gravitational constant G. Due to the Ricci tensor Rab, this
is a set of coupled non-linear partial differential equations for the metric with space-
time coordinates as independent variables. These equations are difficult to solve, but
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with some assumptions it is possible to derive general properties. One of the best
known theorems states that for matter satisfying positive energy conditions, space-
time solutions are generically geodesically incomplete: There is always a geodesic
which is incomplete and cannot be extended beyond its defined range [34]. Such
space-times are called singular due to the presence of boundaries to the motion
of freely falling observers. In the best-known examples such as the Friedmann–
Robertson–Walker or Schwarzschild solutions, some curvature scalars diverge at
such boundaries, although this is not a general property proved in singularity theo-
rems.

Canonical quantum gravity describes space-time by different structures, the met-
ric no longer being the basic object. This requires a different mathematical formu-
lation and poses new problems. A classical state is given by a point in phase space
which for gravity is the cotangent bundle of the space of spatial metrics. Momenta,
i.e. coordinates along the fibers, are given by the extrinsic curvature tensor of spatial
slices Σ , which describes how the slice bends in space-time. A map from space-
time metrics on a 4-dimensional manifold M as solutions to general relativity to
points in this phase space is not given canonically but requires a choice of slicing
Σt : t = const, given by a global time function t : M → R. Space-time geometries
are independent of the time function chosen provided that the cotangent bundle of
spatial metrics with its canonical symplectic form is symplectically reduced to the
appropriate physical phase space. This is achieved by imposing constraints Ci = 0,
i = 1, . . . , 4 on the phase space variables which are equivalent to Einstein’s equa-
tion.

In quantum gravity, analogously to quantum mechanics, a state is described by a
vector in a (projective) Hilbert space. The Hilbert space is a representation space of
the classical Lie algebra of basic variables, such as spatial metrics and extrinsic cur-
vature, under taking Poisson brackets. Alternatively, states can be defined as positive
linear functionals (expectation values) on the algebra itself. Such states can usually
be represented as wave functionals on the configuration space, such as the space of
spatial metrics or related objects for gravity. In analogy to the classical symplec-
tic reduction, the Hilbert space with its representation of basic operators must be
reduced by imposing constraints. These are obtained by representing the classical
constraints as operators and asking that they annihilate physical states: Ĉi |ψ〉 = 0.
This implies linear functional differential equations (in a Wheeler–DeWitt quanti-
zation [31, 46]) or functional difference equations (in loop quantum gravity [43,
3, 45]) where independent variables of the functional equations are the metric ten-
sors. Issues specific to applications of those equations to quantum cosmology are
described in [15].

In general, such operators are difficult to formulate, and the resulting equations
difficult to solve. As in the classical theory, one often uses simplifications due to
spatial symmetries such as homogeneity and isotropy in cosmological situations.
This article describes the derivation of such reduced models as well as aspects of
solutions to their quantum constraint equations.
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2 Quantum Representation and Dynamical Equations

A classical symmetry reduction simply selects a subspace Psymm of the full phase
space P , motivated by symmetry assumptions on metric and extrinsic curvature, for
which the pull-back of the full symplectic structure Ω is also symplectic. The model
thus inherits a well-defined phase space of its own, which allows one to define its
dynamics by pulling back the full constraints Ci , defining the reduced constrained
system.

2.1 Quantum Reduction

At the quantum level, one starts with a representation of basic operators on a Hilbert
space on which symmetries are to be implemented. Since a classical symmetry con-
dition has to be imposed on both configuration variables and momenta to ensure a
symplectic reduced phase space, operators for those conjugate variables do not com-
mute. One thus cannot impose symmetry conditions strongly as operator equations
for states. A suitable formulation has been achieved by imposing symmetry con-
ditions based on the consideration of appropriate states as well as operators [19].
Just as the full classical phase space induces a unique reduced phase space once the
symmetry has been specified, the full basic quantum algebra, representing the clas-
sical configuration and momentum variables as operators, induces a unique reduced
representation once the symmetry has been specified. For explicit constructions see
[24, 11]. (The procedure is related to Rieffel induction [40, 39]. An alternative pro-
cedure, which does not fully remove non-symmetric degrees of freedom but requires
that they are unexcited, is described in [32, 33]. At least for free quantum field the-
ories this can be achieved using the usual coherent states.)

Given a Hilbert space representation, a symmetric state is defined as a distribu-
tional state in the full Hilbert space which is supported only on invariant configura-
tion variables [19]. Here, one can take advantage of the fact that canonical general
relativity can be formulated in terms of connections as configuration variables [1, 7],
and of the classification of invariant connections on symmetric principal fiber bun-
dles [38, 26]. Symmetry conditions for momenta are then imposed by the induced
algebra: it is generated by all basic operators of the full theory which map the space
of symmetric states into itself.

A simple example illustrates the procedure: Given n + 1 degrees of freedom
(qi, pi) from which the (n+ 1)st one is to be removed by symmetry reduction, we
have to impose qn+1 = 0 = pn+1. While this is straightforward classically, strong
operator conditions q̂n+1|ψ〉 = 0 = p̂n+1|ψ〉 in quantum mechanics would be in-
consistent due to 0 = [q̂n+1, p̂n+1]|ψ〉 = i�|ψ〉. Instead, one can perform the reduc-
tion as follows. Define a symmetric state to be a distribution Ψ (qi) = δ(qn+1)ψ(qi)

in the dual D∗ of a suitable dense subset D of the Hilbert space. This defines the set
of symmetric states Dsymm ⊂ D∗. Any operator Ô which is well-defined on D has
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a dual action on Ψ defined by (ÔΨ )[φ] = Ψ [Ô†φ] for all φ ∈ D . In particular the
basic operators (q̂i , p̂i ) thus obtain a dual action on D∗, but not all of them fix the
subset Dsymm. The induced algebra of the reduction is now defined as the algebra
generated by the basic operators mapping Dsymm into itself, and their induced rep-
resentation is obtained from the dual action. This leaves us with the correct degrees
of freedom: (q̂i , p̂i ), i = 1, . . . , n satisfy the condition and are thus generators of
the induced algebra. The derivative operator p̂n+1, however, does not fix Dsymm and
is thus not part of the induced algebra, while q̂n+1 becomes the zero operator in the
dual action. We thus have successfully derived the reduced algebra and an induced
representation. Since the dual D∗ does not carry a natural inner product related to
that of the Hilbert space, there is initially no inner product on Dsymm, either. The
induced representation nevertheless carries a natural inner product defined by re-
quiring the correct adjointness properties of generators of the induced algebra. In
our example, (q̂i , p̂i ) have to be self-adjoint, such that the induced representation
fully agrees with the usual quantum representation of the classically reduced sys-
tem. Note that there is a difference to the classical situation: classical symmetric
solutions are exact solutions of the general equations while the induced representa-
tion space, in general, is not a subspace of the full representation space. This arises
because for the quantum theory it is not the representation space but the algebra of
basic operators which is primary.

This procedure is general enough to apply to loop quantum gravity, too. It defines
the symmetric sector of the full theory, derived from the full quantum representation.
Already the derivation of the induced basic representation is crucial since the Stone–
von Neumann theorem does not apply in loop quantum cosmology (holonomies not
being weakly continuous in a loop quantization). Thus, there is no unique represen-
tation even in finite-dimensional systems and physical properties can be representa-
tion dependent. It is thus crucial that the representation of loop quantum cosmology
is derived from that of full loop quantum gravity along the lines sketched above.
This is the underlying reason for the availability of qualitative physical predictions.

2.2 Dynamics

On the induced representation one then has to formulate the constraints Ĉi and solve
the equations they imply for states. The quantum analog of pulling back the clas-
sical constraints is not simple, unless they are linear in basic variables, and is still
being developed. Rather than deriving quantum constraints in this way, one cur-
rently quantizes the reduced constraints from induced basic operators along the lines
followed in a full construction. Since the most important aspects of quantum con-
straints and their solutions depend on the representation in which the operators are
formulated, properties of constraints in the full theory are thus inherited in mod-
els through the induction procedure. This suffices to show crucial effects which
enter the general quantization scheme, and has by now led to many applications.
But, at a detailed level, it leaves several different possibilities for the exact form of
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constraints, a degree of non-uniqueness which is exacerbated by the current non-
uniqueness of the full constraint in the first place.

In most models introduced so far, the constraints take the form of difference
equations for states. Once a model has been specified, loop quantum cosmology
thus requires one to solve difference equations for a wave function. This leads to our
second mathematical issue, properties of difference equations of a certain type. We
will focus here on isotropic models, whose induced representation is given by the
space of square integrable functions on the Bohr compactification of the real line [5,
14]. By this compactification, the representation differs from what one would expect
naively from a quantum mechanical procedure as it is followed in Wheeler–DeWitt
quantizations. This is an example for the importance of the induction procedure
to impose symmetry conditions. As a direct implication, the momentum operator of
isotropic models, corresponding to a densitized triad component and thus describing
spatial geometry, has a discrete spectrum of eigenvalues μ. (Any real value of μ is
allowed, but all eigenstates are normalizable: the Hilbert space is non-separable.)
This is not only the reason for the occurrence of difference equations but also has
further physical implications.

Only one constraint remains to be imposed in an isotropic model due to the sym-
metry. A corresponding operator has to be constructed in terms of the basic ones,
following the steps one would do without assuming symmetries. This is indeed pos-
sible, but not in a unique manner. The resulting equation for a wave function ψμ is
in general of the form of a difference equation [9]

(Vμ+2 − Vμ)ψμ+1(φ)− 2(Vμ+1 − Vμ−1)ψμ(φ)

+ (Vμ − Vμ−2)ψμ−1(φ) = −4πG

3
Ĥmatter(μ)ψμ(φ) (1)

where coefficients are written in terms of volume eigenvalues Vμ = (|μ|/6)3/2 and
Ĥmatter is a differential operator (quantizing the matter Hamiltonian) acting on the
matter field φ.

This equation, as written here, is the simplest version, based on certain assump-
tions on how a full constraint operator would reduce to that of the model. The free-
dom one has in the full construction essentially reduces, in isotropic models, to the
form of the step size of the dynamical difference equation. This can be phrased as
the question of which function of μ, if any at all, changes equidistantly in the equa-
tion, which need not be the eigenvalue μ of the basic triad operator. A more general
class can be formulated after replacing according to the canonical transformation
(c, p) �→ (pkc, p1−k/(1 − k)) which can be motivated by lattice refinements oc-
curring in an inhomogeneous state and restricts k to the range −1/2 < k < 0 [14].
Then, μ1−k instead of μ will be equidistant. So far, only the extreme cases k = 0
(with constant step size μ0 in μ [5]) and k = −1/2 (with step size μ̄(μ) ∝ 1/

√|μ|
[6]) have been considered in some detail.

Fully realistic cases are somewhere in between with a μ-dependence which can
only be determined from a precise relation to full dynamics. The general statements
and techniques described in what follows are insensitive to the precise behavior or
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the value of k. Coefficients of the difference equation, and also asymptotic prop-
erties, do however depend on the choice. Detailed investigations are now emerg-
ing which can shed light on more precise features of the difference equation and
fix some of the freedom in their derivation. In general, one may have to consider
non-equidistant difference equations, especially for less symmetric models where a
partial difference equation results from anisotropy [10, 23] or even several coupled
equations in inhomogeneous situations [22].

3 Quantum Singularity Problem

The first general property of difference equations of loop quantum cosmology which
has been studied deals with the singularity problem [8]. In this context, the singu-
larity problem arises as the question of whether or not wave functions solving the
functional equations are uniquely extended across classical singularities on the con-
figuration spaces of metrics or related objects [18]. As before, wave functions of
loop quantum cosmology are first defined on the whole real axis μ ∈ R, which in-
cludes the classical singularity μ = 0 as an interior point. Unlike for the Wheeler–
DeWitt equation, solutions to the difference equation then extend uniquely from
positive μ to negative μ and vice versa, even though coefficients of the difference
equation may vanish. There is thus a well-posed initial value problem even across
the classical singularity, which makes the quantum evolution non-singular. (The re-
currence determined by the difference equation is not guaranteed to extend a wave
function in such a way just by the fact that μ = 0 is an interior point. The low-
est order coefficient Vμ − Vμ−2 of ψμ−1 vanishes at μ = 1, and the backward
evolution will thus not determine the value ψ0 right at the classical singularity. If
this value is needed for the further recurrence, additional input would be required
and one would be dealing with a boundary value rather than initial value prob-
lem. Physically, the behavior of solutions would not be determined by values of
the wave function at one side of the classical singularity only.) This extendability,
called quantum hyperbolicity for the functional equations, replaces geodesic com-
pleteness as the criterion for non-singular behavior. Using symmetry reduction as
described above, it is currently verified in many cases based on the difference equa-
tions of loop quantum cosmology [13], including inhomogeneous ones [8, 10, 23,
12]. This covers the quantum analogs of the basic classical examples of singular
space-times.

In addition to the hyperbolicity issue, which can be rather involved especially
in inhomogeneous models with coupled partial difference equations, the analysis
of extendability leads to a further class of mathematical issues: To analyze the ex-
tendability of solutions across classical singularities in spaces of triads, one needs
a characterization of classical singularities by geometrical properties. This is dif-
ficult in general as the singularity theorems do not provide much information on
the behavior of the singularities they predict. Here, further simplifications occur in
symmetric models where classical singularities can often be analyzed completely.
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As one of the results, it turned out that the extendability of wave functions hinges
on the type of variables used. Densitized triads Ea

i , related to the spatial metric by
Ea

i E
b
i = qab det(qcd), are used as basic variables in loop quantum gravity. They

naturally arise in setting up a background independent quantization and have, in-
dependently, led to a resolution of singularities in all cases studied so far. On the
other hand, the spatial metric or even triads or co-triads, rather than densitized tri-
ads, do not provide a general mechanism. While any choice of triad variables offers
an extended configuration space due to the sign provided by the triad orientation,
the position of classical singularities in superspaces depends sensitively on the type
of variables. In isotropic models the difference is not crucial, as demonstrated by
the analysis of [36] following [5], but it is essential in anisotropic models as seen
by comparing [41] with [2]. This is a consequence of the fact that anisotropic mod-
els, which unlike isotropic ones are often expected to show the typical approach
to a space-like singularity, have finite densitized triad component but one infinite
metric or co-triad component at the singularity. One can see this easily in the Kas-
ner solution with metric components aI (t) ∝ tαI and densitized triad components
pI (t) ∝ t1−αI . Since the Kasner solution requires

∑
I αI = 1 = ∑I α

2
I and thus

−1 < αI ≤ 1 with one coefficient always being negative, one aI diverges while the
pI all approach zero at the classical singularity t = 0. A further analysis of more
general singularities from this perspective can provide important insights for quan-
tum gravity by a combination of mathematical relativity and properties of difference
equations, linked by quantum dynamics.

4 Examples for Properties of Solutions

In addition to the singularity issue, questions about solutions to difference equations
one is interested in are:

1. Is it possible to find exact special solutions to the difference equations of loop
quantum cosmology in some cases? This is not easy in general, although we
have a linear difference equation, due to the presence of non-constant coefficients
involving an absolute value.

2. If no exact solution is known, what are asymptotic properties (for large |μ|) of
general solutions? This is often relevant for a normalization of wave functions in
a physical inner product. There are two types of asymptotic behavior which are
being investigated:
(a) Oscillations on small scales (such as ψμ ∼ (−1)μ), which can often be

analyzed by generating functions [29] and
(b) Boundedness of solutions, where continued fractions can advantageously be

applied [20].

Let us first look at the difference equation

am+1 − am−1 = 2λm−1am
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which arises when the partial difference equation of an anisotropic quantum cos-
mological model is separated [10, 29]. Here, λ ∈ R is the separation parameter.
Solutions to this difference equation have generating function

G(x) =
∞∑

m=0

am+1x
m = c0(1 + x)λ−1(1 − x)−λ−1

− 2λa0

λ− 1
(1 − x)−λ−1

2F1(1 − λ,−λ; 2 − λ; (1 + x)/2)

which can advantageously be used to determine asymptotic properties. For instance,
solutions have (−1)m-oscillations with shrinking amplitude if G(x) is regular at
x = −1 because

∑
m(−1)mam must then be convergent. This requires special initial

values of the solution satisfying

a1/a0 = 1 − λψ(1/2 − λ/2)+ λψ(1 − λ/2)

with the digamma function ψ(z) = d logΓ (z)/dz. Moreover, the parameter c0 in
the generating function must vanish in this case. The initial values are determined
through a1 = G(0) while a0 already appears as a parameter in the generating func-
tion. Further applications of generating functions in this context can be found in [27,
30, 28].

Another difference equation is

sn+4 − 2sn + sn−4 = Λnsn

which appears in isotropic models of Euclidean gravity including a cosmological
constant Λ (see also [42] for an analysis of this model). Generic solutions to this
equation exponentially increase for large n, but it is often important to determine
special solutions which are bounded (and thus normalizable as states in an  2 Hilbert
space). This also poses conditions on initial values of the solution, such that they
equal the continued fraction [20]

s0

s4
= 2 − 1

2 + 4Λ− 1
2+8Λ−···

. (2)

Such results are true for more general difference equations than that shown above,
but the one used here provides an interesting relation to Bessel functions. In fact, the
displayed difference equation can be solved exactly in terms of Bessel functions,

sn = C1Jn
4+ 1

2Λ

(
1

2Λ

)

+ C2Yn
4+ 1

2Λ

(
1

2Λ

)

. (3)

Only the first contribution is bounded which, by comparison with (2) and its analog
for s4(m0−1)/s4m0 with integer m0, gives the continued fraction representation
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J
m0−1+ 1

2Λ
( 1

2Λ)

J
m0+ 1

2Λ
( 1

2Λ)
= 2 + 4Λm0 − 1

2 + 4Λ(m0 + 1)− 1
2+4Λ(m0+2)−···

.

5 Effective Theory

Usually, for physical applications one is not primarily interested in solutions to dif-
ference equations, i.e. quantum states, but in the resulting expectation values and
fluctuations of certain operators. These can then be directly compared with poten-
tial observations. There is a powerful method to compute such expectation values,
fluctuations and other quantities directly without taking the detour of wave func-
tions: effective theory. When it is applicable and manageable for a given system, its
physical properties can be studied much more directly.

One possibility to formulate effective equations uses a geometrical formulation
of quantum mechanics [37, 35, 4]. The Hilbert space is interpreted as an infinite-
dimensional phase space with symplectic form Ω(·, ·) = 1

2�
Im〈·, ·〉ψ , whose points

are states ψ . Variables on the phase space are the expectation value functions q(ψ) =
〈q̂〉ψ , p(ψ) = 〈p̂〉ψ together with fluctuations and higher moments

Ga,n(ψ) := 〈((q̂ − 〈q̂〉)n−a(p̂ − 〈p̂〉)a)Weyl〉ψ
for 2 ≤ n ∈ N, a = 0, . . . , n. The subscript “Weyl” indicates that, for a $= 0 and
a $= n, the ordering of operators q̂ and p̂ is chosen totally symmetric. A state ψ

in the Hilbert space is thus mapped to an infinite collection of numbers obtained
by computing expectation values in this state. However, not any collection of num-
bers Ga,n corresponds to a state in the Hilbert space (this is related to the Ham-
burger moment problem). The most important restriction is the uncertainty rela-
tion

G0,2G2,2 − (G1,2)2 ≥ �
2/4

which follows from the Schwarz inequality of the Hilbert space seen as a Kähler
manifold.

Just as the dynamics of ψ is given by the Schrödinger equation i�ψ̇ = Ĥψ , the
dynamics of the quantum variables is given by the flow along the Hamiltonian vector
field XHQ

generated by the quantum Hamiltonian HQ(ψ) = 〈Ĥ 〉ψ as a function on
the phase space. It usually couples all the quantum variables as, e.g., in

HQ = 1

2m
p2 + 1

2
mω2q2 + U(q)+ 1

2
�ω(G̃0,2 + G̃2,2)

+
∑

n>2

1

n!
(

�

mω

)n/2

U(n)(q)G̃0,n
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for an anharmonic oscillator with classical Hamiltonian H = 1
2mp2 + 1

2mω2q2 +
U(q). (Using dimensionless G̃a,n = �

−n/2(mω)n/2−aGa,n.) This Hamiltonian gen-
erates equations of motion

q̇ = XHQ
q = p/m

ṗ = XHQ
p = −mω2q − U ′(q)−

∑

n

1

n! (m
−1ω−1

�)n/2U(n+1)(q)G0,n

Ġa,n = XHQ
Ga,n = −aωGa−1,n + (n− a)ωGa+1,n − aU ′′

mω
Ga−1,n

+
√

�aU ′′′(q)
2(mω)

3
2

Ga−1,n−1G0,2 + �aU ′′′′(q)
3!(mω)2

Ga−1,n−1G0,3

− a

2

(√
�U ′′′(q)
(mω)

3
2

Ga−1,n+1 + �U ′′′′(q)
3(mω)2

Ga−1,n+2
)

+ a(a − 1)(a − 2)

24

(√
�U ′′′(q)
(mω)

3
2

Ga−3,n−3 + �U ′′′′(q)
(mω)2

Ga−3,n−2
)

+ · · · .

These are infinitely many coupled ordinary differential equations for infinitely many
variables, equivalent to the partial Schrödinger equation. This system is in general
much more complicated to analyze in this form, but in an adiabatic approximation
in the quantum variables one can decouple and solve the equations order by order,
reproducing the low energy effective action as it is known in particle physics [21,
44]. The reformulation is thus valuable for semiclassical and perturbative aspects.

In general, the high coupling of the equations of motion is barely manageable.
The main requirement for the applicability of effective theory in this form is then
the availability of an exactly solvable system which one can use as zeroth order
of a perturbation expansion. For the solvable model itself, the equations decouple,
which can then be exploited in a perturbation analysis even in more complicated
systems. For low energy effective actions as mentioned above, the solvable model
is the harmonic oscillator or a free quantum field theory. Cosmological models are
different, but also here a solvable model is available: a spatially flat isotropic model
sourced by a free, massless scalar [16]. According to general relativity it is governed
by the Friedmann equation q2√p = 1

2p
−3/2p2

φ . (The gravitational variables are

extrinsic curvature q = ȧ and the spatial volume p3/2 = a3 in terms of the scale
factor a.) Solving for the scalar momentum pφ gives the Hamiltonian pφ = H = qp

(also known as the Berry–Keating–Connes Hamiltonian), interpreted as generating
evolution in φ. Note that there are different sign choices possible in the solution pφ ;
see [17] for more details.

A loop quantization leads to a Hamiltonian operator Ĥ = − 1
2 i(Ĵ − Ĵ †) with

Ĵ = p̂eiq . Due to the exponential, this is a finite shift operator giving rise to a
difference equation as mentioned before. The analysis of this section, motivated by
effective theory, thus provides a further example for studying properties of solutions
to a difference equation without actually solving the difference equation.
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Our basic variables (p̂, Ĵ ) are non-canonical, forming a (trivially) centrally ex-
tended sl(2,R) algebra

[p̂, Ĵ ] = �Ĵ , [p̂, Ĵ †] = −�Ĵ †, [Ĵ , Ĵ †] = −2�p̂ − �
2.

Since the Hamiltonian Ĥ is a linear combination of generators of the algebra, the
system is linear and provides an example for a solvable model. As one can see easily,
only finitely many of the equations of motion for expectation values and quantum
variables are coupled to each other.

The choice of variables requires one to use non-symmetric operators Ĵ , such that
not all the expectation values and quantum variables are real. Instead of simple real-
ity conditions as in canonical real variables, we have to make sure that all variables
respect the relation Ĵ Ĵ † = p̂2. Taking expectation values, this implies |J |2−p2 = c

where c is determined in terms of quantum variables and turns out to be constant in
time. Moreover, for semiclassical states c is of the order �.

The quantum Hamiltonian HQ = − 1
2 i(J − J̄ ) generates equations of motion

ṗ = −1

2
(J + J̄ ), J̇ = −1

2
(p + �) = ˙̄J

with the bouncing solution

p(φ) = H cosh(φ − δ)− �, J (φ) = −H(sinh(φ − δ)+ i)

satisfying the reality condition J J̄ = p2 +O(�).
In addition to expectation values, also uncertainties are of interest to determine

how semiclassically a state behaves. Equations of motion for fluctuations are also
linear, as they follow from the Hamiltonian,

Ġ0,2 = −2G1,2, Ġ2,2 = −2G1,2

Ġ1,2 = −1

2
G2,2 − 3

2
G0,2 − 1

2
(p2 − J J̄ + �p + �

2/2) .

Their initial values are not arbitrary but must satisfy the uncertainty relation

G0,2G2,2 − |G1,2|2 ≥ �
2

4
|J |2 .

For H ' �, the solution is given by (Δp)2 = G0,2 ≈ �H cosh(2(φ − δ)) with a
constant of integration δ which determines the difference of bounce times of expec-
tation values and fluctuations. More details of fluctuations and dynamical coherent
states of this system are derived in [17].
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6 Summary

Loop quantum cosmology as an induced representation of loop quantum gravity
describes quantum gravitational dynamics by difference equations, which allows a
discussion of the singularity problem and provides a dynamical solution in many
models. To understand properties of solutions, techniques such as generating func-
tions or continued fractions are available for a direct analysis of difference equa-
tions. But especially in view of the more complicated extension to inhomogeneous
models with many coupled difference equations, more tools are needed. Moreover,
lattice effects of inhomogeneous states [14] can lead to difference equations with
non-equidistant step size [25].

An effective treatment allows the computation of interesting properties of a so-
lution, such as the peak position and spread of wave packets, without knowing the
full solution. In this way one can extract physically interesting properties, analo-
gously to “low energy” aspects in particle physics, without having to know explicit
solutions for states.

These techniques are especially powerful in a solvable bounce model. This pro-
vides an intuitive bounce picture in special models, sourced by a free scalar, as
exact effective systems. As a solvable system it provides the basis for a perturba-
tion scheme to include matter interactions and inhomogeneities. Even physical inner
product issues to properly normalize wave functions are addressable at the effective
level through reality conditions. This gives hope that the notorious physical inner
product problem can be dealt with in full quantum gravity, too.
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Boundary Effects on the Interface Dynamics
for the Stochastic Allen–Cahn Equation

Lorenzo Bertini, Stella Brassesco and Paolo Buttà

Abstract We consider a stochastic perturbation of the Allen–Cahn equation in a
bounded interval [−a, b] with boundary conditions fixing the different phases at a
and b. We investigate the asymptotic behavior of the front separating the two stable
phases in the limit ε → 0, when the intensity of the noise is

√
ε and a, b →∞

with ε. In particular, we prove that it is possible to choose a = a(ε) such that
in a suitable time scaling limit, the front evolves according to a one-dimensional
diffusion process with a nonlinear drift accounting for a “soft” repulsion from a. We
finally show that a “hard” repulsion can be obtained by an extra diffusive scaling.

1 Introduction

The reaction-diffusion equation

∂m

∂t
= 1

2

∂2m

∂x2
− V ′(m), (1)

for V a two well non-degenerate symmetric potential that attains its minimum at±m
is a well studied equation that appears in different contexts to study the formation
and evolution of interfaces for systems where two stable phases coexist. (See [1] for

Lorenzo Bertini
Dipartimento di Matematica, Università di Roma ‘La Sapienza’, P.le Aldo Moro 2, 00185 Rome,
Italy, email: bertini@mat.uniroma1.it

Stella Brassesco
Departamento de Matemáticas, Instituto Venezolano de Investigaciones Científicas, Apartado
Postal 20632, Caracas 1020-A, Venezuela, email: sbrasses@ivic.ve

Paolo Buttà
Dipartimento di Matematica, Università di Roma ‘La Sapienza’, P.le Aldo Moro 2, 00185 Rome,
Italy, email: butta@mat.uniroma1.it
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an instance.) The two phases are identified with +m and −m, and they are known to
be stationary stable solutions of (1). There is also a family M of stationary solutions
mζ of (1) that interpolate between −m and +m, that is, they satisfy 1

2m
′′
ζ = V ′(mζ )

and mζ (±∞) = ±m. We have that

M = {mζ : ζ ∈ R} (2)

where mζ (x) = m(x − ζ ), m(x) being the centered solution, that is, m(0) = 0. The
convergence of mζ (x) to the value of the pure phases as x → ±∞ is known to be
exponentially fast (see [13]) so mζ is thought to represent a diffuse interface located
at ζ .

A natural problem is then to study the evolution of an initial datum belonging (or
close) to M under the dynamics given by a stochastic perturbation of (1). It is the
subject of a series of papers (see [6, 7, 9, 8, 15] for precise statements), where it is
shown that, if a space-time white noise W(dx, dt) of intensity

√
ε is added to (1),

then the solution m(ε)(x, t) of

∂m

∂t
= 1

2

∂2m

∂x2
− V ′(m)+√

εW(dx, dt) (3)

with initial datum m(x, 0) = mx0(x), satisfies m(ε)(x, tε−1) ≈ m(x − x0 − B(t))

as ε → 0, where B(t) is a Browian motion.
The previous result is proved in [9] in fact for the spatial variable x ∈ [−a, b],

with a = ε−α and b = ε−β for α, β > 0, and Neumann boundary conditions at the
endpoints. In the time scaling ε−1, the fluctuations introduced by the noise govern
the evolution of the interface, and the scaling of the endpoints make them so distant
that the effects of the boundary conditions are not present in the limiting behavior.
Moreover, it follows from the analysis in [9] that this picture remains true if for
instance a = C log ε−1 for sufficiently large C.

On the other hand, from the results in [10] and [17] for the deterministic evolu-
tion given by (1) with Neumann boundary conditions on a = c log ε−1 for suf-
ficiently small c and b = ε−γ , a deterministic drift to the left becomes domi-
nant in the time scaling ε−1, and the +m phase takes over finally. This is a finite
size effect, contrasting to the slow motion for the interface when far enough from
the endpoints, reminiscent of the stability of M in the infinite volume situation.
Recall that in a bounded interval, the pure phases are the unique global attrac-
tors.

We consider here the effect of non-homogeneous Dirichlet boundary conditions
that fix the two different phases at the endpoints of [−a, b] on the evolution of a
front located initially at zero, under the dynamics given by (3). In this case, there is
a unique stationary stable solution of (1) m∗, which is close to mb−a

2
as a, b →∞.

In particular, initial data close to mζ are attracted to this profile, and the evolution is
known to occur along a set Ma,b, which is close to M as a, b →∞.

When a space-time white noise of intensity
√
ε is added, we look at the evolu-

tion of the interface at a time scaling of order ε−1, in the case a = C0 log(ε−1) and
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b = ε−β for some β > 0, and let ε → 0. The reason for that particular ε depen-
dence for the endpoints is to determine the effect of the boundary condition at a,
ignoring the effect from the other endpoint b. We show that we can choose C0 such
that the limiting dynamics feels both the fluctuations produced by the noise and a
deterministic drift repelling the motion from the left, which is interpreted as a soft
wall effect. Under a further rescaling, we prove convergence to a Brownian motion
reflected at the origin, which can be seen a hard wall.

2 Results and Strategy of Proofs

The above discussed results hold for a potential V having the stated properties, but
in order to fix ideas and to be able to compute the exact coefficients in what follows,
we choose

V (m) = 1

4

(
m2 − 1

)2
,

which attains its minimum at ±1 and yields m(x) = tanh(x).
For each ε > 0 we consider m(ε)(x, t) the solution of (3) with boundary con-

ditions m(ε)(−a, t) = −1 and m(ε)(b, t) = 1 and W(dx, dt) a space-time white
noise, that is, a centered Gaussian field with

E
(
W(dx, dt)W(dx′, dt ′)

) = δ(x − x′)δ(t − t ′)

for δ a Dirac delta. The usual way to give a precise meaning to the above is to write
down an integral equation corresponding to (3) in terms of a heat kernel, to observe
that then each term makes sense and to prove that the integral equation admits a
solution continuous in both variables with probability one. (See for instance [12].)
This is called a mild solution, and to that one we refer in what follows. For f a
continuous function defined in [−a, b], we denote ‖f ‖∞ = supx∈[−a,b] |f (x)|.
Also, let Ft the σ -algebra generated by {∫ t ′

0 φ(x)W(dx, ds) : φ ∈ L2[−a, b],
t ′ ≤ t}

The main results that we obtain are stated precisely in the next theorem.

Theorem 1. Let

a := 1

4
log ε−1, b := ε−β for some β > 0, λ := log ε−1, (4)

and denote by m(ε)(x, t) the solution of (3) with boundary conditions m(ε)(−a, t) =
−1, m(ε)(b, t) = 1 and initial datum m

(ε)
0 ∈ C([−a, b]), such that for each η > 0

we have
lim
ε→0

ε−
1
2+η
∥
∥m(ε)

0 −m0
∥
∥∞ = 0. (5)

Then:

(i) There exists an Ft -adapted real process Xε such that, for each θ, η > 0,
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lim
ε→0

P

(
sup

t∈[0,λε−1θ ]

∥
∥m(ε)(·, t)−mXε(t)(·)

∥
∥∞ > ε

1
2−η
)
= 0; (6)

(ii) The real process Yε(τ ) := Xε(ε
−1τ), τ ∈ R+, converges weakly in C(R+) to

the unique strong solution Y of the stochastic equation
{
dY (τ) = 12 exp{−4Y(τ)}dτ + dB(τ),

Y (0) = 0,
(7)

where B is a Brownian motion with diffusion coefficient 3
4 ;

(iii) The real process Zε(θ) := λ−1/2Xε(λε
−1θ), θ ∈ R+, converges weakly in

C(R+) to a Brownian motion with diffusion coefficient 3
4 reflected at zero.

Outline of proof: A complete proof of this result and details concerning the analy-
sis can be seen in [3].

Let us denote by m(t) the solution of (3) with initial condition m0 as in the
statement of the theorem, dropping from the notation ε and the spatial variable, so
m(t) is thought as a (random) element of C[−a, b].

The linearization of (3) around mz is

∂

∂t

(
m(t)−mz

) = 1

2

∂2

∂x2

(
m(t)−mz

)− V ′′(mz)(m(t)−mz

)

− 3mz

(
m(t)−mz

)2 − (m(t)−mz

)3 +√
εW(dx, dt)

and from that it is not difficult to see that m(t)−mz satisfies the integral equation

m(t)−mz = ϕz − g
(z)
t (ϕz)+ g

(z)
t

(
m0 −mz

)

−
∫ t

0
dsg

(z)
t−s

[
3mz

(
m(s)−mz

)2 + (m(s)−mz

)3]

+√
ε

∫ t

0
g
(z)
t−sW(dx, ds), (8)

where g
(z)
t = exp (−tH (z)) for H(z) the operator defined for C2[−a, b] functions

f that vanish at the endpoints of [−a, b] as H(z)(f ) = − 1
2f

′′ + V ′′(mz), and ϕz

the solution to the linear equation with “compensating” non homogeneous boundary
conditions, that is ϕz satisfies

1

2
ϕ′′z (x)− V ′′(mz(x)

)
ϕz(x) = 0 ϕz(−a) = −1 −mz(−a) ϕz(b) = 1 −mz(b)

It can be seen from the above equation that, for γ > 0 small enough, given η > 0

lim
ε→0

P

(
sup

t≤ε−γ

∥
∥m(t)−m0

∥
∥∞ > ε

1
2−η
)
= 0.
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We would like to prove that the solution remains close to M for times of order
of λε−1 , and to identify Xε(t) satisfying (6) and (iii), but this cannot be obtained
directly from (8). The strategy we follow is to consider iterations of the lineariza-
tion as described, over consecutive intervals of length T = ε−γ , updating at the
beginning of the k − th interval the location zk of the interface mzk around which
the linearization is performed. The zk that showed to be convenient is the “center”
of the solution m(Tk), for Tk = kT , where the center ζ ∈ R of a profile f in a
neighborhood of M is the ζ such that

〈f −mζ ,m
′
ζ 〉 :=

∫ b

−a

dx(f −mζ )m
′
ζ = 0.

Except for technicalities, the process Xε(t) in the statement is given by the cen-
ter of the solution m(t). It is not difficult to obtain that the first order approx-
imation (in terms of ‖f − mz‖∞) for the center ζ of a given f is given by
ζ − z ≈ − 3

4 〈m′
z, f − mz〉. In particular, applying the above procedure to m(t)

for t ∈ [Tk, Tk+1] as explained we obtain, after projecting both sides of an equation
analogous to (8), an approximation for the difference of the centers of the solution
on that interval:

zk+1 − zk ≈ −3

4
〈m(Tk+1)−m′

zk
, m′

zk
〉

= −3

4

[

〈g(zk)T (m(Tk)−mzk ),m
′
zk
〉 + 〈ϕzk − g

(zk)
T (ϕzk ),m

′
zk
〉

+
〈 ∫ Tk+1

Tk

dsg
(zk)
Tk+1−s[NLT ], m′

zk

〉

+√
ε

〈 ∫ Tk+1

Tk

g
(zk)
Tk+1−sW(dx, ds),m′

zk

〉]

, (9)

where NLT are the non linear terms appearing between square brackets in (8).
The next step is to sum in k, for k = 0, 1, . . . , [tε−1+γ ], and to prove first that,

as ε → 0, the zk remain bounded, so basically (6) holds. Rough estimates follow
from Gaussian estimates for the terms coming from the noise, conditioned on the
value of the zk , as for instance in [2].

Second, we show that what we obtain after taking ε → 0 is a discrete version
of the integral equation for Y(t). To give an idea of why this is true, let us analyze
briefly the terms in (9). To really accomplish the program (including controlling the
errors behind the symbol ≈) involves very precise estimates on the linear operators
H(zk) in finite intervals whose extremes depend on ε as described. See [11] and [20].

It can be seen that the first term in the second line does not contribute to the limit,
from estimates on the spectral gap for H(zk) uniform in ε and from the definition of
center.

That the non linear terms also do not contribute follows from a precise analysis
of the sum in k of the corresponding terms. For the last term in (8) we have that
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〈g(zk)Tk+1−sW(dx, ds),m′
zk
〉 ≈

√
4
3dB(s), so it will give the Brownian motion in the

limiting equation. Finally, for the remaining term we have − 3
4 〈ϕzk − g

(zk)
T (ϕzk ),

m′
zk
〉 ≈ −

√
3
4λ0T 〈ϕzk , Ψ0〉, where λ0 and Ψ0 are the first eigenvalue and corre-

sponding eigenvector of H(zk). Since we can show λ0 ≈ 24 exp 4(a + zk), after
estimating Ψ0 and computing ϕzk it is possible to conclude that this term gives pre-
cisely the drift in (7).

Finally, to prove (iii), we show that the previous analysis can be extended for
times of the order λε−1, and then, as the equation

dUλ(t) = 12λ
1
2 exp

(− 4λ
1
2 Uλ(t)

)
dt +W(t)

for Uλ(t) := λ− 1
2 Y(λt), with W a Brownian motion with diffusion coefficient 3

4
suggests, we obtain convergence to a reflected Brownian motion. (See [18] for basic
concepts).

As a final comment, let us say that the analysis can be extended to the symmetric
interval [−a, b] with a = b = 1

4 log(ε−1), obtaining for the corresponding process
Y(t) describing the motion of the interface the equation

dY (t) = 24 sinh(4Y(t))dt + dB(t),

where it appears a wall effect from both sides.
The result is used in [4] to show convergence ( as ε → 0) of the invariant measure

for the solution of (3) with boundary conditions ±1 in the symmetric interval to a
nontrivial limit related to the invariant measure for the limiting process Y(t).
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Dimensional Entropies and Semi-Uniform
Hyperbolicity

Jérôme Buzzi

Abstract We describe dimensional entropies introduced in Buzzi (Bull. Soc. Math.
France 126(1):51–77, 1998) list some of their properties, giving some proofs. These
entropies allowed the definition in Buzzi (On entropy-expanding maps,
preprint 2000; Cours de Saint-Flour, in preparation, 2009) of entropy-expanding
maps. We introduce a new notion of entropy-hyperbolicity for diffeomorphisms. We
indicate some simple sufficient conditions (some of them new) for these properties.
We conclude by some work in progress and more questions.

1 Introduction

We are interested in using robust entropy conditions to study chaotic dynamical sys-
tems. These entropy conditions imply some “semi-uniform” hyperbolicity. This is
a type of hyperbolicity which is definitely weaker than classical uniform hyperbol-
icity but which is stronger than Pesin hyperbolicity, that is, non vanishing of the
Lyapunov exponents of some relevant measure. This type of conditions allows the
generalization of some properties of interval maps and surface diffeomorphisms to
arbitrary dimensions.

In this paper, we first explain what is known in low dimension just assuming the
non-vanishing of the topological entropy htop(f ). Then we give a detailed descrip-
tion of the dimensional entropies. These are d + 1 numbers, if d is the dimension of
the manifold,

0 = h0
top(f ) ≤ h1

top(f ) ≤ · · · ≤ hdtop(f ) = htop(f ).
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hktop(f ) “counts” the number of orbits starting from an arbitrary compact and smooth
k-dimensional submanifold. We both recall known properties and establish new
ones. We then recall the definition of entropy-expanding maps which generalize
the complexity of interval dynamics with non-zero topological entropy. We also in-
troduce a similar notion for diffeomorphisms:

Definition 1. A diffeomorphism of a d-dimensional manifold is entropy-hyperbolic
if there are integers du, ds such that:

• h
du
top(f ) = htop(f ) and this fails for every dimension k < du;

• h
ds
top(f

−1) = htop(f ) and this fails for every dimension k < ds ;
• du + ds = d .

We give simple sufficient conditions for entropy – expansion and entropy – hy-
perbolicity. Finally we announce some work in progress and state a number of ques-
tions.

We now recall some classical notions which may be found in [20]. In this paper,
all manifolds are compact.

A basic measure of orbit complexity of a map f : M → M is the entropy. The
topological entropy htop(f ) “counts” all the orbits and the measure-theoretic en-
tropy (also known as Kolmogorov-Sinai entropy or ergodic entropy) h(f, μ)

“counts” the orbits “relevant” to some given invariant probability measure μ. They
are related by the following rather general variational principle. If, e.g., f is contin-
uous and M is compact, then

htop(f ) = sup
μ

h(f, μ)

where μ ranges over all invariant probability measures. One can also restrict μ to
ergodic invariant probability measures.

This brings to the fore measures which realize the above supremum, when they
exist, and more generally measures which have entropy close to this supremum.

As μ �→ h(f, μ) is affine, μ has maximum entropy if and only if almost every
ergodic component of it has maximum entropy. Hence, with respect to entropy, it is
enough to study ergodic measures.

Definition 2. A maximum measure is an ergodic and invariant probability measure
μ such that h(f, μ) = supν h(f, ν).

A large entropy measure is an ergodic and invariant probability measure μ such
that h(f, μ) is close to supν h(f, ν).

The Lyapunov exponents for some ergodic and invariant probability measure μ

are the possible values μ-a.e. of the limit limn→∞ 1
n

log ‖Txf n.v‖ where ‖ · ‖ is
some Riemannian structure and Txf is the differential of f and v ranges over the
non-zero vectors of the tangent space TxM .

A basic result connecting entropy and hyperbolicity is the following theorem
(proved by Margulis for volume preserving flows):
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Theorem 3 (Ruelle’s inequality). Let f : M → M be a C1 map on a compact
manifold. Let μ be an f -invariant ergodic probability measure. Let λ1(μ) ≥ · · · be
its Lyapunov exponents repeated according to multiplicity. Then,

h(f, μ) ≤
d∑

i=1

λi(μ)
+.

In good cases (with enough hyperbolicity), the entropy is also reflected in the exis-
tence of many periodic orbits:

Definition 4. The periodic points of some map f : M → M satisfy a multiplicative
lower bound, if, for some integer p ≥ 1:

lim inf
n→∞,p|n e

−nhtop(f )#{x ∈ [0, 1] : f nx = x} > 0.

Recall that many diffeomorphisms have infinitely many more periodic orbits (see
[17, 18]).

The following type of isomorphism will be relevant to describe all “large entropy
measures”.

Definition 5. For a given measurable dynamical system f : M → M , a subset
S ⊂ M is entropy-negligible if there exists h < supμ h(f, μ) such that for all
ergodic and invariant probability measures μ with h(f, μ) > h, μ(S) = 0.

An entropy-conjugacy between two measurable dynamical systems f : M → M

and g : N → N is a bi-measurable invertible mapping ψ : M \M0 → N \N0 such
that: ψ is a conjugacy (i.e., g ◦ ψ = ψ ◦ f ) and M0 and N0 are entropy-negligible.

2 Low Dimension

Low dimension dynamical systems here means interval maps and surface diffeomor-
phisms—those systems for which non-zero entropy is enough to ensure hyperbolic-
ity of the large entropy measures.

2.1 Interval Maps

Indeed, an immediate consequence of Ruelle’s inequality on the interval is that a
lower bound on the measure-theoretic entropy gives a lower bound on the (unique)
Lyapunov exponent. Thus, invariant measures with nonzero topological entropy are
hyperbolic in the sense of Pesin. One can obtain much more from the topological
entropy:

Theorem 6. Let f : [0, 1] → [0, 1] be C∞. If htop(f ) > 0 then f has finitely many
maximum measures. Also the periodic points satisfy a multiplicative lower bound.
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This was first proved by F. Hofbauer [15, 16] for piecewise monotone maps (ad-
mitting finitely many points a0 = 0 < a1 < · · · < aN = 1 such that f |]ai, ai+1[
is continuous and monotone). It was then extended to arbitrary C∞ maps in [5]. In
both settings, one builds an entropy-conjugacy to a combinatorial model called a
Markov shift (which is a subshift of finite type over an infinite alphabet). One can
then apply some results of D. Vere-Jones [26] and B. Gurevič [14].

We can even classify these dynamics. Recall that the natural extension of f :
M → M is f̄ : M̄ → M̄ defined as M̄ := {(xn)n∈Z ∈ MZ : ∀n ∈ Z xn+1 = f (xn)}
and f̄ ((xn)n∈Z) = (f (xn))n∈Z. Recall that π̄ : (xn)n∈Z �→ x0 induces a homeomor-
phism between the spaces of invariant probability measures which respects entropy
and ergodicity.

Theorem 7. The natural extensions of C∞ interval maps with non-zero topologi-
cal entropy are classified up to entropy-conjugacy by their topological entropy and
finitely many integers (which are “periods” of the maximum measures).

The classification is deduced from the proof of the previous theorem by using a
classification result [2] for the invertible Markov shifts involved.

The C∞ is necessary: for each finite r , there are Cr interval maps with non-
zero topological entropy having infinitely many maximum measures and others with
none.

Remark 8. These examples show in particular that Pesin hyperbolicity of maximum
measures or even of large entropy measures (which are both consequences of Ru-
elle’s inequality here) are not enough to ensure the finite number of maximum mea-
sures.

2.2 Surface Transformations

As observed by Katok [19], Ruelle’s inequality applied to a surface diffeomorphism
and its inverse (which has opposite Lyapunov exponents) shows that a lower-bound
on measure-theoretic entropy bounds away from zero the Lyapunov exponents of
the measure. Thus, for surface diffeomorphisms also, nonzero entropy implies Pesin
hyperbolicity.

It is believed that surface diffeomorphisms should behave as interval maps, lead-
ing to the following folklore conjecture:

Conjecture 9. Let f : M → M be a C∞ surface diffeomorphism. If htop(f ) > 0
then f has finitely many maximum measures.

I would think that, again like for interval maps, finite smoothness is not enough
for the above result. However counter-examples to this (or to existence) are known
only in dimension ≥ 4 [22].

The best result for surface diffeomorphisms at this point is the following “ap-
proximation in entropy” [19]:
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Theorem 10 (A. Katok). Let f : M → M be a C1+ε surface diffeomorphism. For
any ε > 0, there exists a horseshoe1 Λ ⊂ M such that htop(f |Λ) > htop(f )− ε. In
particular, the periodic points of f satisfy a logarithmic lower bound:

lim sup
n→∞

1

n
log #{x ∈ M : f n(x) = x} ≥ htop(f ).

Katok in fact proved a more general fact, valid for any C1+ε-diffeomorphism of a
compact manifold of any dimension. Namely, if μ is an ergodic invariant probability
measure without zero Lyapunov exponent :

lim sup
n→∞

1

n
log #{x ∈ M : f n(x) = x} ≥ h(f, μ).

On surfaces, Ruelle’s inequality and the variational principle imply the theorem as
explained above.

I have proved the conjecture for a model class, which replaces distortion with
(simple) singularities [8]:

Theorem 11. Let f : M → M be a piecewise affine homeomorphism. If htop(f ) >

0 then f has finitely many maximum measures.

3 Dimensional Entropies

We are going to define the dimensional entropies for a smooth self-map or diffeo-
morphism f : M → M of a d-dimensional compact manifold. We will then inves-
tigate these quantities by considering other growth rates obtained from the volume
and size of the derivatives.

3.1 Singular Disks

The basic object is:

Definition 12. A (singular) k-disk is a map φ : Qk → M with Qk := [−1, 1]k . It
is Cr if it can be extended to a Cr map on a neighborhood of Qk .

We need to define the Cr size ‖φ‖Cr of a singular disk φ for 1 ≤ r ≤ ∞ as
well as the corresponding topologies on the space of such disks. This involves some
technicalities as vectors in different tangent spaces are not comparable a priori. We
refer to Appendix 8 for the precise definitions, which are rather obvious for finite r .
For r = ∞, we need an approximation property (which fails for some otherwise

1 A horseshoe is an invariant compact subset on which some iterate of f is conjugate with a full
shift on finitely many symbols.
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very reasonable definitions of Cr size), Fact 57, which is used to prove Lemma 18
below.

From now on, we fix some Cr size arbitrarily on the manifold M . We will later
check that the entropies we are interested in are in fact independent of this choice.

Notations. It will be convenient to sometimes write φ instead of φ(Qk), e.g.,
htop(f, φ) instead of htop(f, φ(Q

k)).

3.2 Entropy of Collections of Subsets

Given a collection D of subsets of M , we associate the following entropies. Recall
that the (ε, n)-covering number of some subset S ⊂ M is:

rf (ε, n, S) := min

{

#C :
⋃

x∈S
Bf (ε, n, x) ⊃ S

}

where Bf (ε, n, x) := {y ∈ M : ∀0 ≤ k < n d(f ky, f kx) < ε} is the (ε, n)-
dynamic ball. The classical Bowen-Dinaburg formula for the topological entropy
of S ⊂ M is htop(f, S) = limε→0 lim supn→∞ 1

n
log rf (ε, n, S) and htop(f ) =

htop(f,M).

Definition 13. The topological entropy of D is:

htop(f,D) := sup
D∈D

htop(f,D) = sup
D∈D

lim
ε→0

lim sup
n→∞

1

n
log rf (ε, n,D).

The uniform topological entropy of D is:

Htop(f,D) := lim
ε→0

lim sup
n→∞

1

n
log sup

D∈D
rf (ε, n,D).

Clearly htop(f,D) ≤ Htop(f,D). The inequality can be strict as shown in the
following examples (the first one involving non-compactness, the second one in-
volving non-smoothness).

Example 14. Let T : T
2 → T

2 be a linear endomorphism with two eigenvalues
Λ1,Λ2 with 1 < |Λ1| < |Λ2|. Let L be the set of finite line segments. We have

0 < htop(T ,L ) = log |Λ2| < Htop(T ,L ) = log |Λ1| + log |Λ2|.
Example 15. There exist a C∞ self-map F of [0, 1]2 and a collection C of Cr curves
with bounded Cr norm such that 0 < htop(F,C ) < Htop(F,C ). This can be de-
duced from the example with h1

top(f × g) > max(htop(f ), htop(g)) in [6] by con-
sidering curves with finitely many bumps converging Cr to the example curve there,
which has infinitely many bumps.
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3.3 Definitions of the Dimensional Entropies

We can now properly define the dimensional entropies. Recall that we have endowed
M with a Cr size.

Definition 16. For each 1 ≤ r ≤ ∞, the standard family of Cr singular k-disks is
the collection of all Cr singular k-disks. For finite r , the standard uniform family of
Cr singular k-disks is the collection of all Cr singular k-disks with Cr size bounded
by 1.

Definition 17. The Cr , k-dimensional entropy of a self-map f of a compact mani-
fold is:

h
k,Cr

top (f ) := htop(f,D
k
r )

where Dk
r is a standard family of Cr k-disks of M . We write hktop(f ) for hk,C

∞
(f )top

and call it the k-dimensional entropy.
The Cr , k-dimensional uniform entropy H

k,Cr

top (f ) is obtained by replacing
htop(f,Dk

r ) with Htop(f,D
k
r ) in the above definition where Dk

r is the standard uni-

form family. We write Hk
top(f ) for Hk,C∞

top (f ) and call it the k-dimensional uniform
entropy.

Observe that hk,C
r

top (f ) and H
k,Cr

top (f ) are non-decreasing functions of k and non-
increasing functions of r . Indeed, (1) Dk

r ⊃ Dk
s and Dk

r ⊃ Dk
s if r ≤ s; (2) for any

0 ≤  ≤ k ≤ d , restricting a k-disk to [0, 1] × {0}k− does not increase its Cr size.
Observe also that h0,Cr

top (f ) = 0 and hdtop(f ) = htop(f ).

Lemma 18. Let f : M → M be a C∞ self-map of a compact manifold. We have:

Hk
top(f ) = lim

r→∞H
k,Cr

top (f )

and the limit is non-increasing.

We shall see later in Proposition 38 that the same holds for hktop(f ).

Proof. We use one of the (simpler) ideas of Yomdin’s theory. For each n ≥ 1, we
divide Qk into small cubes with diameter at most (ε/4)1/r‖φ‖−1/r

Cr Lip(f )−n/r . We

need (ε/4)−k/r
√
k
k‖φ‖k/rCr Lip(f )

k
r
n such cubes. Let q be one of them. By Fact 57,

there exists a C∞ k-disk φq such that ‖φq‖C∞ ≤ 2‖φ‖Cr and

∀t ∈ q d(φq(t), φ(t)) ≤ ‖φ‖Cr‖t − tq‖r ≤ ‖φ‖Cr × ε

2
‖φ‖−1

Cr Lip(f )−n

≤ ε

2
Lip(f )−n.

It follows that rf (ε, n, φ ∩ q) ≤ rf (ε/2, n, φq). Thus,

rf (ε, n,D
k
r ) ≤

√
k
k
(ε/4)−k/r‖φ‖k/rCr Lip(f )

k
r
nrf (ε/2, n,Dk∞).



102 Jérôme Buzzi

Hence, writing lip(f ) := max(log Lip(f ), 0),

H
k,Cr

top (f ) ≤ k

r
lip(f )+Hk

top(f ).

The inequality H
k,Cr

top (f ) ≥ Hk
top(f ) is obvious, concluding the proof.

Lemma 19. The numbers Hk,Cr

top (f ) do not depend on the underlying choice of a Cr

size.

Proof. Using Lemma 18, it is enough to treat the case with finite smoothness. Let
D1,D2 be two standard families of k-disks, defined by two Cr sizes ‖ · ‖1

Cr , ‖ · ‖2
Cr .

By Fact 56, there exists C < ∞ such that ‖ · ‖1
Cr ≤ C‖ · ‖2

Cr . Hence setting K :=
([C] + 1)k , for any k-disk φ1 ∈ D1 can be linearly subdivided2 into K k-disks
φ1

2 , . . . , φ
K
2 ∈ D2. Thus

∀n ≥ 0 rf (ε, n, φ1) ≤ K max
j

rf (ε, n, φ
j

2 ).

It follows immediately that H(f,D1) ≤ H(f,D2). The claimed equality follow in
turn by symmetry.

4 Other Growth Rates of Submanifolds

4.1 Volume Growth

Entropy is a growth rate under iteration. Equipping M with a Riemannian structure
allows the definition of volume growth of submanifolds.

Definition 20. Let φ : Qk → M be a singular k-disk. Its (upper) growth rate is:

γ (f, φ) := lim sup
n→∞

1

n
log vol(f n ◦ φ) with vol(ψ) :=

∫

Qk

‖Λkψ(x)‖ dx

where ‖Λkψ‖ is the Jacobian of ψ : Qk → M wrt the obvious Riemannian struc-
tures. The volume growth exponent of f in dimension k is:

γ k(f ) := sup
φ∈Dk

r

γ (f, φ),

γ (f ) := max0≤k≤d γ
k(f ) is simply called the volume growth of f .

Observe that the value of the growth rates defined above are independent of the
choice of the Riemannian structure, by compactness of the manifold.

The volume growth dominates the entropy quite generally:

2 That is, each φ
j

2 = φ1 ◦ Lj with Lj : Qk → Qk linear and
⋃K

j=1 Lj (Q
k) = Qk .
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Theorem 21 (Newhouse [23]). Let f : M → M be a C1+α , α > 0, smooth self-
map of a compact manifold. Then:

htop(f ) ≤ γ (f ).

Remark 22. More precisely, his proof gave

htop(f ) ≤ γ dcu(f )

where dcu is such that the variational principle htop(f ) = supμ h(f, μ) still holds
when μ is restricted to measures with exactly dcu nonpositive Lyapunov exponents.

For C1+1-diffeomorphisms, deeper ergodic techniques due to Ledrappier and
Young are available and Cogswell [11] has shown that, for any ergodic invariant
probability measure μ, there exists a disk Δ such that htop(f, μ) ≤ htop(f,Δ) ≤
γ (f,Δ). More precisely, the dimension of this disk is the number of positive Lya-
punov exponents. For C∞ diffeomorphisms (more generally if there is a maximum
measure) there exists a disk Δmax such that

htop(f ) = htop(f,Δmax) = γ (f,Δmax).

I do not know if Newhouse’s inequality fails for C1 maps.

The proof of Newhouse inequality involves ergodic theory and especially Pesin
theory. Indeed, this type of inequality does not hold uniformly:

Example 23. There exist a C∞ self-map F of a surface and a C∞ curve φ such that,
for some sequence ni →∞,

lim
i→∞

1

ni
log rF (ε, ni, φ) > lim

i→∞
1

ni
log vol(F ni ◦ φ).

Proof. Let α > 0 be some small number. Let I := [0, 1]. Let f : I → I be a C∞
map such that: (i) f (0) = f (1) = 0; (ii) f (1/2) = 1; (iii) f |[0, 1/2] is increasing
and f |[1/2, 1] is decreasing; (iv) f ′|[0, 1/2 − α] = 2(1 + α) and f ′|[1/2 + α] =
−2(1+α). As α is small, 1/2 has a preimage in [0, 1/2−α]. Let x−n be the leftmost
preimage in f−n(1): x0 = 1, x−1 = 1/2, and for all n ≥ 2, x−n = 2−n(1+α)−n+1.
Let g : I → I be another C∞ map such that: (i) g(0) = 0; (ii) 0 < g′ < 1; (iii)
g(x−n) = x−n−1 for all n ≥ 0.

Consider the following composition of length 3n for some n ≥ 1:

I −→f n

2n × I −→gn 2n × [0, x−n] −→f n

2n × I. (1)

Observe that after time 2n, the length of the curve gn ◦f n is 2n ·x−n = (1+α)−n+1

whereas the number of (ε, n)-separated orbits is less than ε−1n2n. After time 3n, the
curve f n ◦ gn ◦ f n has image I with multiplicity 2n. It is therefore easy to analyze
the dynamics of compositions of such sequences.

We build our example by considering a skew-product for which the curve will be
a fiber over a point which will drive the application of sequences as above.
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Let h : S1 → S1 be the circle map defined by h(θ) = 4θ mod 2π . Let F :
S1 × I → S1 × I be a C∞ map such that: F(θ, x) = (h(θ), f (x)) if θ ∈ [0, 1

6 ] and
F(θ, y) = (h(θ), g(x)) if θ ∈ [ 1

2 ,
2
3 ].

Recall that the expansion in basis 4 of θ ∈ S1 is the sequence a1a2 · · · ∈
{0, 1, 2, 3}N such that θ = 2π

∑
k≥1 ak4−k . We write θ = 0.a1a2a3 . . .

4
.

Observe that, whenever θ has only 0s and 2s in its expansion,

hn(θ) ∈
[

0,
1

6

]

= [0, 0.02222 . . .
4]

whenever its nth digit is 0 and

hn(θ) ∈
[

1

2
,

2

3

]

= [0.2000 . . .
4
, 0.222 . . .

4]

whenever its nth digit is 2. Thus we can specify the desired compositions of f and
g just by picking θ ∈ S1 with the right expansion. We pick:

θ1 = 0.0n1 2n10n1+n22n2 0n2+n3 2n3 0n3+n4 ....
4

so that we shall have a sequence of compositions of the type (1). We write Ni :=
3n1 + · · · + 3ni . We set ni := i! so that ni+1/Ni →∞. Let φ1 : Q1 → S1 × I be
defined by φ1(s) = (θ1, (s + 1)/2).

The previous analysis shows that FNi ◦ φ1 has image I with multiplicity

2n1+···+ni = 2
1
3Ni . FNi+ni+1 ◦ φ1 has image I with multiplicity 2

1
3Ni × 2ni+1 .

FNi+2ni+1 ◦ φ1 has image [0, x−ni+1 ] with multiplicity 2
1
3Ni × 2ni+1 . It follows that,

setting ti := Ni + 2ni+1 ≈ 2ni+1,

log rF (ε, ti , φ
1) ≈

(
1

3
Ni + ni+1

)

log 2

whereas

vol(F ti ◦ φ1) = x−ni+1 × 2
1
3Ni+ni+1 = (1 + α)−ni+1 2

1
3Ni .

Hence,

1

ti
log rF (ε, ti , φ

1) ≈ 1

2
log 2 whereas

1

ti
log vol(F ti ◦ φ1) ( −1

2
α,

as claimed.

Remark 24. The inequality in the previous example is obtained as the length is con-
tracted after a large expansion. For curves, this is in fact general and it is easily
shown that, for any C1 1-disk φ with unit length, for any 0 < ε < 1:

∀n ≥ 0 ε · rf (ε, n, φ) ≤ max
0≤k<n

vol(f k ◦ φ)+ 1. (2)
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Equation (2) implies that, for curves,

htop(f, φ) ≤ γ (f, φ), (3)

both quantities being defined by lim sup (this would fail using lim inf). However, one
can find similarly as above, a C∞ self-map of a 3-dimensional compact manifold
and a C∞ smooth 2-disk such that (2) fails though (3) seems to hold.

We ask the following:

Question 25. Let f : M → M be a C∞ self-map of a compact d-dimensional
manifold. Is it true that, for any singular k-disk ψ (0 ≤ k ≤ d)

htop(f, ψ) ≤ max
φ⊂ψ

γ (f, φ)?

(both rates being defined using lim sup and φ ranging over singular  -disks, 0 ≤
 < k, with φ(Q ) ⊂ ψ(Qk))? Is it at least true that

hktop(f ) ≤ max
0≤ ≤k

γ  (f )?

These might even hold for finite smoothness for all I know.

Conversely, entropy also provides some bounds on volume growth

Theorem 26 (Yomdin [27]). Let f : M → M be a Cr , r ≥ 1, smooth self-map of a
compact manifold. Let α > 0. Then there exist C(r, α) < ∞ and ε0(r) > 0 with the
following property. Let φ : Qk → M be any Cr singular k-disk with unit Cr size
for some 0 ≤ k ≤ d . Then, for any n ≥ 0,

vol(f n ◦ φ) ≤ C(r, α)Lip(f )(
k
r
+α)n · rf (ε0, n, φ).

In particular,

γ k(f ) ≤ hktop(f )+ k

r
lip(f ).

Remark 27. The above extra term is indeed necessary as shown already by exam-
ples attributed by Yomdin [27] to Margulis: there is f : [0, 1] → [0, 1], Cr with
htop(f ) = 0 and γ (f ) = lip(f )/r .

Remark 28. Yomdin’s estimate is uniform holding for each disk and each iterate. Its
proof involves very little dynamics and no ergodic theory, in contrast to Newhouse’s
inequality quoted above.

Corollary 29. Let f : M → M be a self-map of a compact manifold. If f is C∞,
then

htop(f ) = γ (f ).

Let f∗ : H∗(M,R) → H∗(M,R) be the total homological action of f . Let
ρ(f∗) be its spectral radius. As the  1-norm in homology gives a lower bound on
the volume, we have γ (f ) ≥ log ρ(f∗). Hence, the following special case of the
Shub Entropy Conjecture is proved:



106 Jérôme Buzzi

Corollary 30 (Yomdin [27]). Let f : M → M be a self-map of a compact mani-
fold. If f is C∞, then

log ρ(f∗) ≤ htop(f ).

4.2 Resolution Entropies

The previous results of Yomdin and more can be obtained by computing a growth
rate taking into account the full structure of singular disks. A variant of this idea is
explained in Gromov’s Bourbaki Seminar [12] on Yomdin’s results. We build on [4].

Definition 31. Let r ≥ 1. Let φ : Qk → M be a Cr singular k-disk. A Cr -resolution
R of order n of φ is a collection of Cr maps ψω : Qk → Qk , for ω ∈ Ω with Ω a
finite collection of words of length |ω| at most n with the following properties. For
each ω ∈ Ω , let Ψω := ψσ |ω|−1ω ◦ · · · ◦ ψω(Q

k) (σ deletes the first symbol). We
require:

1.
⋃

|ω|=n Ψω(Q
k) = Qk;

2. ‖ψω‖Cr ≤ 1 for all ω ∈ Ω;
3. ‖f |ω| ◦ Ψω‖Cr ≤ 1 for all ω ∈ Ω .

The size |R| of the resolution is the number of words in Ω with length n.

Condition (2) added in [4] much simplifies the link between resolutions and en-
tropy. It no longer relies on Newhouse application of Pesin theory and becomes
straightforward:
Fact 32 Let R := {ψω : Qk → Qk : ω ∈ Ω} be a Cr -resolution of order n of
φ : Qk → M . Let ε > 0 and Qk

ε be ε-dense in Qk , i.e., Qk ⊂⋃t∈Qk
ε
B(x, ε). Then

{Ψω(t) : t ∈ Qk
ε and ω ∈ Ω with |ω| = n} is a (ε, n)-cover of φ(Qk).

On the other hand, the notion of resolution induces entropy-like quantities:

Definition 33. Let 1 ≤ r < ∞ and let f : M → M be a Cr self-map of a compact
manifold. Let Rf (C

r, n, φ) be the minimal size of a Cr -resolution of order n of a
Cr singular disk φ. The resolution entropy of φ is:

hR(f, φ) := lim sup
n→∞

1

n
logRf (C

r, n, φ).

If D is a collection of Cr singular disks, its Cr resolution entropy is

hR,Cr (f,D) := sup
φ∈D

hR(f, φ)

and its Cr uniform resolution entropy is:

HR,Cr (f,D) := lim sup
n→∞

1

n
logRf (C

r, n,D)
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where Rf (C
r, n,D) := maxφ∈D Rf (C

r, n, φ). We set:

h
k,Cr

R (f ) = hR,Cr (f,Dk
r ) and H

k,Cr

R (f ) = HR,Cr (f,Dk
r ).

The following is immediate but very important:
Fact 34 Let 1 ≤ r < ∞ and 0 ≤ k ≤ d . Let f : M → M be a Cr self-map
of a compact d-dimensional manifold. The sequence n �→ Rf (C

r, n,Dk
r ) is sub-

multiplicative:

Rf (C
r, n+m,Dk

r ) ≤ Rf (C
r, n,Dk

r )Rf (C
r,m,Dk

r ).

The key technical result of Yomdin’s theory can be formulated as follows:

Proposition 35. Let 1 ≤ r < ∞ and α > 0. Let f : M → M be a Cr self-map of
a compact manifold. There exist constants C′, C(r, α), ε0(r, α) with the following
property. For any Cr singular disk φ, any number 0 < ε < ε0(r, α) and any integer
n ≥ 1,

C′εkrf (ε, n, φ) ≤ Rf (C
r, n, φ) ≤ C(r, α)Lip(f )(

k
r
+α)nrf (ε, n, φ).

Remark that the above constants depend on f . The first inequality follows from
Fact 32. The second is the core of Yomdin theory, we refer to [4] for details.

5 Properties of Dimensional Entropies

We turn to various properties of dimensional entropies, most of which can be shown
using resolution entropy and its submultiplicativity.

5.1 Link between Topological and Resolution Entropies

We start by observing that Proposition 35 links the topological and resolution en-
tropies.

Corollary 36. For all positive integers r, k, any collection of Cr k-disks D and any
Cr self-map f on a manifold equipped with a Cr size:

htop(f,D) ≤ hR,Cr (f,D) ≤ htop(f,D)+ k

r
log Lip(f )

Htop(f,D) ≤ HR,Cr (f,D) ≤ Htop(f,D)+ k

r
log Lip(f ).

If the disks in D are C∞, then, for r ≤ s < ∞,
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hR,Cr (f,D) ≤ hR,Cs (f,D) ≤ htop(f,D)+ k

s
log Lip(f ).

Letting s →∞, we get:

Corollary 37. If f is C∞, then, for all 1 ≤ r < ∞,

hR,Cr (f,Dk∞) = htop(f,D
k∞).

The same holds for uniform topological entropy.

5.2 Gap Between Uniform and Ordinary Dimensional Entropies

Yomdin theory gives the following relation:

Proposition 38. Let 1 ≤ r < ∞ and f : M → M be a Cr self-map of a compact
d-dimensional manifold. For each 0 ≤ k ≤ d ,

h
k,Cr

top (f ) ≤ H
k,Cr

top (f ) ≤ h
k,Cr

top (f )+ k

r
lip(f )

and the same holds for the resolution entropies hk,C
r

R (f ) and H
k,Cr

R (f ).
In particular, in the C∞ smooth case, all the versions of the dimensional en-

tropies agree: hktop(f ) = Hk
top(f ) = hkR(f ) = Hk

R(f ) = limr→∞H
k,Cr

top (f ).

Proof. It is obvious that the uniform entropies dominate ordinary ones. By Fact 32,
h
k,Cr

top (f ) ≤ h
k,Cr

R (f ) and H
k,Cr

top (f ) ≤ H
k,Cr

R (f ). Therefore it is enough to show:

H
k,Cr

R (f ) ≤ h
k,Cr

top (f )+ k

r
lip(f ). (4)

Let α > 0. Let ε0 > 0 as in Proposition 35. This proposition defines a number
C(r, α). By definition, for every φ ∈ Dk

r , there exists nφ < ∞ such that

rf (ε0, nφ, φ) ≤ e(h
k,Cr

top (f )+α)nφ .

We can arrange it so that this holds for all k-disks ψ in some C0 neighborhood Uφ

of φ. We also assume nφ so large that C(r, α) ≤ eαnφ .
By Proposition 35, each such ψ admits a resolution with size at most

rf (ε, nφ, ψ)× C(r, α)Lip(f )
k
r
nφ ≤ e(h

k,Cr

R (f )+ k
r

lip(f )+2α)nφ .

Dk
r is relatively compact in the C0 topology, hence there is a finite cover Dk

r ⊂
Uφ1 ∪ · · · ∪ UφK . Let N := max nφj . It is now easy to build, for each n ≥ 0 and
each ψ ∈ Dk

r a Cr resolution R of order n with:



Dimensional Entropies and Semi-Uniform Hyperbolicity 109

|R| ≤ exp

(

h
k,Cr

top (f )+ k

r
lip(f )+ 2α

)

(n+N).

Equation (4) follows by letting α go to zero.

5.3 Continuity Properties

Proposition 39. We have the following upper semicontinuity properties:

1. f �→ H
k,Cr

R (f ) is upper semicontinuous in the Cr topology for all 1 ≤ r < ∞;
2. f �→ Hk

top(f ) is upper semicontinuous in the C∞ topology;

3. the defect in upper semi-continuity of f �→ H
k,Cr

top (f ) at f = f0 is at most
k
r
lip(f0):

lim sup
f→f0

H
k,Cr

top (f ) ≤ H
k,Cr

top (f0)+ k

r
lip(f0).

Proof. We prove (1). The sub-multiplicativity of resolution numbers observed in
Fact 34 implies that: Hk,Cr

R (f ) = infn≥1
1
n

logRf (C
r, n,Dk

r ). For each fixed pos-
itive integer n, Rg(C

r, n,Dk
r ) ≤ 2kRf (C

r, n,Dk
r ) for any g Cr -close to f (use a

linear subdivision). Thus f �→ H
k,Cr

R (f ) is upper semi-continuous in the Cr topol-
ogy.

We deduce (3) from (1). Let fn → f in the Cr topology. By the preceding,
H

k,Cr

R (f ) ≥ lim supn→∞H
k,Cr

R (fn). By Proposition 38, Hk
top(f ) ≥ H

k,Cr

R (f ) −
k
r
lip(f ).

(2) follows from (3) using Lemma 18.

On the other hand, f �→ Hk
top(f ) fails to be lower semi-continuous except for

interval maps for which topological entropy is lower semi-continuous in the C0

topology by a result of Misiurewicz. In every case there are counter examples:

Example 40. For any d ≥ 2 and 1 ≤ k ≤ d , there is a self-map of a compact
manifold of dimension d at which hktop(f ) fails to be lower semi-continuous.

Let h : R → [0, 1] be a C∞ function such that h(t) = 1 if and only if t = 0. Let
Fλ : [0, 1]d → [0, 1]d be defined by

Fλ(x1, . . . , xd) = (h(λ)x1, 4x1x2(1 − x2), x3, . . . , xd).

Observe that if λ $= 0, then h(λ) ∈ [0, 1) and Fn
λ (x1, . . . , xd) approaches {(0, 0)} ×

[0, 1]d−2 on which Fλ is the identity. Therefore htop(Fλ) = 0. On the other hand
htop(F0) = htop(x �→ 4x(1 − x)) = log 2. Now, Hk

top(Fλ) ≤ htop(Fλ) = 0 for any

λ $= 0 and Hk
top(F0) ≥ hktop(f ) ≥ htop(F0, {1} × [0, 1] × {(0, . . . , 0)}) = log 2 for

any k ≥ 1.
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6 Hyperbolicity from Entropies

We now explain how the dimensional entropies can yield dynamical consequences.
We start by recalling an inequality which will yield hyperbolicity at the level of
measures. Then we give the definition and main results for entropy-expanding maps.
Finally we explain the new notion of entropy-hyperbolicity for diffeomorphisms.

6.1 A Ruelle-Newhouse Type Inequality

One of the key uses of dimensional entropies is to give bounds on the exponents
using the following estimate. This will give hyperbolicity of large entropy measure
from assumptions on these dimensional entropies.

Theorem 41 ([7]). Let f : M → M be a Cr self-map of a compact manifold with
r > 1. Let μ be an ergodic, invariant probability measure with Lyapunov exponents
λ1(μ) ≥ λ2(μ) ≥ · · · ≥ λd(μ) repeated according to multiplicity. Recall that
Hk

top(f ) is the uniform k-dimensional entropy of f . Then:

h(f, μ) ≤ Hk
top(f )+ λk+1(μ)

+ + · · · + λd(μ)
+.

Remark 42. For k = 0 this reduces to Ruelle’s inequality. For k equal to the num-
ber of nonnegative exponents, this is close to Newhouse inequality (with Hk

top(f )

replacing γ k(f )). The proof is similar to Newhouse’s and relies on Pesin theory.

6.2 Entropy-Expanding Maps

We require that the full topological entropy only appear at the full dimension.

Definition 43. A Cr self-map f : M → M of a compact manifold is entropy-
expanding if:

Hd−1
top (f ) < htop(f ).

An immediate class of examples is provided by the interval maps with non-zero
topological entropy.

The first consequence of this condition is that ergodic invariant probability mea-
sures with entropy > Hd−1

top (f ) have only Lyapunov exponents bounded away from
zero. This follows immediately from Theorem 41.

This also allows the application of (a non-invertible version of) Katok’s theorem,
proving a logarithmic lower bound on the number of periodic points.

Katok’s proof gives horseshoes with topological entropy approaching htop(f ). In
particular these maps are points of lower semi-continuity of f �→ htop(f ) in any Cr

topology, r ≥ 0. Combining with the upper semi-continuity from Yomdin theory
we get:
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Proposition 44. The entropy-expansion property is open in the C∞ topology.

Thus we can use the following estimate

Proposition 45 ([6]). The Cartesian product of a finite number of C∞ smooth inter-
val maps, each with nonzero topological entropy is entropy-expanding.

To get dynamically interesting examples:

Example 46. For |ε| small enough, the plane map Fε : (x, y) �→ (1 − 1.8x2 −
εy2, 1 − 1.9y2 − εx2) preserves [−1, 1]2 and its restriction to this set is entropy-
expanding.

A sufficient condition, considered in a different approach by Oliveira and Viana
[24, 25] is the following:

Lemma 47. Let f : M → M be a diffeomorphism of a compact Riemanian man-
ifold. Let ‖ΛkTf ‖ be the maximum over all 1 ≤  ≤ k and all x ∈ M of the
Jacobian of the restrictions of the differential Txf to any k-dimensional subspace
of TxM . Then

Hk
top(f ) ≤ log ‖ΛkTf ‖.

In particular, log ‖ΛkT ‖ < htop(f ) implies that f is entropy-expanding. An even
stronger condition is (d − 1)lip(f ) < htop(f ).

The proof of this lemma is a variation on the classical proof of Ruelle’s inequal-
ity.

We are able to analyze the dynamics of entropy-expanding maps with respect to
large entropy measures rather completely.

Theorem 48. Let f : M → M be a C∞ self-map of a compact manifold. Assume
that f is entropy-expanding. Then:

• f has finitely many maximum measures;
• Its periodic points satisfies a multiplicative lower bound.

This can be understood as generalization of the Markov property which corre-
sponds to partition having boundaries with essentially finite forward or backward
orbits. The proof of the theorem involves a partition whose boundaries are pieces of
smooth submanifolds, therefore of entropy bounded by Hd−1

top (f ).
In [9], we are able to define a nice class of symbolic systems, called puzzles of

quasi-finite type, which contains the suitably defined symbolic representations of
entropy-expanding maps satisfying a technical condition and have the above prop-
erties. Moreover, their periodic points define zeta functions with meromorphic ex-
tensions and their natural extensions can be classified up to entropy-conjugacy in
the same way as interval maps.
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6.3 Entropy-Hyperbolicity

Entropy-expanding maps are never diffeomorphisms. Indeed, they have ergodic in-
variant measures which have nonzero entropy and only positive Lyapunov expo-
nents. Wrt the inverse diffeomorphism these measures have the same nonzero en-
tropy but only negative Lyapunov exponents, contradicting Ruelle’s inequality. Thus
we need a different notion for diffeomorphism.

Definition 49. The unstable (entropy) dimension is:

du(f ) := min{0 ≤ k ≤ d : Hk
top(f ) = htop(f )}.

If f is a diffeomorphism, then the stable dimension is: ds(f ) := du(f
−1) (if f not

a diffeomorphism we set ds(f ) = 0).

Observe that f is entropy-expanding if and only if du(f ) coincides with the
dimension of the manifold.

Lemma 50. Let f : M → M be a Cr self-map of a compact d-dimensional mani-
fold with r > 1. Then:

du(f )+ ds(f ) ≤ d.

Proof. Theorem 41 implies that measures with entropy > H
du(f )−1
top (f ) have at

least du(f ) positive exponents. The same reasoning applied to f−1 shows that such
measures have at least ds(f ) negative exponents. By the variational principle such
measures exist. Hence du(f )+ ds(f ) ≤ d .

We can now propose our definition:

Definition 51. A diffeomorphism such that du(f ) + ds(f ) = d is entropy-hyper-
bolic.

Obviously surface diffeomorphisms with non-zero topological entropy are
entropy-hyperbolic.

Exactly as above, we obtain from Theorems 41 and 10:

Theorem 52. Let f : M → M be a Cr diffeomorphism of some compact manifold
with r > 1. Assume that f is entropy-hyperbolic. Then:

• All ergodic invariant probability measures with entropy close enough to the topo-
logical entropy have the absolute value of their Lyapunov exponents bounded
away from zero;

• Their periodic points satisfy a logarithmic lower bound;
• They contain horseshoes with topological entropy arbitrarily close to that of f .

Corollary 53. The set of entropy-hyperbolic diffeomorphisms of a compact mani-
fold is open in the C∞ topology.
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6.4 Examples of Entropy-Hyperbolic Diffeomorphisms

The techniques of [6] yield:

Lemma 54. Linear toral automorphisms are entropy-hyperbolic if and only if they
are hyperbolic in the usual sense: no eigenvalue lies on the unit circle.

The following condition is easily seen to imply entropy-hyperbolicity:

Lemma 55. Let f : M → M be a diffeomorphism of a compact manifold of dimen-
sion d . Assume that there are two integers d1 + d2 = d such that:

log ‖Λd1−1Tf ‖ < htop(f ) and log ‖Λd2−1Tf ‖ < htop(f ).

Then f is entropy-hyperbolic.

7 Further Directions and Questions

We discuss some developing directions and ask some questions.

7.1 Variational Principles

It seems reasonable to conjecture the following topological variational principle for
dimensional entropies, at least for C∞ self-maps and diffeomorphisms:

In each dimension, there is a C∞ disk with maximum topological entropy, i.e.,
hktop(f ).

Does it fail for finite smoothness?
A probably more interesting but more delicate direction would be an ergodic

variational principle. Even its formulation is not completely clear. A possibility
would be as follows:

For each dimension k, hktop(f ) is the supremum of the entropies of k-disks con-
tained in unstable manifolds of points in any set of full measure with respect to all
invariant probability measures.

7.2 Dimensional Entropies of Examples

Let fi : Mi → Mi are smooth maps for i = 1, . . . , n and consider the following
formula:

Hk
top(f1 × · · · × fn) = max

 1+···+ n=k
H

 1
top(f )+ · · · +H

 n
top(f ).
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This is only known in special cases—see [3]. It would imply that product of entropy-
expanding maps are again entropy-expanding.

If f : M → M is an expanding map of a compact manifold, is it true that
Hd−1

top (f ) < htop(f )? Note that this fails for piecewise expanding maps (think of a
limit set containing an isolated invariant curve with maximum entropy).

Likewise is an Anosov diffeomorphism, even far from linear, entropy-hyperbolic?
Find examples where h

k,Cr

top (f ) < H
k,Cr

top (f ).

7.3 Other Types of Dimensional Complexity

Other “dimensional complexities” have been investigated from growth rates of
multi(co)vectors for the Kozlovski entropy formula [21] to the currents which are
fundamental to multidimensional complex dynamics [13] and the references therein.

How do they relate to the above dimensional entropies?

7.4 Necessity of Topological Assumptions

We have seen in Sect. 2.1 that, for maps, the assumption of no zero Lyapunov ex-
ponent for the large entropy measure, (or even that these exponents are bounded
away from zero) is not enough for our purposes (e.g., finiteness of the number of
maximum measures). Such results seem to require more uniform assumptions, like
the one we make on dimensional entropies.

Is it the same for diffeomorphisms? That is, can one find diffeomorphisms with
infinitely many maximum measures, all with exponents bounded away from zero?

Let f be a Cr self-map of a compact manifold. Assume that there are numbers
h < htop(f ), λ > 0, such that the Lyapunov exponents of any ergodic invariant
measure with entropy at least h fall outside of [−λ, λ]. Assume also that the set
of invariant probability measures with entropy ≥ h is compact. Does it follow that
there are only finitely many maximum measures?

7.5 Entropy-Hyperbolicity

In a work in progress with T. Fisher, we show that the condition of Lemma 55 is
satisfied by a version of a well-known example of robustly transitive, non-uniformly
hyperbolic diffeomorphism of T

4 due to Bonatti and Viana [1]. Building nice center-
stable and center-unstable invariant laminations, we expect be able to show the same
properties as in Theorem 48.

I however conjecture that the finite number of maximum measures, etc. should in
fact hold for every C∞ entropy-expanding diffeomorphism, even when there is no
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such nice laminations. Of course this contains the case of surface diffeomorphisms
which is still open (see Conjecture 9), despite the result on a toy model [8].

7.6 Generalized Entropy-Hyperbolicity

It would be interesting to have a more general notion of entropy-hyperbolicity. For
instance, if a hyperbolic toral automorphism is entropy-hyperbolic, this is not the
case for the disjoint union of two such systems of the same dimension if they have
distinct stable dimensions. It may be possible to “localize” the definition either near
points or near invariant measures to avoid these stupid obstructions (this is one mo-
tivation for the above question on variational principles for dimensional entropies).

If one could remove such obstructions, the remaining ones could reflect basic
dynamical phenomena opening the door to a speculative “entropic Palis program”.

8 Cr Sizes

We explain how to measure the Cr size of singular disks of a compact manifold M

of dimension d . Here 1 ≤ r ≤ ∞.
We select a finite atlas A made of charts χi : Ui ⊂ R

d → M such that changes
of coordinates χ−1

i ◦ χj are Cr -diffeomorphisms of open subsets of R
d . Then we

define, for any singular k-disk φ:

‖φ‖Cr := sup
x∈M

inf
Ui*x

max
s1+···+sk≤r

max
1≤j≤d

|∂s1
t1

. . . ∂
sk
tk
(πj ◦ χi ◦ φ)(t1, . . . , tk)|

where the above partial derivatives are computed at t = χ−1
i (x) and πj (u1,

. . . , ud) = uj .
Fact 56 If ‖ · ‖Cr and ‖ · ‖′Cr are two Cr size defined by the above procedure, there
exists a constant K such that, for any Cr k-disk φ : Qk → M:

‖φ‖Cr ≤ K · ‖φ‖′Cr .

Fact 57 Let φ : Qk → M be a Cr disk for some finite r ≥ 1. Then, for any t0 ∈ Qk ,
there exists a C∞ approximation φ∞ : Qk → M such that:

∀t ∈ Qk d(φ∞(t), φ(t)) ≤ ‖φ‖Cr‖t − t0‖r ,
and ‖φ∞‖C∞ ≤ 2‖φ‖Cr .

This is easily shown by considering a neighborhood of φ(t0) contained in a single
chart of A and approximating φ by its Taylor expansion in that chart.
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The Scaling Limit of (Near-)Critical 2D
Percolation

Federico Camia�

Abstract The geometric analysis of the continuum scaling limit of two-dimensional
critical percolation has made tremendous progress in recent years. In this extended
abstract, we give a brief introduction to scaling limits and summarize some of the
recent progress in percolation. We discuss in particular how to obtain the scaling
limit of the collection of all macroscopic cluster boundaries, and how one can at-
tempt to use it to understand and study the scaling limit of percolation “near” the
critical point.

1 Introduction

1.1 Critical Scaling Limits and SLE

One of the main goals of both probability theory and statistical physics is to under-
stand and describe the large scale behavior of random systems consisting of many
“microscopic” variables, where each single variable has a negligible effect and the
behavior of the system is determined by the “sum” of all the variables. One usu-
ally wishes to study the behavior of such systems via some observables, suitably
defined quantities that can be of an analytic or geometric nature. The asymptotic be-
havior of these quantities is often deterministic, but in some interesting cases it turns
out to be random. Physicists and chemists have observed this type of macroscopic
randomness in critical systems, i.e., systems at their phase transition point.
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In the theory of critical phenomena it is usually assumed that a physical system
near a continuous phase transition is characterized by a single length scale (the cor-
relation length) in terms of which all other lengths should be measured. When com-
bined with the experimental observation that the correlation length diverges at the
phase transition, this simple but strong assumption, known as the scaling hypothesis,
leads to the belief that at criticality the system has no characteristic length, and is
therefore invariant under scale transformations. This implies that all thermodynamic
functions at criticality are homogeneous functions, and predicts the appearance of
power laws.

It also suggests that for models of critical systems realized on a lattice, one can
attempt to take a continuum scaling limit in which the mesh of the lattice is sent to
zero while focus is kept on “macroscopic” observables that capture the large scale
behavior. In the limit, the discrete model should converge to a continuum one that
encodes the large scale properties of the original model, containing at the same
time more symmetry. In many cases, this allows to derive extra insight by combin-
ing methods of discrete mathematics with considerations inspired by the continuum
limit picture. The simplest example of such a continuum random model is Brownian
motion, which is the scaling limit of the simple random walk. In general, though,
the complexity of the discrete model makes it impossible even to guess the nature
of the scaling limit, unless some additional feature can be shown to hold, which
can be used to pin down properties of the continuum limit. Two-dimensional critical
systems belong to the class of models for which this can be done, and the additional
feature is conformal invariance.

In the eighties, physicists started exploring the consequences of conformal in-
variance. The constraints it poses on the continuum limits are particularly stringent
in two dimensions, where every analytic function defines a conformal transforma-
tion (at points where its derivative is non-vanishing). A large number of critical
problems in two dimensions were analyzed using conformal methods, including the
Ising and Potts models, Brownian motion, the Self-Avoiding Walk (SAW), percola-
tion, and Diffusion Limited Aggregation (DLA). The large body of knowledge and
techniques that resulted, starting with the work of Belavin, Polyakov and Zamolod-
chikov [6, 7] in the early eighties, goes under the name of Conformal Field Theory
(CFT). One of the main goals of CFT, and its most important application to statis-
tical mechanics, is a complete classification of 2D critical systems in universality
classes according to their scaling limit.

At the hands of theoretical physicists, CFT has been very successful in producing
many interesting results. However, conformal invariance remains a conjecture for
most models describing critical systems. Moreover, despite its success, CFT leaves
a number of open problems. First of all, the theory deals primarily with correlation
functions and quantities that are not directly expressible in terms of those are not
easily accessible. Secondly, given some critical lattice model, there is no way, within
the theory itself, of deciding to which CFT it corresponds. A third limitation, of a
different nature, is due to the fact that the methods of CFT, although very powerful,
are generally speaking not completely rigorous from a mathematical point of view.
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Partly because of the success of CFT, in recent years work on critical phenomena
had slowed down somewhat, probably due to the feeling that most of the leading
problems had been resolved. In a somewhat surprising twist, the most recent de-
velopments in the area of two-dimensional critical systems have emerged in the
mathematics literature, and have followed a completely new direction, which has
provided new tools and a way of surpassing at least some of the limitations of CFT.

These developments came on the heels of interesting results on the scaling limits
of discrete models (see, e.g., the work of Aizenman [1, 2], Benjamini-Schramm [8],
Aizenman-Burchard [3], Aizenman-Burchard-Newman-Wilson [4], Aizenman-
Duplantier-Aharony [5] and Kenyon [18, 19]) but they differ greatly from those
because they are based on a radically new approach whose main tool is the Sto-
chastic Loewner Evolution (SLE), or Schramm-Loewner Evolution, as it is also
known, introduced by Schramm [28]. The new approach, which is probabilistic in
nature, focuses directly on non-local structures that characterize a given system,
such as cluster boundaries in Ising, Potts and percolation models, or loops in the
O(n) model. At criticality, these non-local objects become, in the continuum limit,
random curves whose distributions can be uniquely identified thanks to their confor-
mal invariance and a certain “Markovian” property. There is a one-parameter family
of SLEs, indexed by a positive real number κ , and they appear to be essentially
the only possible candidates for the scaling limits of interfaces of two-dimensional
critical systems that are believed to be conformally invariant.

The identification of the scaling limit of interfaces of critical lattice models with
SLE curves has led to tremendous progress in recent years. The main power of SLE
stems from the fact that it allows to compute different quantities; for example, per-
colation crossing probabilities and various percolation critical exponents. Therefore,
relating the scaling limit of a critical lattice model to SLE allows for a rigorous de-
termination of some aspects of the large scale behavior of the lattice model. For
the mathematician, the biggest advantage of SLE over CFT lies maybe in its math-
ematical rigor. But many physicists working on critical phenomena and CFT have
promptly recognized the importance of SLE and added it to their toolbox.

In the context of the Ising, Potts and O(n) models, as well as percolation, an SLE
curve is believed to describe the scaling limit of a single interface, which can be ob-
tained by imposing special boundary conditions. A single SLE curve is therefore
not in itself sufficient to immediately describe the scaling limit of the unconstrained
model without boundary conditions in the whole plane (or in domains with bound-
ary conditions that do not determine a single interface), and contains only limited
information concerning the connectivity properties of the model.

A more complete description can be obtained in terms of loops, corresponding
to the scaling limit of cluster boundaries. Such loops should also be random and
have a conformally invariant distribution, closely related to SLE. This observation
led Wendelin Werner [35, 36] and Scott Sheffiled [29] to the definition of Confor-
mal Loop Ensembles (CLEs), which are, roughly speaking, random collections of
conformally invariant fractal loops. As for SLE, there is a one parameter family of
CLEs.
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The study of SLE and its connections to statistical mechanics is currently among
the most active and rapidly growing areas of probability theory, and, especially in the
work of Lawler, Scrhamm and Werner [20–24, 26, 25] has already provided many
impressive (rigorous) results concerning various two-dimensional models such as
Brownian motion, the loop erased random walk and the uniform spanning tree.

At present, there are at least three distinct directions into which research is de-
veloping. The first concerns the study of SLE itself (see [27]), a task that is being
carried out by a growing number of mathematicians. Physicists on their part have
used SLE to obtain information about CFT, and have also been active in reproducing
certain SLE results with “traditional” CFT methods, thus pushing the boundaries of
CFT. The hope in both the mathematics and physics community is that the interac-
tion between SLE and CFT will continue to shed new light on both approaches and
provide a deeper understanding of critical phenomena.

The third direction, which has been explored most notably by Lawler, Schramm
and Werner [24, 26], Smirnov [30, 33, 31, 32], Smirnov and Werner [34], and Camia
and Newman [12–15], consists in proving conformal invariance of the scaling limit
for individual models of statistical mechanics, proving the convergence of interfaces
in those models to SLE and CLE curves, and deriving information about the discrete
models from their scaling limits.

The case of percolation is particularly illuminating because the connection with
both SLE and CLE has been fully established and successfully exploited to de-
rive rigorously several important results previously obtain by physicists using CFT
methods. Moreover, the description of the “full” scaling limit, i.e., the scaling limit
of all cluster boundaries, represents an important first step in understanding the
near-critical scaling limit, when the system is slightly off-critical and it approaches
criticality at an appropriate speed in the scaling limit.

1.2 Percolation

Percolation as a mathematical theory was introduced by Broadbent and Hammers-
ley [10, 11] to model the spread of a gas or a fluid through a porous medium. To
mimic the randomness of the medium, they declared the edges of the d-dimensional
cubic lattice independently open (to the passage of the gas or fluid) with probability
p or closed with probability 1 − p. Since then, many variants of this simple model
have been studied, attracting the interest of both mathematicians and physicists.

Mathematicians are interested in percolation because of its deceiving simplic-
ity which hides difficult and elegant results. From the point of view of physicists,
percolation is maybe the simplest statistical mechanical model undergoing a contin-
uous phase transition as the value of the parameter p is varied, with all the standard
features typical of critical phenomena (scaling laws, a conformally invariant scal-
ing limit, universality). On the applied side, percolation has been used to model the
spread of a disease, a fire or a rumor, the displacement of oil by water, the behav-
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ior of random electrical circuits, and more recently the connectivity properties of
communication networks.

In one version of the model, the vertices of the triangular lattice, identified with
the hexagonal faces of its dual, the honeycomb lattice, are colored independently
white with probability p or black otherwise. The questions regarding the geometry
of this random coloring (for instance, whether there exists a path on white sites
connecting the opposite edges of a large rectangle) can be expressed in terms of the
behavior of clusters (i.e., maximal connected monochromatic subsets of the lattice)
or of the boundaries between them.

It is well known that in this model if p > 1/2 (respectively, p < 1/2) there is
an infinite white (respectively, black) cluster, while for p = 1/2 there is no infinite
cluster of either color. The latter is the critical value of the model, at which the perco-
lation phase transition occurs. Concerning the critical behavior of two-dimensional
percolation, despite some important achievements, a complete and rigorous under-
standing had seemed out of reach until the introduction of SLE by Schramm [28]
and the proof of conformal invariance of the scaling limit by Smirnov [30, 33].

2 The Critical Loop Process

2.1 General Features

At the percolation critical point, with probability one there is no infinite cluster
(rigorously proved only in two and sufficiently high dimensions); therefore the per-
colation cluster boundaries form loops (see Fig. 1). We will refer to the continuum
scaling limit (as the lattice spacing δ goes to zero) of the collection of all these loops
as the continuum nonsimple loop process; its existence and some of its properties
have been obtained in [12, 13]. We note that the cluster boundaries are naturally
directed so that, for example, following a boundary according to its direction, white
is to the left and black to the right. This gives to the collection of all boundaries a
nested structure in which loops of opposite orientation alternate. The limiting (as
δ → 0) loops also have this property.

The continuum nonsimple loop process can be described as a “conformally in-
variant gas” of loops, or more precisely, a conformally invariant probability measure
on countable collections of continuous, nonsimple, noncrossing, fractal loops in the
plane. It has the following properties, which are valid with probability one.

1. It is a random collection of countably many, noncrossing, continuous loops in
the plane. The loops can and do touch themselves and each other many times,
but there are no triple points; i.e. no three or more loops can come together at the
same point, and a single loop cannot touch the same point more than twice, nor
can a loop touch a point where another loop touches itself.

2. Any deterministic point z in the plane (i.e., chosen independently of the loop
process) is surrounded by an infinite family of nested loops with diameters going
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Fig. 1 Finite portion of a (site) percolation configuration on the triangular lattice with each
hexagon representing a site. In the critical percolation model, the hexagons are colored black or
white with equal probability. The cluster boundaries are indicated by heavy lines; some small loops
appear, while other boundaries extend beyond the finite region depicted

to both zero and infinity; any annulus about that point with inner radius r1 > 0
and outer radius r2 < ∞ contains only a finite number N(z, r1, r2) of those
loops. Consequently, any two distinct deterministic points of the plane are sepa-
rated by loops winding around each of them.

3. Any two loops are connected by a finite “path” of touching loops.

A continuum nonsimple loop process with the same distribution as the full scal-
ing limit of critical percolation can be constructed directly by an inductive procedure
in which each loop is obtained as the concatenation of an SLE6 path with (a portion
of) another SLE6 path (see Sect. 2.2 below). In [12, 13] this procedure is carried out
first inside a disc of radius R, and then the limit R →∞ is taken in order to obtain
a measure on loops in the whole plane.

In [15], the scaling limit of the collection of all cluster boundaries contained in
a generic Jordan domain D is considered, and it is shown that it gives rise to a
Conformal Loop Ensemble (CLE) inside D.

2.2 Construction of a Single Loop

We will not give here the inductive construction of the full scaling limit, but in
order to present some of the ideas of [12, 13] we explain how to construct a single
loop by using two SLE6 paths inside a domain D whose boundary is assumed to
have a given orientation – see Fig. 2, where the orientation is clockwise. This is
done in three steps, of which the first consists in choosing two points a and b on the
boundary ∂D of D and “running” a chordal SLE6, γ (t) = γD,a,b(t), t ∈ [0, 1], from
a to b inside D. We consider γ ([0, 1]) as an oriented path, with orientation from a

to b. The set D \ γD,a,b([0, 1]) is a countable union of its connected components,
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which are each open and simply connected. If z is a deterministic point in D, then
with probability one, z is not touched by γ ([0, 1]) [27] and so it belongs to a unique
domain in D \ γ ([0, 1]).

The components of D \ γ ([0, 1]) can be conveniently thought of in terms of
how a point z in the interior of the component was first “trapped” at some time
t1 by γ ([0, t1]), perhaps together with either ∂a,bD or ∂b,aD (the portions of the
boundary ∂D from a to b counterclockwise or clockwise respectively): (1) those
components whose boundary contains a segment of ∂b,aD between two successive
visits at γ0(z) = γ (t0) and γ1(z) = γ (t1) to ∂b,aD (where here and below t0 < t1),
(2) the analogous components with ∂b,aD replaced by the other part of the boundary,
∂a,bD, (3) those components formed when γ0(z) = γ (t0) = γ (t1) = γ1(z) ∈ D

with γ winding about z in a counterclockwise direction between t0 and t1, and finally
(4) the analogous clockwise components.

Now, let D′ be a domain of type 1 (if ∂D were counterclockwise, we would take
a domain of type 2) and let A and B be respectively the starting and ending point
of the excursion E that generated D′. The second step to construct a loop is to run a
chordal SLE6, γ ′ = γD′,B,A, inside D′ from B to A; the third and final step consists
in pasting together E and γ ′, keeping their orientations.

Fig. 2 Construction of a continuum loop around z in three steps. A domain D is formed by the
solid curve. The dashed curve is an excursion E (from A to B) of an SLE6 γ in D that creates a
subdomain D′ containing z. (Neither the rest of γ nor its starting and ending points, a and b, are
indicated in the figure.) The dotted curve γ ′ is an SLE6 in D′ from B to A. A loop is formed by E
followed by γ ′

Running γ ′ inside D′ from B to A partitions D′ \ γ ′ into new domains, all of
whose boundaries have a well defined orientation, so that the construction of loops
just presented can be iterated inside each one of these domains (as well as inside
each of the domains of type 2, 3 and 4 generated by γD,a,b in the first step). For the
complete inductive procedure generating all the loops inside D, we refer the reader
to [12, 13].
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3 The Near-Critical Scaling Limit

Using the full scaling limit, one can attempt to understand the geometry of the near-
critical scaling limit, where the percolation density tends to the critical one in an
appropriate way as the lattice spacing δ tends to zero:

p = pc + λδα (1)

where pc is the critical density, δ is the lattice spacing, λ ∈ (−∞,∞), and α is
set equal to 1/ν = 3/4 (where ν is the correlation length exponent) to get nontriv-
ial λ-dependence in the limit δ → 0 (as prescribed by “scaling theory,” see also
[1–3, 9]).

A heuristic analysis [16, 17] of the near-critical scaling limit leads to a one-
parameter family of loop models (i.e., probability measures on random collections
of loops), with the critical full scaling limit corresponding to a particular choice
of the parameter (λ = 0). Except for the latter case, these measures are not scale
invariant, but are mapped into one another by scale transformations.

The approach proposed in [16, 17] is based on a “Poissonian marking” of dou-
ble points of the critical full scaling limit of [12, 13], i.e., points where two loops
touch each other or a loop touches itself. These double points of the loop process
in the plane are precisely the continuum limit of “macroscopically pivotal” lattice
locations; each such site is microscopic, but such that a change in its state (e.g.,
black to white or closed to open) has a macroscopic effect on connectivity. For site
percolation on the triangular lattice (or equivalently random black/white colorings
of the hexagonal lattice – see Fig. 1), a macroscopically pivotal site is a hexagon at
the center of four macroscopic arms with alternating colors – see Fig. 3.

Fig. 3 Schematic diagram of a macroscopically pivotal hexagon at the center of four macroscopic
arms with alternating color. The full and dashed lines represent paths of white and black hexagons
respectively
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The analysis presented in [16, 17] is based on the random marking of count-
ably many double points, with each of these labelled by a number in (−∞,∞)

representing the value of λ at which that double point changes its state and hence
correspondingly changes the macroscopic connectivity. This yields a realization on
a single probability space of all the scaling limits as λ varies in (−∞,∞). We point
out that most double points are not marked since they do not change their state for a
finite value of λ (in the limit δ → 0) – it is only the marked ones that change.

This approach can be used to define a renormalization group flow (under the
action of dilations), and to describe the scaling limit of related models, such as
invasion and dynamical percolation and the minimal spanning tree. In particular,
this analysis helps explain why the scaling limit of the minimal spanning tree may
be scale invariant but not conformally invariant, as first observed numerically by
Wilson [37].

In [16, 17] some geometric properties of the near-critical scaling limit of two-
dimensional percolation are conjectured, including the fact that for any λ $= 0, every
deterministic point of the plane is almost surely surrounded by a largest loop and by
a countably infinite family of nested loops with radii going to zero (to be contrasted
with the case of the critical full scaling limit, λ = 0, where there is no largest loop
around any point).

The analysis done in [16, 17] is nonrigorous, and the purpose of the authors is
not to prove theorems but rather to propose a conceptual framework rich enough to
treat scaling limits of near-critical percolation and of related lattice objects like the
minimal spanning tree.
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Black Hole Entropy Function and Duality

Gabriel Lopes Cardoso

Abstract The macroscopic entropy and the attractor equations for extremal black
hole solutions follow from a variational principle based on an entropy function. We
review this variational principle for static extremal black holes in four space-time
dimensions and we apply it to N = 2 supergravity theories with higher-curvature
interactions.

1 Introduction

String theory provides a microscopic derivation of the macroscopic Bekenstein-
Hawking entropy of certain supersymmetric black holes [21]. An important feature
of supersymmetric black holes is that they are charged and are supported by scalar
fields. In the black hole background these scalar fields vary radially as one moves
from spatial infinity to the horizon of the black hole, and they get attracted to spe-
cific values at the horizon which are determined by the black hole charges. This
is the so-called attractor mechanism, which was first studied in [10, 20, 9, 8]. As
a result, the macroscopic entropy is entirely determined in terms of the black hole
charges and can be compared with the microscopic entropy based on state counting.
The attractor mechanism is, however, not just a feature of supersymmetric black
holes, but is also present for extremal non-supersymmetric black holes [11, 12, 18,
13]. The attractor behaviour is encoded in a set of attractor equations, which can be
obtained by extremizing a so-called entropy function [18]. In addition, the value of
this function at the extremum yields the macroscopic entropy of the extremal black
hole.

We review the entropy function for static extremal black hole solutions in four
space-time dimensions using the approach of [5] based on electric/magnetic duality
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covariance. Then, following [17], we specialize to the case of N = 2 supergravity
theories with higher-curvature interactions. We also review the construction of a
duality invariant OSV integral formula for supersymmetric black holes [4]. We refer
to [5, 4] for a detailed discussion of these topics.

2 Entropy Function and Electric/Magnetic Duality Covariance

Let us consider static extremal black hole solutions to the equations of motion of
a general system of Abelian vector gauge fields, scalar and matter fields coupled
to gravity in four space-time dimensions. Following [18], we take the near-horizon
geometry of such a black hole to be of the form AdS2 × S2. Thus, we consider
near-horizon solutions with spherical symmetry, which may be written as

ds2
(4) = gμνdxμdxν = v1

(

− r2 dt2 + dr2

r2

)

+ v2
(
dθ2 + sin2 θ dϕ2),

F I
rt = eI , F I

θϕ =
pI

4π
sin θ.

(1)

Here the FI
μν denote the field strengths associated with a number of Abelian gauge

fields. The θ -dependence of FI
θϕ is fixed by rotational invariance and the pI denote

the magnetic charges. The fields eI are dual to the electric charges. In addition to
the constant fields eI , v1 and v2 there may be a number of other fields which for the
moment we denote collectively by uα .

As is well known theories based on Abelian vector fields are subject to elec-
tric/magnetic duality, because their equations of motion expressed in terms of the
dual field strengths,1

GμνI =
√|g|εμνρσ ∂L

∂F I
ρσ

, (2)

take the same form as the Bianchi identities for the field strengths FI
μν . Adopting

the conventions where xμ = (t, r, θ, ϕ) and εtrθϕ = 1, and the signature of the
space-time metric equals (−,+,+,+), it follows that, in the background (1),

GθϕI = −v1v2 sin θ
∂L
∂F I

rt

= −v1v2 sin θ
∂L
∂eI

,

GrtI = −v1v2 sin θ
∂L
∂F I

θϕ

= −4πv1v2
∂L
∂pI

.

(3)

1 Here and henceforth we assume that the Lagrangian depends on the Abelian field strengths
but not on their space-time derivatives. We also assume that the gauge fields appear exclusively
through their field strengths.
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These two tensors can be written as qI sin θ/(4π) and fI . The quantities qI and fI
are conjugate to pI and eI , respectively, and can be written as

qI (e, p, v, u) = −4πv1v2
∂L
∂eI

,

fI (e, p, v, u) = −4πv1v2
∂L
∂pI

.

(4)

The qI are constant by virtue of the equations of motion and correspond to the elec-
tric charges. Electric/magnetic duality transformations are induced by rotating the
tensors FI

μν and Gμν I by a constant transformation, so that the new linear combina-
tions are all subject to Bianchi identities. This leads to new quantities (p̃I , q̃I ) and
(ẽI , f̃I ).

Next, we define the reduced Lagrangian by the integral of the full Lagrangian
over the horizon two-sphere S2,

F(e, p, v, u) =
∫

dθ dϕ
√|g|L. (5)

We note that the definition of the conjugate quantities qI and fI takes the form,

qI = − ∂F
∂eI

, fI = − ∂F
∂pI

. (6)

It is known that a Lagrangian does not transform as a function under electric/mag-
netic dualities. Instead we have [6],

F̃(ẽ, p̃, v, u)+ 1

2
[ẽI q̃I + f̃I p̃

I ] = F(e, p, v, u)+ 1

2
[eI qI + fIp

I ] (7)

so that the linear combination F(e, p, v, u)+ 1
2 [eI qI +fIp

I ] transforms as a func-
tion. It is easy to see that the combination eI qI − fIp

I transforms as a function as
well, so that we may construct a modification of (5) that no longer involves the fI
and that transforms as a function under electric/magnetic duality,

E(q, p, v, u) = −F(e, p, v, u)− eI qI , (8)

which takes the form of a Legendre transform in view of the first equation (6). In
this way we obtain a function of electric and magnetic charges. Therefore it trans-
forms under electric/magnetic duality according to Ẽ(q̃, p̃, v, u) = E(q, p, v, u).
Furthermore the field equations imply that the qI are constant and that the action,∫

dtdr E , is stationary under variations of the fields v and u, while keeping the pI

and qI fixed. This is to be expected as E is in fact the analogue of the Hamiltonian
density associated with the reduced Lagrangian density (5), at least as far as the
vector fields are concerned. The constant values of the fields v1,2 and uα are thus
determined by demanding E to be stationary under variations of v and u,
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∂E
∂v

= ∂E
∂u

= 0. (9)

The function 2π E(q, p, v, u) coincides with the entropy function proposed by Sen
[18]. Equation (9) is the so-called attractor equation and the macroscopic entropy is
directly proportional to the value of E at the stationary point,

Smacro(p, q) ∝ E
∣
∣
∣
attractor

. (10)

The above derivation of the entropy function applies to any gauge and general co-
ordinate invariant Lagrangian, and, in particular, also to Lagrangians containing
higher-derivative interactions. The entropy computed by (10) is Wald’s entropy [22,
14, 15] which, in the absence of higher-derivative interactions, reduces to the area
law of Bekenstein and Hawking.

In the absence of higher-derivative terms, the reduced Lagrangian F is at most
quadratic in eI and pI and the Legendre transform (8) can easily be carried out. For
instance, consider the following Lagrangian in four space-time dimensions (we only
concentrate on terms quadratic in the field strengths),

L0 = −1

4

{
NIJ F

+I
μν F

+μνJ − N̄IJ F
−I
μν F

−μνJ
}
, (11)

where F±I
μν denote the (anti)-selfdual field strengths. In the context of this paper the

tensors F±I
rt = ±iF±I

θϕ = 1
2 (F

I
rt± iFI

θϕ) are relevant, where underlined indices refer

to the tangent space. It is straightforward to evaluate the entropy function (8) in this
case,

E = − v1

8πv2
(qI − NIKpK)[(Im N )−1]IJ (qJ − N̄JLp

L), (12)

which is indeed compatible with electric/magnetic duality. Upon decomposing into
real matrices, iNIJ = μIJ−iνIJ , this result coincides with the corresponding terms
in the so-called black hole potential

VBH = 1

2
(p, q)T M

(
p

q

)

, M =
(
μ+ νμ−1ν νμ−1

μ−1ν μ−1

)

, (13)

discussed in [11], and more recently in [13]. Namely, setting v1 = v2 (which en-
forces the vanishing of the curvature scalar) we obtain E = (4π)−1 VBH.

3 Application to N = 2 Supergravity

We now give the entropy function for N = 2 supergravity coupled to n Abelian
N = 2 vector multiplets, first at the two-derivative level and then in the presence of
higher-curvature interactions proportional to the square of the Weyl tensor. Here we
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follow the conventions of [3], where the charges and the Lagrangian have different
normalizations than in the previous section.

The N = 2 vector multiplets contain complex physical scalar fields which we
denote by XI , I = 0, . . . , n. At the two-derivative-level, the action for the vector
multiplets is encoded in a holomorphic function F(X). The coupling to supergravity
requires this function to be homogeneous of second degree, i.e. F(λX) = λ2 F(X).
The gauge coupling functions NIJ in (11) are given in terms of derivatives of F(X),

NIJ = F̄IJ + 2i
ImFIK ImFJLX

KXL

ImFMNXMXN
, (14)

where FI = ∂F (X)/∂XI and FIJ = ∂2F(X)/∂XI ∂XJ .
Imposing the vanishing of the Ricci scalar, i.e. setting v1 = v2, the resulting

entropy function (12) can be brought into the equivalent form [5],

E = 1

2
Σ + 1

2
NIJ (QI − FIK PK)(QJ − F̄JLPL), (15)

where
Σ = −i

(
Ȳ I FI − Y I F̄I

)
− qI (Y

I + Ȳ I )+ pI (FI + F̄I ), (16)

and

PI ≡ pI + i(Y I − Ȳ I ),

QI ≡ qI + i(FI − F̄I ).
(17)

Here the Y I are related to the XI by a uniform rescaling and FI denotes the deriva-
tive of F(Y ) with respect to Y I . Also NIJ = i(F̄IJ − FIJ ), where FIJ = ∂2F(Y )/

∂Y I ∂Y J .
Varying the entropy function (15) with respect to the scalar fields Y I yields the

attractor equations

(
QI − FIJ PJ

)
− i

2

(
QK − F̄KM PM

)
NKPFPIQNQL

(
QL − F̄LN PN

)

= 0, (18)

where FPIQ = ∂3F(Y )/∂YP ∂Y I ∂YQ. The attractor equations determine the hori-
zon value of the Y I in terms of the black hole charges (pI , qI ). Because the function
F(Y ) is homogeneous of second degree, we have FIJKYK = 0. Using this relation
one deduces from (18) that (QJ − FJK PK)Y J = 0, which is equivalent to

i(Ȳ I FI − Y I F̄I ) = pIFI − qIY
I . (19)

Therefore, at the attractor point, we have

Σ = i(Ȳ I FI − Y I F̄I ). (20)
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It is possible to incorporate higher-curvature interactions involving the square of
the Weyl tensor by including the Weyl multiplet into the function F , so that now
F = F(Y, Υ ) subject to

F(λY, λ2Υ ) = λ2F(Y, Υ ). (21)

Here Υ denotes the rescaled square of the auxiliary field Tab of the Weyl multiplet.
The associated entropy function is then given by [5]

E(Y, Ȳ , Υ,U) = 1

2
UΣ + 1

2
UNIJ (QI − FIK PK)(QJ − F̄JLPL)

− 4i√−Υ
(Ȳ IFI − Y I F̄I )(U − 1)

− i(FΥ − F̄Υ )
[− 2UΥ + 32(U + U−1 − 2)

− 8(1 + U)
√−Υ

]
, (22)

where now

Σ = F(Y, Ȳ , Υ, Ῡ )− qI (Y
I + Ȳ I )+ pI (FI + F̄I ). (23)

The quantity F(Y, Ȳ , Υ, Ῡ ) is defined by

F(Y, Ȳ , Υ, Ῡ ) = −i
(
Ȳ I FI − Y I F̄I

)
− 2i

(
ΥFΥ − Ῡ F̄Υ

)
, (24)

where FΥ = ∂F/∂Υ . The entropy function (22) depends on the variables U =
v1/v2, Υ and Y I . Their attractor values are determined by requiring E to be station-
ary. We refer to [5] for the detailed form of the associated attractor equations.

With the normalizations used in this section, the entropy (10) reads

Smacro(p, q) = 2πE
∣
∣
∣
attractor

. (25)

Supersymmetric black holes are the subset of extremal black holes satisfying [3]

QI = PJ = 0, Υ = −64, U = 1. (26)

The conditions QI = PJ = 0 can also be obtained from a variational principle
based on Σ [1, 4]. The entropy of supersymmetric black holes reads [2]

Smacro = πΣ |attractor. (27)

It can be written as a Legendre transform [16],

Smacro = π
[

FE(p, φ)− qIφ
I
]
, (28)

where
FE(p, φ) = 4ImF(Y, Υ = −64), (29)
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with

Y I = 1

2

(
φI + ipI

)
(30)

and the φI satisfying the attractor equations qI = ∂FE/∂φ
I .

4 Duality Invariant OSV Integral

The quantity Σ given above can be used to define a duality invariant version of
the OSV integral for supersymmetric black holes. The OSV conjecture expresses
microscopic state degeneracies d(q, p) in terms of macroscopic data [16],

d(p, q) ∝
∫

dφeπ[FE(p,φ)−qI φ
I ], (31)

where FE(p, φ) was defined in (29). Electric/magnetic duality is, however, not man-
ifest in (31). A duality invariant version of the OSV integral can be constructed
using (23), with Υ set to its attractor value Υ = −64. It reads [4]

d(p, q) ∝
∫

dYdȲΔ(Y, Ȳ )eπΣ(Y,Ȳ ,p,q), (32)

where Δ = |det ImFKL| (non-holomorphic corrections to the coupling functions
can also be incorporated into (32)). Integrating (32) over fluctuations δ(Y I − Ȳ I ) in
saddle-point approximation results in [4]

d(p, q) ∝
∫

dφ
√
Δ(p, φ)eπ[FE(p,φ)−qI φ

I ], (33)

which is a modified version of the OSV integral (31), containing a non-trivial in-
tegration measure factor

√
Δ which is necessary for consistency with electric/mag-

netic duality. Evaluating (33) further in saddle-point approximation precisely yields
the macroscopic entropy (27). The presence of the measure factor in (33) has been
confirmed in the recent works [19, 7].
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Weak Turbulence for Periodic NLS

James Colliander

Abstract This paper summarizes a talk given in the PDE Session at the 2006
International Congress on Mathematical Physics about joint work with M. Keel,
G. Staffilani, H. Takaoka and T. Tao. We build new smooth solutions of the cubic
defocussing nonlinear Schrödinger equation on the two dimensional torus which
are weakly turbulent: given any δ � 1,K ' 1, s > 1, we construct smooth initial
data u0 in the Sobolev space Hs with ‖u0‖Hs < δ, so that the corresponding time
evolution u satisfies ‖u(T )‖Hs > K at some time T .

1 Introduction

This note describes aspects of joint work with M. Keel, G. Staffilani, H. Takaoka and
T. Tao appearing in [3]. We study the initial value problem for the cubic defocussing
nonlinear Schrödinger (NLS) equation

{
−i∂tu+Δu = |u|2u
u(0, x) = u0(x)

(1)

where u(t, x) is a C-valued function with x ∈ T
2 = R

2/(2πZ)2. Smooth solutions
of (1) satisfy energy conservation,

E[u](t) =
∫

T2

1

2
|∇u|2 + 1

4
|u|4dx(t) = E[u0] (2)

and mass conservation,
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∫

T2
|u|2dx(t) =

∫

T2
|u0|2dx, (3)

for all t > 0. The local well-posedness result of Bourgain [1] for data u0 ∈ Hs(T2),

s > 0, and these conservation laws imply the existence of a unique global smooth
solution to (1) evolving from smooth initial data.

The main result of the paper is the construction of solutions to (1) with arbitrarily
large growth in high Sobolev norms:

Theorem 1. Let 1 < s, K ' 1, and 0 < δ � 1 be given parameters. Then there
exists a global smooth solution u(t, x) to (1) and a time T > 0 with

‖u(0)‖Hs ≤ δ

and
‖u(T )‖Hs ≥ K.

Using the conservation laws, we have an H 1-stability property near zero,
(

lim sup
|t |→∞

[
sup

‖u0‖H1≤δ

‖u(t)‖H 1

])
≤ Cδ.

Theorem 1 implies a different behavior in the range s > 1. Since δ may be chosen
to be arbitrarily small and K may be chosen arbitrarily large, we observe that (1) is
strongly unstable in Hs near zero for all s > 1:

inf
δ>0

(
lim sup
|t |→∞

[
sup

‖u0‖Hs≤δ

‖u(t)‖Hs

])
= ∞. (4)

It remains an open question [2] whether there exist solutions of (1) which sat-
isfy lim sup|t |→∞ ‖u(t)‖Hs = ∞. Theorem 1 is also motivated by an effective (but
not entirely rigorous) statistical description of the cascade toward high frequencies
known as weak turbulence theory (see for example [4]). The relationship of Theo-
rem 1 to previous literature is discussed in more detail in [3].

We overview the rest of this note and highlight some of the objects appearing in
the proof of Theorem 1. Section 2 recasts the NLS equation as an equivalent infinite
system of ordinary differential equations (ODEs) and introduces a resonant trunca-
tion RFNLS of that ODE system. Section 3 imagines a finite set Λ in the frequency
lattice Z

2 satisfying conditions which reduce the resonant truncation RFNLS to the
key object in the proof: the finite dimensional Toy Model ODE System. In Sect. 4,
the Toy Model System is shown to have a solution with a particular dynamics which
drives the cascade of energy toward higher frequencies in NLS. Section 5 briefly
describes the construction of the special resonant set Λ.
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2 NLS as an Infinite System of ODEs

Equation (1) may be gauge transformed into

(−i∂t +Δ)v = (G+ |v|2)v (5)

by writing v(t, x) = eiGtu(t, x), G ∈ R. The constant G will soon be chosen to
cancel away part of the nonlinearity. Motivated by the explicit solution formula for
the linear Schrödinger equation, we make the ansatz

v(t, x) =
∑

n∈Z2

an(t)e
i(n·x+|n|2t) (6)

and the dynamics are recast in terms of the Fourier coefficients {an(t)}n∈Z2 . A cal-
culation shows that (5) (which is equivalent to (1)) transforms into an infinite ODE
system

−i∂t an = Gan +
∑

n1,n2,n3∈Z
2

n1−n2+n3=n

an1an2an3e
iω4t , (7)

where ω4 = |n1|2−|n2|2+|n3|2−|n|2. Some manipulations with the sum appearing
in (7) and the choice G = −2‖u(t)‖2

L2 cancels away certain nonlinear interactions
and recasts (1) into an ODE system (FNLS)

−i∂tan = −an|an|2 +
∑

n1,n2,n3∈Γ (n)

an1an2an3e
iω4t , (8)

where

Γ (n) = {(n1, n2, n3) ∈ (Z2)3 : n1 − n2 + n3 = n, n1 $= n, n3 $= n}. (9)

The set Γ (n) consists of frequency triples which contribute to the dynamics of the
Fourier coefficient an. Among all triples in Γ (n), we expect those in

Γres(n) = {(n1, n2, n3) ∈ Γ (n) : ω4 = |n1|2 − |n2|2 + |n3|2 − |n|2 = 0}. (10)

will have the most influence on the dynamics of an. Heuristically, the phase fac-
tor eiω4t oscillates when ω4 $= 0 so the time integrated contribution of these non-
resonant interactions to an should be small compared to those in Γres(n). The defin-
ing property for Γres(n) has a geometric interpretation: (n1, n2, n3) ∈ Γres(n) ⇐⇒
(n1, n2, n3, n) form four corners of a non-degenerate rectangle with the segment
[n2, n] forming one diagonal and [n1, n3] the other.

We define the resonant truncation RFNLS of FNLS by writing

−i∂t rn = −rn|rn|2 +
∑

(n1,n2,n3)∈Γres (n)

rn1rn2rn3 . (11)
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Our proof Theorem 1 constructs initial data {rn(0)}n∈Z2 such that:

• The evolution rn(0) �−→ rn(t) satisfying RFNLS satisfies the conclusions of
Theorem 1.

• The evolution rn(0) = an(0) �−→ an(t) satisfying FNLS is well-approximated
by rn(t).

The approximation step is standard and involves making the heuristic ideas about
the non-resonant interactions rigorous using a non-stationary phase analysis. Build-
ing the data {rn(0)}n∈Z2 which evolves along RFNLS from low toward high fre-
quencies as in the statement of Theorem 1 is more intricate and is outlined in what
follows.

3 Conditions on a Finite Set Λ ⊂ Z
2

The initial data {rn(0)}n∈Z2 that we construct will satisfy rn(0) = 0 unless n ∈
Λ ⊂ Z

2 where Λ is a specially designed finite set of lattice points. The set Λ and
the data {rn(0)} will be constructed to satisfy a list of conditions which lead to a
simplification of RFNLS which we call the Toy Model ODE System.

Imagine we can build a finite set Λ ⊂ Z
2 and choose initial data {rn(0)}n∈Λ sat-

isfying the following properties. For some integer N (eventually chosen to depend
upon the parameters s, δ,K appearing in Theorem 1), the set Λ breaks up into N

disjoint generations Λ = Λ1 ∪ · · · ∪ΛN . Each generation is comprised of nuclear
families. A nuclear family is a rectangle (n1, n2, n3, n4) where the frequencies1

n1, n3 (known as the “parents”) live in a generation Λj , and the frequencies n2, n4
(known as the “children”) live in the next generation Λj+1. Suppose further that the
following conditions hold true:

1. Initial Data Support: The initial data rn(0) is entirely supported in Λ (i.e. rn(0) =
0 whenever n /∈ Λ).

2. Closure: Whenever (n1, n2, n3, n4) is a rectangle in Z
2 such that three of the

corners lie in Λ, then the fourth corner must lie in Λ. In other words, (n1, n2,

n3) ∈ Γres(n), n1, n2, n3 ∈ Λ =⇒ n ∈ Λ.

3. ∃! Spouse & Children: ∀1 ≤ j < N and ∀n1 ∈ Λj ∃ a unique nuclear family
(n1, n2, n3, n4) (up to trivial permutations) such that n1 is a parent of this family.
In particular each n1 ∈ Λj has a unique spouse n3 ∈ Λj and has two unique
children n2, n4 ∈ Λj+1.

4. ∃! Sibling & Parents: ∀1 ≤ j < N and ∀n2 ∈ Λj+1∃ a unique nuclear family
(n1, n2, n3, n4) (up to trivial permutations) such that n2 is a child of this family.
In particular each n2 ∈ Λj+1 has a unique sibling n4 ∈ Λj+1 and two unique
parents n1, n3 ∈ Λj .

5. Nondegeneracy: The sibling of a frequency n is never equal to its spouse.
6. Faithfulness: Besides nuclear families, Λ contains no other rectangles.

1 Note that if (n1, n2, n3, n4) is a nuclear family, then so is (n1, n4, n3, n2), (n3, n2, n1, n4), and
(n3, n4, n1, n2); we shall call these the trivial permutations of the nuclear family.
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7. Intragenerational Equality: The function n �→ rn(0) is constant on each genera-
tion Λj . Thus 1 ≤ j ≤ N and n, n′ ∈ Λj imply rn(0) = rn′(0).

8. Norm Explosion:
∑

n∈ΛN−2
|n|2s � K2

δ2

∑
n∈Λ3

|n|2s .
9. Inner Radius: For large enough fixed R, Λ ∩ {n ∈ Z

2 : |n| < R} = φ. In other
words, Λ is supported far from the frequency origin.

Simple arguments based on the Gronwall inequality show that the initial data
support and intragenerational equality conditions propagate under RFNLS. In other
words, for all times t , the solution {rn(t)}n∈Z2 of RFNLS emerging from data sat-
isfying the conditions above will satisfy rn(t) = 0 for all n /∈ Λ and rn(t) = rn′(t)
for n, n′ ∈ Λj . Propagation of support implies that RFNLS collapses to an ODE
indexed by n ∈ Λ. Propagation of intragenerational equality means that, for each
fixed t , the function n �→ rn(t) is constant for n ∈ Λj . We can therefore introduce
bj (t) = rn(t), n ∈ Λj and collapse further to

−i∂tbj (t) = −|bj (t)|2bj (t)+ 2bj−1(t)
2bj (t)+ 2bj+1(t)

2bj (t), (12)

which we call the Toy Model ODE System.

4 Arnold Diffusion for the Toy Model ODE

The system (12) defines a vector flow t �→ b(t) = {b1(t), . . . , bN(t)} ∈ C
N.

A calculation shows that |b(t)|2 = ∑N
j=1 |bj (t)|2 = |b(0)|2. In particular, the unit

sphere S = {x ∈ C
N : |x| = 1} in C

N is invariant under the Toy Model flow.
Inside the sphere, we have the coordinate circles T1, . . . ,TN defined by Tj =

{(b1, . . . , bN) ∈ S : |bj | = 1, bk = 0 ∀k $= j}. For each j ∈ {1, . . . , N}, the vector
function bj (t) = e−i(t+θ), bk(t) = 0 ∀k $= j is an explicit oscillator solution of
(12) that traverses Tj . Here θ ∈ R is an arbitrary phase parameter.

Between T1 and T2, we also have an explicit slider solution of (12):

b1(t) = e−itω
√

1 + e2
√

3t
; b2(t) = e−itω2

√
1 + e−2

√
3t
; bk(t) = 0 ∀k $= 1, 2,

where ω = e
2πi

3 is a cube root of unity. This solution approaches the coordinate
circle T1 exponentially fast as t → −∞ and approaches the coordinate circle T2
as t → +∞. There are also slider solutions between Tj and Tj+1 for each j ∈
{1, . . . , N − 1}.

Using delicate dynamical systems arguments, we jiggle the sliders to construct
a solution of (1) which starts near T3 and, in a finite time, travels very close to T4.
After another finite time, it departs from near T4 and moves very close to T5. The
solution continues this pattern of riding across jiggled sliders between Tj and Tj+1
until it arrives very close to TN−2. Let S(t) denote the flow map for (12), so b(t) =
S(t)b(0) solves (12).
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Fig. 1 Explicit oscillator solution around Tj and the slider solution from T1 to T2

Theorem 2 (Arnold Diffusion for (12)). Let N ≥ 6. Given any ε > 0, there exists
a point x3 ∈ C

N within ε of T3 (using the usual metric on S), a point xN−2 ∈ C
N

within ε of TN−2, and a time t ≥ 0 such that S(t)x3 = xN−2.

Fig. 2 The idea behind the proof of Theorem 2 is to concatenate jiggled slider solutions to flow
from nearby the coordinate circle T3 to arrive nearby TN−2

We briefly explain how Theorem 2 implies Theorem 1. We can inflate the Toy
Model solution of Theorem 2 into a solution of RFNLS (11) by recalling that
bj (t) = rn(t), ∀n ∈ Λj . Thus, this solution of RFNLS initially starts mostly
supported on Λ3 but evolves to a time when it is mostly supported on ΛN−2. The
Norm Explosion condition (8) then implies this solution satisfies the Sobolev norm
claims in Theorem 1. Finally, an approximation result, which shows this RFNLS
evolution is appropriately close to the FNLS (8) evolution emerging from the same
data, completes the proof of Theorem 1.

5 Construction of the Resonant Set Λ

We construct a subset Λ of the lattice Z
2 satisfying the eight properties listed in

Sect. 3 in two stages. First, we build an abstract combinatorial model Σ = Σ1 ∪
· · · ∪ ΣN which will turn out to be a subset of C

N−1. Next, we define a placement
function f : Σ → C so that f (Σ) = Λ ⊂ Z

2.

We describe the construction of the combinatorial model Σ . We define the stan-
dard unit square S ⊂ C to be the four element set S = {0, 1, 1+i, i}. We decompose
this set S = S1 ∪ S2 where S1 = {1, i} and S2 = {0, 1 + i}. We define Σj ⊂ C

N−1

to be the set of all (N − 1)-tuples (z1, . . . , zN−1) such that z1, . . . , zj−1 ∈ S2 and
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zj , . . . , zN−1 ∈ S1. Thus, Σj = S
j−1
2 ×S

N−j

1 . We define Σ = Σ1 ∪ · · · ∪ΣN. The
set Σj is the j th generation of Σ .

Consider the four element set F ⊂ Σj ∪Σj+1 defined by

F = {(z1, . . . zj−1, w, zj+1, . . . , zN ) : w ∈ S}
where z1, . . . , zj−1 ∈ S2 and zj+1, . . . , zN ∈ S1 are all fixed and w varies among
the four points of the standard unit square. The two elements of F corresponding to
w ∈ S1, which we denote F1, Fi , are in generation Σj (the parents) while the two
elements corresponding to w ∈ S2, which we denote F0, F1+i , are in generation
Σj+1 (the children). We call the four element set F a combinatorial nuclear fam-
ily connecting generations Σj,Σj+1. For each j , there exists 2N−2 combinatorial
nuclear families connecting generations Σj,Σj+1. The existence and uniqueness
conditions (3), (4) and the nondegeneracy condition (5) can now be checked to hold
true for Σ .

Next, we motivate aspects of the construction of the placement function which
embeds Σ into a subset of the frequency lattice Z

2. We identify Z
2 with the Gaussian

integers Z[i] in the discussion below. Suppose f1 : Σ1 → C is defined. This means
that the frequencies in the first generation have been placed on the plane. We want to
define f2 : Σ2 → C, that is we want to place down the next generation of frequen-
cies, in such a way that the images of combinatorial nuclear families connecting
generations Σ1,Σ2 form rectangles in the frequency lattice. We want the combi-
natorial nuclear families to map to nuclear families linking generations Λj,Λj+1.
The diagonal of the rectangle going from two parent frequencies in Λ1 is deter-
mined by f1. The constraint that the image of the combinatorial nuclear families
form rectangles in the plane does not determine the placement of the child frequen-
cies. Indeed, there is the freedom to choose the angle between the diagonals of the
rectangle. Therefore, for each j ∈ {1, . . . , N−1} and for each combinatorial nuclear
family F connecting generations Σj,Σj+1, we define an angle θ(F ) ∈ R/2πZ.

The placement function is then defined recursively with respect to the generation
index j using the angles associated to the nuclear families. Suppose that we have
defined the placement function components fj : Σj → C for all j ∈ {1, . . . , k} for
some k < N − 1. We need to define fk+1 : Σk+1 → C to set up the recursion. By
the combinatorial construction of Σ , each element of Σk+1 is a child of a unique (up
to trivial permutations) combinatorial nuclear family linking Σk,Σk+1. We define
fk+1 : Σk+1 → C by requiring

fk+1(F1+i ) = 1 + eiθ(F )

2
fk(F1)+ 1 − eiθ(F )

2
fk(Fi)

fk+1(F0) = 1 + eiθ(F )

2
fk(F1)− 1 − eiθ(F )

2
fk(Fi)

for all combinatorial nuclear families F connecting Σk,Σk+1.
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Using some measure theory, the density of the complex rationals Q[i] in C, and
the fact that the angles of Pythagorean2 triangles are dense in R/2πZ, we show that
there are choices of the initial placement function f1 and the angles θ(F ) which
define a lattice subset Λ satisfying the required properties:

Theorem 3 (Construction of a good placement function). Let N ≥ 2, s > 1, and
let R be a sufficiently large integer (depending on N ). Then there exists an initial
placement function f1 : Σ1 → C and choices of angles θ(F ) for each nuclear
family F (and thus an associated complete placement function f : Σ → C) with
the following properties:

• (Nondegeneracy) The function f is injective.
• (Integrality) We have f (Σ) ⊂ Z[i].
• (Magnitude) We have C(N)−1R ≤ |f (x)| ≤ C(N)R for all x ∈ Σ .
• (Closure and Faithfulness) If x1, x2, x3 ∈ Σ are distinct elements of Σ are such

that f (x1), f (x2), f (x3) form the three corners of a right-angled triangle, then
x1, x2, x3 belong to a combinatorial nuclear family.

• (Norm explosion) We have

∑

n∈f (ΣN−2)

|n|2s > 1

2
2(s−1)(N−5)

∑

n∈f (Σ3)

|n|2s .

The reader is invited to consult [3] for further details.
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Angular Momentum-Mass Inequality
for Axisymmetric Black Holes

Sergio Dain

Abstract In these notes we describe recent results concerning the inequality m ≥√|J | for axially symmetric black holes.

1 Introduction

The following conjectures constitute the essence of the current standard picture of
the gravitational collapse: (i) Gravitational collapse results in a black hole (weak
cosmic censorship) (ii) The spacetime settles down to a stationary final state. If we
further assume that at some finite time all the matter fields have fallen into the black
hole and hence the exterior region is pure vacuum (for simplicity we discard elec-
tromagnetic fields in the exterior), then the black hole uniqueness theorem implies
that the final state should be the Kerr black hole. The Kerr black hole is uniquely
characterized by its mass m0 and angular momentum J0. These quantities satisfy
the following remarkable inequality

√|J0| ≤ m0. (1)

From Newtonian considerations, we can interpret this inequality as follows[14]: in
a collapse the gravitational attraction (≈ m2

0/r
2) at the horizon (r ≈ m0) dominates

over the centrifugal repulsive forces (≈ J 2
0 /m0r

3).
If the initial conditions for a collapse violate (1) then the extra angular momen-

tum should be radiated away in gravitational waves. However, in an axially symmet-
ric spacetime the angular momentum is a conserved quantity (the Komar integral of
the Killing vector, see, for example, [15]). In this case angular momentum cannot
be radiated: the angular momentum J of the initial conditions must be equal to the
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final one J0. On the other hand, the mass of the initial conditions m satisfies m ≥ m0
because gravitational radiation carries positive energy. Then, from inequality (1) we
obtain √|J | ≤ m. (2)

More precisely, (i)–(ii) imply that a complete, vacuum, axisymmetric, asymptoti-
cally flat data should satisfy inequality (2), where m and J are the mass and angular
momentum of the data. Moreover, the equality in (2) should imply that the data are
a slice of extreme Kerr. This is a similar argument to the one used by Penrose [13]
to obtain the inequality between mass and the area of the horizon on the initial data.
As in the case of Penrose inequality, a counter example of (2) will imply that either
(i) or (ii) is not true. Conversely a proof of (2) gives indirect evidence of the validity
of (i)–(ii), since it is very hard to understand why this highly nontrivial inequality
should hold unless (i)–(ii) can be thought of as providing the underlying physical
reason behind it (see the discussion in [16]).

Inequality (2) is a property of the spacetime and not only of the data, since both
quantities m and J are independent of the slicing. It is in fact a property of axisym-
metric, vacuum, black holes space-times, because a non zero J (in vacuum) implies
a non trivial topology on the data and this is expected to signal the presence of a
black hole. The physical interpretation of (2) is the following: if we have a station-
ary vacuum black hole (i.e. Kerr) and add to it axisymmetric gravitational waves,
then the spacetime will still have a (non-stationary) black hole, these waves will
only increase the mass and not the angular momentum of the spacetime because
they are axially symmetric. Since inequality (1) is satisfied for Kerr we get (2).

In this note, we review some recent results (see [10, 5, 9, 6, 7, 4]) in which
inequality (2) is proved for one black hole and describe the open problems for the
other cases.

2 Variational Principle for the Mass

Inequality (2) suggests the following variational principle:
The extreme Kerr initial data are the absolute minimum of the mass among all ax-
isymmetric, vacuum, asymptotically flat and complete initial data with fixed angular
momentum.

However, it is important to note that for two related inequalities, the positive mass
theorem and the Penrose inequality, a variational formulation was not successful.
In the case of the positive mass theorem only a local version was proved using a
variational principle [2].

The key difference in the present case is axial symmetry. As we will see, in that
case it possible to write the mass (in an appropriate gauge) as a positive definite
integral on a spacelike hypersurface. The reason for this particular behavior of the
mass is the following. In the presence of a symmetry, vacuum Einstein equations
can be reduced a la Kaluza-Klein to a system on a 3-dimensional manifold where it
takes the form of 3-dimensional Einstein equations coupled to a matter source. Since
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in 3-dimension there is no radiation (the Weyl tensor is zero), this source represents
the true gravitational degree of freedom that have descended from 4-dimensions
to appear as “matter” in 3-dimension. Since all the energy is produced by these
effective matter sources, one would expect in that, as in other field theories, the
total energy of the system can be expressed as a positive definite integral over them.
This was in fact proved by Brill [1] in some restricted cases and then generalized
in [12, 10, 3]. Using this formula and with the extra assumption that the data are
maximal, the variational principle can be formulated in a very simple form [7].

To write the mass formula for axially symmetric spacetimes we follow [8]. Con-
sider a vacuum solution of Einstein’s equations, i.e., a four dimensional manifold
V with metric gab for which the Ricci tensor (4)Rab vanishes. Suppose, in addition,
that there exists a spacetime Killing vector ηa . We define the norm and the twist
of ηa , respectively, by

λ2 = ηaηbgab, ωa = εabcdη
b∇̄cηd, (3)

where ∇̄a is the connection and εabcd the volume element with respect to gab. As-
suming that the manifold is simply connected and using (4)Rab = 0 it is possible to
prove that ωa is the gradient of a scalar field ω

ωa = ∇̄aω. (4)

In our case the Killing field will be spacelike, i.e. λ ≥ 0.
As we mention above, in the presence of a Killing field, there exists a well known

procedure to reduce the field equations [11]. Let N denote the collection of all
trajectories of ηa , and assume that it is a differential 3-manifold. We define the
Lorentzian metric hab on N by

gab = hab + ηaηb

λ2
. (5)

Four dimensional Einstein vacuum equation are equivalent to Einstein equations in
three dimension on N coupled to effective matter fields determined by λ and ω.
We make a 2 + 1 decomposition of these equations. Let na be the unit normal
vector orthogonal to a spacelike, 2-dimensional slice S. The intrinsic metric on S is
denoted by qAB and the trace free part of the second fundamental form of the slice
is denoted by kAB . On (N , h) we fix a gauge: the maximal-isothermal gauge (see
[8] for details) and the corresponding coordinates system (t, ρ, z). It is convenient
to define the function σ by

λ = ρeσ/2. (6)

In this gauge the mass can be written in the following form

m = 1

16

∫

S

(

2kABkAB + 3
λ′2

λ2
+ ω′2

λ4
+ |Dσ |2 + |Dω|2

λ4

)

ρ dVq. (7)
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where dVq = e2udρdz denote the volume element with respect to qab, D is the
covariant derivative with respect to qAB with |Dσ |2 = DAσDAσ , and the prime
denotes directional derivative with respect to na , that is

λ′ = na∇̄aλ. (8)

This is essentially a derivative with respect to t . Note that all the terms in the inte-
grand of (7) are positive definite. The first three terms contain the dynamical part
of the data, they vanish for stationary solutions, in particular for the Kerr solution.
The last two terms, contain the stationary part of the fields. It is important to note
that the integral of these terms does not depends on the metric qAB . In effect, the
integral of these terms can be written as

M (σ, ω) = 1

16

∫ ∞

−∞
dz

∫ ∞

0
dρ
(|∂σ |2 + ρ−4e−2σ |∂ω|2)ρ, (9)

where ∂ denotes partial derivatives with respect to (ρ, z). The integral (9) depends
only on σ and ω. Since we have

m ≥ M , (10)

to find the minimum of m is equivalent as to find the minimums of M .
In order to write the variational principle, it only remains to discuss the bound-

ary conditions. Physically, we want to prescribe boundary conditions such that the
total angular momentum is fixed. The information of the angular momentum is de-
termined by the value of the twist potential ω at the axis ρ = 0 (see [7]). To include
more than one black hole, we prescribe the following topology. Let ik be a finite col-
lection of points located at the axis ρ = 0. Define the intervals Ik , 0 ≤ k ≤ N−1, to
be the open sets in the axis between ik and ik−1, we also define I0 and IN as z < i0
and z > iN respectively. See Fig. 1. Each point ik will correspond to an asymptotic
end of the data, and hence we will say that the data contain N black holes.

To fix the total angular momentum J (where J is an arbitrary constant) of the
data is equivalent as to prescribe the following boundary condition for ω (see [10])

ω|I0 = 4J, ω|IN = −4J. (11)

We want to study the minimums of the functional M with these boundary con-
ditions.

We are now in position to write the precise form of the variational principle.

Conjecture 1. Let σ, ω be arbitrary functions such that ω satisfies the boundary con-
dition (11). Then we have

M (σ, ω) ≥ √|J |. (12)

Moreover, the equality implies that σ, ω are given by the extreme Kerr solution.

This conjecture was proved for the case N = 1 in [10]. This result was extended
in [4] to include more generic data.

The conjecture is open for the case N ≥ 2. For this case, the variational problem
is fixed if we impose the boundary condition
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Fig. 1 N asymptotic ends

ω|Ii = 4Ji, (13)

with 0 < i < N , for arbitrary constants Ji . Note however, that conjecture 1 is
independent of the values Ji .

Remarkably, in [4] it is proved that the variational problem has a solution (i.e.
a minimum) for arbitrary N , but the value of M for this solution is not known. In
order to prove the conjecture for N ≥ 2, one need to compute a lower bound for this
quantity. This problem is related with the uniqueness of the Kerr black hole with
degenerate and disconnected horizons.
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Almost Everything About the Fibonacci
Operator

David Damanik

Abstract We consider the Fibonacci operator and discuss results that have been ob-
tained for the spectrum, the spectral measures, and the rate of wavepacket spreading.
Our presentation is centered around a distortion result that describes the preimage of
balls under the trace of the transfer matrix associated with sites given by Fibonacci
numbers.

1 Introduction

This paper is concerned with the Fibonacci operator, which is a discrete one-dimen-
sional Schrödinger operator

[Hu](n) = u(n+ 1)+ u(n− 1)+ V (n)u(n) (1)

in  2(Z) with potential V : Z → R given by

V (n) = λχ[1−φ,1)(nφ + θ mod 1). (2)

Here, λ > 0 is the coupling constant, φ =
√

5−1
2 is the inverse of the golden mean,

and θ ∈ [0, 1) is the phase. By strong approximation it may be shown that the
spectrum of H does not depend on the phase θ . The spectrum of H does, however,
depend on the value of the coupling constant λ and we will henceforth denote it
by Σλ.

The Fibonacci operator plays a prominent role in the context of one-dimensional
quasicrystals and it has been studied since the early 1980’s in numerous physics and
mathematics papers. In this paper, we will focus on the mathematical results that
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have been obtained for this operator. References to the relevant physics literature
can be found, for example, in the review articles [4, 30].

Natural questions concern the location and size of Σλ, the type of the spectral
measures, and the long-time asymptotics of the solutions to the time-dependent
Schrödinger equation, i∂tψ = Hψ . Many of these questions have been answered
completely, while others have been partially answered. Central to all of these results
is the so-called trace map, which is a dynamical system that describes the evolu-
tion of the traces of the transfer matrices associated with H along the sequence of
Fibonacci numbers.

We describe the trace map and the crucial distortion result in Sect. 2. The location
of the spectrum can be described with the help of the trace map. In Sect. 3, we
discuss the size of the spectrum as a subset of the real line; namely, it always has
zero Lebesgue measure and, for coupling sufficiently large, we give upper and lower
bounds on its fractal dimension. These bounds agree in the λ → ∞ limit. The
spectral measures are always purely singular continuous, as discussed in Sect. 4.
We sketch the Gordon two-block method that allows one to exclude eigenvalues
for all parameter values. Absence of absolutely continuous spectrum is of course a
consequence of zero-measure spectrum. Finally, in Sect. 5, we consider the rate at
which an initially localized wavepacket spreads out in space if the time-evolution
is given by the unitary group generated by the Fibonacci operator. If the coupling
constant is sufficiently large, there are upper and lower bounds for the spreading
rate that show behavior which is different from the one that occurs for periodic or
random potentials. In other words, the intermediate spectral type is indeed reflected
by intermediate wavepacket spreading behavior.

2 The Trace Map

It is useful to rewrite the difference equation

u(n+ 1)+ u(n− 1)+ V (n)u(n) = zu(n) (3)

in the form (
u(n+ 1)
u(n)

)

= Φ(n, z)

(
u(1)
u(0)

)

, (4)

where the transfer matrices Φ(n, z) are given by Φ(n, z) = T (n, z)× · · · × T (1, z)
and

T (m, z) =
(
z− V (m) −1

1 0

)

.

For z ∈ C and k ≥ 1, set Mk(z) = Φ(Fk, z), where the potential V is given
by (2) with θ = 0 and Fk is the k-th Fibonacci number, that is, F0 = F1 = 1 and
Fk+1 = Fk + Fk−1 for k ≥ 1. These matrices obey
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Mk+1(z) = Mk−1(z)Mk(z) (5)

for k ≥ 2. For the variables xk(z) = 1
2 TrMk(z), we have the recursion

xk+1(z) = 2xk(z)xk−1(z)− xk−2(z) (6)

and the invariant

xk+1(z)
2 + xk(z)

2 + xk−1(z)
2 − 2xk+1(z)xk(z)xk−1(z)− 1 ≡ λ2

4
. (7)

Letting x−1(z) = 1 and x0(z) = z
2 , the recursion (6) holds for all k ≥ 0. See, for

example, [28] for these results.
The trace map is defined as follows,

T : (x, y, z) �→ (2xy − z, x, y),

and it may be defined on either R
3 or C

3, depending on the context. The forward
orbit of the point ( z−λ

2 , z
2 , 1) under the trace map generates the sequence {xk(z)}.

Namely, for k ≥ 0, xk(z) is the second component of T k( z−λ
2 , z

2 , 1).
Let δ ≥ 0. A necessary and sufficient condition that xk(z) be unbounded is that

|xN−1(z)| ≤ 1 + δ, |xN(z)| > 1 + δ, |xN+1(z)| > 1 + δ (8)

for some N ≥ 0; see [10]. This N is unique. Moreover, in this case we have
|xN+k(z)| ≥ (1 + δ)Fk for k ≥ 0. Thus, it is natural to consider the sets σ δ

k =
{z ∈ C : |xk(z)| ≤ 1 + δ}, for which we have σ δ

k ∪ σ δ
k−1 ⊇ σ δ

k+1 ∪ σ δ
k . A strong

approximation argument then shows that

Σλ =
⋂

k

σ δ
k+1 ∪ σ δ

k . (9)

In particular, {xk(z)} is bounded for every z ∈ Σλ. The invariant (7) yields a λ-
dependent upper bound that works uniformly for all such z’s.

Moreover, assuming λ > λ0(δ) = [12(1+δ)2+8(1+δ)3+4]1/2, the invariant (7)
implies that σ δ

k ∩ σ δ
k+1 ∩ σ δ

k+2 = ∅ and that the set σ δ
k has exactly Fk connected

components. Each of them is a topological disk that is symmetric about the real
axis.

All roots of xk are real. Consider such a root z and define ω(z) = #{0 ≤ l ≤
k − 1 : |xl(z)| ≤ 1}. Let ck,m = #{roots of xk with ω(z) = m}. An explicit formula
for ck,m was found in [14, Lemma 5] (noting that our ck,m equals ak,m+ bk,m in the
notation of that paper). In particular, it follows from [14] that, for every k ≥ 2, ck,m
is non-zero if and only if k

2 ≤ m ≤ 2k
3 .

Let {z(j)k }1≤j≤Fk
be the roots of xk and write ω

(j)
k = ω(z

(j)
k ) for 1 ≤ j ≤ Fk .

Denote by B(z, r) the open ball in C that is centered at z and has radius r . Define
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Su(λ) = 2λ+ 22 and Sl(λ) = 1

2

(
(λ− 4)+

√
(λ− 4)2 − 12

)
. (10)

Then, we have the following distortion result [10, 11].

Theorem 1. Fix k ≥ 3, δ > 0, and λ > max{λ0(2δ), 8}. Then, there are constants
cδ, dδ > 0 such that

Fk⋃

j=1

B
(
z
(j)
k , r

(j)
k

) ⊆ σ δ
k ⊆

Fk⋃

j=1

B
(
z
(j)
k , R

(j)
k

)
, (11)

where r
(j)
k = cδSu(λ)

−ω
(j)
k , and R

(j)
k = dδSl(λ)

−ω
(j)
k . The first inclusion in (11) only

needs the assumption λ > λ0(2δ).

The proof relies on the Koebe Distortion Theorem and upper and lower bounds
for the derivative of xk at the roots. Such bounds were shown in [8, 22, 27]. We point
out that Raymond’s paper [27] developed a number of tools that have proved to be
useful in the quantitative study of the trace map, some of which have been refined
and extended in later papers such as [14, 8, 22].

3 The Cantor Structure and the Dimension of the Spectrum

In this section we discuss properties of the spectrum of the Fibonacci operator as a
subset of the real line.

The location of the spectrum can be conveniently described with the help of the
trace map; compare (9). While (11) is a useful tool in the study of the size of the
spectrum at large values of the coupling constant, there is actually a result that holds
for all couplings.

Theorem 2. For every λ > 0, the spectrum of the Fibonacci operator has zero
Lebesgue measure, Leb(Σλ) = 0.

Since the spectrum is closed and does not contain any isolated points by general
principles, it follows from Theorem 2 that the spectrum of the Fibonacci operator is
always a Cantor set.

This result was shown by Sütő in 1989 [29]; see also [1] for a contemporaneous
proof by Bellissard, Iochum, Scoppola and Testard of zero measure spectrum for
potentials (2) with φ replaced by an arbitrary irrational number and a more recent
paper by Lenz [25] who develops a completely different approach to zero measure
spectrum that is even more general in scope.

Let us describe the main steps in the proof of zero-measure spectrum based on
the trace map. The Lyapunov exponent is defined by

γ (z) = lim
n→∞

1

n
log ‖Φ(n, z)‖.



Almost Everything About the Fibonacci Operator 153

Here we choose θ = 0 and leave the dependence of γ (z) on λ implicit. It was
shown by Hof that the limit exists and is the same as the one obtained when one
averages over the phase [16]. Consider the set Zλ = {z : γ (z) = 0}. It follows
by general principles that Zλ ⊆ Σλ. In the Fibonacci case, we even have equality.
This was shown by Sütő [29] who used the boundedness of {xk(z)} for z ∈ Σλ to
show a subexponential upper bound for ‖Φ(n, z)‖. This result was later improved
by Iochum and Testard [18] who proved a power-law upper bound for ‖Φ(n, z)‖.
Both works proved these bounds for the case θ = 0; see [7] for an extension to gen-
eral θ . On the other hand, Kotani showed in a much more general context (aperiodic
ergodic potentials taking finitely many values) that Zλ has zero Lebesgue measure.
Combining these two results, it follows that Σλ has zero Lebesgue measure for every
λ > 0.

As a next step, it is natural to study the dimension of the spectrum. Recall that
for S ⊆ R bounded and infinite, the following two dimensions are of interest. For
α ∈ [0, 1], let

hα(S) = lim
δ→0

inf
δ−covers

∑

m≥1

|Im|α

and then define the Hausdorff dimension of S by

dimH (S) = inf{α : hα(S) < ∞} = sup{α : hα(S) = ∞}.
The lower box counting dimension of S is given by

dim−
B(S) = lim inf

ε→0

logNS(ε)

log 1
ε

,

where NS(ε) = #{j ∈ Z : [jε, (j + 1)ε) ∩ S $= ∅}. The upper box counting
dimension, dim+

B(S), is defined with a lim sup in place of the lim inf. When the
lower and upper box counting dimensions coincide, we say that the box counting
dimension exists and denote it by dimB(S).

The following result about these dimensions was obtained for the set Σλ in [14].

Theorem 3. Suppose that λ ≥ 16. Then, the box counting dimension of Σλ exists
and obeys dimB(Σλ) = dimH (Σλ).

The assumption λ ≥ 16 comes from a paper of Casdagli [2], who works under
this assumption and proves the hyperbolicity of the trace map, restricted to the in-

variant surface Ωλ = {(x, y, z) ∈ R
3 : x2+y2+z2−2xyz−1 = λ2

4 }; compare (7).
It is expected (see [2]) that such a result extends to all λ > 0. The statement of
Theorem 3 then follows from known results for dynamically defined Cantor sets;
see [14] for a discussion and references.

In order to describe the large coupling asymptotics of the dimension of the spec-
trum, let us introduce the function
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f (x) = 1

x

[
(2 − 3x) log 2 + (1 − x) log(1 − x)

− (2x − 1) log(2x − 1)− (2 − 3x) log(2 − 3x)
]

on ( 1
2 ,

2
3 ). f takes its maximum at a unique point x∗ ∈ ( 1

2 ,
2
3 ). Write f ∗ = f (x∗) =

max
x∈( 1

2 ,
2
3 )
f (x). Numerics show that x∗ ≈ 0.5395 and f ∗ ≈ 0.88137.

Theorem 4. (a) Suppose λ > 4. Then, we have

dim−
B(Σλ) ≥ f ∗

log Su(λ)
.

(b) Suppose λ ≥ 8. Then, we have

dimH (Σλ) ≤ f ∗

log Sl(λ)
.

Here, Su(λ) and Sl(λ) are as defined in (10). As an immediate consequence, we
obtain the following exact asymptotic result,

lim
λ→∞ dim(Σλ) · log λ = f ∗. (12)

We write dim for either dimH or dimB , which is justified by Theorem 3. In particu-
lar, this shows that the constant f ∗ is optimal in both bounds.

The proof of Theorem 4 uses the distortion result described earlier, Theorem 1,
along with (9), which links Σλ and the sets σ δ

k . What is needed in addition is a

precise result that describes the numbers ω
(j)
k . Such a result was obtained in [14],

where it is also shown how Theorem 4 then follows from it. It turns out that these
coefficients are closely related to the coefficients of the Chebyshev polynomials of
the first kind. Since there are explicit formulas for the coefficients of these polyno-
mials, the authors of [14] were able to give explicit formulas for the numbers ω

(j)
k .

The function f defined above then arises naturally in the limit k →∞.
There were earlier estimates for the Hausdorff dimension of the spectrum; see

Raymond [27] and Liu and Wen [26] (and also [3, 12, 20] for lower bounds ob-
tained indirectly via continuity results for spectral measures). All the bounds behave
like a constant times (log λ)−1 in the large coupling regime. The earlier papers had
weaker constants, whereas the constant f ∗ found in [14] is optimal as explained
above.

4 The Spectral Type

This section will discuss the following result, which determines the spectral type of
the Fibonacci operator completely.
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Theorem 5. For every λ > 0 and every θ ∈ [0, 1), the Fibonacci operator has
purely singular continuous spectrum.

One half of the result, the absence of absolutely continuous spectrum, is an im-
mediate consequence of Theorem 2. The set Σλ is too small to support an absolutely
continuous spectral measure. Historically, however, it was first shown by Kotani that
the absolutely continuous spectrum is empty for every λ > 0 and Lebesgue almost
every θ (this is equivalent to Leb(Zλ) = 0 for every λ > 0—the result quoted from
[23] in the previous section) and the insight contained in Kotani’s short paper [23]
was the key to all zero measure spectrum results mentioned above [1, 25, 29]. The
other half of the result, the absence of eigenvalues, was established in [6] (see [1, 3,
17, 21] for earlier results in this direction).

Let us briefly sketch how eigenvalues, and in fact the existence of decaying so-
lutions to (3) for z’s in the spectrum, can be excluded. A crucial realization is that
the restriction to the positive half-line of every Fibonacci potential “begins with in-
finitely many squares”. Formally, the result is the following. Choose any θ ∈ [0, 1)
(and any λ > 0; we will see that the latter choice is irrelevant for what follows) and
consider the transfer matrices Φ(n, z) associated with the potential (2). Then, for
infinitely many values of k, we have that

Φ(2Fk, ·) = Φ(Fk, ·)2. (13)

In particular, once such a property holds for one value of λ > 0, it holds for all
values. The subsequence of {Fk} for which this statement holds is θ -dependent. The
paper [6] develops a partition based approach to Fibonacci potentials from which
the result just quoted follows quickly. These partitions are derived from an iteration
of the rule (5) and a globalization procedure. In fact, the squares obtained in (13)
have the additional property

TrΦ(Fk, ·) = 2xk(·). (14)

By (7) and (9), |xk(z)| with z ∈ Σλ and k ∈ Z+ is uniformly bounded from above
by a constant depending only on λ. Moreover, since transfer matrices always have
determinant one, the Cayley-Hamilton Theorem says that

Φ(Fk, z)
2 − (TrΦ(Fk, z))Φ(Fk, z)+ I = 0. (15)

Thus, by (4) and (13)–(15) we see that every non-zero solution u of (3) with z ∈
Σλ must have lim supn→∞ |u(n)| > 0. Consequently, there are no decaying (and
particularly no  2) solutions.

The proof sketched here contains three main ideas. The use of the Cayley-Ha-
milton Theorem to exclude decaying solutions goes back to Gordon [15]. Using
the uniform upper bounds for transfer matrix traces to be able to work on a half-line
only is an idea of Sütő [28]. The partition approach that allows one to treat all phases
was developed by Damanik and Lenz in [6].
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5 Bounds on Wavepacket Spreading

In this section we discuss the spreading of an initially localized wavepacket that
evolves according to the Schrödinger equation i∂tψ = Hψ . We therefore consider
ψ(t) = e−itH δ0 and study its spreading via the time-averaged moments of the
position operator,

〈|X|pδ0
〉(T ) = 2

T

∫ ∞

0
e−2t/T

∑

n∈Z

|n|p|〈e−itH δ0, δn〉|2 dt,

where p > 0. To describe the power-law growth of 〈|X|pδ0
〉(T ), consider the lower

transport exponent

β−δ0
(p) = lim inf

T→∞
log〈|X|pδ0

〉(T )

p log T

and the upper transport exponent

β+δ0
(p) = lim sup

T→∞

log〈|X|pδ0
〉(T )

p log T
.

Both functions β±δ0
(p) are nondecreasing in p and hence the following limits exist,

α±u = lim
p→∞β±δ0

(p).

We consider these dynamical quantities for the Fibonacci operator and hence they
depend on the parameters λ and θ . The moments grow no faster than CεT

p+ε for
any ε > 0 and therefore the transport exponents take values in the interval [0, 1].1

There are numerous papers that establish bounds for the spreading of a wave-
packet for the Fibonacci operator; see, for example, [3, 11, 8–10, 12–14, 20, 22].
The situation is particularly well understood in the regime of large λ and large p.
Here is a result that should be regarded as a companion to Theorem 4.

Theorem 6. (a) Suppose λ >
√

24. Then, we have

α±u ≥ 2 log(1 + φ)

log Su(λ)
.

(b) Suppose λ ≥ 8. Then, we have

α±u ≤ 2 log(1 + φ)

log Sl(λ)
.

1 As background information, it may be useful to remark that (in the one-dimensional situa-
tion we consider here) the transport exponents vanish for random potentials, whereas they are
equal to one for periodic potentials. Here we are dealing with a potential of intermediate complex-
ity/disorder and we will see that this is reflected by intermediate transport.
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Remarks. (i) These bounds are uniform in θ .

(ii) The functions Su(λ) and Sl(λ) are as defined in (10).

(iii) Part (a) is shown in [11], while part (b) is from [10].

(iv) In the limit λ →∞, we find

lim
λ→∞α±u · log λ = 2 log(1 + φ). (16)

The convergence is uniform in θ .

(v) It was shown in [14] that whenever the transfer matrices are bounded by a power
law on the spectrum, we have that α±u is bounded from below by the upper/lower
box counting dimension of the spectrum. Thus, in the Fibonacci case, we always
have

α±u ≥ dim±
B(Σλ). (17)

Comparing (12) and (16), we see that for λ sufficiently large, the inequality (17) is
strict.

The papers mentioned above also establish lower bounds for β±δ0
(p) for every

λ > 0, θ ∈ [0, 1), and p > 0. These bounds show that the transport exponents are
always strictly positive. In particular, there is always spreading that is measurable
on a power-scale. However, many of these results do not seem to be optimal. This
is why (16) is special in this regard as it yields an optimal description of a quantum
dynamical quantity in an asymptotic regime. We refer the reader to the original lit-
erature for more detailed dynamical lower bounds. As for dynamical upper bounds,
Theorem 6(b) is the only known result (see also [5, 22] for earlier weaker results
that bound the spreading rate of the slow part of the wavepacket from above). In
particular, there are no non-trivial upper bounds for transport exponents for small
values of λ and even for λ ≥ 8, there are no upper bounds for β±δ0

(p) that improve
upon the bound in Theorem 6(b).

Let us describe the mechanisms leading to Theorem 6. The starting point is
Kato’s formula,

∫ ∞

0
e−2t/T |〈e−itH δ1, δn〉|2 dt = 1

2π

∫ ∞

−∞
∣
∣〈(H − E − i

T
)−1δ1, δn〉

∣
∣2 dE

which follows quickly from the Plancherel Theorem for the Fourier transform; com-
pare, for example, [22, Lemma 3.2]. This allows one to relate 〈|X|pδ0

〉(T ) to decay
properties of the Green function, which in turn is closely related to the growth of the
norm of Φ(·, E + i

T
). To obtain bounds on the Green function or the norm of the

transfer matrix, we start again from the distortion result, Theorem 1. If a complex
energy in question, z = E+ i

T
, belongs to a set σ δ

k , we go “backwards in time” and
use (8) to show that up to level k, the traces are bounded by the uniform λ-dependent
constant and norms are bounded by a uniform λ-dependent power-law. Conversely,
if z = E+ i

T
does not belong to σ δ

k ∪σ δ
k+1, then the escape condition (8) must have

held sometime in the past and by now the trace and hence the norm of the transfer
matrix must be very large. Since Theorem 1 allows one to link T and k for such
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statements to be true, one can derive explicit bounds for the transfer matrix norm in
this way.
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30. A. Sütő, Schrödinger difference equation with deterministic ergodic potentials. In: Beyond
Quasicrystals, Les Houches, 1994, pp. 481–549. Springer, Berlin (1995)



Entanglement-Assisted Quantum
Error-Correcting Codes

Igor Devetak, Todd A. Brun and Min-Hsiu Hsieh

Abstract We develop the theory of entanglement-assisted quantum error correct-
ing codes (EAQECCs), a generalization of the stabilizer formalism to the setting
in which the sender and receiver have access to pre-shared entanglement. Conven-
tional stabilizer codes are equivalent to self-orthogonal symplectic codes. In con-
trast, EAQECCs do not require self-orthogonality, which greatly simplifies their
construction. We show how any classical quaternary block code can be made into
a EAQECC. Furthermore, the error-correcting power of the quantum codes follows
directly from the power of the classical codes.

1 Introduction

One of the most important discoveries in quantum information science was the ex-
istence of quantum error correcting codes (QECCs) in 1995 [16]. Up to that point,
there was a widespread belief that decoherence–environmental noise–would doom
any chance of building large scale quantum computers or quantum communication
protocols [18], and the equally widespread belief that any analogue of classical er-
ror correction was impossible in quantum mechanics. The discovery of quantum
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error correcting codes defied these expectations, and were quickly developed into
the theory of stabilizer codes [5, 10]. Moreover, a construction of Calderbank, Shor
and Steane [4, 17] showed that it was possible to construct quantum stabilizer codes
from classical linear codes–the CSS codes–thereby drawing on the well-studied the-
ory of classical error correction.

Important as these results were, they fell short of doing everything that one might
wish. The connection between classical codes and quantum codes was not universal.
Rather, only classical codes which satisfied a dual-containing constraint could be
used to construct quantum codes. While this constraint was not too difficult to satisfy
for relatively small codes, it is a substantial barrier to the use of highly efficient
modern codes, such as Turbo codes [1] and Low-Density Parity Check (LDPC)
codes [8], in quantum information theory. These codes are capable of achieving the
classical capacity; but the difficulty of constructing dual-containing versions of them
has made progress toward finding quantum versions very slow.

The results of our entanglement-assisted stabilizer formalism generalize the ex-
isting theory of quantum error correction. If the CSS construction for quantum codes
is applied to a classical code which is not dual-containing, the resulting “stabilizer”
group is not commuting, and thus has no code space. We are able to avoid this
problem by making use of pre-existing entanglement. This noncommuting stabi-
lizer group can be embedded in a larger space, which makes the group commute,
and allows a code space to be defined. Moreover, this construction can be applied
to any classical quaternary code, not just dual-containing ones. The existing the-
ory of quantum error correcting codes thus becomes a special case of our theory:
dual-containing classical codes give rise to standard quantum codes, while non-
dual-containing classical codes give rise to entanglement-assisted quantum error
correction codes (EAQECCs).

2 Notations

Consider an n-qubit system corresponding to the tensor product Hilbert space H⊗n
2 .

Define an n-qubit Pauli matrix S to be of the form S = S1 ⊗ S2 ⊗ · · · ⊗ Sn, where
Sj ∈ {I,X, Y,Z} is an element of the set of Pauli matrices. Let Gn be the group of
all 4n n-qubit Pauli matrices with all possible phases. Define the equivalence class
[S] = {βS | β ∈ C, |β| = 1}. Then

[S][T] = [S1T1] ⊗ [S2T2] ⊗ · · · ⊗ [SnTn] = [ST].
Thus the set [Gn] = {[S] : S ∈ Gn} is a commutative multiplicative group.

Now consider the group/vector space (Z2)
2n of binary vectors of length 2n. Its

elements may be written as u = (z|x), z = z1 . . . zn ∈ (Z2)
n, x = x1 . . . xn ∈ (Z2)

n.
We shall think of u, z and x as row vectors. The symplectic product of u = (z|x)
and v = (z′|x′) is given by
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u 2 vT = z x′T + z′ xT.

The right hand side are binary inner products, the superscript T denotes the trans-
pose, and the addition represents Boolean addition.

The map N : (Z2)
2n → Gn is now defined as

Nu = Nu1 ⊗ · · · ⊗Nun.

Writing

Xx = Xx1 ⊗ · · · ⊗Xxn,

Zz = Zz1 ⊗ · · · ⊗ Zzn,

we have
[N(z|x)] = [ZzXx].

The two observations hold:

1. The map [N ] : (Z2)
2n → [Gn] induced by N is an isomorphism:

[Nu][Nv] = [Nu+v]. (1)

2. The commutation relations of the n-qubit Pauli matrices are captured by the sym-
plectic product

NuNv = (−1)u2vTNvNu. (2)

3 Entanglement-Assisted Quantum Error-Correcting Codes

Denote by L the space of linear operators defined on the qubit Hilbert space H2. We
will often encounter isometric operators U : H⊗n1

2 → H⊗n2
2 . The corresponding

superoperator, or completely positive, trace preserving (CPTP) map, is marked by
a hat Û : L⊗n1 → L⊗n2 and defined by

Û(ρ) = UρU†.

Observe that Û is independent of any phase factors multiplying U . Thus, for a Pauli
operator Nu, N̂u only depends on the equivalence class [Nu].

We consider the following communication scenario depicted in Fig. 1. The pro-
tocol involves two spatially separated parties, Alice and Bob, and the resources at
their disposal are

• A noisy channel defined by a CPTP map N : L⊗n → L⊗n taking density opera-
tors on Alice’s system to density operators on Bob’s system;

• The c-ebit state |Φ〉⊗c shared between Alice and Bob.
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Alice wishes to send k-qubit quantum information perfectly to Bob using the above
resources. An [[n, k; c]] entanglement-assisted quantum error-correcting code
(EAQECC) consists of

• An encoding isometry E = Ûenc : L⊗k ⊗ L⊗c → L⊗n

• A decoding CPTP map D : L⊗n ⊗ L⊗c → L⊗k

such that
D ◦ N ◦ Ûenc ◦ Ûapp = id⊗k,

where Uapp is the isometry which appends the state |Φ〉⊗c,

Uapp|ϕ〉 = |ϕ〉|Φ〉⊗c,

and id : L → L is the identity map on a single qubit. The protocol thus uses up c

ebits of entanglement and generates k perfect qubit channels. We represent it by the
resource inequality (with a slight abuse of notation [6])

〈N 〉 + c [q q] ≥ k [q → q].
Even though a qubit channel is a strictly stronger resource than its static analogue, an
ebit of entanglement, the parameter k− c is still a good (albeit pessimistic) measure
of the net noiseless quantum resources gained. It should be borne in mind that a
negative value of k − c still refers to a non-trivial protocol.

Fig. 1 A generic entanglement assisted quantum code

3.1 The Channel Model: Discretization of Errors

To make contact with classical error correction it is necessary to discretize the errors
introduced by N . This is done in two steps. First, the CPTP map N may be (non-
uniquely) written in terms of its Kraus representation

N (ρ) =
∑

i

AiρA
†
i .

Second, each Ai may be expanded in the Pauli operators
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Ai =
∑

u∈(Z2)
2n

αi,uNu.

Define the support of N by supp(N ) = {u ∈ (Z2)
2n : ∃i, αi,u $= 0}. The following

theorem allows us, absorbing Uapp into Uenc, to replace the continuous map N by
the error set E = supp(N ).

Theorem 1. If D◦N̂u◦Ûenc = id⊗k for all u ∈ supp(N ), then D◦N ◦Ûenc = id⊗k .

Proof. The proof, which follows straightforwardly from the discretization proof in
standard QEC case, can be found, e.g. [14].  !

3.2 The Entanglement-Assisted Canonical Code

We can construct the entanglement-assisted canonical code C EA
0 with the following

trivial encoding operation E0 = Û0 defined by

U0 : |ϕ〉 → |0
¯
〉 ⊗ |Φ〉⊗c ⊗ |ϕ〉. (3)

The operation simply appends  ancilla qubits in the state |0
¯
〉, and c copies of |Φ〉

(the maximally entangled state shared between sender Alice and receiver Bob), to
the initial register containing the state |ϕ〉 of size k qubits, where  + k + c = n.

Proposition 2. The encoding given by E0 and a suitably-defined decoding map D0
can correct the error set

E0 = {XaZb ⊗Xa1Za2 ⊗Xα(a,a1,a2)Zβ(a,a1,a2) :
a,b ∈ (Z2)

 , a1, a2 ∈ (Z2)
c}, (4)

for any fixed functions α, β : (Z2)
 × (Z2)

c × (Z2)
c → (Z2)

k .

Fig. 2 The canonical code

Proof. The protocol is shown in Fig. 2. After applying an error E ∈ E0, the channel
output becomes (up to a phase factor):
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XaZb|0
¯
〉 ⊗ (Xa1Za2 ⊗ IB)|Φ〉⊗c ⊗Xα(a,a1,a2)Zβ(a,a1,a2)|ϕ〉

= |a〉 ⊗ |a1, a2〉 ⊗ |ϕ′〉 (5)

where

|a〉 = XaZb|0
¯
〉 = Xa|0

¯
〉

|a1, a2〉 = (Xa1Za2 ⊗ IB)|Φ〉⊗c

|ϕ′〉 = Xα(a,a1,a2)Zβ(a,a1,a2)|ϕ〉.
As the vector (a, a1, a2,b) completely specifies the error E, it is called the error
syndrome. The state (5) only depends on the reduced syndrome r = (a, a1, a2).
In effect, a and (a1, a2) have been encoded using elementary and superdense cod-
ing, respectively. Bob, who holds the entire state (5), can identify the reduced syn-
drome. Bob simultaneous measures the Ze1, . . . , Ze observables to decode a, the
Ze1⊗Ze1 , . . . , Zec⊗Zec observables to decode a1, and the Xe1⊗Xe1, . . . , Xec⊗Xec

observables to decode a2. He then performs X−α(a,a1,a2)Z−β(a,a1,a2) on the remain-
ing k qubit system |ϕ′〉, recovering it back to the original state |ϕ〉.

Since the goal is the transmission of quantum information, no actual measure-
ment is necessary. Instead, Bob can perform the following decoding D0 consisting
of the controlled unitary

U0,dec =
∑

a,a1,a2

|a〉〈a| ⊗ |a1, a2〉〈a1, a2| ⊗X−α(a,a1,a2)Z−β(a,a1,a2), (6)

followed by discarding the unwanted subsystems.  !
We can rephrase the above error-correcting procedure in terms of the stabilizer

formalism. Let S0 = 〈S0,I , S0,E〉, where S0,I = 〈Z1, . . . , Z 〉 is the isotropic sub-
group of size 2 and S0,E = 〈Z +1, . . . , Z +c, X +1, . . . , X +c〉 is the symplectic
subgroup of size 22c. We can easily construct an Abelian extension of S0 that acts
on n+ c qubits, by specifying the following generators:

Z1 ⊗ I, . . . , Z ⊗ I,

Z +1 ⊗ Z1, . . . , Z +c ⊗ Zc,

X +1 ⊗X1, . . . , X +c ⊗Xc,

where the first n qubits are on the side of the sender (Alice) and the extra c qubits
are taken to be on the side of the receiver (Bob). The operators Zi or Xi to the right
of the tensor product symbol above is the Pauli operator Z or X acting on Bob’s i-th
qubit. We denote such an Abelian extension of the group S0 by S̃0. It is easy to see
that group S̃0 fixes the code space C EA

0 (therefore S̃0 is the stabilizer for C EA
0 ), and

we will call the group S0 the entanglement-assisted stabilizer for C EA
0 .

Consider the parameters of the EA canonical code. The number of ancillas  is
equal to the number of generators for the isotropic subgroup S0,I . The number of
ebits c is equal to the number of symplectic pairs that generate the entanglement
subgroup S0,E . Finally, the number of logical qubits k that can be encoded in CEA

0
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is equal to n−  − c. To sum up, CEA
0 defined by S0 is an [[n, k; c]] EAQECC that

fixes a 2k-dimensional code space.

Proposition 3. The EAQECC C EA
0 defined by S0 = 〈S0,I , S0,E〉 can correct an error

set E0 if for all E1, E2 ∈ E0, E†
2E1 ∈ S0,I

⋃
(Gn − Z(〈S0,I , S0,E〉)).

Proof. Since the vector (a, a1, a2,b) completely specifies the error operator E, we
consider the following two different cases:

• If two error operators E1 and E2 have the same reduced syndrome (a, a1, a2), then
the error operator E†

2E1 gives us all-zero reduced syndrome. Therefore, E†
2E1 ∈

S0,I . This error E†
2E1 has no effect on the codewords of C EA

0 .
• If two error operators E1 and E2 have different reduced syndromes, and let (a, a1, a2)

be the reduced syndrome of E
†
2E1, then E

†
2E1 $∈ Z(〈S0,I , S0,E〉). This error

E
†
2E1 can be corrected by the decoding operation given in (6).  !

3.3 The General Case

We now present our main result: how to convert an arbitrary subgroup of Gn into a
EAQECC. We need the following two lemmas.

Lemma 4 ([7]). Let V be an arbitrary subgroup of Gn with size 2m. Then there exists
a set of generators {Z1, · · · , Zp+q,Xp+1, · · · , Xp+q} that generates V such that
the Z’s and X’s obey the same commutation relations as in (7), for some p, q ≥ 0
and p + 2q = m.

[Zi, Zj ] = 0 ∀i, j
[Xi,Xj ] = 0 ∀i, j
[Xi,Zj ] = 0 ∀i $= j

{Xi,Zi} = 0 ∀i.

(7)

The following lemma is a simply result from group theory, and a proof can be
obtained from [3].

Lemma 5. If there is a one-to-one map between V and S which preserves their
commutation relations, which we denote V ∼ S , then there exists a unitary U such
that for each Vi ∈ V , there is a corresponding Si ∈ S such that Vi = USiU

−1, up
to a phase which can differ for each generator.

We our now ready for our main result:

Theorem 6. Given a general group S = 〈SI , SE〉 with the sizes of SI and SE being
2n−k−c and 22c, respectively, there exists an [[n, k; c]] EAQECC C EA defined by the
encoding and decoding pair (E, D) with the following properties:



168 Igor Devetak, Todd A. Brun and Min-Hsiu Hsieh

1. The code C EA can correct the error set E if for all E1, E2 ∈ E, E†
2E1 ∈ SI ∪

(Gn − Z(〈SI , SE〉)).
2. The codespace C EA is a simultaneous eigenspace of the Abelian extension of S .
3. To decode, the reduced error syndrome is obtained by simultaneously measuring

the observables from S̃ .

Fig. 3 Generalizing the canonical code construction

Proof. Since the commutation relations of S are the same as the EA stabilizer S0
for the EA canonical code C EA

0 in the previous section, by Lemma 5, there exists an

unitary matrix U such that S0 = USU−1. Define E = U−1 ◦ E0 and D = D0 ◦ Û ,
where Û is the trivial extension of U are Bob’s Hilbert space, and E0 and D0 are
given in (3) and (6), respectively.

1. Since
D0 ◦ E0 ◦ E0 = id⊗k

for any E0 ∈ E0, then
D ◦ E ◦ E = id⊗k

follows for any E ∈ E. Thus, the encoding and decoding pair (E, D) corrects E.
2. Since C EA

0 is the simultaneous +1 eigenspace of S̃0, S = U−1 S0U , and by

definition C EA = Û−1(C EA
0 ), we conclude that C EA is a simultaneous eigenspace

of S̃ .
3. The decoding operation D0 involves

i. measuring the set of generators of S̃0, yielding the error syndrome according
to the error E0.

ii. performing a recovering operation E0 again to undo the error.
By Lemma 7, performing D = D0 ◦ Û is equivalent to measuring S̃ = U−1 S̃0U ,
followed by performing the recovering operation UE0U

−1 based on the mea-
surement outcome, followed by Û to undo the encoding.  !

Lemma 7. Performing U followed by measuring the operator A is equivalent to
measuring the operator U−1AU followed by performing U .

Proof. Let Πi be a projector onto the eigenspace corresponding to eigenvalue λi
of A. Performing U followed by measuring the operator A is equivalent to the in-
strument (generalized measurement) given by the set of operators {ΠiU}. The oper-
ator U−1AU has the same eigenvalues as A, and the projector onto the eigenspace
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corresponding to eigenvalue λi is U−1ΠiU . Measuring the operator U−1AU fol-
lowed by performing U is equivalent to the instrument {U(U−1ΠiU)} = {ΠiU}.
 !

3.4 Distance

The notion of distance provides a convenient way to characterize the error correcting
properties of a code. We start by defining the weight of a vector u = (z|x) ∈ (Z2)

2n

by wt(u) = wt(z ∨ x). Here ∨ denotes the bitwise logical “or”, and wt(y) is the
number of non-zero bits in y ∈ (Z2)

n. In terms of the Pauli group, wt(u) is the
number of single qubit Pauli matrices in Nu not equal to the identity I .

A code is said to correct t errors if it corrects the error set {u : wt(u) ≤ t} but
not {u : wt(u) ≤ t + 1}. A code with distance d = 2t + 1 can correct t errors. An
[[n, k; c]] EAQEC code with distance d will be referred to as an [[n, k, d; c]] code.

3.5 Generalized F4 Construction

The following Proposition generalizes a result from [5].

Proposition 8. If a classical [n, k, d]4 code exists then an [[n, 2k − n + c, d; c]]
EAQECC exists for some non-negative integer c.

Proof. Consider a classical [n, k, d]4 code (the subscript 4 emphasizes that the code
is over F4) with an (n − k) × n quaternary parity check matrix H4. By definition,
for each nonzero a ∈ (F4)

n such that wt4(a) < d ,

〈H4, a〉 $= 0T.

This is equivalent to the logical statement

Tr〈ωH4, a〉 $= 0T ∨ Tr〈ωH4, a〉 $= 0T.

This is further equivalent to
Tr〈H̃4, a〉 $= 0T,

where

H̃4 =
(
ωH4

ωH4

)

. (8)

Applying the following map between the Pauli operators and elements of F4, the
field with four elements:

Π I X Y Z

F4 0 ω 1 ω
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to H̃4 gives us a set of generators for the group S of some [[n, 2k − n + c; c]]
EAQECC by Theorem 6.  !

Any classical binary [n, k, d]2 code may be viewed as a quaternary [n, k, d]4
code. In this case, the above construction gives rise to a CSS-type code.

3.6 Bounds on Performance

In this section we shall see that the performance of EAQECCs is comparable to the
performance of QECCs (which are a special case of EAQECCs).

The two most important outer bounds for QECCs are the quantum Singleton
bound [12, 15] and the quantum Hamming bound [9]. Given an [[n, k, d]] QECC
(which is an [[n, k, d; 0]] EAQECC), the quantum Singleton bound reads

n− k ≥ 2(d − 1).

The quantum Hamming bound holds only for non-degenerate codes and reads

3 d−1
2 4∑

j=0

3j
(
n

j

)

≤ 2n−k.

The proofs of these bounds [9, 15] are easily adapted to EAQECCs. This was first
noted by Bowen [2] in the case of the quantum Hamming bound. Consequently,
an [[n, k, d; c]] EAQECC satisfies both bounds for any value of c. Note that the F4
construction connects the quantum Singleton bound to the classical Singleton bound
n − k ≥ d − 1. An [n, k, d]4 code saturating the classical Singleton bound implies
an [[n, 2k − n+ c, d; c]] EAQECC saturating the quantum Singleton bound.

It is instructive to examine the asymptotic performance of quantum codes on a
particular channel. A popular choice is the tensor power channel N ⊗n, where N is
the depolarizing channel with Kraus operators {√p0I,

√
p1X,

√
p2Y,

√
p3Z}, for

some probability vector p = (p0, p1, p2, p3).
It is well known that the maximal transmission rate R = k/n achievable by a

non-degenerate QECC (in the sense of vanishing error for large n on the channel
N ⊗n) is equal to the hashing bound R = 1 − H(p). Here H(p) is the Shannon
entropy of the probability distribution p. This bound is attained by picking a random
self-orthogonal code. However no explicit constructions are known which achieve
this bound.

Interestingly, the F4 construction also connects the hashing bound to the Shannon
bound for quaternary channels. Consider the quaternary channel a �→ a+c, where c

takes on values 0, ω, 1, ω, with respective probabilities p0, p1, p2, p3. The maximal
achievable rate R = k/n for this channel was proved by Shannon to equal R = 2−
H(p). An [n, k]4 code saturating the Shannon bound implies an [[n, 2k− n+ c; c]]
EAQECC, achieving the hashing bound!
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4 Conclusions

A practical advantage of EAQEC codes over standard QEC codes is that they are
much easier to construct from classical codes because self-orthogonality is not re-
quired. This allows us to import the classical theory of error correction whole-
sale, including capacity-achieving modern codes. The appeal of these modern codes
comes from the existence of efficient decoding algorithms that provide an excellent
trade-off between decoding complexity and decoding performance. In fact, these
decoding algorithms, such as sum-product algorithm, can be modified to decode the
error syndromes effectively [13]. The only problem of using these iterative decoding
algorithms on quantum LDPC actually comes from those shortest 4 cycles that were
introduced inevitably because of the self-orthogonality constraint. However, by al-
lowing assisted entanglement, those 4 cycles can be eliminated completely, and the
performance of the iterative decoding improves substantially in our numerical simu-
lations [11]. This finding further confirms the contribution of our EA formalism. We
plan to further examine the performance of classical LDPC codes and turbo codes
in the context of the catalyst size for EAQEC codes.
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Particle Decay in Ising Field Theory
with Magnetic Field

Gesualdo Delfino

Abstract The scaling limit of the two-dimensional Ising model in the plane of
temperature and magnetic field defines a field theory which provides the simplest
illustration of non-trivial phenomena such as spontaneous symmetry breaking and
confinement. Here we discuss how Ising field theory also gives the simplest model
for particle decay. The decay widths computed in this theory provide the obvious test
ground for the numerical methods designed to study unstable particles in quantum
field theories discretized on a lattice.

1 Ising Field Theory

Quantum field theory provides the natural tool for the characterization of univer-
sality classes of critical behavior in statistical mechanics. While the general ideas
based on the renormalization group apply to any dimension (see e.g. [2]), the two-
dimensional case acquired in the last decades a very special status. Indeed, after the
exact description of critical points was made possible by the solution of conformal
field theories [1], it appeared that also specific directions in the scaling region of
two-dimensional statistical systems can be described exactly [22, 21]. Additional
insight then comes from perturbation theory around these integrable directions [8].

The two-dimensional Ising model plays a basic role in the theory of critical phe-
nomena since when Onsager computed its free energy and provided the first exact
description of a second order phase transition [17]. Its scaling limit in the plane of
temperature and magnetic field defines a field theory—the Ising field theory—which
provides the simplest example of non-trivial phenomena such as spontaneous sym-
metry breaking and confinement [16]. Here we will discuss how Ising field theory
also yields the simplest model for particle decay [10].
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The Ising model is defined on a lattice by the reduced Hamiltonian

E = − 1

T

∑

〈i,j〉
σiσj −H

∑

i

σi, σi = ±1 (1)

so that the partition function is Z = ∑
{σi } e

−E . On a regular lattice in more than
one dimension, the model undergoes, for a critical value Tc of the temperature and
for vanishing magnetic field H , a second order phase transition associated to the
spontaneous breakdown of spin reversal symmetry.

In two dimensions the scaling limit of (1) is described by the Ising field theory
with action

A = ACFT − τ

∫
d2x ε(x)− h

∫
d2x σ(x). (2)

Here ACFT is the action of the simplest reflection-positive conformal field theory in
two dimensions, which corresponds to the Ising critical point [1]. The spin operator
σ(x) with scaling dimension Xσ = 1/8 and the energy operator ε(x) with scaling
dimension Xε = 1 are, together with the identity, the only relevant operators present
in this conformal theory. The couplings h and τ account for the magnetic field and
the deviation from critical temperature, respectively.

The field theory (2) describes a family of renormalization group trajectories flow-
ing out of the critical point located at h = τ = 0 (Fig. 1). Since the coupling con-
jugated to an operator Φ has the dimension of a mass to the power 2 − XΦ , the
combination

η = τ

|h|8/15
(3)

is dimensionless and can be used to label the trajectories. In particular, the low- and
high-temperature phases at h = 0 and the critical isotherm τ = 0 correspond to
η = −∞,+∞, 0, respectively.

Fig. 1 The Ising field theory (2) describes a one-parameter family of renormalization group tra-
jectories (labelled by η) flowing out of the critical point located at τ = h = 0
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2 Evolution of the Mass Spectrum

Under analytic continuation to imaginary time the euclidean field theory (2) defines
a (1 + 1)-dimensional relativistic theory allowing for a particle interpretation.

It is well known that the action (2) with h = 0 describes a free neutral fermion
with mass m ∼ |τ |. While in the disordered phase τ > 0 this fermionic particle
corresponds to ordinary spin excitations, in the spontaneously broken phase τ < 0
it describes the kinks interpolating between the two degenerate ground states of the
system (Fig. 2a). In the euclidean interpretation the space-time trajectories of the
kinks correspond to the domain walls separating regions with opposite magnetiza-
tion.

A small magnetic field switched on at τ < 0 breaks explicitly the spin reversal
symmetry and removes the degeneracy of the two ground states (Fig. 2b). To first
order in h the energy density difference between the two vacua is

ΔE 5 2h〈σ 〉, (4)

where 〈σ 〉 is the spontaneous magnetization at τ = 0. With the symmetry broken
the kinks are no longer stable excitations. An antikink-kink pair, which was a two-
particle asymptotic state of the theory at h = 0, now encloses a region where the
system sits on the false vacuum (Fig. 2b). The need to minimize this region induces
an attractive potential

V (R) 5 ΔE R (5)

(R is the distance between the walls) which confines the kinks and leaves in the
spectrum of the theory only a string of antikink-kink bound states An, n = 1, 2, . . . ,
whose masses

mn = 2m+ (ΔE )2/3zn

m1/3
, h → 0 (6)

are obtained from the Schrödinger equation with the potential (5). The zn in (6) are
positive numbers determined by the zeros of the Airy function, Ai(−zn) = 0. This
non-relativistic approximation is exact in the limit h → 0 in which mn − 2m → 0.
The spectrum (6) was first obtained in [16] from the study of the analytic structure
in momentum space of the spin-spin correlation function for small magnetic field.
Relativistic corrections to (6) have been obtained more recently1 in [23].

The particles An with mass larger than twice the lightest mass m1 are unstable. It
was conjectured in [16] that the number of stable particles decreases as η increases
from −∞, until only A1 is left in the spectrum of asymptotic particles as η →+∞.
The particle A1 would then be the free fermion of the theory at η = +∞. According
to this scenario, for any n > 1 there should exist a value ηn for which mn crosses
the decay threshold 2m1, so that the particle An becomes unstable for η > ηn. The
natural expectation is that the values ηn decrease as n increases, in such a way that
the τ -h plane is divided into sectors with a different number of stable particles as

1 See also [24] which appeared after this talk was given.
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Fig. 2 The free energy and the kink excitations in the spontaneously broken phase (a). A small
magnetic field removes the degeneracy of the ground states and confines the kinks (b)

qualitatively shown in Fig. 3. The trajectories corresponding to the values ηn are
expected to densely fill the plane in the limit η →−∞.

This pattern has been confirmed by numerical investigations of the spectrum of
the field theory (2) for all values of η [8, 23, 24]. For η → −∞ the particles An

with n large can be studied within the semiclassical approximation and their decay
widths have been obtained in [19, 24].

Fig. 3 Expected evolution of the mass spectrum as a function of η. In the sector in between ηn and
ηn+1 the theory possesses n stable particles (numbers in the circles)

3 Particle Decay off the Critical Isotherm

The critical isotherm η = τ = 0 must lie within the sector in which the theory has,
generically, three stable particles (Fig. 3). To understand this we must recall that
A. Zamolodchikov showed in [22, 21] that the theory (2) with τ = 0 is integrable
and computed its exact S-matrix. He found that the spectrum along this integrable
trajectory consists of eight stable particles A1, . . . , A8 with masses
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m1 ∼ h8/15

m2 = 2m1 cos
π

5
= (1.6180339887..)m1

m3 = 2m1 cos
π

30
= (1.9890437907..)m1

m4 = 2m2 cos
7π

30
= (2.4048671724..)m1

m5 = 2m2 cos
2π

15
= (2.9562952015..)m1

m6 = 2m2 cos
π

30
= (3.2183404585..)m1

m7 = 4m2 cos
π

5
cos

7π

30
= (3.8911568233..)m1

m8 = 4m2 cos
π

5
cos

2π

15
= (4.7833861168..)m1.

(7)

A peculiarity of this spectrum is that only the lightest three particles lie below
the lowest decay threshold 2m1. The remaining five have the phase space to decay
and certainly are not prevented to do so by internal symmetries (the magnetic field
leaves no internal symmetry in the Ising model). It is easy to see that, while there is
nothing wrong with the stability of the particles above threshold along this integrable
trajectory, they must necessarily decay as soon as a deviation, however small, from
the critical temperature breaks integrability [10]. Figure 4 shows the bound state
poles and the unitarity cuts of the elastic scattering amplitudes S11 and S12 in the
complex plane of the relativistic invariant s (square of the center of mass energy).
We know from [22, 21] that at τ = 0 the scattering channel A1A1 produces the
first three particles as bound states (Fig. 4a), while the channel A1A2 produces the
first four (Fig. 4b). The absence of inelastic scattering in integrable theories allows
only for the unitarity cut associated to the elastic processes. When integrability is
broken (i.e. as soon as we move away from τ = 0), however, the inelastic channels
and the associated unitarity cuts open up. In particular, the process A1A2 → A1A1
acquires a non-zero amplitude, so that the threshold located at s = 4m2

1 becomes the
lowest one also in the A1A2 scattering channel (Fig. 4c). Since the pole associated
to A4 is located above this threshold, it can no longer remain on the real axis, which
in that region is now occupied by the new cut. The position of the pole must then
develop an imaginary part which, according to the general requirements for unstable
particles [11], is negative and brings the pole through the cut onto the unphysical
region of the Riemann surface. The other particles above threshold, which appear
as bound states in other amplitudes at τ = 0, decay through a similar mechanism.
We see then that, because of integrability, the trajectory η = 0 corresponds to an
isolated case with eight stable particles inside a range of values of η in which only
the particles A1, A2, A3 are stable.

These decay processes associated to integrability breaking can be studied ana-
lytically through the form factor perturbation theory around integrable models [8].
Indeed, if the action of the perturbed integrable theory is
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Aintegrable + λ

∫
d2x Ψ (x), (8)

the perturbative series in λ can be expressed in terms of the matrix elements of
the perturbing operator Ψ on the asymptotic particle states (Fig. 5). These matrix
elements can be computed exactly in the unperturbed, integrable theory exploit-
ing analyticity constraints [14, 20] supplemented by operator-dependent asymptotic
conditions at high energies [5, 9, 6].

Fig. 4 Poles and unitarity cuts for the elastic scattering amplitudes S11 and S12 in the integrable
case τ = 0, (a) and (b), respectively, and for τ slightly different from zero (c). In (c) the particle
A4 became unstable and the associated pole moved through the cut into the unphysical region

For our present purposes we then look at the action (2) as the integrable trajectory
τ = 0 perturbed by the energy operator ε(x) and must compute corrections in τ .
The matrix elements of an operator Φ(x) in the unperturbed theory can all be related
to the form factors2

2 The energy and momentum of the particles are parameterized in terms of rapidities as
(p0, p1) = (ma cosh θ,ma sinh θ).
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FΦ
a1...an

(θ1, . . . , θn) = 〈0|Φ(0)|Aa1(θ1) . . . Aan(θn)〉, (9)

where |0〉 is the vacuum state and the asymptotic states are built in terms of the eight
particles which are stable at τ = 0.

Fig. 5 Perturbative expansion for a scattering amplitude in the theory (8). The matrix elements of
the perturbing operator Ψ can be computed exactly in the unperturbed, integrable theory

To lowest order in τ the corrections to the real and imaginary parts of the masses
come from the perturbative terms in Fig. 6 and are given by [8]

δ Rem2
c 5 −2τ fc, (10)

Imm2
c 5 −τ 2

∑

a≤b,ma+mb≤mc

21−δab
|fcab|2

mcma| sinh θ
(cab)
a |

, c = 4, 5 (11)

with
fc = Fε

cc(iπ, 0), (12)

fcab = Fε
cab(iπ, θ

(cab)
a , θ

(cab)
b ); (13)

θ
(cab)
a is determined by energy-momentum conservation at the vertices in Fig. 6b.

Fig. 6 Terms determining the leading corrections to the real (a) and imaginary (b) parts of the
masses in Ising field theory at small τ . For c > 5 also diagrams with more than two particles in the
intermediate state contribute to the imaginary part

The available decay channels for the particles above threshold are determined by
the spectrum (7):
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A4 → A1A1

A5 → A1A1, A1A2

A6 → A1A1, A1A2, A1A3, A1A1A1,

and similarly for A7 and A8. For c > 5 the sum in (11) must be completed including
the contributions of the decay channels with more than two particles in the final
state.

One- and two-particle form factors for Ising field theory at τ = 0 have been
computed in [5, 7] (see [4] for a review). Table 1 contains the complete list of one-
particle matrix elements for the relevant operators. The results for the lightest par-
ticle are compared in Table 2 with the result of numerical diagonalization of the
transfer matrix on the lattice [3]. Three-particle form factors have been computed in
[10] in order to determine the imaginary parts (11).

Table 1 One-particle form factors for the operators σ and ε in Ising field theory at τ = 0 [5, 7].
The rescaling implied by the notation Φ̂ ≡ Φ/〈Φ〉 ensures that the results in the table are universal

σ̂ ε̂

F1 −0.640902.. −3.706584..
F2 0.338674.. 3.422288..
F3 −0.186628.. −2.384334..
F4 0.142771.. 2.268406..
F5 0.060326.. 1.213383..
F6 −0.043389.. −0.961764..
F7 0.016425.. 0.452303..
F8 −0.003036.. −0.105848..

Table 2 Lightest-particle form factors at τ = 0 from integrable quantum field theory [5, 7] and
from numerical diagonalization of the transfer matrix [3]

Field theory Lattice
F σ̂

1 −0.640902.. −0.6408(3)
F ε̂

1 −3.70658.. −3.707(7)

The available results relevant for the leading mass corrections are

f1 = (−17.8933..)〈ε〉 |f411| = (36.73044..)|〈ε〉|
f2 = (−24.9467..)〈ε〉 |f511| = (19.16275..)|〈ε〉|
f3 = (−53.6799..)〈ε〉 |f512| = (11.2183..)|〈ε〉|
f4 = (−49.3206..)〈ε〉

where 〈ε〉 is taken at τ = 0. The ratios

lim
η→0

δ Rem2
a

δE
= 2

fa

〈ε〉 , (14)
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where δE is the variation of the vacuum energy density, are completely universal
and particularly easy to check numerically. These predictions for the variations of
the real part of the masses of the first four particles have been confirmed numerically
both in the continuum [8, 24] and on the lattice [13]. Using the result3 [12]

〈ε〉 = −(2.00314..)|h|8/15, (15)

it easy to check that the sign of the variations

δra = − τf1

m1ma

(

r2
a −

fa

f1

)

+O(τ 2) (16)

of the mass ratios ra = Rema/m1 agrees with the McCoy-Wu scenario (Fig. 7).

Fig. 7 Evolution of the mass spectrum as predicted by (16) as τ increases from 0. A2 and A3
approach the threshold and will decay for positive values of τ ; A4 has already become unstable for
τ < 0 and moves further away from the threshold

The above values of fabc give [10]

Imm2
4 5 (−173.747..)τ 2, (17)

Imm2
5 5 (−49.8217..)τ 2, (18)

and in turn the decay widths and lifetimes

Γa = − Imm2
a

ma

, ta = 1

Γa

(19)

of the particles A4 and A5. The lifetime ratio

lim
τ→0

t4

t5
= 0.23326.. (20)

is universal, as well as the branching ratio for A5, which decays at 47% into A1A1
and for the remaining fraction into A1A2.

It appears from (20) that A5 lives more than four times longer than A4, somehow
in contrast with the expectation inherited from accelerator physics that, in absence
of symmetry obstructions, heavier particles decay more rapidly. Notice, however,
that in d dimensions the width for the decay Ac → AaAb is

3 The value (15) refers to the normalization of ε in which 〈ε(x)ε(0)〉 → |x|−2 as |x| → 0.
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Γc→ab ∝ g2|fabc|2Φd, (21)

where g is the perturbative parameter, fabc the form factor and

Φd ∼
∫

dd−1pa

p0
a

dd−1pb

p0
b

δd(pa + pb − pc) ∼ |p|d−3

mc

(22)

the phase space (p = pa = −pb). For fixed decay products, |p| increases with
mc and in d = 2 suppresses the phase space, in contrast with what happens in
d = 4. The results for the vertices fabc indicate that in our case the dynamics
further enhances the increase of tc with mc.

4 Unstable Particles in Finite Volume

The issue of obtaining numerical checks of theoretical predictions for decay process-
es is made particularly interesting by the difficulty of characterizing unstable parti-
cles in the finite volume [15]. The problem is particularly relevant for lattice gauge
theories.

In two dimensions energy spectra can be obtained by numerical diagonalization
of a truncated Hamiltonian on a cylinder geometry. The signature of particle decay
on the cylinder is clear. At an integrable point, when the energy levels are plotted as
a function of the circumference R of the cylinder, the line corresponding to a particle
above threshold crosses infinitely many levels which belong to the continuum when
R = ∞ (Fig. 8). Once integrability is broken, this line “disappears” through a re-
moval of level crossings and a reshaping of the lines associated to stable excitations
(Fig. 9).

One way of extracting the decay width from such a spectrum is the following
[15]. Consider energy levels corresponding to states with two particles of mass m

and momenta p and−p, sufficiently close to the threshold E = 2m that the particles
can only scatter elastically, with scattering amplitude S(p) = exp iδ(p). On the
circle, p is quantized by the condition eiRp S(p) = 1, or equivalently

Rp + δ(p) = 2πn, (23)

with n labelling the states. Hence δ(p) can be determined from the measure of

E(R) = 2
√
p2 +m2. (24)

A narrow resonance of mass mc and width Γ can then be fitted through the Breit-
Wigner formula

δ(p) = δ0(p)+ δBW (p), δBW = −i ln
E −mc − iΓ /2

E −mc + iΓ /2
, (25)
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Fig. 8 First eight energy levels of the finite volume Hamiltonian of Ising field theory at τ = 0 as
functions of r = m1R (from Ref. [8]). At r = 40, starting from the bottom, the levels are identified
as the ground state, the first three particle states A1, A2 and A3, three scattering states A1A1, the
particle above threshold A4. Crossings between the line associated to the latter and the scattering
states are visible around r = 18, r = 25 and r = 36

Fig. 9 First eight energy levels of the finite volume Hamiltonian of Ising field theory slightly away
from τ = 0 (from Ref. [8]). Observe the splitting of the crossings pointed out in the previous figure

δ0 being a smooth background.
An alternative method was proposed in [10]. At an integrable point consider a

particle with mass mc > ma +mb. The states

|Ac(p = 0)〉 ≡ |1〉, |Aa(p)Ab(−p)〉 ≡ |2〉 (26)

are degenerate on the cylinder at a crossing point R∗. When integrability is broken
by a perturbation
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V = λ

∫ R

0
dxΨ (x), (27)

the energy splitting at R∗ is, to lowest order in perturbation theory,

ΔE =
√
(V11 − V22)2 + 4|V12|2, (28)

where Vij = 〈i|V |j〉. Choosing a crossing point at R∗ large enough, the Vij ’s are
well approximated by the infinite volume matrix elements. In this way the decay
vertices V12 can be obtained from measures of the energy splittings.

Both methods have been used in [18] to measure the decay widths of the first
two particles above threshold in Ising field theory close to the critical temperature.
The results are shown in Table 3 together with the predictions of form factor pertur-
bation theory discussed in the previous section. It seems obvious that any numeri-
cal method designed to measure decay widths in more complicated lattice models
should first of all be able to recover these predictions for the two-dimensional Ising
model.

Table 3 The values of the three-particle vertices f̂abc ≡ fabc/〈ε〉 obtained numerically in [18]
compared with the exact predictions of [10]

|f̂cab| Exact Numerical
|f̂411| 36.730.. 36.5(3)
|f̂511| 19.163.. 19.5(9)

Acknowledgements I thank P. Grinza and G. Mussardo, my co-authors of Ref. [10] on which
this talk is mainly based. This work is partially supported by the ESF grant INSTANS and by the
MIUR project “Quantum field theory and statistical mechanics in low dimensions”.
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Fluctuations and Large Deviations
in Non-equilibrium Systems

Bernard Derrida

Abstract For systems in contact with two reservoirs at different densities, the large
deviation function of the density gives a possible way of extending the notion of free
energy to non-equilibrium systems. This large deviation function of the density can
be calculated explicitly for exclusion models in one dimension with open boundary
conditions. For the simple exclusion process as well as for other diffusive systems,
one can also obtain the distribution of the current of particles flowing through the
system and the results lead to a simple conjecture for the large deviation function of
the current of more general diffusive systems.

1 Introduction

The goal of the talk was to give a short review on results [6, 13–18, 20] obtained
over the last few years on systems maintained in a non-equilibrium steady state
by contact with two or more heat baths at unequal temperatures or with several
reservoirs at unequal densities.

Let us first consider a system in contact with two heat baths at temperatures Ta
and Tb as in Fig. 1.

Fig. 1 A system in contact with two heat baths at temperatures Ta and Tb

Bernard Derrida
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When Ta = Tb = T , i.e. when the system is at equilibrium, one knows from
equilibrium statistical mechanics that each microscopic configuration C of energy
E(C ) is occupied according to its Boltzmann weight

Pequilibrium(C) = Z−1 exp

[

−E(C)

kT

]

. (1)

One can then define the free energy

F = −T logZ = −T log

(
∑

C

exp

[

−E(C )

T

])

(2)

from which macroscopic properties such as the average energy or the specific heat
can be obtained.

When Ta $= Tb, the system reaches in the long time limit a steady state, but there
is no longer a general expression such as (1) for the steady state probabilities of
microscopic configurations

Pnon-equilibrium(C) = ?

and there is no a priori definition of the free energy. One of the first questions one
may ask is to know what Pnon-equilibrium(C) looks like and how the notion of free
energy can be extended to non-equilibrium systems. New questions also arise related
to the flow of energy Qt through the system during a time interval t , i.e. the energy
Qt transferred from one reservoir to the other or equivalently the entropy production
Qt(

1
Tb
− 1

Ta
). One can for example try to determine the probability distribution

P(Qt) of this energy flux.
Another non-equilibrium steady state situation one may consider is that of a sys-

tem exchanging particles with two reservoirs at densities ρa and ρb. When ρa $= ρb
(and in absence of external field) there is a flow of particles through the system. One
can then ask the same questions as before: for example what is the average current of
particles between the two reservoirs, what is the density profile through the system,
what are the fluctuations or the large deviations of this current or of the density.

2 Large Deviation Function of the Density

One way of extending the notion of free energy to non-equilibrium systems is to
define the large deviation function [28] of the density. For a box of volume V con-
taining V r particles, the probability Pv(n) of finding n particles in a subvolume v

has the following large n and v dependence

Pv(n) ∼ exp
[
−va

(n

v

)]
(3)
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where a(ρ) is the large deviation function at density ρ. Figure 2 shows a typical
shape of a(ρ) for a homogeneous system (i.e. not at a coexistence between different
phases) with a single minimum at ρ = r where a(r) = 0.

Fig. 2 A typical shape of the large deviation function a(ρ) of the density

The large deviation function a(ρ) can be defined for equilibrium systems as well
as for non-equilibrium systems. For equilibrium systems, it is closely related to the
free energy: if the volume v is sufficiently large and if the interactions are short
ranged, the large deviation function a(ρ) is given by

a(ρ) = f (ρ)− f (r)− (ρ − r)f ′(r)
kT

(4)

where f (ρ) is the free energy per unit volume. This can be seen by noticing that for
v � V and when v1/d is much larger that the range of the interactions

Pv(n) = Zv(n)ZV−v(N − n)

ZV (N)
exp

[
O
(
v

d−1
d
)]

(5)

where the term exp[O(v
d−1
d )] represents the interactions between pairs of particles,

one of which is the volume v and the other one in V − v. Then taking the log of (5)
and using the fact that

lim
v→∞

logZv(vρ)

v
= −f (ρ)

kT
(6)

leads to (4).

3 Free Energy Functional

If one divides a system of linear size L into n boxes of linear size l (in dimension d ,
one has n = Ld/ld such boxes), one can try to determine the probability of finding
a certain density profile {ρ1, ρ2, . . . , ρn}, i.e. the probability of seeing ldρ1 particles
in the first box, ldρ2 particles in the second box, . . . ldρn in the nth box. For large L
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one expects the following L dependence of this probability

Pro(ρ1, . . . , ρn) ∼ exp
[−LdF (ρ1, ρ2, . . . , ρn)

]
(7)

where F is a large deviation function which generalizes a(ρ) introduced in (3). If

Fig. 3 One specifies the density ρi in each box i

one defines a reduced coordinate x by

r = Lx (8)

and if one takes the limit l →∞ with l � L so that the number of boxes becomes
infinite, one gets a functional F (ρ(x)) for an arbitrary density profile ρ(x)

Pro(ρ(x)) ∼ exp
[−LdF (ρ(x))

]
. (9)

At equilibrium the functional F can be expressed in terms of the free energy
f (ρ) per unit volume (6) at density ρ: for a system of V r particles with short range
pair interactions in a volume V = Ld , one has

Pro(ρ1, . . . , ρn) = Zv(vρ1) . . . Zv(vρn)

ZV (V r)
exp

[

O

(
Ld

l

)]

(10)

where v = ld . Comparing with (7), in the limit L → ∞, l → ∞, keeping n fixed
gives

F (ρ1, ρ2, . . . , ρn) = 1

kT

1

n

n∑

i=1

[f (ρi)− f (r)]. (11)

In the limit of an infinite number of boxes, this becomes

F (ρ(x)) = 1

kT

∫
dx[f (ρ(x))− f (r)]. (12)

Thus, at equilibrium, the large deviation functional F is fully determined by the
knowledge of the free energy f (ρ) per unit volume and one knows that
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• F is a local functional of ρ(x) (see (12)).
• It is also convex (as the free energy f (ρ) is a convex function of ρ).
• By expanding (12) around the most likely profile ρ(x) = r , one obtains also from

(12) that the fluctuations of the density profile are Gaussian with a variance related
to the second derivative of the free energy, i.e. related to the compressibility as
predicted by Smoluchowski and Einstein.

• One knows (by the Landau argument) that, with short range interactions, there is
no phase transition in one dimension.

For non-equilibrium systems, the large deviation functional of the density has been
calculated so far in very few cases [2, 5, 10, 13–16, 20]. In these exactly solvable
cases, one finds that

• The large deviation function is in general non-local (see for example its expres-
sions for the simple exclusion process SSEP in Sect. 5). This non-locality is di-
rectly related to the presence of long range correlations (see Sect. 9).

• In some cases such as the asymmetric simple exclusion process ASEP, the func-
tional is non-convex [15, 16].

• It also happens that for the ASEP, the fluctuations of the density are sometimes
non-Gaussian [15, 16, 18] and are not related to the expansion of the functional
around the most likely profile.

• It is also well known that non-equilibrium systems may exhibit phase transitions
in one dimension [10–12, 21, 26, 29, 33].

4 Simple Exclusion Processes (SSEP)

Fig. 4 The symmetric simple exclusion process

One of the simplest cases for which the large deviation functions a(ρ) or
F (ρ(x)) can be calculated is the symmetric simple exclusion process [9, 32, 35]
shown in Fig. 4. The model is defined as a one dimensional lattice of L sites with
open boundaries, each site being either empty or occupied by a single particle. Dur-
ing every infinitesimal time interval dt , each particle has a probability dt of jumping
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to the left if the neighboring site on its left is empty, dt of jumping to the right if the
neighboring site on its right is empty. At the two boundaries the dynamics is modi-
fied to mimic the coupling with reservoirs of particles: at the left boundary, during
each time interval dt , a particle is injected on site 1 with probability αdt (if this site
is empty) and a particle is removed from site 1 with probability γ dt (if this site is
occupied). Similarly on site L, particles are injected at rate δ and removed at rate β.

One can show [13, 14, 20] that these choices of the rates α, γ, β, δ correspond to
the left boundary being connected to a reservoir at density ρa and the right boundary
to a reservoir at density ρb with ρa and ρb given by

ρa = α

α + γ
; ρb = δ

β + δ
. (13)

For the SSEP, it is easy to determine the steady state profile: if τi = 0 or 1 is a
binary variable indicating whether site i is empty or occupied, the time evolution of
the average occupation 〈τi〉 is given by

d〈τ1〉
dt

= α − (α + γ + 1)〈τ1〉 + 〈τ2〉
d〈τi〉
dt

= 〈τi−1〉 − 2〈τi〉 + 〈τi+1〉 for 2 ≤ i ≤ L− 1 (14)

d〈τL〉
dt

= 〈τL−1〉 − (1 + β + δ)〈τL〉 + δ

and the steady state density profile (obtained by writing that d〈τi 〉
dt

= 0) is

〈τi〉 =
ρa(L+ 1

β+δ
− i)+ ρb(i − 1 + 1

α+γ
)

L+ 1
α+γ

+ 1
β+δ

− 1
. (15)

The average current

〈J 〉 = 〈τi − τi+1〉 = ρa − ρb

L+ 1
α+γ

+ 1
β+δ

− 1
5 ρa − ρb

L
(16)

is proportional to the gradient of the density (with a coefficient of proportionality
which is here simply 1) and therefore follows Fick’s law.

One can write down the equations which generalize (14) and govern the time
evolution of the two-point function or higher correlations. For example one finds
[19, 34] in the steady state for 1 ≤ i < j ≤ L

〈τiτj 〉c ≡ 〈τiτj 〉 − 〈τi〉〈τj 〉

= − ( 1
α+γ

+ i − 1)( 1
β+δ

+ L− j)

( 1
α+γ

+ 1
β+δ

+ L− 1)2( 1
α+γ

+ 1
β+δ

+ L− 2)
(ρa − ρb)

2. (17)
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For large L, if one introduces macroscopic coordinates i = Lx and j = Ly, this
becomes for x < y

〈τLxτLy〉c = −x(1 − y)

L
(ρa − ρb)

2 (18)

and shows that, as soon as the system is out of equilibrium, there are long range
correlations.

5 The Large Deviation Function F (ρ(x)) for the SSEP

For the SSEP (in one dimension), the functional F (ρ(x)) is given by the following
exact expression:

• At equilibrium, i.e. for ρa = ρb = r

F (ρ(x)) =
∫ 1

0
B(ρ(x), r)dx (19)

where

B(ρ, r) = (1 − ρ) log
1 − ρ

1 − r
+ ρ log

ρ

r
. (20)

This can be derived easily. When ρa = ρb = r , the steady state is a Bernoulli mea-
sure where all the sites are occupied independently with probability r .
Therefore if one divides a chain of length L into L/l intervals of length l, one
has

Pro(ρ1, . . . ρn) =
L/l∏

i

l!
[lρi]![l(1 − ρi)]! r

lρi (1 − r)l(1−ρi ) (21)

and using Stirling’s formula one gets (19), (20).
• In the non-equilibrium case, i.e. for ρa $= ρb, it was shown in [2, 13, 14, 36] that

F (ρ(x)) =
∫ 1

0
dx

[

B(ρ(x), F (x))+ log
F ′(x)
ρb − ρa

]

(22)

where the function F(x) is the monotone solution of the differential equation

ρ(x) = F + F(1 − F)F ′′

F ′2 (23)

satisfying the boundary conditions F(0) = ρa and F(1) = ρb.
This expression shows that F is a non-local functional of the density profile

ρ(x) as F(x) depends (in a non-linear way) on the profile ρ(y) at all points y.
For example if the difference ρa − ρb is small, one can expand F and obtain an
expression where the non-local character of the functional is clearly visible
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F =
∫ 1

0
dxB(ρ(x), ρ(x))

+ (ρa − ρb)
2

[ρa(1 − ρa)]2
∫ 1

0
dx

∫ 1

x

dyx(1 − y)
(
ρ(x)− ρ(x)

)(
ρ(y)− ρ(y)

)

+O(ρa − ρb)
3 (24)

where ρ(x) is the most likely profile given by

ρ(x) = (1 − x)ρa + xρb. (25)

A derivation of (22), (23) is described in Sects. 6, 7, 8.

6 The Matrix Ansatz for the Symmetric Exclusion Process

The matrix ansatz gives an algebraic way of calculating the exact weights [11, 33]
of all the configurations in the steady state. In [12] it was shown that the probability
of a microscopic configuration {τ1, τ2, . . . , τL} can be written as the matrix element
of a product of L matrices

Pro({τ1, τ2, . . . τL}) = 〈W |X1X2 . . . XL|V 〉
〈W |(D + E)L|V 〉 (26)

where the matrix Xi depends on the occupation τi of site i

Xi = τiD + (1 − τi)E (27)

and the matrices D and E satisfy the following algebraic rules

DE − ED = D + E

〈W |(αE − γD) = 〈W | (28)

(βD − δE)|V 〉 = |V 〉.
Let us check on the simple example of Fig. 5 that expression (26) does give the

steady state weights: if one chooses the configuration where the first p sites on the
left are occupied and the remaining L − p sites on the right are empty, the weight
of this configuration is given by

〈W |DpEL−p|V 〉
〈W |(D + E)L|V 〉 . (29)

For (26) to be the weights of all configurations in the steady state, one needs that the
rate at which the system enters each configuration and the rate at which the system
leaves it should be equal. In the case of the configuration whose weight is (29), this
means that the following steady state identity should be satisfied (see Fig. 5):
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Fig. 5 The three configurations which appear on the left-hand side of (30) and from which one can
jump to the configuration which appears on the right-hand side of (30)

α
〈W |EDp−1EL−p|V 〉
〈W |(D + E)L|V 〉 + 〈W |Dp−1EDEL−p−1|V 〉

〈W |(D + E)L|V 〉 + β
〈W |DpEL−p−1D|V 〉
〈W |(D + E)L|V 〉

= (γ + 1 + δ)
〈W |DpEL−p|V 〉
〈W |(D + E)L|V 〉 . (30)

This equality is easy to check by rewriting (30) as

〈W |(αE − γD)Dp−1EL−p|V 〉
〈W |(D + E)L|V 〉 − 〈W |Dp−1(DE − ED)EL−p−1|V 〉

〈W |(D + E)L|V 〉
+ 〈W |DpEL−p−1(βD − δE)|V 〉

〈W |(D + E)L|V 〉 = 0 (31)

and by using (28). A similar reasoning [12] allows one to prove that the correspond-
ing steady state identity holds for all the other configurations.

A priori one should construct the matrices D and E (which might be infinite-
dimensional [12]) and the vectors 〈W | and |V 〉 satisfying (28) to calculate the
weights (26) of the microscopic configurations. However these weights do not de-
pend on the particular representation chosen and can be calculated directly from
(28). This can be easily seen by using the two matrices A and B defined by

A = βD − δE

B = αE − γD
(32)

which satisfy

AB − BA = (αβ − γ δ)(D + E) = (α + δ)A+ (β + γ )B. (33)

For generic α, β, γ, δ, each product of D’s and E’s can be written as a sum of
products of A’s and B’s which can be ordered using (33) by pushing all the A’s to
the right and all the B’s to the left. One then gets a sum of terms of the form BpAq ,
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the matrix elements of which can be evaluated easily (〈W |BpAq |V 〉 = 〈W |V 〉)
from (28) and (32).

With the weights (26) one can calculate the average density profile

〈τi〉 = 〈W |(D + E)i−1D(D + E)L−i |V 〉
〈W |(D + E)L|V 〉

as well as all the correlation functions

〈τiτj 〉 = 〈W |(D + E)i−1D(D + E)j−i−1D(D + E)L−j |V 〉
〈W |(D + E)L|V 〉

and one can recover that way (15) and (17).
Using the fact that the average current between sites i and i + 1 is given by

〈J 〉 = 〈W |(D + E)i−1(DE − ED)(D + E)L−i−1|V 〉
〈W |(D + E)L|V 〉 = 〈W |(D + E)L−1|V 〉

〈W |(D + E)L|V 〉
(of course in the steady state the current does not depend on i) and from the expres-
sion (16) one can calculate the normalization

〈W |(D + E)L|V 〉
〈W |V 〉 = 1

(ρa − ρb)L

Γ (L+ 1
α+γ

+ 1
β+δ

)

Γ ( 1
α+γ

+ 1
β+δ

)
(34)

where Γ (z) is the usual Gamma function which satisfies Γ (z + 1) = zΓ (z).
(See (3.11) of [14] for an alternative derivation of this expression.)

Remark 1. When ρa = ρb = r , the two reservoirs are at the same density and the
steady state becomes the equilibrium (Gibbs) state of the lattice gas at this density r .
In this case, the weights of the configurations are those of a Bernoulli measure at
density r , that is

Pro({τ1, τ2, . . . τL}) =
L∏

i=1

[rτi + (1 − r)(1 − τi)]. (35)

This case is a limit where the matrices D and E commute (it can be recovered by
making all the calculations with the matrices (26), (28) for ρa $= ρb and by taking
the limit ρa → ρb in the final expressions, as all the expectations, for a lattice of
finite size L, are rational functions of ρa and ρb).

Remark 2. Here the discussion is limited to the symmetric exclusion process and
other diffusive systems. The matrix approach can however be extended to the asym-
metric exclusion process [12] and the methods of Sects. 7 and 8 generalized to
obtain the large deviation function of the density in presence of an asymmetry [15,
16, 20].
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7 Additivity as a Consequence of the Matrix Ansatz

In this section we are going to establish, starting from the matrix ansatz (26), (28),
an identity (42) which will relate (in Sect. 8) the large deviation function F of a
system to those of its subsystems.

As in (26) the weight of every configuration is written as the matrix element of a
product of L matrices, one can try to insert at a position L′ a complete basis in order
to relate the properties of a lattice of L sites to those of two subsystems of sizes L′
and L−L′. To do so let us introduce the following left and right eigenvectors of the
operators ρaE − (1 − ρa)D and (1 − ρb)D − ρbE

〈ρa, a|[ρaE − (1 − ρa)D] = a〈ρa, a|
[(1 − ρb)D − ρbE]|ρb, b〉 = b|ρb, b〉. (36)

It is easy to see, using (13) and (28), that the vectors 〈W | and |V 〉 are given by

〈W | = 〈ρa, (α + γ )−1|
|V 〉 = |ρb, (β + δ)−1〉. (37)

It is then possible to show, using simply the fact (28) that DE −ED = D +E and
the definition of the eigenvectors (36), that (for ρb < ρa)

〈ρa, a|Y1Y2|ρb, b〉
〈ρa, a|ρb, b〉
=

∮

ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)
a+b

(ρa − ρ)a+b(ρ − ρb)

〈ρa, a|Y1|ρ, b〉
〈ρa, a|ρ, b〉

〈ρ, 1 − b|Y2|ρb, b〉
〈ρ, 1 − b|ρb, b〉 (38)

where Y1 and Y2 are arbitrary polynomials of the matrices D and E.
To prove (38) it is sufficient to choose Y1 of the form [ρaE−(1−ρa)D]n[D+E]n′

(clearly any polynomial of the matrices D and E can be rewritten as a polynomial
of A ≡ D + E and B ≡ ρaE − (1 − ρa)D. Then as AB − BA = A, which is a
consequence of DE − ED = D + E, one can push all the A’s to the right and all
the B’s to the left. Therefore any polynomial can be written as a sum of terms of
the form [ρaE − (1 − ρa)D]n[D + E]n′ ). Similarly one can choose Y2 of the form
[D + E]n′′ [(1 − ρb)D − ρbE]n′′′ . Then proving (38) for such choices of Y1 and Y2
reduces to proving

〈ρa, a|(D + E)n
′+n′′ |ρb, b〉

〈ρa, a|ρb, b〉
=

∮

ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)
a+b

(ρa − ρ)a+b(ρ − ρb)

〈ρa, a|(D + E)n
′ |ρ, b〉

〈ρa, a|ρ, b〉

× 〈ρ, 1 − b|(D + E)n
′′ |ρb, b〉

〈ρ, 1 − b|ρb, b〉 . (39)
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From (34) one has

〈ρa, a|(D + E)L|ρ, b〉
〈ρa, a|ρ, b〉 = Γ (L+ a + b)

(ρa − ρb)LΓ (a + b)
. (40)

Then (38) and (39) follow as one can easily check that

Γ (n′ + n′′ + a + b)

(ρa − ρb)n
′+n′′

=
∮

ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)
a+b

(ρa − ρ)a+b+n′(ρ − ρb)n
′′+1

Γ (n′ + a + b)Γ (n′′ + 1)

Γ (a + b)
. (41)

If one normalizes (38) by (34) one gets

〈ρa, a|Y1Y2|ρb, b〉
〈ρa, a|(D + E)L+L′ |ρb, b〉
= Γ (L+ a + b)Γ (L′ + 1)

Γ (L+ L′ + a + b)

∮

ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)
a+b+L+L′

(ρa − ρ)a+b+L(ρ − ρb)1+L′

× 〈ρa, a|Y1|ρ, b〉
〈ρa, a|(D + E)L|ρ, b〉

〈ρ, 1 − b|Y2|ρb, b〉
〈ρ, 1 − b|(D + E)L

′ |ρb, b〉 . (42)

This gives an exact relation between the steady state properties of a system of
size L+ L′ and those of its subsystems.

8 Large Deviation Function of Density Profiles

We are now going to see how the expression (22), (23) of the large deviation func-
tional F (ρ(x)) can be obtained for the SSEP from the additivity relation (42).

One can divide a chain of L sites into n boxes of linear size l (there are of course
n = L/l such boxes) and try to determine the probability of finding a certain density
profile {ρ1, ρ2, . . . , ρn}, i.e. the probability of seeing lρ1 particles in the first box,
lρ2 particles in the second box, . . . lρn in the nth box. For large L one expects (see
(7)) the following L dependence of this probability

ProL(ρ1, . . . , ρn|ρa, ρb) ∼ exp[−LFn(ρ1, ρ2, . . . , ρn|ρa, ρb)]. (43)

If one defines a reduced coordinate x by

i = Lx (44)

and if one takes the limit l →∞ with l � L so that the number of boxes becomes
infinite, one gets as in (9) the large deviation functional F (ρ(x))
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ProL({ρ(x)}) ∼ exp[−LF ({ρ(x)}|ρa, ρb)]. (45)

To derive (22), (23) (for simplicity we do it here in the particular case where
a + b = 1, i.e. 1

α+γ
+ 1

β+δ
= 1, and ρb < ρa but the extension to other cases is

easy) one can use (42) when Y1 represents a sum over all configurations of the first
kl sites with a density ρ1 in the first l sites, . . .ρk in the k-th l sites, and Y2 a similar
sum for the (n− k)l remaining sites.

Pnl(ρ1, ρ2, . . . , ρn|ρa, ρb)
= (kl)!((n− k)l)!

(nl)!
∮

ρb<|ρ|<ρa

dρ

2iπ

× (ρa − ρb)
nl+1

(ρa − ρ)kl+1(ρ − ρb)(n−k)l+1
Pkl(ρ1 . . . ρk|ρa, ρ)

× P(n−k)l(ρk+1 . . . ρn|ρ, ρb). (46)

Note that in (46) the density ρ has become a complex variable. This is not a difficulty
as all the weights (and therefore the probabilities which appear in (46)) are rational
functions of ρa and ρb.

For large nl, if one writes k = nx, one gets by evaluating (46) at the saddle point

Fn(ρ1, ρ2, . . . , ρn|ρa, ρb)
= max

ρb<F<ρa
xFk(ρ1, . . . , ρk|ρa, F )+ (1 − x)Fn−k(ρk+1, . . . , ρn|F, ρb)

+ x log

(
ρa − F

x

)

+ (1 − x) log

(
F − ρb

1 − x

)

− log(ρa − ρb). (47)

(To estimate (46) by a saddle point method, one should find the value F of ρ which
maximizes the integrand over the contour. As the contour is perpendicular to the real
axis at their crossing point, this becomes a minimum when ρ varies along the real
axis.) If one repeats the same procedure n times, one gets

Fn(ρ1, ρ2, . . . , ρn|ρa, ρb)
= max

ρb=F0<F1<···<Fi<···<Fn=ρa

1

n

n∑

i=1

F1(ρi |Fi−1, Fi)

+ log

(
(Fi−1 − Fi)n

ρa − ρb

)

. (48)

For large n, as Fi is monotone, the difference Fi−1 − Fi is small for almost all
i and one can replace F1(ρi |Fi−1, Fi) by its equilibrium value F1(ρi |Fi, Fi) =
B(ρi, Fi). If one write Fi as a function of i/n

Fi = F

(
i

n

)

(49)
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(48) becomes

F ({ρ(x)}|ρa, ρb) = max
F(x)

∫ 1

0
dx

[

B(ρ(x), F (x))+ log
F ′(x)
ρb − ρa

]

(50)

where the maximum is over all the monotone functions F(x) which satisfy F(0) =
ρa and F(1) = ρb and one gets (22), (23).

Other derivations of (50) are given in [2, 13, 14, 36].

9 Non-locality of the Large Deviation Functional of the Density
and Long Range Correlations

A feature characteristic of non-equilibrium systems is the presence of weak long
range correlations [19, 34]. For example for the SSEP, we saw in (17) that for large
L the correlation function of the density is given for 0 < x < y < 1

〈ρ(x)ρ(y)〉c = − (ρa − ρb)
2

L
x(1 − y). (51)

We are now going to see that the presence of these long range correlations is directly
related to the non-locality of the large deviation functional F . Let us introduce the
generating function G ({α(x)}) of the density defined by

exp
[
LG ({α(x)})] =

〈

exp

[

L

∫ 1

0
α(x)ρ(x)dx

]〉

(52)

where α(x) is an arbitrary function and 〈.〉 denotes an average over the profile ρ(x)

in the steady state. As the probability of this profile has the form (45), the average
in (52) is dominated, for large L, by an optimal profile which depends on α(x) and
G is the Legendre transform of F

G ({α(x)}) = max
{ρ(x)}

[∫ 1

0
α(x)ρ(x)dx −F ({ρ(x)})

]

. (53)

It is clear from (53) that if the large deviation F is local (as in (12)), then the
generating function G is also local.

By taking derivatives of (52) with respect to α(x) one gets that the average profile
and the correlation functions are given by

ρ(x) ≡ 〈ρ(x)〉 = δG

δα(x)

∣
∣
∣
∣
α(x)=0

(54)

〈ρ(x)ρ(y)〉c ≡ 〈ρ(x)ρ(y)〉 − 〈ρ(x)〉〈ρ(y)〉 = 1

L

δ2G

δα(x)δα(y)

∣
∣
∣
∣
α(x)=0

. (55)
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This shows that the non-locality of G and therefore the non-locality of F is directly
related to the existence of long range correlations.

To understand the L dependence in (55) let us assume that the non-local func-
tional G can be expanded as

G (α(x)) =
∫ 1

0
dxA(x)α(x)+

∫ 1

0
dxB(x)α(x)2

+
∫ 1

0
dx

∫ 1

x

dyC(x, y)α(x)α(y)+ · · · . (56)

If one comes back to a lattice gas of L sites with a number ni of particles on site i

and one considers the generating function of these occupation numbers, one has for
large L

log

[〈

exp
∑

i

αini

〉]

5 LG (α(x)) (57)

when αi is a slowly varying function of i of the form αi = α(i/L). By expanding
the l.h.s. of (57) in powers of the αi one has

log

[〈

exp
∑

i

αini

〉]

=
L∑

i=1

Aiαi +
L∑

i=1

Biα
2
i +

∑

i<j

Ci,jαiαj + · · · (58)

and therefore

〈ni〉 = Ai; 〈n2
i 〉c = 2Bi; 〈ninj 〉c = Ci,j . (59)

Comparing (56) and (58) in (57) one can see that

Ci,j = 1

L
C

(
i

L
,
j

L

)

(60)

which leads to (55).
A similar reasoning would show that

〈ρ(x1)ρ(x2) . . . ρ(xk)〉c = 1

Lk−1

δkG

δα(x1) . . . δα(xk)

∣
∣
∣
∣
α(x)=0

. (61)

This 1/Lk−1 dependence of the k point function can indeed be proved in the SSEP
[19]. We see that all the correlation functions can in principle be obtained by ex-
panding, when this expansion is meaningful (see [15, 16] for counter-examples),
the large deviation function G in powers of α(x).
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10 The Macroscopic Fluctuation Theory

Fig. 6 System in contact with two reservoirs of particles at densities ρa and ρb

For a general diffusive one dimensional system (Fig. 6) of linear size L the aver-
age current and the fluctuations of this current near equilibrium can be characterized
by two quantities D(ρ) and σ(ρ) defined by

lim
t→∞

〈Qt 〉
t

= D(ρ)

L
(ρa − ρb) for (ρa − ρb) small (62)

lim
t→∞

〈Q2
t 〉
t

= σ(ρ)

L
for ρa = ρb (63)

where Qt is the total number of particles transferred from the left reservoir to the
system during time t .

Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim [1–3] have developed a
general approach, the macroscopic fluctuation theory, to calculate the large devia-
tion functional F of the density (9) in the non-equilibrium steady state of a system
in contact with two (or more) reservoirs as in Fig. 6. Their approach can be briefly
sketched as follows. For diffusive systems (such as the SSEP), the density ρi(t) near
position i at time t and the total flux Qi(t) flowing through position i between time
0 and time t are, for a large system of size L and for times of order L2, scaling
functions of the form

ρi(t) = ρ̂

(
i

L
,

t

L2

)

, and Qi(t) = LQ̂

(
i

L
,

t

L2

)

. (64)

(Note that due to the conservation of the number of particles, the scaling form
of ρi(t) implies the scaling form of Qi(t).) If one introduces the instantaneous
(rescaled) current defined by

ĵ (x, τ ) = ∂Q̂(x, τ )

∂τ
(65)

the conservation of the number of particles implies that

∂ρ̂(x, τ )

∂τ
= −∂2Q̂(x, τ )

∂τ∂x
= −∂ĵ (x, τ )

∂x
. (66)
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As the starting point [28] of the Bertini, De Sole, Gabrielli, Jona-Lasinio and
Landim [1–3] approach, one can write the probability of observing a density profile
ρ̂(x, s) and a current ĵ (x, s) (related by (66)) over a time interval (t1, t2) is given by

Pro(ρ̂(x, s), ĵ (x, s)) ∼ exp

{

−L

∫ t2/L
2

t1/L
2

ds

∫ 1

0
dx

[ĵ +D(ρ̂ )
dρ̂
dx
]2

2σ(ρ̂ )

}

. (67)

They showed that to observe a certain deviation ρ(x) of the density profile at time
t = L2τ , one has to find out how this fluctuation is produced. For large L, there is
an optimal path ρ̂(x, s) for −∞ < s < τ in the space of profiles which goes from
the most likely steady state profile ρ(x) to the desired profile ρ(x). In other words

Pro(ρ(x)) ∼ max
ρ̂(x,s)

exp

{

−L

∫ t

−∞
ds

∫ 1

0
dx

[ĵ +D(ρ̂ )
dρ̂
dx
]2

2σ(ρ̂ )

}

(68)

where the current ĵ (x, s) is related to the density profile ρ̂(x, s) by (66) and the
optimal path ρ̂(x, s) satisfies

ρ̂(x,−∞) = ρ(x) (69)

ρ(x, t) = ρ(x). (70)

Comparing (68) with (45) this gives

F (ρ(x)) = min
ρ̂(x,s)

∫ τ

−∞
ds

∫ 1

0
dx

[ĵ +D(ρ̂ )
dρ̂
dx
]2

2σ(ρ̂ )
(71)

Finding this optimal path ρ̂(x, s), ĵ (x, s) is usually a hard problem and so far one
does not know how to find an expression more explicit than (71) of the functional
F for general D(ρ) and σ(ρ). Bertini et al. [1] were however able to show that for
the SSEP this approach allows one to recover the expressions (22), (23).

Apart for the SSEP, the large deviation functional F of the density is so far
known only in very few cases: the Kipnis Marchioro Presutti model [5, 27] the
weakly asymmetric exclusion process [20] and the ABC model [10, 24] on a ring
for equal densities of the three species.

11 Large Deviation of the Current

As we did it in (3) for the density, one can define the large deviation function of the
current of particles for a system in contact with two reservoirs at densities ρa and ρb
as in Fig. 6 (or of the heat current for a system in contact with two heat baths as in
Fig. 1). The probability of observing during a long time t an average current j takes
the form
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Pro

(
Qt

t
= j

)

∼ e−tF (j) (72)

where F(j) is the large deviation function of the current j . This large deviation
function F(j) has a shape similar to a(ρ) in Fig. 2, with a minimum at some value
〈J 〉, the typical value of the current, where F(〈J 〉) = 0. The knowledge of F(j)

determines, by expanding around 〈J 〉, all the cumulants of Qt for large t .
In the non-equilibrium steady state of systems such as those of Figs. 1 and 6, the

large deviation function F(j) satisfies the fluctuation theorem [22, 23, 25, 30, 31].
For diffusive systems characterized by the two functions D(ρ) and σ(ρ) as in (62)
and (63), this tells us that F(j) satisfies

F(j)− F(−j) = j

∫ ρa

ρb

D(ρ)

σ (ρ)
dρ. (73)

Therefore even if F(j) is a complicated function, the difference F(j)−F(−j) is, as
predicted by the fluctuation theorem, linear in j , with a universal coefficient which
depends only on ρa and ρb.

12 Generalized Detailed Balance and the Fluctuation Theorem

For systems such as the SSEP (see Sect. 4) with stochastic dynamics given by a
Markov process the evolution is specified by a transition matrix W(C′, C) which
represents the rate at which the system jumps from a configuration C to a configura-
tion C′ (i.e. the probability that the system jumps from C to C′ during an infinites-
imal time interval dt is W(C′, C)dt). The probability Pt (C) of finding the system
in configuration C at time t evolves therefore according to the Master equation

dPt (C)

dt
=
∑

C′
W(C,C′)Pt (C

′)−W(C′, C)Pt (C). (74)

One can then wonder what should be assumed on the transition matrix W(C′, C) to
describe a system in contact with one or several heat baths (as in Fig. 1).

At equilibrium, (i.e. when the system is in contact with a single heat bath at tem-
perature T ) one usually requires that the transition matrix satisfies detailed balance

W(C′, C)e−
E(C)
kT = W(C,C′)e−

E(C′)
kT . (75)

This ensures the time reversal symmetry of the microscopic dynamics: at equilib-
rium (i.e. if the initial condition is chosen according to (1)), the probability of ob-
serving any given history of the system {Cs, 0 < s < t} is equal to the probability
of observing the reversed history

Pro({Cs, 0 < s < t}) = Pro({Ct−s , 0 < s < t}). (76)
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Therefore if ε is the energy transferred from the heat bath at temperature T to the
system, and Wε(C

′, C) is the rate at which the system jumps during dt from C to
C′ by receiving an energy ε from the heat bath, one can rewrite the detailed balance
condition (75) as

Wε(C
′, C) = e−

ε
kT W−ε(C,C′). (77)

If detailed balance gives a good description of the coupling with a single heat bath
at temperature T , the straightforward generalization of (77) for a system coupled to
two heat baths at unequal temperatures like in Fig. 1 is [8]

Wεa,εb (C
′, C) = e

− εa
kTa

− εb
kTb W−εa,−εb (C,C′) (78)

where εa, εb are the energies transferred from the heat baths at temperatures Ta, Tb
to the system when the system jumps from configuration C to configuration C′.
By comparing with (77), this simply means that the exchanges of energy with the
heat bath at temperature Ta tend to equilibrate the system at temperature Ta and
the exchanges with the heat bath at temperature Tb tend to equilibrate the system at
temperature Tb.

For a system in contact with two reservoirs of particles at fugacities z(ρa) and
z(ρb), as in Fig. 1, the generalized detailed balance (78) becomes

Wqa,qb (C
′, C) = z(ρa)

qa z(ρb)
qbW−qa,−qb (C,C′) (79)

where qa and qb are the numbers of particles transferred from the two reservoirs to
the system when the system jumps from configuration C to configuration C′. It is
easy [8] to show that the fluctuation theorem

F(j)− F(−j) = j (log z(ρa)− log z(ρb)) (80)

is, for Markov processes, a simple consequence of the generalized detailed balance
(79). For diffusive systems comparing (73) and (80) implies that

d log z(ρ)

dρ
= 2

D(ρ)

σ(ρ)

which shows [8] that the ratio D(ρ)/σ(ρ) is related (see [8, 35]) to the equilibrium
compressibility at density ρ.

From the definition of the dynamics of the SSEP, it is easy to check that it satisfies
(79) with

z(ρa) = α

γ
; z(ρb) = δ

β
(81)
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13 Current Fluctuations in the SSEP

In the long time limit the generating function of the total charge Qt transferred from
the left reservoir to the system during time t grows exponentially with time

〈
eλQt

〉 ∼ eμ(λ)t (82)

where μ(λ) is related to the large deviation function F(j) by a Legendre transfor-
mation

μ(λ) = max
j
[λj − F(j)]. (83)

Because the evolution is Markovian, μ(λ) can be determined as the largest eigen-
value of a certain matrix [17]: among the matrix elements W(C ,C ′) which appear
in (74), some correspond to exchanges of particles with the left reservoir and some
represent internal moves in the bulk or exchanges with the right reservoir. One can
decompose the matrix W(C ,C ′) into three matrices

W(C ,C ′) = W1(C ,C ′)+W0(C ,C ′)+W−1(C ,C ′) (84)

where the index is the number of particles transferred from the left reservoir to the
system during time dt , when the system jumps from the configuration C ′ to the
configuration C . One can then show [17] that μ(λ) is simply the largest eigenvalue
of the matrix

eλW1 +W0 + e−λW−1. (85)

The steady state weights P(C ) for the SSEP are known exactly [12–14]: they
determine the eigenvector of the matrix eλW1 + W0 + e−λW−1 associated to the
eigenvalue μ(λ) when λ = 0.

In [17] a perturbation theory was developed to calculate μ(λ) in powers of λ. The
main outcome of this perturbation theory is that μ(λ), which in principle depends
on L, λ and on the four parameters α, β, γ, δ, takes for large L a simple form

μ(λ) = 1

L
R(ω)+O

(
1

L2

)

(86)

where ω is defined by

ω = (eλ − 1)ρa + (e−λ − 1)ρb − (eλ − 1)(1 − e−λ)ρaρb. (87)

The perturbation theory gives up to fourth order in ω

R(ω) = ω − ω2

3
+ 8ω3

45
− 4ω4

35
+O(ω5). (88)

The fact that μ(λ) depends only on ρa , ρb and λ through the single parameter ω
is the outcome of the calculation, but so far there is no physical explanation why it
is so.
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From the knowledge of R(ω) up to fourth order in ω, one can determine the first
four cumulants of the integrated current Qt for arbitrary ρa and ρb:

For ρa = ρb = 1
2 which corresponds to an equilibrium case with the same

density 1/2 in the two reservoirs, all odd cumulants vanish as they should and one
finds from (86), (87), (88) that

〈Q2
t 〉c
t

= 1

2L
+O

(
1

L2

)

(89)

〈Q4
t 〉c
t

= O

(
1

L2

)

. (90)

Because μ(λ) depends on the parameters ρa, ρb and λ through the single parameter
ω, if one knows μ(λ) for one single choice of ρa and ρb, then (86)–(88) determine
μ(λ) for all other choices of ρa, ρb.

In [17], it was conjectured that for the particular case ρa = ρb = 1
2 , not only the

fourth cumulant vanishes as in (90), but also all the higher cumulants vanish, so that
the distribution of Qt is Gaussian (to leading order in 1/L). This conjecture fully
determines the function R(ω) to be

R(ω) =
[
log
(√

1 + ω +√
ω
)]2

. (91)

14 The Additivity Principle

One can formulate another conjecture, the additivity principle [6], based on a simple
physical picture, which leads to the same expression (86), (87), (91) as predicted by
the previous conjecture and can be generalized to other diffusive systems.

For a system of length L+ L′ in contact with two reservoirs of particles at den-
sities ρa and ρb, the probability of observing, during a long time t , an integrated
current Qt = j t has the following form (72)

ProL+L′ (j, ρa, ρb) ∼ e−tFL+L′ (j,ρa,ρb). (92)

The idea of the additivity principle [6] is to try to relate the large deviation function
FL+L′(j, ρa, ρb) of the current to the large deviation functions of subsystems by
writing that for large t

ProL+L′ (j, ρa, ρb) ∼ max
ρ

[
ProL (j, ρa, ρ)× ProL′ (j, ρ, ρb)

]
. (93)

This means that the probability of transporting a current j over a distance L + L′
between two reservoirs at densities ρa and ρb is the same (up to boundary effects
which give for large L subleading contributions) as the probability of transporting
the same current j over a distance L between two reservoirs at densities ρa and
ρ times the probability of transporting the current j over a distance L′ between
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two reservoirs at densities ρ and ρb. One can then argue that choosing the optimal
ρ makes this probability maximum. From (93) one gets the following additivity
property of the large deviation function

FL+L′ (j, ρa, ρb) = min
ρ

[
FL (j, ρa, ρ)+ FL′ (j, ρ, ρb)

]
. (94)

If one accepts this additivity property (94) of the large deviation function, one
can cut the system into more and more pieces so that [6] when these pieces have
length Ldx, one gets

FL (j, ρa, ρb) = 1

L
min
ρ(x)

[∫ 1

0
FLdx(j, ρ(x), ρ(x + dx))dx

]

(95)

where the optimal ρ(x) should satisfy ρ(0) = ρa and ρ(1) = ρb.
Now for a small current (in fact the currents j for which one can use the additivity

principle are of order 1/L), and ρ(x+ dx)−ρ(x) small, one expects (62), (63) that
for Ldx ' 1 that

FLdx(j, ρ(x), ρ(x + dx)) 5 [j −D(ρ(x))
ρ(x)−ρ(x+dx)

Ldx
]2

2σ(ρ(x))
Ldx

5 dx

L

(Lj +D(ρ(x))ρ′(x))2

2σ(ρ(x))

and therefore (95) becomes

FL (j, ρa, ρb) = 1

L
max
ρ(x)

[∫ 1

0

[Lj +D(ρ(x))ρ′(x)]2
2σ(ρ(x))

dx

]

. (96)

Using the fact that for the SSEP D(ρ) = 1 and σ(ρ) = 2ρ(1 − ρ), one can
recover [6] from (96) the above expression (86), (87), (91). For more general diffu-
sive systems, one can also determine all the cumulants of the integrated current for
arbitrary ρa and ρb. For example [6, 8]

〈Q4
t 〉c
t

= 1

L

3(5I4I
2
1 − 14I1I2I3 + 9I 3

2 )

I 5
1

(97)

where

In =
∫ ρa

ρb

D(ρ)σ (ρ)n−1dρ. (98)

There are restrictions [4] on σ(ρ) and D(ρ) for (96) to be valid: in particular
FL(j, ρa, ρb), defined in (92), is a convex function of j . For some σ(ρ) and D(ρ)

one has to replace the expression (96) of FL(j, ρa, ρb) by its convex envelope. It
has also been realized [4, 7, 8] that starting from the macroscopic fluctuation theory,
the large deviation function of the current should be given by
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FL(j, ρa, ρb) = 1

L
lim
τ→∞

[

min
ρ̂(x,s),ĵ (x,s)

∫ τ

−∞
ds

∫ 1

0
dx

[ĵ +D(ρ̂ )
dρ̂
dx
]2

2σ(ρ̂ )

]

(99)

where the minimum is over all the time dependent density and current profiles ρ̂, ĵ .
Therefore the expression (96) is valid only when the optimal profiles in (99) are time
independent. It does happen [7, 8] phase transitions beyond which these optimal
profiles become time dependent and (96) is no longer valid.
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Robust Heterodimensional Cycles and Tame
Dynamics

Lorenzo J. Díaz

Dedicated to Paul Schweitzer (now 70 years young)

Abstract A diffeomorphism f has a heterodimensional cycle if there are hyperbolic
sets Λ and Σ with different indices (dimension of the unstable bundle) such that the
unstable manifold of Λ meets the stable one of Σ and vice-versa. This cycle has
co-index one if index(Λ) = index(Σ) ± 1 and is robust if, for every g close to
f , the continuations of Λ and Σ for g have a cycle. In the C1-setting, we discuss
the generation of robust heterodimensional cycles by heterodimensional ones and
obtain some consequences of this phenomenon for tame dynamics.

1 Robust Heterodimensional Cycles

1.1 General Setting

In [37, 38], Smale conjectured that the structurally stable diffeomorphisms of a
closed manifold are dense. He later disproved his conjecture in [39] by exhibiting a
three-dimensional manifold and a C1-open set of non-structurally stable diffeomor-
phisms. Smale’s example was strengthened in [4], by constructing a C1-open set U
of diffeomorphisms defined on the product T

2 × S
2 of a two torus and a two sphere

having cycles. As a consequence, the diffeomorphisms in U do not verify Axiom A
and thus Axiom A is not generic (Axiom A diffeomorphisms does not contain a
residual subset Diff1(T2 × S

2)).
Recall that, for C1-generic diffeomorphisms, all periodic points are hyperbolic

and they form a dense subset of the limit set (see [21, 32]). Axiom A demands
that in addition the hyperbolic structures on the periodic points fit together nicely.
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The example in [4] shows that this last requirement is too restrictive to be generic.
For instance, this compatibility of hyperbolic structures implies that all saddles in
a transitive set (the set is the closure of the orbit of some point of it) of an Axiom
A diffeomorphism have the same index (dimension of the unstable bundle). In fact,
the spectral decomposition of the limit set of Axiom A diffeomorphisms (see the
precise result below) implies that any transitive set is contained in a hyperbolic
transitive set.

After Abraham-Smale’s construction new sort of examples of C1-robustly non-
Axiom A diffeomorphisms were obtained. First, [36] strengths the ideas in [4] to get
robustly non-Axiom A diffeomorphisms in the three dimensional torus T

3. Later,
for closed manifolds of dimension three or higher, [35, 22, 7] provided examples
of robustly non-hyperbolic transitive diffeomorphisms: the diffeomorphisms have
a dense orbit in the whole manifold (thus the limit set is the whole ambient) and
hyperbolic saddles of different indices. In the same spirit, [17, 18] showed that het-
erodimensional cycles (see the definition below) yield open sets of diffeomorphisms
with transitive sets containing saddles of different indices. Note that the existence
of saddles with different indices in the same transitive set Λ prevents the Axiom A
property: by the comment above, there is a transitive hyperbolic set Σ containing Λ,
hence all the saddles of Σ (thus of Λ) have the same index, a contradiction.

Note that, in dimension two, the C1-density of Axiom A diffeomorphisms is an
open problem. Newhouse’s construction (see Sect. 3) implies that Axiom A diffeo-
morphisms are not dense in Diffr (M), r ≥ 2 and dim(M) ≥ 2. Finally, Axiom A
diffeomorphisms (in fact, Morse-Smale) are open and dense in dimension one (any
Cr -topology), see [31].

The construction in [4] provides hyperbolic sets whose invariant manifolds have
robust non-transverse intersections. In this note, we give a framework for this con-
struction, the so-called co-index one heterodimensional cycles, and state some con-
sequences from the existence of robust cycles. Note first that non-transverse in-
tersections of invariant manifolds are associated to hyperbolic sets of saddle-type.
In the case of surface diffeomorphisms, the leaves of these invariant sets have di-
mension one and thus non-transverse intersections mean homoclinic and/or hetero-
clinic tangencies associated to hyperbolic sets. We illustrate the higher dimensional
case considering the three-dimensional one. In that case, the invariant manifolds
of hyperbolic sets of saddle-type may have either dimension one or two. Thus one
needs to consider the occurrence of intersections between one-dimensional leaves.
Such intersections are necessarily non-transverse (the sum of the dimensions of
these leaves is 2 < 3 = dim(M)). The construction in [4] shows that these non-
transverse intersections may be robust, leading to the notion of robust heterodimen-
sional cycle.

A crucial point in [4] is the construction of a hyperbolic set Γ whose unstable
manifold has dimension strictly greater than the dimension of its unstable bundle.
Clearly, transitive Anosov diffeomorphisms are hyperbolic examples of this config-
uration. So a natural question is how to obtain this sort of sets in the non-Axiom A
case. For example, the unfolding of very simple heterodimensional cycles yield the
phenomenon of jump of the topological dimension of invariant manifolds: Assume
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that the indices of the saddles P and Q in the cycle are u and u+1, then the closure
of the u-dimensional unstable manifold of P contains the (u + 1)-dimensional un-
stable manifold of Q. Thus, in some sense, the saddle P behaves simultaneously as
a saddle of index u and u + 1. This property is in the core of the notion of blender
introduced in [7].

Roughly, a blender is a hyperbolic set whose embedding in the ambient manifold
verifies some geometric properties, whose effect is that, as in the Abraham-Smale
example, its unstable manifold behaves as a manifold of higher dimension. In this
note blenders appear associated to heterodimensional cycles related to saddles. Note
that, by Kupka-Smale’s theorem, heterodimensional cycles associated to saddles
occur in the complement of a residual set of diffeomorphisms, thus they never are
robust. The key point here is that cycles associated to saddles generate non-trivial
hyperbolic sets (corresponding to blenders) having different indices and related by
C1-robust heterodimensional cycles.

1.2 Basic Definitions

Given a diffeomorphism defined on a closed manifold, f : M → M , a compact
f -invariant subset Λf of M is hyperbolic if there is a Df -invariant splitting
TΛf

M = Es ⊕Eu over Λf such that Es and Eu are uniformly contracting and ex-
panding. Every hyperbolic set Λf has a continuation: any diffeomorphism g close
to f has a hyperbolic set Λg close to Λf with the same dynamics (there is a home-
omorphism h : Λf → Λg with g ◦ h = h ◦ f ). If Λf is hyperbolic and transitive
then the dimensions of fibers Eu

x of the unstable bundle do not depend on x ∈ Λf .
Then the dimension of the unstable bundle of Λf is its index.

A diffeomorphism f is Axiom A if its limit set L(f ) is hyperbolic and equal to the
closure of its periodic points. In this case, the spectral decomposition theorem, [25],
claims that L(f ) is the disjoint union of finitely many transitive sets Λi , called basic
sets. Each basic set is a homoclinic class. Recall that the homoclinic class H(P, f )

of a hyperbolic periodic point P of f is the closure of the transverse intersections of
the invariant manifolds (stable and unstable) of the orbit of P . Homoclinic classes
are transitive sets and the saddles of the same index as P in H(P, f ) are dense in
the class. Homoclinic classes may fail of being hyperbolic (we will see examples of
that in this paper).

An Axiom A diffeomorphism f has a cycle if there are basic sets Λi1, . . . , Λin of
the spectral decomposition of the limit set of f such that Wu(Λik )∩Ws(Λik+1) $= ∅,
for all k = 1, . . . , n, where in+1 = i1. Here Wu(Λ) and Ws(Λ) stand for the
unstable and stable manifolds of the hyperbolic set Λ.

A diffeomorphism f has a heterodimensional cycle associated to the hyperbolic
sets Γf and Σf of f if the indices of Γf and Σf are different, the stable manifold of
Γf meets the unstable manifold of Σf and the same holds for the stable manifold of
Σf and the unstable manifold of Γf (in Fig. 1 there is depicted a heterodimensional
cycle associated to a pair of saddles). The heterodimensional cycle has co-index
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one if index(Σf ) = index(Γf ) ± 1. Heterodimensional cycles can only occur in
dimensions greater than or equal to three and heterodimensional cycles in dimension
three have co-index one.

Fig. 1 A heterodimensional cycle

Finally, a heterodimensional cycle of f associated to Γf and Σf is Cr -robust if
there is a Cr -neighborhood U of f such that every diffeomorphism g ∈ U has a
heterodimensional cycle associated to the continuations Γg and Σg of Γf and Σf .

Recall that generically the invariant manifolds of hyperbolic periodic points are
in general position (i.e., these invariant manifolds either are disjoint or have a non-
empty transverse intersection). Therefore robust cycles must be associated to some
non-trivial hyperbolic sets. Finally, diffeomorphisms f with robust heterodimen-
sional cycles cannot satisfy (stably) the Axiom A condition. This follows by con-
tradiction noting that (after an arbitrarily small perturbation) the robust cycle con-
figuration gives limit points z whose ω and α-limits are contained in Γf and Σf , or
vice-versa. By f -invariance and transitivity, both sets Γf and Σf are contained in
the same basic set of L(f ). In particular, the unstable bundles of Γf and Σf have
the same dimension, which is a contradiction.

1.3 Robust Cycles at Heterodimensional Cycles

Following the definition of robust heterodimensional cycle, a diffeomorphism f has
a Cr -robust homoclinic tangency if there is a Cr -neighbourhood U of f such that
any g ∈ U has a hyperbolic set Λg whose invariant manifolds have non-transverse
intersections. Newhouse proved in [27] that homoclinic tangencies of C2-diffeomor-
phisms of surfaces yield C2-robust tangencies: any C2-diffeomorphism f with a
homoclinic tangency associated to a saddle Pf is in the closure of diffeomorphisms
g with C2-robust homoclinic tangencies. The occurrence of C1-robust tangencies
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for surface diffeomorphisms is an open problem. We will discuss this phenomenon
in Sect. 3.

A first question is whether a situation similar to the one in [27] holds for het-
erodimensional cycles (i.e., heterodimensional cycles yield robust ones):

Question 1. Let f be a diffeomorphism with a heterodimensional cycle (associated
to a pair of saddles). Does every C1-neighborhood of f contain diffeomorphisms
with C1-robust heterodimensional cycles?

There is the following partial positive answer to this question:

Theorem 2 (Bonatti-D., [10]). Let f be a C1-diffeomorphism having a co-index
one cycle associated to a pair of hyperbolic saddles. Then there are diffeomorphisms
arbitrarily C1-close to f having robust (heterodimensional) co-index one cycles.

This theorem extends the results in [18] proving that co-index one cycles satisfy-
ing some natural geometrical conditions generates robustly non-hyperbolic transi-
tive sets. Suppose that the saddles in the cycle have indices u and (u+ 1). The main
step in [18] is to check that, after a perturbation, the closure of the unstable manifold
of the saddle of index u in the cycle contains the unstable manifold of the saddle of
index (u+ 1) and this property is robust. This feature corresponds to the hyperbolic
set whose unstable manifold has dimension strictly greater than its index in [4] and it
is a reformulation of the distinctive property of blenders in [14, Lemma 6.6]. As we
will see in Sect. 3, this dimension property plays a role analogous to the thick hyper-
bolic sets in Newhouse’s construction of C2-robust homoclinic tangencies. In fact,
we like to view Theorem 2 as a translation to the C1-context and for heterodimen-
sional cycles of Newhouse’s result (homoclinic tangencies of C2-diffeomorphisms
yield robust tangencies).

Related to Theorem 2, we note that the phenomenon of robust cycles holds open
and densely for the known examples of C1-robustly non-Axiom A diffeomorphisms.
First, the diffeomorphism in [4, 36] have robust cycles by construction. Second, the
diffeomorphisms in [35, 22, 7] are robustly non-hyperbolic and robustly transitive.
By [3] and [20, Connecting lemma], densely, there are saddles of consecutive in-
dices related by heterodimensional cycles. Hence co-index one cycles occur densely
and Theorem 2 implies the assertion.

As in dimension three heterodimensional cycles have co-index one, the following
holds:

Corollary 3. Every diffeomorphism f defined on a 3-manifold with a heterodimen-
sional cycle associated to a pair of hyperbolic saddles belongs to the C1-closure of
the set of diffeomorphisms having C1-robust heterodimensional cycles.

In Sect. 4, we will review some key ingredients of the proof of Theorem 2: quo-
tient dynamics and induced one-dimensional iterated function systems and model
blenders.
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1.4 Questions and Consequences

In view of the previous considerations, it is natural to ask how generally robust
cycles appear for diffeomorphisms far from hyperbolic ones:

Question 4. Let M be closed manifold with dim(M) ≥ 3. Does it exist a C1-open
and dense subset O ⊂ Diff1(M) such that every f ∈ O either verifies the Axiom A
and the no-cycles condition or has a C1-robust heterodimensional cycle?

Actually, this question is a stronger version of the following conjecture due to
Palis and proved for surface diffeomorphisms by Pujals and Sambarino in [33] (note
that surface diffeomorphisms do not display heterodimensional cycles).

Conjecture 5 (Palis, [28]). Every diffeomorphism in Diff1(M) can be C1-approx-
imated either by an Axiom A diffeomorphism or by a diffeomorphism with a homo-
clinic tangency or a heterodimensional cycle.

We will give positive answer to Question 4 in the special case of tame diffeomor-
phisms, (roughly, those having finitely many homoclinic classes), see Theorem 7 in
Sect. 2.

Concerning Question 1, a natural strategy for solving it is to see that heterodi-
mensional cycles yield secondary bifurcations corresponding to co-index one cy-
cles. However, while the arguments in the proof of Theorem 2 are semi-local (the
dynamics in a neighborhood of the saddles and of some heteroclinic orbits in the cy-
cle), the higher co-index case seems to involve global dynamical ingredients. On the
other hand, the approximation of heterodimensional cycles by co-index one cycles
is true for robust cycles:

Corollary 6. Every diffeomorphism with a C1-robust heterodimensional cycle is
C1-approximated by diffeomorphisms with C1-robust co-index one cycles.

This corollary follows from Theorem 2, the properties of homoclinic classes of
C1-generic diffeomorphisms1, and [20, Connecting Lemma]. First, by [15, 6, 3],
there is a residual subset of Diff1(M) such that, for diffeomorphisms in that residual
subset, every non-disjoint homoclinic classes coincide and the indices of the saddles
in any homoclinic class form an interval in N. [20, Connecting Lemma] now implies
that any generic f with a homoclinic class with saddles Pf and Qf of different
indices is approximated by diffeomorphisms g with a cycle associated to Pg and Qg .

To prove now Corollary 6, consider a C1-open set U of diffeomorphisms f

with robust cycles associated to hyperbolic sets Γf and Σf of indices p and q,
p < q. After a C1-perturbation, one can assume that Γf and Σf are contained in
the homoclinic classes of saddles Pf and Qf of indices p and q. Using the robust
cycle one can assume that these homoclinic classes are non-disjoint. Thus these
classes coincide and contain saddles of indices p, p + 1, . . . , q. The Connecting
Lemma now allows us to create a cycle associated to saddles of consecutive indices,
obtaining a co-index one cycle. Corollary 6 now follows from Theorem 2.

1 By C1-generic diffeomorphisms we mean diffeomorphisms forming a residual subset of
Diff1(M).
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2 Cycles and Non-hyperbolic Tame Dynamics

We now obtain some consequences of Theorem 2 and give a partial positive answer
to Question 4 in the tame setting. We begin with some definitions.

2.1 Setting

The chain recurrent set of a diffeomorphism f , denoted by R(f ), is the set of points
x such that, for every ε > 0, there is a closed ε-pseudo orbit x = x0, x1, . . . , xn = x,
d(f (xi), xi+1) < ε, joining x to itself. The chain recurrent set is closed and contains
the limit set. Two points x and y are in the same chain recurrence class if, for every
ε > 0, there are ε-pseudo orbits going from x to y and vice-versa.

The fundamental theorem of dynamics, [16], says that the dynamics of the chain
recurrent set is stratified: there is a continuous Liapunov function L : M → R such
that: (1) L(f (x)) ≤ L(x) and L(f (x)) = L(x) if, and only if, x ∈ R(f ); (2) L is
constant in the chain recurrence classes, and (3) L(R(f )) is a totally disconnected
compact subset of R. Using this Liapunov function one gets that each chain recur-
rence class has a basis of filtrating neighbourhoods, for details see, for instance, [2,
Proposition 2.4]. Recall that U is a filtrating set if there are a pair of compact sets
A and B such that U = A ∩ B, f (A) ⊂ int(A) (A is a trapping region for f ), and
f−1(B) ⊂ int(B) (that is, B is a trapping region for f−1). A filtrating neighbor-
hood of a chain recurrence class C (f ) of f is a neighborhood of C (f ) which is a
filtrating set.

A diffeomorphism f is called tame if every chain recurrence class of it is ro-
bustly isolated. Denote by T = T (M) the set of tame diffeomorphisms of the
manifold M . For instance, Axiom A diffeomorphisms are tame ones, but there are
tame diffeomorphisms which are not hyperbolic (for instance, the robustly transitive
and non-hyperbolic diffeomorphisms in the examples above).

By [6], there is a residual set G of Diff1(M) of diffeomorphisms whose chain
recurrence sets coincide with the closure of their hyperbolic periodic points and such
that any chain recurrence class with a periodic point P is the homoclinic class of P .
Moreover, isolated chain recurrence classes C (f ) of f ∈ G are robustly isolated:
there are neighborhoods U of f in Diff1(M) and O of the class C (f ) in M such
that, for every g ∈ U , the intersection R(g) ∩O is a unique chain recurrence class
of g.

Let TG = T ∩G . Then for every f ∈ TG the limit set of f is the disjoint union
of finitely many homoclinic classes.

Using the Liapunov function L one gets a spectral decomposition for tame diffeo-
morphisms, replacing basic sets by chain recurrence classes. Moreover, for f ∈ TG ,
the chain recurrence classes are homoclinic classes and the uniform hyperbolicity
is replaced by weak hyperbolicity (uniform in dimension two, partial in dimension
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three, and existence of a dominated splitting in higher dimensions)2, see [1, 13].
Finally, the number of homoclinic classes of tame diffeomorphisms in TG is locally
constant, see [1]3.

2.2 Tangencies, Heterodimensional Cycles, and Examples

For surface diffeomorphisms, homoclinic tangencies associated to saddles generate
either sinks or sources (see, for example, [26]). For instance, a dissipative fixed
saddle P of a diffeomorphism f (i.e., f (P ) = P and the Jacobian of Df (P ) is less
than one) yields sinks. This generation of sinks/sources does not occur (necessarily)
in higher dimensions. For example, consider a three dimensional diffeomorphism
f with a normally hyperbolic surface N which is transversally expanding. Assume
that the restriction f|N of f to N has a dissipative saddle Q = f (Q) with a tangency.
Note that the index of Q is two. See Fig. 2. The tangency of f|N generates sinks in
N , but these sinks of the restriction to N correspond to saddles of index one of the
global dynamics. Thus, in higher dimensions, homoclinic tangencies may generate
saddles of different indices: in our example, a tangency associated to a saddle of
index two generates saddles of index one.

Fig. 2 Normally expanding manifold with a tangency

The comments above are the main reason because, in dimension three or higher,
tame diffeomorphisms may exhibit homoclinic tangencies. However, these tangen-

2 An f -invariant set Λ has a dominated splitting if the tangent bundle TΛM over Λ splits into
two Df -invariant bundles E and F , TΛM = E ⊕ F , whose fibers Ex and Fx have constant
dimensions, and there exists an integer  ≥ 1 such that, for every point x ∈ Λ and every pair of
unit vectors u ∈ Ex and v ∈ Fx it holds that ‖Df  (x)u‖ ≤ 1

2‖Df  (x)v‖. The splitting E ⊕ F is
partially hyperbolic if some of the bundles of the splitting is uniformly hyperbolic. For properties
of dominated splittings we use in this note see, for example, [14, Appendix B].
3 In fact, using the Liapunov function L, one gets a filtration {Mi}mi=0 (i.e., Mi ⊂ Mi+1, M0 = ∅

and Mm = M , and f (Mi) is contained in the interior of Mi ) such that for each i the maximal
invariant set of f in (Mi+1 \Mi), Λi+1 = ∩i∈Zf

i(Mi+1 \Mi) is a homoclinic class of f .
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cies are not sectionally dissipative/expansive. For simplicity, we explain this point
in dimension three.

Consider a saddle P of a diffeomorphism f (assume that f (P ) = P ). This
saddle P is sectionally dissipative (resp. expansive) if the modulus of the product
of any pair of eigenvalues of Df (P ) is less (resp. greater) than one. For example,
the saddle Q of index two in the example above is not sectionally expansive (the
absolute value of the product of the two eigenvalues corresponding to the surface N

is less than one). Note that, in dimension three, sectionally dissipative saddles have
index one and sectionally expansive saddles have index two. Observe that there are
saddles which are neither sectionally dissipative nor sectionally expansive.

A generalization of [26] is that homoclinic tangencies associated to sectionally
dissipative (resp. expansive) saddles generate sinks (resp. sources), see [30, 34].
Since the number of homoclinic classes of a tame diffeomorphism is locally constant
and sinks and sources are robust, tame diffeomorphisms cannot exhibit this sort of
tangencies. However, there are tame diffeomorphism with homoclinic tangencies.

Reference [11] exhibits an open set B of non-hyperbolic transitive diffeomor-
phisms of Diff1(T3) such that, for every f ∈ B, T (T3) = Ec ⊕ Eu is a partially
hyperbolic splitting of f such that Ec has dimension two and is undecomposable4,
non-hyperbolic, and volume contracting (roughly, the Jacobian of f in the central
bundle is less than one), and Eu is uniformly expanding. Note that, by transitivity,
the diffeomorphisms in B have a unique chain recurrence class (the whole manifold
T

3). Thus the set B consists of non-hyperbolic tame diffeomorphisms.
On the one hand, every diffeomorphism f ∈ B has saddles of indices one and

two. Then there is a dense subset D of B such that every f in D has a homoclinic
tangency associated to a saddle of index two. This follows from the robust transitiv-
ity, the Connecting Lemma, and the existence of saddles of index one with non-real
eigenvalues (this is a consequence of the undecomposability of Ec). Since the cen-
tral bundle Ec is volume contracting, the saddles of index one are not sectionally
expansive. On the other hand, the robust transitivity, the Connecting Lemma, and
the existence of saddles of indices one and two imply the existence of another dense
subset H of B of diffeomorphisms having heterodimensional cycles.

Let us observe that there are non-hyperbolic tame diffeomorphisms which do not
exhibit homoclinic tangencies. For instance, [22] exhibits an open set M of non-
hyperbolic transitive diffeomorphisms of Diff1(T3) having a partially hyperbolic
splitting T (T3) = Ess⊕Ec⊕Euu with three one dimensional bundles such that Ess

is uniformly contracting, Euu is uniformly expanding, and Ec is non-hyperbolic.
As above, by transitivity, the diffeomorphisms in M are tame (the whole T

3 is the
only chain recurrence class). Also as above, the diffeomorphisms contain saddles
of indices one and two and, by the Connecting Lemma, there is a dense subset
of M of diffeomorphisms with heterodimensional cycles. However, the splitting
Ess ⊕ Ec ⊕ Euu prevents the existence of homoclinic tangencies. This can be seen
as follows. On the one hand, the angles between the bundles of a dominated splitting
are uniformly bounded from below. On the other hand, a homoclinic tangency yields

4 Undecomposable means that Ec does not admit any (non-trivial) dominated splitting.
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saddles such that the angles between their stable and unstable bundles Es and Eu

are close to zero. Since either Es = Ess ⊕ Ec (if the saddle has index one) or
Eu = Ec ⊕ Euu (if the saddle has index two) this gives a contradiction.

After these motivations, we are ready to state our next result, claiming the oc-
currence of robust heterodimensional cycles in the setting of non-hyperbolic tame
diffeomorphisms:

Theorem 7 (Bonatti-D, [10]). There is an open and dense subset O of the set T of
tame diffeomorphisms such that every f ∈ O is either hyperbolic (Axiom A plus the
no-cycles condition) or has a C1-robust heterodimensional cycle.

We summarize Theorem 7 and the discussion above as follows: non-hyperbolic
tame diffeomorphisms always yield robust cycles and tame diffeomorphisms with
homoclinic tangencies always yield heterodimensional cycles, while the converse is
not true in general.

3 Robust Homoclinic Tangencies, Non-dominated Dynamics, and
Heterodimensional Cycles

The main difference between Question 4 and Conjecture 5 is that the conjecture
involves, besides heterodimensional cycles, homoclinic tangencies. We now com-
ment the role of homoclinic tangencies for C1-diffeomorphisms. First, there are not
known examples of surface diffeomorphisms with C1-robust homoclinic tangencies
(recall the definition in Sect. 1.3). Moreover, robust homoclinic tangencies in sur-
faces yield robustly non-dominated dynamics: the homoclinic class of the saddle in-
volved in the tangency does not admit any dominated splitting. Finally, robustly non-
dominated dynamics is the main source of robust instability of diffeomorphisms.

We also observe that the main known constructions of C1-robustly non-dominat-
ed dynamics (in dimension three or higher) yield heterodimensional cycles and in-
volve the notion of blender, [8, 9, 19]. These systems also yield C1-Newhouse’s
coexistence phenomenon (existence of a C1-open set N and a residual subset N
of it formed by diffeomorphisms having infinitely many sinks or sources). There is
also the construction in [5] of three dimensional diffeomorphisms with C1-robust
tangencies using derived from Plykin diffeomorphisms. Thus a key question is to
decide whether there are diffeomorphisms with C1-robust homoclinic tangencies
(or with robustly non-dominated dynamics) far from the ones having heterodimen-
sional cycles (of course, this is related to the discussion in Sect. 2). As surface
diffeomorphisms do not display heterodimensional cycles, the simplest version of
this question concerns C1-robust tangencies of surface diffeomorphisms.

This last problem is closely related to Smale’s conjecture of C1-density of hy-
perbolic dynamics for surface diffeomorphisms (this conjecture remains open), see
[40]. For a discussion on the current state of this conjecture we refer to [2], where
it is proved that there are two sort of obstructions for the C1-density of hyperbolic-
ity: persistence of infinitely many hyperbolic homoclinic classes and existence of a
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single homoclinic class with robust tangencies. The discussion here is related to the
second obstruction.

In the setting of C2-surface diffeomorphisms, Newhouse constructed diffeomor-
phisms with robust homoclinic tangencies and stated that homoclinic tangencies
yield C2-robust tangencies, see [24, 27] and [34, 30] for generalizations to higher
dimensions. These results rely on the construction of thick hyperbolic sets.

A key ingredient in [24] is the notion of thickness τ(K) of a Cantor set K of
the real line R (a kind of fractal dimension, see [29, Chap. 4] for details). The
Gap Lemma ([29, Page 63]) claims that if two Cantor sets K1 and K2 of R sat-
isfy τ(K1)τ (K2) > 1 then either K1 ∩ K2 $= ∅ or a Cantor set is contained in a
gap of the other one (a gap of a Cantor set is a connected component of its comple-
ment). A crucial step in [27] is that every C2-diffeomorphism f with a homoclinic
tangency (say associated to a saddle Pf ) generates diffeomorphisms g (close to f )
with thick hyperbolic sets Λg contained in the homoclinic class of the continuation
Pg of Pf for g: the Cantor sets Λs

g = Λg ∩ Ws
loc(Pg) and Λu

g = Λg ∩ Wu
loc(Pg)

verify τ(Λs
g)τ (Λ

u
g) > 1.

Fig. 3 C2-Robust homoclinic tangencies

To obtain homoclinic tangencies associated to Λg one considers a curve γ (called
curve of tangencies) containing the initial homoclinic tangency and projects the
Cantor set Λs

g (resp. Λu
g) to γ along the stable (resp. unstable) leaves. This gives

a pair of Cantor sets in the curve γ with the same thickness as Λs
g and Λu

g . Thus
these Cantor sets verify the Gap Lemma. The geometric configuration implies that
each Cantor set cannot be contained in a gap of the other one. The Gap Lemma now
guarantees that these sets have non-empty intersection. Finally, each intersection
corresponds to a homoclinic tangency of Λg . Figure 3 illustrates this construction.

The final (and essential) ingredient of Newhouse’s construction is that, in the
C2-case, the property of having a thick hyperbolic set is open: for every h which
is C2-close to g, the continuation Λh of Λg is a thick hyperbolic set. This allows
to repeat the previous construction for h close to g, getting C2-robust homoclinic
tangencies.

We point out that the thickness estimates involve distortion properties which only
hold in the C2-topology. [41] showed that the arguments in the previous construction
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cannot be carried out to the C1-topology: hyperbolic sets Λf of C1-generic diffeo-
morphisms f have zero thickness (with the notation above, τ(Λs

f )τ (Λ
u
f ) = 0).

Moreover, Moreira recently presented evidences showing that hyperbolic sets of
C1-diffeomorphisms cannot exhibit robust tangencies, [23]. These results suggest
that C1-surface diffeomorphisms do not display robust tangencies. Therefore the
occurrence of robust heterodimensional cycles is the only known source for C1-
robust non-hyperbolic dynamics. This suggests that the answers to Question 4 and
Conjecture 5 should be both positive.

We close this discussion noting that the topological dimension property of blend-
ers (the dimension of the unstable manifold of the blender is greater than its index)
is a C1-robust property. One can think of this property as a C1-version of the thick
hyperbolic sets in the heterodimensional setting. As in Newhouse’s construction,
this property is used for obtaining robust heterodimensional cycles (see Sect. 4.2).

4 Ingredients of the Proof of Theorem 2

To simplify the discussion of the proof of Theorem 2, we will assume that the dimen-
sion of the manifold is three and that the diffeomorphism f has a cycle associated to
saddles P = f (P ) and Q = f (Q) of indices one and two, respectively. The details
of the proof can be found in [10].

We first consider a simple class of cycles, called cycles with real multipliers, such
that the eigenvalues of the derivatives of Df (P ) and Df (Q) are all real and positive
and different in modulus. The first step (involving properties of homoclinic classes
of C1-generic diffeomorphisms) is to see that diffeomorphisms with heterodimen-
sional cycles are approximated by diffeomorphisms with heterodimensional cycles
with real multipliers. Therefore it is enough to prove the theorem for such sort of
cycles.

There are two main advantages of considering cycles with real multipliers: there
is some partial hyperbolicity inherited from the saddles in the cycle and a relevant
part of the dynamics can be reduced to the study of an iterated function system of
the interval. We proceed to explain these ideas briefly.

Consider a periodic point (from now on, we assume fixed) of a diffeomorphism f

such that the derivative Df (S) has real eigenvalues λ, 1, and β, with λ < 1 < β. In
this case, we say that S is a saddle-node of f and the tangent space TSM splits into
three Df -invariant directions TSM = Ess(S)⊕Ec(S)⊕Euu(S), where Ess(S) and
Euu(S) are the strong stable and strong unstable bundles and Ec(S) is the center
one. The strong stable manifold Wss(S) of S is the unique one-dimensional f -
invariant manifold tangent to Ess(S). The strong unstable manifold of S, Wuu(S),
is defined similarly. The saddle-node S has a strong homoclinic intersection if there
is some point X ∈ Wss(S) ∩ Wuu(S) such that Wss(S) and Wuu(S) meet quasi-
transversely at X (i.e., TXWss(S)⊕ TXW

uu(S)).
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The proof of Theorem 2 for cycles with real multipliers has two steps: (i) these
cycles yield saddle-nodes with strong homoclinic intersections, and (ii) these strong
homoclinic intersections generate C1-robust cycles. We shortly explain these steps.

4.1 Strong Homoclinic Intersections of Saddle-Nodes

Since the saddles P and Q in the cycle have real multipliers, there is a Df -invariant
partially hyperbolic splitting with one-dimensional directions

TXM = Ess
X ⊕ Ec

X ⊕ Euu
X , X = P,Q.

We can assume (after a perturbation) that there are small neighborhoods UP and UQ

of P and Q and local coordinates in these neighborhoods where f is linear and

Ess = R× {(0, 0)}, Ec = {0} × R× {0}, Euu = {(0, 0)} × R.

The stable bundle of P is Es(P ) = Ess(P ) ⊕ Ec(P ) and the unstable bundle of
Q is Eu(Q) = Ec(Q) ⊕ Euu(Q). We also have Euu(P ) = Eu(P ) and Ess(Q) =
Es(Q).

We select heteroclinic points X ∈ Ws(P ) ∩Wu(Q) and Y ∈ Wu(P ) ∩Ws(Q),
and assume that the intersection at X ∈ Ws(P ) ∩ Wu(Q) is transverse and the
intersection at Y ∈ Wu(P ) ∩Ws(Q) is quasi-transverse.

We take small neighborhoods UX and UY of X and Y , and numbers n and m with

f n(UX) ⊂ UP , f−n(UX) ⊂ UQ,

f−m(UY ) ⊂ UP , and f m(UY ) ⊂ UQ.

Consider transition times t(q,p) = 2n and t(p,q) = 2m and transition maps T(p,q) =
f t(p,q) from UP to UQ and T(q,p) = f t(q,p) from UQ to UP defined on small neigh-
borhoods U−

Y of f−m(Y ) and U−
X of f−n(X). Using the local coordinates, we write

T(q,p) = (T s
(q,p), T

c
(q,p), T

u
(q,p)) : U−

X → UP ,

T(p,q) = (T s
(p,q), T

c
(p,q), T

u
(p,q)) : U−

Y → UQ,

where
T s
(i,j), T

c
(i,j), T

u
(i,j) : R → R, (i, j) = (p, q) or (q, p).

After a new C1-perturbation of f , we can assume that the cycle associated to
P and Q is affine: the transition maps are affine, T s

(i,j) and (T u
(i,j))

−1 are contrac-
tions, and T c

(a,b) and T c
(b,a) are isometries. In fact, as the central coordinate of the

heteroclinic points f−m(Y ) and fm(Y ) are both zero, the map T c
a,b is linear. These

properties follows using the partial hyperbolicity of Ess ⊕Ec⊕Euu, increasing the
transition times n and m, and considering perturbations throughout the segments of
orbits {f−n(X), . . . , f n(X)} and {f−m(Y ), . . . , f m(Y )}.
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Fig. 4 Transitions

We take now a small neighborhood V of the saddles P and Q and of the orbits
of the heteroclinic points X and Y . We say that V is a neighborhood of the cycle.
The previous construction gives the affine dynamics of f in V . We next consider the
unfolding of the cycle of f via a family of diffeomorphisms ft preserving the affine
structure of the cycle. Consider the one-parameter family of transitions (T(p,q),ν)ν
from P to Q which in the local coordinates are of the form

T(p,q),ν = T(p,q) + (0, ν, 0).

To each small ν corresponds a local perturbation fν of f at the heteroclinic point Y .
By construction, for every large  and m, there is a small subset U ,m of U−

X with

(
f
π ,m
ν

)
|U ,m

= f m ◦ T(p,q),ν ◦ f  ◦ T(q,p) : U ,m → UQ,

π ,m =  + t(q,p) +m+ t(p,q).

Next, for each pair of large  and m, we find a parameter ν = ν ,m, ν ,m →∞ as
 ,m →∞, such that fν has a periodic point R ,m of period π ,m. By construction,
in the set V , the diffeomorphisms fν keep invariant the planes parallel to R×{0}×R

and act hyperbolically on these planes. We consider the quotient dynamics of fν
by this family of planes, obtaining a one-dimensional map. Periodic points of this
quotient dynamics correspond to periodic points of fν and the derivative of the
quotient map is the derivative in the central direction. We next detail this point.

Assume that X− = f−n(X) = (0, 1, 0) and X+ = f n(x) = (0,−1, 0). So
T c
(q,p)(1) = −1. Assume that T c

(p,q)(y) = y (the case T c
(p,q)(y) = −y is similar).

Suppose that the eigenvalues of P and Q corresponding to the central direction
are λ and β, 0 < λ < 1 < β. Fix large  and m and let

ν ,m = β−m + λ , ν ,m → 0 as  ,m →∞.

Therefore, by definition of ν ,m and by construction,

βm(−λ + ν ,m) = 1, T c
(q,p)(1) = −1, T c

(p,q),ν ,m
(y) = y + ν ,m.
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These choices imply that 1 is a fixed point of the quotient dynamics:

βm ◦ T c
(p,q),ν ,m

◦ λ ◦ T c
(q,p)(1) = βm ◦ T c

(p,q),ν ,m
◦ λ (−1)

= λm ◦ T c
(p,q),ν ,m

(−λ ) = βm(−λ + ν ,m) = 1.

As f ,m = fν ,m preserves the Ess , Euu, and Ec, the hyperbolicity of Ess and
Euu implies that the map fm ◦ T(p,q),ν ,m ◦ f  ◦ T(q,p) has a fixed point R ,m =
(rs ,m, 1, ru ,m) in U ,m with |ru,s ,m| → 0 as  ,m → ∞ (i.e., as ν ,m → 0). There-
fore R ,m is a periodic point of f ,m with period π ,m, Ess and Euu are hyperbolic
directions of R ,m, and the derivative of Df

π ,m

 ,m (R ,m) in the central direction is

κ ,m = βmλ . Considering now the multiplication by factor κ
−1/π ,m

 ,m along the orbit
of R ,m one has that R ,m is a saddle-node.

It remains to see that the saddle-node R ,m can be chosen with a strong homo-
clinic intersection. For that it suffices to see that we can choose λ and β such that
there are natural numbers i and j , i $=  and j $= m, such that

βj ◦ T c
(p,q),ν ,m

◦ λi ◦ T c
(q,p)(1) = 1.

In other words, the point 1 is a fixed point of the quotient iterated function system
with two different periodic itineraries. Observe that the (strong) unstable and stable
manifolds of R ,m contain the disks Δu = {(rs ,m, 1)}×[−1, 1] and Δs = [−1, 1]×
{(1, ru ,m)}, respectively. By construction and the choice of i and j , we have that

{(a, 1)} × [−1, 1] ⊂ f i ◦ T(p,q),ν ,m ◦ f j ◦ T(q,p)(Δ
u)

= f
i+t(p,q)+j+t(q,p)
 ,m (Δu) ⊂ Wuu(R ,m, f ,m),

for some a. Thus Wuu(R ,m, f ,m) meets the disk Δs , thus it intersects Wss(R ,m,

f ,m). As (i, j) $= ( ,m) this intersection point is not R ,m, proving our assertion.

4.2 Model Blenders

We begin this section by introducing a simple model of blender in dimension three.
Consider a map φ defined in the XZ plane having an affine horseshoe in the square
[0, 1]2,

φ(x, z) =
{
( 1

3x, 3z), (x, z) ∈ [0, 1] × [0, 1/3],
(1 − 1

3x, 3 − 3z), (x, z) ∈ [0, 1], z ∈ [2/3, 1].

We fix σ ∈ (1, 2) and define the one-parameter family of maps Φt in [0, 1]2 ×R as
follows:
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Φt(x, z, y) =
{
(φ(x, z), σy), (x, z) ∈ [0, 1] × [0, 1/3],
(φ(x, z), σy)+ (0, 0, t), (x, z) ∈ [0, 1] × [2/3, 1].

The maps Φt are depicted in Fig. 5.

Fig. 5 The maps Φt and non-normally hyperbolic horseshoes

Note that Φ0 has an affine horseshoe Λ0 of index two in the square [0, 1]2 × {0}
and that the plane Π = XZ × {0} is not normally hyperbolic. For each small t , we
denote by Λt the continuation of Λ0 for Φt . Since Π is not normally hyperbolic, Λt

is not (necessarily) contained in Π for t $= 0. Note that Λt is the homoclinic class
of the saddle P = (0, 0, 0).

The diffeomorphisms Φt verify the following property meaning that the one-di-
mensional stable manifold of P behaves (in some sense) as a two-dimensional one.

Proposition 8 ([12]). Consider t < 0 and let s(t) = |t |
σ−1 . Then the stable manifold

of P for Φt meets transversely any two disk of the form {a} × [0, 1] × [c, d], where
0 ≤ a ≤ 1 and 0 ≤ c < d ≤ s(t), where a ∈ X, [0, 1] ⊂ Z, and [c, d] ⊂ Y.

In fact, this proposition shows that the stable manifold of Λt meets every vertical
disk crossing from the bottom to the top the cube [0, 1]2 × [0, s(t)].
Proof. Note that since σ ∈ (1, 2), s(t) = |t |

σ−1 > |t | (this is the only place where
this hypothesis is used). Consider the (partially bi-valuated) interval map g,

g : [0, s(t)] → [0, s(t)],
{
g(x) = g0(x) = σx, x ∈ [0, s(t)

σ
] = I0,

g(x) = g1(x) = σx + t, x ∈ [ t
σ
, s(t)] = I1.

We claim that the orbit of any interval J ⊂ [0, s(t)] meets the point t/σ . We
consider g0(J ) if J ⊂ I0 and g1(J ) if J ⊂ I ′1 = [s(t)/σ, s(t)]. Note that if J is
contained neither in I0 nor in I ′1 then it contains t/σ and there is nothing to prove.
In this way, we get a family of intervals Ji = gi(J0), J0 = J , such that either
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Fig. 6 The map g

|Ji | = σ i |J0| or Ji contains t/σ . Since the lengths of I0 and I ′1 are finite and σ > 1,
there is a first Ji containing t/σ .

To prove the proposition consider any disk Δ0 = {a0}×[0, 1]×J0, J0 ⊂ [0, s(t)].
By definition of Φt , Φt(Δ0) contains a disk Δ1 of the form = {a1}× [0, 1]× g(J0).
By the claim and arguing inductively, there is a first k ≥ 0 such that Φk

t (Δ) contains
a vertical segment V = {ak} × [0, 1] × {t/σ } for some ak . By definition of Φt ,
the set Φt(V ) meets [0, 1] × {(0, 0)} ⊂ Ws(P,Φt ). This ends the proof of the
proposition.  !

We now explain how the construction above is used to get robust cycles in our
setting. First, note that a diffeomorphism having a strong homoclinic intersection
associated to a saddle-node in Sect. 4.1 can be perturbed to get a horseshoe as in
the example above. Thus we can consider perturbations of this horseshoe verifying
Proposition 8. Moreover, the property in Proposition 8 is robust (one needs to con-
sider a reformulation considering cone-fields in the spirit of [7, Lemma 1.11]). The
key point is that considering the saddle-node and its strong homoclinic intersection
one can also obtain a saddle Q of index one whose one dimensional unstable mani-
fold crosses the cube [0, 1]2 × [0, s(t)]. This implies that the stable manifold of Λt

intersects the unstable manifold of Q. Using this fact, one gets the robust cycles.
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Hamiltonian Perturbations of Hyperbolic PDEs:
from Classification Results to the Properties
of Solutions

Boris Dubrovin

Abstract We begin with presentation of classification results in the theory of Hamil-
tonian PDEs with one spatial dimension depending on a small parameter. Special
attention is paid to the deformation theory of integrable hierarchies, including an
important subclass of the so-called integrable hierarchies of the topological type
associated with semisimple Frobenius manifolds. Many well known equations of
mathematical physics, such as KdV, NLS, Toda, Boussinesq etc., belong to this sub-
class, but there are many new integrable PDEs, some of them being of interest for
applications. Connections with the theory of Gromov–Witten invariants and ran-
dom matrices are outlined. We then address the problem of comparative study of
singularities of solutions to the systems of first order quasilinear PDEs and their
Hamiltonian perturbations containing higher derivatives. We formulate Universal-
ity Conjectures describing different types of critical behavior of perturbed solutions
near the point of gradient catastrophe of the unperturbed one.

1 Introduction

The main subject of our research is the study of Hamiltonian perturbations of sys-
tems of hyperbolic1 PDEs

uit + Ai
j (u)u

j
x + higher order derivatives = 0, i = 1, . . . , n.

(Here and below the summation over repeated indices will be assumed.) They can
be obtained, in particular, by applying the procedure of weak dispersion expansion:

Boris Dubrovin
SISSA, via Beirut 2-4, 34014, Trieste, Italy and Steklov Mathematical Institute, Moscow, Russia,
e-mail: dubrovin@sissa.it

1 Always the strong hyperbolicity will be assumed, i.e., the eigenvalues of the n × n matrix
(Ai

j (u)) are all real and pairwise distinct for all u = (u1, . . . , un) in the domain under considera-
tion.
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starting from a system of PDEs

uit + F i(u, ux, uxx, . . .) = 0, i = 1, . . . , n

with the analytic right hand side let us introduce slow variables

x �→ εx, t �→ εt.

Expanding in ε one obtains, after dividing by ε a system of the above form

1

ε
F i(u, εux, ε

2uxx, . . .) = Ai
j (u)u

j
x + ε

(

Bi
j (u)u

j
xx + 1

2
Ci
jk(u)u

j
xu

k
x

)

+ · · ·

assuming all the dependent variables are slow, i.e., the terms of the order 1/ε vanish:

F i(u, 0, 0, . . .) ≡ 0, i = 1, . . . , n.

E.g., the celebrated Korteweg–de Vries (KdV) equation

ut + uux + ε2

12
uxxx = 0 (1)

is one of the most well known examples of such a weakly dispersive Hamiltonian
PDE. Another class of examples comes from interpolated discrete systems. Let us
consider the simplest example of Toda lattice: an infinite system of particles on the
line with exponential interaction of neighbors. The equations of motion

q̇n = ∂H
∂pn

ṗn = − ∂H
∂qn

}

, n ∈ Z

H =
∑

n∈Z

p2
n

2
+ eqn−qn−1

(2)

after the interpolation

qn+1 − qn = u(nε)

pn = v(nε)

can be recast into the form (6) via the (formal) Taylor expansion

ut = 1

ε
[v(x + ε)− v(x)] = vx + 1

2
εvxx + · · ·

vt = 1

ε

[
eu(x) − eu(x−ε)

]
= euux − 1

2
ε
(
eu
)
xx
+ · · · .

(3)

Another class of infinite expansions comes from a nonlocal evolution. An example
of Camassa–Holm equation
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ut − utxx = 3

2
uux −

[

uxuxx + 1

2
uuxxx

]

(4)

illustrates the procedure. After the introduction of the slow variables x �→ εx, t �→
εt we use the geometric series

(
1 − ε2∂2

x

)−1 = 1 + ε2∂2
x + ε4∂4

x + · · ·

in order to rewrite the Camassa–Holm equation in the form (6):

ut = 3

2
uux + ε2

(

uuxxx + 7

2
uxuxx

)

+O(ε4). (5)

Let us return back to the general setting. Loosely speaking the system of PDEs

uit + Ai
j (u)u

j
x + ε

(

Bi
j (u)u

j
xx + 1

2
Ci
jk(u)u

j
xu

k
x

)

+ · · · = 0, i = 1, . . . (6)

depending on a small parameter ε will be considered as a Hamiltonian vector field
on the “infinite dimensional manifold”

L(Mn)⊗ R[[ε]] (7)

where Mn is a n-dimensional manifold (in all our examples it will have topology of
a ball) and

L(Mn) =
{
S1 → Mn

}

is the space of loops on Mn. The dependent variables

u = (u1, . . . , un) ∈ Mn

are local coordinates on Mn. In the expansion (6) the terms of order εk are polyno-
mials of degree k + 1 in the derivatives ux , uxx, . . . where

degu(m) = m, m = 1, 2, . . . .

The coefficients of these polynomials are smooth functions defined in every coordi-
nate chart on Mn. Clearly the above gradation on the ring of polynomial functions
on the jet bundle J∞(Mn) does not depend on the choice of local coordinates. The
systems of the form (6) will be assumed to be Hamiltonian flows

uit = {ui(x),H } =
∑

k≥0

εk
k+1∑

m=0

A
ij
k,m

(
u; ux, . . . , u(m)

)
∂k−m+1
x

δH

δuj (x)
(8)

with respect to local Poisson brackets
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{ui(x), uj (y)} =
∑

k≥0

εk
k+1∑

m=0

A
ij
k,m

(
u(x); ux(x), . . . , u(m)(x)

)
δ(k−m+1)(x − y)

degA
ij
k,m

(
u; ux, . . . , u(m)

)
= m

(9)

with local Hamiltonians

H =
∑

k≥0

εk
∫

hk

(
u; ux, . . . , u(k)

)
dx

deghk

(
u; ux, . . . , u(k)

)
= k.

(10)

Here δ(x) is the Dirac delta-function. The meaning of the delta-function and of its
derivatives is clear from the explicit expression (8). The integral in (10) is under-
stood in the sense of formal variational calculus, i.e., for a differential polynomial
h = h(u; ux, . . . , u(m)) the integral

∫
h(u; ux, . . . , u(m)) dx

is the class of equivalence of h modulo the total x-derivative:

h(u; ux, . . . , u(m)) ∼ h(u; ux, . . . , u(m))+ ∂x

(
f (u; ux, . . . , u(m−1)

)

∂x =
∑

k≥0

ui
(k+1) ∂

∂ui
(k)

.

δH/δuj (x) is the Euler–Lagrange operator

δH

δuj (x)
= ∂h

∂uj
− ∂x

∂h

∂u
j
x

+ ∂2
x

∂h

∂u
j
xx

− · · · for H =
∫

h dx.

The coefficients of the Poisson bracket and Hamiltonian densities will always be
assumed to be differential polynomials. The antisymmetry and Jacobi identity for
the Poisson bracket (9) are understood as identities for formal power series in ε. The
Poisson bracket (9) defines a structure of a Lie algebra Gloc on the space of all local
functionals

{F,G} =
∫

δF

δui(x)
Aij δG

δuj (x)
dx

Aij :=
∑

k≥0

εk
k+1∑

m=0

A
ij
k,m

(
u; ux, . . . , u(m)

)
∂k−m+1
x (11)

F =
∑

k≥0

εk
∫

fk(u; ux, . . . , u(k)) dx, G =
∑

l≥0

εl
∫

gl(u; ux, . . . , u(l)) dx
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deg fk(u; ux, . . . , u(k)) = k, deg gl(u; ux, . . . , u(l)) = l.

The full ring of functions on the infinite dimensional manifold L(Mn) ⊗ R[[ε]] is
obtained by taking the suitably completed symmetric tensor algebra of Gloc.

Let us now introduce the class of “coordinate changes” on the infinite dimen-
sional manifold L(Mn)⊗ R[[ε]]. Define a generalized Miura transformation

ui �→ ũi =
∑

k≥0

εkF i
k

(
u; ux, . . . , u(k)

)

degF i
k

(
u; ux, . . . , u(k)

)
= k (12)

det

(
∂F i

0(u)

∂uj

)

$= 0.

The coefficients F i
k (u; ux, . . . , u(k)) are differential polynomials. It is easy to see

that the transformations of the form (12) form a group.2 The classes of evolution
PDEs (6), local Poisson brackets (9) and local Hamiltonians (10) are invariant with
respect to the action of the group of generalized Miura transformations. We say that
two objects of our theory (i.e., two evolutionary vector fields of the form (6), two
local Poisson brackets of the form (9), or two local Hamiltonians of the form (10))
are equivalent if they are related by a generalized Miura transformation.

Our main goal is the classification of Hamiltonian PDEs (6), (8) with respect
to the above equivalence relation. We will also address the problem of selection of
integrable Hamiltonian PDEs. Last but not least, we will study the general properties
of solutions to Hamiltonian PDEs of the form (6), (8).

2 Towards Classification of Hamiltonian PDEs

The first step is the classification of local Poisson brackets (9) with respect to the
action of the group of Miura-type transformations.

Theorem 1. Under assumption

det
(
A

ij

0,0(u)
)
$= 0 (13)

any bracket of the form (9) is equivalent to
{
ũi (x), ũj (y)

}
= ηij δ′(x − y), ηij = ηji = const, det(ηij ) $= 0. (14)

The proof of this theorem consists of two parts. The first part deals with the
analysis of the leading term of the Poisson bracket. Setting ε → 0 one obtains

2 To invert the transformation one has to solve the differential equation (12) for u1, . . . , un. The
solution in question is written as the formal WKB expansion.
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again a Poisson bracket of a simpler form

{
ui(x), uj (y)

}[0] = A
ij

0,0(u(x))δ
′(x − y)+ A

ij

0,1(u(x); ux(x))δ(x − y). (15)

Here the coefficient Aij

0,1(u; ux) depends linearly on ux . This is a so-called Poisson
bracket of hydrodynamic type introduced in 1983 by B. Dubrovin and S.P. Novikov
[21]. One of the main results of [21] says that, under the assumption (13) the leading
term

gij (u) := A
ij

0,0(u) (16)

is a (contravariant) Riemannian or pseudo-Riemannian metric of the curvature zero
on the underlying manifold Mn; the second coefficient must have the form

A
ij

0,1(u; ux) = Γ
ij
k (u)ukx, Γ

ij
k (u) = −gis(u)Γ

j
sk(u) (17)

where Γ
j
sk(u) are the Christoffel coefficients for the Levi-Civita connection for the

metric gij (u). Due to triviality of the topology of Mn one can choose a global system
of flat coordinates for the metric

ũi = ũi (u),
∂ũi

∂uk

∂ũj

∂ul
gkl(u) = ηij = const.

In these coordinates the Poisson bracket (15) takes the form (14).
The second part of the proof is based on the deformation theory of the Poisson

bracket (14). We may assume that the original Poisson bracket (9) has the form
{
ui(x), uj (y)

}
= ηij δ′(x − y)+O(ε).

The first correction is a 2-cocycle in the Poisson cohomology of the “manifold”
L(Mn)⊗R[[ε]] equipped with the Poisson bracket (14). This first correction can be
eliminated by a “change of coordinates”, i.e., by a generalized Miura transformation,
iff this 2-cocycle is trivial. To complete the proof of Theorem 1 one has to use
triviality of the Poisson cohomology in positive degrees in ε proved in [39] (see
also [12]).

Corollary 2. Any system of Hamiltonian PDEs for slow dependent variables satis-
fying the nondegeneracy assumption (13) can be reduced to the following standard
form

uit = ηij ∂x
δH

δuj (x)
, i = 1, . . . , n (18)

with the Hamiltonian of the form (10). Two such systems are equivalent iff the
Hamiltonians are related by a canonical transformation
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H �→ H + ε{F,H } + ε2

2
{F, {F,H }} + · · · ,

F =
∑

k≥0

εk
∫

fk

(
u; ux, . . . , u(k)

)
dx, deg fk

(
u; ux, . . . , u(k)

)
= k.

(19)

In order to prove the second part of the corollary one has to use triviality in
the positive degrees in ε of the first Poisson cohomology of the bracket (14). This
implies that any canonical transformation close to identity must have the form

ui(x) �→ ũi (x) = ui(x)+ ε{F, ui(x)} + ε2

2
{F, {F, ui(x)}} + · · ·

{ũi (x), ũj (y)} = {ui(x), uj (y)} = ηij δ′(x − y)

(20)

with the generating Hamiltonian F of the above form polynomial in jets in every
order in ε.

Example 3. The Riemann equation

vt + vvx = 0 (21)

is a Hamiltonian system

vt + ∂x
δH0

δv(x)
= 0

with the Hamiltonian

H0 =
∫

v3

6
dx (22)

and the Poisson bracket of the form (14):

{v(x), v(y)} = δ′(x − y). (23)

Any Hamiltonian perturbation of this equation of order ε4 can be reduced to the
following normal form parametrized by two arbitrary functions of one variable c =
c(u), p = p(u):

ut + uux + ε2

24

[
2cuxxx + 4c′uxuxx + c′′u3

x

]

+ ε4
[

2puxxxxx + 2p′(5uxxuxxx + 3uxuxxxx)+ p′′(7uxu2
xx + 6u2

xuxxx)

+ 2p′′′u3
xuxx

]

= 0. (24)

The Hamiltonian has the form

H =
∫ [

u3

6
− ε2 c(u)

24
u2
x + ε4p(u)u2

xx

]

dx. (25)
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Two such perturbations are equivalent iff the associated functional parameters c(u),
p(u) coincide.

3 Deformation Theory of Integrable Hierarchies

We will now concentrate on the study of integrable hyperbolic systems

vit + Ai
j (v)v

j
x = 0, i = 1, . . . , n

and their Hamiltonian perturbations. The word ‘hyperbolic’ will stand for strong hy-
perbolicity, i.e., all eigenvalues of the matrix (Ai

j (v)), v ∈ Mn, will be assumed real
and pairwise distinct. We will also consider the complex analytic situation where the
eigenvalues of the matrix will be assumed to be distinct.

Let us first recall the main points of the theory of integrable hyperbolic PDEs.

Definition 4. A hyperbolic system

vit + Ai
j (v)v

j
x = vit + ηij ∂x

δH0

δvj (x)
= 0

H0 =
∫

h(v) dx, Ai
j (v) = ηis

∂2h(v)

∂vs∂vj

(26)

is called integrable if the Lie algebra of first integrals F0 of the form

F0 =
∫

f (v) dx, {H0, F0} = 0 (27)

possesses the following property of maximality: solutions f = f (v) to the overde-
termined system of equations

∂2f

∂vi∂vl
ηij

∂2h

∂vj ∂vk
= ∂2f

∂vi∂vk
ηij

∂2h

∂vj ∂vl
, k, l = 1, . . . , n (28)

equivalent to (27) depend on the maximal number (= n) of arbitrary functions of
one variable.

First integrals of an integrable system of hyperbolic PDEs form a maximal
Abelian subalgebra in the Lie algebra Gloc of local Hamiltonians [25]. The Hamil-
tonian flow

vis + Bi
j (v)v

j
x = vis + ηij ∂x

δF0

δvj (x)
, Bi

j (v) = ηis
∂2f (v)

∂vs∂vj
(29)

generated by any solution to (27) is an infinitesimal symmetry of the hyperbolic
system (26):

∂

∂s

∂vi

∂t
= ∂

∂t

∂vi

∂s
, i = 1, . . . , n. (30)
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All these symmetries commute pairwise due to commutativity of the Lie algebra
of conservation laws. Integrability of the Hamiltonian hyperbolic system (26) is
equivalent to its diagonalizability (i.e., existence of Riemann invariants) [66]. Recall
that the necessary and sufficient condition for diagonalizability is vanishing of the
Haantjes tensor [44] in the case under consideration written in the form

Hijk =
(
hipqhjrhks + hjpqhkrhis + hkpqhirhjs

)
habη

paδqbsr

δijkl := det

(
ηik ηil

ηjk ηjl

)
(31)

where we use short notations for the derivatives of the Hamiltonian density

hij := ∂2h

∂vi∂vj
, hijk := ∂3h

∂vi∂vj ∂vk
.

The tensor (31) is totally antisymmetric. For n = 1 and n = 2 any hyperbolic
system is integrable. For n ≥ 3 there are n(n− 1)(n− 2)/6 integrability constraints
Hijk = 0, i < j < k.

Given a symmetry (29) the functions v1(x, t), . . . , vn(x, t) implicitly defined by
the system of n equations written in the form

det [(λ− x) · id + t A(v)− B(v)] ≡ λn, A(v) =
(
Ai

j (v)
)
, B(v) =

(
Bi
j (v)

)

(32)
give a solution to the original hyperbolic system. Any solution to this system satis-
fying certain genericity conditions can be obtained in this way [66].

Let us now consider Hamiltonian perturbations

uit + ηij ∂x
δH

δuj (x)
= 0, H = H0 +O(ε), H0 =

∫
h(u) dx (33)

of an integrable hyperbolic system

vit + ηij ∂x
δH0

δvj (x)
= 0, i = 1, . . . , n. (34)

(We use different notations v = v(x, t) and u = u(x, t) for the dependent variables
of the unperturbed/perturbed systems resp. for a convenience later on.)

Definition 5. The perturbed system (33) is called N -integrable if there exists a linear
differential operator

DN = D[0] + εD[1] + ε2D[2] + · · · + εND[N ]

D[0] = id, D[k] =
∑

b
[k]
i1,...,im(k)

(u; ux, . . . , u(k)) ∂m(k)

∂ui1 . . . ∂uim(k)
(35)

deg b
[k]
i1,...,im(k)

(u; ux, . . . , u(k)) = k, k ≥ 1
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acting on the commuting Hamiltonians (28)–(30) such that, for any two solutions
f (u), g(u) to (28) the Hamiltonians

H
f
N :=

∫
DNf dx, H

g
N :=

∫
DNg dx (36)

satisfy

{Hf
N ,H

g
N } = O

(
εN+1

)
. (37)

Moreover, we require that

H = DNh+O
(
εN+1

)
, (38)

so the Hamiltonians (36) satisfy also

{H,H
f
N } = O

(
εN+1

)

for any solution f = f (u) to (28).
The perturbed system (33) is called integrable if it is N -integrable for any N ≥ 0.

In the formula (35) m(k) is some positive integer depending on k. The summa-
tion is taken over all indices i1, . . . , im(k) from 1 to n. As usual the coefficients
b
[k]
i1...im(k)

(u; ux, . . . , u(k)) are graded homogeneous differential polynomials of de-
gree k. It is easy to see that

m(k) =
[

3k

2

]

. (39)

As the D-operator makes sense only acting on the common kernel of the linear
operators

hjkη
ij ∂2

∂vi∂vl
− hjlη

ij ∂2

∂vi∂vk
, k, l = 1, . . . , n, (40)

the coefficients are not determined uniquely.
For a N -integrable system any symmetry (28)–(30) can be extended to a Hamil-

tonian flow

uis + ηij ∂x
δF

δuj (x)
= 0

F = F0 +O(ε), F0 =
∫

f (u) dx, F =
∫

DNf dx

(41)

satisfying
∂

∂s

∂ui

∂t
− ∂

∂t

∂ui

∂s
= O

(
εN+1

)
, i = 1, . . . , n. (42)

All these symmetries commute pairwise modulo terms of order εN+1.
The linear differential operator DN giving an extension of the symmetries of the

dispersionless system will be called D-operator for an N -integrable system. For an
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integrable system such an operator exists for any N ; in this case we will omit the
label N .

Example 6. The D-operator for the KdV hierarchy has the form

f �→ Df = 1√
2

res
(
∂1/2f

)
(L), L = ε2

2
∂2
x + u(x). (43)

Here f = f (u) is an arbitrary function. In particular choosing

f (u) = uk+2

(k + 2)!
one obtains the Hamiltonian densities of the KdV hierarchy

Df = 1√
2

2k+2

(2k + 3)!! resL
2k+3

2 .

Starting from the above definition we develop a “perturbative” approach to the
study of integrability that can be used for

• Finding obstructions to integrability;
• Classification of integrable PDEs.

Example 7. One-dimensional system of particles with neighboring interaction

H =
∑ 1

2
p2
n + P(qn − qn−1) (44)

with the potential P(u) (generalized Fermi - Pasta - Ulam system) after interpolation

qn(t)− qn−1(t) = w(εn, εt)

pn(t) = v(εn, εt)
(45)

and substitution

u = ε∂x

1 − e−ε∂x
w (46)

the following system

ut = vx

vt = ε−1
[

P ′
(
eε∂x − 1

ε∂x
u

)

− P ′
(

1 − e−ε∂x

ε∂x
u

)]

(47)

= ∂xP
′(u)+ ε2

24

[
2P ′′(u)uxxx + 4P ′′′(u)uxuxx + P IV (u)u3

x

]
+ O(ε4).

The above formulae are understood as formal power series in ε:
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w = eε∂x − 1

ε∂x
u = 1

ε

∫ x+ε

x

u(s) ds = u+
∑

k≥1

εk

(k + 1)!u
(k),

u = w + 1

2
εw′ +

∑

k>1

Bk

k! ε
kw(k),

(48)

Bk are the Bernoulli numbers. Equations (47) is a Hamiltonian system

ut = ∂x
δH

δv(x)

vt = ∂x
δH

δu(x)

H =
∫

h dx =
∫ [

1

2
v2(x)+ P (w(x)− w(x − ε))

]

dx

h = 1

2
v2 + P(u)− ε2

24
P ′′(u)u2

x +
ε4

5760

[
8P ′′(u)u2

xx − P IV (u)u4
x

]
+ O(ε6)

(49)

(modulo inessential total derivatives).
In the dispersionless limit ε → 0 (47) reduces to the nonlinear wave equation

written as a system

ut = vx

vt = ∂xP
′(u).

(50)

So, the dispersionless system (50) is integrable for an arbitrary potential P(u). The
perturbed system (47) is 2-integrable iff the potential P(u) satisfies

P ′′P IV = (P ′′′)2

that is, only for
P(u) = kecu + au+ b

for some constants a, b, c, k [20]. So, the generalized FPU system (47) is integrable
only when it coincides with Toda lattice.

Example 8. The perturbed Riemann wave equation (24) is 5-integrable for an arbi-
trary choice of the functional parameters c(u), p(u) [19]. Indeed, the first integrals
of the unperturbed system have the form

F0 =
∫

f (v) dx

for an arbitrary function f (v). Define deformed functionals by the formula

F =
∫

Dc,pf dx
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where the D-operator D5 ≡ Dc,p (see [20] for details) transforming the first inte-
grals of the unperturbed system to the first integrals (modulo O(ε6)) of the perturbed
one

Dc,pf = f − ε2

24
cf ′′′u2

x + ε4

[(

pf ′′′ + c2f (4)

480

)

u2
xx

−
(
cc′′f (4)

1152
+ cc′f (5)

1152
+ c2f (6)

3456
+ p′f (4)

6
+ pf (5)

6

)

u4
x

]

. (51)

It is an interesting open problem to prove existence and uniqueness, for a given
pair of the functional parameters c(u), p(u), of an extension to all orders in ε of the
perturbed system (24) in order to obtain an integrable PDE. So far existence of such
an extension is known only for some particular cases including

• KdV: c(u) = const, p(u) = 0.
• Volterra lattice

ċn = cn(cn+1 − cn−1), n ∈ Z.

Here c(u) = 2, p(u) = − 1
240 .

• Camassa–Holm equation (4) has c(u) = 8u, p(u) = 1
3u.

We will now consider a particular class of systems of bihamiltonian PDEs. They
admit a Hamiltonian description with respect to two Poisson brackets { , }1 and { , }2
of the form (8)–(9) with two different Hamiltonians of the form (10):

uit = {ui(x),H1}1 = {ui(x),H2}2, i = 1, . . . , n. (52)

The Poisson brackets must satisfy the compatibility condition: the linear combina-
tion

a1{ , }1 + a2{ , }2
must be a Poisson bracket for arbitrary constant coefficients a1, a2 ∈ R. We will
now formulate additional assumptions that ensure integrability of the bihamiltonian
system (52). Denote g

ij

1 (u) and g
ij

2 (u) the contravariant metrics of the form (16)
associated with the Poisson brackets { , }1 and { , }2 respectively.

Definition 9. We say that the bihamiltonian structure (52) of the form (9) is strong-
ly nondegenerate if none of the roots of the characteristic equation

det
(
g
ij

2 (u)− λg
ij

1 (u)
)
= 0 (53)

is a locally constant function on Mn * u. It is called semisimple if these roots are
pairwise distinct.

Theorem 10. Any system of PDEs admitting a bihamiltonian description with re-
spect to a strongly nondegenerate semisimple bihamiltonian structure is integrable.

Sketch of the proof. Denote λ = w1(u), . . . , λ = wn(u) the roots of the character-
istic equation (53). Under assumptions of the theorem these roots give a system of
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local coordinates on Mn [27, 29]. In these coordinates any bihamiltonian dispersion-
less system (34) becomes diagonal. This proves integrability of the dispersionless
system.

Let us now construct a complete set of commuting bihamiltonian flows. Without
loss of generality we may assume the metric g

ij

1 to be constant in the coordinates
u1, . . . , un. For a given λ ∈ R consider the generalized Miura transformation

ui �→ ũi = F i(u; ux, . . . ; ε; λ)
reducing the Poisson pencil

{ , }2 − λ{ , }1
to the constant form (14):

{ũi (x), ũj (y)}2 − λ{ũi (x), ũj (y)}1 = −λg
ij

1 δ′(x − y).

Using triviality of the Poisson cohomology of this bracket (see above) one can prove
[25] that the reducing transformation exists for sufficiently large |λ|. Moreover, it
admits an expansion

ũi = ui +
∑

p≥1

F i
p(u; ux, uxx, . . . ; ε)

λp
, i = 1, . . . , n

F i
p(u; ux, uxx, . . . ; ε) =

∑

k≥0

εkF i
p,[k](u; ux, . . . , u(k)),

degF i
p,[k](u; ux, . . . , u(k)) = k.

The Hamiltonians

Hi
p =

∫
F i
p(u; ux, uxx, . . . ; ε) dx, i = 1, . . . , n, p = 0, 1, 2, . . .

give a complete family of commuting bihamiltonian flows,

{Hi
p,H

j
q }1,2 = 0, i, j = 1, . . . , n, p, q = 0, 1, 2, . . .

Taking into account the previous theorems, we will now focus on the deformation
theory of bihamiltonian PDEs. A compatible pair of Poisson brackets defines a pair
of anticommuting differentials

∂2
1 = ∂2

2 = ∂1∂2 + ∂2∂1 = 0

on the local multivectors on the loop space L(Mn)⊗R[[ε]]. Cohomologies of any of
these differentials vanish in positive degrees in ε (see above). Define bihamiltonian
cohomology by



Hamiltonian Perturbations of Hyperbolic PDEs 245

Hk(∂1, ∂2) = Ker∂1∂2|Λk−1

(Im∂1 + Im∂2)Λk−2
, k ≥ 2.

For k = 1 the denominator vanishes; for k = 0 the bihamiltonian cohomology is
defined by

H 0(∂1, ∂2) = Ker∂1 ∩ Ker∂2.

In particular, the second bihamiltonian cohomology describes the infinitesimal
deformation space of a given dispersionless bihamiltonian structure.

Let us first make a digression about dispersionless bihamiltonian structures (also
called bihamiltonian structures of the hydrodynamic type)

{vi(x), vj (y)}2 − λ{vi(x), vj (y)}1
=
(
g
ij

2 (v(x))− λg
ij

1 (v(x))
)
δ′(x − y)

+
(
Γ

ij
k 1(v)− λΓ

ij
k 2(v)

)
vkxδ(x − y). (54)

The metrics gij1 (v) and g
ij

2 (v) form a so-called flat pencil [16], i.e., the contravariant

Christoffel coefficients for the metric g
ij

2 (v)− λg
ij

1 (v) are equal to

Γ
ij
k 1(v)− λΓ

ij
k 2(v)

where

Γ
ij
k 1(v) = −gis1 (v)Γ

j
sk1(v) and Γ

ij
k 2(v) = −gis2 (v)Γ

j
sk2(v)

are the contravariant Christoffel coefficients for the metrics g
ij

1 (v) and g
ij

2 (v) resp.

Moreover the curvature of the metric g
ij

2 (v)− λg
ij

1 (v) must vanish identically in λ.
Assuming the bihamiltonian structure (54) to be strongly nondegenerate and semi-
simple one can reduce [27, 33, 56] the theory of flat pencils of metrics to the study
of compatibility conditions

∂kγij = γikγkj , i, j, k distinct

∂iγij + ∂j γji +
∑

k $=i,j

γkiγkj = 0

wi∂iγij + wj∂jγji +
∑

k $=i,j

wkγkiγkj + 1

2
(γij + γji) = 0

of the following overdetermined system of linear differential equations with rational
coefficients for an auxiliary vector function ψ = (ψ1(w), . . . , ψn(w))

∂iψj = γjiψi, i $= j

∂iψi +
∑

k $=i

γki
wk − λ

wi − λ
ψk + 1

2(wi − λ)
ψi = 0.

(55)
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Here w1, . . . , wn are the roots of the characteristic equation (53); in these coordi-
nates both the metrics become diagonal

∂wi

∂vk

∂wj

∂vl
gkl1 (v) = gii1 (w)δij ,

∂wi

∂vk

∂wj

∂vl
gkl2 (v) = wigii1 (w)δij .

The coefficients γij = γij (w) in (55) are the rotation coefficients of the first metric

γij (w) := H−1
i ∂iHj , i $= j, Hi =

(
gii1 (w)

)−1/2
. (56)

To the best of our knowledge all nontrivial examples of flat pencils of metrics come
from Frobenius manifolds (see below).

Let us now consider an ε-deformation of the Poisson pencil (54)

{ui(x), uj (y)}2 − λ{ui(x), uj (y)}1
= (gij2 (u(x))− λg

ij

1 (u(x))
)
δ′(x − y)+ (Γ ij

k 1(u)− λΓ
ij
k 2(u)

)
ukxδ(x − y)

+
∑

k≥1

εk
k+1∑

l=0

[
A

ij

k,l;2(u(x); ux, . . . , u(l))

− λA
ij

k,l;1(u(x); ux, . . . , u(l))
]
δ(k−l+1)(x − y)

degA
ij

k,l;a(u; ux, . . . , u(l)) = l, a = 1, 2. (57)

We begin with formulating an important quasitriviality theorem [27] saying that
the bihamiltonian cohomology becomes trivial as soon as we extend the class of
generalized Miura transformations allowing rational dependence on the jet coordi-
nates.

Definition 11. The bihamiltonian structure (57) is said to be trivial if it can be ob-
tained from the leading term (54) by a λ-independent Miura-type transformation

ui = vi +
∑

k≥1

εkF i
k (v; vx, . . . , v(k)),

degF i
k (v; vx, . . . , v(k)) = k, i = 1, . . . , n

(58)

where the coefficients F i
k (v; vx, . . . , v(k)) are graded homogeneous polynomials in

the derivatives. It is called quasitrivial if it is not trivial and there exists a transfor-
mation

ui = vi +
∑

k≥1

εkF i
k (v; vx, . . . , v(mk)) (59)

reducing (57) to (54) but the functions F i
k depend rationally on the jet coordinates

vi,m, m ≥ 1 with

degF i
k (v; vx, . . . , v(mk)) = k, i = 1, . . . , n, k ≥ 1 (60)
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and mk are some positive integers. If such a transformation (58) or (59) exists, it is
called a reducing transformation of the bihamiltonian structure (57).

Example 12. For the Poisson pencil known in the theory of KdV hierarchy

{u(x), u(y)}2−λ{u(x), u(y)}1 = (u(x)− λ) δ′(x−y)+1

2
uxδ(x−y)+1

8
ε2δ′′′(x−y)

(61)
the reducing transformation reads

u = v − ε2

12
(log vx)xx + ε4

[
vxxxx

288v2
x

− 7vxxvxxx
480v3

x

+ v3
xx

90v4
x

]

xx

+O(ε6). (62)

It is a canonical transformation

v �→ u = v + ε{v(x),K} + ε2

2
{{v(x),K},K} + · · ·

generated by the Hamiltonian

K = −
∫ [

ε

24
vx log vx + ε3

5760

v3
xx

v3
x

+O(ε5)

]

dx. (63)

Theorem 13 (See [27]3). Any strongly nondegenerate semisimple bihamiltonian struc-
ture (57) is quasitrivial. The coefficients F i

k of the reducing transformation (59) have
the form

F i
k (v; vx, . . . , v(mk)) ∈ C∞(Mn)

[
vx, . . . , v

(mk)
] [(

w1
xw

2
x . . . w

n
x

)−1
]

mk ≤
[

3k

2

]

. (64)

Here wi = wi(v) are the roots of the characteristic equation (53).

The reducing transformation for the bihamiltonian structure (57) establishes a
correspondence between solutions of any bihamiltonian system (52) admitting reg-
ular expansion in ε

ui(x, t; ε) = ui0(x, t)+
∑

k≥1

εkuik(x, t), i = 1, . . . , n

and monotone solutions to the dispersionless limit

vit = {vi(x),H 0
1 }01 = {vi(x),H 0

2 }02, i = 1, . . . , n

{ , }01,2 := { , }1,2|ε=0, H 0
1,2 := H1,2|ε=0.

(65)

3 For n = 1 the proof of quasitriviality theorem was also obtained in [1]. Apparently the author
of [1] was not aware about results of the paper [27].
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By definition the solution v = v(x, t) is called monotone if

∂xw
i(v(x, t)) $= 0, i = 1, . . .

for all real x, t .
Therefore the problem of solving of any system of bihamiltonian PDEs of the

above form can be reduced to solving linear PDEs (28) (see details in [27]).
We will now address the problem of classification of bihamiltonian structures

(57) with a given dispersionless limit (54). First we will associate with any such a
perturbation a collection of n functions of one variable called central invariants [51,
27, 29]. With any Poisson bracket of the form (9) we associate a matrix valued series
in an auxiliary variable p:

πij (u;p) =
∑

k≥0

A
ij

k,0(u)p
k. (66)

Recall that the coefficients A
ij

k,0 have degree 0 in the jet variables, so they may
depend only on u. In this way for a bihamiltonian structure one obtains two matrix
valued series π

ij

1 (u;p) and π
ij

2 (u;p). Recall that the leading terms of these series

are A
ij

0,01
(u) = g

ij

1 (u), Aij

0,02
(u) = g

ij

2 (u). Consider the characteristic equation

det
(
π
ij

2 (u;p)− λπ
ij

1 (u;p)
)
= 0. (67)

The roots λi(u;p), . . . , λn(u;p) have the form

λi(u;p) =
∑

k≥0

λik(u)p
k, λi0(u) = wi(u), λik(u) = 0 for k = odd.

Put

ci = 1

3

λi2(u)

gii1 (w)
, i = 1, . . . , n. (68)

Definition 14. The functions ci ∈ C∞(Mn) are called central invariants of the bi-
hamiltonian structure (57).

Theorem 15 (See [51, 27, 29]).

(1) The central invariant ci is a function of one variable wi , i = 1, . . . , n.
(2) Two strongly nondegenerate semisimple bihamiltonian structures are equiva-

lent iff they have the same central invariants. In particular, the bihamiltonian
structure is trivial iff it has all central invariants equal zero.

Example 16. For the bihamiltonian structure (61) the central invariant is constant
c1 = 1

24 . For the bihamiltonian structure of the Camassa–Holm hierarchy
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{u(x), u(y)}2 − λ{u(x), u(y)}1 = (u(x)− λ) δ′(x − y)+ 1

2
uxδ(x − y)

+ λ
ε2

8
δ′′′(x − y)

the central invariant equals

c1 = 1

24
w, w = u.

So the KdV and Camassa–Holm hierarchies are not equivalent.

The theory of central invariants gives a description of the space of infinitesimal
deformations of bihamiltonian systems of hydrodynamic type. It remains an open
problem to prove vanishing of higher obstructions and establish existence of an
integrable hierarchy with a given dispersionless limit and given central invariants.
In the next section we will formulate some partial existence results for bihamiltonian
PDEs associated with semisimple Frobenius manifolds.

4 Frobenius Manifolds and Integrable Hierarchies
of the Topological Type

Frobenius structures on Mn yield a particular subclass of bihamiltonian structure of
hydrodynamic type on the loop space L(Mn). Recall [18] that a Frobenius structure
( · , e, 〈 , 〉, E, d) on Mn consists of a structure of a Frobenius algebra4 (x, y) �→
x · y ∈ TvM

n on the tangent spaces TvM
n = (Av, 〈 , 〉v) depending (smoothly,

analytically etc.) on the point v ∈ Mn. It must satisfy the following axioms.

FM1. The curvature of the metric 〈 , 〉v on Mn vanishes. Denote ∇ the Levi-Civita
connection for the metric. The unity vector field e must be flat, ∇e = 0.

FM2. Let c be the 3-tensor c(x, y, z) := 〈x · y, z〉, x, y, z ∈ TvM
n. The 4-tensor

(∇wc)(x, y, z) must be symmetric in x, y, z,w ∈ TvM
n.

FM3. A linear vector field E ∈ Vect(Mn) (called Euler vector field) must be fixed
on Mn, i.e. ∇∇E = 0, such that

LieE(x · y)− LieEx · y − x · LieEy = x · y
LieE〈 , 〉 = (2 − d)〈 , 〉

for some number d ∈ k called charge.

In the flat coordinates v1, . . . , vn for the metric 〈 , 〉 the structure constants of
the algebra structure are locally given by triple derivatives of a function F(v) called
potential of the Frobenius manifold:

4 Recall that a commutative associative unital algebra A over a field k is called Frobenius algebra
if it is equipped with a nondegenerate symmetric invariant k-bilinear form, i.e., 〈x ·y, z〉 = 〈x, y ·z〉
for all x, y, z ∈ A.
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〈
∂

∂vi
· ∂

∂vj
,

∂

∂vk

〉

= ∂3F(v)

∂vi∂vj ∂vk
. (69)

This function must satisfy WDVV associativity equations, including the quasiho-
mogeneity condition

EF = (3 − d)F + quadratic terms

(see details in [18]).
Using the metric 〈 , 〉 one also obtains an algebra structure on the cotangent

planes T ∗
v M

n. The two contravariant metrics (i.e., bilinear forms on Mn) are de-
fined by the following formulae

(ω1, ω2)1 = 〈ω1, ω2〉
(ω1, ω2)2 = iE(ω1 · ω2).

(70)

Remarkably this pair of metrics forms a flat pencil. The commuting Hamiltonians
of the associated bihamiltonian dispersionless hierarchy are expressed via the hori-
zontal sections of the so-called deformed flat connection on Mn. Any choice of such
a basis of horizontal sections gives a calibration of the Frobenius manifold.

One of equations of the integrable hierarchy on L(Mn) has a particularly simple
form resembling the Riemann wave equation

vt + v · vx = 0, v = (v1, . . . , vn) ∈ Mn 5 TvM
n (71)

where we identify points of the manifold with points in the tangent plane using the
flat coordinates.

We arrive at the problem of reconstruction of the integrable hierarchy with the
given dispersionless limit (71). This can be done for the case of semisimple Frobe-
nius manifolds. By definition the Frobenius structure is called semisimple if the
algebra structure on the tangent planes TvMn is semisimple for all5 v ∈ Mn. The bi-
hamiltonian structure associated with the flat pencil of metrics (70) will be strongly
nondegenerate semisimple iff the Frobenius manifold is semisimple.

Theorem 17. For any calibrated semisimple Frobenius manifold structure on Mn

there exists a unique integrable hierarchy

∂ui

∂tj,p
= ∂x

∑

g≥0

ε2gKi
j,p;g(u; ux, . . . , u(2g)), i, j = 1, . . . , n, p ≥ 0

degKi
j,p;g(u; ux, . . . , u(2g)) = 2g

(72)

with the right hand sides polynomial in jets in every order in ε with the dispersion-
less term

∂vi

∂tj,p
= ∂xK

i
j,p;0(v) (73)

defined as above by the Frobenius manifold and all central invariants equal to 1/24.

5 Here we are considering only a small ball in the Frobenius manifold. Globally the Frobenius
manifolds under consideration are only generically semisimple.
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The clue to the proof of this theorem [26] is in invariance of the equations of the
hierarchy with respect to the Virasoro symmetries

τ �→ τ + αLmτ +O(α2), m ≥ −1 (74)

acting linearly onto the tau-function of the hierarchy. The tau-function

τ = τ(t; ε) = exp
∑

g≥0

ε2g−2 Fg(t), (75)

t = (t i,p)1≤i≤n, p≥0 of any solution6

ui(x, t; ε) =
∑

g≥0

ε2guig(x, t) (76)

to the hierarchy is defined by the equations

ui(x, t; ε) = ε2ηij
∂2

∂x∂tj,0
log τ(t; ε), i = 1, . . . , n. (77)

Existence of such a tau-function is the main reason for appearance of Frobenius
manifolds in the theory of integrable hierarchies [25, 27, 26]. The Virasoro operators
have the form [23]

Lm = Lm(ε
−1t, ε∂/∂t)

=
∑

ε2a
i,p;j,q
m

∂2

∂t i,p∂tj,q
+
∑

bm
i,p
j,q t

j,q ∂

∂t i,p

+ ε−2cmi,p;j,q t
i,ptj,q + d0δm,0 (78)

where constant coefficients a
i,p;j,q
m , bm

i,p
j,q , cm

i,p;j,q for every m ≥ −1 and d0 de-
pend on the Frobenius manifold. The hierarchy (72) is obtained from the known
dispersionless limit (73) by a quasitriviality transformation of the form

vi �→ ui = vi + ηij
∂2

∂x∂tj,0

∑

g≥0

ε2gFg(v; vx, . . . , v(3g−2)) (79)

where the terms of expansion are rational functions of jet variables of the degree

degFg(v; vx, . . . , v(3g−2)) = 2g − 2, g ≥ 2.

These terms are determined from the system of Virasoro constraints [25]. For ex-
ample, for g = 1 from this procedure one derives

6 More general solutions admitting regular expansions in ε are obtained from (76) by ε-dependent
shifts t �→ t − t0(ε).
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F1 = 1

24

n∑

i=1

logwi
x − log

(
τI (w)J 1/24(w)

)
, J (w) = det

(
∂vi

∂wj

)

. (80)

Here τI (w) is the so-called isomonodromy tau-function7 of the Frobenius manifold.
The formula (80) was derived in [23] from the universal identities [37] for the genus
1 Gromov–Witten invariants.

Reducing the system of Virasoro constraints to the so-called universal loop equa-
tion [25, 18] one proves existence [26] and uniqueness [25] of the solution. More-
over, using Virasoro invariance one proves that the resulting hierarchy (72) is poly-
nomial in jet variables in every order in ε.

Remark 18. One can also prove that the conserved quantities of (72) obtained by
applying the quasitriviality transformation (79) to the Hamiltonians of the disper-
sionless hierarchy (73) depend polynomially on the jet variables, in every order in
ε. It remains to prove that also the coefficients of the resulting bihamiltonian struc-
ture depend polynomially on the jet variables.

Definition 19. The integrable hierarchy associated by the above construction with a
given calibrated semisimple Frobenius manifold Mn is called integrable hierarchy
of the topological type.

Let us describe the structure of solutions of an integrable hierarchy of the topo-
logical type. The vacuum solution τvac(t; ε) is defined by the system of Virasoro
constraints

Lmτvac(t; ε) = 0, m ≥ −1. (81)

Any other solution to the hierarchy admitting a regular expansion in ε is obtained
by an ε-dependent shift t �→ t − t0(ε). In particular, the topological solution is
specified by the so-called dilaton shift

τtop(t; ε) = τvac(t − tdilaton; ε), t
i,p

dilaton = δi1δ
p

1 . (82)

The corresponding topological solution (77) to the integrable hierarchy of the topo-
logical type admits an expansion

uitop(x, t; ε) =
∑

g≥0

ε2g
∑

m≥0

∑

j,p

aij,p,g(t
1,0 + x, t2,0, . . . , tn,0)tj1,p1 . . . tjm,pm. (83)

Here the summation over multiindices j,p = (j1, . . . , jm, p1, . . . , pm) extends over
all values

1 ≤ j1, . . . , jm ≤ n, 1 ≤ p1, . . . , pm.

The coefficients of the expansion are given in terms of certain functions
aij,p,g(v

1, . . . , vn) smooth on the semisimple part of the Frobenius manifold. Note
that for a generic semisimple Frobenius manifold these functions have a compli-
cated singularity at the origin v1 = · · · = vn = 0.

7 We have changed the sign in the definition [23] of the isomonodromy tau-function.
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Example 20. For n = 1 one has only one Frobenius manifold with the potential
F(v) = 1

6v
3. The associated integrable hierarchy of the topological type coincides

with the KdV hierarchy

ut0 = ux

ut1 = uux + ε2

12
uxxx

ut2 =
1

2
u2ux + ε2

12
(2uxuxx + uuxxx)+ ε4

240
uV , . . .

represented in the Lax form as follows:

ε
∂L

∂tk
= [Ak,L] , L = ε2

2

d2

dx2
+ u, Ak = 2

2k+1
2

(2k + 1)!!
(
L

2k+1
2

)

+ .

The vacuum solution to the KdV hierarchy reads

τ vac
KdV = 1

(−t1)1/24
exp

{
1

ε2

[

− t3
0

6t1
− t4

0 t2

24t3
1

+O(t5
0 )

]

+
[
t0t2

24t2
1

− t2
0 t3

48t3
1

+ t2
0 t

2
2

24t4
1

+O(t3
0 )

]

+ ε2

[

− t4

1152t3
1

+ 29t2t3
5760t4

1

− 7t3
2

1440t5
1

+O(t0)

]

+O(ε4)

}

. (84)

After the dilaton shift t1 �→ t1 − 1 one obtains [68, 47] the generating function of
the intersection numbers of the tautological classes ψi = c1(Li ) ∈ H 2(M̄g,n) on
the moduli spaces M̄g,n of stable algebraic curves

log τKdV
top = 1

ε2

(
t3
0

6
+ t3

0 t1

6
+ t3

0 t
2
1

6
+ t3

0 t
3
1

6
+ t3

0 t
4
1

6
+ t4

0 t2

24
+ t4

0 t1t2

8

+ t4
0 t

2
1 t2

4
+ t5

0 t
2
2

40
+ t5

0 t3

120
+ t5

0 t1t3

30
+ t6

0 t4

720
+ · · ·

)

+
(

t1

24
+ t2

1

48
+ t3

1

72
+ t4

1

96
+ t0t2

24
+ t0t1t2

12
+ t0t

2
1 t2

8
+ t2

0 t
2
2

24

+ t2
0 t3

48
+ t2

0 t1t3

16
+ t3

0 t4

144
+ · · ·

)

+ ε2

(
7t3

2

1440
+ 7t1t3

2

288
+ 29t2t3

5760
+ 29t1t2t3

1440
+ 29t2

1 t2t3

576
+ 5t0t2

2 t3

144
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+ 29t0t2
3

5760
+ 29t0t1t2

3

1152
+ t4

1152
+ t1t4

384
+ t2

1 t4

192
+ t3

1 t4

96
+ 11t0t2t4

1440

+ 11t0t1t2t4
288

+ 17t2
0 t3t4

1920
+ · · ·

)

+O(ε4)

=
∑

g≥0

ε2g−2 Fg(t), Fg(t) =
∑ 1

n! tp1 . . . tpn

∫

M̄g,n

ψ
p1
1 ∧ · · · ∧ ψ

pn
n .

The definition (77) of tau-function reduces to a familiar formula

u = ε2∂2
x log τ, x = t0

for solutions to the KdV hierarchy.
The topological solution u(x, t) can be also characterized by the initial data

u(x, 0; ε2) = x.

The Virasoro symmetries of the KdV hierarchy are generated by the operators

Lm = ε2

2

∑

k+l=m−1

(2k + 1)!!(2l + 1)

2m+1

∂2

∂tk∂tl

+
∑

k≥0

(2k + 2m+ 1)!!
2m+1(2k − 1)!! tk

∂

∂tk+m

+ 1

16
δm,0, m ≥ 0, (85)

L−1 =
∑

k≥1

tk
∂

∂tk−1
+ 1

2ε2
t2
0 .

Example 21. Choosing the shift vector in the form

t0
k =

(−1)k+1

k!(k − 1)! , k ≥ 1, t0 = 0

one obtains the generating function of the Weil–Petersson volumes of the moduli
spaces

log τKdV
top

(

x,−1,
1

1!2! ,−
1

2!3! , . . . ; ε
2
)

=
∞∑

g=0

( ε

π3

)2g−2∑

n

Vol(Mg,n)
( x

π2

)n
. (86)

This is a reformulation of the result of P. Zograf and Yu.I. Manin [73, 52].

Example 22. The hierarchy of the topological type associated with the two-
dimensional Frobenius manifold with the potential

F(u, v) = 1

2
uv2 + eu
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coincides with the extended Toda hierarchy [8] associated with the difference Lax
operator

L = Λ+ v + euΛ−1, Λ = eε∂x .

The hierarchy contains two infinite sequences of time variables

ε
∂L

∂tk
= 1

(k + 1)!
[
(Lk+1)+, L

]
, ε

∂L

∂sk
= 2

k!
[(

Lk(logL− ck)
)

+ , L

]

ck = 1 + 1

2
+ · · · + 1

k

In particular, for k = 0 one obtains the standard Toda lattice equations (2) written
in the form (3), t = t0. The tau-function of a solution u = u(s, t; ε), v = v(s, t; ε)
to the hierarchy is defined by

u = log
τ(s0 + ε)τ (s0 − ε)

τ 2(s0)

v = ε
∂

∂t0
log

τ(s0 + ε)

τ (s0)

x = s0 (see details in [8]). The Virasoro symmetries of the hierarchy are generated
by the operators [24]

Lm = ε2
m−1∑

k=1

k!(m− k)! ∂2

∂tk−1∂tm−k−1

+
∑

k≥1

(m+ k)!
(k − 1)!

(

sk∂sm+k + tk−1
∂

∂tm+k−1

)

+ 2
∑

k≥0

αm(k)sk
∂

∂tm+k−1
, m > 0,

L0 =
∑

k≥1

k

(

sk
∂

∂sk
+ tk−1

∂

∂sk−1

)

+
∑

k≥1

2sk
∂

∂tk−1
+ 1

ε2
s2

0 ,

L−1 =
∑

k≥1

(

tk
∂

∂tk−1
+ sk

∂

∂sk−1

)

+ 1

ε2
s0t0,

αm(0) = m!, αm(k) = (m+ k)!
(k − 1)!

m+k∑

j=k

1

j
, k > 0.

According to [38, 59, 24] for the topological solution to the extended Toda hierarchy
the tau-functions generates the Gromov–Witten invariants of P1 and their descen-
dents

log τtop(s0, t0, s1, t1, . . . ; ε2) = log τvac(s0, t0, s1 − 1, t1, . . . ; ε2) =
∑

g≥0

ε2g−2 Fg

Fg =
∑ 1

n! tα1,p1 . . . tαn,pn

∫

[M̄g,n(P1,β)]
ev∗1φα1 ∧ ψ

p1
1 ∧ · · · ∧ ev∗nφαn ∧ ψ

pn
n .



256 Boris Dubrovin

Here φ1 ∈ H 0(P1), φ2 ∈ H 2(P1) is a basis in the cohomology,

t1,p = sp, t2,p = tp,

Mg,n(P1, β) =
{
f : (Cg, x1, . . . , xn) → P1, β = degree of the map f

}

are the moduli spaces of stable maps with values in the complex projective line.

Example 23. Toda hierarchy and enumeration of ribbon graphs/triangulations of Rie-
mann surfaces. A different choice of a shift8 in the vacuum tau-function of the ex-
tended Toda hierarchy gives

log τToda
vac (s0, t0, s1, t1 − 1, s2, t2, . . . ; ε)|t0=t1=0,tk=(k+1)!λk+1;s0=x, sk=0

= x2

2ε2

(

log x − 3

2

)

+ x

2ε
log 2π − 1

12
log x + ζ ′(−1)

+
∑

g≥2

(
ε

x

)2g−2 B2g

2g(2g − 2)
+
∑

g≥0

ε2g−2Fg(x; λ3, λ4, . . .)

where B2g are Bernoulli numbers, ζ(s) the Riemann zeta-function,

Fg(x; λ3, λ4, . . .) =
∑

n

∑

k1,...,kn

ag(k1, . . . , kn)λk1 . . . λknx
h,

h = 2 − 2g −
(

n− |k|
2

)

, |k| = k1 + · · · + kn,

generate the numbers of fat graphs

ag(k1, . . . , kn) =
∑

Γ

1

#SymΓ

where

Γ = a connected fat graph of genus g with n vertices of the valencies k1, . . . , kn,

SymΓ is the symmetry group of the graph. E.g., for genus 1, one vertex of valency
4 the unique graph is shown on Fig. 1 (borrowed from [3])

So,

8 One can show that the new shift corresponds to the topological tau-function of the extended
nonlinear Schrödinger hierarchy [24]. The tau-function of the latter is obtained from the tau-
function of the extended Toda hierarchy by a permutation of times tp ↔ sp , p ≥ 0.
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Fig. 1 Fat graph of genus 1 with one vertex of valency 4

F = ε−2
[

1

2
x2
(

log x − 3

2

)

+ 6x3λ3
2 + 2x3λ4 + 216x4λ3

2λ4 + 18x4λ4
2

+ 288x5λ4
3 + 45x4λ3λ5 + 2160x5λ3λ4λ5 + 90x5λ5

2 + 5400x6λ4λ5
2

+ 5x4λ6 + 1080x5λ3
2λ6 + 144x5λ4λ6 + 4320x6λ4

2λ6 + 10800x6λ3λ5λ6

+ 27000x7λ5
2λ6 + 300x6λ6

2 + 21600x7λ4λ6
2 + 36000x8λ6

3
]

+ x

2ε
log 2π − 1

12
ζ ′(−1)− 1

12
log x + 3

2
xλ3

2 + xλ4 + 234x2λ3
2λ4

+ 30x2λ4
2 + 1056x3λ4

3 + 60x2λ3λ5 + 6480x3λ3λ4λ5 + 300x3λ5
2

+ 32400x4λ4λ5
2 + 10x2λ6 + 3330x3λ3

2λ6 + 600x3λ4λ6 + 31680x4λ4
2λ6

+ 66600x4λ3λ5λ6 + 283500x5λ5
2λ6 + 2400x4λ6

2 + 270000x5λ4λ6
2

+ 696000x6λ6
3 + ε2

[

− 1

240x2
+ 240xλ4

3 + 1440xλ3λ4λ5 + 1

2
165xλ5

2

+ 28350x2λ4λ5
2 + 675xλ3

2λ6 + 156xλ4λ6 + 28080x2λ4
2λ6

+ 56160x2λ3λ5λ6 + 580950x3λ5
2λ6 + 2385x2λ6

2 + 580680x3λ4λ6
2

+ 2881800x4λ6
3
]

+ · · · .

The proof uses Toda equations [35, 36] for the Hermitean matrix integral [3, 53]

ZN(λ; ε) = 1

Vol(UN)

∫

N×N

e−
1
ε

TrV (A) dA

=τToda
vac (s0, t0, s1, t1 − 1, s2, t2, . . . ; ε)|t0=t1=0,tk=(k+1)!λk+1;s0=x, sk=0

V (A) =1

2
A2 −

∑

k≥3

λkA
k

(87)

understood as a formal saddle point expansion near the Gaussian point λ3 = λ4 =
· · · = 0 where one has to replace [45]

N �→ x

ε
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expanding the normalizing factor

Vol(N) = 2N/2π
N2
2 ε−N2

2 + 1
12

∏N−1
k=0 k!

(related to the volume of the quotient of the unitary group U(N) over the maximal
torus [U(1)]N ) in the asymptotic series with the help of the asymptotic expansion of
Barnes G-function [2]. Observe that the solution u = u(x, t, s; ε), v = v(x, t, s; ε)
associated with the tau-function (87) can be characterized by the initial data

eu(x,0,0;ε) = x, v(x, 0, 0; ε) = 0

in agreement with the three term recursion relation

2zHn(z) = Hn+1(z)+ 2nHn−1(z)

for Hermite polynomials. For a convergent matrix integral the formal expansion
(87) coincides with the asymptotic expansion of the integral in the so-called one-cut
case, i.e., under the assumption that the large N distribution of the eigenvalues of
the Hermitean rando matrix A consists of a single interval [30, 31, 4]. The phase
transitions from the one-cut to multi-cut behavior can be considered in the general
setting of Universality Conjectures of the theory of Hamiltonian PDEs (see below).

Example 24. The Drinfeld–Sokolov construction [14] associates a hierarchy of bi-
hamiltonian integrable systems of the form (8)–(10), (13), (52) with every untwisted
Lie algebra ĝ. The associated Frobenius manifold is isomorphic [29] to the one ob-
tained in [15] (for the more general case of orbit spaces of a finite Coxeter group)
as the natural polynomial Frobenius structure on the orbit space

Mn = h/W(g)

of the Weyl group. Here n is the rank of the simple Lie algebra g, h ⊂ g is the
Cartan subalgebra. The suitably ordered central invariants of the Drinfeld–Sokolov
bihamiltonian structure for an untwisted affine Lie algebra ĝ are given by the for-
mula [29]

ci = 1

48
〈α∨i , α∨i 〉g, i = 1, . . . , n, (88)

where α∨i ∈ h are the coroots of the simple Lie algebra g. Here 〈 , 〉g is the normal-
ized Killing form,

〈a, b〉g := 1

2h∨
tr(ad a · ad b), (89)

where h∨ is the dual Coxeter number. Thus, the Drinfeld–Sokolov hierarchy is
equivalent to an integrable hierarchy of the topological type only for simply laced
simple Lie algebras g.
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We will not discuss here other examples of integrable hierarchies of the topologi-
cal type. For convenience of the reader we give a list of some important examples9 of
Frobenius manifolds and the associated known, but not only, integrable hierarchies
of the topological type.10 Some of the applications to Gromov–Witten invariants
and oscillatory asymptotics mentioned in this table still exist only as conjectures.

Recall that the potential of a generic semisimple Frobenius manifold of dimen-
sion n ≥ 3 is expressed via solutions of certain monodromy preserving deformation
equations (for n = 3 reducing to Painlevé-VI transcendents). So, the coefficients
of a generic integrable hierarchy of the topological type will be expressed via these
transcendents. The hierarchies shown in Table 1 correspond to particular solutions
to the monodromy preserving deformation equations reducing to classical special
functions.

Table 1 List of some Frobenius manifolds and the associated integrable hierarchies of the topo-
logical type

n = 1 F = 1
6v

3 KdV

n = 2 F = 1
2uv

2 + u4 Boussinesq

n = 2 F = 1
2uv

2 + eu Toda

n = 2 F = 1
2uv

2 + 1
2u

2(log u− 3
2 ) NLS

n = 2 F = 1
2uv

2 − Li3(e
−u) Ablowitz–Ladik

n = 3 F = 1
2 (uw

2 + u2v)+ 1
6v

2w2 + 1
60w

5 Drinfeld–Sokolov hierarchy of A3 type,
intersection theory on the moduli spaces of
“spin 3 curves” [70, 32]

n = 3 F = 1
2 (uv

2 + vw2)− 1
24w

4 + 4weu A generalization of Toda hierarchy [7] for a
difference Lax operator of bidegree (2,1);
orbifold Gromov–Witten invariants of an
orbicurve with one point of order 2 [55]

n = 3 F = 1
2 (τv

2 + vu2)− iπ
48 u

4E2(τ ) Higher corrections to elliptic Whitham
asymptotics, the KdV case

n = 4 F = i
4π τv

2 − 2uvw Higher corrections to elliptic Whitham

+ u2 log[ π
u

θ ′1(0|τ)
θ1(2w|τ) ] asymptotics, the Toda/NLS case

Remark 25. Very recently the theory of Gromov–Witten invariants of orbicurves
with polynomial quantum cohomology has been addressed by P. Rossi [61]. (Pre-
viously the theory of Gromov–Witten invariants of the same orbicurves has been
analyzed by A. Takahashi from the point of view of homological mirror symmetry

9 We do not consider here an interesting example of the hierarchy, obtained by a nonstandard
reduction [40] of the 2D Toda involved in the description of the equivariant GW invariants [60]
of P1. It remains to better understand the place of this hierarchy in our general framework.
10 Strictly speaking the example of Ablowitz–Ladik hierarchy does not fit into the general scheme
as the function F does not satisfy the quasihomogeneity condition. Nevertheless, the Ablowitz–
Ladik hierarchy possesses many properties of integrable hierarchies of the topological type. We
will consider this example in a separate publication.
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[63].) Rossi proved that for all these orbicurves11 the associated Frobenius manifold
coincides with the one defined by Y. Zhang and the author in [22] on the orbit spaces
of simply laced extended affine Weyl groups. It would be interesting to obtain a re-
alization of the associated integrable hierarchies of the topological type and relate it
with the higher genus orbifold Gromov–Witten invariants and their descendents.

At the end of this section we will explain a connection [26] of the theory of inte-
grable hierarchies of the topological type with A. Givental’s theory of the so-called
total descendent potential [41] associated with an arbitrary semisimple Frobenius
manifold.

Let H be a n-dimensional linear space equipped with a symmetric nondegen-
erate bilinear form 〈 , 〉. Denote H the Givental symplectic space of the H -valued
functions on the unit circle |z| = 1 that can be extended to an analytic function in
an annulus. A symplectic structure on H is defined by the formula

ω(f, g) := 1

2πi

∮

|z|=1
〈f (−z), g(z)〉dz. (90)

A natural polarization
H = H+ ⊕ H− (91)

is given by the subspaces H+/H− of functions that can be continued analytically
inside/outside the unit circle (the functions in H− must also vanish at z = ∞).
Explicitly the canonical coordinates are given by the components qα,k , pα,k of the
coefficients of the Laurent expansion

f (z) = · · · − p∗2z2 + p∗1z− p∗0 +
q0

z
+ q1

z2
+ · · · . (92)

Here we consider qk ∈ H , pk ∈ H ∗,

qk = qα,keα, pk = pα,ke
α, (93)

e1, . . . , en is a basis in H , e1, . . . , en is the dual basis in H ∗.
Any matrix valued function G(z) on the unit circle |z| = 1 with values in Aut(H)

satisfying
G∗(−z)G(z) = 1 (94)

defines a symplectomorphism

G : H → H, f (z) �→ G(z)f (z), ω(Gf,Gg) = ω(f, g). (95)

Quantising the symplectomorphism (95) one obtains a quantum canonical trans-
formation Ĝ acting on the Fock space S•H− of functionals on the space H− of
vector-valued functions

11 The class of orbicurves considered in [61] includes the orbicurves with two singularities. For
this subclass the relationship with the extended affine Weyl groups of A type has been established
by T. Milanov and H.-H. Tseng [55].
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q(z) = q0

z
+ q1

z2
+ · · · , qk ∈ H, |z| > 1 (96)

analytic on the exterior part of the unit circle. The Fock space can be realized by
polynomials in an infinite sequence of variables t i,k , i = 1, . . . , n, k ≥ 0. The
operators q̂i,k act on the Fock space by multiplication by ε−1t i,k and the operators
p̂i,k act by differentiation

q̂i,kf (t) = ε−1t i,kf (t), p̂i,k = ε
∂

∂t i,k
f (t). (97)

The quantization of Ĝ can be easily achieved in case the logarithm g(z) = logG(z)

is well defined. Indeed, let us consider the quadratic Hamiltonian

Hg = 1

4πi

∮

|z|=1
〈f (−z), g(z)f (z)〉dz = 1

2
pAp∗ + q∗Bp∗ + 1

2
q∗Cq (98)

for some semiinfinite matrices A, B, C. The symplectomorphism G is the time 1
shift generated by the Hamiltonian Hg . Put

Ĝ := eĤg (99)

where

Ĥg =: Hg(p̂, q̂) := 1

2
ε2 ∂

∂t
A

(
∂

∂t

)∗
+ t∗B

(
∂

∂t

)∗
+ 1

2ε2
t∗Ct (100)

is the standard normal ordering quantization of the quadratic Hamiltonian.
A more general situation occurs when the function G(z) admits a Riemann–

Hilbert factorization

G(z) = G−1
0 (z)G∞(z), |z| = 1 (101)

where the matrix valued functions G0(z) and G∞(z) are analytic and invertible for
|z| < 1 and 1 < |z| ≤ ∞ resp. The solution, if exists, is uniquely determined
by the normalization condition G∞(∞) = 1. The logarithms g0(z) = logG0(z)

and g∞(z) = logG∞(z) are obviously well defined. Therefore one obtains the
quantized operators Ĝ0 and Ĝ∞ by applying the formula (99). Put

Ĝ := γGĜ
−1
0 Ĝ∞ (102)

for a suitable multiplier γG.
The Givental’s formula expresses the so-called total descendent potential as the

result of action of a suitable quantum canonical transformation onto a particular
element of the (completed) Fock space. The latter is chosen in the form of a product
of n copies of vacuum tau-functions (84) of the KdV hierarchy

τ vac
KdV(t

1; ε2) . . . τ vac
KdV(t

n; ε2). (103)
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Here
ti = (t i,0, t i,1, t i,2, . . .), i = 1, . . . , n.

The last step of the Givental’s construction is in the choice of the symplectomor-
phism G(z). At this point one has to use the parametrization of semisimple Frobe-
nius manifolds by the data of certain Riemann–Hilbert problem [17, 18]. Reducing
the Riemann–Hilbert problem to the standard form (101) one obtains a matrix val-
ued function Gw(z) on the unit circle satisfying (94) depending on the point w ∈ Mn

of the Frobenius manifold, and also depending on n(n− 1)/2 monodromy data (the
moduli of semisimple Frobenius manifolds; see details in [18]). Givental proves that
the result of action of the quantized canonical transformation Ĝw on the vector (103)
is well defined in every order in ε. Moreover, he proves that the function

Ĝwτ
vac
KdV(t

1; ε2) . . . τ vac
KdV(t

n; ε2) (104)

does not depend on the choice of the semisimple point w when choosing

γG = τ−1
I (w)

the multiplier in the quantization formula (102).

Theorem 26. For an arbitrary semisimple Frobenius manifold the function (104) is
the vacuum tau-function for the integrable hierarchy of the topological type associ-
ated with the Frobenius manifold. The Givental’s total descendent potential is the
tau-function of the topological solution to the hierarchy obtained by the dilaton shift
(82)

Proof is based on the representation of the Givental’s formula in the form

Ĝwτ
vac
KdV(t

1; ε2) . . . τ vac
KdV(t

n; ε2)

= exp

⎡

⎣ 1

ε2
F0 +

∑

g≥1

ε2g−2Fg(v; vx, . . . , v(3g−2))

⎤

⎦

where

vi = ηij
∂2 F0

∂x∂tj,0

and using validity of the Virasoro constraints for this function proven in [41]. The
theorem then follows from the uniqueness of the solution to the system of Virasoro
constraints [25].

Corollary 27. Consider the semisimple Frobenius manifold Mn
PN = QH ∗(PN),

n = N + 1, given by the quantum cohomology of the N -dimensional complex pro-
jective space. Then the total Gromov–Witten potential F PN

(t; ε2) (see the formula
(105) below) is equal to the logarithm of the topological tau-function of the inte-
grable hierarchy of the topological type associated with Mn

PN .
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Recall (see above) that for N = 0 the hierarchy in question coincides with KdV,
for N = 1 this is the extended Toda hierarchy; starting from N = 2 the integrable
hierarchy is a new gadget of the theory of integrable systems.

Remark 28. The action of the Givental operator Ĝ∞(w) on the product of topologi-
cal tau-functions

Ĝ∞(w)τ
top
KdV(t

1; ε) . . . τ top
KdV(t

n; ε)
is also well defined. Moreover, the result is a power series with respect to the new
time variables. The coefficients of these power series depend on the point w ∈ M

of the Frobenius manifold. These series play an important role in the classification
of semisimple cohomological field theories obtained by C. Teleman [64].

The above considerations suggest that the intrinsic structure of integrable hier-
archies of the topological type is closely related to the topology of the Deligne–
Mumford spaces. Let us formulate a more precise conjecture about such a relation.
Among all differential equations for the total Gromov–Witten potential

F X(t; ε2) =
∑

g≥0

ε2g−2 F X
g (t) (105)

F X
g (t) =

∑

m

∑

β∈H2(X;Z)

1

m! t
α1,p1 . . . tαm,pm〈τp1(φα1) . . . τpm(φαm)〉g,β

× 〈τp1(φα1) · · · τpm(φαm)〉g,β
:=
∫

[Xg,m,β ]virt
ev∗1(φα1) ∧ c

p1
1 (L1) ∧ · · · ∧ ev∗m(φαm) ∧ c

pm

1 (Lm)

Xg,m,β :=
{
f : (Cg, x1, . . . , xm

)→ X, f∗[Cg] = β ∈ H2(X;Z)
}

of a smooth projective variety X the universal identities are of particular interest.
By definition they are those relations between Gromov–Witten invariants and their
descendents

〈τp1(φα1) . . . τpm(φαm)〉g,β
that do not depend on X (cf. [49, 50]). Besides the already familiar WDVV (in
genus 0) there are topological recursion relations for the descendents, and also the
Getzler’s universal identities [37] for genus 1 GW invariants etc. An example of
non-universal differential equations for F X is given by the Virasoro constraints.
The coefficients of the Virasoro operators depend on the classical cohomology ring
of X together with the first Chern class c1(X).

Let us proceed to formulation of our main conjecture that relates the theory of in-
tegrable PDEs with the theory of Gromov–Witten invariants and their descendents.
For a smooth projective X denote H alg(X) ⊂ H ∗(X) the subspace generated by
(k, k) forms (we do not impose the restriction H odd(X) = 0). Introduce the dif-
ferential ideal I alg

GW(n) generated by polynomial identities for the derivatives of the
form

〈〈τp1(φα1) . . . τpm(φαm)〉〉g =
∂m

∂tα1,p1 . . . ∂tαm,pm
F X

with
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φαi ∈ H alg(X), i = 1, . . . , m

for all m ≥ 0 valid for all X with dimH alg(X) = n.
Another differential ideal IKdV(n) is generated by polynomial differential equa-

tions for the logarithmic derivatives of the tau-function τtop valid for an arbitrary
n-dimensional semisimple Frobenius manifold Mn.

Conjecture 29. For any n ≥ 0

IKdV(n) = I
alg
GW(n).

5 Critical Behaviour in Hamiltonian PDEs, the Dispersionless
Case

The new integrable hierarchies described in the previous section are written as in-
finite formal expansions in ε. For practical applications of these PDEs one has to
truncate them at some order in ε. The natural question arises: how do the properties
of solutions depend on the truncation order? What part of these properties is univer-
sal, i.e., independent of the choice of a generic solution and possibly, on the choice
of a Hamiltonian PDE?

The idea suggested by the author in [19] is to classify the types of critical behav-
ior of solutions to Hamiltonian PDEs. By definition this is the behavior of a solution
to the Hamiltonian PDE near the points of weak singularities (also called gradient
catastrophes) of the dispersionless limit of the PDE. The idea of universality sug-
gests that, up to simple transformations there exists only finite number of types of
critical behavior.

Fig. 2 Critical behavior in the KdV equation, cf. [71]

In the present section we will briefly describe the local structure of gradient
catastrophes for the systems of first order Hamiltonian PDEs. In the next section
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we will formulate and discuss the universality conjectured for Hamiltonian pertur-
bations of these PDEs.

Fig. 3 Critical behavior in the focusing NLS equation; the graph of u = |ψ |2 is shown

Solutions to hyperbolic systems typically have a finite life time. Let us begin with
considering the simplest situation of the scalar nonlinear transport equation

vt + a(v)vx = 0. (106)

As in Example 3 (106) can be considered as an integrable Hamiltonian system with
the Hamiltonian and Poisson bracket of the form

H 0
f =

∫
f (v) dx, f ′′(v) = a(v), {v(x), v(y)} = δ′(x − y). (107)

The solution v = v(x, t) to the Cauchy problem v(x, 0) = v0(x) for (106) exists till
the time t = t0 of gradient catastrophe. At this point x = x0, t = t0, v = v0,

v(x, t) → v0, vx(x, t) →∞ for (x, t) → (x0, t0), t < t0.

The following statement is well known.

Theorem 30. Up to shifts, Galilean transformations and rescalings near the point
of gradient catastrophe the generic solution approximately behaves as the root v =
v(x, t) of cubic equation

x = vt − v3

6
(bifurcation diagram of A3 singularity).

Proof The solution can be found by the method of characteristics:

x = a(v)t + b(v) (108)

for an arbitrary smooth function b(v). At the point of gradient catastrophe one has
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x0 = a(v0)t0 + b(v0)

0 = a′(v0)t0 + b′(v0) (109)

0 = a′′(v0)t0 + b′′(v0)

(an inflection point). We impose the genericity assumption

κ := − (a′′′(v0)t0 + b′′′(v0)
) $= 0. (110)

Introduce the new variables

x̄ = x − a0(t − t0)− x0

t̄ = t − t0

v̄ = v − v0.

Here a0 = a(v0), a′0 := a′(v0) etc. Rescaling

x̄ �→ λx̄, t̄ �→ λ
2
3 t̄ , v̄ �→ λ

1
3 v̄, (111)

substituting in x = a(v)t+b(v) and expanding at λ → 0 one obtains, after division
by λ

x̄ = a′0 t̄ v̄ −
1

6
κv̄3 +O

(
λ

1
3

)
.

Similar arguments can be applied to the two component systems. We will con-
sider here only the case of the nonlinear wave equation [20]

utt − ∂2
xP

′(u) = 0 (112)

for a given smooth function P(u). Equation (112) is linear for a quadratic function
P(u); we assume therefore that

P ′′′(u) $= 0.

The system (50) can be written in the Hamiltonian form

ut = ∂x
δH

δv(x)

vt = ∂x
δH

δu(x)

(113)

with the Hamiltonian

H =
∫ [

1

2
v2 + P(u)

]

dx. (114)

The associated Poisson bracket is standard (see (14))

{u(x), v(y)} = δ′(x − y). (115)
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The system is hyperbolic on the domain of convexity of P(u),

(u, v) ∈ R
2 such that P ′′(u) > 0 (116)

and elliptic when P(u) becomes concave. Denote r± the Riemann invariants of the
system,

r± = v ±Q(u), where Q′(u) = √P ′′(u). (117)

The equations (28) for the conserved quantities for (113) reduce to

fuu = P ′′(u)fvv. (118)

The generic solution (u(x, t), v(x, t)) can be locally determined from the implicit
function equations

x = fu(u, v)

t = fv(u, v)
(119)

The points (x0, t0, u0, v0) of catastrophe are determined from the system

x0 = fu(u0, v0)

t0 = fv(u0, v0)

0 = f 2
uv(u0, v0)− P ′′(u0)f

2
vv(u0, v0)

⎫
⎪⎪⎬

⎪⎪⎭
. (120)

Let us first consider the hyperbolic catastrophe, P ′′(u0) > 0. Let (x0, t0, u0, v0)

be the first catastrophe, i.e., the solution is smooth for t < t0 for sufficiently small
|x − x0|. At a generic critical point only one of the Riemann invariants blows up.
Let it be r−. Introduce the shifted characteristic variables

x̄± = (x − x0)±
√
P ′′(u0)(t − t0) (121)

and shifted Riemann invariants

r̄± = r± − r±(u0, v0).

Theorem 31. Up to rescalings near the first point of hyperbolic gradient catastro-
phe the generic solution to the nonlinear wave equation approximately behaves as
the solution to the system

x̄+ = r̄+

x̄− = r̄+r̄− − 1

6
r̄3−.

(122)

Observe that (122) is one of the normal forms of singularities of smooth maps
R

2 → R
2 classified by H. Whitney in [67].
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Let us now consider elliptic critical points (120), P ′′(u0) < 0. In this case the
Riemann invariants (117) are complex conjugate. So they have a simultaneous blow
up. Therefore the critical points are located at isolated points (x0, t0) of the (x, t)

plane. In order to describe the local structure of the generic solution near the critical
point let us introduce complex variables

z = (x − x0)+ ic0(t − t0), w = (v − v0)+ ic0(u− u0) (123)

where
c0 =

√−P ′′(u0).

Theorem 32. Near the point of elliptic gradient catastrophe the generic solution to
the nonlinear wave equation approximately behaves as the solution to the complex
quadratic equation

z = 1

2
a0w

2, a0 = fuvv(u0, v0)+ ic0fvvv(u0, v0) $= 0. (124)

Separating the real and imaginary parts of (124) one obtains a description of the
critical behavior (124) in terms of the so-called elliptic umbilic catastrophe [65].

Similar description can be obtained for the critical behavior of solutions to any
of the commuting flows

us = ∂xfv(u, v)

vs = ∂xfu(u, v)
(125)

where f = f (u, v) is an arbitrary solution to (118). The details can be found in
[20].

Example 33. Consider the (focusing) nonlinear Schrödinger equation

iψt + 1

2
ψxx + |ψ |2ψ = 0 (126)

written in the coordinates

u = |ψ |2, v = 1

2i

(
ψx

ψ
− ψ̄x

ψ̄

)

,

i.e.,

ut + (uv)x = 0

vt + vvx − ux = 1

4

(
uxx

u
− 1

2

u2
x

u2

)

x

.

The dispersionless limit

ut + (uv)x = 0

vt + vvx − ux = 0
(127)
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is an infinitesimal symmetry of the nonlinear wave equation with

P(u) = −u(log u− 1).

The system (127) is of elliptic type due to obvious inequality u > 0. So its generic
critical points have the form (124).

For n ≥ 3 it is not difficult to see that critical points of a generic solution to any
integrable first order quasilinear system can be essentially described by the same
singularities of the types (122) or (124). At the moment we do not have a classifica-
tion of the singularity types for solutions to non integrable quasilinear systems.

6 Universality in Hamiltonian PDEs

In the previous section we classified the types of generic critical behavior of solu-
tions to dispersionless Hamiltonian PDEs of low order. In the present section we
will study the effects of higher order Hamiltonian perturbations. It turns out that,
the above list of types of critical behavior given in terms of algebraic functions has
to be replaced by another list given in terms of particular Painlevé transcendents and
their higher order generalizations.

Let us begin with describing one of these special functions.
Consider the following fourth order ODE for the function U = U(X) depending

on T as on the parameter

X = T U −
[

1

6
U3 + 1

24

(
U ′2 + 2UU ′′)+ 1

240
UIV

]

. (128)

Equation (128) is usually considered as the fourth order analogue of the classi-
cal Painlevé-I equation PI (see below); it is denoted P 2

I . The following result was
proved by T. Claeys and M. Vanlessen [10].

Theorem 34. For any T ∈ R there exists a solution to (128) real and smooth for all
real X. For large |X| the solution has the asymptotic behaviour

U ∼ −(6X)1/3 , |X| → ∞. (129)

Actually, the solution of interest has been constructed for all real X and T by
solving certain Riemann–Hilbert problem depending on X and T as on the parame-
ters. The main difficulty was to prove existence of a solution to the Riemann–Hilbert
problem for all (X, T ) ∈ R

2. This solution will be denoted U(X, T ).
The conjectural existence of the smooth solution to the ODE4 has been first dis-

cussed (for the particular value T = 0) by É. Brézin, G. Marinari, A. Parisi [6]
and by G. Moore [57] in the setting of the theory of random matrices. Within the
class (129) the uniqueness can be established using results of G. Moore [57] and A.
Menikoff [54].
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Fig. 4 The solution U(X, T ) to the ODE (128) for two instants of time T

Importance of the smooth solution to the ODE4 for the so-called Gurevich–
Pitaevsky solution to KdV was discussed by B. Suleimanov [62] and V. Kudashev
and B. Suleimanov [48].

Remark 35. A somewhat stronger conjecture was formulated by the author in [19].
It says that for any real T there exists a unique real solution to (128) smooth for all
real X. No assumptions about the asymptotic behavior are needed. This conjecture
remains open.

We are now ready to formulate, following [19], the Universality Conjecture about
critical behavior of solutions to a generic Hamiltonian perturbations

ut + ∂x
δHε

f

δu(x)
≡ ut + a(u)ux +O(ε2) = 0, Hε

f = H 0
f +O(ε2) (130)

of the scalar hyperbolic equation (106). Recall that all these perturbations have been
classified in (24). Consider the solution u(x, t; ε) to (130) that tends to a solution
v(x, t) as ε → 0 to the unperturbed equation (106) for sufficiently small t < t0.
Assume that v(x, t) is smooth for t < t0 for all x with sufficiently small x − x0
having a point of gradient catastrophe at (x = x0, t = t0, v = v0).

Conjecture 36. (1) For sufficiently small ε > 0 and |x − x0| there exists a positive δ

such that the solution u(x, t; ε) can be locally smoothly extended for t < t0 + δ.
(2) Near the point (x0, t0) it behaves in the following way

u 5 v0 +
(
ε2c0

κ2

)1/7

U

(
x − a0(t − t0)− x0

(κc3
0ε

6)1/7
; a′0(t − t0)

(κ3c2
0ε

4)1/7

)

+O
(
ε4/7

)
(131)

where
a0 = a(v0), a′0 = a′(v0),

c0 and κ are some nonzero constants, U(X, T ) the solution to (128) described in
Theorem 34.
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We will not reproduce here the arguments of [19] supporting this conjecture. It
was analyzed numerically by T. Grava and C. Klein [42]. A rigorous proof of the
conjecture for solutions to the KdV equation with analytic rapidly decreasing initial
data was recently obtained by T. Claeys and T. Grava [9] by using the so-called
steepest descent method, due to P. Deift and X. Zhou (see in [13]).

Remarkably, the same special function U(X, T ) appears in the description of the
critical behavior of solutions to second order Hamiltonian systems near a hyperbolic
critical point. We will give a sketch of the following Universality Conjecture for
Hamiltonian perturbations of the nonlinear wave equation (112) inspired by results
of [20].

Conjecture 37. Let r± and x± be as in (117), (121). Then for a solution to a generic
Hamiltonian perturbation of (112) near the generic critical point of the form (122)
one has

r+ 5 r0+ + cx+ + α+ε4/7U ′′ (aε−6/7x−; bε−4/7x+
)
+ O

(
ε6/7

)

r− 5 r0− + α−ε2/7U
(
aε−6/7x−; bε−4/7x+

)
+ O

(
ε4/7

) (132)

where U = U(X; T ) is the same solution described in Theorem 34.

Proof of this conjecture remains an open problem. Observe recent result of [11]
about asymptotics in Hermitean random matrices near singular edge points: for the
recurrence coefficients

an(s, t) = a0
n +

1

2
cn−2/7U(c1n

6/7s, c2n
4/7t)+O

(
n−3/7

)

bn(s, t) = b0
n + cn−2/7U(c1n

6/7s, c2n
4/7t)+O

(
n−3/7

)
.

This result support Conjecture 37 for the case of solutions to equations of Toda
hierarchy with some particular initial data. Also numerical results obtained in the
beginning of ’90s in the theory of random matrices (see Fig. 5) qualitatively support
Conjecture 37.

Fig. 5 Oscillatory behavior of correlation functions in the random matrix models, after [46]. The
oscillatory zone corresponds to the two-cut region
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We will now introduce another special function needed for the description of
the critical behavior near elliptic critical points. The special function in question
is defined as a particular solution to the classical Painlevé-I (PI ) equation for the
function W = W(Z), Z ∈ C

W ′′ = 6W 2 − Z. (133)

It is known that any solution to PI is a meromorphic function on the complex
plane. The following result was proved in 1913 by P. Boutroux [5].

Theorem 38. (1) Poles of a generic solution to PI accumulate along five rays

argZ = 2πn

5
, n = 0,±1,±2. (134)

(2) For any three consecutive rays there exists a unique so-called tritronquée
solution such that the lines of poles truncate along these three rays for large |Z|.

Let us consider the tritronquée solution W0(Z) associated with the triple of rays
(134) with n = 0 and n = ±1. Due to Boutroux theorem this solution has at most
finite number of poles in the sector

|argZ| < 4π

5
− δ

for any positive δ. In [28] arguments were found suggesting the following

Conjecture 39. The tritronquée solution W0(Z) is holomorphic in the sector

|argZ| < 4π

5
. (135)

Fig. 6 The tritronquée solution W(Z) to the PI equation in the sector |argZ| < 4π
5
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We are now ready to formulate the Universality Conjecture for the critical behav-
ior of solutions to Hamiltonian perturbations to the nonlinear wave equation (112)
near a generic elliptic gradient catastrophe point.

Conjecture 40. Let w and z be as in (123). Then for a solution to a generic Hamil-
tonian perturbation of (112) near the generic critical point of the form (124) one
has

w 5 w0 + αε2/5W0

(
ε−4/5z

)
+ O

(
ε4/5

)
(136)

for some nonzero complex constants α, β depending on the choice of the solution.

The complex constant β is such that the argument of the tritronquée solution
W0(Z) belongs to the sector | argZ| < 4π

5 for any x ∈ R for sufficiently small
|t − t0|. The conjecture first appeared in [28] in the description of the critical behav-
iour in the focusing NLS equation (127). It remains completely open, as well as the
previous conjecture about the tritronquée solution to PI .
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Lattice Supersymmetry from the Ground Up

Paul Fendley and Kareljan Schoutens

Abstract This talk summarizes a series of papers defining and analyzing lattice
models with supersymmetry. These models describe strongly-interacting spinless
fermions hopping on any lattice or graph. Computing the Witten index and the co-
homology of the supersymmetry generator Q allows us to understand a great deal
about the ground state. In all one-dimensional and some two-dimensional cases this
allows the number and density of the ground states to be found exactly. In two di-
mensions and up, the ground-state entropy is extensive for generic lattices.

Supersymmetry is an exceptionally powerful theoretical tool. As thousands of
papers have demonstrated, exact computations can often be done in supersymmetric
field theory and string theory, even when the theories are strongly interacting. In a
series of papers [5, 4, 6, 3], we develop a new tool: a lattice model with sypersym-
metry. This model can be defined on any lattice in any dimension.

In our models the supersymmetry is akin to the “spacetime” supersymmetry aris-
ing in particle physics: the algebra of the supersymmetry generators also involves
the Hamiltonian as well. Since these models are defined on the lattice, the super-
symmetry is not that of a full Lorentz-invariant supersymmetric field theory, since
that supersymmetry algebra involves translations as well.

Our strategy is thus much more analogous to that used in condensed matter
physics than that of particle physics. Instead of picking some Lorentz-invariant
spacetime supersymmetric field theory and discretizing it, we introduce simple lat-
tice models whose superalgebra defines the Hamiltonian. By construction, these
models are strongly interacting, but because of the supersymmetries, we can then
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derive exact and rigorous results for the ground state. We find a wide variety of
interesting behavior, some of which I will outline here.

The Hamiltonian we construct has N = 2 supersymmetry, meaning that it com-
mutes with two nilpotent fermionic generators denoted Q and Q†. We require that
Q is nilpotent: Q2 = (Q†)2 = 0. This means that both Q and Q† commute with
the Hamiltonian H defined by

H = {Q,Q†}. (1)

Such a Hamiltonian has eigenvalues E ≥ 0. All states |g〉 with E = 0 must be
singlets: Q|g〉 = Q†|g〉 = 0. Conversely, all singlets must have E = 0. All the
other eigenstates of H can be decomposed into doublets under the supersymmetry,
and conversely any doublet representation is an eigenstate. This is simple to prove:
a doublet consists of two states |s〉,Q|s〉, where Q†|s〉 = 0. It follows from the
definition of H and the nilpotency of Q that both of these states are eigenstates of
H with the same eigenvalue.

To define a supersymmetric lattice model therefore requires only finding an fermi-
onic operator Q which squares to zero. However, most such models will be trivial,
too complicated, or have non-local interactions. An example of the first comes from
considering degrees of freedom defined by allowing a spinless fermion on the sites
i of any lattice or graph. The fermion is created by the operator c†

i obeying the usual

anticommutator {ci, c†
j } = δij . The space of states of the theory is given by oper-

ating with the c
†
i on the vacuum. Then it is easy to check that the operator

∑
i c

†
i

indeed squares to zero. However, the resulting Hamiltonian is trivial: H is simply
the number of sites.

Thus we must make the model a little more complicated to get something non-
trivial. Our papers mainly deal with the case where the Hilbert space remains that
of a single species of spinless fermion, but with the additional restriction that the
fermions have hard cores. This means that fermions are not allowed on neighboring
sites. We define the projection operator P〈i〉 to be the operator which requires all
sites neighboring i to be empty:

P〈i〉 =
∏

j next to i

(1 − c
†
j cj ) (2)

Thus entire space of states is built up by acting with all the c
†
i P〈i〉. The supersym-

metry operators are then defined by

Q =
∑

i

c
†
i P〈i〉, Q† =

∑

i

ciP〈i〉. (3)

It is easy to verify that Q2 = 0: the only potentially non-zero terms are of the form
c

†
i P〈i〉c†

jP〈j〉 for i and j nearest neighbors, but in this case P〈i〉c†
j = 0.

With these supercharges, the Hamiltonian is
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H =
∑

i

∑

j next to i

P〈i〉c†
i cjP〈j〉 +

∑

i

P〈i〉 (4)

where we used the fact that (P〈i〉)2 = (P〈i〉). The first term in the Hamiltonian
allows fermions to hop to neighboring sites on the lattice, with the projectors en-
suring the hard-core repulsion. The second term includes a chemical potential and
a repulsive potential for fermions two sites from each other. The latter term has a
more conventional form on a lattice where every site has z nearest neighbors:

∑

i

P〈i〉 = N − zF +
∑

i

V〈i〉 (5)

where V〈i〉 + 1 is the number of particles adjacent to i, unless there are none, in
which case V〈i〉 = 0. The operator F = ∑

i d
†
i di counts the number of fermions.

So in addition to the hard core, the Hamiltonian includes a hopping term, a constant
(which we keep to ensure ground states have E = 0), a chemical potential z, and
repulsive interactions between fermions two sites apart. Note that this model has
have a fermion-number symmetry generated by

F =
∑

i

c
†
i ci ,

so that [F,Q] = Q. Thus the fermion-number generator F indeed counts the num-
ber of fermions.

We have analyzed this model on a one-dimensional chain in depth. It has the
additional nice feature of being integrable [4], and the supersymmetry turns out to
complement the integrability nicely. The model turns out to be closely related to the
XXZ spin chain at anisotropy Δ = −1/2. In fact, the ground state of our model
in one dimension has a number of striking properties, closely related to those aris-
ing in studies of the Razumov-Stroganov conjecture; see [1] and references therein.
Even though Lorentz invariance was not required initially, it turns out to be a con-
sequence: the field theory describing the continuum limit is the first N = (2, 2)
superconformal minimal model [5]. However, other one-dimensional models with
supersymmetry discussed in [4] do not always yield Lorentz-invariant field theories.

We have already noted several of the consequences of supersymmetry: positive
energy and excited-state pairing. To go further, we use two mathematical tools to
study the E = 0 ground states of (4). The first is the Witten index W [10]. It is
similar to the partition function, but includes a minus sign for each fermion:

W = tr
[
(−1)F e−βH

]
. (6)

W is a lower bound on the number of ground states: it is the difference of the number
of bosonic ground states and the number of fermionic ground states. This is because
all energy eigenstates with E > 0 form boson/fermion doublets of the same energy
E but opposite (−1)F . The states in a doublet contribute to W with opposite signs
and cancel, leaving only the sum of (−1)F over the ground states.
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This argument shows that W is independent of β, so we can evaluate it in the
β → 0 limit, where every state contributes with weight (−1)F . We compute this
by dividing the lattice into two sublattices S1 and S2; we fix a configuration on S1,
and sum (−1)F for the configurations on S2. Then we sum the results over the
configurations on S1. For a periodic chain with N = 3j sites, we take S2 to be every
third site, and the remaining sites S1. Then the sum over configurations on any site
on S2 vanishes unless at least one of the adjacent sites on S1 is occupied.

∑

�=◦,•
(◦�◦) = ◦ • ◦ + ◦ ◦ ◦ = (−1)+ 1 = 0.

Because of the hard-core restriction on the fermions and the periodic boundary con-
ditions, there are only two such configurations:

|α〉 ≡ · · · •� ◦ •� ◦ •� ◦ •� ◦ •� ◦ •� ◦ •� ◦ · · ·
|γ 〉 ≡ · · · ◦� • ◦� • ◦� • ◦� • ◦� • ◦� • ◦� • · · · (7)

where the square represents an empty site on S2. Both |α〉 and |γ 〉 have f = N/3,
so W = 2(−1)f , requiring that are at least two ground states.

The second tool we use is the computation of the cohomology HQ of the op-
erator Q. This tool is even more powerful, allowing us to obtain not just a lower
bound, but rather the precise number of ground states, and the fermion number of
each. The cohomology is the vector space of states which are annihilated by Q

but which are not Q of something else (in mathematical parlance, these states are
closed but not exact) [2]. Since Q2 = 0, any state which is Q of something is anni-
hilated by Q. Two states |s1〉 and |s2〉 are said to be in the same cohomology class
if |s1〉 = |s2〉 +Q|s3〉 for some state |s3〉.

The non-trivial cohomology classes are in one-to-one correspondence with the
E = 0 ground states [5]. To see this, consider an energy eigenstate |E〉 with eigen-
value E > 0. If Q|E〉 $= 0, then it is not in any cohomology class. If Q|E〉 = 0
but H |E〉 $= 0, then |E〉 = Q(Q†|E〉/E). This is in the trivial cohomology class,
so only the E = 0 ground states have non-trivial cohomology. Because they are
annihilated by both Q and Q†, linearly independent E = 0 ground states must be in
different cohomology classes. Precisely, the dimension of the vector space of ground
states (the “number” of ground states) is the same as that of the cohomology. Since
F commutes with the Hamiltonian, the cohomology class and the corresponding
ground state have the same fermion number.

We find the exact number of ground states by computing the cohomology HQ by
using a spectral sequence. A useful theorem is the “tic-tac-toe” lemma of Ref. [2].
This says that under certain conditions, the cohomology HQ for Q = Q1 +Q2 is
the same as the cohomology of Q1 acting on the cohomology of Q2. In an equa-
tion, HQ = HQ1(HQ2) ≡ H12. As with our computation of W , H12 is found by
first fixing the configuration on all sites on the sublattice S1, and computing the co-
homology HQ2 . Then one computes the cohomology of Q1, acting not on the full
space of states, but only on the classes in HQ2 . A sufficient condition for the lemma
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to hold is that all non-trivial elements of H12 have the same f2 (the fermion number
on S2).

Having introduced the mathematical tools necessary, we now turn to the study of
our spinless-fermion model on two-dimensional lattices. We find that generically,
there is an extensive ground state entropy: the number of ground states increases
exponentially with the size of the system. This indicates that the system is frustrated;
we will explain how in the following.

The systematics of the one-dimensional case quickly extend to lattices of type Λ3,
which are obtained from any lattice (or even graph) Λ by putting two additional sites
on every link. Letting S1 be the original sites of Λ and S2 the added sites, the only
states in HQ2 and H12 are the two where S1 is completely full, and completely
empty. The first gives an E = 0 ground state with f = NΛ (the number of sites
of Λ), while the latter gives an E = 0 state with f = LΛ (the number of links in Λ),
with a possible exception when LΛ = NΛ − 1. When Λ is the square lattice, the
two ground states on Λ3 have filling f = N/5 and f = 2N/5. Lattices of type Λ3
are the only two-dimensional ones we know of where the number of ground states
does not grow with the size of the lattice.

Another exceptional case is the octagon-square lattice on the right of Fig. 1. We
take L rows and M columns of squares (hence N = 4LM sites). Let S1 consist
of the leftmost site on every square. Then HQ2 is trivial unless all the M sites on
S1 in a given row either all are occupied, or all are empty. There are 2L − 1 such
configurations which have at least one row in S1 occupied. Because of the hard
core, all the sites of S2 adjacent to an occupied site on S1 cannot be filled, and the
remaining sites form independent open chains of length a multiple of 3. Such an
open chain has just one element of HQ2 , so each of these 2L − 1 configurations
correspond to one element of HQ2 and H12. Now consider the configuration where
all sites on S1 are empty, so that the sites on S2 form M periodic chains, each of
length 3L. We showed above that HQ2 for each of these chains has two independent
elements. Thus HQ2 and H12 are of dimension 2L+2M−1. Applying the tic-tac-toe
lemma to this case is more involved, but the conclusion is that there are 2L+2M−1
ground states, each with N/4 fermions.

Fig. 1 Configurations obeying the 3-rule on the martini and the octagon-square lattices
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We believe that on the octagon-square lattice, the model exhibits a combination
of Wigner-crystal order with frustration. There are 2L + 2M configurations of N/4
particles which satisfy our heuristic 3-rule. 2L of them are of the form displayed in
Fig. 1: one can shift all the particles in a given row without violating the rule. This
illustrates how frustration arises: in each row one can shift all the particles without
violating the 3-rule. Likewise, 2M of them have particles on the top or bottom of
each square. For mysterious reasons, the state with (kx, ky) = 0 is not a ground
state, but we believe the remaining 2L + 2M − 1 ordered states dominate the actual
ground states. In further support of this claim, we analyze the discrete symmetries
commuting with Q. If a given element of the cohomology spontaneously breaks
such a symmetry, the corresponding ground state will break it too. The ground
states have spontaneously-broken parity symmetries like the Wigner crystal states
in Fig. 1. Again like the crystal, all but one of the 2L − 1 ground states first consid-
ered spontaneously break translation symmetry in the vertical direction but not the
horizontal; 2M − 2 of the remaining ground states spontaneously break translation
symmetry in the horizontal direction. Moreover, the number of ground states here
can be changed by requiring that just one site anywhere on the lattice be occupied.
Consider the octagon-square lattice with one site on S1 and its three neighbors on
S2 removed; this is equivalent to demanding that there be a particle on this S1 site.
On this lattice there are just 2L−1 ground states. Only in an ordered system should
this type of change occur.

These arguments give a hint that there are unusual fractionally-charged excita-
tions in this two dimensional model. On the one-dimensional chain, excitations have
fermion number 1/2 [4]. These excitations can be understood heuristically as corre-
sponding to kinks separating regions which locally look like the two possible ground
states. For the octagon square lattice, a similar situation exists, which is illustrated
in Fig. 2. There are two defects (i.e. two places particles are not three sites apart),

Fig. 2 Fractional charge?

but only one extra fermion relative to the ground state. Thus this is a strong hint that
there are charge-1/2 excitations which are deconfined in one direction, confined in
the other. Unfortunately, the two-dimensional model is not integrable like the chain
is, so whether these excitations remain in the continuum limit (i.e. are deconfined)
is still an open question.

The Λ3 and octagon-square lattices are exceptional: on most other lattices we
have studied the ground-state entropy is extensive. In many cases (including the tri-
angular, hexagonal and Kagomé lattices), this can be seen by computing the Witten
index W as a function of the size of the lattice. Employing a row-to-row transfer
matrix TM , the index for M × L unit cells is expressed as WL,M = tr[(TM)L].
We found by exact diagonalization that the largest eigenvalues λmax

M of the TM
here behave as λmax

M ∝ λM , with |λ| > 1. Clearly, the absolute value |λ| sets a
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lower bound on the ground-state entropy per lattice site. For n sites per unit cell,
SGS/N ≥ ln |WL,M |/(nML) ∼ ln |λ|/n. For the triangular lattice, SGS/N ≥ 0.13
[9, 6].

For the nonagon-triangle “martini” lattice shown in the left half of Fig. 1, the ex-
tensive ground-state entropy can be exactly computed. The martini lattice is formed
by replacing every other site on a hexagonal lattice with a triangle. To find the
ground states, take S1 to be the sites on the triangles, and S2 to be the remaining
sites. As with the chain, HQ2 vanishes unless every site in S2 is adjacent to an oc-
cupied site on some triangle. The non-trivial elements of HQ2 therefore must have
precisely one particle per triangle, each adjacent to a different site on S2. This is be-
cause a triangle can have at most one particle on it, and (with appropriate boundary
conditions) there are the same number of triangles as there are sites on S2. A typical
element of HQ2 is shown in Fig. 1. One can think of these as “dimer” configurations
on the original honeycomb lattice, where the dimer stretches from the site replaced
by the triangle to the adjacent non-triangle site. Each close-packed hard-core dimer
configuration is in H12, and by the tic-tac-toe lemma, it corresponds to a ground
state. The number of such ground states eSGS is therefore equal to the number of
such dimer coverings of the honeycomb lattice, which for large N is [8, 11]

SGS

N
= 1

π

∫ π/3

0
dθ ln[2 cos(θ)] = 0.16153 . . . (8)

The frustration here clearly arises because there are many ways of satisfying the
3-rule.

This extensive ground-state entropy appears to be generic behavior. The Witten
index provides a lower bound on the number of ground states, and it is easy to com-
pute numerically by using a transfer matrix (it is a purely two-dimensional classical
quantity). Numerics on the Witten index [9] clearly indicate extensive behavior for
the triangular, honeycomb and other lattices Although the martini lattice does have
generic behavior in its extensive ground-state entropy, it also is special in that all
the ground state have the same number of fermions. This does not appear to be
the case for generic two-dimensional lattices, as becomes apparent by studying the
cohomology for small lattices in detail.

The square lattice turns out to be the most peculiar case. It is like the octagon-
square case in that its ground-state entropy grows with the linear dimensions of the
system, but like the generic case in that the filling fraction of the ground state varies
over a continuous range, here between 1/5 and 1/4 filling. The Witten index itself
has a number of striking properties [6], and after this talk was given, many new
developments have occurred, summarized in [7].

Our exact results indicate that there is a new kind of exotic phase for itiner-
ant fermions on a two-dimensional lattice with strong interactions. This “super-
frustrated” state exhibits an extensive ground-state entropy, and occurs because
supersymmetry ensures a perfect balance between competing terms in the Hamil-
tonian. Patterns with charge order can be distinguished in various limits and on spe-
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cial lattices, but the effect of (approximate) supersymmetry in general is that defects
between different domains come at zero (very low) energy cost.
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Convergence of Symmetric Trap Models
in the Hypercube

L.R.G. Fontes� and P.H.S. Lima��

Abstract We consider symmetric trap models in the d-dimensional hypercube
whose ordered mean waiting times, seen as weights of a measure in N

∗, converge to
a finite measure as d →∞, and show that the models suitably represented converge
to a K process as d →∞. We then apply this result to get K processes as the scal-
ing limits of the REM-like trap model and the Random Hopping Times dynamics
for the Random Energy Model in the hypercube in time scales corresponding to the
ergodic regime for these dynamics.

1 Introduction

Trap models have been proposed as qualitative models exhibiting localization and
aging (see [13, 7] for early references). In the mathematics literature there has re-
cently been an interest in establishing such results for a varied class of such models
(see [11, 4, 5] and references therein). In particular, it has been recognized that scal-
ing limits play an important role in such derivations (see [11, 2, 10, 6] and references
therein). It may be argued that such phenomena correspond to related phenomena
exhibited by limiting models.

In this paper we consider symmetric trap models in the hypercube whose mean
waiting times converge as a measure to a finite measure as the dimension diverges,
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and show that these models converge weakly. We then apply this result to establish
the scaling limits of two dynamics in the hypercube, namely the REM-like trap
model and the Random Hopping Times dynamics for the Random Energy Model,
in time scales corresponding to the ergodic regime for these dynamics.

1.1 The Model

Let H denote the d-dimensional hypercube, namely H is the graph (V ,E ) with

V = {0, 1}d,
E = {(v, v′) ∈ V × V : |x − x ′| = 1)},

where |v − v′| =∑d
i=1 |v(i)− v′(i)| is the Hamming distance in V .

We will consider symmetric trap models in H , namely continuous time, space
inhomogeneous, simple random walks in H , whose transition probabilities (from
each site of H to any of its d nearest neighbors) are uniform. Let γ d = {γ d

v , v ∈
V } denote the set of mean waiting times characterizing the model.

We will map V onto the set D := {1, . . . , 2d} by enumerating V in decreasing
order of γ d (with an arbitrary tie breaking rule), and then consider Xd , the mapped
process. Let

γ̃ d = {γ̃ d
x , x ∈ D} (1)

denote the enumeration in decreasing order of γ d , and view it as a finite measure in
N
∗ = {1, 2, . . .}, the positive natural numbers.
We next consider a class of processes which turns out to contain limits of trap

models in H as d → ∞, as we will see below. Let N = {(N(x)
t )t≥0, x ∈ N

∗} be
i.i.d. Poisson processes of rate 1, with σ

(x)
j the j -th event time of N(x), x ∈ N

∗, j ≥
1, and let T = {T0; T (x)

i , i ≥ 1, x ∈ N
∗} be i.i.d. exponential random variables

of rate 1. N and T are assumed independent. Consider now a finite measure γ

supported on N
∗, and for y ∈ N̄

∗ = N
∗ ∪ {∞} let

Γ (t) = Γ y(t) = γy T0 +
∞∑

x=1

γx

N
(x)
t∑

i=1

T
(x)
i , (2)

where, by convention,
∑0

i=1 T
(x)
i = 0 for every x, and γ∞ = 0. We define the

process Y on N̄
∗ starting at y ∈ N̄

∗ as follows. For t ≥ 0

Yt =

⎧
⎪⎨

⎪⎩

y, if 0 ≤ t < γ (y)T0,

x, if Γ (σ
(x)
j −) ≤ t < Γ (σ

(x)
j ) for some 1 ≤ j < ∞,

∞, otherwise.

(3)
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This process, which we here call the K process with parameter γ , was introduced
and studied in [10], where it was shown to arise as limits of trap models in the com-
plete graph with n vertices as n →∞ (see Lemma 3.11 in [10]). In the next section,
we derive a similar result for the hypercube. See Theorem 1. This is our main tech-
nical result. Then, in the following section, we apply that result to get the scaling
limits of the REM-like trap model and the Random Hopping Times dynamics for
the REM in ergodic time scales as K processes. See Sect. 3.

2 Convergence to the K Process

Theorem 1. Suppose that, as d → ∞, γ̃ d converges weakly to a finite measure γ̃

supported on N
∗, and that Xd

0 converges weakly to a probability measure μ on N̄
∗.

Then, Xd converges weakly in Skorohod space as d → ∞ to a K process with
parameter γ̃ and initial measure μ.

This result extends the analysis performed in [10] for the trap model in the com-
plete graph, with a similar approach (see Lemma 3.11 in [10] and its proof). The
extra difficulty here comes from the fact that the transition probabilities in the hy-
percube are not uniform in the state space, as is the case in the complete graph.
However, all that is indeed needed is an approximate uniform entrance law in finite
sets of states. This result, a key tool used several times below, is available from [3].
We state it next, in a form suitable to our purposes, but first some notation. Let X
denote the embedded chain of Xd and for a given fixed finite subset J of N

∗, let
TJ denote the entrance time of X in J , namely,

TJ = inf{n ≥ 0 : Xn ∈ J }. (4)

Proposition 2 (Corollary 1.5 [3]).

lim
d→∞ max

x /∈J ,y∈J

∣
∣
∣
∣P(XTJ = y|X0 = x)− 1

|J |
∣
∣
∣
∣ = 0. (5)

Here | · | denotes cardinality.

Remark 3. Corollary 1.5 of [3] is actually more precise and stronger than the above
statement, with error of approximation estimates, and holding for J depending on
d in a certain manner as well.

Remark 4. Equation (5) is the only fact about the hypercube used in the proof of
Theorem 1. This result would thus hold as well for other graphs with the same
property. The hypercube has nevertheless been singled out in analyses of dynamics
of mean field spin glasses (see above mentioned references), and that is a reason for
us to do the same here.
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2.1 Proof of Theorem 1

The strategy is to approximate Xd for d large by a trap model in the complete
graph with vertex set M = {1, . . . ,M} and mean waiting times {γ̃1, . . . , γ̃M } for
M ≤ d large. Let YM denote the latter process, and let us put YM

0 = Y0 1{Y0 ∈
M } +W 1{Y0 /∈ M }, with W an independent uniform random variable in M . To
accomplish the approximation, we will resort to an intermediate process, which we
next describe. We start by considering X̂d , the trap model on D obtained from Xd

by replacing its set of mean waiting times (see (1) above) by {γ̃x, x ∈ D}. The
intermediate process we will consider is then X̂d restricted to M , denoted X̂d,M :
this is the Markov process obtained from X̂d by observing it only when it is in M
(with time stopping for X̂d,M when X̂d is outside M ).

The approximations will be strong ones: we will couple Xd to X̂d,M and X̂d,M

to YM , in the spirit of Theorem 5.2 in [10], where the approximation of Y by YM ,
needed here as the last step of the argument, was established. In particular, we also
couple Xd

0 to Y0 so that the former converges almost surely to the latter as d →∞.

2.1.1 Coupling of X̂d,M and YM

We first look at the embedded chains of X̂d,M and YM . Let (pd,M
ij )i,j∈M be the

transition probabilities of the former chain, and let p̂ = mini,j∈M p
d,M
ij . We leave

it to the reader to check that there is a coupling between both chains which agrees at
each step with probability at least Mp̂. We resort to such a coupling. Proposition 2
implies that

Mp̂ → 1 (6)

as d →∞ for every M fixed.
Since X̂d,M and YM have the same mean waiting times at each site, we can

couple them in such a way that they have the same waiting times at successive visits
to each site. One may also find a coupling of X̂d,M

0 and YM
0 such that

P(X̂
d,M
0 $= YM

0 ) → 0 (7)

as d →∞. Resorting also to that coupling, we get the following result.

Lemma 5. For every T and M fixed, we have

P(X̂
d,M
t = YM

t , t ∈ [0, T ]) → 1 (8)

as d →∞.

Proof. Let NT denote the number of jumps of YM in the time interval [0, T ], and
0 = t0, t1, . . . , tNT

the respective jump times. We conclude from the above discus-
sion that
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P(X̂
d,M
t = YM

t , t ∈ [0, T ]|NT = k) = P(X̂
d,M
ti

= YM
ti

, i = 0, 1, . . . , k|NT = k)

≥ P(X̂
d,M
0 = YM

0 ) (Mp̂)k, (9)

and the result follows from (6), (7) and dominated convergence (since Mp̂ is bound-
ed above by 1 for all d and M).  !

2.1.2 Coupling of Xd and X̂d,M

We couple Xd and X̂d (the latter process was defined at the beginning of the sec-
tion) in the following way. Note that X is their common embedded chain. We then
make the successive sojourn times of Xd and X̂d , starting from the first ones, be
given by γ̃ d

X0
T

X0
0 , γ̃ d

X1
T

X1
1 , . . . and γ̃X0T

X0
0 , γ̃X1T

X1
1 , . . . , respectively, where

the common T x
0 , T x

1 , . . . , x ∈ N
∗, are i.i.d. rate 1 exponential random variables.

With a view towards approximating Xd and X̂d,M strongly in Skorohod space,
we introduce a time distortion function useful for that (see (11) below). For K a
fixed positive integer, let K denote the set {1, . . . , K}, and consider the successive
entrance and exit times of Xd and X̂d,M in and out of K defined as follows. Let
τ0 = τ ∗0 = ξ0 = ξ∗0 = 0 and for i ≥ 1, let

τi = inf{t ≥ τ ∗i−1 : X̂d,M
t ∈ K }, τ ∗i = inf{t ≥ τi : X̂d,M

t /∈ K }, (10)

and similarly define ξi and ξ∗i , i ≥ 1 with Xd replacing X̂d,M . See Fig. 1 below.

Fig. 1 Trajectories of Xd and X̂d,M

Now for T > 0 fixed, let N = min{i ≥ 1 : τi > T } and define

λ̃t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξj + ξ∗j −ξj

τ∗j −τj
(t − τj ), if τj < t ≤ τ ∗j for some 0 ≤ j < N,

ξ∗j +
ξj+1−ξ∗j
τj+1−τ∗j

(t − τ ∗j ), if τ ∗j < t ≤ τj+1 for some 0 ≤ j < N,

ξN + (t − τN), if t ≥ τN .

(11)
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Here and below, we interpret 0/0 as 1. See Fig. 2 below.

Fig. 2 Superimposed trajectories of Xd with time distorted by λ̃ and X̂d,M (left), and superposition
of the graphs of λ̃ and the identity (right)

Remark 6. With the above definition of λ̃, we first note that X̂d,M
t = Xd

λ̃t
whenever

any of both processes is visiting K before time τN .

As part of the norm in Skorohod space, we consider the class Λ of nondecreasing
Lipschitz functions mapped from [0,∞) onto [0,∞), and the following function
on Λ

φ(λ) = sup
0≤s<t

∣
∣
∣
∣log

λt − λs

t − s

∣
∣
∣
∣. (12)

We have from (11) above that

φ(λ̃) ≤ max
1≤j≤N

∣
∣
∣
∣log

ξj − ξ∗j−1

τj − τ ∗j−1

∣
∣
∣
∣ ∨ max

1≤j≤N

∣
∣
∣
∣log

ξ∗j − ξj

τ ∗j − τj

∣
∣
∣
∣. (13)

Below, we will consider the events Aj , j ≥ 0, as follows.

A0 = {Xd
0 ∈ K } ∪ {there exists 0 ≤ t < ξ1 such that Xd

t ∈ M \K }, (14)

Aj = {there exists ξ∗j ≤ t < ξj+1 such that Xd
t ∈ M \K }, j ≥ 1. (15)

It follows from Proposition 2 that for j ≥ 0

lim
d→∞ inf

x /∈M
P(Aj |Xd

ξ∗j
= x) = 1 −K/M. (16)

Notice that the probability on the left hand side of (16) does not depend on j ; we
thus get that

lim
M→∞ lim

d→∞P(Aj ) = 1 uniformly on j ≥ 0. (17)
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2.1.3 Conclusion of proof of Theorem 1

Let D
N̄∗([0,∞)) be the (Skorohod) space of cádlág functions of [0,∞) to N̄

∗ with
metric

ρ(f, g) := inf
λ∈Λ

[

φ(λ) ∨
∫ ∞

0
e−uρ(f, g, λ, u)du

]

, (18)

where
ρ(f, g, λ, u) := sup

t≥0

∣
∣
∣[f (t ∧ u)]−1 − [g(λ(t) ∧ u)]−1

∣
∣
∣ ; (19)

see Sect. 3.5 in [9]; Λ and φ were defined in the paragraph of (12) above, and
∞−1 = 0.

It follows from Lemma 3.11 in [10] that YM converges weakly to Y in Skoro-
hod space as M → ∞. In order to prove Theorem 1, it thus suffices to show the
following result.

Lemma 7. With the above construction of Xd and YM , we have that for every ε > 0

lim
M→∞ lim sup

d→∞
P(ρ(Xd, YM) > ε) = 0. (20)

Proof. Given ε > 0, let Tε = − log(ε/2). Then choosing λ to be the identity,
noticing that ρ in (19) is bounded above by 1, and using Lemma 5, we find that for
every M > 0

P(ρ(X̂d,M, YM) > ε/2) ≤ P(X̂
d,M
t $= YM

t for some t ∈ [0, Tε]) → 0 (21)

as d →∞. So, to establish Lemma 7, it suffices to prove Lemma 8 below.  !
Lemma 8. With above construction of Xd and X̂d,M , we have that for every ε > 0

lim
M→∞ lim sup

d→∞
P(ρ(X̂d,M,Xd) > ε) = 0. (22)

Proof. Let T = Tε = − log ε, choose K such that |x−1 − y−1| ≤ ε for every
x, y ∈ N̄

∗ \ K , and consider λ̃ as in (11) with such T and K . Then, by Remark 6
and (12), we see that it suffices to show that for every ε > 0

lim
M→∞ lim sup

d→∞
P

(

max
1≤j≤N

∣
∣
∣
∣
∣
log

ξ∗j − ξj

τ ∗j − τj

∣
∣
∣
∣
∣
> ε

)

= 0, (23)

and

lim
M→∞ lim sup

d→∞
P

(

max
1≤j≤N

∣
∣
∣
∣
∣
log

ξj − ξ∗j−1

τj − τ ∗j−1

∣
∣
∣
∣
∣
> ε

)

= 0. (24)

 !
Proof of (23). One readily checks that
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max
1≤j≤N

∣
∣
∣
∣
∣
log

ξ∗j − ξj

τ ∗j − τj

∣
∣
∣
∣
∣
≤ max

x∈K

∣
∣
∣
∣log

γ̃ d
x

γ̃x

∣
∣
∣
∣ , (25)

and (23) follows immediately from the assumption that γ̃ d → γ̃ as d →∞.  !
Proof of (24). Let γ̃ d,K = {γ̃ d,K

x := γ̃ d
x ∧ γ̃ d

K, x ∈ D}, and consider the trap
model Xd,K with mean waiting times γ̃ d,K coupled to Xd so that both processes
have the same embedded chain X and the respective sojourn times are given by
γ̃
d,K
X0

T
X0
0 , γ̃

d,K
X1

T
X1
1 , . . . and γ̃ d

X0
T

X0
0 , γ̃ d

X1
T

X1
1 , . . .

Let now X̃d,K denote the process Xd,K restricted to K (analogously as X̂d,M ),
with X̃ its embedded chain. Let NK denote the number of jumps of X̃d,K up to
time T . Notice that NK is a Poisson process with rate 1/γ̃ d

K independent of X and
of the history of Xd in the time intervals [ξ∗j , ξj+1), j ≥ 0. Thus, the probability on
the left hand side of (24) is bounded above by

P

(

max
1≤j≤NK

∣
∣
∣
∣log

Uj

Vj

∣
∣
∣
∣ > ε

)

≤
∞∑

n=1

n∑

j=1

P

(∣
∣
∣
∣log

Uj

Vj

∣
∣
∣
∣ > ε

)

P(NK = n), (26)

where Uj := ξj − ξ∗j−1 and Vj := τj − τ ∗j−1. We now estimate the first probability

on the right hand side of (26). We first note that from (17), and the fact that E(NK)

is finite and independent of d,M , we may insert Aj in that probability. We next
write Uj = Wj + Rj , where Rj is the time spent by Xd in D \M during the time
interval [ξ∗j−1, ξj ). From the elementary inequality | log(x+y)| ≤ | log x|+y, valid
for all x, y > 0, we get that

P

(∣
∣
∣
∣log

Uj

Vj

∣
∣
∣
∣ > ε, Aj

)

≤ P

(∣
∣
∣
∣log

Wj

Vj

∣
∣
∣
∣ > ε/2, Aj

)

+ P
(
Rj > εVj/2

)
. (27)

Arguing as in (25) above, we find that the first event in the first probability on the

right hand side of (27) is empty as soon as maxx∈M | log γ̃ d
x

γ̃x
| ≤ ε/2, thus from

γ̃ d → γ̃ as d → ∞ we only need to consider the second probability on the right
hand side of (27). One readily checks that it is bounded above by

max
x /∈K

P
(
Rj > εVj/2

∣
∣Xd

ξ∗j−1
= x

)
(28)

for all j ≥ 0, and that the above expression does not depend on j . It is enough then
to show that for any ε > 0

P
(
R1 > εV1|Xd

0 = x
) =: Px(R1 > εV1) → 0 (29)

as d → ∞ and then M → ∞, uniformly in x > K . This is readily seen to follow
from the facts that

lim
M→∞ lim sup

d→∞
max
x /∈K

Px(R1 > ε) = 0 (30)
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for any ε > 0, and that, given δ > 0, there exists ε > 0 such that

lim sup
M→∞

lim sup
d→∞

max
x /∈K

Px(V1 ≤ ε) ≤ δ. (31)

 !
Proof of (30). Let x /∈ K be arbitrary. We will estimate

Ex(R1) := E(R1|Xd
0 = x) =

d∑

y=M+1

γ̃ d
y Ex(L (y)), (32)

where L (y) is the number of visits of X to y from time 0 till its first entrance
in K .

Let Ky = K ∪ {y} and consider the discrete time Markov process X̄ such
that X̄0 = x and otherwise X̄ is the restriction of X to Ky = K ∪ {y}, and let
L̄ (y) denote the number of visits of X̄ to y from time 0 till its first entrance in K .
Clearly,

L (y) = L̄ (y). (33)

Now let X ∗ denote the Markov chain on Ky ∪ {x} with the following set of tran-
sition probabilities. Let p1 = (p1

wz, w, z ∈ Ky ∪ {x}), and p2 = (p2
wz, w, z ∈

Ky ∪{x}) denote the sets of transition probabilities of X̄ and X ∗, respectively. We
make

p2
xy = p2

yy = p∗ := max{p1
wz; w = x, y; z ∈ Ky}, (34)

and the remaining p2
wz can be assigned arbitrarily with the only obvious condition

that p2 is a set of transition probabilities on Ky . Let L ∗(y) denote the number of
visits of X ∗ to y from time 0 till its first entrance in K . One readily checks that
L ∗(y) is a Geometric random variable with parameter 1− p∗ and that it stochasti-
cally dominates L̄ (y). From this and (33), we conclude that

Ex(L (y)) ≤ p∗

1 − p∗
(35)

uniformly in x /∈ K . Proposition 2 then implies that

lim sup
d→∞

max
x /∈K

Ex(L (y)) ≤ 1

K
. (36)

It follows readily from this, (32) and the assumption that γ̃ d → γ̃ as d →∞ that

lim sup
d→∞

max
x /∈K

Ex(R1) ≤ 1

K

∞∑

y=M+1

γ̃y, (37)

and (30) follows (using Markov’s inequality), since γ̃ is a finite measure on N
∗.  !
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Proof of (31). Let us fix x0 /∈ K . Consider the Markov process Z = (Zt )t≥0 on
M such that Z0 = x0, for every x ∈ M the waiting time at x before jumping
is exponential with mean γ̃x , and the transition probability to y ∈ M equals p̂, if
y /∈ K , and 1−(M−K)p̂

K
, if y ∈ K , where p̂ was defined in the paragraph of (6)

above.
One readily checks that, given Xd

0 = x0, V1 stochastically dominates S, the time
Z spends in M \ K before hitting K for the first time. Since γ̃x is decreasing
in x, by the construction of Z, we have that, for every L ∈ {K + 1, . . . ,M}, S
dominates stochastically the random variable γ̃LT 1C , where C is the event that Z
visits {K+1, . . . , L} before hitting K for the first time, T is an exponential random
variable of rate 1, and 1· is the usual indicator function.

Let now Z denote the embedded chain for Z, and TL = inf{n ≥ 1 : Zn ∈
{1, . . . , L}}. Then

P(C|Z0 = x0)

= P(ZTL
∈ {K + 1, . . . , L}|ZTL

≤ L,Z0 = x0)

= (L−K)p̂

K[ 1−(M−K)p̂
K

] + (L−K)p̂
= (L−K)p̂

1 − (M − L)p̂

= (L−K)Mp̂

(1 −Mp̂)M + LMp̂
→ (L−K)

L
= 1 − K

L
(38)

as d →∞ uniformly in x0; see (6).
We conclude that

lim sup
M→∞

lim sup
d→∞

max
x /∈K

Px(V1 ≤ ε) ≤ P(γ̃LT ≤ ε)+ K

L
(39)

for every K < L. Thus, given K and δ > 0, we first choose L such that K
L
≤ δ/2,

and then ε > 0 such that P(γ̃LT ≤ ε) ≤ δ/2, and we are done.  !

3 The REM-Like Trap Model and the Random Hopping Times
Dynamics for the REM

In this section we apply Theorem 1 to obtain the scaling limits of two disordered
trap models in the hypercube, namely trap models in the hypercube whose mean
waiting times are random variables.

3.1 The REM-Like Trap Model

Let τd := {τdv , v ∈ V }, an i.i.d. family of random variables in the domain of
attraction of an α-stable law with 0 < α < 1, be the mean waiting times of a trap
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model in H . Let us then consider as before τ̃ d := {τ̃ dx , x ∈ D}, the decreasing
order statistics of τ (with an arbitrary tie breaking rule), and let Yd be the mapped
process on D .

Now let cd be a scaling factor such that τ̂ d := cd τ̃
d converges to the increments

in [0, 1] of an α-stable subordinator. Namely,

cd =
(

inf{t ≥ 0 : P(τ0 > t) ≤ 2−d}
)−1

. (40)

Let us now consider Yd speeded up by c−1
d , namely Ŷ d

t = Yd(t/cd), t ≥ 0.

Notice that Ŷ d is a trap model on H with mean waiting times given by τ̂ d .
Let γ̂ = {γ̂i , i ∈ N

∗} denote the increments in [0, 1] of an α-stable subordinator
in decreasing order.

Corollary 9. Suppose that Ŷ d
0 converges weakly to a probability measure μ on N̄

∗.
Then

(Ŷ d , τ̂ d ) ⇒ (Y, γ̂ ), (41)

where Y is a K process with parameter γ̂ and initial measure μ, and ⇒ means
weak convergence in the product of Skorohod norm and weak convergence norm in
the space of finite measures in N

∗.

Remark 10. In [10], a similar result was proved for the REM-like trap model in the
complete graph. See Theorem 5.2 in that reference.

Proof of Corollary 9. We can suppose that we are in a probability space where
τ̂ d → γ̂ almost surely (see proof of Theorem 5.2 in [10] for an explicit argument).
We can then invoke Theorem 1 to get that Ŷ d ⇒ Y , and the full result follows.  !

3.2 Random Hopping Times Dynamics for the REM

This is a dynamics whose equilibrium is the Random Energy Model. Let Hd :=
{Hd

v , v ∈ V } be an i.i.d. family of standard normal random variables, and make

τd := {τdv , v ∈ V }, where τdv = eβ
√
dHd

v . Defining now τ̃ d , τ̂ d , Yd and Ŷ d as
above, with

cd = e−
2 log 2

α
d+ 1

2α log d , (42)

with α = √
2 log 2/β, we have that, if α < 1, then Corollary 9 holds in this case as

well, with γ̂ and μ as before.
The proof starts from the known result that in this case τ̂ d ⇒ γ̂ (see Remark

to Theorem 2 in [12]). Again, as in the proof of Corollary 9 above, we can go
to a probability space where the latter convergence is almost sure, and close the
argument in the same way.

Remark 11. The time scale t → t/cd adopted in the above models is the ergodic
time scale mentioned in [8]. Under shorter scalings (i.e., t → t/c′d , with c′d ' cd )



296 L.R.G. Fontes and P.H.S. Lima

the model exhibits aging (when starting from the uniform distribution), and under
longer ones (c′d � cd ), the model reaches equilibrium. More precisely, under shorter
scalings, we have that as d →∞

Pμd

(
Yd(t/c′d) = Yd((t + s)/c′d)

)
→ R(s/t), (43)

where μd is the initial uniform distribution on D , and R is a nontrivial function
such that R(0) = 1 and limx→∞ R(x) = 0. Indeed, for the models of this section
(as well as in many other instances in the references), R is the arcsine law:

R(x) = sin(πα)

π

∫ 1

x
1+x

s−α(1 − s)α−1 ds. (44)

See [1]. Under longer scalings, it can be shown that Yd(t/c′d) ⇒ γ̄ as d → ∞ for
every t > 0, where γ̄ is γ̂ normalized to be a probability measure. It is the limiting
equilibrium measure, or more precisely, the equilibrium measure of Y .

Remark 12. It can be shown that Y exhibits aging at a vanishing time scale (when
starting from ∞), i.e.

P∞ (Y (εt) = Y(ε(t + s))) → R(s/t) (45)

as ε → 0. See Theorem 5.11 in [10]. This is in agreement with (43).
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Spontaneous Replica Symmetry Breaking
in the Mean Field Spin Glass Model

Francesco Guerra

Abstract We give a short review about recent results in the study of the mean
field Sherrington-Kirkpatrick model for a spin glass. Our methods are essentially
based on interpolation and comparison arguments for families of Gaussian random
variables. In particular we show how to control the infinite volume limit for the free
energy density, and how to relate the model to its replica symmetric approximation.
We discuss also the mechanism of replica symmetry breaking, by using suitable
interpolation methods. Our results are in agreement with those obtained in the frame
of the replica trick through the Parisi Ansatz. Finally, we point out some possible
further developments of the theory.

1 Introduction

More than thirty years ago, David Sherrington and Scott Kirkpatrick introduced
a celebrated mean field model for spin glasses [27, 18], then considered to be a
“solvable model”.

It is hard to overestimate the impact of this model on the theoretical physics
research. During the three decades after its introduction, hundreds and hundreds
of papers have been devoted to the study of its properties, even through numerical
methods.

The relevance of the model surely comes from the fact that it is able to represent
successfully, at least at the level of the mean field approximation, some important
features of the physical spin glass systems, of great interest for their peculiar prop-
erties.

Let us recall that some dilute magnetic alloys, called spin glasses, are extremely
interesting systems from a physical point of view. Their peculiar feature is to exhibit
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Department of Physics, Sapienza University of Rome and INFN, Section of Roma 1, Rome, Italy,
e-mail: francesco.guerra@roma1.infn.it
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a new magnetic phase, where magnetic moments are frozen into disordered equilib-
rium orientations, without any long-range order. We refer for example to [33] and
[29] for general reviews about the physical properties of spin glasses. The experi-
mental laboratory investigation about concrete spin glasses is a very difficult sub-
ject, because of their peculiar properties. In particular, these materials have some
very slowly relaxing modes, with consequent memory effects. Therefore, even the
very basic physical concept of a system at thermodynamical equilibrium, at a given
temperature, meets a difficult empirical realization.

From a theoretical point of view, some models have been proposed, attempting
to capture the essential physical features of spin glasses, in the frame of very simple
assumptions.

The basic model has been proposed by Edwards and Anderson [5] many years
ago. It is a simple extension of the well-known nearest neighbour Ising model for
ferromagnetism to the spin glass case. Consider a large region Λ of the unit lattice
in d dimensions. Let us associate an Ising spin σ(n) to each lattice site n. Then, we
introduce the lattice Edwards-Anderson Hamiltonian

HΛ(σ, J ) = −
∑

(n,n′)
J (n, n′)σ (n)σ (n′).

Here, the sum runs over all couples of nearest neighbour sites in Λ, and J are
quenched random couplings, assumed for simplicity to be independent identically
distributed random variables, with centered unit Gaussian distribution. The quenched
character of the J means that they do not participate in the thermodynamic equilib-
rium, but act as a kind of random external noise on the coupling of the σ variables.
In the expression of the Hamiltonian, we have indicated with σ the set of all σ(n),
and with J the set of all J (n, n′). The region Λ must be taken very large, letting it
invade the whole lattice in the limit. The physical motivation for this choice is that
for real spin glasses, due to quantum interference effects, the effective interaction
between the ferromagnetic domains dissolved in the matrix of the alloy oscillates in
sign according to distance. This feature is taken into account in the model through
the random character of the couplings between spins.

Even though very drastic simplifications have been introduced in the formula-
tion of this model, as compared to the extremely more complicated nature of phys-
ical spin glasses, nevertheless a rigorous study of all properties emerging from
the static and dynamic behavior of a thermodynamic system of this kind is far
from being complete. In particular, with reference to static equilibrium proper-
ties, it is not possible yet to reach a completely substantiated description of the
phases emerging in the low temperature region. Even by relying on physical in-
tuition, we get completely different answers from different people working in the
field.

It is very well known that a mean-field version can be associated to the ordi-
nary ferromagnetic Ising model (see for example [28]). The same is possible for the
disordered model described by the Edwards-Anderson Hamiltonian defined above.
Now we consider a number of sites i = 1, 2, . . . , N , not organized in a lattice, and
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let each spin σ(i) at site i interact with all other spins, in the presence of a quenched
noise Jij . The precise form of the Hamiltonian will be given in Sect. 2.

This is the mean field model for spin glasses, introduced by David Sherrington
and Scott Kirkpatrick.

There is also an additional very important reason for the relevance of this model,
and related ones. In fact, recently it has become progressively clear that disordered
systems of the Sherrington-Kirkpatrick type, and their generalizations, seem to play
a very important role for theoretical and practical applications to hard optimization
problems, as it is shown for example by Marc Mézard, Giorgio Parisi and Riccardo
Zecchina in [22].

It is interesting to remark that the original paper was entitled “Solvable Model
of a Spin-Glass”, while a previous draft, according to what recalled by David Sher-
rington, contained even the stronger denomination “Exactly Solvable”. However,
it turned out that the very natural solution devised by the authors is valid only at
high temperatures, or for large external magnetic fields. At low temperatures, the
proposed solution exhibits a nonphysical drawback given by a negative entropy, as
properly recognized by the authors in their very first paper.

It took a few years to find an acceptable solution. This was done by Giorgio
Parisi in a series of papers, by marking a radical departure from the previous meth-
ods. In fact, a very deep method of “spontaneous replica symmetry breaking” was
developed. As a consequence the physical content of the theory was encoded in a
functional order parameter of new type, and a remarkable structure began to show
up for the pure states of the theory, characterized by a kind of hierarchical, ultramet-
ric organization. These very interesting developments, due to Giorgio Parisi, and his
coworkers, are explained in a challenging way in the classical book [20]. Part of this
structure will be recalled in the following.

It is important to remark that the Parisi solution is presented in the form of an
ingenious and clever Ansatz. Until a few years ago it was not known whether this
Ansatz would give the true solution for the model, in the so-called thermodynamic
limit, when the size of the system becomes infinite, or it would be only a very good
approximation to the true solution.

The general structures offered by the Parisi solution, and their possible general-
izations for similar models, exhibit an extremely rich and interesting mathematical
content. In a very significant way, Michel Talagrand inserted a strongly suggestive
sentence in the title to his recent book [31]: “Spin glasses: a challenge for mathe-
maticians”.

As a matter of fact, the problem of giving a proper mathematical understanding of
the spin glass structure is extremely difficult. In this talk, we would like to recall the
main features of a very powerful method, yet extremely simple in its very essence,
based on comparison and interpolation arguments on families of Gaussian random
variables.

The method found its first simple application in [10], where it was shown that
the Sherrington-Kirkpatrick replica symmetric approximate solution is a rigorous
lower bound for the quenched free energy of the system, uniformly in the size, for
any value of the temperature and the external magnetic field. Then, it was possible
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to reach a long awaited result [15]: the convergence of the free energy density in the
thermodynamic limit, by an intermediate step where the quenched free energy was
shown to be subadditive in the size of the system.

Moreover, still by a generalized interpolation on families of Gaussian random
variables, the first mentioned result, on the replica symmetric solution, was extended
to give a rigorous proof that the expression given by the Parisi Ansatz is also a lower
bound for the quenched free energy of the system, uniformly in the size [12]. The
method gives not only the bound, but also the explicit form of the correction terms
in the form of a sum rule. As a recent and very important result, Michel Talagrand
has been able to dominate these correction terms, showing that they vanish in the
thermodynamic limit. This extraordinary achievement was firstly announced in a
short note [30], containing only a synthetic sketch of the proof, and then presented
with all details in a long paper in Annals of Mathematics [32].

The interpolation method is also at the basis of the far-reaching generalized vari-
ational principle proven by Michael Aizenman, Robert Sims and Shannon Starr
in [1].

In this lecture, we will concentrate mostly on the main questions connected with
the free energy. In particular, we will consider the subadditivity with respect to the
system size, the existence of the infinite-volume limit, the broken replica symmetry
sum rules and bounds, and the Parisi variational principle. Our treatment will be as
simple as possible, by relying on the basic structural properties, and by describing
methods of presumably very long lasting power.

The organization of the paper is as follows. In Sect. 2 we explain the basic fea-
tures of the mean field spin glass models, by introducing all necessary definitions. In
next Sect. 3 we give a simple application of the interpolation method to the mean-
field spin glass model. In particular, we show the sub-additivity of the quenched
free energy with respect to the system size, and the existence of the infinite-volume
limit [15].

Section 4 is devoted to a description of the main features of the Parisi represen-
tation for the free energy and to its rigorous establishment.

Section 5 will be devoted to some conclusion and outlook for future foreseen
developments.

In conclusion, the author would like to thank the organizers of the 2006 Rio de
Janeiro International Congress of Mathematical Physics, in particular Vladas Sido-
ravicius, for the kind invitation and exquisite hospitality to an event full of scientific,
cultural and human content, in a so beautiful surrounding.

2 The Mean Field Spin Glass Model. Basic Definitions

As in the ferromagnetic mean field case, the generic configuration of the mean field
spin glass model is defined through Ising spin variables σi = ±1, attached to each
site i = 1, 2, . . . , N .
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But now there is also an external quenched disorder given by the N(N − 1)/2
independent and identical distributed random variables Jij , defined for each couple
of sites. For the sake of simplicity, we assume each Jij to be a centered unit Gaussian
with averages E(Jij ) = 0, E(J 2

ij ) = 1. By quenched disorder we mean that the J

have a kind of stochastic external influence on the system, without participating to
the thermal equilibrium.

Now the Hamiltonian of the model is given by the mean field expression

HN(σ, J ) = − 1√
N

∑

(i,j)

Jij σiσj . (1)

Here, the sum runs over all couples of sites. Notice that the term
√
N is necessary

in order to ensure a good thermodynamic behavior to the free energy, extensive in
the system size. For the sake of simplicity, we have considered only the case of zero
external field. But the general case, with a magnetic external field, can be treated
without any essential additional complication.

For a given inverse temperature β, let us now introduce the disorder-dependent
partition function ZN(β, J ) and the quenched average of the free energy per site
fN(β), according to the definitions

ZN(β, J ) =
∑

σ1...σN

exp(−βHN(σ, J )), (2)

−βfN(β) = N−1E logZN(β, J ). (3)

Notice that in (3) the average E with respect to the external noise is made after the
log is taken. This procedure is called quenched averaging. It represents the physical
idea that the external noise does not participate in the thermal equilibrium. Only the
σi variables are thermalized.

For the sake of simplicity, it is also convenient to write the partition function
in the following equivalent form. First of all let us introduce a family of centered
Gaussian random variables K (σ ), indexed by the configurations σ , and character-
ized by the covariances

E
(
K (σ )K (σ ′)

) = q2(σ, σ ′), (4)

where q(σ, σ ′) are the overlaps between two generic configurations, defined by

q(σ, σ ′) = N−1
∑

i

σiσ
′
i , (5)

with the obvious bounds −1 ≤ q(σ, σ ′) ≤ 1, and the normalization q(σ, σ ) = 1.
Then, starting from the definition (1), it is immediately seen that the partition func-
tion in (2) can be also written, by neglecting unessential constant terms, in the
form
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ZN(β,K ) =
∑

σ1...σN

exp

(

β

√
N

2
K (σ )

)

, (6)

which will be the starting point of our treatment. Here the dependence of the parti-
tion function on the random variables K has been stressed in the notation.

According to the general well established strategy of statistical mechanics [26],
firstly we consider the problem of the infinite volume limit.

3 The Thermodynamic Limit

In [15] we have given a very simple proof of a long awaited result, about the con-
vergence of the free energy per site in the thermodynamic limit. Let us show the
argument. Let us consider a system of size N and two smaller systems of sizes N1
and N2 respectively, with N = N1 +N2. Let us now compare

E logZN(β,K ) = E log
∑

σ1...σN

exp

(

β

√
N

2
K (σ )

)

, (7)

with

E log
∑

σ1...σN

exp

(

β

√
N1

2
K1(σ

(1))

)

exp

(

β

√
N2

2
K2(σ

(2))

)

= E logZN1(β,K1)+ E logZN2(β,K2), (8)

where σ (1) are the (σi, i = 1, . . . , N1), and σ (2) are the (σi, i = N1 + 1, . . . , N).
Covariances for K1 and K2 are expressed as in (4), but now the overlaps are re-
placed with the partial overlaps of the first and second block, q1 and q2 respectively,
defined as

q1(σ, σ
′) = N−1

1

N1∑

i=1

σiσ
′
i , (9)

and analogously for the q2 of the second block.
The key idea now is to build an interpolation scheme, between the large system

and the two small systems. This is easily achieved by introducing the interpolation
parameter 0 ≤ t ≤ 1, and the interpolating auxiliary function φ(t), defined as

φ(t) = E log
∑

σ1...σN

exp

(√
tβ

√
N

2
K +√

1 − tβ

√
N1

2
K1 +

√
1 − tβ

√
N2

2
K2

)

.

(10)
Here, we have realized the families of random variables K ,K1,K2 as independent
on the same probability space. The interpolation through the

√
t and

√
1 − t assures

a linear interpolation between the respective covariances. Obviously, we have
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φ(1) = E logZN(β,K ),

while
φ(0) = E logZN1(β,K1)+ E logZN2(β,K2).

Now it is easy to calculate directly the t derivative of φ (see for example [13]), with
the result

d

dt
φ(t) = β2

4

N1N2

N
〈(q1 − q2)

2〉t , (11)

where 〈〉t is a quite complicated, but explicitly given, t dependent probability mea-
sure on the random variables (q1, q2) [13]. In this derivation we have exploited the
simple connection between the global overlap and the block overlaps

Nq = N1q1 +N2q2. (12)

Since in any case the square in (11) is positive, by integrating on t and by exploiting
the recognized boundary values at t = 0 and t = 1, we reach the super-additivity
property

E logZN(β,K ) ≥ E logZN1(β,K1)+ E logZN2(β,K2), (13)

firstly established in [15]. Of course, the corresponding free energies show a sub-
additive property, because of the minus sign involved in their definition.

From the superaddivity property, through standard methods [26], the existence
of the limit follows in the form

lim
N→∞N−1E logZN(β,K ) = sup

N

N−1E logZN(β, h,K ) ≡ −βf (β). (14)

4 The Parisi Representation for the Free Energy

We refer to the original paper [25], and to the extensive review given in [20], for the
general motivations, and the derivation of the broken replica Ansatz, in the frame of
the ingenious replica trick. Here we limit ourselves to a synthetic description of its
general structure, independently from the replica trick. The deep motivation for the
introduction of the Parisi trial functional is sketched in [9], in the frame of the cavity
method (see also [11]).

First of all, let us introduce the convex space X of the functional order parame-
ters x, as nondecreasing functions of the auxiliary variable q, both x and q taking
values on the interval [0, 1], i.e.

X * x : [0, 1] * q → x(q) ∈ [0, 1]. (15)

Notice that we call x the function, and x(q) its values. We introduce a metric on X
through the L1([0, 1], dq) norm, where dq is the Lebesgue measure.
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For our purposes, we will consider the case of piecewise constant functional
order parameters, characterized by an integer K , and two sequences q0, q1, . . . , qK ,
m1,m2, . . . , mK of numbers satisfying

0 = q0 ≤ q1 ≤ · · · ≤ qK−1 ≤ qK = 1, 0 ≤ m1 ≤ m2 ≤ · · · ≤ mK ≤ 1,
(16)

such that

x(q) = m1 for 0 = q0 ≤ q < q1, x(q) = m2 for q1 ≤ q < q2, . . . ,

x(q) = mK for qK−1 ≤ q ≤ qK. (17)

In the following, we will find it convenient to define also m0 ≡ 0, and mK+1 ≡ 1.
The replica symmetric case of Sherrington and Kirkpatrick corresponds to

K = 2, q1 = q̄, m1 = 0, m2 = 1. (18)

Let us now introduce the function f , with values f (q, y; x, β), of the variables
q ∈ [0, 1], y ∈ R, depending also on the functional order parameter x, and on
the inverse temperature β, defined as the solution of the nonlinear antiparabolic
equation

(∂qf )(q, y)+ 1

2
(∂2

yf )(q, y)+ 1

2
x(q)(∂yf )2(q, y) = 0, (19)

with final condition
f (1, y) = log cosh(βy). (20)

Here, we have stressed only the dependence of f on q and y.
It is very simple to integrate (19) when x is piecewise constant. In fact, consider

x(q) = ma , for qa−1 ≤ q ≤ qa , firstly with ma > 0. Then, it is immediately
seen that the correct solution of (19) in this interval, with the right final boundary
condition at q = qa , is given by

f (q, y) = 1

ma

log
∫

exp
(
maf

(
qa, y + z

√
qa − q

))
dμ(z), (21)

where dμ(z) is the centered unit Gaussian measure on the real line. On the other
hand, if ma = 0, then (19) loses the nonlinear part and the solution is given by

f (q, y) =
∫

f
(
qa, y + z

√
qa − q

)
dμ(z), (22)

which can be seen also to follow from (21) in the limit ma → 0. Starting from the
last interval K , and using (21) iteratively on each interval, we easily get the solution
of (19), (20), in the case of piecewise constant order parameter x, as in (17), through
a chain of interconnected Gaussian integrations.

Now we introduce the following important definitions. The trial auxiliary func-
tion, associated to a given mean field spin glass system, as described in Sect. 3,
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depending on the functional order parameter x, is defined as

log 2 + f (0, 0; x, β)− β2

2

∫ 1

0
q x(q) dq. (23)

Notice that in this expression the function f appears evaluated at q = 0, and y = 0.
The Parisi spontaneously broken replica symmetry expression for the free energy

is given by the definition

−βfP (β) ≡ inf
x

(

log 2 + f (0, 0; x, β)− β2

2

∫ 1

0
q x(q) dq

)

, (24)

where the infimum is taken with respect to all functional order parameters x.
Notice that the infimum appears here, as compared to the supremum that would

appear in a variational principle of the usual entropy type in statistical mechanics.
Therefore, Parisi variational principle is really a new structure in statistical mechan-
ics, that deserves careful study in itself.

In [12], by exploiting a suitable interpolation, we have established a rigorous
connection between the partition function of the mean field spin glass and the Parisi
Ansatz.

The key point is to set up a useful interpolation scheme. This can be achieved
as follows [12]. For a generic piece-wise constant order parameter as in (17), in-
troduce a family of independent centered unit Gaussian random variables J a

i , a =
1, . . . , K, i = 1, . . . , N . With the usual interpolation parameter 0 ≤ t ≤ 0, intro-
duce firstly the random variable

ZK =
∑

σ1...σN

exp

(√
tβ

√
N

2
K (σ )

)

exp

(√
1 − tβ

K∑

a=1

√
qa − qa−1

∑

i

J a
i σi

)

.

(25)

Let us now denote by EK,EK−1, . . . , E0 the averages with respect to JK
. , JK−1

. ,

. . . ,K , respectively. Then, starting from ZK , define the random variables ZK−1,

. . . , Z1, Z0, recursively as follows

Z
mK

K−1 = EKZ
mK

K (26)

Z
ma

a−1 = EaZ
ma
a (27)

Z
m1
0 = E1Z

m1
1 , (28)

and the interpolating function φ(t) = N−1E0 logZ0.
It is simple to verify that at the boundary values for t we have

φ(1) = N−1E logZ(β,K )

for t = 1, where the partition function defined in (6) appears, while for t = 0, the
repeated integrations over the J variables give precisely
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φ(0) = log 2 + f (0, 0; x, β),
which is one piece of the Parisi representation.

At this point, we can calculate the t derivative through a series of long but
straightforward steps. Some miracles show up. Upon integration on t , we reach the
final result in the form of a sum rule

log 2 + f (0, 0; x, β)− β2

2

∫ 1

0
q x(q) dq

= N−1E logZN(β,K )+ β2

4
〈(q12 − qa)

2〉, (29)

where 〈〉 is an explicitly given but quite complicated measure average over the vari-
ables σ, σ ′, appearing in the two replica overlap q12, and the variable q., taking the
values qa . The sum rule holds for any value of the order parameter x. One of the
miracles occurring in the proof of this sum rule is that the second term appearing in
the Parisi trial functional here comes for free from the completion of the square in
the third term of the sum rule.

In any case, the third term, being the average of a square, is positive. Therefore
we have the following important result.

Theorem 1. For all values of the inverse temperature β, and for any functional
order parameter x, the following bound holds

N−1E logZN(β,K ) ≤ log 2 + f (0, 0; x, β)− β2

2

∫ 1

0
q x(q) dq,

uniformly in N . Consequently, we have also

N−1E logZN(β,K ) ≤ inf
x

(

log 2 + f (0, h; x, β)− β2

2

∫ 1

0
q x(q) dq

)

,

uniformly in N .

This result can be understood also in the frame of the generalized variational
principle established by Aizenman-Sims-Starr [1], as shown for example in [13], by
exploiting the general structure of the Derrida-Ruelle-Parisi probability cascades.

Up to this point we have seen how to obtain upper bounds. The problem arises
whether, as for example can be easily seen in the ferromagnetic case [13], we can
also get lower bounds, so as to shrink the thermodynamic limit to the value given
by the infx in Theorem 1. After a short announcement in [30], Michel Talagrand
wrote an extended paper [32], where the complete proof of the control of the lower
bound is firmly established. We refer to the original paper for the complete details of
this remarkable achievement. About the methods, here we only recall that the sum
rule in [12], explained above, gives also the corrections to the bounds appearing in
Theorem 1, albeit in a quite complicated form. Talagrand has been able to establish
that these corrections do in fact vanish in the thermodynamic limit. In order to be
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able to reach this important result it is necessary to prove an extension of the broken
replica symmetry bounds of Theorem 1 to the case where two replicas of the system
are coupled together. This task has not been reached yet in its full generality, but the
treatment given by Talagrand is sufficient to prove the vanishing of the correction
terms in the infinite volume limit.

In conclusion, we can establish the following conclusive result about the expres-
sion of the free energy in the mean field spin glass.

Theorem 2. For the mean field spin glass model we have

lim
N→∞N−1E logZN(β,K )

= sup
N

N−1E logZN(β,K ) (30)

= inf
x

(

log 2 + f (0, 0; x, β)− β2

2

∫ 1

0
q x(q) dq

)

. (31)

This is the main result obtained up to now in the mathematical treatment of the
mean field spin glass model.

5 Conclusion and Outlook for Future Developments

As we have seen, in these last few years there has been an impressive progress in
the understanding of the mathematical structure of spin glass models, mainly due
to the systematic exploitation of interpolation methods. However many important
problems are still open. The most important one is to establish rigorously the full
hierarchical ultrametric organization of the overlap distributions, as appears in Parisi
theory, and to fully understand the decomposition in pure states of the glassy phase,
at low temperatures. Some partial steps in this direction have been obtained through
the establishment of the so called Ghirlanda-Guerra identities [14], but the general
solution seems to be quite far.

Moreover, is would be useful to extend these methods to other important disor-
dered models, such as for example neural networks. Here the difficulty is that the
positivity arguments, so essential in the application of the interpolation methods, do
not seem to emerge naturally inside the structure of the theory. Even for a class of
simple mean field diluted ferromagnetic systems, the treatment of the infinite vol-
ume limit has not been reached yet, due to the lack of positivity arguments. Only
the β →∞ limit is well understood [4].

For extensions to diluted spin glass models we refer for example to [6, 17, 24, 3].
Finally, the problem of connecting properties of the short-range model with those

arising in the mean field case is still almost completely open. For partial results, and
different points of view, see [16, 7, 8, 19, 21, 23].
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Recently a pedagogically very useful complete review appeared [2], about the
application of the interpolation methods, and the other methods of spin glass theory,
to the simple case of the ferromagnetic mean field model.
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Surface Operators and Knot Homologies

Sergei Gukov

Abstract Topological gauge theories in four dimensions which admit surface oper-
ators provide a natural framework for realizing homological knot invariants. Every
such theory leads to an action of the braid group on branes on the corresponding
moduli space. This action plays a key role in the construction of homological knot
invariants. We illustrate the general construction with examples based on surface
operators in N = 2 and N = 4 twisted gauge theories which lead to a categori-
fication of the Alexander polynomial, the equivariant knot signature, and certain
analogs of the Casson invariant.

1 Introduction

Topological field theory is a natural framework for “categorification”, an informal
procedure that turns integers into vector spaces (Abelian groups), vector spaces into
Abelian or triangulated categories, operators into functors between these categories
[14]. The number becomes the dimension of the vector space, while the vector space
becomes the Grothendieck group of the category (tensored with a field). This pro-
cedure can be illustrated by the following diagram [29]: Recently, this idea led to

a number of remarkable developments in various branches of mathematics, notably
in low-dimensional topology, where many polynomial knot invariants were lifted to
homological invariants.
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Although the list of homological knot invariants is constantly growing, most of
the existing knot homologies fit into the “A-series” of homological knot invariants
associated with the fundamental representation of sl(N) (or gl(N)). Each such the-
ory is a doubly graded knot homology whose graded Euler characteristic with re-
spect to one of the gradings gives the corresponding knot invariant,

P(q) =
∑

i,j

(−1)iqj dim Hi,j . (1)

For example, the Jones polynomial can be obtained in this way as the graded Euler
characteristic of the Khovanov homology [37]. Similarly, the so-called knot Floer
homology [62, 64] provides a categorification of the Alexander polynomial Δ(q).
At first, these as well as other homological knot invariants listed in the table below
appear to have very different character. Thus, as the name suggests, knot Floer ho-
mology is defined as a symplectic Floer homology of two Lagrangian submanifolds
in a certain configuration space, while the other theories are defined combinatori-
ally. In addition, the definition of the knot Floer homology admits a generalization
to knots in arbitrary 3-manifolds, whereas at present the definition of the other knot
homologies (with N > 0) is known only for knots in R3.

Table 1 A general picture of knot polynomials and knot homologies

g Knot Polynomial Categorification
gl(1|1) Δ(q) knot Floer homology HFK(K)

“sl(1)” – Lee’s deformed theory H ′(K)

sl(2) Jones Khovanov homology HKh(K)

sl(N) PN(q) sl(N) homology HKRN(K)

The sl(N) knot homology [37, 39, 41]—whose Euler characteristic is the quan-
tum sl(N) invariant PN(q)—has a physical interpretation as the space of BPS states,
HBPS , in string theory [22]. In order to remind the physical setup of [22], let us re-
call that polynomial knot invariants, such as PN(q), can be related to open topologi-
cal string amplitudes (“open Gromov-Witten invariants”) by first embedding Chern-
Simons gauge theory in topological string theory [75], and then using the so-called
large N duality [17, 18, 60, 49], a close cousin of the celebrated AdS/CFT duality
[54]. Moreover, open topological string amplitudes and, hence, the corresponding
knot invariants can be reformulated in terms of new integer invariants which cap-
ture the spectrum of BPS states in the string Hilbert space, HBPS . The BPS states
in question are membranes ending on Lagrangian five-branes in M-theory on a non-
compact Calabi-Yau space X = OP1(−1) ⊕ OP1(−1). Specifically, the five-branes
have world-volume R2,1 ×LK where LK ⊂ X is a Lagrangian submanifold (which
depends on knot K) and R2,1 ⊂ R4,1.

Surprisingly, the physical interpretation of the sl(N) knot homology naturally
leads to a triply-graded (rather than doubly-graded) knot homology [22] (see also
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Fig. 1 A membrane ending on a Lagrangian five-brane

[20, 23]). Indeed, the Hilbert space of BPS states, HBPS , is graded by three quan-
tum numbers, which are easy to see in the physical setup described in the previous
paragraph. The world-volume of the five-brane breaks the SO(4) ∼= SU(2)×SU(2)
rotation symmetry in five dimensions down to a subgroup U(1)L × U(1)R , where
U(1)L (resp. U(1)R) is a rotation symmetry in the dimensions parallel (resp. trans-
verse) to the five-brane. Therefore, BPS states in the effective N = 2 theory
on the five-brane are labeled by three quantum numbers jL, jR , and Q, where
Q ∈ H2(X, LK) ∼= Z is the relative homology class represented by the mem-
brane world-volume. In other words, apart from the Z2-grading by the fermion num-
ber, the Hilbert space of BPS states HBPS is triply-graded. The properties of this
triply-graded theory were studied in [15]; it turns out that this theory unifies all the
doubly-graded knot homologies listed in Table 1, including the knot Floer homol-
ogy. A mathematical definition of the triply-graded knot homology which appears
to have many of the expected properties was constructed in [42].

Apart from realization in (topological) string theory, the homological knot in-
variants are expected to have a physical realization also in topological gauge the-
ory, roughly as polynomial knot invariants have a physical realization in three-
dimensional gauge theory (namely, in the Chern-Simons theory [73]) as well as
in the topological string theory [75, 17, 18, 60]. Although these two realizations
are not unrelated, different properties of knot polynomials are easier to see in one
description or the other. For example, the dependence on the rank N is manifest in
the string theory description, while the skein operations and transformations under
surgeries are easier to see in the Chern-Simons gauge theory.

Similarly, as we explained above, string theory realization is very useful for un-
derstanding relation between knot homologies of different rank. On the other hand,
the formal properties of knot homologies which are hard to see in string theory
(which, however, would be very natural in topological field theory) have to do with
the fact that, in most cases, knot homologies can be extended to a functor F from
the category of 3-manifolds with links and cobordisms to the category of graded
vector spaces and homomorphisms
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F (Y ;K) = HY ;K (2)

F (X;D) : HY ;K → HY ′;K ′ (3)

Moreover, on manifolds with corners, it is expected that F extends to a 2-functor
from the 2-category of oriented and decorated 4-manifolds with corners to the 2-
category of triangulated categories [38, 34, 2]. In particular, it should associate:

• A triangulated category F (Σ) to a closed oriented 2-manifold Σ ;
• An exact functor F (Y ) to a 3-dimensional oriented cobordism Y ;
• A natural transformation F (X) to a 4-dimensional oriented cobordism X.

As we explain below, these are precisely the formal properties of a four—dimen-
sional topological field theory with boundaries and corners. Moreover, links and link
cobordisms can be incorporated by introducing “surface operators” in the topologi-
cal gauge theory.

In Sect. 2, we discuss the general aspects of topological gauge theories which
admit surface operators. Of particular importance is the fact that every topological
gauge theory which admits surface operators gives rise to an action of the braid
group on D-branes. Then, in Sects. 3 and 4 we illustrate how these general struc-
tures are realized in simple examples of N = 2 and N = 4 twisted gauge theories.
Specifically, in Sect. 3 we study surface operators and the corresponding knot ho-
mologies in the Donaldson-Witten theory and in the Seiberg-Witten theory, both of
which are obtained by twisting N = 2 supersymmetric gauge theory. In Sect. 4,
we explain that a particular twist of the N = 4 super-Yang-Mills theory—studied
recently in connection with the geometric Langlands program [36, 21]—with a sim-
ple type of surface operators provides a physical framework for categorification of
the GC Casson invariant.

2 Gauge Theory and Categorification

Let us start by describing the general properties of the topological quantum field the-
ory (TQFT) with boundaries, corners, and surface operators. To a closed 4-manifold
X, a four-dimensional TQFT associates a number, Z(X), the partition function
of the topological theory on X. Similarly, to a closed 3-manifold Y , it associates
a vector space, HY , the Hilbert space obtained by quantization of the theory on
X = R × Y . Finally, to a closed surface Σ it associates a triangulated category,
F (Σ), which can be understood as the category of D-branes in the topological
sigma-model obtained via the dimensional reduction of gauge theory on Σ . The
objects of the category F (Σ) describe BRST-invariant boundary conditions in the
four-dimensional TQFT on 4-manifolds with corners (locally, such manifolds look
like X = R × R+ ×Σ). Summarizing,

gauge theory on X � number Z(X)

gauge theory on R × Y � vector space HY

gauge theory on R2 ×Σ � category F (Σ)
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where we assume that X, Y , and Σ are closed. Depending on whether the topolog-
ical reduction of the four-dimensional gauge theory on R2 ×Σ gives a topological
A-model or B-model, the category F (Σ) is either the derived Fukaya category,1

Fuk(M ), or the derived category of coherent sheaves, Db(M ) := DbCoh(M ),

topological A-model: F (Σ) = Fuk(M )

topological B-model: F (Σ) = Db(M )

where M is the moduli space of classical solutions in gauge theory on R2 × Σ ,
invariant under translations along R2. Different topological gauge theories lead to
different functors F . For example, in the context of Donaldson-Witten theory [72],
Fukaya suggested [16] that the category associated to a closed surface Σ should be
A∞-category of Lagrangian submanifolds in the moduli space of flat G-connections
on Σ . This is precisely what one finds from the topological reduction [3] of the
twisted N = 2 gauge theory on R2 × Σ , in agreement with the general principle
discussed here.

The Atiyah-Floer Conjecture and Its Variants

It is easy to see that F defined by the topological gauge theory has all the ex-
pected properties of a 2-functor. In particular, to a 3-manifold Y with boundary
∂Y = Σ it associates a “D-brane”, that is an object in the category F (Σ).

Fig. 2 (a) A 3-manifold Y can be obtained as a connected sum of 3-manifolds Y1 and Y2, joined
along their common boundary Σ . (b) In four-dimensional gauge theory, the space R×Y is obtained
by gluing two 4-manifolds with corners

The interpretation of 3-manifolds with boundary as D-branes can be used to re-
produce the Atiyah-Floer conjecture, which states [1]:

HF inst∗ (Y ) ∼= HF
symp∗ (M ;L1,L2) (4)

Here M = MG
flat is the moduli space of flat connections on Σ , while L1 and L2

are Lagrangian submanifolds in M associated with the Heegard splitting of Y ,

Y = Y1 ∪Σ Y2 (5)

1 Notice, according to the Homological Mirror Symmetry conjecture, this category is equivalent
to the derived category of the mirror B-model [44]. In particular, the category Fuk(M ), suitably
defined, must be a triangulated category [7].
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such that the points of Li ⊂ M , i = 1, 2, correspond to flat connections on Σ

which can be extended to Yi .
Similarly, in the B-model, Y1 and Y2 define the corresponding B-branes, which

are objects in the derived category of coherent sheaves on M . In both cases, the
vector space HY associated with the compact 3-manifold Y is the space of “1–2
strings”:

HY =
{
HF

symp∗ (M ;L1,L2) A-model

Ext∗(FY1 ,FY2) B-model
(6)

In the Donaldson-Witten theory, this leads to the Atiyah-Floer conjecture (4).

“Decategorification”

The operation represented by the arrow going to the left in (1)—“decategorific-
ation”—also has a natural interpretation in gauge theory. It corresponds to the di-
mensional reduction, or compactification on a circle. Indeed, the partition function
in gauge theory on X = S1 × Y is the trace (the index) over the Hilbert space HY :

ZS1×Y = χ(HY ) (7)

Similarly, the vector space associated with Y = S1 ×Σ is the Grothendieck group
of the category F (Σ)

HS1×Σ = K(F (Σ)) (8)

In the case of A-model and B-model, respectively, we find

K(F (Σ)) =
{
Hd(M ) for F (Σ) = Fuk(M )

H ∗(M ) for F (Σ) = Db(M )
(9)

where d = 1
2 dim(M ).

2.1 Incorporating Surface Operators

In a three-dimensional TQFT, knots and links can be incorporated by introducing
topological loop observables. The familiar example is the Wilson loop observable
in Chern-Simons theory,

WR(K) = TrR

(

P exp
∮

K

A

)

(10)

Recall, that canonical quantization of the Chern-Simons theory on Σ×R associates
a vector space HΣ—the “physical Hilbert space”—to a Riemann surface Σ [73].
In presence of Wilson lines, quantization gives a Hilbert space HΣ;pi,Ri

canoni-
cally associated to a Riemann surface Σ together with marked points pi (points
where Wilson lines meet Σ) decorated by representations Ri . For example, to n
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marked points on the plane colored by the fundamental representation it associates
V⊗n, where V is a N -dimensional irreducible representation of the quantum group
Uq(sl(N)).

We wish to lift this to a four-dimensional gauge theory by including the “time”
direction, so that the space-time becomes X = Y × R, where the knot K is rep-
resented by a topological defect (which was called a “surface operator” in [21])
localized on the surface D = K × R. In the Feynman path integral, a surface op-
erator is defined by requiring the gauge field A (and perhaps other fields as well) to
have a prescribed singularity. For example, the simplest type of singularity studied
in [21] creates a holonomy of the gauge field on a small loop around D,

V = Hol(A) (11)

Quantization of the four-dimensional topological theory on a 4-manifold X = Y×R
with a surface operator on D = K × R gives rise to a functor that associates to this
data (namely, a 3-manifold Y , a knot K , and parameters of the surface operator) a
vector space, the space of quantum ground states,

F (Y ;K) = HY ;K,parameters (12)

Moreover, we will be interested in surface operators which preserve topological
invariance for more general 4-manifolds X and embedded surfaces D ⊂ X. For ex-
ample, if the four-dimensional topological gauge theory is obtained by a topological
twist of a supersymmetric gauge theory, it is natural to consider a special class of
surface operators which preserve supersymmetry, in particular, those supercharges
which become BRST charges in the twisted theory. Such surface operators can be
defined on a more general embedded surface D, which might be either closed or
end on the boundary of X. An example of this situation is a four-dimensional TQFT
with corners, shown on Fig. 3, which arises when we consider a lift of a 3-manifold
with boundary Σ and line operators with end-points on Σ .

To summarize, including topological surface operators in the four-dimensional
gauge theory, we obtain a functor from the category of 3-manifolds with links and
their cobordisms to the category of graded vector spaces and homomorphisms:

Fig. 3 (a) Line operators in a three-dimensional TQFT on Σ × I and (b) topological “surface
operators” in four-dimensional gauge theory on Σ × I × R
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F (X;D) : HY ;K → HY ′;K ′ (13)

Here, the knot homology HY ;K is the space of quantum ground states in the four-
dimensional gauge theory with surface operators and boundaries. Similarly, the
functor F associates a number (the partition function) to a closed 4-manifold with
embedded surfaces, and a category F (Σ;pi) to a surface Σ with marked points,
pi , which correspond to the end-points of the topological surface operators.

As in the theory without surface operators, the category F (Σ;pi) is either the
category of A-branes or the category of B-branes on M , depending on whether
the topological reduction of the four-dimensional gauge theory is A-model or B-
model. Here, M is the moduli space of R2-invariant solutions in gauge theory on
X = R2 ×Σ with surface operators supported at R2 × pi .

2.2 Braid Group Actions

As we just explained, surface operators are the key ingredients for realizing knot
homologies in four-dimensional gauge theory. Our next goal is to explain that every
topological gauge theory which admits surface operators is, in a sense, a factory that
produces examples of braid group actions on branes, including some of the known
examples as well as the new ones.2

In general, the mapping class group of the surface Σ acts on branes on M . In
particular, when Σ is a plane with n punctures, the moduli space M is fibered over
the configuration space Confn(C) of n unordered points on C,

M
↓

Confn(C)

(14)

and the braid group Brn = π1(Confn(C)) (= the mapping class group of the n-
punctured disk) acts on the category F (Σ). Recall, that the braid group on n

strands, Brn, has n− 1 generators, σi , i = 1, . . . , n− 1 which satisfy the following
relations

σiσi+1σi = σi+1σiσi+1 (15)

σiσj = σjσi, |i − j | > 1 (16)

where σi can be represented by a braid with only one crossing between the strands
i and i + 1, as shown on the figure below.

In gauge theory, the action of the braid group on branes is induced by braiding
of the surface operators. Namely, a braid, such as the one on Fig. 4, corresponds

2 It is worth pointing out that, compared to [21], where the braid group action is associated with
local singularities in the moduli space M , in the present context the origin of the braid group
action is associated with global singularities.
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Fig. 4 A braid on four strands

to a non-contractible loop in the configuration space, Confn(C). As we go around
the loop, the fibration (14) has a monodromy, which acts on the category of branes
F (Σ) as an autoequivalence,

Brn → Auteq(F (Σ)) (17)

β �→ φβ (18)

The simplest situation where one finds the action of the braid group Brn on
A-branes (resp. B-branes) on M is when M contains An−1 chain of Lagrangian
spheres (resp. spherical objects).

We remind that an An−1 chain of Lagrangian spheres is a collection of La-
grangian spheres L1, . . . ,Ln−1 ⊂ M , such that

#(Li ∩Lj ) =
{

1 |i − j | = 1

0 |i − j | > 1
(19)

These configurations occur when M can be degenerated into a manifold with sin-
gularity of type An−1. Indeed, to any Lagrangian sphere L ⊂ M , one can associate
a symplectic automorphism of M , the so-called generalized Dehn twist TL along
L , which acts on H∗(M ) as the Picard-Lefschetz monodromy transformation

(TL )∗(x) =
{
x − ([L ] · x)[L ] if dim(x) = dim(L )

x otherwise
(20)

As shown in [68], Dehn twists TLi
along An−1 chains of Lagrangian spheres satisfy

the braid relations (15), and this induces an action of the braid group with n strands
on the category of A-branes, Fuk(M ).

The mirror of this construction gives an example of the braid group action on
B-branes [70]. In this case, the braid group is generated by the twist functors along
spherical objects (“spherical B-branes”) which are mirror to the Lagrangian spheres.
As the name suggests, an object E ∈ Db(M ) is called d-spherical if Ext∗(E ,E ) is
isomorphic to H ∗(Sd,C) for some d > 0,

Exti (E ,E ) =
{

C if i = 0 or d

0 otherwise
(21)
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A spherical B-brane defines a twist functor TE ∈ Auteq(Db(M )) which, for any
F ∈ Db(M ), fits into exact triangle

Hom∗(E ,F )⊗ E −→ F −→ TE (F ) (22)

where the first map is evaluation. At the level of D-brane charges, the twist functor
TE acts as, cf. (20),

x �→ x + (v(E ) · x) v(E )

where v(E ) = ch(E )
√
T d(M ) ∈ H ∗(M ) is the D-brane charge (the Mukai vector)

of E .
The mirror of an An−1 chain of Lagrangian spheres is an An−1 chain of spheri-

cal objects, that is a collection of spherical objects E1, . . . ,En−1 which satisfy the
condition analogous to (19),

∑

k

dim Extk(Ei ,Ej ) =
{

1 |i − j | = 1

0 |i − j | > 1
(23)

With some minor technical assumptions [70], the corresponding twist functors TEi

generate an action of the braid group Brn on Db(M ). As we illustrate below, many
examples of braid group actions on branes can be found by studying gauge theory
with surface operators.

Fig. 5 A particular brane B̃ which corresponds to closing a braid on four strands

In A-model as well as in B-model, the braid group action on branes can be used
to write a convenient expression for knot homology, HK , of a knot K represented as
a braid closure. Let K be a knot obtained by closing a braid β on both ends as shown
on Fig. 5. Then, the space of quantum ground states, HK , in the four-dimensional
gauge theory with a surface operator on D = R × K can be represented as the
space of open string states between branes B̃ and B̃′ = φβ(B̃). Here, B̃ is the
basic brane which corresponds to the configuration on Fig. 5, while B̃′ is the brane
obtained from it by applying the functor φβ ; it corresponds to the braid β closed
on one side. These are A-branes (resp. B-branes) in the case of A-model (resp. B-
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model), and the space open strings is, cf. (6),

HK =
{
HF

symp∗ (M ; B̃, φβ(B̃)) A-model

Ext∗(B̃, φβ(B̃)) B-model
(24)

In particular, when topological reduction of the gauge theory gives A-model, the
branes B̃ and B̃′ are represented by Lagrangian submanifolds in M . This leads to
a construction of link homologies via symplectic geometry, as in [69, 55, 56].

3 Surface Operators and Knot Homologies in N = 2 Gauge
Theory

Now, let us illustrate the general structures discussed in the previous section in the
context of N = 2 topological gauge theory in four dimensions. For simplicity,
we consider examples of N = 2 gauge theories with gauge groups G = SU(2)
and G = U(1) known as the Donaldson-Witten theory and the Seiberg-Witten the-
ory, respectively. In fact, these two theories are closely related [67]—the former
describes the low-energy physics of the latter—and below we shall use this fact to
compare the corresponding knot homologies.

3.1 Donaldson-Witten Theory and the Equivariant Knot Signature

We start with pure N = 2 super-Yang-Mills theory with gauge group G which
for simplicity we take to be SU(2). After the topological twist, the N = 2 gauge
theory can be formulated on arbitrary 4-manifold X and localizes on the anti-self-
dual (“instanton”) field configurations [72]:

F+
A = 0 (25)

The space of quantum ground states on R × Y is the instanton Floer homology
defined3 by studying the gradient flow of the Chern-Simons functional,

HY = HF inst∗ (Y ) (26)

and the topological reduction [3] on R2 × Σ leads to a topological A-model with
the target space M = MG

flat, the moduli space of flat connections on Σ . As we
already mentioned in the previous section these facts, together with the interpreta-
tion of boundaries as D-branes, naturally lead to the statement of the Atiyah-Floer
conjecture. The Euler characteristic of HY is the Casson invariant, λG(Y ), which

3 As in the original Floer’s definition, we mainly assume that Y is a homology sphere when we
talk about HF inst∗ (Y ) in order to avoid difficulties related to reducible connections.



324 Sergei Gukov

computes the Euler characteristic of the moduli space of flat G-connections on Y ,

χ(HY ) = 4λG(Y ) (27)

In the special case of G = SU(2) that we are mainly considering here, it is the stan-
dard Casson-Walker-Lescop invariant λCWL(Y ) which sometimes we write simply
as λ(Y ).

We note that, while the homological invariant HY is difficult to study on 3-
manifolds with b1 > 1, its Euler characteristic—which is, at least formally, com-
puted by the partition function of the four-dimensional gauge theory on X = S1 ×
Y—is still given by the Casson invariant [57],

ZDW(S1 × Y) = 4λ (28)

Since b+2 (X) = b1(Y ) for X = S1 × Y , computing (28) is much easier in the case
b1(Y ) > 1. Indeed, in general the Donaldson-Witten partition function ZDW(X)

can be written as a sum of the contribution of the Coulomb branch (the u-plane
integral) and two contributions, ZM and ZD , both of which are described by the
Seiberg-Witten theory (that we consider in more detail below):

ZDW = Zu + ZM + ZD (29)

For manifolds X = S1 × Y with b1(Y ) > 1 the u-plane integral vanishes and we
have ZM = ZD = 2λ(Y ), which then add up to (27). If b1(Y ) = 1, the Donaldson-
Witten partition function ZDW(S1×Y) depends on the metric. In particular, it should
be compared with the Euler characteristic of HY in the chamber R →∞, where R

is the radius of S1. In this case, the u-plane integral is non-zero, and instead of (28)
one finds a similar expression with the “correction” − 4

6 |TorH1(Y,Z)|, see [57] for
more details.

Surface Operators

Now let us consider surface operators in the Donaldson-Witten theory which
correspond to the singularity of the gauge field of the form

A = αdθ + · · · (30)

Here, (r, θ) are radial coordinates in the normal plane, α is the parameter which
labels surface operators and takes values in t = Lie(T), the Lie algebra of the
maximal torus T ⊂ G, and the dots in (30) stand for less singular terms. More
precisely, inequivalent choices of α are labeled by elements in T = t/Λcochar since
gauge transformations shift α by vectors in the cocharacter lattice Λcochar of G. For
example, for G = SU(2) we have T = U(1).

In the presence of a surface operator on D ⊂ X, supersymmetric field configura-
tions in this theory are described by the instanton equations (25):

F+
A = 2πα(δD)+ (31)
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perturbed by the term 2πα(δD)+, where (δD)+ denotes the self-dual part of the co-
homology class that is Poincaré dual to the surface D. In the context of SU(2) gauge
theory, such surface operators were extensively used in the work of Kronheimer
and Mrowka on minimal genus problems of embedded surfaces in 4-manifolds
[46, 47].

According to the general rules outlined in the previous section, to a 4-manifold
X = R × Y and a surface operator on D = R × K labeled by e2πiα ∈ T the
Donaldson-Witten theory associates a vector space, the space of quantum ground
states,

HY ;K,α = HF inst∗ (Y ;K,α) (32)

Just like the ordinary instanton Floer homology (27), it categorifies a Casson-like
invariant,

χ(HY ;K,α) = λα(Y ;K) (33)

which counts flat SU(2) connections on a homology sphere Y with the prescribed
singularity (30) along K .

In order to describe λα(Y ;K) more explicitly, it is convenient to decompose Y as
in (5) into a tubular neighborhood of the knot K , Y1 = N(K), and its complement,
Y2 = Y \ N(K), glued along the common boundary Σ ∼= T 2. As we already men-
tioned earlier, topological reduction of the Donaldson-Witten theory on Σ yields
a topological A-model with the target space M = MG

flat, the moduli space of flat
connections on Σ :

MG
flat = {ρ : π1(Σ) → G}/conj. (34)

For Σ = T 2 this moduli space is the quotient, MG
flat = (T × T)/W , of two copies

of the maximal torus by the Weyl group of G. In particular, for G = SU(2) the cor-
responding moduli space MG

flat
∼= T 2/Z2 is often called the “pillowcase”. Similarly,

each component in the decomposition Y = Y1 ∪Σ Y2 defines an A-brane supported
on a Lagrangian submanifold in MG

flat. If we denote Lagrangian submanifolds asso-
ciated to Y1 and Y2, respectively, by Lα and LY\K , then the invariant (33) is given
by their intersection number (in the smooth part of MG

flat):

λα(Y ;K) = #(Lα ∩LY\K) (35)

Note, the Lagrangian brane supported on Lα does not depend on K or Y , while the
Lagrangian brane supported on LY\K does not depend on α. Indeed, Lα is simply
the set of representations ρ ∈ MG

flat taking the meridian of the knot K to a matrix of
trace tr(ρμ) = 2 cosπα. Similarly, the Lagrangian brane supported on LY\K cor-
responds to flat connections on Σ = T 2 which can be extended to flat connections
on Y \K . In other words, LY\K is the image of MG

flat(Y \K) under the restriction
map

r : MG
flat(Y \K) → MG

flat(T
2)

induced by the inclusion of the torus boundary of the knot complement, T 2 ↪→
Y \K .
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To summarize, surface operators in the Donaldson-Witten theory lead to a variant
of the instanton Floer homology, HY ;K.α , whose Euler characteristic is a Casson-
like invariant (35). This is precisely the definition of the knot invariant which was
introduced and studied in [53, 9, 25] (see also [26, 45]). This invariant, sometimes
called Casson-Lin invariant, is well-defined away from the roots of the Alexander
polynomial of K and turns out to be equal to the linear combination of more familiar
invariants, α ∈ [0, 1],

λα(Y ;K) = 4λ(Y )+ 1

2
σα(K) (36)

where λ(Y ) is the Casson invariant of Y and σα(K) : U(1) → Z is the equivari-
ant signature function (a.k.a. Levine-Tristram signature) of the knot K . Homology
theory categorifying λα(Y ;K) was constructed in [12] (see also [10, 11]) and, there-
fore, is expected to be the same as (32).

We remind that, for a knot K in a homology sphere Y , the normalized Alexander
polynomial is defined as

Δ(K; q) = det
(
q1/2V − q−1/2VT

)
(37)

where V is the Seifert matrix of K and q = e2πiα . Note, that Δ(K; q) = Δ(K; q−1).
The equivariant signature σα(K) is defined as the signature of the Hermitian matrix

BK(q) = (1 − q)V + (1 − q)VT (38)

The equivariant signature function changes its value only if q = e2πiα is a root of
the Alexander polynomial. It vanishes for α near 0 or 1,

lim
α→0,1

σα(K) = 0 (39)

and equals the standard knot signature, σ(K), for α = 1
2 . In particular, for Y = S3

and α = 1
2 we get the original Lin’s invariant [53] and the corresponding homol-

ogy theory categorifying λ 1
2
(Y ;K) was constructed—as symplectic Floer homol-

ogy (24) of the braid representative of K—in [50].

3.2 Seiberg-Witten Theory

Now let us consider N = 2 twisted gauge theory with Abelian gauge group G =
U(1) coupled to a single monopole field M . This theory localizes on the solutions
to the Seiberg-Witten equations for Abelian monopoles [74]:

F+
A + i(MM)+ = 0 (40)

/DAM = 0 (41)
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which follow from the N = 2 topological gauge theory.4 The partition function of
this theory on a 4-manifold X with 2-observables included is a generating function
of the Seiberg-Witten invariants, SWX(x), which “count” solutions to (40) and can
be viewed as a function of x ∈ Spinc(X),

SWX : Spinc(X) → Z

To be more precise, the Seiberg-Witten invariants are defined as integrals over Mx ,
the moduli space of solutions to the Seiberg-Witten equations (40),

SWX(x) =
∫

Mx

a
dx/2
D

where dx = 1
4 (x

2 − 2χ(X) − 3σ(X)) is the virtual dimension of Mx , and aD is
a 2-form which represents the first Chern class of the universal line bundle on the
moduli space Mx .

The space of quantum ground states in this theory is the Seiberg-Witten mono-
pole homology,

HY = HM∗(Y ) (44)

which is conjectured to be isomorphic to the Heegard Floer homology, see e.g. [48]:

HM∗(Y ) ∼= HF∗(Y ) (45)

In turn, the Heegard Floer homology HF∗(Y )—as well as its analog for knots, the
knot Floer homology HFK∗(K), that is closer to our interest—is defined as the
symplectic Floer homology of certain Lagrangian submanifolds in the symmetric
product space of the form [62, 64, 61],

M = Symk(Σ) (46)

The symmetric product space and Lagrangian submanifolds in it naturally appear in
the topological reduction of the Seiberg-Witten theory. Indeed, on X = R2 ×Σ the

4 Up to the finite group H 1(X,Z2), the set of Spinc structures on a 4-manifold X is parameterized
by integral cohomology classes which reduce to w2(X) mod 2,

Spinc(X) = {x ∈ H 2(X,Z) | x ≡ w2(X) mod 2}
Given a Spinc structure x ∈ Spinc(X), let L be the corresponding Hermitian line bundle, and S±L
the corresponding spinor bundles. Then, the Seiberg-Witten monopole equations (40) are equations
for a pair (A,M), where A is a unitary connection on L and M is a smooth section of S+L . In writing
the equations (40) we used the Dirac operator, /DA : S+L → S−L , and a map

Ω0(S+L ) → Ω0(ad0S
+
L ) (42)

M �→ i(MM)+ (43)

where ad0S
+
L
∼= Λ2+ is the subbundle of the adjoint bundle of S+L consisting of the traceless skew-

Hermitian endomorphisms, which can be identification with the space of self-dual 2-forms.
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equations (40) reduce to the vortex equations in the Abelian Higgs model, and the
moduli space of solutions to these equations, namely the moduli space of charge
k vortices, is the symmetric product space (46), see [35]. As in the case of the
Donaldson-Witten theory, the topological reduction of the Seiberg-Witten theory
leads to the topological A-model5 with M as the target space, and the corresponding
category of branes in this case is the category of A-branes,

F (Σ) = Fuk(M ) (47)

According to the general rules explained in the previous section, the Euler char-
acteristic of the homology theory (44), (45) is given by the partition function of the
Seiberg-Witten theory on X = S1 × Y (in the chamber R →∞):

ZSW (Y ) =
∑

x∈Spinc(Y )

SWY (x) (48)

If b1(Y ) > 1, then there are no wall-crossing phenomena and ZSW (Y ) can be equiv-
alently viewed as the partition function of the three-dimensional gauge theory on Y

obtained by the dimensional reduction of the Seiberg-Witten theory. For a fairly
general class of 3-manifolds Y , the partition function (48) is equal to the Casson
invariant of Y , cf. (28):

ZSW(Y ) = λ(Y ) (49)

For instance, for 3-manifolds with b1(Y ) > 1 it follows e.g. from the general result
of Meng and Taubes [58] that will be discussed in more detail below. On the other
hand, for homology spheres the definition of the Seiberg-Witten invariants requires
extra care. However, once this is done, one can show that (49) still holds for suitably
defined ZSW(Y ); see [52, 8, 59] for a mathematical proof and [4] for a physical
argument based on the duality with Rozansky-Witten theory [65].

Surface Operators

As in the Donaldson-Witten theory, we can introduce surface operators by requir-
ing the gauge field to have the singularity of the form (30). In the Seiberg-Witten
theory, such surface operators are labeled by e2πiα ∈ U(1). In the presence of a
surface operator on D ⊂ X, supersymmetric field configurations are described by
the perturbed Seiberg-Witten monopole equations, cf. [74, 71]:

F+
A + i(MM)+ = 2πα(δD)+ (50)

/DAM = 0 (51)

As usual, in order to obtain a homological invariant of a knot K in a 3-manifold Y0
one should consider the Hilbert space of the gauge theory on X = R × Y0 with a
surface operator on D = R×K . In the context of Seiberg-Witten theory, this gives
a vector space HY0;K;x,α . More generally, given a link L with  components one

5 In fact, this is true for any four-dimensional N = 2 gauge theory with the same type of
topological twist [3].
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can introduce  surface operators, each with its own parameter αi , i = 1, . . . ,  .
The corresponding Hilbert space is

HY0;L;xi ,αi = HM∗(Y ; xi, αi) (52)

where Y = Y0\L is the link complement, and parameters αi determine the boundary
conditions on Y . Namely, the holonomy of the U(1) gauge connection A along the
meridian of the i-th link component should be equal to e2πiαi . We will be mainly
interested in the case where Y0 = S3 and Y = S3 \L is the link complement. In this
case, (52) gives ( + 1)-graded link homology.

We introduce the graded Euler characteristic of the homological invariant (52),

ταi (Y ; qi) :=
∑

x∈H(Y)

χ(HM∗(Y ; xi, αi)) · qx (53)

which is a formal power series in q±1
i , where qi = ehi and hi are the generators of

a free Abelian group,

H(Y) := H1(Y,Z)/torsion ∼= Z
b1(Y )

In particular, when Y is a link complement, the group H(Y) = H1(Y,Z) ∼= Z
 is

generated by the meridians of the link components.
In general, ταi (Y ; qi) is a non-trivial function of qi and αi . It is equal to the

partition function of the Seiberg-Witten theory on X = S1 × Y (in the chamber
R →∞):

ταi (Y ; qi) =
∑

x∈H(Y)

SWY (x, αi) · qx (54)

This function is an interesting generalization of the Reidemeister-Milnor torsion,
on the one hand, and the equivariant knot signature, on the other. Indeed, since
the Seiberg-Witten theory is the low-energy description of the Donaldson-Witten
theory, we expect the relation to the equivariant knot signature. On the other hand,
if αi is near 0 or 1 for all i = 1, . . . ,  , as in (39), then the partition function
ZSW(Y ; xi, αi) = ταi (Y ; qi) becomes the ordinary partition function of the link
complement Y studied by Meng and Taubes [58] who showed that it is equal to the
Reidemeister-Milnor torsion. Hence,

lim
αi→0,1

ταi (Y ; qi) = τ(Y ; qi) (55)

where τ(Y ; qi) is the ordinary Reidemeister-Milnor torsion of Y . In particular, for
b1(Y ) > 1 we have τ(Y ; qi) = Δ(L; qi), so that in this limit the homological
invariant (52) categorifies the multi-variable Alexander polynomial Δ(L; qi) of the
link L, ∑

x∈H(Y)

χ(HL;x) · qx = Δ(L; q) (56)
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This suggests to identify the ( + 1)-graded homology theory (52) with the link
Floer homology [63],

HL;x = HFL∗(L; x) (57)

In the case of knots, the relation to the Alexander polynomial Δ(K; q) is slightly
more delicate, in part due to metric dependence and wall crossing. It turns out, how-
ever, that even though individual Seiberg-Witten invariants are different in the posi-
tive and negative chamber, the corresponding generating functions are both equal to
the Milnor torsion [58], so that (55) still holds. Note, that specializing (55) further
to qi = 1, we recover (49). It would be interesting to study the invariant τα(Y ; q)
further, in particular, its relation to the equivariant knot signature σα(K).

4 Surface Operators and Knot Homologies in N = 4 Gauge
Theory

Now, let us consider surface operators and knot homologies in the context of N = 4
topological super-Yang-Mills theory in four dimensions. Specifically, we shall con-
sider the GL twist of the theory [36], with surface operators labeled by regular semi-
simple conjugacy classes [21]. As we shall explain below, this theory provides a
natural framework for categorification of the GC Casson invariant, which counts flat
connections of the complexified gauge group GC.

The topological reduction of this theory leads to a N = 4 sigma-model [3, 24,
36], whose target space is a hyper-Kahler manifold MH (Σ,G), the moduli space
of solutions to the Hitchin equations on Σ [27]:

F − φ ∧ φ = 0 (58)

dAφ = 0, dA � φ = 0 (59)

This twist of the N = 4 super-Yang-Mills theory has a rich spectrum of super-
symmetric surface operators. In particular, here we will be interested in the most
basic type of surface operators, which correspond to the singular behavior of the
gauge field A and the Higgs field φ of the form [21]:

A = αdθ + · · · , (60)

φ = β
dr

r
− γ dθ + · · · (61)

where α, β, γ ∈ t, and the dots stand for the terms less singular at r = 0. For generic
values of the parameters α, β, γ , (60) defines a surface operator associated with the
regular semi-simple conjugacy class C ∈ GC.

According to the general rules explained in Sect. 2, this topological field theory
associates a homological invariant HY to a closed 3-manifold Y and, more gener-
ally, a knot homology HY ;K to a 3-manifold with a knot (link) K . These homolo-
gies can be computed as in (6) and (24) using the Heegard decomposition of Y as
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well as the braid group action on branes. The branes in questions6 are branes of type
(A,B,A) with respect to the three complex structures (I, J,K) of the hyper-Kahler
space MH (Σ,G). We can use this fact and analyze the branes in different complex
structures in order to gain a better understanding of the homological invariant HY,K

as well as the GC Casson invariant itself. For example, in complex structure I it
corresponds to counting parabolic Higgs bundles, a fact that has already been used
e.g. in [5] for studying the SL(2,C) Casson invariant for Seifert fibered homology
spheres.

Complex Structure J : Counting Flat Connections

The B-model in complex structure J is obtained, e.g. by setting the theta angle
to zero, Re(τ ) = 0, and choosing t = i (where t is a complex parameter that
labels a family of GL twists of the N = 4 super-Yang-Mills [36]). In complex
structure J , the moduli space MH (Σ,G) ∼= MGC

flat (Σ) is the space of complexified
flat connections A = A+ iφ, and the surface operator (60) creates a holonomy,

V = Hol(A ),

which is conjugate to exp(−2π(α− iγ )). Furthermore, at t = i the supersymmetry
equations of the four-dimensional gauge theory are equivalent to the flatness equa-
tions, dA + A ∧ A = 0, which explains why (from the viewpoint of complex
structure J ) the partition function of this theory on X = S1 × Y with a surface
operator on D = S1 ×K computes the GC Casson invariant,

Z = λGC(Y ;K)

The space of ground states, HY ;K , is a categorification of λGC(Y ;K). In general,
both λGC(Y ;K) and HY ;K depend on the holonomy V , which characterizes sur-
face operators. However, if V is regular semi-simple, as we consider here, then
λGC(Y ;K) and HY ;K do not depend on a particular choice of V .

Complex Structure K

Since the four-dimensional topological gauge theory (even with surface opera-
tors) does not depend on the parameter t that labels different twists, we can take
t = 1, which leads to the A-model on MH (Σ,G) with symplectic structure ωK .
This theory computes the same GC Casson invariant and its categorification, HY ;K ,
but via counting solutions to the following equations on Y [36]:

F − φ ∧ φ = �
(
Dφ0 − [A0, φ]

)
(62)

� Dφ = [φ0, φ] +DA0 (63)

� D � φ + [A0, φ0] = 0 (64)

rather than flat GC connections. In particular, given a Heegard decomposition Y =
Y1 ∪Σ Y2, the space of solutions to (62) on Y1 (resp. Y2) defines a Lagrangian

6 E.g. branes B1 and B2 associated with the Heegard decomposition Y = Y1 ∪Σ Y2.
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A-brane in MH (Σ,G) with respect to ωK . This allows to express HY ;K as the
space of open string states between the corresponding A-branes B1 and B2, cf. (6),

HY ;K = HF
symp∗ (MH ;B1,B2)

This alternative definition of the GC Casson invariant and its categorification that
follows from the twisted N = 4 gauge theory can be useful, for instance, for
understanding situations when the (A,B,A) branes B1 and B2 intersect at singular
points in MH or over higher-dimensional subvarieties.

Categorification of the SL(2,C) Casson Invariant

Now, let us return to the complex structure J and, for simplicity, take the gauge
group to be G = SU(2). Furthermore, we shall consider an important example of
the sphere with four punctures:

Σ = CP1 \ {p1, p2, p3, p4}
which in gauge theory corresponds to inserting four surface operators. In complex
structure J , MH (Σ,G) is the moduli space of flat GC = SL(2,C) connections with
fixed conjugacy class of the monodromy around each puncture. It can be identified
with the space of conjugacy classes of monodromy representations

MH (Σ,G) ∼= {ρ : π1(Σ) → GC | ρ(γi) ∈ Ci}/ ∼
where the representations are restricted to take the simple loop γi around the i-th
puncture into the conjugacy class Ci ⊂ GC.

Using the fact that π1(Σ) is free on three generators, we can explicitly describe
the moduli space MH (Σ,G) by introducing holonomies of the flat SL(2,C) con-
nection around each puncture,

Vi = Holpi
(A ), i = 1, . . . , 4 (65)

where V1V2V3V4 = 1 and each Vi is in a fixed conjugacy class. Following [32, 30,
33, 66, 28], we introduce the local monodromy data

Fig. 6 Sphere with four punctures



Surface Operators and Knot Homologies 333

ai =
{

trVi i = 1, 2, 3

tr(V3V2V1) i = 4
(66)

and

θ1 = a1a4 + a2a3 (67)

θ2 = a2a4 + a1a3 (68)

θ3 = a3a4 + a2a1

θ4 = a1a2a3a4 +
4∑

i=1

a2
i − 4 (69)

which determines the conjugacy classes of Vi . We also introduce the variables

x1 = tr(V3V2) (70)

x2 = tr(V1V3) (71)

x3 = tr(V2V1) (72)

which will be the coordinates on the moduli space MH (Σ,G). Namely, the moduli
space we are interested in is

MH (Σ,G) = {(V1, . . . , V4) | Vi ∈ Ci , V1V2V3V4 = 1}/GC

In terms of the variables (70), it can be explicitly described as the affine cubic

MH (Σ,G) = {(x1, x2, x3) ∈ C
3 | f (xi, θm) = 0} (73)

where

f (xi, θm) = x1x2x3 +
3∑

i=1

(x2
i − θixi)+ θ4 (74)

Singularities in MH

For certain values of the monodromy data, the moduli space MH becomes sin-
gular. It is important to understand the nature of the singularities and when they
develop. In fact, as we shall see below, interesting examples of branes pass through
such singularities.

The discriminant Δ(f ) of the cubic (74) is a polynomial in ai of total degree 16
[31]:

Δ(a) =
( ∏

ε1ε2ε3=1

(

a4 +
∑

εiai

)

−
3∏

i=1

(aia4 − ajak)

)2 4∏

i=1

(a2
i − 4) (75)

where εi = ±1. A special subfamily of cubics (74), which will play an impor-
tant role in applications to knot invariants discussed below, corresponds to the case
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where all monodromy parameters ai are equal, ai = a, i = 1, 2, 3, 4. In this case,

θi = 2a2, i = 1, 2, 3 (76)

θ4 = a4 + 4a2 − 4 (77)

and it is easy to verify that Δ(a) = 0. Specifically, for generic values of the pa-
rameter a, the moduli space MH has three simple singularities of type A1 (double
points) at

(xi, xj , xk) = (a2 − 2, 2, 2) (78)

These singularities correspond to reducible flat connections. For special values of a,
the singularities can become worse and/or additional singularities can appear. For
example, for a2 = 0 a new singularity of type A1 develops at the point (x1, x2, x3) =
(−2,−2,−2). On the other hand, for a2 = 4 the moduli space has a simple singu-
larity of type D4 at (x1, x2, x3) = (2, 2, 2).

Braid Group Action

The mapping class group of Σ , which in the present case is the braid group
Br3, acts on the family of cubic surfaces (73) by polynomial automorphisms. In
particular, one can verify that the generators σi , i = 1, 2, 3, represented as [32]:

σi : (xi, xj , xk, θi, θj , θk, θ4) → (θj − xj − xkxi, xi, xk, θj , θi, θk, θ4) (79)

satisfy the relations σiσjσi = σjσiσj and σk = σiσjσ
−1
i . Here and below we

denote by (i, j, k) any cyclic permutation of (1, 2, 3).

Examples

Let us consider examples of (A,B,A) branes that arise from knotted surface
operators in R × B3, where B3 denotes a 3-dimensional ball. We consider surface
operators which are extended along the R direction and which meet the boundary
S2 = ∂B3 at four points. The simplest example of such brane is

(80)

We shall denote this brane B̃ (or B̃(14)(23) if we wish to specify which pairs of
points on S2 it connects). Since the brane (80) identifies the monodromies around
the points 1 and 4 (resp. 2 and 3),

V1 = V −1
4 , V2 = V −1

3 (81)

it can be explicitly described as a subvariety of MH defined by
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x1 = tr(V3V2) = 2 (82)

Of course, we also need to set a1 = a4 and a2 = a3, so that

θ1 = a2
1 + a2

2 (83)

θ2 = θ3 = 2a1a2 (84)

θ4 = a2
1a

2
2 + 2a2

1 + 2a2
2 − 4 (85)

Substituting (82) and (83) into the cubic equation f (xi, θm) = 0, we find that the
brane (80) can be described as a degenerate quadric,

(x2 + x3 − a1a2)
2 = 0 (86)

One can also think of it as a set of two coincident branes on x2 + x3 = a1a2. By
acting on this brane with the elements of the braid group (79), we can construct
other examples of (A,B,A) branes in MH . Furthermore, by closing the braid one
can obtain homological invariants of knots (links) in S3 as spaces of open strings
between two such branes. In the rest of this section, we consider a few explicit
examples.

Unknot: One way to construct the unknot is to take surface operators which corre-
spond to two branes of type (80), as shown on the figure below:

Fig. 7 Unknot in S3 can be represented as a union of two branes B̃

The two branes on this figure are branes B̃(14)(23) and B̃(12)(34). We already dis-
cussed the first brane: it is described by the conditions (82)–(86). Similarly, the
brane B̃(12)(34) is given by V1 = V −1

2 , which implies V3 = V −1
4 ,

x3 = tr(V2V1) = 2 (87)

and the corresponding conditions for θi , cf. (83). Altogether, the conditions describ-
ing these two branes imply that the local monodromy data should be identified,

a1 = a2 = a3 = a4 = a (88)
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This condition is very natural, of course, and will be relevant in all the examples
where the resulting link has only one connected component, i.e. is actually a knot.
Furthermore, for the unknot in Fig. 7 we have:

V1 = V −1
2 = V3 = V −1

4 (89)

These equations describe the intersection points of branes B̃(14)(23) and B̃(12)(34).
Using (82) and (87), it is easy to see that there is only one such point (of multiplic-
ity 2):

(x1, x2, x3) = (2, a2 − 2, 2) (90)

This is precisely one of the singular points (78) where the moduli space MH has A1
singularity (for generic values of a) due to reducible representations. Therefore, we
conclude that the cohomology of the unknot, H sl(2)

unknot, is given by the space of open
string states for two different branes intersecting at the A1 singularity in MH . We
point out that the values of xi in (90) can be read off directly from Fig. 7. Indeed,
x1 = 2 simply follows from the fact that the combined monodromy around the
points 2 and 3 is equal to the identity (similarly for x3 = 2). In order to explain
x2 = a2 − 2, it is convenient to introduce the eigenvalues m±1 of the monodromy
matrix V1. Of course, m is related to the local monodromy parameter a, namely
a = m+m−1. Moreover, since V1 = V3, we have

x2 = tr(V1V3) = m2 +m−2 = a2 − 2 (91)

One can also construct the unknot using identical branes B̃ and the braid group
action on one of them:
Here, the two parts of the unknot correspond to the branes B̃ and φσ1(B̃), where B̃
is the brane described in (80)–(86), and σ1 denotes the generator of the braid group
Br3. Using the explicit form (79) of σ1, we find that the brane φσ1(B̃) is supported
on the line:

Fig. 8 Unknot as a union of two branes B̃ with a half-twist. Each vertical line represents a surface
(topologically a 2-sphere) which divides S3 into two balls and meets the surface operator at four
points
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φσ1(B̃): x2 = 2 (92)

Together with (82), this condition implies that the branes B̃ and φσ1(B̃) meet only
at one point (of multiplicity 2):

(x1, x2, x3) = (2, 2, a2 − 2) (93)

which is precisely one of the A1 singularities (78) in the moduli space MH . This
is in complete agreement with our previous analysis, where the same configuration
of D-branes in M was found starting from the presentation of the unknot shown
on Fig. 7. This agreement was expected, of course, since both presentations of the
unknot on Figs. 7 and 8 are homotopy equivalent in S3. The second presentation (on
Fig. 8) can be easily generalized to the trefoil knot and more general torus knots
(links) of type (2, k).

Trefoil Knot: The trefoil can be constructed by joining together the brane (80) and
the brane obtained by action of three half-twists on B̃.

Starting with the equation (82) describing the brane B̃ and applying σ1 three
times, we find that the brane φ(σ1)

3(B̃) is supported on the set of points

(x1, x2, x3) = (4z−2a2z+2a2z2−2z3+y(1−z2),−2+2a2−2a2z+yz+2z2, z)

(94)

where we assumed (88). Together with the equation f (xi) = 0, this condition de-
scribes a subvariety in MH of complex dimension 1. Using (82) and (94), it is easy
to see that the branes B̃ and φ(σ1)

3(B̃) intersect at two points. The first intersection
point (of multiplicity 2) is precisely the singular point (93), as in the case of the un-
knot. The second intersection point (of multiplicity 4) is located at the regular point
in MH ,

(x1, x2, x3) = (2, a2 − 1, 1) (95)

Combining the contributions from the two intersection points, we find that the co-
homology for the trefoil knot has the following structure

Fig. 9 The trefoil knot in S3 can be represented as a union of two branes B̃ with three half-twists
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H sl(2)
trefoil = H sl(2)

unknot ⊕H sl(2)
× (96)

where H sl(2)
unknot is the contribution from the first intersection point, and H sl(2)

× de-
notes the contribution from the new intersection point (95). Discarding the contribu-
tion of reducible connections, we find the reduced cohomology of the trefoil knot,
which consists only of the term H sl(2)

× ,

H sl(2)
× = C

4 (97)

Indeed, since MH is smooth near the intersection point, the configuration of branes
B̃ and φ(σ1)

3(B̃) can be locally described (in complex structure J ) as an intersection
of two sets of B-branes in C2, such that each set is supported on a line in C2. Let us
consider a slightly more general problem where two sets of B-branes in C2 contain
n1 and n2 branes, respectively. We denote by E1 and E2 the corresponding sheaves,
where E1 (and similarly E2) is defined by a module of the form C[x1, x2]/(xn1). The
space of open string states between two such B-branes is given by

Ext∗C2(E1,E2) = C
n1n2 (98)

which, of course, is the expected result since in the present case open strings form a
hypermultiplet transforming in (n1, n2) under U(n1)×U(n2). Setting n1 = n2 = 2
gives (97).

(2, k) Torus Knots: A more general torus knot (link) T2,k can be represented as a
union of two branes B̃ with k half-twists.

In order to describe the action of (σ1)
k on the brane (80), again we use (79). If

the original brane B̃ is represented by a set of two coincident branes on the line (cf.
(86)),

(x1, x2, x3) = (2, y, a2 − y) (99)

the result of (σ1)
k action is a set of branes supported on a higher-degree curve

φ(σ1)
k (B̃): (x1, x2, x3) = (Pk(y), Pk−1(y), a

2 − y) (100)

Fig. 10 The (2, k) torus knot (link) in S3 can be represented as a union of two branes B̃ with k

half-twists
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where {Pi(y)}i≥−1 is a sequence of polynomials in y, such that P0(y) = 2,
P−1(y) = y, and Pi(y), i > 1 are determined by the recursion relation

Pi(y) = 2a2 − (a2 − y)Pi−1(y)− Pi−2(y)

For example, the first few polynomials Pi(y) look like

P1(y) = y (101)

P2(y) = −2 + 2a2 − a2y + y2 (102)

P3(y) = 4a2 − 2a4 − 3y + 2a2y + a4y − 2a2y2 + y3 (103)

P4(y) = 2 − 4a4 + 2a6 + 8a2y − 4a4y − a6y − 4y2 + 2a2y2

+ 3a4y2 − 3a2y3 + y4 (104)
... (105)

For simplicity, let us focus on torus knots, which correspond to odd values of k (the
case of k even, which corresponds to torus links, can be treated similarly). Then, it
is easy to see that the brane φ(σ1)

k (B̃) meets the brane (82) at (k + 1)/2 points in
MH . As in the case of the trefoil knot, one intersection point (of multiplicity 2) is
the point (93) where MH has A1 singularity due to reducible connections. The other
(k − 1)/2 points (each of multiplicity 4) are generically located at regular points in
MH ; their precise location is determined by the explicit form of Pi(y). Therefore,
extending the earlier result (96), we find that cohomology H sl(2)

T2,k
of the torus knot

T2,k is isomorphic to a direct sum of H sl(2)
unknot and (k− 1)/2 copies of H sl(2)

× = C
4.

As usual, it is convenient to remove the contribution of reducible solutions. If we
denote by H̃ sl(2)

K the “reduced” cohomology of K for the theory considered here,
we can state our conclusion as

dim H̃ sl(2)
T2,k

= 2(k − 1) (106)

In general, the cohomology H̃ sl(2)
K categorifies a variant of the Casson invariant

obtained by counting flat SL(2,C) connections on the knot complement S3 \ K

with fixed conjugacy class of the holonomy around the meridian,

χ(H̃ sl(2)
K ) = 2σ(K) (107)

We expect that, at least for a certain class of knots, σ(K) is the ordinary knot signa-
ture. Notice, that for (2, k) torus knots, we have σ(T2,k) = (k − 1).

Finally, we note that one could obtain a different knot invariant (and, presumably,
a different knot homology) by considering the image of the representation variety
of the knot complement in the representation variety of the boundary torus, see e.g.
[51]. Indeed, the boundary of the knot complement Y \K can be identified with T 2

in the usual way, and the inclusion T 2 ↪→ Y \K induces the restriction map
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r : MGC
flat (Y \K) → MGC

flat (T
2) (108)

which maps a representation ρ : π1(Y \K) → GC to its restriction ρ|T 2 : π1(T
2) →

GC. In general, MGC
flat (Y \K) is a branched cover of its image in MGC

flat (T
2) under the

restriction map (108). For example, if GC = SL(2,C) and Y = S3 then, ignoring
the multiplicity, the image of the representation variety MGC

flat (S
3 \ K) under the

restriction map can be described as the zero locus7 of the A-polynomial [13],

A(l,m) = 0 (109)

where the complex variables l and m parameterize, respectively, the conjugacy
classes of the holonomy of the flat SL(2,C) connection along the longitude and
the meridian of the knot. The A-polynomial of every knot has a factor (l − 1) due
to reducible representations. For example, the A-polynomial of a (2, k) torus knot
looks like

A(T2,k) = (l − 1)(lm2k + 1) (110)

Notice, in this example, the part containing irreducible representations consists of
a single curve, lm2k + 1 = 0, of degree one in l. On the other hand, the SL(2,C)

representation variety of T2,k is a cover of this curve by k−1
2 distinct irreducible

components which correspond to irreducible representations counted by N = 4
topological gauge theory. Restricting the complex variables l and m to be on a unit
circle, we obtain the image of the SU(2) representation variety. For (2, k) torus
knots, the SU(2) representation variety (again, ignoring reducible representations)
is a disjoint union of k−1

2 nested open arcs [43, 6].
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Conformal Field Theory and Operator Algebras

Yasuyuki Kawahigashi�

Abstract We review recent progress in operator algebraic approach to conformal
quantum field theory. Our emphasis is on use of representation theory in classifica-
tion theory. This is based on a series of joint works with R. Longo.

1 Introduction

A mathematically rigorous approach to quantum field theory based on operator alge-
bras is called an algebraic quantum field theory. It has a long history since pioneer-
ing works of Araki, Haag, Kastker. (See [26] for a general treatment of algebraic
quantum field theory.) This theory works on Minkowski spaces on any spacetime
dimension, and there have been some recent results on curved spacetimes or even
noncommutative spacetimes. In the case of 1+1-dimensional Minkowski space with
higher spacetime symmetry, conformal symmetry, we have conformal field theory
and there we have seen many new developments in the recent years, so we survey
such results here. Our emphasis is on representation theoretic aspects of the theory
and we make various comparison with another mathematically rigorous and more
recent approach to conformal field theory, that is, theory of vertex operator alge-
bras.

Roughly speaking, a mathematical study of quantum field theory is a study of
Wightman fields, which are certain type of operator-valued distributions on a space-
time with covariance with respect to a given spacetime symmetry group. We have
mathematically rigorous axioms for such Wightman fields, but they involve distrib-
utions and unbounded operators, so these cause various kinds of technical difficulty.
In contrast, in the algebraic quantum field theory, our fundamental object is a net
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of von Neumann algebras of bounded linear operators on a Hilbert space. (See [50–
52] for general theory of von Neumann algebras.) Technical problems on definition
domains of unbounded operators do not arise in this approach.

A basic idea is as follows. Suppose we have a Wightman field Φ on a space-
time. Fix a bounded region O in the space time and consider a test function ϕ with
support contained in O . Then the pairing 〈Φ,ϕ〉 produces an (unbounded) operator.
We have many Φ and ϕ for a fixed O and obtain many unbounded operators from
such pairing. Then we consider a von Neumann algebra of bounded linear opera-
tors on this Hilbert space generated by these unbounded operators. (For example,
if we have a self-adjoint unbounded operators, we consider its spectral projections
which are obviously all bounded. In this way, we deal with only bounded opera-
tors.) This is regarded as a von Neumann algebra generated by observables in the
spacetime region O . A von Neumann algebra is an algebra of bounded linear opera-
tors which is closed under the adjoint operation and the strong operator topology. In
this way, we have a family {A (O)} of von Neumann algebras on the same Hilbert
space parameterized by spacetime regions. Since the spacetime regions make a net
with respect to the inclusion order, we call such a family a net of von Neumann
algebras. Now we forget Wightman fields and consider only a net of von Neumann
algebras. We have some expected properties for such nets of von Neumann alge-
bras from a physical consideration, and now we use these properties as axioms.
So our mathematical object is a net of von Neumann algebras subject to certain
set of axioms. Our mathematical aim is to study such nets of von Neumann alge-
bras.

2 Conformal Quantum Field Theory

We first explain formulation of full conformal quantum field theory on the 1 + 1-
dimensional Minkowski space in algebraic quantum field theory. As a spacetime
region O above, it is enough to consider only open rectangles O with edges parallel
to t = ±x in (1 + 1)-dim Minkowski space. In this way, we get a family {A (O)}
of operator algebras parameterized by spacetime regions O (rectangles). In order to
realize conformal symmetry, we have to make a partial compactification of the 1+1-
dimensional Minkowski space. If two rectangles are spacelike separated, then we
have no interactions between them even at the speed of light, so our axiom requires
that the corresponding two von Neumann algebras commute with each other. This
is the locality axiom. Since this is not our main object in this paper, we omit details
of the other axioms. See [33] for full details.

Next we briefly explain that boundary conformal field theory can be handled
within the same framework. Now we consider the half-space {(x, t) | x > 0} in
the 1 + 1-dimensional Minkowski space and only rectangles O contained in this
half-space. In this way, we have a similar net of von Neumann algebras {A (O)}
parameterized with rectangles in the half-space. See [43] for full details of the ax-
ioms.
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If we have a net of von Neumann algebras over the 1+1-dimensional Minkowski
space, we can restrict the net of von Neumann algebras to two chiral conformal
field theories on the light cones {x = ±t}. In this way, we have two nets of von
Neumann algebras on the compactified S1 as description of two chiral conformal
field theories. Since this net is our main mathematical object in this article, we give
a full set of axioms. (See [33] for details of this “restriction” procedure.)

Now our “spacetime” is S1 and a “spacetime region” is an interval I , which
means a non-empty, non-dense open connected subset of S1. We have a family
{A (I )} of von Neumann algebras on a fixed Hilbert space H . These von Neumann
algebras are simple and such von Neumann algebras are called factors, so the family
{A (I )} satisfying the axioms below is called a net of factors (or an irreducible lo-
cal conformal net of factors, strictly speaking). Actually, the set of intervals on S1 is
not directed with respect to inclusions, so the terminology net is not mathematically
appropriate, but is widely used.

1. (isotony) For intervals I1 ⊂ I2, we have A (I1) ⊂ A (I2).
2. (locality) For intervals I1, I2 with I1 ∩ I2 = ∅, we have [A (I1),A (I2)] = 0.
3. (Möbius covariance) There exists a strongly continuous unitary representation U

of PSL(2,R) on H satisfying U(g)A (I )U(g)∗ = A (gI) for any g ∈ PSL(2,R)

and any interval I .
4. (positivity of energy) The generator of the one-parameter rotation subgroup of U ,

called the conformal Hamiltonian, is positive.
5. (existence of the vacuum) There exists a unit U -invariant vector Ω in H , called

the vacuum vector, and the von Neumann algebra
∨

I∈S1 A (I ) generated by all
A (I )’s is B(H).

6. (conformal covariance) There exists a projective unitary representation U of
Diff(S1) on H extending the unitary representation of PSL(2,R) such that for
all intervals I , we have

U(g)A (I )U(g)∗ = A (gI), g ∈ Diff(S1),

U(g)AU(g)∗ = A, A ∈ A (I ), g ∈ Diff(I ′),

where Diff(S1) is the group of orientation-preserving diffeomorphisms of S1 and
Diff(I ′) is the group of diffeomorphisms g of S1 with g(t) = t for all t ∈ I .

The isotony axiom is natural because we have more test functions (or more ob-
servables) for a larger interval. The locality axiom takes this simple form on S1. The
choice of the spacetime symmetry is not unique, and we can use the Poincaré sym-
metry on the Minkowski space or the Möbius covariance on S1, for example, but
in the conformal field theory, we use conformal symmetry, which means diffeomor-
phism covariance as above. This set of axioms imply various nice conditions such
as the Reeh-Schlieder property, the Bisognano-Wichmann property and the Haag
duality. See [32] and references there for details.

In the usual situation, all the von Neumann algebras A (I ) are isomorphic to
the so-called Araki-Woods type III1 factor for all nets A and all intervals I . So
each von Neumann algebra does not contain any information about the confor-
mal field theory, but it is the relative position of the von Neumann algebras in
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the family that encodes the physical information of the theory. (It is similar to
subfactor theory of Jones where we study a relative position of one factor in an-
other.)

At the end of this section, we compare our formulation of conformal quantum
field theory with another mathematically rigorous approach, theory of vertex opera-
tor algebras. A vertex operator algebra is an algebraic axiomatization of Wightman
fields on S1, called vertex operators. If we have an operator valued distribution on
S1, its Fourier expansion should give countably many (possibly unbounded) opera-
tors as the Fourier coefficients. Under the so-called state-field correspondence, any
vector in the space of “states” should give an operator-valued distribution, a quan-
tum “field”, and its Fourier expansion gives countably many operators. In this way,
one vector should give countably many operators on the space of these vectors. In
other words, for two vectors v,w we have countably many binary operations v(n)w,
n ∈ Z, the action of the n-th operator given by v on w. An axiomatization of this
idea gives a notion of vertex operator algebra. (See [20] for a precise definition.
There is a slightly weaker notion of a vertex algebra. See [31] for its precise de-
finition and related results.) In theory of vertex operator algebra, one considers a
vector space of states without an inner product and even when we have a positive
definite inner product, one considers this vector space without completion. Here in
comparison to nets of factors, we are interested in the case where we have positive
definite inner products on the spaces of states. We say that such a vertex operator
algebra is unitary.

Both of one (unitary) vertex operator algebra and one net of factors should de-
scribe one chiral conformal field theory. So unitary vertex operator algebras and
nets of factors should be in a bijective correspondence, at least under some “nice”
additional conditions, but no general theorems have been known for such a corre-
spondence, though there is a recent progress due to S. Carpi and M. Weiner. How-
ever, if we have one construction or an idea on one side, we can often “translate”
it to the other side, though it can be highly non-trivial from a technical viewpoint.
Fundamental sources of constructions for vertex operator algebras are affine Kac-
Moody algebras and integral lattices. The corresponding constructions for nets of
factors have been done by A. Wassermann [54] and his students, and Dong-Xu
[12], respectively, after the initial construction of Buchholz-Mack-Todorov [7]. If
we have examples with some nice properties, we can often construct new examples
from them, and as such methods of constructions of vertex operator algebras, we
have simple current extensions, the coset construction, and the orbifold construc-
tion. The simple current extensions for nets of factors are simply crossed products
by DHR-automorphisms and easy to realize. (See the next section for a notion of
DHR-endomorphisms.) The coset and orbifold constructions for nets of factors have
been studied in detail by F. Xu [58, 56, 59].

For nets of factors, we have introduced a new construction of examples in [32]
based on Longo’s notion of Q-systems [41]. Further examples have been constructed
by Xu [62] with this method. This can be translated to the setting of vertex operator
algebras, as we will see in this article later.
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3 Representation Theory

An important tool to study nets of factors is a representation theory. For a net of
factors {A (I )}, all the algebras A (I ) act on the initial Hilbert space H from the
beginning, but we also consider their representations on another Hilbert space, that
is, a family {πI } of representations πI : A (I ) → B(K), where K is another Hilbert
space, common for all I . For I1 ⊂ I2, we must have that the restriction of πI2 on
A (I1) is equal to πI1 . The representation on the initial Hilbert space is called the
vacuum representation and plays a role of a trivial representation. We also have
to take care of the spacetime symmetry group when we consider a representation,
but this part is often automatic (see [24]), so we now ignore it for simplicity. See
[24] for a more detailed treatment. Note that a representation of a net of factors is a
counterpart of a module over a vertex operator algebra.

Notions of irreducibility and a direct sum for such representations are easy to
formulate. Non-trivial notions are dimensions and tensor products. Each representa-
tion {πI } is in a bijective correspondence to a certain endomorphism λ of an infinite
dimensional operator algebra, called a Doplicher-Haag-Roberts (DHR) endomor-
phism [15, 16, 18, 19], and we can restrict λ to a single factor A (I ) for an arbitrarily
but fixed interval I . Then λ(A (I )) ⊂ A (I ) is a subfactor and we have its Jones in-
dex [30]. (See [17, 46, 48] for general theory of subfactors.) The square root of this
Jones index plays the role of the dimension of the representation [39, 40]. In alge-
braic quantum field theory, such a dimension was called a statistical dimension, and
it is analogous to a quantum dimension in the theory of quantum groups. It is a pos-
itive real numbers in the interval [1,∞]. We can also compose endomorphisms and
this composition gives the correct notion of tensor products. We then get a braided
tensor category as in [18, 19].

In representation theory of a vertex operator algebra (and also a quantum group),
it sometimes happens that we have only finitely many irreducible representations.
Such finiteness is often called rationality, possibly with some extra assumptions on
some finite dimensionality. This also plays an important role in theory of quantum
invariants in low dimensional topology. In [36], we have introduced an operator al-
gebraic condition for such rationality for nets of factors as follows and we called it
complete rationality. We split the circle into four intervals I1, I2, I3, I4 in this order,
say, counterclockwise. Then complete rationality is given by the finiteness of the
Jones index for a subfactor A (I1) ∨ A (I3) ⊂ (A (I2) ∨ A (I4))

′ where ′ means
the commutant, together with the split property. The split property is known to hold
if the vacuum character,

∑
n=0(dimHn)q

n, is convergent for |q| < 1 by [11], so
it usually holds and is easy to verify. (Here H = ⊕∞

n=0 Hn is the eigenspace de-
composition of the original Hilbert space for the positive generator of the rotation
group. So this convergence property can be verified simply by looking at the Hilbert
space, not the von Neumann algebras.) In the original definition of complete ra-
tionality in [36], we required another condition called strong additivity, but it was
proved to be redundant by Longo-Xu [44]. We have proved in [36] that this com-
plete rationality implies that we have a modular tensor category as a representation
category of {A (I )}. A modular tensor category produces a 3-dimensional topolog-
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ical quantum field theory. (See [53] for general theory of topological quantum field
theory.) The SU(N)k-net of Wassermann has been shown to be completely rational
by [57].

We now introduce an important notion of α-induction. For an inclusion of nets
of factors, A (I ) ⊂ B(I ), we have an induction procedure analogous to the group
representation. So from a representation of the smaller net A , we would like to
construct a representation of the larger net B, but what we actually obtain is not
a genuine representation of the larger net B in general, and is something weaker
called solitonic. This induction procedure is called the α-induction and depends
a choice of braiding, so we write α+ and α−. This was first defined in Longo-
Rehren [42] and studied in detail in Xu [55]. Then Böckenhauer-Evans [1–3] made
a further study, and [4, 5] unified this study with Ocneanu’s graphical method [47].
The intersection of the irreducible endomorphisms appearing in the images of α+-
induction and α−-induction gives the true representation category of {B(I )} if A
is completely rational by [4, 36].

This α-induction opens an important and new connection with theory of mod-
ular invariants. A modular tensor category produces a unitary representation π of
SL(2,Z) through its braiding as in [49], and its dimension is the number of ir-
reducible objects. So a completely rational net of factors produces such a unitary
representation. (Note that our representation of SL(2,Z) comes from the braiding
structure, not from the action of this group on the characters through change of
variables τ �→ aτ+b

cτ+d
, though in all the “nice” known examples, these two represen-

tations coincide. See [34] for a discussion on this matter.)
It has been proved in [4] that the matrix (Zλ,μ) defined by

Zλ,μ = dim Hom(α+λ , α−μ )

is in the commutant of the representation π , using Ocneanu’s graphical calculus [47].
Such a matrix Z is called a modular invariant, and we have only finitely many such
Z for a given π . For any completely rational net {A (I )}, any extension {B(I ) ⊃
A (I )} produces such Z. Matrices Z are certainly much easier to classify than ex-
tensions and this is a source of classification theory in the next section.

4 Classification Theory

For a net of factors, we can naturally define a central charge and it is well-known
to take discrete values 1 − 6/m(m + 1), m = 3, 4, 5, . . . , below 1 and all values
in [1,∞) by [21, 22]. We have the Virasoro net {Virc(I )} for each such c and it
is the operator algebraic counterpart of the Virasoro vertex operator algebra with
the same c. Any net of factors {A (I )} with central charge c is an extension of
the Virasoro net with the same central charge and it is automatically completely
rational if c < 1, as shown in [32]. So we can apply the above theory and we get the
following complete classification list for the case c < 1 as in [32].



Conformal Field Theory and Operator Algebras 351

1. The Virasoro nets {Virc(I )} with c < 1.
2. The simple current extensions of the Virasoro nets with index 2.
3. Four exceptionals at c = 21/22, 25/26, 144/145, 154/155.

The unitary representations of SL(2,Z) for the Virasoro nets are the well-known
ones, and all the modular invariants for these have been classified by [8]. Our re-
sult shows that each of the so-called type I modular invariants in the classification
list of [8] corresponds to a net of factors uniquely. They are labeled with pairs of
A-D2n-E6,8 Dynkin diagrams with Coxeter numbers differing by 1. Three in (3) of
the above list have been identified with coset models, but the remaining one does
not seem to be related to any other known constructions. This is constructed with
“extension by Q-system”. Xu [62] recently applied this construction to many other
coset models and obtained infinitely many new examples based on [61], called mir-
ror extensions. Classification for the case c = 1 has been also done under some
extra assumption [9, 60].

This classification theorem also implies a classification of certain types of vertex
operator algebras as follows.

Let V be a (rational) vertex operator algebra and Wi be its irreducible modules.
We would like to classify all vertex operator algebras arising from putting a vertex
operator algebra structure on

⊕
i niWi and using the same Virasoro element as V ,

where ni is multiplicity and W0 = V , n0 = 1. From a viewpoint of tensor category,
this classification problem of extensions of a vertex operator algebras is the “same”
as the classification problem of extensions of a completely rational net of factors, as
shown in [28, 38].

So the above classification theorem of local conformal nets implies a classifica-
tion theorem of extensions of the Virasoro vertex operator algebras with c < 1 as
above, and we obtain the same classification list. That is, besides the Virasoro ver-
tex operator algebras themselves, we have their simple current extensions, and four
exceptionals at c = 21/22, 25/26, 144/145, 154/155. With the usual notation of
L(c, h) for a module with central charge c and conformal weight h of the Virasoro
vertex operator algebras with c < 1, the four exceptionals are listed as follows.

1. L(21/22, 0) ⊕ L(21/22, 8). It has 15 irreducible representations and has two
coset realizations, from SU(9)2 ⊂ (E8)2 and (E8)3 ⊂ (E8)2 ⊗ (E8)1.

2. L(25/26, 0)⊕L(25/26, 10). It has 18 irreducible representations and has a coset
realization from SU(2)11 ⊂ SO(5)1 ⊗ SU(2)1.

3. L(144/145, 0)⊕ L(144/145, 24)⊕ L(144/145, 78)⊕ L(144/145, 189). It has
28 irreducible representations and no coset realization has been known.

4. L(154/155, 0)⊕L(154/155, 26)⊕L(154/155, 84)⊕L(154/155, 203). It has 30
irreducible representations and has a coset realization from SU(2)29 ⊂ (G2)1 ⊗
SU(2)1.

Note that it is not obvious that the representation category of the Virasoro net
Virc and the representation category of the Virasoro vertex operator algebra L(c, 0)
are isomorphic, but as long as the two are braided tensor category and have the same
S- and T -matrices, the arguments in [32] work, so we obtain the above classification
result for vertex operator algebras.
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Using the above results and more techniques, we can also completely classify full
conformal field theories within the framework algebraic quantum field theory for the
case c < 1. Full conformal field theories are given as certain nets of factors on 1+1-
dimensional Minkowski space. Under natural symmetry and maximality conditions,
those with c < 1 are completely labeled with the pairs of A-D-E Dynkin diagrams
with the difference of their Coxeter numbers equal to 1, as shown in [33]. We now
naturally have D2n+1, E7 as labels, unlike in the chiral case. The main difficulty in
this work lies in proving uniqueness of the structure for each modular invariant in
the Cappelli-Itzykson-Zuber list [8]. This is done through 2-cohomology vanishing
for certain tensor categories. in the spirit of [29].

Furthermore, using the above results and more techniques we can also completely
classify boundary conformal field theories for the case c < 1. Boundary conformal
field theories are given as certain nets of factors on a 1+ 1-dimensional Minkowski
half-space. Under a natural maximality condition, these with c < 1 are now com-
pletely labeled with the pairs of A-D-E Dynkin diagrams with distinguished ver-
tices having the difference of their Coxeter numbers equal to 1, as shown in [37]
based on a general theory in [43]. The “chiral fields” in a boundary conformal field
theory should produce a net of factors on the boundary (which is compactified to
S1) as in the operator algebraic approach. Then a general boundary conformal field
theory restricts to this boundary to produce a non-local extension of this chiral con-
formal field theory on the boundary.

5 Moonshine Conjecture

The Moonshine conjecture, formulated by Conway-Norton [10], is about mysterious
relations between finite simple groups and modular functions, since an observation
due to McKay.

Today the classification of all finite simple groups is complete and the classifica-
tion list contains 26 sporadic groups in addition to several infinite series. The largest
group among the 26 sporadic groups is called the Monster group and its order is
about 8 × 1053 ([23]).

One the one hand, the non-trivial irreducible representation of the Monster hav-
ing the smallest dimension is 196883 dimensional. On the other hand, the following
function, called j -function, has been classically studied in algebra.

j (τ ) = q−1 + 744 + 196884q + 21493760q2 + 864299970q3 + · · ·
For q = exp(2πiτ), Im τ > 0, we have modular invariance property, j (τ ) =
j ( aτ+b

cτ+d
) for

( a b

c d

) ∈ SL(2,Z), and this is the only function, up to the constant term,

satisfying this property and starting with q−1,
McKay noticed 196884 = 196883 + 1, and similar simple relations for other co-

efficients of the j -function and dimensions of irreducible representations of the
Monster group turned out to be true. Then Conway-Norton [10] formulated the
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Moonshine conjecture roughly as follows, which has been now proved by Borcherds
[6] in 1992.

1. We have a “natural” infinite dimensional graded vector space V =⊕∞
n=0 Vn with

some algebraic structure having a Monster action preserving the grading and
each Vn is finite dimensional.

2. For any element g in the Monster, the power series
∑∞

n=0(Tr g|Vn)q
n−1 is a spe-

cial function called a Hauptmodul for some discrete subgroup of SL(2,R). When
g is the identity element, the series is the j -function minus constant term 744.

For the part (1) of this conjecture, Frenkel-Lepowsky-Meurman [20] gave a pre-
cise definition of “some algebraic structure” as a vertex operator algebra and con-
structed a particular example V , which is now called the Moonshine vertex operator
algebras and denoted by V %.

The construction roughly goes as follows. In dimension 24, we have an excep-
tional lattice Λ called the Leech lattice. Then there is a general construction of a
vertex operator algebra from a certain lattice, and the one for the Leech lattice gives
something very close to our final object V %. Then we take a fixed point algebra
under a natural action of Z/2Z arising from the lattice symmetry, and then make
a simple current extension of order 2. The resulting vertex operator algebra is the
Moonshine vertex operator algebra V %. (The final step is called a twisted orbifold
construction.) The series

∑∞
n=0(dimV

%
n )q

n−1 is indeed the j -function minus con-
stant term 744.

Miyamoto [45] has a new realization of V % as an extension of a tensor power of
the Virasoro vertex operator algebra with c = 1/2, L(1/2, 0)⊗48 (based on Dong-
Mason-Zhu [13]). This kind of extension of a Virasoro tensor power is called a
framed vertex operator algebra as in [14].

We have given an operator algebraic counterpart of such a construction in [35].
We realize a Leech lattice net of factors on S1 as an extension of Vir1/2

⊗48 us-
ing certain Z4-code. Then we can perform the twisted orbifold construction in the
operator algebraic sense to obtain a net of factors, the Moonshine net A %. The-
ory of α-induction is used for obtaining various decompositions. We then get a
Miyamoto-type description of this construction, as an operator algebraic counter-
part of the framed vertex operator algebras. We then have the following proper-
ties.

1. c = 24.
2. The representation theory is trivial.
3. The automorphism group is the Monster.
4. The Hauptmodul property (as above).

Outline of the proof of these four properties is as follows.
It is immediate to get c = 24. We can show complete rationality passes to an

extension (and an orbifold) in general with control over the size of the representa-
tion category, using the Jones index. With this, we obtain (2) very easily. Such a
net is called holomorphic. Property (3) is the most difficult part. For the Virasoro
VOA L(1/2, 0), the vertex operator is indeed a well-behaved Wightman field and
smeared fields produce the Virasoro net Vir1/2. Using this property and the fact that
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⋃
g g(L(1/2, 0)⊗48) for all g ∈ Aut(V %) generate the entire Moonshine VOA V %,

we can prove that the automorphism group as a vertex operator algebra and the au-
tomorphism group as a net of factors are indeed the same. Then (4) is now a trivial
corollary of the Borcherds theorem [6].

We note that the Baby Monster, the second largest among the 26 sporadic fi-
nite simple groups, can be treated similarly with Höhn’s construction of the shorter
Moonshine super vertex operator algebra.

Still, these examples are treated with various tricks case by case. We expect a
bijective correspondence between vertex operator algebras and nets of factors on
S1 under some nice conditions. On the side of vertex operator algebras, the most
natural candidate for such a “nice” condition is the C2-finiteness condition of Zhu
[63] (with unitarity). On the operator algebraic side, our complete rationality in
[36] seems to be such a “nice” condition, but the actual relations between the two
notions are not clear at this moment. The essential condition for complete rationality
is the finiteness of the Jones index arising from four intervals on the circle, and this
finiteness somehow has formal similarity to the finiteness appearing in the definition
of the C2-finiteness.

At the end, we list some open problems. The operator algebraic approach has
an advantage in control of representation theory, but is behind of theory of vertex
operator algebras in the theory of characters.

For a net of factors, we can naturally define a notion of a character for each
representation. But even convergence of these characters have not been proved in
general, and the modular invariance property, the counterpart of Zhu’s result [63],
is unknown, though we certainly expect it to be true. We also expect the Verlinde
identity holds, which has been proved in the context of vertex operator algebras
recently by Huang [27]. We would need an S-matrix version of the spin-statistics
theorem [25] for nets of factors.
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Diffusion and Mixing in Fluid Flow: A Review

Alexander Kiselev

Abstract This note is a review of a series of results on the interaction between
diffusion and fluid flow that have been presented by the author at the International
Congress in Mathematical Physics in Rio, 2006. The main object of study is the
enhancement of diffusive mixing by a fast incompressible flow. Due to its physi-
cal relevance, the subject has been studied in detail from different angles. Here, we
describe some of the recent work which combines PDE, functional analysis and dy-
namical systems theory by trying to establish links between diffusion enhancement
and mixing properties inherent to the dynamical system generated by the flow. The
proofs are based on a general criterion for the decay of the semigroup generated by
an operator of the form Γ + iAL with a negative unbounded self-adjoint operator
Γ , a self-adjoint operator L, and parameter A ' 1. In particular, they employ the
RAGE theorem describing evolution of a quantum state belonging to the continuous
spectral subspace of the Hamiltonian (related to a classical theorem of Wiener on
Fourier transforms of measures).

1 Introduction

Let M be a smooth compact d-dimensional Riemannian manifold. The main subject
of this paper is the effect of a strong incompressible flow on diffusion on M. Namely,
we consider solutions of the passive scalar equation

ϕA
t (x, t)+ Au · ∇ϕA(x, t)−ΔϕA(x, t) = 0, ϕA(x, 0) = ϕ0(x). (1)

Here Δ is the Laplace-Beltrami operator on M, u is a divergence free vector field,
∇ is the covariant derivative, and A ∈ R is a parameter regulating the strength of
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the flow. We are interested in the behavior of solutions of (1) for A ' 1 at a fixed
time τ > 0.

It is well known that as time tends to infinity, the solution ϕA(x, t) will tend to
its average,

ϕ ≡ 1

|M|
∫

M

ϕA(x, t) dμ
1

|M|
∫

M

ϕ0(x) dμ,

with |M| being the volume of M . We would like to understand how the speed of
convergence to the average depends on the properties of the flow and determine
which flows are efficient in enhancing the relaxation process.

The question of the influence of advection on diffusion is very natural and phys-
ically relevant, and the subject has a long history. The passive scalar model is one
of the most studied PDEs in both mathematical and physical literature. One impor-
tant direction of research focused on homogenization, where in a long time–large
propagation distance limit the solution of a passive advection-diffusion equation
converges to a solution of an effective diffusion equation. Then one is interested in
the dependence of the diffusion coefficient on the strength of the fluid flow. We refer
to [24] for more details and references. The main difference with the present work
is that here we are interested in the flow effect in a finite time without the long time
limit.

On the other hand, the Freidlin-Wentzell theory [13–16] studies (1) in R
2 and,

for a class of Hamiltonian flows, proves the convergence of solutions as A →∞ to
solutions of an effective diffusion equation on the Reeb graph of the Hamiltonian.
The graph, essentially, is obtained by identifying all points on any streamline. The
conditions on the flows for which the procedure can be carried out are given in
terms of certain non-degeneracy and growth assumptions on the stream function.
The Freidlin-Wentzell method does not apply, in particular, to ergodic flows or in
odd dimensions.

Perhaps the closest to our setting is the work of Kifer and more recently a result
of Berestycki, Hamel and Nadirashvili. Kifer’s work (see [17–20] where further
references can be found) employs probabilistic methods and is focused, in particular,
on the estimates of the principal eigenvalue (and, in some special situations, other
eigenvalues) of the operator −εΔ+ u · ∇ when ε is small, mainly in the case of the
Dirichlet boundary conditions. In particular, the asymptotic behavior of the principal
eigenvalue λε0 and the corresponding positive eigenfunction ϕε

0 for small ε has been
described in the case where the operator u·∇ has a discrete spectrum and sufficiently
smooth eigenfunctions. It is well known that the principal eigenvalue determines the
asymptotic rate of decay of the solutions of the initial value problem, namely

lim
t→∞ t−1 log ‖ϕε(x, t)‖L2 = −λε0 (2)

(see e.g. [18]). In a related recent work [2], Berestycki, Hamel and Nadirashvili uti-
lize PDE methods to prove a sharp result on the behavior of the principal eigenvalue
λA of the operator −Δ + Au · ∇ defined on a bounded domain Ω ⊂ R

d with the
Dirichlet boundary conditions. The main conclusion is that λA stays bounded as
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A →∞ if and only if u has a first integral w in H 1
0 (Ω) (that is, u ·∇w = 0). An el-

egant variational principle determining the limit of λA as A →∞ is also proved. In
addition, [2] provides a direct link between the behavior of the principal eigenvalue
and the dynamics which is more robust than (2): it is shown that ‖ϕA(·, 1)‖L2(Ω)

can be made arbitrarily small for any initial datum by increasing A if and only if
λA → ∞ as A → ∞ (and, therefore, if and only if the flow u does not have a first
integral in H 1

0 (Ω)). We should mention that there are many earlier works provid-
ing variational characterization of the principal eigenvalues, and refer to [2, 20] for
more references.

Many of the studies mentioned above also apply in the case of a compact mani-
fold without boundary or Neumann boundary conditions, which is the primary focus
of this paper. However, in this case the principal eigenvalue is simply zero and cor-
responds to the constant eigenfunction. Instead one is interested in the speed of
convergence of the solution to its average, the relaxation speed. A recent work of
Franke [12] provides estimates on the heat kernels corresponding to the incompress-
ible drift and diffusion on manifolds, but these estimates lead to upper bounds on
‖ϕA(1) − ϕ‖ which essentially do not improve as A → ∞. One way to study the
convergence speed is to estimate the spectral gap – the difference between the princi-
pal eigenvalue and the real part of the next eigenvalue. To the best of our knowledge,
there is very little known about such estimates in the context of (1); see [18] p. 251
for a discussion. Neither probabilistic methods nor PDE methods of [2] seem to
apply in this situation, in particular because the eigenfunction corresponding to the
eigenvalue(s) with the second smallest real part is no longer positive and the eigen-
value itself does not need to be real. Moreover, even if the spectral gap estimate were
available, generally it only yields a limited asymptotic in time dynamical informa-
tion of type (2), and how fast the long time limit is achieved may depend on A. Part
of our motivation for studying the advection-enhanced diffusion comes from the ap-
plications to quenching in reaction-diffusion equations (see e.g. [3, 9, 21, 25, 29]).
For these applications, one needs estimates on the A-dependent L∞ norm decay at
a fixed positive time, the type of information the bound like (2) does not provide.
We are aware of only one case where enhanced relaxation estimates of this kind are
available. It is the recent work of Fannjiang, Nonnemacher and Wolowski [7, 8],
where such estimates are provided in the discrete setting (see also [18] for some re-
lated earlier references). In these papers a unitary evolution step (a certain measure
preserving map on the torus) alternates with a dissipation step, which, for example,
acts simply by multiplying the Fourier coefficients by damping factors. The absence
of sufficiently regular eigenfunctions appears as a key for the lack of enhanced re-
laxation in this particular class of dynamical systems. In [7, 8], the authors also
provide finer estimates of the dissipation time for particular classes of toral auto-
morphisms (that is, they estimate how many steps are needed to reduce the L2 norm
of the solution by a factor of two if the diffusion strength is ε).

Our main goal in this paper is to provide a review of recent work that addresses
a question of sharp characterization of incompressible flows that are relaxation en-
hancing, in a quite general setup. The following natural definition has been intro-
duced in [4] as a measure of the flow efficiency in improving the solution relaxation.
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Definition 1. Let M be a smooth compact Riemannian manifold. The incompress-
ible flow u on M is called relaxation enhancing if for every τ > 0 and δ > 0,
there exist A(τ, δ) such that for any A > A(τ, δ) and any ϕ0 ∈ L2(M) with
‖ϕ0‖L2(M) = 1 we have

‖ϕA(·, τ )− ϕ‖L2(M) < δ, (3)

where ϕA(x, t) is the solution of (1) and ϕ the average of ϕ0.

Remarks.

1. In [4] it was shown that the choice of the L2 norm in the definition is not essential
and can be replaced by any Lp-norm with 1 ≤ p ≤ ∞.

2. It follows from the proofs of our main results that the relaxation enhancing class
is not changed even when we allow the flow strength that ensures (3) to depend
on ϕ0, that is, if we require (3) to hold for all ϕ0 ∈ L2(M) with ‖ϕ0‖L2(M) = 1
and all A > A(τ, δ, ϕ0).

The main approach is to bypass the issue of the spectral gap, and work directly
with dynamical estimates. The first result we describe has been proved in [4].

Theorem 2. Let M be a smooth compact Riemannian manifold. A Lipschitz con-
tinuous incompressible flow u ∈ LIP(M) is relaxation enhancing if and only if the
operator u · ∇ has no eigenfunctions in H 1(M), other than the constant function.

Any incompressible flow u ∈ LIP(M) generates a unitary evolution group Ut on
L2(M), defined by Utf (x)f (Φ−t (x)). Here Φt(x) is a measure preserving trans-
formation associated with the flow, defined by d

dt
Φt (x) = u(Φt(x)), Φ0(x) = x.

Recall that a flow u is called weakly mixing if the corresponding operator U has
only continuous spectrum. The weakly mixing flows are ergodic, but not necessar-
ily mixing (see e.g. [5]). There exist fairly explicit examples of weakly mixing flows
(see e.g. [1, 10, 11, 23, 26, 27]). A direct consequence of Theorem 2 is the following
corollary.

Corollary 3. Any weakly mixing incompressible flow u ∈ LIP(M) is relaxation en-
hancing.

Theorem 2 in its turn follows from quite general abstract criterion, which we are
now going to describe. Let Γ be a self-adjoint, positive, unbounded operator with
a discrete spectrum on a separable Hilbert space H. Let 0 < λ1 ≤ λ2 ≤ · · · be
the eigenvalues of Γ, and ej the corresponding orthonormal eigenvectors forming a
basis in H. The (homogeneous) Sobolev space Hm(Γ ) associated with Γ is formed
by all vectors ψ =∑j cj ej such that

‖ψ‖2
Hm(Γ ) ≡

∑

j

λmj |cj |2 < ∞.

Note that H 2(Γ ) is the domain D(Γ ) of Γ . Let L be a self-adjoint operator such
that, for any ψ ∈ H 1(Γ ) and t > 0 we have
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‖Lψ‖H ≤ C‖ψ‖H 1(Γ ) and ‖eiLtψ‖H 1(Γ ) ≤ B(t)‖ψ‖H 1(Γ ) (4)

with both the constant C and the function B(t) < ∞ independent of ψ and B(t) ∈
L2

loc(0,∞). Here eiLt is the unitary evolution group generated by the self-adjoint
operator L.

Consider a solution ϕA(t) of the Bochner differential equation

d

dt
ϕA(t) = iALϕA(t)− Γ ϕA(t), ϕA(0) = ϕ0. (5)

Similarly to the Definition 1 above, we say

Definition 4. We call evolution corresponding to (5) relaxation enhancing if for any
τ, δ > 0 there exists A(τ, δ) such that for any A > A(τ, δ) and any ϕ0 ∈ H with
‖ϕ0‖H = 1, the solution ϕA(t) of the equation (5) satisfies ‖ϕA(τ)‖H < δ.

Theorem 5. Let Γ be a self-adjoint, positive, unbounded operator with a discrete
spectrum and let a self-adjoint operator L satisfy conditions (4). Then the following
two statements are equivalent:

• The evolution is relaxation enhancing
• The operator L has no eigenvectors lying in H 1(Γ ).

Remark. Here L corresponds to iu · ∇ (or, to be precise, a self-adjoint operator
generating the unitary evolution group Ut which is equal to iu · ∇ on H 1(M)), and
Γ to −Δ in Theorem 2, with H ⊂ L2(M) the subspace of mean zero functions.

Theorem 5 provides a sharp answer to the general question of when a combi-
nation of fast unitary evolution and dissipation produces a significantly stronger
dissipative effect than dissipation alone. It can be useful in any model describing a
physical situation which involves fast unitary dynamics with dissipation (or, equiva-
lently, unitary dynamics with weak dissipation). The proof uses ideas from quantum
dynamics, in particularly the RAGE theorem (see e.g., [6]) describing evolution of
a quantum state belonging to the continuous spectral subspace of a self-adjoint op-
erator.

A natural concern is if the existence of rough eigenvectors of L is consistent
with the condition (4) which says that the dynamics corresponding to L preserves
H 1(Γ ). In [4], this question was answered in the affirmative by providing examples
where rough eigenfunctions exist yet (4) holds. One of the examples involved a dis-
crete version of the celebrated Wigner-von Neumann construction of an imbedded
eigenvalue of a Schrödinger operator [28]. Moreover, another example constructed
in [4] involved a smooth flow on the two dimensional torus T

2 with discrete spec-
trum and rough (not H 1(T2)) eigenfunctions—the idea of this example essentially
goes back to Kolmogorov [23]. Thus, the issue of rough eigenfunctions is not moot
and result of Theorem 5 is precise.

The third result we are going to describe is a natural extension of Theorem 5 and
Theorem 2 to the case of time periodic flows [22]. Clearly, most flows in practice are
time dependent, and it is important to understand this more general case. The time
periodic situation is a natural first step. Without loss of generality, we will assume
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that the period in time is equal to one, and will state only the general result. Let L(t)
be a self-adjoint (for any t) operator, periodic with respect to t with period 1 and
such that the following two conditions hold.

Condition 1. For any ψ ∈ H 1(Γ ) we have

‖L(t)ψ‖ ≤ C0‖ψ‖1 (6)

with constant C0 independent of t .

Denote by U(t, s) unitary group associated with equation

d

dt
ψ(t) = iL(t)ψ(t). (7)

Thus, U(t, s)ψ(s) = ψ(t). Due to periodicity of L(t) we have U(t + 1, s + 1) =
U(t, s). For period operator U(1, 0) we use the notation V .

Condition 2. For any ψ ∈ H 1(Γ ) we have

‖U(s + t, s)ψ‖1 ≤ B(t, s)‖ψ‖1 (8)

with constant B(t, s) < ∞ (periodic in s) such that for any X > 0

sup
t∈[0,X]

sup
s∈[0,1]

B(t, s) ≤ C∗(X) < ∞. (9)

Consider the equation

d

dt
ϕA(t) = iL(t)ϕA(t)− Γ ϕA(t), ϕA(0) = ϕ0, (10)

where Γ is as before. Then the main result is the following [22]:

Theorem 6. Under Conditions 1 and 2 evolution is relaxation enhancing (in the
sense of Definition 4) if and only if the unitary operator V has no eigenfunctions in
H 1(Γ ).

Thus the relaxation enhancement for time periodic flows is equivalent to the in-
vestigation of the eigenfunctions of the time one map V. It is interesting to note
that in the case of a fluid flow u(x, t), the problem reduces to studying a different
flow of special form in one extra space dimension. Namely, let us denote the unit
circle by T. In the Hilbert space H := L2(T,H)—functions on T which are L2
with values in H consider unitary evolution eiKσ defined by

eiKσ f (t) := U(t, t − σ)f (t − σ). (11)

We denote by K the self-adjoint generator of the unitary group eiKσ . Formally,

K := i
d

dt
+ L(t). (12)
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Then one can prove [22].

Theorem 7. Operator V has an eigenfunction in H 1(Γ ) if and only if operator K

has an eigenfunction f (x, t) in H1 := L2(T,H 1(Γ )) ∩H 1(T,H).

Finally, the last result we are going to mention deals with relaxation enhance-
ment in non-compact regions (specifically, R

2 and R×T). Given an incompressible
Lipshitz flow v in a domain D, let us denote Pt (v) the solution operator for the
equation

ψt + v · ∇ψ = Δψ, ψ(0) = ψ0 (13)

on D. That is, Pt (v)ψ0 = ψ(·, t) when ψ solves (13). The following theorem has
been proved in [30]:

Theorem 8. Let u be a periodic, incompressible, Lipshitz flow on D = R
2 or D =

R × T with a cell of periodicity C, and let ϕA solve (1) in D. The following are
equivalent.

(i) For some 1 ≤ p ≤ q ≤ ∞ and each τ > 0, ϕ0 ∈ Lp(D),

‖ϕA(·, τ )‖Lp(D) → 0 as A →∞. (14)

(ii) For any 1 ≤ p ≤ q ≤ ∞ such that p < ∞ and q > 1, and each τ > 0,
ϕ0 ∈ Lp(D),

‖ϕA(·, τ )‖Lp(D) → 0 as A →∞.

(iii) For any 1 ≤ p ≤ q ≤ ∞ and each τ > 0,

‖Pτ (Au)‖Lp(D)→Lq(D) → 0 as A →∞.

(iv) No bounded open subset of D is invariant under u and any eigenfunction of u
on C that belongs to H 1(C) is a first integral of u.

The first three statements in the above theorem provide essentially different equiv-
alent definitions of relaxation enhancement (which may be more reasonable to call
dissipation enhancement in this setting, since the limiting value is going to be equal
to zero). The fourth is a sharp characterization of flows that provide such dissipation
enhancement on D. An interesting aspect of this theorem is that in the non-compact
setting the class of relaxation enhancing flows includes some flows with first inte-
grals on the cell, such as shear flows in the infinite direction which have a plateau.
The paper [30] contains some other interesting examples and generalizations.

In the following section we sketch some of the main ideas behind the proof of
the Theorems 2, 5, 6 and 8.

2 The Heart of the Matter

While we are not going to present detailed proofs, we would like to outline, or
perhaps even just illustrate, the main idea behind the general criterion Theorem 5
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and its connection with estimates on wavepacket spreading in quantum mechanics.
For this purpose, it is convenient to switch to an equivalent formulation with small
parameter ε = A−1. Namely, we will look at the equation

ϕε
t = iLϕε − εΓ ϕε, ϕε(0) = ϕ0. (15)

The question then becomes under what conditions on L for any τ, δ > 0 we can find
sufficiently small ε(τ, δ) such that for any ε < ε(τ, δ) we have ‖ϕε(τ/ε)‖ < δ?

One direction of the Theorem 5 is rather straightforward. If there exists ϕ ∈ H 1

such that Lϕ = λϕ, then it is not difficult to show that L cannot be relaxation
enhancing. It suffices to take the initial data ϕ0 equal to ϕ and carry out a few
elementary estimates on the equation [4].

The converse direction is trickier. The evolution due to L is unitary, while un-
perturbed dissipative part due to εΓ delivers decay by just a fixed factor on the
time scale of the order ε−1—if there is no mixing by L. Thus enhanced dissipation
can only happen if the unitary evolution transports the initial data to progressively
higher harmonics of Γ. Since at any time t we have

∂t‖ϕε‖2 = ε‖ϕε(s)‖2
1, (16)

we just need to obtain sufficiently strong lower bound (perhaps on average) for
the H 1 norm of the solution. Let us recall the following statement, well known
in mathematical quantum mechanics as the RAGE theorem (in honor of Ruelle,
Ahmrein, Georgescu and Enss [6]).

Theorem 9. Assume L is a self-adjoint operator, and denote Pc the projector on the
continuous spectral subspace. Let C be a compact operator. Then for any ϕ ∈ H,

we have

1

T

T∫

0

‖C exp(iLt)Pcϕ‖2 dt → 0 (17)

as T →∞.

This is a precise formulation of a well known informal principle saying that the
quantum evolution corresponding to continuous spectrum is unbounded. Indeed,
think of a discrete case, where H = l2(Zd), and take K equal to a projection on
a ball of radius R. Then the statement of the Theorem says that the wavepacket,
on average, will stay out of this ball for large times. The proof is based on a well
known and simple Wiener theorem saying that if μ is a probability measure with
point masses at ai and μ̂ is its Fourier transform, then

1

T

T∫

0

|μ̂(t)|2 dt →
∑

i

μ(ai)
2
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as T → ∞. Clearly, the unboundedness of the unitary dynamics should be very
relevant in our case, where the natural basis is given by the eigenfunctions of Γ and
the goal is to show that the evolution migrates to high modes and dissipates.

Let us now consider the case where our operator L has purely continuous spec-
trum. In this case, the proof is especially transparent. The key are the following two
lemmas. The first lemma ensures that the solution of (15) stays close for a while to
the unitary evolution ϕ0(t) = exp(iLt)ϕ0.

Lemma 10. Assume the conditions (4) hold. Let ϕ0(t), ϕε(t) be solutions of

(ϕ0)′(t) = iLϕ0(t), (ϕε)′(t) = (iL− εΓ )ϕε(t),

satisfying ϕ0(0) = ϕε(0) = ϕ0 ∈ H 1. Then we have

d

dt
‖ϕε(t)− ϕ0(t)‖2 ≤ 1

2
ε‖ϕ0(t)‖2

1 ≤
1

2
εB2(t)‖ϕ0‖2

1. (18)

As a consequence,

‖ϕε(t)− ϕ0(t)‖2 ≤ 1

2
ε‖ϕ0‖2

1

τ∫

0

B2(t) dt

for any time t ≤ τ .

This lemma can be proved by elementary arguments [4].
The second lemma is an upgraded version of the RAGE theorem. Recall that we

denote by 0 < λ1 ≤ λ2 ≤ · · · the eigenvalues of the operator Γ and by e1, e2, . . .

the corresponding orthonormal eigenvectors. Let us also denote by PN the orthogo-
nal projection on the subspace spanned by the first N eigenvectors e1, . . . , eN and
by S = {ϕ ∈ H : ‖ϕ‖ = 1} the unit sphere in H. The following lemma shows
that if the initial data lies in the continuous spectrum of L then the L-evolution will
spend most of time in the higher modes of Γ .

Lemma 11. Let K ⊂ S be a compact set. For any N, σ > 0, there exists
Tc(N, σ,K) such that for all T ≥ Tc(N, σ,K) and any ϕ ∈ K, we have

1

T

T∫

0

‖PNeiLtPcϕ‖2 dt ≤ σ‖ϕ‖2. (19)

An important aspect of this lemma is the uniformity of the estimate in ϕ ∈ K.

Given these two lemmas, here is a sketch of the proof of Theorem 5.
Fix δ, τ > 0. Take σ = 1/10, and choose N so that

exp(−λNτ/10) < δ. (20)

We will also assume that λN is chosen to be larger than one. Define a compact set
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K = {ϕ ∈ H
∣
∣‖ϕ‖2

1 ≤ λN‖ϕ‖2}.

Define τ1 = Tc(N, 1/10,K). Finally, take any ε < ε(τ, δ) where the latter is de-
fined by a condition

ε(τ, δ)

τ1∫

0

B2(t) dt ≤ 1

20λN
. (21)

Assume that we have ‖ϕε(t)‖2
1 > λN‖ϕε(t)‖2 for any t in some interval [a, b] ⊂

[0, τ/ε]. Then from (16), it follows that

‖ϕε(b)‖2 ≤ exp(−ελN(b − a))‖ϕε(a)‖2. (22)

In particular, if we could take [a, b] = [0, τ/ε], then by (20) the norm of the solution
will be less than δ at t = τ/ε.

Now let us examine what happens if at any time τ0 we have ‖ϕε(τ0)‖2
1 ≤

λN‖ϕε(τ0)‖2. For the sake of transparency, henceforth we will denote ϕε(τ0) = ϕ0.

On the interval [τ0, τ0 + τ1], consider the function ϕ0(t) satisfying d
dt
ϕ0(t) =

iLϕ0(t), ϕ0(τ0) = ϕ0. Note that by the choice of ε, τ0, (21), and Lemma 18, we
have

‖ϕε(t)− ϕ0(t)‖2 ≤ 1

10
‖ϕ0‖2 (23)

for all t ∈ [τ0, τ0 + τ1]. Our choice of τ1 implies that

1

τ1

τ0+τ1∫

τ0

‖PNϕ0(t)‖2 dt ≤ 1

10
‖ϕ0‖2. (24)

Taking into account that the evolution ϕ0(t) is unitary, it follows that

1

τ1

τ0+τ1∫

τ0

‖(I − PN)ϕ0(t)‖2 dt ≥ 9

10
‖ϕ0‖2. (25)

Using (23), we conclude that

1

τ1

τ0+τ1∫

τ0

‖(I − PN)ϕε(t)‖2 dt ≥ 1

2
‖ϕ0‖2. (26)

This estimate implies that

τ0+τ1∫

τ0

‖ϕε(t)‖2
1 dt ≥

λNτ1

2
‖ϕ0‖2. (27)
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Combining (27) with (16) yields

‖ϕε(τ0 + τ1)‖2 ≤
(

1 − λNετ1

2

)

‖ϕε(τ0)‖2 ≤ e−λNετ1/2‖ϕε(τ0)‖2. (28)

The whole interval [0, τ/ε] can now be split into a union of intervals such that
either (22) or (28) applies. Thus we obtain (assuming ‖ϕ0‖ = 1)

‖ϕε(τ/ε)‖2 ≤ exp(−λNτ/2) < δ2,

finishing the proof in this case.
Including the point spectrum case is technically tricky, and we refer to [4] for the

complete treatment. However, the argument that we just provided illustrates some
key ideas well. The overall plan of the argument is flexible enough to also apply in
the time periodic case [22].

3 Open Questions

In this section, we briefly discuss some open questions. There are many natural
directions in which one can pursue further developments. For example, discrete time
version, more precise quantitative estimates of the enhancement and links to relevant
properties of the dynamical systems and nonlinear dissipation are all of interest.
However here we will focus on describing in detail just two questions—which are
most likely hardest but are also in our opinion very interesting.

1. The spectral analog. The first question is to obtain estimates on the spectral
gap in this truly non-selfadjoint situation. The issue is really twofold. Consider the
operator

HA = iAL− Γ.

Let us denote λA1 the eigenvalue with the minimal real part (one of those eigen-
values if it is not unique). Obtaining any analytical estimate on the 9λA1 of the
operator HA would require completely new ideas. As we mentioned in the intro-
duction, the current estimates available in the Dirichlet boundary condition setting
for the flow operator depend critically on the fact that the principal eigenvalue is
real and the corresponding eigenfunction is positive. Clearly, such properties have
no analog in general for (3). The second question is if the link between dynami-
cal behavior and spectral gap remains true in this case. A natural conjecture is that
lim supA→∞9λA1 < ∞ if and only if L has H 1(Γ ) eigenfunctions and if and only
if evolution is not relaxation enhancing. In fact, the “only if” direction can be proved
similarly to [2]; it is the “if” direction that looks difficult. Finding what the above
limit (if it exists and finite) is going to be equal to is another interesting problem.

Generally, it is well known that in non-selfadjoint spectral analysis, “anything can
happen”. The question is if the natural problem that we are looking at has sufficient
structure to still possess some nice properties.
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2. Examples of time-dependent flows. Theorem 6 provides a simple characteriza-
tion of the time-periodic relaxation enhancing flows. Intuitively, it is clear that time
dependence of the flow is likely to improve its mixing properties in many situations.
A very reasonable question is therefore the following:

Find an example of a 2D incompressible flow u(x, y, t), periodic both in space
and time with period 1, such that for each fixed t0, u(x, y, t0) is not relaxation
enhancing (for instance, the mean of u is zero) but the time dependent flow u(x, y, t)

is relaxation enhancing.
We were unable to find such examples in the existing literature. One approach

suggested by Theorem 6, would be to start from a relaxation enhancing (for exam-
ple, mixing) time one map, and try to build a flow leading to it. However, most ex-
plicit mixing maps on the torus that appear in the literature, such as simple Anosov
diffeomorphisms, are not homotopic to the identity map—and so cannot be realized
by a smooth flow on the torus. We believe that the above question is interesting
purely from the dynamical systems point of view, independently of its applications
to the advection-diffusion. Note added in proof: after this review was submitted, an
example answering this question has been constructed in [22].
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Random Schrödinger Operators: Localization
and Delocalization, and All That

François Germinet and Abel Klein

Abstract In this review we consider random Schrödinger operators which are er-
godic and have the property of independence at a distance. The basic examples
are the Anderson tight-binding model, the continuum Anderson Hamiltonian, the
random Landau Hamiltonian, and the Poisson Hamiltonian. We review localization
and delocalization for these random Schrödinger operators, discussing the metal-
insulator transition and its mathematical interpretations: the spectral metal-insulator
transition and the dynamical metal-insulator transition. The occurrence of the dy-
namical metal-insulator transition in the random Landau Hamiltonian is reviewed.

1 Random Schrödinger Operators

Consider an electron moving in a medium with random impurities. For a fixed con-
figuration of the impurities, labeled by a point ω in a probability space (Ω,P), this
motion is described by the Schrödinger equation

−i∂t ψtHω ψt (1)

on the Hilbert space H = L2(Rd), where the Hamiltonian is a random Schrödinger
operator:

Hω := H0 + Vω, (2)

with H0 = −Δ, the d-dimensional Laplacian operator and Vω a random potential.
(The free Hamiltonian H0 may be modified to include a magnetic field or a back-
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ground periodic potential, or both.) This quantum mechanical system is also studied
in the tight-binding approximation, where the Hilbert space is H =  2(Zd) and Δ

is the discrete Laplacian.
Mathematical considerations require Hω to be a random self-adjoint operator:

Hω is a self-adjoint operator for P-a.e. ω (usually bounded from below), and the
mappings ω → f (Hω) are weakly (and hence strongly) measurable for all bounded
Borel measurable functions f on R.

Physical considerations require the random Schrödinger operator Hω to be homo-
geneous and ergodic with respect to translations by elements of Z

d (or R
d ): there

exists an ergodic family {τy; y ∈ Z
d} of measure preserving transformations on

(Ω,P) such that

U(y)HωU(y)∗ = Hτy(ω) for all y ∈ Z
d, (3)

where (U(y)ϕ)(x) = ϕ(x−y). (If there is a magnetic field, translations are replaced
by magnetic translations.)

In this review a random Schrödinger operator Hω will always be an ergodic ran-
dom self-adjoint operator. An important property is the existence of a nonrandom
set Σ such that σ(Hω) = Σ for P-a.e. ω, where σ(A) denotes the spectrum of
the operator A. In addition, the decomposition of σ(Hω) into pure point spectrum
σpp(Hω), absolutely continuous spectrum σac(Hω), and singular continuous spec-
trum σsc(Hω) is also independent of the choice of ω with probability one, i.e., there
are nonrandom sets Σpp, Σac and Σsc, such that σpp(Hω) = Σpp, σac(Hω) = Σac,
and σsc(Hω) = Σsc with probability one. (See [85, 77, 60, 86, 16, 25].)

In many physical systems the random impurities located in disjoint (and suffi-
ciently apart) regions are stochastically independent. This will be assumed in this
review. As a consequence, the corresponding random Schrödinger operators possess
the property of independence at a distance: events based on disjoint (and sufficiently
apart) regions will be independent.

In this review we consider localization and delocalization for these random Schrö-
dinger operators. We introduce the basic examples, and review localization and
delocalization, discussing the metal-insulator transition and its mathematical inter-
pretations: the spectral metal-insulator transition and the dynamical metal-insulator
transition. The occurrence of the dynamical metal-insulator transition in the random
Landau Hamiltonian is reviewed. We do not discuss the proofs, but references are
provided. The references will also include results of similar type with somewhat
different hypotheses.

2 Basic Examples of Random Schrödinger Operators

We consider Hω as in (2) on a Hilbert space H , where H will be either L2(Rd) or
 2(Zd). We fix the following notation:
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• ω = {ωj }j∈Zd are independent identically distributed random variables with a
common probability distribution μ whose support is compact with at least two
points.

• u(x) is a nonnegative bounded measurable function on R
d with compact support,

with u(x) ≥ δ > 0 in a ball centered at x = 0.

The assumption that the probability distribution μ has compact support may be
often replaced by less restrictive conditions, but we will assume it to simplify the
exposition. In addition, most of the mathematical results require a regularity as-
sumption: the common probability distribution μ has a bounded density ρ. If μ

satisfies this assumption, the corresponding random Schrödinger operator will be
called regular.

We will now introduce the random Schrödinger operators we discuss in this re-
view.

2.1 The Anderson (Tight-Binding) Model

This is the original random Schrödinger operator introduced in [10]. It acts on the
lattice, i.e., H =  2(Zd). H0 = −Δ, with Δ the centered discrete Laplacian:

(Δϕ)(x) := −
∑

y∈Zd ; |x−y|=1

ϕ(y) for ϕ ∈  2(Zd); (4)

note σ(−Δ) = [−2d, 2d]. The random potential is simply

Vω(j) = ωj for all j ∈ Z
d . (5)

2.2 The (Continuum) Anderson Hamiltonian

This is the continuum version of the Anderson model; it describes the motion of
an electron in a disordered crystal (a random alloy). Here H = L2(Rd), H0 =
−Δ + Vper, where Vper is a bounded periodic potential with period q ∈ N, and the
random potential is

Vω(x) =
∑

j∈Zd

ωj u(x − j) for all x ∈ R
d . (6)

2.3 The Random Landau Hamiltonian

Here H = L2(R2) and we have a magnetic field. The free Hamiltonian is
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H0 = HB := (−i∇ − A)2, (7)

where B > 0 is the strength of the magnetic field, A = B
2 (x2,−x1) is the vector

potential, and Vω is the random potential in (6). The covariance relation (3) holds
with respect to magnetic translations, defined by

(U(y)ϕ) (x) = e−i B2 (x2y1−x1y2)ϕ(x − y). (8)

The random Landau Hamiltonian is Z
2-ergodic with respect to these magnetic trans-

lations. It appears in the study of the quantum Hall effect (cf. [58, 95, 13, 14]).

2.4 The Poisson Hamiltonian

Here H = L2(R2), H0 = −Δ, and the random potential is

VX(x) =
∑

j∈X

u(x − j), (9)

where X is a (homogeneous) Poisson process on R
d . The Poisson Hamiltonian is

R
d -ergodic; it describes the motion of an electron in a disordered amorphous mate-

rial (cf. [81]).

3 The Metal-Insulator Transition

The following picture is widely accepted in the Physics literature [10, 3, 82]:

• In dimension d ≥ 3, a random Schrödinger operator exhibits a transition from
an insulator region, characterized by localized states, to a very different metallic
region, characterized by extended states. The energy at which this metal-insulator
transition occurs is called the mobility edge (Eme).

Σ = σ(Hω):

insulator | metal

Eme

• If d = 1 there is no transition, there are only localized states.
• If d = 2 it is also believed that there are only localized states.
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4 The Spectral Metal-Insulator Transition

The usual mathematical interpretation of the metal-insulator transition is a spectral
transition using the following dictionary:

• The insulator region is the spectral region where the random Schrödinger operator
exhibits Anderson localization, that is, pure point spectrum with exponentially
decaying eigenstates.

• The metallic region is the spectral region where the random Schrödinger operator
has absolutely continuous spectrum.

4.1 Anderson Localization

The random Schrödinger operator Hω is said to exhibit Anderson localization in an
interval I , where I ◦ ∩ Σ $= 0, if there exists m > 0 such that the following holds
with probability one:

• Hω has pure point spectrum in I .
• If ϕ is an eigenfunction of Hω with eigenvalue E ∈ I , then ϕ is exponentially

localized with rate of decay m, more precisely,

‖χxϕ‖ ≤ Cω,ϕ e−m|x| for all x ∈ Z
d . (10)

A note about notation: I ◦ is the interior of I . χB denotes the characteristic func-
tion of the set B. χx denotes the characteristic function of the cube of side 1 centered
at x, that is, the characteristic function of the set x+[− 1

2 ,
1
2 ]d . Note that in the lattice

we have χx = χ{x}, so ‖χxϕ‖ = |ϕ(x)|.
Let I be the interval of Anderson localization. If I = R we will say ‘for all

energies’. If I = [Einf, E1] with Einf := infΣ < E1 we will say ‘at the bottom of
the spectrum. (Note that we always have Einf > −∞ under our hypotheses.) For
the Anderson model, Σ is a compact set under our hypotheses, so we can also talk
about ‘the top of the spectrum’; we will use ‘at the edges of the spectrum’ to mean
at the bottom and at the top of the spectrum.

We also introduce a disorder parameter λ > 0, and set Hω,λ = H0 + λVω. By
Anderson localization at high disorder for Hω we will mean Anderson localization
for Hω,λ for all sufficiently large λ.

Anderson localization was first proven for a particular one-dimensional contin-
uum random Schrödinger operator [55]. The random potential is given by a Morse
function of Brownian motion in a compact manifold. Anderson localization was
proven for all energies, i.e., on R.

We will review the results on Anderson localization for the Anderson model,
the Anderson Hamiltonian, and the Poisson Hamiltonian. We will also discuss the
multiplicity of the eigenvalues in intervals of Anderson localization. The random
Landau Hamiltonian will be discussed in Sect. 6.
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4.1.1 Anderson Localization in the One-Dimensional Case

For d = 1 the widely accepted picture, Anderson localization at all energies, has
been verified in great generality. It has been proven in the following cases:

• For a one-dimensional continuum random Schrödinger operator where the ran-
dom potential is given by a Morse function of Brownian motion in a compact
manifold; the first proof of Anderson localization [55].

• For the Anderson model:
– For the regular model, i.e., μ with a bounded density [77, 72, 25].
– For μ arbitrary [17, 87].

• For the Anderson Hamiltonian [27].
• For the Poisson Hamiltonian [93].

4.1.2 Anderson Localization in the Multi-Dimensional Case

For d ≥ 2 Anderson localization has been proved as expected for d ≥ 3; there are
no results specific to d = 2. In more detail, for d ≥ 2 we have:

• For the Anderson model, we have Anderson localization at the edges of the spec-
trum, and also at all energies for high disorder, as follows:
– For μ with a bounded density, the regular Anderson model [38, 39, 32, 89, 96,

97, 90, 98, 5, 65, 35, 4, 6, 100, 75].
– For μ Hölder continuous [17].
– There are no results at this time for more singular μ.

• For the Anderson Hamiltonian, we always have localization at the bottom of the
spectrum, or at a fixed interval at the bottom of the spectrum for high disorder.
These results have been proven as follows:
– For μ with a bounded density, the regular Anderson Hamiltonian [59, 20, 73,

36, 62, 63, 41, 44, 42, 7, 70].
– For μ Hölder continuous [91, 92, 23].
– For μ a Bernoulli distribution, the Bernoulli-Anderson model [15].
– For μ arbitrary (nontrivial, with compact support) [47]. (For just spectral local-

ization, i.e., pure point spectrum, see [9].)
• For the Poisson Hamiltonian, we have localization at the bottom of the spectrum,

or at a fixed interval at the bottom of the spectrum for high disorder [49, 51, 50].

4.1.3 Multiplicity of Eigenvalues in Intervals of Anderson Localization

There is a general belief that eigenvalues in intervals of Anderson localization should
be simple. The following is known:

• In d = 1 the multiplicity of an eigenvalue of a Schrödinger operator is at most
two.
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• The eigenvalues of a regular Anderson model in an interval of Anderson localiza-
tion are simple [88, 71].

• The eigenvalues of an Anderson Hamiltonian in an interval of Anderson localiza-
tion have finite multiplicity:
– For μ with a bounded density, the regular Anderson Hamiltonian [20, 46].
– For μ Hölder continuous [46].
– For μ arbitrary (e.g., μ a Bernoulli distribution) [47].

• The eigenvalues of a Poisson Hamiltonian in an interval of Anderson localization
have finite multiplicity [47].

• The eigenvalues of a regular Anderson Hamiltonian in an interval of Anderson
localization at the bottom of the spectrum are simple [24].

4.2 Absolutely Continuous Spectrum

At this time there are no proofs of existence of absolutely continuous spectrum
(or even continuous spectrum) for the random Schrödinger operators discussed in
this review. The only results are for the special case of the Anderson model on the
Bethe lattice (or Cayley tree: an infinite connected graph with no closed loops and
a fixed degree at each vertex), where for small disorder the random operator has
purely absolutely continuous spectrum in a nontrivial interval [66, 69, 68] (see also
[8, 37]) and exhibits ballistic behavior [67]. These results hold for any probability
distribution μ with a finite second moment.

4.3 The Spectral Metal-Insulator Transition for the Anderson
Model on the Bethe Lattice

The Physics literature predicts a metal-insulator transition for the Anderson model
on the Bethe lattice [2, 1, 78, 83, 84]. We have the following mathematical results
the Anderson model on the Bethe lattice:

• For a probability distribution μ with a finite second moment and a bounded den-
sity, Anderson localization is proven at high disorder [5] and for large energies [4].

• For a probability distribution μ with a finite second moment, purely absolutely
continuous spectrum is proven in a nontrivial interval for small disorder [66].

We thus obtain the existence of a spectral metal-insulator transition for a probabil-
ity distribution μ with a finite second moment, a bounded density, and unbounded
support, say suppμ = R. In particular, there is a spectral metal-insulator transition
if μ has a Gaussian distribution.
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5 The Dynamical Metal-Insulator Transition

An alternative mathematical interpretation of the metal-insulator transition as a dy-
namical transition was introduced in [45, 43] using the following dictionary:

• The insulator region is the spectral region where the random Schrödinger operator
exhibits dynamical localization.

• The metallic region is the spectral region where the random Schrödinger operator
exhibits dynamical delocalization.

5.1 Dynamical Localization

The intuitive physical notion of localization has also a dynamical interpretation:
a wave packet, initially localized in space and in energy, should remain localized
under time evolution. In a periodic medium there is ballistic motion: the n-th mo-
ment of an initially localized wave packet grows with time as tn (cf. [11, 64]). In
a random medium the insulator regime should exhibit dynamical localization: all
moments of a wave packet, initially localized both in space and in energy (in the
insulator region), remain uniformly bounded under time evolution.

Anderson and dynamical localization are not equivalent notions. Dynamical lo-
calization implies pure point spectrum by the RAGE Theorem (cf. the argument in
[25, Theorem 9.21]), but the converse is not true. Dynamical localization is actually
a strictly stronger notion than spectral localization (pure point spectrum): Anderson
localization can take place whereas a quasi-ballistic motion is observed [30, 31].

If x ∈ R
d we write 〈x〉 = √1 + |x|2. We use 〈X〉 to denote the operator given by

multiplication by the function 〈x〉. By χx we denote the characteristic function of
the cube of side 1 centered at x ∈ R

d . Given an open interval I ⊂ R, we denote by
C∞
c (I ) the class of real valued infinitely differentiable functions on R with compact

support contained in I , with C∞
c,+(I ) being the subclass of nonnegative functions.

The Hilbert-Schmidt norm of an operator A is written as ‖A‖2, i.e., ‖A‖2
2 = trA∗A.

Ca,b,... will always denote some finite constant depending only on a, b, . . . .
A random Schrödinger operator Hω shows dynamical localization in an open

interval I if , with probability one, we have

sup
t∈R

∥
∥〈X〉m2 e−itHωX (Hω)χ0 ϕ

∥
∥ < ∞

for all ϕ ∈ L2(Rd), X ∈ C∞
c,+(I ), m ≥ 0. (11)

But the known methods for proving Anderson localization also prove a stronger
form of dynamical localization in a bounded open interval I , as follows:

• For the regular Anderson model (at the edges of the spectrum or for all energies
for high disorder) and for the regular Anderson Hamiltonian (at the bottom of the
spectrum), we have [4, 40, 6, 26, 41, 7, 70]
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E

{
sup
t∈R

∥
∥〈X〉m2 e−itHωX (Hω)χ0

∥
∥2

2

}
< ∞ for all X ∈ C∞

c,+(I ), m ≥ 0. (12)

• For the Anderson Hamiltonian with μ arbitrary (e.g., a Bernoulli distribution) and
for the Poisson Hamiltonian, given 0 < s < 3

8d , at the bottom of the spectrum we
have [47]

E

{
sup
t∈R

∥
∥〈X〉m2 e−itHωX (Hω)χ0

∥
∥

2s
m

2

}
< ∞ for all X ∈ C∞

c,+(I ), m ≥ 1. (13)

5.2 Transport Exponents

To study dynamical delocalization it is convenient to introduce transport exponents.
Let Hω be a regular random Schrödinger operator, i.e., a regular Anderson model,
Anderson Hamiltonian, or random Landau Hamiltonian. Following [45], we will
measure the rate of growth of moments of initially spatially localized wave packets
under the time evolution, localized in energy by X ∈ C∞

c,+(R) with X (Hω) $= 0,
by the (lower) transport exponents (m ≥ 0)

β(m,X ) := lim inf
T→∞

log M (m,X , T )

m log T
, (14)

where

M (m,X , T ) := 1

T

∫ +∞

0
E
{
Mω(m,X , t)

}
e−

t
T dt, (15)

with
Mω(m,X , t) := ∥∥〈X〉m2 e−itHωX (Hω)χ0

∥
∥2

2. (16)

If X (Hω) = 0 we set βB,λ(m,X ) = 0. Note that

M (m,X , T ) � T mβ(m,X ) as T →∞. (17)

We define the m-th m-th local transport exponent at the energy E by

β(m,E) := lim
δ→0

sup
X ∈C∞

c,+(E−δ,E+δ)

β(m,X ). (18)

These local transport exponents βB,λ(m,E) provide a measure of the rate of trans-
port in wave packets with spectral support near E. They are increasing in m and
hence we define the local asymptotic transport exponent at E by

β(E) := lim
m→∞β(m,E) = sup

m>0
β(m,E). (19)

Transport exponents have the following properties [45]:

• 0 ≤ β(m,E) ≤ 1, increasing in m ⇒ 0 ≤ β(E) ≤ 1.
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• β(E) > 0 ⇔ β(m,E) > 0 for some m > 0.
• E /∈ Σ ⇒ β(E) = 0.

5.3 The Dynamical Spectral Regions

We will say that the regular random Schrödinger operator Hω exhibits dynamical
localization at the energy E if (12) holds in some interval of the form (E−δ, E+δ),
which we can rewrite as

E

{
sup
t∈R

Mω(m,X , t)
}
< ∞ for all X ∈ C∞

c,+((E− δ, E+ δ)) and m ≥ 0. (20)

It follows immediately that if Hω exhibits dynamical localization at the energy E

we must have β(E) = 0.
On the other hand, it follows from Guarneri’s bound [56, 57, 19, 79] that the

absolutely continuous spectrum Σac of Hω satisfies

Σac ⊂
{

E ∈ R; β(E) ≥ 1

d

}

. (21)

(Note that the converse is not true, a lower bound on the local transport exponent
does not specify the spectrum, cf. [31, 79, 28, 12, 22, 48].)

These considerations motivate the definition of two complementary regions in
the energy axis (cf. [45], note that different names are used in that paper):

• The region of dynamical localization:

ΞDL := {E ∈ R; β(E) = 0}.
• The region of dynamical delocalization:

ΞDD := {E ∈ R; β(E) > 0}.

In addition, an energy Ẽ ∈ ΞDD ∩ {ΞDL ∩Σ} will be called a dynamical mobility
edge. Note that:

• ΞDL is an open set, and hence ΞDD is a closed set.
• ΞDD ⊂ Σ , and hence R \Σ ⊂ ΞDL.

These definitions are justified by the following characterization of the dynamical
spectral regions.

Theorem 1 ([45]). Let Hω be a regular random Schrödinger operator. Then

ΞDL = {E ∈ R; Hω exhibits dynamical localization at E} (24)

and

ΞDD =
{

E ∈ R; β(E) ≥ 1

2d

}

. (25)
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Moreover, Hω exhibits Anderson localization in ΞDL and the absolutely continuous
spectrum Σac ⊂ ΞDD.

This theorem follows from the fact that slow transport cannot occur for regular
random Schrödinger operators.

Theorem 2 ([45]). Let Hω be a regular random Schrödinger operator. Let X ∈
C∞
c,+(R), with X ≡ 1 on some open interval I , α ≥ 0, and m > 2dα + 11d . If

lim inf
T→∞

1

T α
M (m,X , T ) < ∞, (26)

then I ⊂ ΞDL.

5.4 The Region of Complete Localization

Let Hω be a regular random Schrödinger operator. The region of dynamical local-
ization ΞDL has a large number of very natural properties, all equivalent to the de-
finition [45]. There is an appealing analogy with classical statistical mechanics: the
energy is the parameter that corresponds to the temperature, the region of Anderson
localization is the analogous concept to the single phase region with exponentially
decaying correlation functions, and ΞDL corresponds to the region of complete an-
alyticity [33, 34], possessing every possible virtue we can imagine! For this reason
ΞDL is also called the region of complete localization [46, 24]. In particular, we
have the following characterization in terms of the decay of the Fermi projections
P

(E)
ω := χ]−∞,E](Hω). Recall that ΞDL is an open subset of R.

Theorem 3 ([46]). Let Hω be a regular random Schrödinger operator and I a
bounded open interval. Then

1. If I ⊂ ΞDL, for all ζ ∈ ]0, 1[ there is a constant CI,ζ such that

E

{
sup
E∈I
∥
∥χxP

(E)
ω χy

∥
∥2

2

}
≤ CI,ζ e−|x−y|ζ for all x, y ∈ Z

d . (27)

2. If for some ζ ∈ ]0, 1[ (27) holds with some constant CI,ζ , then I ⊂ ΞDL. (It
suffices to have sufficient polynomial decay in (27)).

Moreover, when I ⊂ ΞDL the following holds with probability one:

• Hω has pure point spectrum in I .
• For all ε > 0 there are constants mI,ε > 0 and CI,ε,ω such that for all eigenfunc-

tions ψ, ϕ of Hω with the same eigenvalue E ∈ I , setting ‖ψ‖− := ‖〈X〉−dψ‖,
we have

‖χxψ‖ ‖χyϕ‖ ≤ CI,ε,ω‖ψ‖−‖ϕ‖− e(log 〈y〉)1+ε

e−mε |x−y|.

• The eigenvalues of Hω in I have finite multiplicity.
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6 The Dynamical Transition in the Random Landau Hamiltonian

Explanations of the quantum Hall effect assume that under weak disorder and strong
magnetic field the energy spectrum of the random Landau Hamiltonians consists of
bands of extended states separated by energy regions of localized states and/or en-
ergy gaps [80, 58, 95, 76, 14]. This transition is not expected to be the spectral
metal-insulator transition described in Sect. 4; the extend states may be due to sin-
gular continuous spectrum or delocalization may occur at a single energy [95]. But
the assumption under these explanations has been validated by a proof of the oc-
currence of the dynamical metal-insulator transition in each spectral band of the
random Landau Hamiltonian [52].

The random Landau Hamiltonian, introduced in Sect. 2.3, is given by

HB,λ,ω = HB + λVω on L2(R2),

where HB , given in (7), is the (free) Landau Hamiltonian, λ > 0 is the disorder
parameter, and Vω is the random potential in (6). We will assume that HB,λ,ω is reg-
ular, i.e., the common probability distribution μ has a bounded density ρ, and that ρ
has support in the bounded interval [−M1,M2] (0 ≤ M1,M2 < ∞, M1 +M2 > 0).
Without loss of generality we set ‖∑i∈Z2 u(x−i)‖∞ = 1, so −M1 ≤ Vω(x) ≤ M2.

The spectrum σ(HB) of the Landau Hamiltonian HB consists of a sequence of
infinitely degenerate eigenvalues, the Landau levels:

Bn = (2n− 1)B, n = 1, 2, . . . . (29)

It is convenient to set B0 = −∞. A simple argument shows that

ΣB,λ ⊂
∞⋃

n=1

Bn(B, λ), where Bn(B, λ)[Bn − λM1, Bn + λM2]. (30)

If the disjoint bands condition

λ(M1 +M2) < 2B, (31)

is satisfied (true at either weak disorder or strong magnetic field), the (disorder-
broadened) Landau bands Bn(B, λ) are disjoint, and hence the open intervals

Gn(B, λ) = ]Bn + λM2, Bn+1 − λM1[, n = 0, 1, 2, . . . , (32)

are nonempty spectral gaps for HB,λ,ω. Moreover, if ρ > 0 a.e. on [−M1,M2] and
(31) holds, then for each B > 0, λ > 0, and n = 1, 2, . . . there are aj,B,λ,n ∈
[0, λMj ], j = 1, 2, continuous in λ, such that, by an argument of [61],

ΣB,λ

∞⋃

n=1

In(B, λ), where In(B, λ)[Bn − a1,B,λ,n, Bn + a2,B,λ,n]. (33)
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The existence of dynamical delocalization is given in the following theorem.

Theorem 4 ([52]). The random Landau Hamiltonian HB,λ,ω under the disjoint
bands condition (31) exhibits dynamical delocalization in each band Bn(B, λ): for
all n = 1, 2, . . . we have

ΞDD
B,λ ∩Bn(B, λ) $ ∅. (34)

Thus there exists at least one energy En(B, λ) ∈ Bn(B, λ) such that

βB,λ(En(B, λ)) ≥ 1

4
. (35)

In fact, for every X ∈ C∞
c,+(R) with X ≡ 1 on some open interval J * En(B, λ)

and all m > 0 we have

MB,λ(m,X , T ) ≥ Cm,X T
m
4 −6 (36)

for all T ≥ 0 with Cm,X > 0, and hence

βB,λ(m,En(B, λ)) ≥ 1

4
− 6

m
> 0 for all m > 24. (37)

Dynamical localization at the edges of the Landau bands for large magnetic field
B has been known under mild hypotheses on u and μ [21, 99, 44]. In the regime
of large magnetic field (and fixed disorder), we get the existence of the dynamical
metal-insulator transition and of dynamical mobility edges for the model studied in
[21, 44]. In fact, combining the results of [21, 44] with Theorem 4, we have the
following rather complete picture, consistent with the prediction that at very large
magnetic field there is only one delocalized energy in each Landau band, located at
the Landau level [18].

Theorem 5 ([52]). Consider a random Landau Hamiltonian HB,λ,ω satisfying the
following additional conditions on the random potential: (i) u ∈ C2 and supp u ⊂
D√

2
2
(0), the open disc of radius

√
2

2 centered at 0. (ii) The density of the probability

distribution μ is an even function ρ > 0 a.e. on [−M,M] (M = M1 = M2).
(iii) μ([0, s]) ≥ c min{s,M}ζ for some c > 0 and ζ > 0. Fix λ > 0 and let B > 0
satisfy (31), in which case the spectrum ΣB,λ is given by (33) with

0 ≤ λM − aj,B,λ,n ≤ Cn(λ)B
− 1

2 , j = 1, 2. (38)

Then for each n = 1, 2, . . . , if B is large enough (depending on n) there exist
dynamical mobility edges Ẽj,n(B, λ), j = 1, 2, with

max
j=1,2

∣
∣Ẽj,n(B, λ)− Bn

∣
∣ ≤ Kn(λ)

logB

B
→ 0 as B →∞, (39)

Bn − a1,B,λ,n < Ẽ1,n(B, λ) ≤ Ẽ2,n(B, λ) < Bn + a2,B,λ,n, (40)

[Bn − a1,B,λ,n, Ẽ1,n(B, λ)[∪]Ẽ2,n(B, λ), Bn + a2,B,λ,n] ⊂ ΞDL
B,λ. (41)
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(By Cn(λ),Kn(λ) we denote finite constants. It is possible that Ẽ1,n(B, λ) ×
Ẽ2,n(B, λ), i.e., dynamical delocalization occurs at a single energy.)

For extensions to more general random Landau Hamiltonians see [54, 53].
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Unifying R-Symmetry in M-Theory

Axel Kleinschmidt

Abstract In this contribution we address the following question: Is there a group
with a fermionic presentation which unifies all the physical gravitini and dilatini of
the maximal supergravity theories in D = 10 and D = 11 (without introducing new
degrees of freedom)? The affirmative answer relies on a new mathematical object
derived from the theory of Kac–Moody algebras, notably E10. It can also be shown
that in this way not only the spectrum but also dynamical aspects of all supergravity
theories can be treated uniformly.

1 Introduction

One of the major themes in string theory has been unification. By this we mean
that hitherto unrelated theories and their properties are interpreted as different as-
pects of a single more general and more fundamental model. In a very broad sense
these advances can be called duality relations and typically were first largely con-
jectural but were substantiated later by computations. Among the most far-reaching
of these duality conjectures is the M-theory conjecture [38, 19] which states that
all five known superstring theories have a common origin which is usually termed
M-theory. However, no complete definition of M-theory is known to date.

It is the aim of this contribution to illustrate how the M-theory picture can be
made more precise by studying a somewhat restricted set-up. More precisely, we
will focus on

• The low energy effective theories with maximal supersymmetry. These are the
D = 11 supergravity theory and the D = 10 type IIA and type IIB theories.
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• The fermionic sectors of these theories. Since all these models have maximal
supersymmetry they have the same number of physical degrees of freedom, equal
to 128, in their fermionic (and bosonic) sectors. However, these are distributed
differently into representations of the relevant Lorentz and R-symmetries.

The fermionic spectra are summarised in Table 1. In that table, the relevant irre-
ducible representations of the different Lorentz groups are indicated. Since a grav-
itino is a vector-spinor it always consists of a Γ -traceless part and a pure Γ -trace;
in the D = 11 case these are the 320 and 32 respectively. As is well known, the
type IIA theory employs spinors of both chiralities of the D = 10 Lorentz group
whereas in type IIB only one chirality is used. The known relations for the various
Lorentz groups following from dualities are:

SOB(1, 9)

∪ (1)

· · · ⊂ SO(1, 8) ⊂ SOA(1, 9) ⊂ SO(1, 10)

I.e. the type IIA theory is contained in the D = 11 theory (via dimensional reduc-
tion), but the type IIB theory is not. However, after reduction to D = 9 the IIA and
IIB theories agree. The M-theory conjecture now stipulates that there be a unify-
ing structure to this diagram. This is the first question we address here: Is there a
group K which has subgroups SO(1, 10), SOA(1, 9) and SOB(1, 9) × SO(2) with
embedding relations given as in (1) and with a spinor representation which decom-
poses under these subgroups into the representations of Table 1? This kinematical
question will be answered in the affirmative in Sect. 2.

The second question addressed in this contribution is: Is there a dynamical equa-
tion with explicit K symmetry for the K spinor representation (constructed in the
answer to the first question) which reduces to the dynamics of the fermionic fields of
the various supergravity theories? This dynamical question will receive a partially
affirmative answer in Sect. 3.

The work reported on here is based on the papers [10, 13, 26, 11, 27] which stud-
ied the fermionic sectors of maximal supergravity theories and their symmetries.

Table 1 Fermionic representations of the various maximal supergravity theories in D = 10 and
D = 11
Theory Lorentz & R-symmetry Representation
D = 11 SO(1, 10) Gravitino ψM

(320 ⊕ 32)
D = 10 IIA SOA(1, 9) Two gravitini ψ(1)

μ , ψ
(1)
μ (achiral)

(144 ⊕ 16)⊕ (144 ⊕ 16)
Two dilatini λ(1), λ(2) (achiral)

(16 ⊕ 16)
D = 10 IIB SOB(1, 9)× SO(2) Two gravitini ψ(1)

μ , ψ
(1)
μ (chiral)

((144, 2)⊕ (16, 2))
Two dilatini λ(1), λ(2) (chiral)

(16, 2)
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Fig. 1 Dynkin diagram of E10 with numbering of nodes. E11 has an additional node attached with
a single line to node 1

The approach taken there (and also here) arises from known results of unifying
symmetries in the corresponding bosonic sector. In particular, it was shown in [35,
33, 34, 8, 37, 31, 28] that the indefinite Kac–Moody algebras E10 and E11 contain
the correct spectra at low levels in so-called level decompositions. The Dynkin di-
agram of E10 is given in Fig. 1 and the uncanny resemblance of the right end of
the Dynkin diagram to the structure in (1) is not accidental. E11 contains the correct
fields as covariant Lorentz tensor whereas E10 breaks Lorentz symmetry with only
manifest spatial Lorentz symmetry.1 The bosonic low level spectra correspond to the
bosonic version of the first, kinematical question raised above—in order to address
the second, dynamical question for bosons further ‘specifications’ are required. For
E11, West proposed in [35] that M-theory should be a non-linear realisation of E11;
if space-time also carries an E11 structure it nicely incorporates all central charges
of the D = 11 supersymmetry algebra [36] but also infinitely many more new co-
ordinates. The same E11 structure was found for the bosonic sectors of (massive)
type IIA and type IIB in [35, 33, 34]. For E10, Damour, Henneaux and Nicolai pro-
posed in [8] a one-dimensional non-linear σ -model based on an E10 coset space and
demonstrated that at low levels null geodesic motion on this coset space is equiv-
alent to the D = 11 dynamics around a fixed spatial point truncated roughly after
first spatial gradients. Higher order spatial gradients were conjectured to arise via
the higher levels in the decomposition. This picture was extended to (massive) type
IIA and type IIB in [23, 25]. A model combining E11 with the null geodesic idea of
E10 was given in [16, 15].

In this contribution we will work with E10 because in this case we can give a
more complete answer to the kinematical and dynamical questions raised above.
Since E10 treats time and space asymmetrically, all necessary requirements for the
sought-after ‘M-theory Lorentz group’ K only involve spatial Lorentz groups and
their representations. We will comment on the covariant formulation in the final sec-
tion. In order to convey the main ideas we mostly refrain from introducing intricate
notations and outline the logic; more details can be found in references [10, 13, 26,
11].

1 For this reason the level decomposition of E10 does not contain anti-symmetric ten-form fields
for type IIA and type IIB [25] whereas E11 does [28]. That non-propagating ten-forms, as predicted
by E11 are compatible with the supersymmetry algebra was verified in [1, 2].
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2 Kinematics

The study of dimensional reduction [5, 6] suggests that the group K we are looking
for is K = K(E10), the ‘maximal compact subgroup’ of E10. In order to see that
this is true we first need to understand what K(E10) is.

2.1 Definition of e10 and K(e10)

K(E10) is infinite-dimensional and since global issues are somewhat tricky we will
restrict our attention here to the Lie algebras. The Lie algebra K(e10) of K(E10)

is a subalgebra of the Lie algebra e10 of E10. The Lie algebra e10 is defined in the
Chevalley–Serre presentation by giving 30 simple generators

ei, fi, hi (i = 1, . . . , 10) (2)

and their relations (for all i, j = 1, . . . 10)2

[hi, ej ] = Aij ej , [hi, fj ] = −Aijfj , [ei, fj ] = δij hi,
(3)[hi, hj ] = 0, (ad ei)

1−Aij ej = 0, (ad fi)
1−Aij fj = 0,

where Aij is the generalised Cartan matrix which can be read off from Fig. 1 as
follows: Aii = 2 for i = 1, . . . , 10 and if there is a single link between nodes i and
j then Aij = Aji = −1 and Aij = 0 otherwise. e10 is defined as the Lie algebra
with simple generators (2) and relations (3).

On e10 one can define the Chevalley involution θ acting by

θ(ei) = −fi, θ(fi) = −ei, θ(hi) = −hi (4)

on the simple generators. The fixed point set of this involution defines the ‘compact
subalgebra’ K(e10):

K(e10) = {x ∈ e10 : θ(x) = x}. (5)

This subalgebra is called compact because it has definite Killing norm, generalising
the notion of compact algebras in the finite-dimensional case.

It can be shown [3] that K(e10) is generated by the simple generators

xi = ei − fi (i = 1, . . . , 10) (6)

which are manifestly invariant under θ and defining relations of the type

1−Aij∑

k=0

C
(k)
ij (ad xi)

kxj = 0, (7)

2 ad denotes the adjoint action: (ad ei)ej = [ei , ej ].
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where C
(k)
ij are constant coefficients and can be computed from the Cartan matrix.

This defines a presentation of K(e10) in terms of generators and relations. For both
e10 and K(e10) this type of presentation is the only known presentation. Whereas
e10 is a Kac–Moody algebra with well-defined structure theory [21], K(e10) is not
a Kac-Moody algebra [24] and its general representation theory is unknown. Nev-
ertheless, the relations (7) are sufficient to establish the consistency of any tentative
representation as we will see below. All Lie algebras we consider are over the real
numbers, in particular e10 is in split form.

2.2 Level Decompositions for D = 11, IIA and IIB

A more economical and physical description of the generators of e10 can be obtained
via a so-called level decomposition [8, 28] where one represents

e10 =
∑

 ∈Z

e
( )
10 (8)

as a graded sum of (finite-dimensional reducible) representation spaces of a cho-
sen regular subalgebra. The subalgebras of interest are obtained by removing nodes
from the E10 Dynkin diagram. The integer  represents the level (if several nodes
are removed it consists of a tuple of integers). Regular subalgebras of e10 naturally
give rise to subalgebras of K(e10).

The subalgebras relevant for D = 11, type IIA and type IIB are displayed in
Table 2. From the table it is evident that K(e10) admits subalgebras of the type
required by condition (1) and that these satisfy the necessary embedding conditions.
(Recall that the time coordinate is treated separately for E10 whence we are only
dealing with the spatial Lorentz groups here.)

We exemplify the result of the level decomposition for the D = 11 case, that is
for the case of the depicted sl(10) subalgebra of e10. At level  = 0 the reducible
representation of sl(10) turns out to be gl(10) with generators Ka

b. Moreover, all

Table 2 The subalgebras relevant for the various maximal supergravity theories. Empty nodes are
to be deleted
Theory Dynkin diagram Subalgebra of e10 . . . of K(e10)

D = 11 sl(10) so(10)

D = 10 IIA slA(9) soA(9)

D = 10 IIB slB(9)⊕ sl(2) soB(9)⊕ so(2)
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higher levels are representations of gl(10). Concretely,

 = 0 : Ka
b

 = 1 : Eabc = E[abc]

 = 2 : Ea1...a6 = E[a1...a6] (9)

 = 3 : Ea0|a1...a8 = Ea0|[a1...a8], E[a0|a1...a8] = 0
...

...

Here, (a, b = 1, . . . , 10) are sl(10) vector indices and  = 1, 2, 3 are irreducible
representations (accidentally). These tensors suggest a relation to the bosonic fields
of D = 11 as follows:  = 0 is related to the spatial part ema of the vielbein,  = 1 is
related to the spatial components of the anti-symmetric three-form gauge potential,
 = 2 is related to the Hodge dual of the three-form potential and  = 3 is related
to the dual of the vielbein. That this is true in the one-dimensional E10/K(E10)

σ -model was shown in [8].
Our interest here is in K(E10) and therefore we have to form the invariant com-

binations of the generators in (9) to obtain

 = 0 : J ab = Ka
b + θ(Ka

b) = Ka
b −Kb

a = J [ab]

 = 1 : J abc = Eabc + θ(Eabc)

 = 2 : J a1...a6 = Ea1...a6 + θ(Ea1...a6) (10)

 = 3 : J a0|a1...a8 = Ea0|a1...a8 + θ(Ea0|a1...a8)

...
...

For K(e10) the level  has to be taken with a grain of salt since it does no longer de-
fine a grading but only a filtered structure. Indeed, examples of K(e10) commutation
relations are [10]

[J ab, J cd ] = δbcJ ad − δbdJ ac − δacJ bd + δadJ bc,

[J a1a2a3 , J a4a5a6] = J a1...a6 − 18δ[a1a2[a4a5
J a3]

a6]. (11)

We see that the first line is the so(10) subalgebra of K(e10) and the second line gives
generators of ‘levels’  = 2 and  = 0 on the right hand side in accordance with the
filtered structure. The so(10) subalgebra introduces the invariant δab which can be
used to raise and lower the tensor indices. There are infinitely many more relations
than (11) involving all the other infinitely many generators and no closed form is
known for them.

2.3 Representations of K(e10)

By virtue of the presentation of K(e10) in terms of generators and relations in (6)
and (7) it is sufficient to verify a finite number of relations on a tentative representa-
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tion. Using the level decomposition one can further reduce this number by starting
from a representation of the subalgebra (which obviously constitutes a necessary
condition). Then the sufficient consistency conditions involve only levels  = 0 and
 = 1 (basically since there are only single lines in the E10 Dynkin diagram). For
the so(10) subalgebra of K(e10) the recipe for constructing K(e10) representations
is:

1. Start from an so(10) representation which we call the tentative K(e10) repre-
sentation. This defines the action of the J ab generators within K(e10) on the
tentative representation.

2. Make a general ansatz for the action of J abc on the tentative representation from
so(10) representation theory.

3. Verify that the second line of (11) holds for the case when some of indices are
identical on the tentative representation. When some indices are identical the
term with six anti-symmetric indices drops out.3 If there is a solution for the
general ansatz then the tentative representation gives rise to a full consistent rep-
resentation of K(e10).

For the other subalgebras the procedures are similar. Since it involves the tensors
arising in the corresponding level decompositions we do not detail them here in
order to keep the exposition simple.

We now construct the gravitino (vector-spinor) representation of K(e10) follow-
ing the steps above. The vector-spinor of so(10) is reducible of dimension 320 and
consists of the irreducible pieces 288⊕32 corresponding to the Γ -traceless part and
the Γ -trace. We denote the vector-spinor by ψa and suppress the spinor index. The
so(10) generators J ab act on ψa by4

J abψc = 1

2
Γ abψc + 2δ[ac ψb]. (12)

In the general ansatz for the J abc action there are three terms and the solution to the
necessary commutation condition (11) leads to [10, 13]

J abcψd = 1

2
Γ abcψd + 4δ[ad Γ bψc] − Γd

[abψc]. (13)

That there exists a solution to the consistency condition implies that there is a rep-
resentation of K(e10) of dimension 320. One can check that this is in fact an irre-
ducible representation since the Γ -trace no longer separates once J abc is consid-
ered. We have thus proved that K(e10) has an irreducible 320 representation. Under
the so(10) subalgebra it decomposes according to

320 −→ 288 ⊕ 32

K(e10) ⊃ so(10) (14)

3 That this is sufficient follows from the precise expressions for the simple K(e10) generators xi
of (6) in terms of components of the J ab and J abc which can be found in [11].
4 Here, Γ a are the real (32 × 32) SO(10) Γ -matrices and Γ ab = Γ [aΓ b] etc.
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as required. We denote this representation by Ψ since it can be defined indepen-
dently of the so(10) subalgebra under which it is more conveniently written as ψa .

We now turn to the decompositions under the subalgebras relevant for type IIA
and type IIB. They were derived in [26] and we reproduce the results here as5

320 −→ (128 ⊕ 16)⊕ (128 ⊕ 16)⊕ 16 ⊕ 16

K(e10) ⊃ soA(9) (15)

for type IIA, where the last two 16s are the dilatini, and

320 −→ ((128, 2)⊕ (16, 2))⊕ (16, 2)

K(e10) ⊃ soB(9)⊕ so(2) (16)

for type IIB. Here, the last doublet of 16s corresponds to the IIB dilatini. Since
we are only dealing with the spatial Lorentz group so(9) different chiralities are not
properly distinguished. The calculation shows, however, that the two doublets of 16s
arise differently and in the covariant calculation one can show that indeed all chi-
ralities also fulfill the necessary requirements to answer the first question raised in
the introduction affirmatively: The group K(E10) contains the subalgebras required
by the M-theory picture and has a spinorial representation with the correct num-
ber of components which branches correctly to the fermionic fields of the maximal
supergravity theories.

3 Dynamics

To further substantiate the significance of K(E10) and its 320 representation Ψ for
an algebraic approach to M-theory we now turn to studying a dynamical equation for
Ψ and its relation to the fermionic dynamics in the various maximal supergravities.

Since time is treated separately in the E10 context and all dynamical equations
in the bosonic sector are time evolution equations a natural ansatz for the fermionic
equation is

DtΨ = 0. (17)

This is a Dirac equation for the K(e10) vector-spinor coupled minimally to a K(e10)

connection Qt via the covariant derivative

Dt = ∂t −Qt , (18)

where Qt ∈ K(e10) acts on Ψ in the 320 representation. The gauge field Qt trans-
forms under t-dependent local K(E10) gauge transformations. As an K(e10) ele-

5 In [26] the subalgebra so(9, 9) was chosen for type IIA (instead of slA(9)) since this more
naturally includes the mass term of the massive extension of IIA. That the result given here is also
correct follows immediately from soA(9) ⊂ so(10) and the branching rules for these groups.
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ment, Qt can be expanded over so(10) in the generators (10) via

Qt = 1

2
Q

(0)
ab J

ab + 1

3!Q
(1)
abcJ

abc + 1

6!Q
(2)
a1...a6

J a1...a6

+ 1

9!Q
(3)
a0|a1...a8

J a0|a1...a8 + · · · . (19)

Since the action of all the K(e10) generators can be computed from multiple com-
mutators of (12) and (13) the Dirac equation (17) can be evaluated to arbitrary level.
In [10] it was evaluated up to sl(10) level three which is the level to which the field
content (9) is understood [8]. The resulting expression contains the gauge field com-
ponents Q( ) (for  = 0, . . . , 3) contracted with various Γ -matrices multiplying the
so(10) decomposed vector-spinor Ψ = (ψa). Explicitly, we find

Dtψc = ∂tψc − 1

4
Q

(0)
ab Γ

abψc −Q(0)
ca ψ

a − 1

12
Q(1)

a1a2a3
Γ a1a2a3ψc

− 2

3
Q(1)

ca1a2
Γ a1ψa2 + 1

6
Q(1)

a1a2a3
Γc

a1a2ψa3 − 1

1440
Q(2)

a1...a6
Γ a1...a6ψc

+ 1

72
Q(2)

ca1...a5
Γ a1...a4ψa5 − 1

180
Q(2)

a1...a6
Γc

a1...a5ψa6 (20)

− 2

3 · 8!Q
(3)
a0|a1...a8

Γc
a1...a8ψa0 − 2

3 · 7!Q
(3)
c|a1...a8

Γ a1...a7ψa8

− 4

3 · 8!Q
(3)
b|ba1...a7

Γ a1...a7ψc − 1

3 · 6!Q
(3)
b|ba1...a7

Γc
a1...a6ψa7 + · · · .

This equation has to be compared with the dynamical equation for the gravitino in
D = 11 supergravity. From the analysis of the bosonic sector it is to be expected
that gauge-fixing is required in order to establish a connection between the K(e10)

equation (20) and the supergravity equation [24]. Indeed it turns out [10] that one
has to fix a supersymmetry gauge (ψ0 − Γ0Γ

aψa = 0) for the fermions, a pseudo-
Gaussian gauge (Et

a = 0) for the vielbein and a Coulomb gauge (A0ab = 0) for
the gauge potential. In this case the supergravity equation (to lowest fermion order)
takes almost the same form as (20) but where the gauge field components take the
values [10, 11]

Q
(0)
ab (t) = −Nω0 ab(t, x0), Q(2)

a1...a6
(t) = − 1

4!Nεa1...a6b1...b4Fb1...b4(t, x0),

(21)
Q

(1)
abc(t) = NF0abc(t, x0), Q

(3)
a0|a1...a8

(t) = 3

2
Nεa1...a8b1b2ωb1 b2a0(t, x0).

Here, ω0 ab and ωa bc are ‘electric’ and ‘magnetic’ components of the spin connec-
tion in flat indices; similarly F0abc and Fb1...b4 are electric and magnetic compo-
nents of the four-form field strength in flat indices. The lapse N = Et

0 is needed
to convert the objects on the right hand sides into components of a world-line ten-
sor Qt .
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The equations (21) are valid only at a fixed spatial point x0 and in order to match
(20) to the supergravity equation higher spatial gradients of the fields (and the lapse)
have to be ignored. Furthermore, the spatial spin connection must have vanishing
trace ωb ba = 0 at x0. More details can be found in [10, 11].

To summarise, with the use of the ‘dictionary’ (21) we have succeeded in turning
a truncated version of the D = 11 gravitino equation of motion into a K(E10)

covariant Dirac-equation of the type (17). Although not explicitly proved in the type
IIB case, one can expect that the very same equation (17) also describes the correct
fermionic dynamics of type IIA and IIB by using the decompositions of K(e10)

detailed in (15) and (16).
Thus we arrive at the main result: K(E10) is not only a viable candidate for a

kinematical unification of the fermionic symmetries of all maximal supergravity
theories but also can partially be established as a symmetry of the dynamical equa-
tions for the fermions.

4 Discussion

4.1 Remarks

Here, we only briefly sketch some related points and comment on a fully covariant
reformulation of the above results.

There exists also a 32 representation of K(e10) which was called ‘Dirac-spinor’
in [12, 10]. This representation is relevant for the supersymmetry parameter ε and
similarly has the correct branching to the various maximal supergravity theories’
Lorentz and R-symmetries [26].

Both the 320 and the 32 representations of K(e10) are unfaithful since they are
finite-dimensional representations of an infinite-dimensional algebra. This implies
that K(e10) is not a simple Lie algebra but has non-trivial quotients. These one ar-
rives at by factoring out the ideals associated with the unfaithful representations
[11]. In the case of the 32 Dirac-spinor the quotient is so(32) which has been con-
jectured as a generalised holonomy in [14, 18]. Since K(E10) acts not only on the
Dirac-spinor but also on the 320 gravitino (which SO(32) does not) it is more gen-
eral than these conjectured holonomies. Furthermore, certain global issues [22] are
resolved in K(E10) [10].

As mentioned in the introduction, the M-theoretic properties of K(E10) were
derived following similar results in the bosonic sector [35, 33, 34, 8, 23, 25]. The
bosonic fields are realised via a coset construction E10/K(E10) where K(E10) also
acts as a local gauge symmetry. It is non-trivial, but true, that the relation between
the gauge connection appearing in the bosonic analysis and the one in the fermionic
analysis are related in precisely the same way to the supergravity quantities via (21).

It can also be shown that K(E11) (if equipped with the temporal involution of
[16]) allows for a fermionic representation of dimension 352 = 320 + 32 if written
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over SO(1, 10) [26]. The IIA and IIB decompositions of this fully covariant grav-
itino give the correct achiral and chiral fermionic spectra in a covariant fashion so
that all the results of Sect. 2 carry over to K(E11). However, it is not clear how
to write a K(E11) covariant and space-time covariant dynamical equation for this
gravitino which generalises the Dirac equation (17). An obvious candidate is

D/ Ψ = 0, (22)

where D/ = Γ MDM = Γ M(∂M −QM). There are a number of subtleties with this
suggestive notation that need to be clarified. Firstly, DM should be K(E11) covari-
ant meaning that the gauge fields transform correctly under K(E11). By augmenting
an E11/K(E11) coset construction by a Borisov–Ogievetsky type construction as in
[35] this can probably be achieved. The second problematic point is the symbol Γ M

used above since Γ M is not an K(E11) invariant tensor and so spoils the K(E11)

covariance of the equation even if DM transforms correctly. In line with the phi-
losophy of [36] one should probably replace eleven-dimensional space-time indices
M by indices taking values in an infinite-dimensional highest weight representation
of E11 generalising the translation vector to an E11 object. It remains to be seen
whether one can make sense of (22) in this framework.

4.2 Outlook

From the discussion in the introduction it is clear that in order to complete the M-
theory picture a number of things need to be included in the present algebraic frame-
work, the most pressing of which we briefly discuss now.

Firstly, M-theory should also include the non-maximal heterotic E8 × E8 and
SO(32) string theories as well as the SO(32) type I superstring. At low energies
this requires fitting the heterotic D = 10 supergravity with gauge groups SO(32)
and E8 × E8 into the E10 σ -model or some more general model. As a first step it
was shown in [23, 17] that the pure type I supergravity (without any vector multi-
plets) can be interpreted as a subsector of the E10 model. It would be gratifying to
see a relation between the algebraic approach taken here and the issue of anomaly
freedom.

Secondly, M-theory presumably is a theory of strings and other extended ob-
jects. The analysis so far only covered point particles since properties of the low
energy field theories were studied. It is not clear if the symmetries found need to
be modified when extended objects are also considered. Results from U-duality [19,
32] suggest that the continuous symmetry gets broken to some discrete arithmetic
group and first ideas in this direction were discussed in [4]. A different route was
taken in [7, 9] where string induced higher derivative corrections to the low energy
effective action were studied in relation to E10 and good agreement between the
algebraic structure and conjectured properties of these correction terms was found
(see also [29]).
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Thirdly, the bosonic fields appear through the infinite—dimensional coset space
E10/K(E10) whereas the fermionic fields presently are confined to a finite—dimen-
sional, unfaithful representation of K(E10). This seems problematic from a super-
symmetry point of view. This dichotomy is partly related to the difference in order
of the equations of motion for bosons and fermions. The fermionic field equations
are first order whereas the bosonic ones are second order (allowing for dualisations
and triggering for example the infinite duality cascade in D = 2). It would be nice to
overcome this obstacle through the construction of an appropriate faithful fermionic
representation of K(E10).

Finally, on the purely mathematical side it could be hoped that a proper under-
standing of the relation between E10 and M-theory may lead to a new presentation
of the E10 structure itself. Since its inception in the late 1960s [20, 30] the theory of
indefinite Kac–Moody algebras has produced few results which truly penetrate the
structure of these fascinating objects.
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Stable Maps are Dense in Dimensional One

Oleg Kozlovski, and Sebastian van Strien

Abstract This is an exposition of our resent results contained in Kozlovski et al.
(Rigidity for real polynomials, preprint, 2003; Density of hyperbolicity, preprint,
2003) and Kozlovski and van Strien (Local connectivity and quasi-conformal rigid-
ity of non-renormalizable polynomials, preprint, 2006) where we prove the density
of hyperbolicity for one dimensional real maps and non-renormalizable complex
polynomials. The proofs of these results are very technical, so in this paper we try
to show the main ideas on some simplified examples and also give some outlines of
the proofs.

1 Introduction

One of the central aims in dynamical systems is to describe dynamics of a ‘typical’
system. In this article we will understand the word ‘typical’ from the topological
point of view.

The nicest kind of system is one which is stable (also called structurally stable):
this means that it is topologically conjugate to any sufficiently nearby system. This
notion is closely related to that of hyperbolicity of the system (see below).

The most ambitious hope would be to show that structurally stable and hyperbolic
maps are dense. Apparently, up to the late 1960’s, Smale believed that hyperbolic
systems are dense in all dimensions, but this was shown to be false in the early
1970’s for diffeomorphisms on manifolds of dimension ≥ 2 (by Newhouse and
others).
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However, in dimension one hyperbolic systems are dense. This is the topic of this
article.

2 Density of Hyperbolicity

The problem of density of hyperbolicity in dimension one goes back in some form
to Fatou (in the 1920’s). Smale gave this problem ‘naively’ as a thesis problem in the
1960’s (to Guckenheimer and Nitecki), see [12]. The problem whether hyperbolicity
is dense in dimension one was studied by many people, and it was solved in the C1

topology by Jakobson, see [3] and the C2 topology by Shen [11].

Theorem 1 (K, Shen, vS, 2004). Any real polynomial can be approximated by hy-
perbolic real polynomials of the same degree.

(So by changing the coefficients of the polynomial slightly, it can be made hyper-
bolic.) Here we say that a real one-dimensional map f is hyperbolic if each critical
point is in the basin of a (hyperbolic) periodic point and all periodic points are hy-
perbolic. This implies that the real line is the union of a repelling hyperbolic set (a
Cantor set of zero Lebesgue measure), the basin of hyperbolic attracting periodic
points and the basin of infinity. So the dynamics of a hyperbolic map is very simple:
Lebesgue almost all points are attracted to periodic cycles.

This theorem has a long history before it was proven in this full generality, see
works of Yoccoz [14], Sullivan [13], Lyubich [9, 10], Światek, Graczyk [2], Ko-
zlovski [5], Blokh, Misiurewicz [1], Shen [11]. Most of these works deal with the
quadratic family x �→ ax(1 − x). This case is special, because in this case certain
return maps become almost linear. This special behaviour does not even hold for
maps of the form x �→ x4 + c.

Note that the above theorem implies that the space of hyperbolic polynomials is
an open dense subset in the space of real polynomials of fixed degree. Every hyper-
bolic map satisfying the mild “no-cycle” condition (critical points are not eventually
mapped onto other critical points) is structurally stable.

The above theorem allows us to solve the 2nd part of Smale’s eleventh problem
for the 21st century.

Theorem 2. Hyperbolic maps are dense in the space of Ck maps of the compact
interval or the circle, k = 1, 2, . . . ,∞, ω.

As mentioned, this easily implies

Corollary 3. Structurally stable maps are dense in the space of Ck maps of the
compact interval or the circle, k = 1, 2, . . . ,∞, ω.

A similar question about density of hyperbolic maps can be asked for maps of
a complex plane given by a complex polynomial. In the case of a complex polyno-
mial, we say it is hyperbolic if all its critical points are in the basins of hyperbolic
periodic attractors. We have only a partial result which applies to non (or finitely)
renormalizable polynomials:
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Theorem 4. Any complex polynomial which is not infinitely often renormalizable,
can be approximates by a hyperbolic polynomial of the same degree.

(If we could prove this without the condition that the map is only finitely renor-
malizable, the complex Fatou conjecture would follows.) Here we say that a poly-
nomial f is infinitely renormalizable if there exist arbitrarily large s > 1 (called the
period) and simply connected open sets W containing a critical point c of f such
that f ks(c) ∈ W , ∀k ≥ 0 and such that s is the first return time of c to W .

3 Quasi-Conformal Rigidity

The proof of these result heavily depends on complex analysis. In fact the theorems
above can be derived from the following rigidity result.

Theorem 5. Let f and f̃ be real polynomials of degree n which only have real
critical points. If f and f̃ are topologically conjugate (as dynamical systems acting
on the real line) and corresponding critical points have the same order, then they
are quasiconformally conjugate (on the complex plane).

A critical point c is a point so that f ′(c) = 0. Not all critical points of a real
polynomial need to be real.

If the polynomials are not real, then we need to make an additional assumption:

Theorem 6. Let f and f̃ be complex polynomials of degree n which are not in-
finitely renormalizable and only have hyperbolic periodic points. If f and f̃ are
topologically conjugate, then they are quasiconformally conjugate.

This generalises the famous theorem of Yoccoz, proving that the Mandelbrot
set associated to the quadratic family z �→ z2 + c is locally connected at non-
renormalizable parameters.

4 How to Prove Rigidity?

First we need to associate a puzzle partition to any polynomial f which only has
hyperbolic periodic points, and then use this to construct a complex box mapping
F : U → V . If f has only repelling periodic points, then the construction is a multi-
critical analogue of the usual Yoccoz puzzle partition.

Definition 7 (Complex box mappings). We say that a holomorphic map

F : U → V (1)

between open sets in C is a complex box mapping if the following hold:
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• V is a union of finitely many pairwise disjoint Jordan disks;
• Every connected component V ′ of V is either a connected component of U or the

intersection of V ′ and U is a union of Jordan disks with pairwise disjoint closures
which are compactly contained in V ′,

• For each component U ′ of U , F(U ′) is a component of V and F |U ′ is a proper
map with at most one critical point;

• Each connected component of V contains at most one critical point of F .

It is possible to show that for a given polynomial which only has hyperbolic
periodic point one can construct an induced complex box mapping which captures
the dynamics of the polynomial, see [6].

A connected component of the domain of definition of an iterate of F is called
a puzzle-piece. To prove the above rigidity theorem, the main technical hurdle is
to obtain a certain amount of control on the shape of these puzzle-pieces. In fact,
it is not possible to obtain this control for all puzzle-pieces (and there are exam-
ples showing this), however we can prove that this control can be obtained on a
combinatorially defined subsequence of puzzle-pieces:

Theorem 8 (Geometry control of puzzle-pieces). Let F be a complex non renor-
malizable box mapping and c be a recurrent critical point. Then there exists ε > 0
and a combinatorially defined sequence of puzzle-pieces In around c so that

• the puzzle-pieces In have ε-bounded geometry;
• for each domain A of the first return map to In one has mod (In \ A) ≥ ε.

Here we say that a simply connected domain U ⊂ C has ε-bounded geometry if
there are two disks D1 and D2 such that D1 ⊂ U ⊂ D2 and the ratio of diameters
of D1 and D2 is bounded from below by ε.

This control of geometry of puzzle-pieces is enough to prove the Rigidity the-
orems, because it allows us to apply the following new way of constructing quasi-
conformal conjugacies:
Theorem 9 (QC-Criterion). For any constant ε > 0 there exists a constant K with
the following properties. Let φ : Ω → Ω̃ be a homeomorphism between two Jordan
domains. Let X be a subset of Ω consisting of pairwise disjoint topological open
discs Xi . Assume moreover,

1. For each i both Xi and φ(Xi) have ε-bounded geometry and moreover

mod(Ω −Xi),mod(Ω̃ − φ(Xi)) ≥ ε.

2. φ is conformal on Ω −Xi .

Then there exists a K-qc map ψ : Ω → Ω̃ which agrees with Ω on the boundary
of Ω .

4.1 The Strategy of the Proof of QC-Rigidity

So the proof of the rigidity theorem relies on the following steps:
First we associate to the polynomial f a suitable sequence of partitions Pn.

Let Ωn be a union of puzzle piece containing the critical points, defined using
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the puzzle-pieces In from Theorem 8. Because of the geometric properties of In,
one has control on the domains of the first return map to Ωn, in the manner re-
quired by the previous criterion. This is only true provided one constructs the se-
quence of partitions Pn very carefully. Let Xn be the domain of the first return map
to Ωn.

We can do the same for the topologically conjugate polynomial f̃ . Now f and
f̃ are conformally conjugate near ∞ (by the Böttcher coordinates). Since ∂Ωn con-
sists of pieces of external rays and equipotentials, one can show that there exists a qc
homeomorphism φn : Ωn → Ω̃n (which on the boundary of Ωn preserves the nat-
ural parametrisation induced by the Böttcher coordinates). Moreover, φn(Xn) = X̃n

and φn is conformal outside Xn. Hence, because of the control on the geometry of
puzzle pieces, the QC-criterion gives a K-qc homeomorphism hn : Ωn → Ω̃n which
preserves the natural parametrisation on the boundary defined by the Böttcher coor-
dinates. Here K does not depend on n.

Because hn : Ωn → Ω̃n is natural on the boundary, the above qc map hn can be
extended to a global homeomorphism hn which is K-qc and so that

hn ◦ f (x) = f̃ ◦ hn(x)
for each x /∈ Ωn. (So hn is a conjugacy everywhere except on the small set Ωn.)

Since K-qc homeomorphisms form a compact space, we can extract a K-qc limit
h from the sequence hn. As Ωn shrinks to the set of critical points, the limit h is a
K-qausi-conformal conjugacy between f and f̃ .

5 Enhanced Nest Construction

As we have mentioned before the geometry estimates do not hold for all puzzle-
pieces and we have to find a way to combinatorially construct a subsequence of
puzzle-pieces where this property holds. This is achieved through a powerful con-
struction which we call “enhanced nest”.

For simplicity of the exposition let us consider a unicritical box mapping F :
U → V (ie F has a unique critical point) and write U = ∪Ui where Ui are the
connected components of the domain U . In this case we can assume that U is a
subset of V and V is connected. Let U0 be a component of U containing the critical
point. Consider the critical value F(c) and iterates of F near the critical value. Let
us only discuss the case when c is recurrent (the non-recurrent case is much easier).
It can happen that there are infinitely many domains Wi containing F(c) and ni such
that Fni maps Wi univalently onto V for a suitable choice of ni . This case is called
reluctantly recurrent. This case is easy: c is recurrent, so there are infinitely many
nij such that Fnij+1

(c) is inside U0. The pullback of U0 by F
nij+1 is a puzzle-piece

and then one can easily show (using the Koebe lemma) that its geometry depends
only on U0.
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The opposite case, when this infinite sequence of iterates Fni : Wi → V does
not exist, is called persistently recurrent. The enhanced nest construction applies to
this case.

If the infinite sequence as above does not exist, then we can consider a minimal
domain W around F(c) such that W is univalently mapped onto V by some Fn.
This domain W has several nice properties.

Firstly, Fn maps the critical value F(c) into the critical domain U0. Indeed, oth-
erwise Fn+1(c) would be in some domain Ui which is mapped univalently onto V

by F ; then Fn+1 : compF(c)(F
−n(Ui)) → V is a univalent map which contradicts

the minimality of W . Here the notation compx(U) denotes a connected component
of U containing x. Secondly, the annulus W \ W̃ , where W̃compF(c)(F

−n(U0)) is a
pullback of the central domain, does not contain points of the postcritical set. Sup-
pose the contrary, so there is k > 0 such that Fk(c) ∈ W \ W̃ and let k be minimal
with this property. Since Fk(c) is not in W̃ , the point Fk+n(c) is in some non cen-
tral domain Uj . Let X be a pullback of Uj by Fk+n−1 along the orbit of the critical
value F(c), so F(c) ∈ X. Notice that Fn : Fk−1(X) → Uj is univalent and that
Fk−1(X) ⊂ W \ W̃ . Moreover, Fk−1 : X → Fk−1(X) is also univalent because
of the minimality of k. Hence the map Fk+n : X → V is univalent and this again
contradicts the minimality of W .

The pullback of the domain W by F : U → V to the critical point we call
the smallest successor of V and denoted by B(V ). The corresponding pullback
of W̃ will be denoted by A (V ). From the construction the smaller successor we
know that A (V ) has some space outside which contains no postcritical points
and the B(V ) has some space inside near the boundary free of the postcritical
set. Thus, if we combine both operations, we see that B(A (V )) has some space
inside and outside free of the postcritical set. The size (in terms of moduli) of
this ‘empty’ space can be easily estimated if one has estimates from below on
infi mod (V \ Ui).

Obviously, this property of having some space around the boundary of a domain
free of postcritical set is very important: if Fm : X → Y is a univalent map between
two simply connected domains and Y ′ ⊃ Y is another simply connected domain
such that the annulus Y ′ \ Y does not contain points of the postcritical set, then
there is a domain X′ ⊃ X so that Fm extends to X′, Fm(X′) = Y ′ and the map
Fm : X′ → Y ′ is univalent. If one can control the modulus of Y ′ \ Y , then the
distortion of Fm|X can be controlled by the classical Koebe lemma.

In the unimodal case we define Γ (W) = B(W). Now, the enhanced nest con-
struction goes as following: given V , let

I0 := V and Ii+1 := Γ T (B(A (Ii ))),

where T only depends on the order of the critical point. We have already explained
the rationale behind taking B(A (Ii )). The Γ operation is used to control the return
times of the critical point to the domains Ii and is—in some sense—a rather minor
technical point.
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This is a full description of the enhanced nest in the unicritical case. The con-
struction in the general case is slightly more complicated and then the definitions of
A (V ) and B(V ) are based on the following lemma:

Lemma 10. Let F : U → V be a persistently recurrent box mapping, c be a critical
point of F and Y * c be some pullback of a connected component of V by an iterate
of F . Then there is a positive integer ν with Fν(c) ∈ Y such that the following
holds. Let X0 = compc(F

−ν(Y )) and Xj = Fj (X0) for 0 ≤ j ≤ ν. Then

1. #{0 ≤ j ≤ ν − 1 : Xj ∩ Crit(F ) $= ∅} ≤ b2;
2. X0 ∩ PC(F) ⊂ compc(F

−ν(Ỹ ));
where Crit(F ) denotes the set of critical points of F , PC(F) is the postcritical set, b
is the number of critical points counted with their multiplicity and Ỹ is a connected
component of the domain the first return map to Y containing c.

6 Small Distortion of Thin Annuli

To control the shape of the puzzle-pieces we must control the amount of space
around a puzzle-piece which is free of points of the postcritical set. As the pre-
vious construction of the enhanced nest shows we should estimate the modulus of
pullbacks of various annuli.

Let G : U → V be a holomorphic surjective map and the domains A ⊂ U ,
B ⊂ V be simply connected so that G(A) = B. We would like to have some
estimates from below of the modulus of the annulus U \ A in terms of the modulus
of V \ B. If G is univalent map, this is the best case scenario: mod (U \ A) =
mod (V \ B). Now suppose that G has some critical points and all of them are in
A. Then G : U \ A → V \ B is an unbranched covering, hence mod (U \ A) =
mod (V \B)/d , where d is the degree of G. If d is large, the modulus can deteriorate
quite a lot and one can do nothing about it.

An important case is when G has relatively small number of critical points in A

and possibly a large number of critical points in U \ A. Simple examples show that
if the annulus V \B was fat (has large modulus), the modulus of its pullback U \A
can drop a lot. However there is a special case when this does not happen: if the
annulus V \ B is thin, the map G is real and all the domains are symmetric with
respect to the real line. More precisely the following lemma holds:

Lemma 11 (Small Distortion of Thin Annuli). For every K ∈ (0, 1) there exists
κ > 0 such that if A ⊂ U , B ⊂ V are simply connected domains symmetric with
respect to the real line, G : U → V is a real holomorphic branched covering map
of degree D with all critical points real which can be decomposed as a composition
of maps G = g1 ◦ · · · ◦ gn with all maps gi real and either real univalent or real
branched covering maps with just one critical point, the domain A is a connected
component of G−1(B) symmetric with respect to the real line and the degree of G|A
is d , then
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mod (U \ A) ≥ KD

2d
min{κ,mod (V \ B)}.

It is not possible to drop the condition of G being real and the domains being
symmetric. If V is a disk and B spirals around its centre (and therefore not symmet-
ric with respect to the real line), it is possible to construct G so that the lemma does
not hold.

This lemma allowed us to considerably simplify the original proof of the real
Geometry control of puzzle-pieces theorem (which initially used many sophisticated
real pullback arguments). The basic idea how to use the lemma in order to prove
Theorem 8 is this: let μn = inf mod(In \ A) where the infimum runs over all
domains A of the first return map to In. Now consider the iterate G of F which
maps In to In−M . When M is large, the degree D of this map is large. However, it
turns out that

• the degree d of G|A remains bounded, independently of M;
• the set In−M \ G(A) contains many ‘previous annuli’, and using this we get:

mod (In−M \G(A)) ≥ K ′(μn−M−1 + · · · + μn−5), where K ′ is independent of
M .

Now fix M so large that K ′(μn−M−1 + · · · + μn−5) ≥ 8dμn−M−1,n−5 where
μn−M−1,n−5 = min{μi ; i = n − M − 1, . . . , n − 5}. Next choose K ∈ (0, 1)
so close that KD ≥ 1/2. Using the previous lemma we then get some κ > 0 so
that mod (In \ A) ≥ 1/2

2d min(κ, 8d μn−M−1,n−5). From this one easily
proves recursively a lower bound for μn. The proof of Theorem 8 follow then
easily.

The proof of the previous lemma is relatively simple and is based on the follow-
ing idea. We can cut B into two symmetrical pieces by the real line and pullback just
a half of B by maps gi . All the pullbacks are going to lay in a half complex plain,
and it is possible to provide good moduli estimates for this case. When the half of B
is pullbacked all the way to U we can reconstruct A from it by the symmetry. In this
last operation we loose only factor of one half.

If G is not real, the situation is more complicated because as we mentioned there
is not (and cannot be) an analogue of the previous lemma. However, it is still pos-
sible to control moduli if one pullbacks two annuli instead of one. The following
powerful lemma is due to Kahn and Lyubich, see [4]:

Lemma 12. For any η > 0 and D > 0 there is ε = ε(η,D) > 0 such that the
following holds: Let A ⊂ A′ ⊂ U and B ⊂ B ′ ⊂ V be topological disks in C

and let G : (A,A′, U) → (B,B ′, V ) be a holomorphic branched covering map.
Let the degree of G be bounded by D and the degree of G|A′ be bounded by d .
Then

mod (U \ A) > min(ε, η−1 mod (B ′ \ B), Cηd−2 mod (V \ B)),

where C > 0 is some universal constant.
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7 Approximating Non-renormalizable Complex Polynomials

If the complex Rigidity theorem were proven in full generality, then using the stan-
dard Sullivan technique one could show that the hyperbolic polynomials are dense
in the space of complex polynomials of fixed degree. We have proven the complex
Rigidity theorem in the case of finitely renormalizable polynomials, so some extra
work is needed to show that such polynomials can be approximated by hyperbolic
ones.

To simplify the exposition we will show how to do this in the case of cubic
non renormalizable polynomial whose both critical points are recurrent. We can
normalise a cubic polynomial so it is f (z) = z3 + az+ b.

The Rigidity theorem implies that there are no other normalised polynomials qc
conjugate to f . Fix some neighbourhood W of f in the space of cubic normalised
polynomials. For g ∈ W let ck(g), k = 1, 2, denote the critical points of g.

First we claim that there are polynomials in W which have a critical relation, i.e.
there are k1, k2, n such that gn(ck1(g)) = ck2(g). Indeed, if this was not the case, all
preimages of the critical points would move holomorphically as functions of g ∈ W .
Then using Lambda lemma we can extend this holomorphic motion to the whole C

and get that all polynomials in W are qc conjugate.
The neighbourhood W can be chosen arbitrarily small, and therefore there are

polynomials arbitrarily close to f having a critical relation. Any critical relation
gives an algebraic curve in the space of normalised cubic polynomials (which is C

2),
this curve contains all polynomials having the same critical relation.

Consider one of these curves. Since it is an algebraic curve it has just finitely
many singular points, we can remove them from this curve and get a holomorphic
one dimensional manifold. Take some connected component of the intersection of
W and this manifold which will be denoted by M1 and take a polynomial f1 ∈ M1.
Arguing as before we can see that either all polynomials in M1 are qc conjugate or
there is polynomial in M1 having another critical relation. If a cubic polynomial has
two critical relations, then it is hyperbolic. So if the second alternative holds, we are
done because we have found a hyperbolic polynomial in W . If all polynomials in
M1 are qc conjugate, we cannot apply the Rigidity theorem because we do not know
whether f1 is finitely renormalizable or not. Instead we should do the following.

Take a sequence of polynomials fi having a critical relations and converging
to f . Let Mi * fi denote connected components of intersection of W and the cor-
responding manifolds as in the previous paragraph. We can assume that all polyno-
mials in Mi are qc conjugate (otherwise we are done). The closure of each Mi has
non empty intersection with the boundary of W because Mi is a part of an algebraic
curve and such curves cannot have compact components in C

2. Therefore we can
find f̃ ∈ ∂W , a subsequence ij and f̃ij ∈ Mij so that f̃ij converges to f̃ . The maps

fij and f̃ij are qc conjugate and fij → f , so it is possible to show (though it is not

completely straightforward) that the maps f and f̃ are qc conjugate as well. Now
we can apply the Rigidity theorem because f is non renormalizable and we can see
that such the polynomial f̃ cannot exist.
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Large Gap Asymptotics for Random Matrices

Igor Krasovsky

Abstract Asymptotic behavior is discussed of the sine-kernel and Airy-kernel Fred-
holm determinants related to random matrices.

Let K(j)
s , j = 1, 2 be the trace-class operators with kernels

K(1)
s (x, y) = sin(x − y)

π(x − y)
, K(2)

s (x, y) = Ai(x)Ai′(y)− Ai(y)Ai′(x)
x − y

(1)

acting on L2(0, 2s) and L2(−s,∞), respectively. We are interested in the behaviour
of the following Fredholm determinants, the so called sine-kernel and Airy-kernel
determinants,

P
(j)
s = det(I −K

(j)
s ), j = 1, 2, (2)

as s → +∞. In the Gaussian Unitary Ensemble of random matrices [11], P (1)
s is

the probability, in the bulk scaling limit, that there are no eigenvalues in the inter-
val (0, 2s); while P

(2)
s is the probability, in the edge scaling limit, that there are no

eigenvalues in the interval (−s,+∞) (P (2)
s is the distribution of the largest eigen-

value). The asymptotics of P (j)
s as s → +∞ are often referred to as the large gap

asymptotics.
We will describe the main steps of the method of computing the asymptotics

of P (j)
s used in [4, 5, 10]. However, we leave out all the Riemann-Hilbert analysis

and just state its results when needed. The details are given in the 3 mentioned
publications.

First, we discuss the case of the sine-kernel. In [7], Dyson found that
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lnP (1)
s = − s2

2
− 1

4
ln s + c0 + a1

s
+ a2

s2
+ · · · , s →+∞, (3)

where

c0 = 1

12
ln 2 + 3ζ ′(−1). (4)

Here ζ(z) is the Riemann zeta-function. The constants a1, a2, were also identified
in [7]. The first 2 leading terms in the expansion (3) were found earlier by des
Cloizeaux and Mehta [6]. The results in [6] and [7] were not fully rigorous.

The fact that the first leading term in (3) is correct was proved in [14] by Widom.
The full asymptotic expansion of (d/ds) lnPs was obtained rigorously by Deift, Its,
and Zhou in [3]. This result proves (3) up to the expression for c0. The final step, a
proof that c0 is given by (4), was carried out recently and in 3 variants: by Ehrhardt
[8], by the author [10], and by Deift, Its, Zhou, and the author in [4]. The methods
of [10] and [4] are closely related and we will now describe a “hybrid” approach
based on these 2 papers.

For a function f (θ) integrable over the unit circle, the Toeplitz determinant with
symbol f is given by the expression:

Dn(f ) = det

(
1

2π

∫ 2π

0
e−i(j−k)θf (θ)dθ

)n−1

j,k=0
. (5)

A Toeplitz determinant has the following two useful representations:

Dn(f ) = 1

(2π)nn!
∫ 2π

0
· · ·
∫ 2π

0

∏

1≤j<k≤n

|eiθj − eiθk |2
n∏

j=1

f (θj )dθj , (6)

and

Dn(f ) =
n−1∏

j=0

χ−2
k , (7)

where χk are the leading coefficients of the polynomials φk(z) = χkz
k + · · · ,

k = 0, 1, . . . orthogonal with weight f (θ) on the unit circle. If f (θ) is real and
nonnegative,

1

2π

∫ 2π

0
φk(e

iθ )φm(eiθ )f (θ)dθ = δkm, k,m = 0, 1, . . . . (8)

To obtain the asymptotics of the Fredholm determinants, we represent them as
double-scaling limits of Toeplitz (for the sine-kernel case) and Hankel (for the Airy-
kernel case, see below) determinants. Let

f (θ) ≡ fα(θ) =
{

1, α < θ < 2π − α

0, otherwise.
(9)
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Now observe that
P (1)
s = lim

n→∞Dn(f2s/n). (10)

This fact is actually used in random matrix theory to obtain the sine-kernel determi-
nant; it was also used by Dyson in [7]. Note that if we could find the asymptotics
of the polynomials orthogonal with weight (9), and in particular, the asymptotics of
χk , k →∞, we would obtain by (10) and (7) part of (3) but not the constant c0, as
the product of the first χ0χ1 · · ·χk0 would remain undetermined. However, this dif-
ficulty can be resolved. We start with the following identity, which can be obtained
from (7):

d

dα
lnDn(fα) = n

π
|φn(e

iα, α)|2 − 1

π

{
φn(e

−iα, α)eiαφ′n(eiα, α)+ c.c.
}
,

n = 1, 2, . . . (11)

where φk(z, α) are the polynomials orthogonal w.r.t. fα given by (9), and φ′k(z, α)
are their derivatives w.r.t. the variable z. To use this identity, we now need to find
the asymptotics of the polynomials appearing in the r.h.s. We do this by solving the
Riemann-Hilbert problem associated with these polynomials using a steepest de-
scent approach of Deift and Zhou [2]. (Riemann-Hilbert formulation for orthogonal
polynomials was first observed in the case of orthogonality on the real line by Fokas,
Its, and Kitaev in [9].) This step of the analysis is technically the most involved one.
If we substitute the results in the r.h.s. of (11), we obtain

d

dα
lnDn(fα) = −n2

2
tan

α

2
− 1

8
cot

α

2
+O

(
1

n sin2(α/2)

)

(12)

for all n > s0 with some fixed s0. A crucial fact is that this expansion holds and the
error term is uniform for 2s0

n
≤ α < π . We will now integrate this identity.

First, we can obtain an expression for Dn(fα) as α → π from below. Changing
the variables θj = π + (π − α)xj in (6) and expanding the integrand in π − α, we
obtain

Dn(fα) = 1

(2π)nn!
∫ 2π−α

α

· · ·
∫ 2π−α

α

∏

1≤j<k≤n

|eiθj − eiθk |2
n∏

j=1

dθj

= (π − α)n
2

(2π)n
An(1 +On((π − α)2)), (13)

as α → π from below and n is fixed. Here

An = 1

n!
∫ 1

−1
· · ·
∫ 1

−1

∏

1≤j<k≤n

(xj − xk)
2

n∏

j=1

dxj = 2n
2
n−1∏

k=0

k!3
(n+ k)! (14)

is a Selberg integral. Using its asymptotics as n →∞, we obtain from (13)
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lnDn(fα) = n2 ln
π − α

2
− 1

4
ln n+ c0 + δn +On((π − α)2), α → π, (15)

where c0 is given by (4) and δn → 0 as n →∞ (δn depends only on n).
Now we can integrate the identity (12) from α close to π to α ≥ 2s0/n and use

(15) at the lower integration limit. We thus obtain the following general formula:

lnDn(α) = n2 ln cos
α

2
− 1

4
ln

(

n sin
α

2

)

+ c0 +O

(
1

n sin(α/2)

)

+ δn, (16)

for 2s0
n
≤ α < π , n > s0, where s0 is a (large) positive constant.

Note that for a fixed α, as n → ∞ (16) reproduces a result of Widom [13] for
the asymptotics of a determinant on a fixed arc of the unit circle, which was used by
Dyson to conjecture the value of c0 (4).

Setting α = 2s/n, s > s0 in (16), and letting n →∞, we obtain by (10)

P (1)
s = lim

n→∞Dn(f2s/n) = − s2

2
− 1

4
ln s + c0 +O

(
1

s

)

, (17)

with c0 given by (4). This, in particular, completes the proof for the constant term
c0 in (3). Note that the present approach can be used to compute further terms in the
asymptotic expansion.

We now turn our attention to the Airy-kernel determinant, P (2)
s , known as the

Tracy-Widom distribution. In [12], Tracy and Widom found a connection of P
(2)
s

with the Hastings-McLeod solution of the Painlevé II equation, and also observed
that

ln det(I −Ks) = − s3

12
− 1

8
ln s + χ + b3

s3
+ b6

s6
+ · · · , as s →+∞, (18)

where the values of b3, b6, . . . are extracted from the asymptotics of the Hastings-
McLeod solution, and

χ = 1

24
ln 2 + ζ ′(−1). (19)

This value of χ was conjectured in [12] based on numerical evidence and by tak-
ing into account a similar expression for the constant c0 in (4). A proof was given
by Deift, Its, and the author in [5], and another proof by Baik, Buckingham, and
DiFranco appeared in [1]. Here we discuss the approach used in [5], stressing its
similarities to the method in the case of the sine-kernel described above.

For a function w(x) integrable over the real half-line (0,∞), consider the Hankel
determinant with symbol w:

DH
n (w) = det

(∫ ∞

0
xj+kw(x)dx

)n−1

j,k=0
. (20)
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Just as in the case of a Toeplitz determinant, the Hankel determinant DH
n has the

following two useful representations:

DH
n (w) = 1

n!
∫ ∞

0
· · ·
∫ ∞

0

∏

1≤j<k≤n

(xj − xk)
2

n∏

j=1

w(xj )dxj , (21)

and

DH
n (w) =

n−1∏

j=0

κ
−2
k , (22)

where κk are the leading coefficients of the polynomials pk(x) = κkx
k + · · · ,

k = 0, 1, . . . orthogonal with weight w(x) on the real half-line. If w(x) is real and
nonnegative,

∫ ∞

0
pk(x)pm(x)w(x)dx = δkm, k,m = 0, 1, . . . . (23)

Let

w(x) ≡ wα(x) =
{
e−4xn, 0 < x < α

0, otherwise.
(24)

With so defined wα(x), the following analogue of (10) holds:

P (2)
s = lim

n→∞
DH

n (w1−s/(2n)2/3)

DH
n (w∞)

. (25)

Using (22) we can obtain the following differential identity:

d

dα
lnDH

n (wα) = κn−1(α)

κn(α)
e−4nα(p′n(α, α)pn−1(α, α)− pn(α, α)p

′
n−1(α, α)),

(26)
where pk(x, α) = κk(α)x

k + · · · are the polynomials orthogonal on (0, α) with
weight wα(x), and the prime denotes differentiation w.r.t. the argument x.

A Riemann-Hilbert analysis of the polynomials pk(x, α) as k → ∞ produces
the asymptotic expression for the r.h.s. of (26), and we have

d

dα
lnDH

n (wα) = n2

α
(1 − α)2 + α

4(1 − α2)
+ 1

1 − α
O

(
1

n|1 − α|3/2

)

. (27)

This expansion holds uniformly in α ∈ (0, 1−s0/(2n)2/3] for all n > s
3/2
0 /2, where

s0 is some (large) fixed number.
To proceed as in the case of the sine-kernel, we estimate first DH

n (wα) for α → 0,
where a series expansion can be written. This is done by an analysis of (21), and we
obtain (cf. the derivation of (13)):



418 Igor Krasovsky

DH
n (wα) = 1

n!
∫ α

0
· · ·
∫ α

0

∏

0≤i<j≤n−1

(xi − xj )
2
n−1∏

j=0

e−4xj ndxj

=
(
α

2

)n2

An(1 +On(α)), (28)

as α → 0 from above and n is fixed. The quantity An is a Selberg integral given
by (14). Note that DH

n (w∞) is another Selberg integral:

DH
n (w∞) = 1

n!
∫ ∞

0
· · ·
∫ ∞

0

∏

0≤i<j≤n−1

(xi − xj )
2
n−1∏

j=0

e−4xj ndxj

= (4n)−n2
n−1∏

k=0

k!2. (29)

(Both An and DH
n (w∞) can also be computed using the formula (22) for the Legen-

dre and Laguerre orthogonal polynomials, respectively.)
Using the asymptotics of An and DH

n (w∞) for n → ∞, we conclude that (cf.
(15))

ln
DH

n (wα)

DH
n (w∞)

=
(

3

2
+ lnα

)

n2− 1

12
ln

n

2
+ζ ′(−1)+ δ̃n+On(α), α → 0, (30)

where δ̃n depends on n only, and δ̃n → 0 as n →∞.
Now we can integrate the identity (27) from α close to 0 to α ≤ 1 − s0/(2n)2/3

and use (30) at the lower integration limit. We obtain for any 0 < α ≤ 1 −
s0/(2n)2/3, and any n > s

3/2
0 /2 (cf. (16)):

ln
DH

n (wα)

DH
n (w∞)

= n2
(

3

2
+ lnα − 2α + α2

2

)

− 1

12
ln n− 1

8
ln(1 − α2)

+ 1

12
ln 2 + ζ ′(−1)+O

(
1

n(1 − α)3/2

)

+ δ̃n. (31)

Set here α = 1 − s/(2n)2/3, s > s0, and let n →∞. By (25) we obtain

P (2)
s = lim

n→∞
DH

n (w1−s/(2n)2/3)

DH
n (w∞)

= − s3

12
− 1

8
ln s + 1

24
ln 2 + ζ ′(−1)+O(s−3/2), (32)

which gives the first 3 terms of (18). Further terms can be obtained in this way as
well.

Let us again stress that our approach [10, 4, 5] to compute the asymptotics for
the above Fredholm determinants is based on approximating them with Toeplitz
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and Hankel determinants. We then analyse the related systems of orthogonal poly-
nomials, and use identities for the logarithmic derivatives of Toeplitz and Hankel
determinants. As a byproduct of this approach, we obtain the asymptotics for the
orthogonal polynomials (for weights fα and wα).
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On the Derivation of Fourier’s Law

Antti Kupiainen�

Abstract We discuss derivation of Fourier’s law of heat conduction from a micro-
scopic Hamiltonian dynamics. The model consists of weakly coupled anharmonic
oscillators arranged on a three dimensional lattice and subjected to a stochastic forc-
ing on the boundary. We introduce a truncation of the system of equations satisfied
by correlation functions of the stationary state of the system which leads to a non-
linear generalized Boltzman equation for the two-point stationary correlation func-
tions. These equations have a unique solution which, for N large, is approximately
a local equilibrium state satisfying Fourier law that relates the heat current to a local
temperature gradient. The temperature exhibits a nonlinear profile.

1 Introduction

Out of equilibrium systems are ubiquitous in nature. There is a long history of study-
ing them from non-equilibrium statistical mechanics to dynamical systems theory.
However, it is fair to say that our mathematical understanding of such phenomena is
still in its infancy. I will discuss below attempts to derive Fourier’s law in a Hamil-
tonian extended dynamical system. Stated very briefly, the issue is the following.

If we heat a piece of solid locally and then leave it cool, the initial temperature
distribution will diffusively relax to a constant temperature. The process is accompa-
nied by a heat flow that is proportional to the local temperature gradient, according
to Fourier’s law. Similarly, if we keep on the source of heat a steady state will de-
velop with a temperature distribution across the body accompanied with a steady
flow of heat. A mathematical understanding of these phenomena starting from a
microscopic model of matter is a considerable challenge [1].
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This classical problem has received a lot of attention during recent years from
mathematical, theoretical and numerical points of view (for some reviews see [8,
10]). To isolate heat transport from other transport processes like particle transport
it is convenient to discuss models of solids i.e. models of lattice vibrations where
the dynamical variables are attached to points of a d-dimensional lattice. The dy-
namics consists of two parts: on-site dynamics involving only variables at a given
lattice site and interactions or coupling between sites. In general terms two kinds of
models have been considered. In the first class dynamics is weakly nonlinear and
interactions between sites are order unity. The mechanism behind dissipation lies in
the loss of coherence of harmonic waves due to scattering induced by nonlinearity.
In the second class of models [5, 4] the on-site dynamics is taken strongly chaotic
while perturbation parameter is the interaction between sites. The non-interacting
model has a conserved quantity (energy) at each lattice site and interactions lift this
degeneracy resulting in a diffusion of the local energies.

We will discuss below the issues related to the derivation of transport in the first
class of models: the problem of closure of the equations for correlation functions
and the nature of a weak anharmonicity scaling limit and the Boltzmann equation
describing it. The second class of models deserve a thorough look in the future, be-
cause the actual mathematical proof of Fourier’s law is likely to be more accessible
there.

2 Coupled Oscillators

A physical theory of heat conduction should start from quantum mechanics, but
since we are after macroscopic laws the problem can be posed also classically
(which is also physically adequate except in low temperatures). A simple classi-
cal mechanical system modeling heat transport in solids is given by a system of
coupled oscillators organized on a d-dimensional cubic lattice Z

d . The oscillators
are indexed by lattice points x ∈ Z

d , and carry momenta and coordinates (px, qx).
In the simplest model px and qx take real values and their dynamics is generated by
a Hamiltonian

H(q, p) = 1

2m

∑

x

p2
x +

∑

xy

U(qx − qy)+
∑

x

V (qx), (1)

where the second sum is over nearest neighbors. The potential energy U gives rise to
interactions (or coupling) between the oscillators and V is the “pinning potential”
tying the oscillators to the lattice sites. m is the mass parameter of the oscillator
which can be taken to 1 for simplicity.

The problem of transport can be posed in two ways. The first is to consider pure
Hamiltonian dynamics



On the Derivation of Fourier’s Law 423

q̇x = px (2)

ṗx = − ∂H

∂qx
(3)

for an infinite system, the whole Z
d . The dynamics (3) preserves the Gibbs measures

in the phase space, formally given by

Z−1e−βH(q,p)dq dp (4)

and describing an equilibrium state with constant inverse temperature β = 1/T .
One expects initial states that agree with (4) “at infinity” to be attracted by (4) under
the flow (2) (since one works here in infinite volume, one does not expect Poincaré’s
recurrences to occur). Moreover, the measure should in long times be close to a local
equilibrium state parametrized by a spatially and temporally varying temperature
and a current tied to the former by Fourier’s law while the temperature follows a
nonlinear heat equation (see below).

The second approach is to consider a non equilibrium stationary state. Then the
system is confined to a subset V ⊂ Z

d and one subjects it to a “heat bath” on the
boundary ∂V . One way to model this is to add to the force on the RHS of (3) a
stochastic force

−γpx +
√

2γ Txβ̇x

for x ∈ ∂V where βx are independent unit Brownian motions and Tx > 0 is the tem-
perature of the heat bath modeled by the noise at the boundary point x. Equations (2)
and (3) become then a system of stochastic differential equations and as a conse-
quence the solution (q(t), p(t)) is a Markov process instead of a deterministic flow.

The non equilibrium stationary state we are after is a stationary state of this
Markov process and one would like to prove its existence and uniqueness as well as
properties such as the possible Fourier’s law. To state the latter precisely we need to
define the temperature distribution and heat flux in V associated to such a stationary
state. The former can be defined as the average

Tx = E p2
x

and the latter by

Jμ
x = −1

2
E(px+μ + px)U

′(qx+μ − qx)

where the expectation is taken in the stationary state and μ is a unit vector.
Both in the dynamic and in the stationary approach to our problem Fourier’s

law should become an exact statement only in the scaling limit. In the stationary
approach fix a region Ω in R

d and let V consist of lattice points in NΩ . Then,
letting T (x) = TNx and (in the case of normal conductivity) J (x) = NJNx , as
N →∞ these should converge to functions satisfying

J (x) = −κ(T (x))∇T (x) (5)

∇ · κ(T )∇T = 0 (6)
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where the conductivity κ depends on the local temperature. The latter is a solution
of a non linear elliptic equation on Ω with boundary condition on ∂Ω fixed by the
temperature distribution of the heat bath (i.e. amplitude of the noise).

In the dynamical approach one takes an initial measure that is slowly varying
in space in the scale N . Then after an appropriate rescaling of space and time one
should obtain a parabolic version of (7)

∂tT = ∇ · κ(T )∇T (7)

together with the Fourier’s law (5) for the current.

3 Closure Equations

Let us consider the Markov process described in the previous section. To fix ideas,
let the coupling potential be harmonic, U(q) = 1

2q
2 and the “pinning” potential be

weakly anharmonic,

V (q) = r

2
q2 + λq4

with λ small. When λ = 0 the equilibrium Gibbs measure (4) is a Gaussian measure
with inverse covariance

β(−Δ+ r) := βω2 (8)

where Δ is the lattice Laplacean. When λ is small this measure is close to Gaussian.
It is then not unreasonable to expect that the non equilibrium stationary state is
close to Gaussian or that the Markov process when started with a Gaussian state
close to the equilibrium state keeps it close to Gaussian all times. An attempt to find
a Gaussian approximation for the true stationary state was done in [2] which we will
now describe.

We start by deriving equations for the correlation functions of the Markov process
(q(t), p(t). Let us denote (qx, px) by (u1x, u2x) and the nonlinear term in (3) by
Λ(u) i.e. Λ(u)αx = −λδα,2q

3
x . The equation also involves the friction term (Γ u)x =

(0, γxpx) with γx = γ for x ∈ ∂V and the noise η = √
2γ Tx(0, β). Then the

stochastic process u(t) satisfies

du(t) = ((A− Γ )u+Λ(u)
)
dt + dη(t) (9)

where A = ( 0 1
−ω2 0

)
. By an application of the Ito formula the correlation functions

Gn(t, x1, . . . , xn) = 〈ux1(t)⊗ · · · ⊗ uxn(t)〉 ∈ R2nV

satisfy the Hopf equations

ĠN = (An − Γn)Gn +ΛnGn+2 + CnGn−2. (10)
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where An = ∑
Axi and Γn is defined similarly. Λn and Cn are linear operators

from R2(n+2)V → R2nV and R2(n−2)V → R2nV respectively involving the trilinear
operator Λ and the noise covariance Cxy of (8).

The correlation functions in the stationary state of the Markov process should
then satisfy the stationary version of (10):

(An − Γn)Gn +ΛnGn+2 + CnGn−2 = 0. (11)

These equations have the drawback that they do not “close”: to solve for Gn, we
need to know Gn+2. We will now introduce an approximation that will lead to a
closed set of nonlinear equations for G2.

The first equation in the hierarchy (10) reads:

(A2 − Γ2 +Σ2)G2 +Λ2G
c
4 + C = 0 (12)

where Σ2(G2)G2 = Λ2
∑

G2 ⊗G2 and we introduced Gc
4, the connected correla-

tion function describing deviation from Gaussianity.
For λ small we expect the stationary measure to be close to a Gaussian measure

for which Gc
4 vanishes. Hence one might look for a Gaussian approximation to the

stationary measure by closing (12), i.e. ignoring the Gc
4 term. This leads to a non-

linear equation for G2. It turns out that the solution to this equation is qualitatively
similar to the λ = 0 case. In particular G2 does not exhibit a temperature profile nor
a finite conductivity. The only effect of the nonlinearity is a renormalization of ω.

The next equation in the hierarchy becomes after some algebra

(A4 − Γ4 +Σ4)G
c
4 + b(G2)+Λ4G

c
6 = 0, (13)

where Gc
6 is the connected six point function,

Σ4(G2)G
c
4 =

∑
(Λ4(G2 ⊗Gc

4)−G2 ⊗Λ2G
c
4),

and
b(G2) =

∑

p

Λ′
4(G2 ⊗G2 ⊗G2),

where Λ′
4 has Λ acting on all the three factors G2.

Equations (12) and (13) yield an exact equation for the two point function with
the connected six point function as an input. Our closure approximation consists of
dropping the Gc

6 term in (13) thereby yielding a closed set of equations for G2. For
simplicity we also drop the operators Σ2, Σ4 and Γ4: these could be included in our
analysis, but do not change the main structure that is due to the term b(G2). Hence
the closure equation we study is for G = G2:

(A2 − Γ2)G+N (G)+ C = 0 (14)

with
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N = −Λ2A
−1
4 b(G). (15)

To write this more concretely, let us introduce the matrices

Qxy = 〈qxqy〉, Pxy = 〈pxpy〉, Jxy = 〈qxpy〉.
Clearly

Q̇ = J + JT

so the (1, 1)-component of (14) says

Jxy = −Jyx

and we can write

G =
(

Q J

−J P

)

.

To proceed let us choose a special geometry by taking the lattice subset V a
semi-infinite slab of width N i.e. V = [0, N ] ×Z

d−1. Next, anticipating translation
invariance in the directions orthogonal to the 1-direction we write

G(x, y) =
∫

eip(x1+y1)+ik(x−y)G(p, k)dpdk (16)

where the integrals over p and k1 are Riemann sums on a π
N

lattice. The inverse of
A4 is written as

−A−1
4 =

∫ ∞

0
etA4dt =

∫ ∞

0
R(t)⊗4dt

where R(t) = etA. In Fourier space the latter is

R̂(t, q) = 1

2

∑

s=±1

e(isω(q)−ε)t

(
1 −isω(q)−1

isω(q) 1

)

. (17)

Then some algebra yields the following expression for the nonlinear term

N(p, k) =
∑

s

∫
dν

( 4∑

1

siω(pi + ki)+ iε

)−1 2∏

i=1

Wsi (pi, ki)

×
(

0 0
1 is4ω(p4 + k4)

)

× s3ω(p3 + k3)
[
ω(p3 + k3)

−2δ(2p3)Ws4(p4, k4)

− ω(p4 + k4)
−2δ(2p4)Ws3(p3, k3)

]
(18)

where

dν = δ

(

2p −
∑

(pi + ki)

)

δ

(∑
(pi − ki)

)

δ(p − k − p4 − k4)dpdk, (19)
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and k = (ki)
4
i=1 and similarly for p and s. W is the following combination

Ws(p, q) = Q̂(p, q)+ isω(p + q)−1Ĵ (p, q). (20)

4 Kinetic Limit

Equation (14) is a nonlinear set of equations for the pair correlation functions of our
model. In [2] we have proven that they have a unique solution which describes a
nonlinear temperature profile and leads to Fourier’s law in the scaling limit. We will
now explain this in a particular scaling limit of our model, the so called kinetic limit
where λ is taken to zero with the scaling parameter by writing

λ2 = g/N.

In this limit (14) simplifies a bit by becoming local in the variable x = x1 + y1.
Define the function V (x, k) = ωQ(x, k) + iJ (x, k), where x ∈ [0, 1] results from
a rescaling of the lattice interval [0, N ] to the unit interval. Then (14) becomes

∇ω(k)∇xV (x, k) = gC(V ) (21)

with

C(V ) = 9π2

2

∫
dk1dk3dk3(ω(k)ω(k1)ω(k2)ω(k3))

−1

× δ(ω(k)+ ω(k1)− ω(k2)− ω(k3))δ(k + k1 − k2 − k3)

× [V (k1)V (k2)V (k3)− V (k)(V (k1)V (k2)+ V (k1)V (k3)

− V (k3)V (k3))] (22)

where the integration is over ki ∈ [0, 2π]d . Equation (21) is called the phonon Bolz-
mann equation and is expected to be exact in the kinetic limit of the full Markov
process (see [10] for a discussion of the kinetic theory of phonon systems). The
nonlinear term C(V ) can be interpreted as a collision operator for a gas of phonons
i.e. Fourier modes of lattice vibrations. The phonons carry a momentum k and “en-
ergy” ω(k) both of which are conserved in the two body collisions as indicated by
the delta functions in (22). The role of the one particle density in the standard Bolz-
mann equation for gases is here played by V which is related to the covariance of
the Gaussian measure describing the stationary state.

Equation (21) has to be equipped with boundary conditions that follow by tak-
ing limits of (14) (the friction and source terms produce the boundary conditions).
Instead of explaining them (see [7]) here let us rather consider the time dependent
problem of approach to equilibrium discussed in Sect. 2 in the kinetic limit with
x ∈ R i.e. the equation

V̇ +∇ω(k)∇xV = gC(V ). (23)
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The equilibrium states are solutions to the equation C(V ) = 0 and come as a
two-parameter family:

VT,A(x, k) = T

ω(k)+ A
. (24)

The usual Gaussian Gibbs state corresponds to A = 0 and T is the temperature. The
parameter A can be interpreted as the phonon chemical potential.

Corresponding to this two parameter family there are two conservation laws in
our equation. Indeed, for all V ,

∫
dkC(V )(k) =

∫
dkω(k)C(V )(k) = 0. (25)

Let us define, for α = 0, 1,

jα(t, x) = −
∫

dkω(k)α∇ω(k)V (t, x, k). (26)

j1 is the thermal current and j0 can be called the phonon number current. Similarly,
set

Tα(t, x) =
∫

dkω(k)αV (t, x, k). (27)

T1 is the temperature and T0 is related to the phonon chemical potential. Equa-
tions (21) and (25) give then the conservation laws

Ṫα = ∇ · jα. (28)

The existence of two conservation laws is an artifact of the kinetic limit (and the clo-
sure too) coming from the absence of the connected six point function in our closure
equation. Inclusion of that term will remove the phonon number conservation.

Tα are the slow modes that will diffuse and the currents jα will be fast modes that
will be slaved to the gradients of Tα via the Fourier law. Let us see how this comes
about by linearizing (23) around an equilibrium solution.

Let V̂ (t, p, k) denote the Fourier transform of W in the x variable. We shall look
for solutions of (23) of the form:

V̂ (t, p, k) = V0(k)δ(p)+ w(t, p, k), (29)

where V0 = ω−1 (we set the equilibrium temperature to one for convenience). Equa-
tion (23) becomes then,

ẇ = −Lw + ip · ∇ω(k)w + n(w), (30)

where the linear operator is given by

L = −DC(V0) (31)
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and the nonlinear term is n(w) = C(V0 + w)+ Lw = C(V0 + w)−DC(V0)w.
Differentiating 0 = C(VT,A) at T = A = 0 we find two zero modes for L:

Lωα = 0

for α = −1,−2. Define the Hilbert space

H = L2(Td , ω(k)2dk) (32)

and let P be the orthogonal projection in H on E = span{ω−1, ω−2} and let Q
be the one on the orthogonal complement of E. Then one can show L is strictly
positive in E. Thus we should decompose w as w(t) = T (t)+ v(t) with

Pw = T , Qw = v.

The identities (25) can be written as:

Pn = 0, (33)

or n = Qn, since, by differentiation, (25) implies the same identities with C(V )

replaced by DC(V0)w. Equation (30) thus becomes

Ṫ = iPp · ∇ω(k)v (34)

v̇ = −Lv + ipQ · ∇ω(k)T + n(w). (35)

We see that v has fast dynamics due to the positivity of L. Hence v is slaved to

v0(t) = iL−1p · ∇ωT (t), (36)

up to nonlinear corrections and then up to such terms

Ṫ = −p2κT , (37)

where κ : E → E is the linear operator

κ = Pω′L−1ω′P, (38)

where ω′ = ∂ω

∂k1 . κ is strictly positive. The linearization hence leads to a linear
diffusion equation for the slow variables T .

Equation (36) in turn implies the Fourier law for the leading terms of the solution.
Write T in the basis

T (t, p, k) =
∑

β=1,2

ω−β(k)T̃β(t, p), (39)

(since the basis is not orthogonal, T̃β does not coincide with the Fourier transform
of Tβ in (27)). Then, in x-space, the currents (26) (where, by symmetry, only the v

part of W contributes) become
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jα =
∑

β

καβ∇T̃β , (40)

with the positive conductivity matrix

καβ = (ω−α, κω−β), (41)

with κ given by (38).
This linear analysis captures the leading large time asymptotics of the Boltzmann

equation (for proof see [3]), corrections from nonlinear terms are down by O(t− 1
2 ).

One can also derive a nonlinear heat equation as the hydrodynamic scaling limit of
the Boltzmann equation (23). We scale

V (t, x, k) = W(ε2t, εx, k),

Then we obtain, for W , the equation:

Ẇ (x, k, t)+ ε−1∇ω(k) · ∇W(x, k, t) = ε−2gC(W)(x, k, t). (42)

We shall solve it with initial data W |t=0 = ω(k)−1 + w(x, k, 0) and

w(x, k, 0) = T (x, k, 0)+ εv(x, k, 0), (43)

with T (x, ·, 0) ∈ E, v0(x, ·, 0) ∈ E⊥. V (x, k, 0) = W(0, εx, k) has spatial varia-
tions at scale ε−1. One can then show that as ε → 0 the solution to (42) converges
in a suitable space to solution of the pair

DC(ω−1 + T )v = (2π)−1∇ω · ∇T (44)

Ṫ = −(2π)−1P∇ω · ∇v (45)

which leads to the nonlinear heat equation

Ṫ = ∇ · (K (T )∇T ) (46)

with

K (T ) = −Pω′DC(ω−1 + T )−1ω′P − . (47)

The nonlinear conductivity matrix K (T ) is again positive.
The analysis of the stationary state of our closure equation proceeds along sim-

ilar lines, but this time a stationary x dependent solution emerges. In the scaling
limit (44) leads to Fourier’s law whereas (46) with appropriate boundary conditions
implies a nonlinear temperature (and phonon chemical potential) profile.

In conclusion, the closure equations provide an approximation to the full Hopf
equations of the nonequilibrium state that allow us to rigorously show how the
Fourier law emerges as the system size gets large. Moreover, this approximation
should become exact in the kinetic scaling limit. It is a mathematical challenge to
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prove that in the kinetic limit the full system reduces to the Boltzman equation
(21). Such results have been previously proven for the harmonic model with ran-
dom masses for the particles [9], based on earlier work on Schroedinger equation in
a random potential [6]. The nonlinear Hamiltonian problem has similar features but
is considerably more complex.
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Noncommutative Manifolds and Quantum
Groups

Giovanni Landi

Abstract For quite sometime, it has been problematic to endow spaces coming
from quantum groups with a noncommutative spin structure and such a possibil-
ity has eluded several approaches. We review the constructions of the isospectral
equivariant spectral triple on the manifold of quantum SU(2), a paradigm for recent
constructions of equivariant spectral triples on a variety of examples that include
families of quantum two spheres, as well as higher dimensional quantum spheres.

1 Introduction

The recent constructions of equivariant spectral triples—with the consequent analy-
sis of the corresponding noncommutative spectral geometries—have provided a
number of examples showing that a marriage between noncommutative geometry
and quantum groups theory is indeed possible. Examples includes the manifold of
the quantum SU(2) group in [5, 9] (with “singular” spectral triples) and in [15, 16]
(with “isospectral” spectral triples), for its quantum homogeneous spaces, the Podleś
spheres, in [13, 27, 30] (“exponential” spectral triples), and in [14, 17, 18] (“isospec-
tral” spectral triples). There are also spectral triples on irreducible quantum flag
manifolds [24] as well as for the 4-dimensional quantum orthogonal sphere [19] (an
“isospectral” one).

A common feature of the isospectral examples is that while they have all spectral
properties as in their commutative limit and are regular, in order to have a real struc-
ture one is forced to weaken the usual requirements that such structure should sat-
isfy. The exponential spectral triple proposed in [13] maintains the original require-
ments for a real spectral triples but sacrifices regularity, as was pointed out in [27].
A general strategy for the construction of isospectral noncommutative geometries
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on any quantum group has been very recently given in [28], an outline of the con-
struction being already present in [1]. These constructions do not include yet an
analysis of real structures.

In the present report, as an example of the general construction, we review in de-
tail the construction in [15] of the isospectral spectral triple for the quantum group
SUq(2). The possibility of such a triple (A (SUq(2)),H ,D) was suggested in [11].
A crucial requirement is that all commutators [D, x], with x ∈ A (SUq(2)), must
extend to bounded operators on H as required by the general theory [7]. Counterex-
amples to boundedness were soon found [20]. This obstacle was later surmounted
[15] by the construction of a 3-dimensional noncommutative geometry on the mani-
fold of SUq(2). For that geometry, the spectrum of the operator D is the same as that
of the usual Dirac operator on the 3-sphere S

3 5 SU(2), with it rotation-invariant
metric. In this sense the deformation, from SU(2) to SUq(2), is isospectral, and in
particular the metric dimension of the spectral geometry is 3.

The spectral triple of [15] is equivariant with respect to the full symmetry algebra
Uq(su(2))⊗Uq(su(2)) of the quantum group manifold SUq(2): this is implemented
as a pair of commuting left and right actions of Uq(su(2)) on the algebra A =
A (SUq(2)). The equivariance is the crucial requirement for the construction. It al-
lows one to compute from scratch the spin representation of the algebra A , in a form
that differs slightly from that of [20]; and it then selects a class of possible “Dirac”
operators D. For such an operator D having a classical spectrum, that is, whose
eigenvalues depend linearly on the “total angular momentum” and have the correct
multiplicities, one prove boundedness of the commutators [D, x], for all x ∈ A .

An equivariant real structure J is constructed by suitably lifting to the Hilbert
space of spinors H the Tomita conjugation operator for the left regular represen-
tation of A . Unlike the Tomita operator for the spin representation, however, this
J does not intertwine the spin representation of A with its commutant. It is thus
incompatible with the full set of requirements for a real spectral triple that was pro-
posed in [8] (see also [21]) to define a “noncommutative spin geometry”. It turns out
that this commutant property, and the companion “first-order” property of D, hold
up to infinitesimals of arbitrarily high order.

A different spectral triple for SUq(2) had already been constructed in [5]; it is
however “singular”, insofar as it does not admit a commutative limit when q → 1.
That geometry was incorporated into the general framework of Connes and Mosco-
vici [12] by a full computation of its local index formula [9]. We review herein
a parallel analysis, already achieved in [16], for our isospectral noncommutative
geometry on SUq(2).

In the paper [16], just as in [9], one constructs a “cosphere bundle” S
∗
q →

SUq(2). In the algebra B = ⋃∞
n=0 δ

n(A ), where δ(T ) := [|D|, T ], an element
x is determined, up to smoothing operators—that do not contribute to the residues
appearing in the terms of the local index formula—by its “symbol” ρ(x) in the al-
gebra C∞(D2

q+ × D2
q− × S

1), where D2
q± are two quantum disks. The cosphere

algebra C∞(S∗q) is the image under the symbol map ρ of B. By discarding smooth-
ing operators, one computes the dimension spectrum and obtains simple expressions
for the residues in the local index formula.
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It turns out that for our isospectral geometry the cosphere bundle coincides with
the one constructed in [9] to analyse the singular spectral triple of [5]. The dimen-
sion spectra of both spectral triples is also the same: it is simple and consists of the
set {1, 2, 3}.

It is known [25] that the cyclic cohomology of A (SUq(2) has a single generator;
our local index computation allows us to exhibit a representing cocycle in Connes’
(b, B)-bicomplex [12]. When compared to that of [9], the cocycle of [16] contains
an extra term proportional to 1

2 (1 + SignD) |D|−3. We also show how to compute
the Fredholm index pairing of the K-homology class of our (A ,H ,D) with the
generator of K1(A ).

In the present report all statements are given without proofs; for these and for
additional details we refer to the papers [15] and [16].

2 The Algebras and the Representations

We start with some algebraic preliminaries on the algebras of functions A =
A (SUq(2)) and of infinitesimal symmetries Uq(su(2)).

2.1 The Algebras of Functions and of Symmetries

Definition 1. For q real, 0 < q < 1, we denote by A = A (SUq(2)) the ∗-algebra
generated by elements a and b, subject to the commutation rules

ba = qab, b∗a = qab∗, bb∗ = b∗b,
a∗a + q2b∗b = 1, aa∗ + bb∗ = 1.

(1)

The algebra A comes with a Hopf ∗-algebra structure, with coproduct

Δa := a ⊗ a − q b ⊗ b∗, Δb := b ⊗ a∗ + a ⊗ b, (2)

counit ε(a) = 1, ε(b) = 0, and antipode Sa = a∗, Sb = −qb, Sb∗ = −q−1b∗,
Sa∗ = a.

Definition 2. The Hopf ∗-algebra U = Uq(su(2)) is generated as an algebra by
elements e, f, k, with k invertible, satisfying the relations

ek = qke, kf = qf k, k2 − k−2 = (q − q−1)(f e − ef )

and involution ∗ given on elements by:

k∗ = k, f ∗ = e, e∗ = f.
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The coproduct Δ is given by

Δk = k ⊗ k, Δe = e ⊗ k + k−1 ⊗ e, Δf = f ⊗ k + k−1 ⊗ f,

while its counit ε and antipode S are given respectively by

ε(k) = 1, ε(f ) = 0, ε(e) = 0,

Sk = k−1, Sf = −qf, Se = −q−1e.

Definition 3. The canonical duality pairing between U and A is defined on gener-
ators by

〈k, a〉 = q
1
2 , 〈k, a∗〉 = q−

1
2 , 〈e,−qb∗〉 = 〈f, b〉 = 1,

with all other couples of generators pairing to 0. It satisfies

〈(Sh)∗, x〉 = 〈h, x∗〉, for all h ∈ U , x ∈ A . (3)

With this pairing there come [32] canonical left and right U -module algebra struc-
tures on A such that

〈g, h > x〉 := 〈gh, x〉, 〈g, x ? h〉 := 〈hg, x〉, for all g, h ∈ U , x ∈ A .

These mutually commuting actions of U on A are given by

h > x := (id ⊗ h)Δx = x(1)〈h, x(2)〉, x ? h := (h⊗ id)Δx = 〈h, x(1)〉x(2),
using the Sweedler notation Δx =: x(1) ⊗ x(2) with implicit summation.

The actions are linked through the antipodes:

S(Sh > x) = Sx ? h.

Also, it follows from (3) that the star structure is compatible with both,

h > x∗ = ((Sh)∗ > x)∗, x∗ ? h = (x ? (Sh)∗)∗, for all h ∈ U , x ∈ A .

It is convenient to convert the right action into a second left action commuting
with the first:

h · x := x ? S−1(ϑ(h)),

where the automorphism ϑ of U is defined on generators by

ϑ(k) := k−1, ϑ(f ) := −e, ϑ(e) := −f ; (4)

it is an antiautomorphism for the coalgebra structure of U . Since S−1 ◦ ϑ is an
algebra antiautomorphism of U , it converts a right action into a left action; and
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because both S−1 and ϑ are coalgebra antiautomorphisms, S−1 ◦ ϑ preserves the
coalgebra structure of U . Explicitly, both left actions on all generators are:

k > a = q
1
2 a, k > a∗ = q−

1
2 a∗, k > b = q−

1
2 b, k > b∗ = q

1
2 b∗,

f > a = 0, f > a∗ = −qb∗, f > b = a, f > b∗ = 0,

e > a = b, e > a∗ = 0, e > b = 0, e > b∗ = −q−1a∗,

and

k · a = q
1
2 a, k · a∗ = q−

1
2 a∗, k · b = q

1
2 b, k · b∗ = q−

1
2 b∗,

f · a = 0, f · a∗ = qb, f · b = 0, f · b∗ = −a,

e · a = −b∗, e · a∗ = 0, e · b = q−1a∗, e · b∗ = 0.

Together, these give a left action of Uq(su(2)) ⊗ Uq(su(2)) on A (SUq(2)), that
extends to the case q $= 1 the (infinitesimal) classical action of Spin(4) = SU(2))×
SU(2) on SU(2) ≈ S

3, realized as two commuting left actions of SU(2).
Next, we recall [23] that A = A (SUq(2)) has a vector-space basis consisting

of matrix elements of its irreducible corepresentations, {t lmn : 2l ∈ N, m, n =
−l, . . . , l − 1, l}, with

t0
00 = 1, t

1
2
1
2 ,

1
2
= a, t

1
2
1
2 ,− 1

2
= b.

The coproduct has the matricial form Δtlmn =
∑

k t
l
mk ⊗ t lkn, while the product is

t
j
rs t

l
mn =

j+l∑

k=|j−l|
Cq

(
j l k

r m r +m

)

Cq

(
j l k

s n s + n

)

tkr+m,s+n,

where the Cq(−) factors are q-Clebsch–Gordan coefficients [3, 22].
The Haar state ψ on the C∗-completion C(SUq(2)) is determined by setting

ψ(1) := 1 and ψ(tlmn) := 0 if l > 0. Let Hψ = L2(SUq(2), ψ) be the Hilbert
space of its GNS representation. The GNS map η : C(SUq(2)) → Hψ is injective
and satisfies

‖η(t lmn)‖2 = ψ((t lmn)
∗ t lmn) =

q−2m

[2l + 1] ,

and the vectors η(t lmn) are mutually orthogonal. From the formula

Cq

(
l l 0
−m m 0

)

= (−1)l+m q−m

[2l + 1] 1
2

,

we see that the involution in C(SUq(2)) is given by

(t lmn)
∗ = (−1)2l+m+nqn−m tl−m,−n, (5)
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and in particular, t
1
2

− 1
2 ,

1
2
= −qb∗ and t

1
2

− 1
2 ,− 1

2
= a∗. An orthonormal basis of Hψ is

given by

|lmn〉 := qm[2l + 1] 1
2 η(t lmn). (6)

We denote by πψ the corresponding GNS representation of C(SUq(2)) on Hψ ,

πψ(x)|lmn〉 := qm[2l + 1] 1
2 η(x t lmn). (7)

2.2 The Equivariant Representation of A (SUq(2))

We shall first outline one way to construct the regular representation of the algebra
A (SUq(2)) on its GNS space Hψ , showing how it is determined by its equivariance
properties with respect to the left Hopf action of U ⊗U (for details see [15]).

Definition 4. Let λ and ρ be mutually commuting representations of the Hopf al-
gebra U on a vector space V . A representation π of the ∗-algebra A on V is
(λ, ρ)-equivariant if the following compatibility relations hold:

λ(h) π(x)ξ = π(h(1) · x)λ(h(2))ξ, ρ(h) π(x)ξ = π(h(1) > x)ρ(h(2))ξ,

for all h ∈ U , x ∈ A and ξ ∈ V .

For the case of A = A (SUq(2)), the two U = Uq(su(2)) symmetries λ and
ρ are build from the irreducible (involutive) representations of Uq(su(2)); these are
well known [23] and we now recall them. The irreducible ∗-representations σl of
Uq(su(2)) are labelled by a nonnegative half-integer (the spin) l = 0, 1

2 , 1, 3
2 , 2, . . . ,

acting on a U -module Vl with dimVl = 2l + 1, and having orthonormal bases
{|lm〉 : m = −l,−l + 1, . . . , l − 1, l}. They are given by

σl(k) |lm〉 = qm |lm〉,
σl(f ) |lm〉 = √[l −m][l +m+ 1] |l, m+ 1〉, (8)

σl(e) |lm〉 =
√[l −m+ 1][l +m] |l, m− 1〉.

Here, for each n ∈ Z, let [n] =:= (qn − q−n)/(q − q−1) be the corresponding
“q-integer”.

The equivariant representation of A (SUq(2)) we seek acts on the preHilbert
space which is the (algebraic) direct sum

V :=
∞⊕

2l=0

Vl ⊗ Vl,

while the symmetries λ and ρ act on the first and the second leg of the tensor product
respectively, via the irreps (8):
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λ(h) = σl(h)⊗ id, ρ(h) = id⊗σl(h) on Vl ⊗ Vl. (9)

We abbreviate |lmn〉 := |lm〉 ⊗ |ln〉, for m, n = −l, . . . , l − 1, l. These form an
orthonormal basis for Vl ⊗Vl , for each fixed l. Also, we adopt a shorthand notation,

l± := l ± 1

2
, m± := m± 1

2
, n± := n± 1

2
.

Proposition 5. A (λ, ρ)-equivariant ∗-representation π of A (SUq(2)) on V must
have the form,

π(a)|lmn〉 = A+
lmn|l+m+n+〉 + A−

lmn|l−m+n+〉,
π(b) |lmn〉 = B+

lmn|l+m+n−〉 + B−
lmn|l−m+n−〉, (10)

where, up to phase factors depending only on l, the constants A±
lmn and B±

lmn are,

A+
lmn = q(−2l+m+n−1)/2

( [l +m+ 1][l + n+ 1]
[2l + 1][2l + 2]

) 1
2

,

A−
lmn = q(2l+m+n+1)/2

( [l −m][l − n]
[2l][2l + 1]

) 1
2

,

B+
lmn = q(m+n−1)/2

( [l +m+ 1][l − n+ 1]
[2l + 1][2l + 2]

) 1
2

,

B−
lmn = −q(m+n−1)/2

( [l −m][l + n]
[2l][2l + 1]

) 1
2

.

(11)

As shown in [15] (and as already noted in [5]), the formulae (10) and (11) give
precisely the left regular representation πψ of A (SUq(2)) in (7). The identifica-
tion (6) embeds the preHilbert space V densely in the Hilbert space Hψ , and the
representation πψ extends to the GNS representation of C(SUq(2)) on Hψ , as de-
scribed by the Peter–Weyl theorem [23, 32]. In a similar manner, all other represen-
tations of A given in this paper extend to C∗-algebra representations of C(SUq(2))
on the appropriate Hilbert spaces.

2.3 The Spin Representation

Definition 6. The left regular representation π of A on V is amplified to π ′ =
π ⊗ id on W := V ⊗ C

2 = V ⊗ V 1
2
.

In the commutative case when q = 1, this yields the spinor representation of
SU(2), because the spinor bundle is parallelizable: S 5 SU(2) × C

2, although one
needs to specify the trivialization. The representation theory of U (and the corep-
resentation theory of A ) follows the same pattern; when q $= 1 only the Clebsch–
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Gordan coefficients need to be modified [22]. The Clebsch–Gordan decomposition
of W is the (algebraic) direct sum

W =
( ∞⊕

2l=0

Vl ⊗ Vl

)

⊗ V 1
2
5 V 1

2
⊕

∞⊕

2j=1

(V
j+ 1

2
⊗ Vj )⊕ (V

j− 1
2
⊗ Vj )

= W
↑
0 ⊕

⊕

2j≥1

W
↑
j ⊕W

↓
j , (12)

with

W
↑
j 5 V

j+ 1
2
⊗ Vj , dimW

↑
j = (2j + 1)(2j + 2), for j = 0,

1

2
, 1,

3

2
, . . . ,

W
↓
j 5 V

j− 1
2
⊗ Vj , dimW

↓
j = 2j (2j + 1), for j = 1

2
, 1,

3

2
, . . . .

Definition 7. We amplify the representation ρ of U on V to ρ ′ = ρ ⊗ id on W =
V ⊗ C

2. However, we replace λ on V by its tensor product with σ 1
2

on C
2,

λ′(h) := (λ⊗ σ 1
2
)(Δh) = λ(h(1))⊗ σ 1

2
(h(2)).

It is straightforward to check that the representations λ′ and ρ′ on W commute, and
that the representation π ′ of A on W is (λ′, ρ′)-equivariant:

λ′(h) π ′(x)ψ = π ′(h(1) ·x) λ′(h(2))ψ, ρ′(h) π ′(x)ψ = π ′(h(1) >x) ρ′(h(2))ψ,

for all h ∈ U , x ∈ A and ψ ∈ W .

The spinor Hilbert space H := Hψ ⊗ C
2 is just the completion of W . It can be

decomposed as H = H ↑ ⊕ H ↓, where H ↑ and H ↓ are the respective com-
pletions of

⊕
2j≥0 W

↑
j and

⊕
2j≥1 W

↓
j . An explicit basis, well-adapted to (λ′, ρ′)-

equivariance, is given as follows.

For j = l + 1
2 , μ = m− 1

2 , with μ = −j, . . . , j and n = −j−, . . . , j−, let

|jμn↓〉 := Cjμ|j−μ+n〉 ⊗
∣
∣
∣
∣
1

2
,−1

2

〉

+ Sjμ|j−μ−n〉 ⊗
∣
∣
∣
∣
1

2
,+1

2

〉

; (13a)

and for j = l − 1
2 , μ = m− 1

2 , with μ = −j, . . . , j and n = −j+, . . . , j+, let

|jμn↑〉 := −Sj+1,μ |j+μ+n〉 ⊗
∣
∣
∣
∣
1

2
,−1

2

〉

+ Cj+1,μ|j+μ−n〉 ⊗
∣
∣
∣
∣
1

2
,+1

2

〉

, (13b)

where the coefficients are

Cjμ := q−(j+μ)/2 [j − μ] 1
2

[2j ] 1
2

, Sjμ := q(j−μ)/2 [j + μ] 1
2

[2j ] 1
2

. (13c)



Noncommutative Manifolds and Quantum Groups 441

Notice that there are no ↓ vectors for j = 0. It is straightforward to verify that these
vectors make up orthonormal bases for W↓

j and W
↑
j , respectively.

The vectors |jμn↑〉 and |jμn↓〉 are joint eigenvectors for λ′(k) and ρ′(k), and
e, f are represented on them as ladder operators which can be obtained explicitly
from Definition 7 and (9) and (8) with the use of the basis transformation (13).

The representation π ′ can be computed in the new spinor basis by conjugating
the form of π ⊗ id found in Proposition 5 by the basis transformation (13). It can
also be derived directly from the (λ′, ρ′)-equivariance.

Definition 8. For j = 0, 1
2 , 1, 3

2 , . . . , with μ = −j, . . . , j and n = −j − 1
2 , . . . ,

j + 1
2 , we juxtapose the pair of spinors

|jμn〉〉 :=
(|jμn↑〉
|jμn↓〉

)

,

with the convention that the lower component is zero when n = ±(j + 1
2 ) or j = 0.

Furthermore, a matrix with scalar entries,

A =
(
A↑↑ A↑↓
A↓↑ A↓↓

)

,

is understood to act on |jμn〉〉 by the rule:

A|jμn↑〉 = A↑↑|jμn↑〉 + A↓↑|jμn↓〉,
A|jμn↓〉 = A↓↓|jμn↓〉 + A↑↓|jμn↑〉.

Proposition 9. The spinor representation π ′ := π ⊗ id of A on H is the ∗-
representation written as

π(a) := a+ + a−, π(b) := b+ + b−, (14)

where a± and b± are, up to phase factors depending only on j , the triangular oper-
ators,

a+|jμn〉〉

:= q(μ+n− 1
2 )/2[j + μ+ 1] 1

2

⎛

⎜
⎝
q−j− 1

2
[j+n+ 3

2 ]1/2

[2j+2] 0

q
1
2
[j−n+ 1

2 ]1/2

[2j+1] [2j+2] q−j [j+n+ 1
2 ]1/2

[2j+1]

⎞

⎟
⎠ |j+μ+n+〉〉,

a−|jμn〉〉

:= q(μ+n− 1
2 )/2[j − μ] 1

2

⎛

⎝
qj+1 [j−n+ 1

2 ]1/2

[2j+1] −q
1
2
[j+n+ 1

2 ]1/2

[2j ] [2j+1]
0 qj+ 1

2
[j−n− 1

2 ]1/2

[2j ]

⎞

⎠ |j−μ+n+〉〉,
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b+|jμn〉〉

:= q(μ+n− 1
2 )/2[j + μ+ 1] 1

2

⎛

⎜
⎝

[j−n+ 3
2 ]1/2

[2j+2] 0

−q−j−1 [j+n+ 1
2 ]1/2

[2j+1] [2j+2] q− 1
2
[j−n+ 1

2 ]1/2

[2j+1]

⎞

⎟
⎠

× |j+μ+n−〉〉,
b−|jμn〉〉

:= q(μ+n− 1
2 )/2[j − μ] 1

2

⎛

⎜
⎝
−q− 1

2
[j+n+ 1

2 ]1/2

[2j+1] −qj [j−n+ 1
2 ]1/2

[2j ] [2j+1]

0 −[j+n− 1
2 ]1/2

[2j ]

⎞

⎟
⎠ |j−μ+n−〉〉.

(15)

3 The Equivariant Dirac Operator

The central Casimir element of Uq(su(2)) is Cq = qk2 + q−1k−2 + (q − q−1)2ef .
The symmetric operators λ′(Cq) and ρ′(Cq) on H , having dense domain W , extend

to selfadjoint operators on H and the finite-dimensional subspaces W
↑
j , W↓

j are
their joint eigenspaces,

λ′(Cq)|jμn↑〉 = (q2j+1 + q−2j−1)|jμn↑〉,
ρ′(Cq)|jμn↑〉 = (q2j+2 + q−2j−2)|jμn↑〉,
λ′(Cq)|jμn↓〉 = (q2j+1 + q−2j−1)|jμn↓〉,
ρ′(Cq)|jμn↓〉 = (q2j + q−2j )|jμn↓〉.

The finite-dimensional subspaces W
↑
j and W

↓
j will reduce any selfadjoint op-

erator D on H which commutes strongly with λ′(Cq) and ρ′(Cq). If we require
that D be invariant under the actions λ′ and ρ′ of U , we get the following stronger
condition.

Lemma 10. Let D be a selfadjoint operator that commutes strongly with λ′(h) and
ρ′(h), for each h ∈ U . Then the subspaces W↑

j and W
↓
j are eigenspaces for D,

D|jμn↑〉 = d
↑
j |jμn↑〉, D|jμn↓〉 = d

↓
j |jμn↓〉, (16)

where d↑j and d
↓
j are real eigenvalues of D which depend only on j . Their respective

multiplicities are (2j + 1)(2j + 2) and 2j (2j + 1).

Additional natural restrictions on the eigenvalues d
↑
j , d

↓
j of the operator D will

come from the crucial requirement of boundedness of the commutators [D,π ′(x)]
for x ∈ A . For instance, take x = a. A straightforward computation shows that
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[D,π ′(a)]|jμn↑〉 =
∑

±
α±jμn↑↑(d

↑
j± − d

↑
j )|j±μ+n+↑〉

+ α+jμn↓↑(d
↓
j+ − d

↑
j )|j+μ+n+↓〉,

[D,π ′(a)]|jμn↓〉 =
∑

±
α±jμn↓↓(d

↓
j± − d

↓
j )|j±μ+n+↓〉

+ α−jμn↑↓(d
↑
j− − d

↓
j )|j−μ+n+↑〉. (17)

The “q-Dirac” operator D proposed in [2] corresponds to taking, in our notation,

d
↑
j = 2 [2j + 1]

q + q−1
, d

↓
j = −d

↑
j .

These are q-analogues of the classical eigenvalues of /D− 1
2 where /D is the classical

Dirac operator on the sphere S
3 (with the round metric). For this particular choice it

follows directly from the explicit form (15) of the matrices α±jμn that the right hand
sides of (17) diverge, and therefore [D,π ′(a)] is unbounded. This fact was already
noted in [11] and it was suggested that one should instead consider an operator D
whose spectrum is just that of the classical Dirac operator /D.

Proposition 11. Let D be any selfadjoint operator with eigenspaces W
↑
j and W

↓
j ,

and eigenvalues (16). If the eigenvalues d↑j and d
↓
j are linear in j ,

d
↑
j = c

↑
1 j + c

↑
2 , d

↓
j = c

↓
1 j + c

↓
2 , (18)

with c
↑
1 , c↑2 , c↓1 , c↓2 not depending on j , then [D,π ′(x)] is a bounded operator for

all x ∈ A .

A selfadjoint operator D as in Proposition 11 is essentially the only possibility
for a Dirac operator satisfying a (modified) first-order condition. It is necessary that

we assume c
↓
1 c

↑
1 < 0 in order that the sign of the operator D be nontrivial; but up to

irrelevant scaling factors the choice of c↑j and c
↓
j is otherwise immaterial. With the

particular choice

d
↑
j = 2j + 3

2
, d

↓
j = −2j − 1

2
, (19)

the spectrum of D, with multiplicity, coincides with that of the classical Dirac opera-
tor /D on the round sphere S

3. Thus, we can regard our spectral triple as an isospectral
deformation of (C∞(S3),H , /D), and in particular, its spectral dimension is 3.

We let D = F |D| be the polar decomposition of D. Explicitly,

F |jμn〉〉 =
(

1 0
0 −1

)

|jμn〉〉, |D| |jμn〉〉 =
(

2j + 3
2 0

0 2j + 1
2

)

|jμn〉〉.

Then, P ↑ := 1
2 (1+F) and P ↓ := 1

2 (1−F) = 1−P ↑ are the orthogonal projectors
whose range spaces are H ↑ and H ↓, respectively.
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With the particular choice of the classical eigenvalues (19) it is also easy to prove
regularity. Recall that a spectral triple is called regular (see for instance [4, 12, 21])
if the algebra generated by both A and [D,A ] lie within the smooth domain⋂∞

n=0 Dom δn of the operator derivation δ(T ) := |D|T − T |D|.
The proof of regularity is simplified by observing that the triangular matrix com-

ponents of the operators a± and b± in (14) give diagonal matrices for δ(a±) and
δ(b±). Indeed, we get the following operator relations:

δ(a+) = P ↑a+P ↑ + P ↓a+P ↓,
δ(a−) = −P ↑a−P ↑ − P ↓a−P ↓,

(20a)

δ([D, a+]) = P ↑a+P ↑ − P ↓a+P ↓,
δ([D, a−]) = P ↑a−P ↑ − P ↓a−P ↓,

(20b)

together with identical formulae when a is replaced by b.
We summarize our conclusions in the following theorem.

Theorem 12. The triple (A (SUq(2)),H ,D), where the eigenvalues of D are the
classical ones given by (19), is a regular 3+-summable spectral triple.

4 The Real Structure

For the manifold of SUq(2), it is shown in [15] that by adding an equivariant real
structure J it is not possible to satisfy all usual properties of a real spectral triple
like in [8] or [21]. The commutant properties: that J intertwines a left action and
a commuting right action of the algebra on the spinor Hilbert space; and the first
order condition on D: that the commutators [D, a], for any element a in the algebra,
commute with the opposite action by any b, are satisfied only up to a certain ideal
of compact operators.

4.1 The Tomita Operator of the Regular Representation

On the GNS representation space Hψ , the natural involution Tψ : η(x) �→ η(x∗),
is an unbounded (antilinear) operator on Hψ with domain η(C(SUq(2))). From the

Tomita–Takesaki theory [31], its closure has a polar decomposition Tψ =: JψΔ1/2
ψ

which defines both the positive “modular operator” Δψ and the antiunitary “modular
conjugation” Jψ . From (5) and (6) it follows that

Tψ |lmn〉 = (−1)2l+m+nqm+n |l,−m,−n〉,
and the adjoint antilinear operator is given by
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T ∗
ψ |lmn〉 = (−1)2l+m+nq−m−n |l,−m,−n〉.

Since Δψ = T ∗
ψTψ , it follows that every vector |lmn〉 lies in the domain DomΔψ

with Δψ |lmn〉 = q2m+2n |lmn〉. Consequently,

Jψ |lmn〉 = (−1)2l+m+n |l,−m,−n〉.
It is clear that J 2

ψ = 1 on Hψ . Similar conclusions were already obtained in [6].

Definition 13. Let π◦(x) := Jψ π(x∗) J−1
ψ , so that π◦ is a ∗-antirepresentation of

A on Hψ . Equivalently, π◦ is a ∗-representation of the opposite algebra
A (SU1/q(2)). By Tomita’s theorem [31], π and π◦ are commuting representations.

The (λ, ρ)-equivariance of π is reflected in an analogous equivariance condition
for π◦.

Lemma 14. The symmetry of the antirepresentation π◦ of A on Hψ is given by the
equivariance conditions,

λ(h) π◦(x)ξ = π◦(h̃(2) · x) λ(h(1))ξ, ρ(h) π◦(x)ξ = π◦(h̃(2) > x) ρ(h(1))ξ,

for all h ∈ U , x ∈ A and ξ ∈ Hψ . Here h �→ h̃ is the automorphism of U

determined on generators by k̃ := k, f̃ := q−1f , and ẽ := qe.

Recall that Tψη(x) = η(x∗) for all x ∈ A and that η(x) = π(x) |000〉. From
Definition 4 one finds that for generators h of U ,

Tψλ(h)π(x) |000〉 = π(x∗ ? ϑ(h)∗) |000〉 = λ(S(h)∗)Tψπ(x) |000〉,
where we have used the relation S(ϑ(h)∗) = ϑ(S(h)∗). Since the vector |000〉 is
separating for the GNS representation, we conclude that

Tψ λ(h)T −1
ψ = λ((Sh)∗).

Similarly, we find that Tψ ρ(h) T −1
ψ = ρ((Sh)∗). Thus, the antilinear involutory

automorphism h �→ (Sh)∗ of the Hopf ∗-algebra U is implemented by the Tomita
operator for the Haar state of the dual Hopf ∗-algebra A . This is a known feature of
quantum-group duality in the C∗-algebra framework [26].

4.2 The Real Structure on Spinors

The first step in defining an operator J on spinors is to construct the “right multi-
plication” representation of A on spinors from its symmetry alone, in close parallel
with the equivariance conditions (14) for the right regular representation π◦ of A
on Hψ . Then, the conjugation operator J on spinors is constructed as the one that
intertwines the left and the right spinor representations.



446 Giovanni Landi

Proposition 15. Let π ′◦ be an antirepresentation of A on H = Hψ ⊕ Hψ satis-
fying the following equivariance conditions:

λ′(h) π ′◦(x)ξ = π ′◦(h̃(2)·x) λ′(h(1))ξ, ρ′(h) π ′◦(x)ξ = π ′◦(h̃(2)>x) ρ′(h(1))ξ.
Then, up to some phase factors depending only on the index j in the decomposition
(12), π ′◦ is given on the spinor basis by π ′◦(a) = a◦+ + a◦− and π ′◦(b) = b◦+ + b◦−,
where in direct analogy with (14), the operators a◦± and b◦± have the triangular-
matrix form of (15), acting on the same respective basis vectors: but with the coeffi-
cients of a± modified by the replacement q �→ q−1, while the coefficients of b± are
modified by the replacement q �→ q−1 and by multiplying the result by an overall
factor q−1.

Definition 16. The conjugation operator J is the antilinear operator on H defined
explicitly on the orthonormal spinor basis by

J |jμn↑〉 := i2(2j+μ+n) |j,−μ,−n,↑〉,
J |jμn↓〉 := i2(2j−μ−n) |j,−μ,−n,↓〉. (21)

Such a J is antiunitary and J 2 = −1, since each 4j ± 2(μ+ n) is an odd integer.

Proposition 17. The antiunitary operator J intertwines the left and right spinor
representations:

J π ′(x∗) J−1 = π ′◦(x), for all x ∈ A .

A minimal requirement for (A (SUq(2)),H ,D, J ) to constitute a (3+-
summable) real spectral triple is that D and J commute. For the invariant opera-
tor D of Sect. 3 this easily follows from the diagonal form of both D and J on their
common eigenspaces W↑

j and W
↓
j , given by the respective equations (16) and (21).

Proposition 18. The invariant operator D of (16) commutes with the conjugation
operator J of (21),

JDJ−1 = D. (22)

The conjugation operator J defined by (21) is not the Tomita modular conjuga-
tion for the spinor representation of A , a fact having consequences on some of the
requirements for a real spectral triple, as we shall see presently. The Tomita operator
for spinor is Jψ⊕Jψ , which does not have a diagonal form in our chosen spinor basis
(unless q = 1). As mentioned above, conjugation of π ′(A (SUq(2)) by the modu-
lar operator would yield a representation of the opposite algebra A (SU1/q(2)), and
the commutation relation analogous to (22) would then require D to be equivariant
under the corresponding symmetry of U1/q(su(2)) say (λ′′, ρ′′). This extra equivari-
ance condition would force D to be merely a scalar operator, thereby negating the
possibility of an equivariant 3+-summable real spectral triple on A (SUq(2)) with
the modular conjugation operator.

The remedy, in order to get a nontrivial Dirac operator, is to modify J to a non-
Tomita conjugation operator. The price to pay for this is that the conditions for a real
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spectral triple must be weakened: these are only satisfied up to certain trace-class
operators.

Indeed, both the commutant property and the first-order condition of the real
spectral triple (A (SUq(2)),H ,D, J ), are satisfied modulo infinitesimals of arbi-
trary high order.

For this, it is useful to replace the spinor representation π ′ of A of Proposition 9
by a suitable ‘approximate representation’ π ′ : A → B(H ), such that π ′(x) −
π ′(x) is a compact operator for each x ∈ A . Although π ′ need not preserve the
algebra relations of A , the mappings π ′ and π ′ define the same ∗-homomorphism
of A into the Calkin algebra B(H )/K (H ). We refer to [15] for details, while
only mentioning the final results.

Definition 19. We denote by Kq be the two-sided ideal of B(H ) generated by the
positive trace-class operators Lq given by

Lq |jμn〉〉 := qj |jμn〉〉 for j ∈ 1

2
N.

The ideal Kq is contained in the ideal of infinitesimals of order α, that is, compact
operators whose n-th singular value μn satisfies μn = O(n−α), for all α > 0.

Theorem 20. The real spectral triple (A (SUq(2)),H ,D, J ), with A (SUq(2))
acting on H via the spinor representation π ′ of Proposition 9, satisfies both the
commutant property and the first order condition up to infinitesimals,

[π ′◦(x), π ′(y)] ∈ Kq,

[π ′◦(x), [D,π ′(y)]] ∈ Kq,
for all x, y ∈ A (SUq(2)).

5 The Local Index Formula for SUq(2)

Let Ψ 0(A ) be the algebra generated by δk(A ) and δk([D,A ]) for all k ≥ 0; it
can be thought of as an algebra of pseudodifferential operators of order at most 0.
From (20a),

P ↑π(a)P ↑ = 1

2
δ2(π(a))+ 1

2
δ([D,π(a)]),

P ↑a+P ↑ = 1

2
P ↑π(a)P ↑ + 1

2
P ↑δ(π(a))P ↑,

so the algebra Ψ 0(A ) is actually generated by the diagonal operators P ↑a±P ↑,
P ↓a±P ↓, P ↑b±P ↑, P ↓b±P ↓ together with the off-diagonal operators P ↓a+P ↑,
P ↑a−P ↓, P ↓b+P ↑, and P ↑b−P ↓. Let B be the subalgebra of Ψ 0(A ) generated
by all δk(A ) for k ≥ 0. A set of algebra generators are the diagonal operators

ã± := ±δ(a±) = P ↑a±P ↑+P ↓a±P ↓, b̃± := ±δ(b±) = P ↑b±P ↑+P ↓b±P ↓,
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together with the off-diagonal operators

a/ := P ↓a+P ↑ + P ↑a−P ↓, b/ := P ↓b+P ↑ + P ↑b−P ↓.

5.1 The Cosphere Bundle and the Dimension Spectrum

Much in the same way as done in [9] we now construct Connes’ “cosphere bundle”
from the spin representation. We first need the two well-known infinite-dimensional
representations π± of A (SUq(2)) by bounded operators. On the Hilbert space  2(N)

with standard orthonormal basis {εx : x ∈ N}, they are given by

π±(a) εx :=
√

1 − q2x+2 εx+1, π±(b) εx := ±qx εx. (23)

They are not faithful on A (SUq(2)) since b − b∗ ∈ kerπ±. The corresponding
quotients,

0 → kerπ± → A (SUq(2))
r±−→ A (D2

q±) → 0, (24)

define two algebras A (D2
q±) which may be thought of as quantum disks. Let us

omit the quotient maps symbol r± for the moment. Then b = b∗ in A (D2
q±), and

the defining relations (1) of A (SUq(2)) yields

ba = q ab, a∗b = q ba∗,
a∗a + q2b2 = 1, aa∗ + b2 = 1.

These algebraic relations define two isomorphic quantum 2-spheres S
2
q+ 5 S

2
q− =:

S
2
q which have a classical subspace S

1 given by the characters b �→ 0, a �→ λ with

|λ| = 1. A substitution q �→ q2, followed by b �→ q−2b shows that S
2
q is just the

equatorial Podleś sphere [29]. The above quotients of A (SUq(2)) with respect to
kerπ± either coincide with A (S2

q) or are quotients of it. Now, from (23) one sees
that the spectrum of π±(b) is either real positive or real negative, depending on the
± sign. Hence, the algebras A (D2

q+) and A (D2
q−) describe the two hemispheres

of S
2
q that are quantum disks.

A symbol map σ : A (D2
q±) → A (S1) will map these “noncommutative disks”

to their common boundary S
1 which, as said, is the equator of the equatorial Podleś

sphere S
2
q . Explicitly, the map σ is the ∗-homomorphism given on the generators of

A (D2
q,±) by

σ(r±(a)) := u, σ (r±(b)) := 0, (25)

where u is the unitary generator of A (S1).
The following result emulates Proposition 4 of [9].
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Proposition 21. There is a ∗-homomorphism

ρ : B → A (D2
q+)⊗A (D2

q−)⊗A (S1) (26)

defined on generators by

ρ(ã+) := r+(a)⊗ r−(a)⊗ u, ρ(ã−) := −q r+(b)⊗ r−(b∗)⊗ u∗,
ρ(b̃+) := −r+(a)⊗ r−(b)⊗ u, ρ(b̃−) := −r+(b)⊗ r−(a∗)⊗ u∗

while the off-diagonal operators a/ and b/ are declared to lie in the kernel of ρ.

Definition 22. The cosphere bundle on SUq(2), denoted by A (S∗q), is defined as

the range of the map ρ in A (D2
q+)⊗ A(D2

q−)⊗A (S1).

Note that S
∗
q coincides with the cosphere bundle defined in [9, 10], where it is

regarded as a noncommutative space over which D2
q+ ×D2

q− × S
1 is fibred.

We again follow [9] for the computation of the dimension spectrum. In order to
do that, we define on the algebras A (D2

q±) three linear functionals τ1 and τ
↑
0 , τ↓0 .

Since their definitions for both disks D2
q+ and D2

q− are identical, we shall omit the±
for notational convenience. For x ∈ A (D2

q), and σ the symbol map (25), we define,

τ1(x) := 1

2π

∫

S1
σ(x),

τ
↑
0 (x) := lim

N→∞TrN π(x)−
(

N + 3

2

)

τ1(x),

τ
↓
0 (x) := lim

N→∞TrN π(x)−
(

N + 1

2

)

τ1(x),

where TrN is the truncated trace TrN(T ) := ∑N
k=0〈εk|T εk〉. The definition of the

two different maps τ
↑
0 and τ

↓
0 is suggested by the constants 3

2 and 1
2 appearing in

our choice (19) of the Dirac operator. Some simple algebra gives

TrN(π(x)) =
(

N + 3

2

)

τ1(x)+ τ
↑
0 (x)+O(N−k)

=
(

N + 1

2

)

τ1(x)+ τ
↓
0 (x)+O(N−k) for all k > 0.

Let us use the notation of [12], defining the noncommutative integral as a zeta
residue, ∫

− T := Resz=0 Tr T |D|−z.

Also, let us denote by r the restriction homomorphism from A (D2
q+)⊗A(D2

q−)⊗
A (S1) onto the first two legs of the tensor product. In particular, we will use it as a
map

r : A (S∗q) → A (D2
q+)⊗ A(D2

q−).
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Theorem 23. The dimension spectrum of the spectral triple (A (SUq(2)),H ,D)

is simple and given by {1, 2, 3}. With T ∈ Ψ 0(A ), the corresponding residues are
∫
− T |D|−3 = 2(τ1 ⊗ τ1)

(
rρ(T )0),

∫
− T |D|−2 = (τ1 ⊗ (τ

↑
0 + τ

↓
0 )+ (τ

↑
0 + τ

↓
0 )⊗ τ1

)(
rρ(T )0),

∫
− T |D|−1 = (τ

↑
0 ⊗ τ

↓
0 + τ

↓
0 ⊗ τ

↑
0 )
(
rρ(T )0).

Here ρ(T )0 is the degree-zero part with respect to the Z-grading on A (S∗q) in-
duced (in its representation) by the one-parameter group of automorphisms γ (t)

generated by |D|:
γ (t) : T �→ eit |D|T e−it |D|,

for any operator T on H .

5.2 The Local Index Formula for 3-Dimensional Geometries

Let us recall that with any odd spectral triple (A ,H ,D) there comes a Fredholm
index of the operator D as an additive map ϕ : K1(A ) → Z. If F = SignD and
P is the projector P = 1

2 (1 + F) then, with u ∈ Matr (A ) a unitary representative
of the K1 class, the operator PuP is automatically Fredholm and the index map is
defined by,

ϕ([u]) := Index(PuP ) = dim kerPUP − dim kerPU∗P. (27)

This map is computed by pairing K1(A ) with “nonlocal” cyclic cocycles χn given
in terms of the operator F and of the form

χn(a0, . . . , αn) = λn Tr(a0 [F, a1] . . . [F, an]), for all aj ∈ A , (28)

where λn is a suitable normalization constant [7]. The choice of the integer n is
determined by the degree of summability of the Fredholm module (H , F ) over A .
Any such module is declared to be p-summable if the commutator [F, a] is an
element in the p-th Schatten ideal L p(H ), for any a ∈ A. The minimal n in (28)
needs to be taken such that n ≥ p.

On the other hand, the Connes–Moscovici local index theorem [12] expresses the
index map in terms of a local cocycle ϕodd in the (b, B) bicomplex of A , a cocycle
which is a local representative of the cyclic cohomology class of χn (the cyclic
cohomology Chern character). The cocycle ϕodd is given in terms of the operator
D and is made of a finite number of terms ϕodd = (ϕ1, ϕ3, . . . ); the pairing of
the cyclic cohomology class [ϕodd] ∈ HCodd(A ) with K1(A ) gives the Fredholm
index (27) of the operator D with coefficients in K1(A ). Components of the cyclic
cocycle ϕodd are explicitly given in [12], and we shall soon give them for our case.
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We know from Theorem 12 that our spectral triple (A ,H ,D) with A =
A (SUq(2)) has metric dimension 3. The corresponding Fredholm module (H , F )

over A = A (SUq(2)) is 1-summable since all commutators [F, π(x)], with x ∈
A , are off-diagonal operators given by sequences of rapid decay, thus each [F, π(x)]
is trace-class. Hence, we only need the first Chern character χ1(a0, a1) =
Tr(a0 [F, a1]), with a1, a2 ∈ A . An explicit expression for this cyclic cocycle on
the PBW-basis of SUq(2) was obtained in [25].

The local cocycle has two components, ϕodd = (ϕ1, ϕ3), with the cocycle condi-
tion (b + B)ϕodd = 0 reading Bϕ1 = 0, bϕ1 + Bϕ3 = 0, bϕ3 = 0. It is explicitly
given by

ϕ1(a0, a1) :=
∫
− a0 [D, a1] |D|−1 − 1

4

∫
− a0 ∇([D, a1]) |D|−3

+ 1

8

∫
− a0 ∇2([D, a1]) |D|−5,

ϕ3(a0, a1, a2, a3) := 1

12

∫
− a0 [D, a1] [D, a2] [D, a3] |D|−3,

where∇(T ) := [D2, T ] for any operator T on H . Under the assumption that [F, a]
is traceclass for each a ∈ A , these expressions can be rewritten as follows:

ϕ1(a0, a1) =
∫
− a0 δ(a1)F |D|−1 − 1

2

∫
− a0 δ

2(a1)F |D|−2

+ 1

4

∫
− a0 δ

3(a1)F |D|−3,

ϕ3(a0, a1, a2, a3) = 1

12

∫
− a0 δ(a1) δ(a2) δ(a3)F |D|−3.

We now quote Proposition 2 of [9].

Proposition 24 (Connes). Let (A ,H ,D) be a spectral triple with discrete simple
dimension spectrum not containing 0 and bounded above by 3. If [F, a] is trace-
class for all a ∈ A , then the Chern character χ1 is equal to ϕodd − (b + B)ϕev
where the η-cochain ϕev = (ϕ0, ϕ2) is given by

ϕ0(a) := Tr(Fa |D|−z)
∣
∣
z=0,

ϕ2(a0, a1, a2) := 1

24

∫
− a0 δ(a1) δ

2(a2)F |D|−3.

The definition of ϕ0 needs the absence of 0 in the dimension spectrum. In com-
ponents, the equivalence of the characters means that ϕ1 = χ1 + bϕ0 + Bϕ2 and
ϕ3 = bϕ2.

The above proposition, in combination with the following general result, shows
that, up to coboundaries, the term χ1 can be given by means of one single (b, B)-
cocycle ψ1.
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Proposition 25. Let (A ,H ,D) be a spectral triple with discrete simple dimension
spectrum not containing 0 and bounded above by 3. Assume that [F, a] is trace
class for all a ∈ A , and set P := 1

2 (1 + F). Then, the local Chern character ϕodd
is equal to ψ1 − (b + B)ϕ′ev, where

ψ1(a0, a1) := 2
∫
− a0 δ(a1)P |D|−1−

∫
− a0 δ

2(a1)P |D|−2+ 2

3

∫
− a0 δ

3(a1)P |D|−3,

and ϕ′ev = (ϕ′0, ϕ′2) is given by

ϕ′0(a) := Tr(a |D|−z)
∣
∣
z=0,

ϕ′2(a0, a1, a2) := − 1

24

∫
− a0 δ(a1) δ

2(a2)F |D|−3.

In the previous expression, the term involving P |D|−3 would vanish if the latter
were traceclass, which is the case in [9]. Combining these last two propositions, it
follows that the cyclic 1-cocycles χ1 and ψ1 are related as

χ1 = ψ1 − bβ, where β(a) = 2 Tr(Pa |D|−z)
∣
∣
z=0. (29)

5.3 The Pairing Between HC1 and K1

As an example, we shall compute the value of the index map (27) when U is the
unitary operator representing the generator of K1(A (SUq(2))),

U =
(

a b

−qb∗ a∗
)

, (30)

acting on the doubled Hilbert space H ⊗ C
2 via the representation π ⊗ 12. One

expects this index to be nonzero, since the K-homology class of (A ,H ,D) is
non-trivial.

We first compute directly the above index. Remember that the projector P was
earlier denoted P ↑. A short computation shows that the kernel of PU∗P is trivial,
whereas the kernel of PUP contains only elements proportional to the vector

( |0, 0,− 1
2 ,↑〉

−q−1|0, 0, 1
2 ,↑〉

)

,

leading to ϕ([U ]) = Index(PUP) = 1.
Our Fredholm module (H , F ) over A (SUq(2)) is 1-summable; and we have

just seen that Index(PUP) can be computed using the local cyclic cocycle ψ1 in (29).
To prepare for this index computation via ψ1, we recall the following lemma [7,
IV.1.γ ], which fixes the normalization constant in front of χ1.
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Lemma 26 (Connes). Let (H , F ) be a 1-summable Fredholm module over A , with
projector P = 1

2 (1 + F); and let u ∈ Matr (A ) be unitary with a suitable r . Then
PuP is a Fredholm operator on PH and

Index(PuP ) = −1

2
Tr(u∗[F, u]) = −1

2
χ1(u

∗, u).

Thus, the index of PUP , for the U of (30) is given, up to an overall − 1
2 factor,

by

ψ1(U
−1, U)

= 2
∫
− U∗

kl δ(Ulk)P |D|−1 −
∫
− U∗

kl δ
2(Ulk)P |D|−2 + 2

3

∫
− U∗

kl δ
3(Ulk)P |D|−3,

with summation over k, l = 0, 1 understood. Since the entries of U are generators
of A (SUq(2)), we see from (20b) for a and its analogue for b that ρ(δ2(Ukl)) =
ρ(Ukl). We compute the degree 0 part of ρ(U∗

kl δ(Ulk)) with respect to the grading
coming from γ (t), which is the only part that contributes to the trace, using the
algebra relations of A (D2

q±),

ρ(U∗
kl δ(Ulk))

0 = 2(1 − q2) 1 ⊗ r−(b)2.

Using the equalities
τ1(1) = 1, τ1(r±(b)n) = 0,

and

τ
↑
0 (1) = −τ

↓
0 (1) = −1

2
, τ

↑
0 (r±(b)n) = τ

↓
0 (r±(b)n) = (±1)n

1 − qn
,

we find that

ψ1(U
−1, U)

= 2(1 − q2)(2τ↑0 ⊗ τ
↓
0 + 2

3τ1 ⊗ τ1)(1 ⊗ r−(b)2)

− (τ1 ⊗ τ
↓
0 + τ

↑
0 ⊗ τ1)(1 ⊗ 1) = −2.

Taking the proper coefficients, we finally obtain

Index(PUP) = −1

2
ψ1(U

−1, U) = 1.
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Topological Strings on Local Curves

Marcos Mariño

Abstract We review some perturbative and nonperturbative aspects of topological
string theory on the Calabi–Yau manifolds Xp = O(−p)⊕O(p− 2) → P

1. These
are exactly solvable models of topological string theory which exhibit a nontrivial
yet simple phase structure, and have a phase transition in the universality class of
pure two-dimensional gravity. They don’t have conventional mirror description, but
a mirror B model can be formulated in terms of recursion relations on a spectral
curve typical of matrix model theory. This makes it possible to calculate nonpertur-
bative, spacetime instanton effects in a reliable way, and in particular to characterize
the large order behavior of string perturbation theory.

1 Introduction

Topological string theory on non-compact Calabi–Yau manifolds (also known as
local Calabi–Yau’s) has taught us many interesting things about topological strings
and about string theory in general. Although non-compact backgrounds are quite
special, their relative simplicity makes them also a fascinating laboratory. From the
mathematical point of view, the theory of topological strings on local backgrounds
has made a myriad of connections to other fields of mathematics and mathematical
physics, including matrix models, integrable systems, and combinatorics.

Among these local backgrounds, perhaps the simplest and the most peculiar are
what I will call local curves. This is the family of non-compact Calabi–Yau mani-
folds given by the total space of a bundle over a sphere. More concretely, they have
the form

Xp = O(p − 2)⊕ O(−p) → P
1, p ∈ Z. (1)

Marcos Mariño
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This family includes two of the most studied local backgrounds: for p = 1 one
recovers the resolved conifold, while X2 is the C × A1 singularity. Therefore, the
family (1) provides the simplest generalization of these well studied examples.

The study of topological string theory on Xp has led to many insights. For ex-
ample, the conjecture relating toric backgrounds to matrix models stated in [26] and
further refined in [5] was motivated to a large extent by the genus zero solution
on Xp presented in [8]. These backgrounds have been an important testing ground
for recent techniques and ideas, but one has to keep in mind that they are rather
unconventional in many respects.

In this note we review some properties of topological string theory on Xp discov-
ered in [8, 26, 27]. We summarize them briefly in this introduction by emphasizing
both their connections to general aspects of topological string theory, as well as their
idiosyncrasies.

• A-model and topological vertex. The Gromov–Witten theory for these spaces was
developed by Bryan and Pandharipande [6] and can be reproduced, in the equivari-
ant case, by the topological vertex of [1]. The total partition sum in the A model
is a sum over partitions. This is reviewed in Sect. 2.1.

• Sum over partitions and mirror symmetry. The backgrounds Xp do not have stan-
dard mirror manifolds (see however [17, 18] for some progress along this direc-
tion). However, a mirror geometry can be extracted by studying the saddle-point
of the sum over partitions [8] and it is encoded in a complex curve which we
will call the spectral curve of the model. This is similar to the way in which the
Seiberg–Witten curve emerges from the sum over partitions in Nekrasov’s com-
putation [28, 29]. The mirror geometry is reviewed in Sect. 2.3

• Matrix models. The generating functionals of Gromov–Witten invariants at genus
g, Fg , can be obtained by applying the matrix model formalism of [16] to the
spectral, mirror curve. This was conjectured and tested to lower genus in [26].
Therefore, topological strings on Xp can be described by a matrix model formal-
ism. The matrix model/topological string correspondence was first found by [13]
in some special affine backgrounds and later generalized to toric manifolds [26,
5]. In the case of Xp the existence of a matrix model description was proved by
Eynard in [15]. This development is briefly mentioned in Sect. 2.4

• Phase transitions. As for other topological string models, the free energies Fg of
Xp exhibit singular behavior for p > 2 at a particular point tc $= 0 in the Kähler
moduli space. For most topological string models, this point is the conifold point
and the singular behavior is described by the c = 1 string at self-dual radius [19].
In the case of topological string theory on local curves, however, the singular
behavior is described by the c = 0 string, i.e. by two-dimensional gravity [8].
Phase transitions on Xp are described in Sect. 3.

• Instantons and large order behavior. The matrix model formalism makes possible
to compute spacetime instanton corrections to the partition function [27]. Using
the connection between instantons and large order behavior, one obtains conjec-
tural, precise descriptions of the asymptotic behavior of the couplings Fg at large
g [26, 27] which can be tested numerically. This aspect is reviewed in Sect. 4.
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• Hurwitz theory. In the limit p → ∞, topological strings on local curves encode
the simple Hurwitz numbers of P

1. This is established in Sect. 2.2. Most of the
properties above can be seen to be inherited by this Hurwitz model (like in partic-
ular the critical behavior and the instanton effects describing large order), and we
refer for this to the original papers [8, 27].

We finally mention that the study of these backgrounds was originally motivated
by the results of [2] and the connection to the OSV conjecture [30].

2 Topological Strings on Local Curves

First, we notice that since Xp is invariant under −p ↔ p − 2 we can restrict
ourselves to the case p > 0.

2.1 A Model

The first step in understanding topological string theory on Xp is to determine the
genus g free energies of closed strings in the A model. Already this is nontrivial,
since as explained in [6], the A model has to be defined equivariantly with respect to
an action of C

∗ ×C
∗ on the bundles. Therefore, the most general topological string

theory on Xp will depend on two equivariant parameters s1, s2. The most natural
choice (also called the equivariant Calabi–Yau case) corresponds to the antidiago-
nal action, in which s1 = −s2. It can be shown that in this case the dependence
on the equivariant parameters drops out, and one obtains topological closed string
amplitudes Fg(t) which only depend on the Kähler parameter t (corresponding to
the P

1 in the base). We recall that, when expanded around t = ∞, the Fg(t) are
generating functionals of Gromov–Witten invariants at genus g,

Fg(t) =
∞∑

k=1

Ng,ke−kt , (2)

where k corresponds to the degree of the map. As usual in topological string theory,
the Fg(t) are put together into a single total free energy,

FXp(gs, t) =
∞∑

g=0

g
2g−2
s F

Xp
g (t) (3)

and its exponential is the closed partition function

ZXp = expFXp(gs, t). (4)
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This partition function was computed in [6] and we can equivalently calculate it by
using the theory of the topological vertex [1]. We collect here some formulae from
this theory will be useful in the following. First of all, we define the q-number [n]
as

[n] = qn/2 − q−n/2, q = egs . (5)

A representation R of U(∞) is encoded by a Young tableau, labeled by the lengths
of its rows {li}. The quantity

 (R) =
∑

i

li (6)

is the total number of boxes of the tableau. Another important quantity associated
to a tableau is

κR =
∑

i

li (li − 2i + 1). (7)

We also introduce the quantity

WR = q−κR/4
∏

∈R

1

[hook( )] . (8)

We can now write the topological string partition function on Xp. It is given in terms
of the WR by

ZXp =
∑

R

WRWRt q(p−1)κR/2Q (R), Q = (−1)pe−t . (9)

Although (9) gives an all-genus expression, it is effectively an expansion in powers
of Q. One can easily compute the first few terms in the expansion:

F
Xp

0 (t) = (−1)pe−t + 1

8
(2p2 − 4p + 1)e−2t

+ (−1)p

54
(1 − 6p + 3p2)(2 − 6p + 3p2)e−3t +O(e−4t ),

F
Xp

1 (t) = − (−1)p

12
e−t + 1

48
(p4 − 4p3 + p2 + 6p − 2)e−2t

+ (−1)p

72
(−2 + 14p − 19p2 − 20p3 + 45p4 − 24p5 + 4p6)e−3t

+O(e−4t ), (10)

and so on.

2.2 Relation to Hurwitz Theory

The partition function ZXp can be regarded as a “quantum deformation” of a simpler
theory, namely the counting of simple Hurwitz covers of P

1. To see this, we first note
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that the quantity WR is a q-deformation of the dimension dR of the representation
R of S (R), the permutation group of  (R) elements: as gs → 0, one has that

WR → g− (R)
s

dR

| (R)|! . (11)

This suggests taking the following limit,

gs → 0, t →∞, p →∞, (12)

in such a way that

pgs = τ2/N, (−1)pe−t = (gsN)2e−τ1, (13)

and τ1, τ2 and N are new parameters that are kept fixed. In the limit (12)–(13) the
partition function becomes

ZXp → ZHurwitz =
∑

R

(
dR

| (R)|!
)2

N2 (R)e−τ2κR/2Ne−τ1 (R). (14)

This is the generating functional of simple Hurwitz numbers of P
1 at all genus and

degrees. Recall that Hurwitz theory studies branched covers of Riemann surfaces,
and Hurwitz numbers enumerate these coverings for fixed genus and degree. When
all branch points are simple, the Hurwitz number is called a simple Hurwitz number,
and for P

1 it is given at genus g and degree d by

HP
1

g,d(1
d) =

∑

 (R)=d

(
dR

 (R)!
)2

(κR/2)2g−2+2d , (15)

where the sum is over representations R with fixed number of boxes equal to the
degree d . Using this formula we can rewrite (14) as

ZHurwitz =
∑

d,m

N2d−me−τ1d
∑

 (R)=d

(
dR

 (R)!
)2

(−τ2)
m

m! (κR/2)m

=
∑

g≥0

N2−2g
∑

d≥0

e−τ1dHP
1

g,d(1
d)

τ
2g−2+2d
2

(2g − 2 + 2d)! , (16)

where in the second line we have traded the sum over m by a sum over g. Notice
that, since κRt = −κR , only even powers of τ2 appear. The model described by (14)
has been studied in detail due to its connection to Hurwitz theory. From the physical
point of view, it was analyzed in [23, 9], and in the mathematical literature it has
been studied for example in [20].

The free energy of ZHurwitz describes connected, simple Hurwitz numbers
HP

1

g,d(1
d)•:
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FHurwitz = logZHurwitz =
∑

g≥0

N2−2g
∑

d≥0

e−τ1dHP
1

g,d(1
d)•

τ
2g−2+2d
2

(2g − 2 + 2d)! (17)

If we compare this to the total free energy FXp written in (3) in terms of Gromov–
Witten invariants, and take the limit (12)–(13), we find

lim
p→∞p2−2g−2d(−1)pNg,d(p) =

HP
1

g,d(1
d)•

(2g − 2 + 2d)! . (18)

The l.h.s. is precisely the coefficient of the highest power in p of Ng,d(p). We
can therefore interpret the Gromov–Witten invariants of this model as q–deformed
connected, simple Hurwitz numbers, since they promote HP

1

g,d(1
d)• to polynomials

of degree 2g − 2 + 2d (which is equal to the number of simple branch points).

2.3 Mirror Symmetry from Large Partitions

Sums over partitions of the form (9) are sometimes dominated by a single Young
tableau which can be regarded as the “saddle point” of the sum over partitions.
This approach has been very useful in understanding for example two-dimensional
Yang–Mills theory [14] or Nekrasov’s instanton sums [29]. Moreover, one expects
that, if the total partition function ZXp can be described by mirror symmetry, the
mirror geometry will be encoded in the saddle point of the sum over partitions (this
is for example the case in instanton sums, whose mirror description is the special
geometry of the Seiberg–Witten curves). Since we don’t have an easy way to con-
struct the mirror geometry, we will deduce it as a saddle partition of the sum (9). We
summarize now the results of this deduction, first performed in [8].

The first step is to notice that (9) admits a representation in terms of a q-deformed
group theoretical quantity of U(N), similarly to what was done in [23] in a similar
context. Let {li} be the lengths of rows in a Young tableau introduced before, and let
hi = li +N − i. We can write

ZXp =
∑

R

(
dimq R

qΩR

)2

q(p−1)κR/2e−t (R) (19)

where

qΩR =
N∏

i=1

[hi]!
[N − i]! , (20)

and

dimqR =
∏

1≤i<j≤N

[li − lj + j − i]
[j − i] (21)
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is the quantum dimension of an irreducible representation R of U(N). If we intro-
duce the auxiliary ‘t Hooft parameter

T = gsN (22)

and continuous variables in the standard way:

hi

N
= li

N
− i

N
+ 1 →  (x)− x + 1 = h(x), (23)

we find that at large N the sum over partitions is controlled by an effective action
for continuous variables

S = −
∫ 1

0

∫ 1

0
dxdy log

∣
∣
∣
∣2 sinh

T

2
(h(x)− h(y))

∣
∣
∣
∣+

2

T

∫ 1

0
dxLi2(e

−T h)

+
∫ 1

0
dxh(x)(t − (p − 1)T )

+ pT

2

∫ 1

0
dxh2(x)+ (p − 1)

T

3
− π2

3T
− 1

2
t. (24)

The planar limit is governed by a tableau density

ρ(h) = −dx(h)

dh
, (25)

which one can find as the saddle-point of the effective action. The result is the fol-
lowing.

It is useful to introduce the variable

λ = exp
(
1 − hT ). (26)

In terms of this variable, the density of tableaux ρ(λ) has its support on the interval

(x2, x1) ∪ (x1, e), (27)

where x1,2 are nontrivial functions of the Kähler parameter t . To specify these, one
introduces the mirror map

Q = (−1)pe−t = (1 − ζ )−p(p−2)ζ. (28)

The endpoints of the cut are given in terms of ζ by

x1 = (1 − ζ )−p(1 + ζ
1
2 )2, x2 = (1 − ζ )−p(1 − ζ

1
2 )2. (29)

The information on ρ(λ) is equivalently encoded in the resolvent

ω0(λ) =
∫ e

x2

dv

v

ρ(v)

λ− v
− 1

λ
log

λ

λ− e
, (30)
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which according to [8] is given by

ω0(λ) = 1

λ
+ p

2λ
log

[

2

√
(λ− x1)(λ− x2)− λ−√

x1x2

(
√
x1 +√

x2)2

]2

+ 1

λ
log

[
(
√
λ− x1 +√

λ− x2)
2

4λ

]

. (31)

This function has a branch cut along [x1, x2], and its discontinuity is given by

y(λ) = 2

λ

(

tanh−1
[√

(λ− x1)(λ− x2)

λ− x1+x2
2

]

− p tanh−1
[√

(λ− x1)(λ− x2)

λ+√
x1x2

])

. (32)

It is well known that the mirrors to toric Calabi–Yau threefolds can be reduced to
algebraic curves. In [26] it was proposed that y = y(λ) is the appropriate mirror
curve for the Xp geometry. This can be tested in various ways, and we will review
some of them below. We then have a mirror geometry obtained from a saddle-point
analysis of a sum over tableaux.

This analysis makes possible to compute the genus zero free energy in closed
form. As detailed in [8], one finds that

d2F0

dt2
= − log(1 − ζ ). (33)

We can also provide a closed expansion for the prepotential F0 as a series in e−t .
This is better done by working out the expansion of log (1 − ζ ) through Lagrange
inversion and integrating (33) twice. In this way we obtain

F
Xp

0 (t) =
∞∑

d=1

1

d!
1

d2

((p − 1)2d − 1)!
(((p − 1)2 − 1)d)! (−1)dte−dt . (34)

2.4 Higher Genus and Matrix Models

It was conjectured in [26] that the higher Fg of this model can be obtained by us-
ing the matrix model formalism of [16] as applied to the mirror curve (31). This
conjecture was later proved by Eynard [15] by providing an explicit matrix integral
representation of ZXp . For example, using this formalism one finds that

F1 = − 1

24
log

[
(p − 1)2ζ(ζc − ζ )

(1 − ζ )3

]

. (35)

This genus one amplitude can be written as

F1 = F inst
1 + 1

24
log Q, (36)

where F inst
1 is the instanton part of F1 which follows from (9).
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3 Phase Transitions, Critical Behavior and Double-Scaling Limit

3.1 Review of Phase Transitions in Topological String Theory

For simplicity, we will assume in this general discussion that the Calabi–Yau X has
a single Kähler parameter t , i.e. h1,1(X) = 1 (this is in fact the case for the case
we are studying, Xp). When t is large (in the so-called large radius regime) the
geometry probed by string theory can be regarded as a classical geometry together
with stringy corrections. This is well reflected in the structure of the prepotential
F0(t) or genus zero topological string amplitude, which in the large radius regime
is of the form

F0(t) = C

6
t3 +

∞∑

k=1

N0,ke−kt . (37)

In this equation, C is the classical intersection number for the two-cycle whose size
is measured by t . The infinite sum in the r.h.s. is given by worldsheet instanton cor-
rections, which are obtained by “counting” (in an appropriate sense) holomorphic
maps from P

1 to X. The instanton counting numbers N0,k are genus zero Gromov–
Witten invariants, and we have chosen units in which  s =

√
2π .

The series of worldsheet instanton corrections, regarded as a power series in e−t ,
has in general a finite radius of convergence tc which can be obtained by looking
at the asymptotic growth with k of the numbers N0,k . We will characterize this
asymptotic growth by tc and by a critical exponent γ :

N0,k ∼ kγ−3ektc , k →∞. (38)

When this holds, the prepotential behaves near tc as

F0(t) ∼ (e−tc − e−t )2−γ . (39)

It turns out that typical Gromov–Witten invariants of Calabi–Yau manifolds behave
asymptotically as

N0,k ∼ ektc

k3 log2 k
, k →∞. (40)

This is of the form (38), with critical exponent

γ = 0 (41)

and subleading log corrections. This behavior was first established in [7] in the
example of the quintic, and since then it has been verified in other examples, like
for example in local P

2, where the critical radius is given by [3, 22]

tc = 1

Γ ( 1
3 )Γ ( 2

3 )
ReG

(
1

3
,

2

3
, 1; 1

)

∼ 2.90759 (42)

and G is the Meijer function.
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The subleading log in (40) leads to log corrections near the critical point (also
referred to as scaling violations) of the form

F0(t) ∼ (e−tc − e−t )2 log(e−tc − e−t ). (43)

This is the genus zero free energy of the c = 1 string at the self–dual radius, once
the scaling variable e−tc − e−t is identified with the cosmological constant [4, 19].

The behavior of the prepotential gives a precise quantitative meaning to the dis-
tinction between classical and quantum geometry. We will refer to the divergence of
the large radius expansion at t = tc as a phase transition with a critical exponent γ
defined in (40). The phase with

t > tc (44)

where the expansion (37) is convergent, is called the large radius or Calabi–Yau
phase, where classical geometry makes sense (albeit it is corrected by worldsheet
instantons). When t ≤ tc, the nonlinear sigma model approach is not well defined,
and classical geometric intuition is misleading.

In order to describe the phase structure of the model we have relied on the behav-
ior of the prepotential, i.e. the planar free energy. It is natural to ask what happens
when higher genus topological string amplitudes are taken into account. It turns out
that the higher genus Gromov–Witten invariants have the asymptotic behavior [4]

Ng,k ∼ k(γ−2)(1−g)−1ektc , k →∞, (45)

where tc is the critical radius obtained at genus zero and it is common to all g, and
γ is the critical exponent that appears in (38). This is equivalent to the following
behavior near the critical point

F1(t) ∼ c1 log (e−tc − e−t ),
(46)

Fg(t) ∼ cg(e
−tc − e−t )(1−g)(2−γ ), g ≥ 2.

In conventional topological string theory, as we have mentioned, γ = 0, but the
more general form we have written above will be useful later.

We then see that the phase transition at t = tc is common for all Fg(t), and the
critical exponent changes with the genus in the way prescribed by (45). This sort of
coherent behavior in the genus expansion is not obvious, but seems to characterize
a wide variety of systems that admit a genus expansion (like for example matrix
models, see [12] for a review). When this is the case, one can define a double-
scaling limit as follows. Let us consider the total free energy F as a perturbative
expansion in powers of the string coupling constant gs :

F(gs, t) =
∞∑

g=0

Fg(t)g
2g−2
s . (47)

We define the double-scaled string coupling as
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κ = ags(e
−tc − e−t )γ /2−1, (48)

where a is an appropriate constant. We can then consider the limit

t → tc, gs → 0, κ fixed. (49)

In this limit, only the most singular part of Fg(t) survives at each genus, and the
total free energy becomes the double-scaled free energy

Fds(κ) = f0κ
−2 + f1 log κ +

∑

g≥2

fgκ
2g−2, (50)

where fg = a2−2gcg . It is also customary to express the double-scaled free energy
in terms of the scaling variable z = κ2/(γ−2).

It turns out that, in some cases, one can determine the coefficients fg in closed
form. In the double-scaling limit of matrix models, they are governed by a differ-
ential equation of the Painlevé type [12]. In the case of topological string theory on
Calabi–Yau manifolds, it was conjectured in [19] that, in terms of a natural coordi-
nate

μ ∼ e−tc − e−t (51)

which in the mirror model measures the distance to the conifold point μ = 0, the
double-scaled free energy is universal and reads

Fds(μ) = 1

2
μ2 log μ− 1

12
log μ+

∞∑

g=2

B2g

2g(2g − 2)
μ2−2g. (52)

This is exactly the all genus free energy of the c = 1 string at the self-dual radius.
This behavior has been checked in many examples (see, for example, [21] for a
recent calculation on the quintic Calabi–Yau).

3.2 Phase Transitions for Local Curves

Surprisingly, the theory of local curves displays a phase transition, but in a different
universality class than the usual topological strings on Calabi–Yau threefolds. As
shown in [8], the phase transition of local curves belong to the universality class of
2d gravity.

The easiest way to see this is to analyze the asymptotic growth of genus zero
Gromov–Witten invariants. We found in (34),

N0,k = 1

k!k2

((p − 1)2k − 1)!
(((p − 1)2 − 1)k)! , (53)

up to a sign (−1)pk . By using Stirling’s formula, we obtain
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N0,k ∼ ektc k−7/2, k →∞, (54)

where
tc = log

(
(p(p − 2))p(2−p)(p − 1)2(p−1)2)

. (55)

This corresponds to

ζc = 1

(p − 1)2
, (56)

By comparing to (38) we also deduce that

γ = −1

2
. (57)

The above results are valid for p > 2. For p = 1, 2 the series is convergent for
all t > 0. The above result for the critical exponent γ is not the standard one for
Calabi–Yau threefolds, and indicates that we are in a different universality class.

What is this universality class? (57) is the exponent typical of 2d gravity (see
for example [12] for a review and references), and in fact, if one takes the double-
scaling limit

ζ → ζc, gs → 0, z fixed, (58)

where

z5/2 = g−2
s

(p − 1)8

4(1 − ζc)3
(ζc − ζ )5, (59)

then the total free energy (3) becomes the free energy of 2d gravity,

F(2,3)(z) = − 4

15
z5/2 − 1

48
log z+

∑

g≥2

agz
−5(g−1)/2, (60)

where the coefficients ag can be obtained by solving the Painlevé I equation

u2 − 1

6
u′′ = z (61)

satisfied by the specific heat

u(z) = −F ′′
(2,3)(z). (62)

Evidence for this result was given in [8]. One can test it at lower genus for all p,
and for all genera in the limit p → ∞ (i.e. Hurwitz theory) by using for exam-
ple [20]. In fact, this result follows from the description of this theory in terms of a
matrix model conjectured in [26] and proved in [15]. It follows from [16] that the
computation of symplectic invariants Fg of a given spectral curve commutes with
the double-scaling limit. Therefore, it is enough to show that the curve (32) becomes
the spectral curve characterizing 2d gravity. Let us verify this.

We first notice that near the critical point the endpoints of the curve behave as
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x1 = x
(c)
1 + θ(ζ − ζc)+O(ζ − ζc)

2, x2 = x
(c)
2 + O(ζ − ζc)

2 (63)

where

x
(c)
1 = (1 − ζc)

−p p2

(p − 1)2
,

x
(c)
2 = (1 − ζc)

−p (p − 2)2

(p − 1)2
, (64)

θ = 2(1 − ζc)
−p p(p − 1)

p − 2
.

The coordinate λ in (32) must scale in this limit like

λ = x
(c)
1 − θ(ζ − ζc)s +O(ζ − ζc)

2. (65)

This defines the “renormalized” coordinate s. We now reexpress (32) in terms of the
scaling variables s and z, which is given in (59). After some cancellations, we find
that

1

gs
y(λ)dλ → y(s)ds = −4

√
2

3
z

5
4 (2s − 1)

√
1 + s ds, (66)

for all p > 2. This is the spectral curve of the (2, 3) model, therefore we have
proved our claim. We can also interpret the r.h.s. as the Laplace transform of the
macroscopic loop operator of 2d gravity, which corresponds to the disk amplitude
of the FZZT brane of Liouville theory (see [25] and references therein).

4 Non-perturbative Effects and Large Order Behavior

It was pointed out in [26] that the matrix model description of this topological string
models can be used to describe spacetime instantons. In matrix models, instanton
effects are associated to eigenvalue tunneling [31, 10, 11], and in fact it is possible to
write down explicit formulae for the instanton amplitudes up to two loops by using
only information from the spectral curve [27].

Let us describe the instanton amplitudes for a matrix model described by a curve
of the form

y(z) = M(z)
√
(z− x1)(z− x2), (67)

The saddle points where the eigenvalues tunnel are located at

M(x0) = 0. (68)

The instanton action for an instanton tunneling to x0 is simply given by

A =
∫ x0

x1

y(p)dp. (69)
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There might be many possible saddles x0, and as usual the leading contribution
comes from the instanton with larger action (in absolute value). The one-loop fluc-
tuation around the instanton is given by

μ = −i
x1 − x2

4

√
1

2πM ′(x0)[(x0 − x2)(x0 − x1)] 5
2

. (70)

The instanton action and one-loop fluctuation are in general complex,

A = |A|eiθA, μ = |μ|eiθμ . (71)

Using the standard connection between instantons and large order behaviour (see
for example [24]) one finds that the Fg behave at large g as

Fg ∼ |A|−2g−b

π
Γ (2g + b) |μ| cos

(
(2g + b)θA + θμ

)
. (72)

where in the case of one-cut Hermitian matrix models and topological strings on
local curves [27]

b = −5

2
. (73)

As we explained in Sect. 2, the Fg amplitudes of topological string theory on
local curves can be computed by the matrix model formalism of [16] applied to the
curve (32), as discussed in [26]. Therefore, we can apply the general expressions
above to compute instanton amplitudes in terms of spectral curve data, and we can
indeed verify that the large order of the Fg is governed by (72). In order to apply
formulae (69), (70) we have to find the location of the saddle x0 in (68). For the
cases p = 3 and p = 4 the relevant solutions have been determined in [26]; they
are given by

x0 = 4x1x2

(
√
x1 −√

x2)2
, p = 3, (74)

and

x0 = 2
√
x1x2√

x1 −√
x2

, p = 4. (75)

An explicit expression for the instanton action was also computed in [26]; it is given
by the expression

A(Q) = F(x0)− F(x1), (76)

where
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F(x) = − log (f1(x))

(

log (f1(x))− 2 log

(

1 + 2f1(x)

(
√
x1 −√

x2)2

)

+ log

(

1 + 2f1(x)

(
√
x1 +√

x2)2

))

− 2Li2

(

− 2f1(x)

(
√
x1 −√

x2)2

)

− 2Li2

(

− 2f1(x)

(
√
x1 +√

x2)2

)

− log
(x1 − x2)

2

4
log x

− p log(f2(x))

(

log (f2(x))+ 2 log

(

1 − f2(x)

2
√
x1x2

)

− log

(

1 − 2f2(x)

(
√
x1 +√

x2)2

))

− 2pLi2

(

− f2(x)

2
√
x1x2

)

+ 2pLi2

(
2f2(x)

(
√
x1 +√

x2)2

)

+ p

2
(log x)2 + p log(

√
x1 +√

x2)
2 log x, (77)

and

f1(x) =
√
(x − x1)(x − x2)+ x − x1 + x2

2
,

(78)
f2(x) =

√
(x − x1)(x − x2)+ x +√

x1x2.

We can now numerically compare the behavior of the sequence Fg with the in-
stanton prediction (72). Since we have only computed ten terms in the sequence Fg ,
we need standard acceleration methods to extract the asymptotics with some pre-
cision. For example, assuming (72) holds, we can extract numerically the value of
A and compare to the instanton prediction. In order to extract A, we consider the
sequence

Fig. 1 The sequence Sg and the first three Richardson transforms for the local curve X3, at the
fixed value ζ = 0.24. The leading asymptotics are predicted to be given by the instanton action
A(ζ), shown as a straight line. The error for the available degree g = 8 is 0.014%
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Sg = 2g

√
Fg

Fg+1
= A+ O(1/g) (79)

for a fixed value of ζ , and its Richardson transforms S
(N)
g for N = 1, 2, . . . ,

which help to eliminate the subleading tail O(1/g). The resulting sequences S(N)
g (ζ )

should converge to A(ζ ), therefore they define numerical approximations to A(ζ ).
In Fig. 1 we show, for p = 3, the sequence Sg at ζ = 0.24 and its Richardson
transforms for N = 1, 2, 3. The instanton prediction for A is the straight line. As
we can see, the agreement between the numerical extrapolation and the instanton
prediction is remarkable.
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Repeated Interaction Quantum Systems

Marco Merkli

Abstract We consider a quantum system interacting sequentially with elements of
a chain of independent quantum subsystems. We treat two kinds of such repeated
interaction systems: deterministic and random ones. In both cases we show that,
under suitable conditions, the system approaches an asymptotic state in the large
time limit, and we construct that state.

Our methods are based on the analysis of products of operators generating the
dynamics at each step in the process of repeated interaction. In the random case, we
obtain results about infinite products of independent, identically distributed random
matrices.

1 Introduction

Consider a quantum system S which interacts with another one, E1, during a time
interval [0, τ1), then for times [τ1, τ1 + τ2), S interacts with another system E2,
and so on. The assembly of the Ek , which we suppose to be independent of each
other (i.e., not directly coupled), is called a chain, C = E1 + E2 + · · · . The system
S + C is called a repeated interaction quantum system. One may think of S as
being the system of interest, say a particle enclosed in a container, and of C as a
chain of measuring apparatuses Ek that are brought into contact with the particle in
a sequential manner. The system S is an open quantum system, which is coupled
to the “environment” C . Our goal to study the influence of the chain on S , and to
describe the (asymptotic) dynamics of the latter system.

The theoretical and practical importance of repeated interaction quantum sys-
tems is exemplified by systems of radiation-matter coupling, where atoms interact
with modes of the quantized electromagnetic field. In this setting, the system S
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Fig. 1 A repeated interaction system

describes one or several modes of the field in a cavity and the chain C represents
a beam of atoms E injected into the cavity. So-called “One-Atom Masers”, where
the beam is tuned in such a way that at each given moment a single atom is inside a
microwave cavity and the interaction time τ is the same for each single atom, have
been experimentally realized in laboratories [10, 11]. After interaction, the atoms
encode certain properties of the field that can be measured after they exit the cav-
ity.

We distinguish two classes of models of repeated interaction quantum systems.
In deterministic models, each system Ek is the a copy of a single quantum system E ,
and the interactions between S and C are determined by a fixed interaction time
τ > 0 and interaction operator V (acting on S and E ), τ, V being independent of
the interaction step. While deterministic models are interesting quantum dynamical
systems in their own right, it is clear that they are idealized mathematical mod-
els, if supposed to describe physical experiments (as for instance the “One-Atom
Maser”). Indeed, in actual experiments, neither the way of interaction, nor the inter-
action time, nor the elements E will be exactly the same for each step in the process.
Rather, the interaction time should be considered to be random, for instance given
by a Gaussian (or a uniform) distribution around a mean value. Further, the atoms in
experiments are ejected from an atom oven, then they are cooled down to a wanted
temperature before entering the cavity. Of course one cannot have absolute control
over their preparation or their interaction with the field in the cavity. Thus the state
of the incoming atoms should also be taken random, for instance determined by a
temperature that fluctuates slightly around a mean temperature. It is therefore im-
portant to develop a theory that allows for random repeated interaction systems,
which is the second class of systems we consider. The randomness may have differ-
ent sources, it may come from fluctuations in the incoming elements Ek , or in the
interaction, via random interaction times τk and/or random interaction operators V .
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Literature

The reader will find in [4, 5] a more detailed list of related works. Mathematical
work on systems similar to the ones considered here is done in [12], using entirely
different methods. The part of our work dealing with products of random matrices
and random ergodic theorems is linked to many other works, see the references
in [5].

2 Deterministic Systems

It is more convenient for the reader to first consider deterministic models, and to pass
to random ones in a second step. We describe our systems within the framework of
algebraic quantum statistical mechanics. An introduction to this can be found e.g.
in [2, 3].

2.1 Mathematical Description

The deterministic models consist of a system S which is coupled to a chain C =
E + E + · · · of identical elements E . We describe S and E as W ∗-dynamical
systems (MS , αt

S ) and (ME , αt
E ), where MS , ME are von Neumann algebras

“of observables” acting on the Hilbert spaces HS , HE , respectively, and where
αt

S and αt
E are (σ -weakly continuous) groups of ∗automorphisms describing the

Heisenberg dynamics. In this paper, we consider the situation dim HS < ∞ and
dim HE ≤ ∞.

We assume that there are distinguished reference vectors ψS ∈ HS and
ψE ∈ HE , determining states on MS and ME which are invariant w.r.t. αt

S and
αt

E , respectively, and we assume that ψS and ψE are cyclic and separating for MS

and ME , respectively. One may take equilibrium (KMS) vectors for these reference
vectors.

The Hilbert space of the chain C is defined to be the infinite tensor product

HC = ⊗m≥1HE (1)

w.r.t. the reference vector
ψC = ψE ⊗ ψE · · · . (2)

In other words, HC is obtained by taking the completion of the vector space of
finite linear combinations of the form ⊗m≥1φm, where φm ∈ HE , φm = ψE except
for finitely many indices, in the norm induced by the inner product

〈⊗mφm,⊗mχm〉 =∏m 〈φm, χm〉HE
. (3)
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We introduce the von Neumann algebra

MC = ⊗m≥1ME (4)

acting on ⊗m≥1HE , which is obtained by taking the weak closure of finite linear
combinations of operators ⊗m≥1Am, where Am ∈ ME and Am = 1lHE except for
finitely many indices.

The operator algebra containing the observables of the total system is the von
Neumann algebra

M = MS ⊗MC (5)

which acts on the Hilbert space

H = HS ⊗HC . (6)

The repeated interaction dynamics of observables in M is characterized by an
interaction time 0 < τ < ∞ and a selfadjoint interaction operator

V ∈ MS ⊗ME . (7)

For times t ∈ [τ(m− 1), τm), where m ≥ 1, S interacts with the m-th element of
the chain, while all other elements of the chain evolve freely (each one according to
the dynamics αE ). The interaction of S with every element in the chain is the same
(given by V ).

Let LS and LE be the standard Liouville operators (“positive temperature
Hamiltonians”, cf. references of [7, 9]), uniquely characterized by the following
properties: L# (where # = S ,E ) are selfadjoint operators on H# which implement
the dynamics αt

#,

αt
#(A) = eitL#Ae−itL# , ∀A ∈ M#, ∀t ∈ R (8)

and satisfy
L#ψ# = 0. (9)

We define the selfadjoint operator

L = LS + LE + V, (10)

omitting trivial factors 1lS or 1lE (by LS in (10) we really mean LS ⊗ 1lE , etc). L
generates the group of ∗automorphisms eitL · e−itL of MS ⊗ME , the interacting
dynamics between S and an element E of the chain C . The explicit form of the
operator V is dictated by the underlying physics, we give some examples in Sect. 4.

For m ≥ 1 let us denote by

L̃m = Lm +
∑

k $=m

LE ,k (11)
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the generator of the total dynamics during the interval [(m − 1)τ,mτ). We have
introduced Lm, the operator on H that acts trivially on all elements of the chain
except for the m-th one. On the remaining part of the space (which is isomorphic
to HS ⊗ HE ), Lm acts as L, (10). We have also set LE ,k to be the operator on
H that acts nontrivially only on the k-th element of the chain, on which it equals
LE . Of course, the infinite sum in (11) must be interpreted in the strong sense
on H .

Decompose t ∈ R+ as
t = m(t)τ + s(t), (12)

where m(t) is the integer measuring the number of complete interactions of duration
τ the system S has undergone at time t , and where 0 ≤ s(t) < τ . The repeated
interaction dynamics of an operator A on H is defined by

αt
RI(A) = URI(t)

∗AURI(t), (13)

where the unitary

URI(t) = e−is(t)L̃m(t)+1e−iτ L̃m(t) · · · e−iτ L̃1 (14)

defines the Schrödinger dynamics on H . According to this dynamics, S interacts
in succession, for a fixed duration τ and a fixed interaction V , with the first m(t)

elements of the chain, and for the remaining duration s(t) with the (m(t) + 1)-th
element of the chain.

Our goal is to examine the large time behaviour of expectation values of certain
observables in normal states * on M (states given by a density matrix on H ). The
system S feels an effective dynamics induced by the interaction with the chain C .
Under a suitable ergodicity assumption on this effective dynamics the small system
is driven to an asymptotic state, as time increases. We will express the effective
dynamics and the ergodic assumption using the modular data of the pair (MS ⊗
MC , ψS ⊗ ψC ).

Let J and Δ denote the modular conjugation and the modular operator associated
to (MS ⊗ME , ψS ⊗ ψE ), [3]. We assume that

(A) Δ1/2VΔ−1/2 ∈ MS ⊗ME

and we introduce the operator

K = L− JΔ1/2VΔ−1/2J, (15)

called the Liouville operator associated to ψS ⊗ ψE , [7, 9]. It generates a strongly
continuous group of bounded operators, denoted eitK , satisfying

‖eitK‖ ≤ e|t | ‖Δ1/2VΔ−1/2‖.

The main feature of the operator K is that eitK implements the same dynamics as
eitL on MS ⊗ME (since the difference K − L belongs to the commutant M′

S ⊗
M′

E ), and that
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KψS ⊗ ψE = 0. (16)

Relation (16) follows from assumption (A), definition (15) and the properties

Δ−1/2J = JΔ1/2 and JΔ1/2AψS ⊗ ψE = A∗ψS ⊗ ψE ,

for any A ∈ MS ⊗ME .
Let

P = 1lHS ⊗ |ψC 〉〈ψC | (17)

be the orthogonal projection onto HS ⊗ CψC
∼= HS , where ψC is given in (2).

Given an operator B on H , we identify PBP with an operator acting on HS . We
have

Proposition 1 ([4]). There is a constant C < ∞ s.t. ‖(P eitKP )m‖B(HS ) ≤ C,
for all t ∈ R, m ≥ 0. In particular, spec(P eitKP ) ⊂ {z ∈ C | |z| ≤ 1}, and all
eigenvalues lying on the unit circle are semisimple.

Relation (16) implies P eitKPψS = ψS , for all t ∈ R. Our assumption (E) on
the effectiveness of the coupling is an ergodicity assumption on the discrete dynam-
ics generated by

M ≡ M(τ) = P eiτKP. (18)

(E) The spectrum of M on the complex unit circle consists of the single eigenvalue
{1}. This eigenvalue is simple (with corresponding eigenvector ψS ).

Assumption (E) guarantees that the adjoint operator M∗ has a unique invariant vec-
tor, called ψ∗

S (normalized as
〈
ψ∗

S , ψS
〉 = 1), and that

lim
m→∞Mm = π := |ψS 〉〈ψ∗

S |, (19)

in the operator sense, where π is the rank one projection which projects onto CψS

along (Cψ∗
S )⊥. In fact, we have the following easy estimate (valid for any matrix M

with spectrum inside the unit disk and satisfying (E)).

Proposition 2 ([4]). For any ε > 0 there exists a constant Cε s.t. ‖Mm − π‖ ≤
Cεe−m(γ−ε), for all m ≥ 0, where γ := minz∈spec(M)\{1} | log |z| | > 0.

The parameter γ measures the speed of convergence. If all eigenvalues of M

are semisimple, then we have, in Proposition 2, ‖Mm − π‖ ≤ Ce−mγ for some
constant C and all m ≥ 0.

As a last preparation towards an understanding of our results we discuss the kinds
of observables we consider. One interesting such class is MS ⊂ M which consists
of observables of the system S only. There are other observables of interest. We
may think of the system S as being fixed in space and of the chain as passing
by S so that at the moment t , the (m(t) + 1)-th element E is located near S ,
cf. (12). A detector placed in the vicinity of S can measure at this moment in
time observables of S and those of the (m(t) + 1)-th element in the chain, i.e., an
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“instantaneous observable” of the form AS ⊗ ϑm(t)+1(AE ), where AS ∈ MS ,
AE ∈ ME , and ϑm : ME → MC is defined by

ϑm(AE ) = 1lE · · · 1lE ⊗ AE ⊗ 1lE · · · (20)

the AE on the right side of (20) acting on the m-th factor in the chain. An example
of such an observable is the energy flux (variation) of the system S . We call the
operator AS ⊗ ϑm+1(AE ) an instantaneous observable determined by AS ∈ MS

and AE ∈ ME . One may consider more general observables, [4].

2.2 Results

Throughout this section we assume that Conditions (A) and (E) of the previous
section are satisfied.

2.3 Asymptotic State

We consider the large time limit of expectations of instantaneous observables,

E(t) = *
(
αt

RI(AS ⊗ ϑm(t)+1(AE ))
)
, (21)

for normal initial states * on M. Define the state *+ on MS by

*+(AS ) = 〈ψ∗
S , AS ψS

〉
, (22)

where ψ∗
S is defined before (19).

Theorem 3 ([4]). Suppose that conditions (A) and (E) are satisfied, and let * be a
fixed normal state on M. For any ε > 0 there is a constant Cε s.t. for all t ≥ 0

|E(t)− E+(t)| ≤ Cε e−t (γ−ε)/τ , (23)

where γ > 0 is given in Proposition 2, and where E+ is the τ -periodic function

E+(t) = *+
(
Pα

s(t)
RI

(
AS ⊗ AE

)
P
)
. (24)

Remarks. (1) Using (23) and the uniqueness of the limit, one can see that the state
*+ does not depend on the choice of the reference state ψS .

(2) Cε in Theorem 3 is uniform in τ for τ > 0 varying in compact sets, and it is
uniform in

{
AS ∈ MS , AE ⊂ ME

∣
∣ ‖AS ‖ ‖AE ‖ ≤ const.

}
.

(3) We refer to [4] for corresponding results for more general variables.



482 Marco Merkli

2.4 Correlations & Reconstruction of Initial State

As Theorems 3 shows, the limit expectation values E+(t) are independent of the
initial state (since the state *+ is, cf. (22)). However, limiting correlations are not,
and their knowledge allows to reconstruct the initial state.

Fix a normal initial state * on M and let A ∈ M, AS ∈ MS , AE ∈ ME . We de-
fine the correlation between A and the instantaneous observable AS ⊗ϑm(t)+1(AE )

by
C (t;A,AS , AE ) = *

(
Aαt

RI

(
AS ⊗ ϑm(t)+1(AE )

))
. (25)

Theorem 4 ([4]). For any ε > 0 there is a constant Cε s.t. for all t ≥ 0

|C (t;A,AS , AE )− C+(t;A,AS , AE )| ≤ Cεe−t (γ−ε)/τ , (26)

where γ is given in Proposition 2, and where C+ is the τ -periodic limit correlation
function

C+(t;A,AS , AE ) = *(A) *+
(
Pα

s(t)
RI (AS ⊗ AE )P

)
, (27)

with *+ defined in (22).

Relation (27) shows that the initial state * can be recovered from the knowledge
of the asymptotic correlations C+ and the asymptotic state *+.

3 Random Systems

3.1 Dynamics and Random Matrix Products

We consider S to interact with a chain C = E1 + E2 + · · · , where the elements Ek

may vary with k. Correspondingly, we have Hilbert spaces HS , HEk
, dim HS <

∞, dim HEk
≤ ∞ and von Neumann algebras of observables MS ⊂ B(HS ),

MEk
⊂ B(HEk

), describing S and Ek , respectively. The uncoupled dynamics are
given by groups of ∗automorphisms, αt

S , αt
Ek

of MS , MEk
. We introduce, as in

the deterministic case, reference states ψS ∈ HS and ψEk
∈ HEk

, which are
cyclic and separating vectors for the corresponding von Neumann algebras. Typical
choices are KMS states with respect to the uncoupled dynamics, at given tempera-
tures. The total Hilbert space is H = HS ⊗HC , where HC = ⊗k≥1HEk

, where
the infinite tensor product is taken with respect to the vector ψ0 = ψS ⊗ ψC ,
with ψC = ψE1 ⊗ ψE2 ⊗ · · · . The free dynamics is αt

S ⊗k≥1 αt
Ek

, a group of
∗automorphisms on the von Neumann algebra M = MS ⊗k≥1 MEk

.
The interaction times are now given by τ1, τ2, . . . , and the interaction operators

by Vk ∈ MS ⊗ MEk
. As in the deterministic case, there are self-adjoint Liouville

operators L#, satisfying

eitL#A#e−itL# = αt
#(A#), and L#ψ# = 0,
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for all t ∈ R, A# ∈ M#, where # = S ,Ek . We define the (discrete) repeated inter-
action Schrödinger dynamics of a state vector φ ∈ H , for m ≥ 0, by

U(m)φ = e−iL̃m · · · e−iL̃2e−iL̃1φ,

where
L̃k = τkLk + τk

∑

n$=k

LEn
(28)

describes the dynamics during the time interval [τ1 + · · · + τk−1, τ1 + · · · + τk),
which corresponds to the time-step k of our discrete process. Here,

Lk = LS + LEk
+ Vk, (29)

acting on HS ⊗HEk
. Of course, we understand that the operator LEn

in (28) acts
nontrivially only on the n-th factor of the Hilbert space HC of the chain.

Our goal is to understand the large-time asymptotics (m →∞) of expectations

*(U(m)∗OU(m)) = *(αm
RI(O)), (30)

for normal states * and instantaneous observables O. We denote the repeated inter-
action dynamics in this setting by

αm
RI(O) = U(m)∗OU(m). (31)

Next, as in the deterministic case, we introduce new generators of the dynamics.
Let Jm and Δm denote the modular data of the pair (MS ⊗MEm

, ψS ⊗ψEm
) (see

e.g. [3]). In analogy with condition (A) (before (15)), we suppose that

(A′) Δ
1/2
m VmΔ

−1/2
m ∈ MS ⊗MEm

, ∀m ≥ 1.

Let us define the Liouville operator Km, compare with (15), by

Km = τm
[
LS + LEm

+ Vm − JmΔ
1/2
m VmΔ

−1/2
m Jm

]
. (32)

Its main dynamical features,

eiτmLmAe−iτmLm = eiKmAe−iKm, for A ∈ MS ⊗ME , (33)

KmψS ⊗ ψEm
= 0, (34)

(see also (16)), are proven to hold by using standard relations of the modular data

Δm, Jm, see e.g. [4]. Note also the bound ‖e±iKm‖ ≤ eτm‖Δ
1/2
m VmΔ

−1/2
m ‖.

Denote by P = 1lS ⊗ PC the projection onto the subspace HS ⊗ C[ψE1 ⊗
ψE2 ⊗ · · · ], and define, analogously to (18)

Mm = P eiKmP,

which we identify with an operator on RanP = HS . Suppose that we start initially
in the state ψ0 = ψS ⊗ ψC , where ψC = ψE1 ⊗ ψE2 ⊗ · · · . One shows that the
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expectation value of an observable A ∈ MS at step m is given by
〈
ψ0, α

m
RI(A)ψ0

〉 = 〈ψ0,M1 · · ·MmAψ0〉 ,
see the proof of Theorem 3 in Sect. 5, and [4, 5]. We thus see that in order to study
the asymptotics of the dynamics, we must consider products M1 · · ·Mm. Two crucial
properties of the operators Mk are

1. M1 · · ·Mm is bounded, uniformly in the number of factors m.
2. The Mk have a common invariant vector, MkψS = ψS , for all k.

The former fact follows quite easily from the fact that the Mk implement a dy-
namics which is norm-preserving, see e.g. [4, 5]. The latter fact follows directly
from the construction of the operators Mk . In the random setting, we shall con-
sider the Mk to be a family of independent, identically distributed random matrices,
called M(ω).

3.2 Results

We introduce a general class of random matrices having the two properties men-
tioned above. Let M(ω) be a random matrix on C

d , with probability space
(Ω,F , p). We say that M(ω) is a random reduced dynamics operator (RRDO)
if

(1) There exists a norm ||| · ||| on C
d such that, for all ω, M(ω) is a contraction on

C
d endowed with the norm ||| · |||.

(2) There is a vector ψS , constant in ω, such that M(ω)ψS = ψS , for all ω.

Note that (1) is equivalent to the property 1 from in the previous section. We nor-
malize ψS as ‖ψS ‖ = 1, where ‖ · ‖ denotes the Euclidean norm. To an RRDO
M(ω), we associate the (iid) random reduced dynamics process (RRDP)

Ψn(ω) := M(ω1) · · ·M(ωn), ω ∈ ΩN
∗
.

We will show that Ψn has a decomposition into an exponentially decaying part
and a fluctuating part. To identify these parts, we proceed as follows. It follows from
(1) and (2) that the spectrum of an RRDO M(ω) must lie inside the closed complex
unit disk, and that 1 is an eigenvalue (with eigenvector ψS ). Let P1(ω) denote the
spectral projection of M(ω) corresponding to the eigenvalue 1 (dimP1(ω) ≥ 1),
and let P ∗

1 (ω) be its adjoint operator. Define

ψ(ω) := P1(ω)
∗ψS , (35)

and set
P(ω) = |ψS 〉〈ψ(ω)|.

For ψ, φ ∈ C
d , we denote by |ψ〉〈φ| the rank-one operator |ψ〉〈φ|χ = 〈φ, χ〉ψ ,

and our convention is to take the inner products linear in the second factor. We put
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Q(ω) = 1− P(ω).

Note that the vector ψ(ω) is normalized as 〈ψS , ψ(ω)〉 = 1. We decompose M(ω)

as
M(ω) = P(ω)+Q(ω)M(ω)Q(ω) =: P(ω)+MQ(ω). (36)

Taking into account this decomposition, one easily shows the following result.

Proposition 5 ([5]). We have

Ψn(ω) := M(ω1) · · ·M(ωn) = |ψS 〉〈θn(ω)| +MQ(ω1) · · ·MQ(ωn), (37)

where θn(ω) is the Markov process

θn(ω) = M∗(ωn) · · ·M∗(ω2)ψ(ω1), (38)

M∗(ωj ) being the adjoint operator of M(ωj ).

We analyze the two parts in the r.h.s. of (37) separately. Let M(E) be the set of
RRDOs M whose spectrum on the complex unit circle consists only of a simple
eigenvalue {1}. On ΩN

∗
we define the probability measure dP in a standard fashion

by
dP = Πj≥1dpj , where dpj ≡ dp, ∀j ∈ N

∗.

Theorem 6 (Decaying process, [5]). Let M(ω) be a random reduced dynamics op-
erator. Suppose that p(M(ω) ∈ M(E)) > 0. Then there exist a set Ω1 ⊂ ΩN

∗
and

constants C, α > 0, s.t. P(Ω1) = 1 and s.t. for any ω ∈ Ω1 and any n ≥ 1,

‖MQ(ω1) · · ·MQ(ωn)‖ ≤ Ce−αn. (39)

Remarks. 1. In the case where M(ω) = M is constant, and M ∈ M(E), one readily
shows that for any ε > 0 there is a Cε such that ‖(MQ)n‖ ≤ Cεe−n(γ−ε), for all
n ≥ 0, and where γ = minz∈spec(M)\{1} | log |z| | (see e.g. also Proposition 2). It is
remarkable that in the random case, the mere condition of M having an arbitrarily
small, non-vanishing probability to be in M(E) suffices to guarantee the exponential
decay of the product in (39).

2. Any stochastic matrix whose entries are all nonzero belongs to M(E).
3. If {1} is a simple eigenvalue of M(ω) then the decomposition (36) is just the

spectral decomposition of the matrix M(ω).
4. The choice (35) ensures that ψ(ω) is an eigenvector of M∗(ω). Other choices

of measurable ψ(ω) which are bounded in ω lead to different decompositions of
M(ω), and can be useful as well. For instance, if M(ω) is a bistochastic matrix,
then one can take for ψ(ω) an M∗(ω)-invariant vector which is constant in ω.

Our next result concerns the asymptotics of the Markov process (38). Set E[f ] =∫
Ω
f (ω)dp(ω) for a random variable f , and denote by P1,E[M] the spectral projec-

tion of E[M] onto the eigenvalue {1}.
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Theorem 7 (Fluctuating process, [5]). Let M(ω) be a random reduced dynamics
operator. Suppose that p(M(ω) ∈ M(E)) > 0. Then we have E[M] ∈ M(E). More-
over, there exists a set Ω2 ⊂ ΩN

∗
s.t. P(Ω2) = 1 and, for all ω ∈ Ω2,

lim
N→∞

1

N

N∑

n=1

θn(ω) = θ, (40)

where
θ = (1l − E[MQ]∗

)−1
E[ψ] = P ∗

1,E[M]E[ψ] = P ∗
1,E[M]ψS . (41)

Remarks. 5. In the case where M is constant in ω, we have E[MQ]∗ = (MQ)∗,
E[ψ] = ψ , and under the assumption of Theorem 7, that M ∈ M(E). Therefore,
P1 = P = |ψS 〉〈ψ | and hence Q∗ψ = 0, and (MQ)∗ψ = 0. Consequently, we
have θ = ψ . This coincides with the results of Theorem 3. However, the latter
equality is not satisfied for general, ω-dependent matrices M , as is shown in [5].

6. The ergodic average limit of θn(ω) does not depend on the particular choice of
ψ(ω). This follows from the last equality in (41).

7. We show in [5] that for every fixed ω, θn(ω) converges if and only if ψ(ωn)

converges, and that the limits coincide if they exist.

Combining Theorems 6 and 7 we obtain the following result.

Theorem 8 (Ergodic theorem for RRDP, [5]). Let M(ω) be a random reduced dy-
namics operator. Suppose p(M(ω) ∈ M(E)) > 0. Then there exists a set
Ω3 ⊂ ΩN

∗
s.t. P(Ω3) = 1 and, for all ω ∈ Ω3,

lim
N→∞

1

N

N∑

n=1

M(ω1) · · ·M(ωn) = |ψS 〉〈θ | = P1,E[M]. (42)

Remark. 8. If one can choose ψ(ω) ≡ ψ to be independent of ω (see also Remark 4
above), then one can show (see [5]) that θn(ω) = ψ , for all n, ω. It thus follows from
(37)–(39) that limn→∞M(ω1) · · ·M(ωn) = |ψS 〉〈ψ |, a.s., exponentially fast.

4 An Example: Spins

We consider a model in which the small system as well as the elements of the chain
are 2-level systems. Such models (or more generally, a d-level system interacting
with a chain of n-level systems, a situation we could equally well treat here) have
been considered previously in [1].

Consider the trace state on a two-level system, *∞(A) = 1
2 Tr(A), where A ∈

M2(C) is a 2 × 2 matrix, and the trace is taken over C
2. In order to represent *∞

by a vector state, we must perform the Gelfand-Naimark-Segal construction. The
representation Hilbert space is C

2 ⊗ C
2, and we have
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*∞(A) = 〈ψ∞, (A⊗ 1l)ψ∞〉,
where the inner product is that of C

2⊗C
2 and where ψ∞ = 1√

2
[ϕ1⊗ϕ1+ϕ2⊗ϕ2],

with

ϕ1 =
[

1
0

]

, and ϕ2 =
[

0
1

]

.

This representation serves to represent the mixed state *∞ by a vector state in an
“enlarged” Hilbert space. The von Neumann algebra of observables for the small
system and for the elements of the chain are

MS = ME = M2(C)⊗ 1 = {A⊗ 1|A ∈ M2(C)}, (43)

acting on the Hilbert space HS = HE = C
2 ⊗ C

2. Let ES , EE > 0 be the “ex-
cited” energy levels of the small system and the elements of the chain, respectively.
The dynamics are given by

αt
S (A⊗1) = eithS Ae−ithS ⊗1, and αt

E (A⊗1) = eithE Ae−ithE ⊗1, (44)

where

hS =
[

0 0
0 ES

]

, hE =
[

0 0
0 EE

]

.

We choose the reference state ψS to be the tracial state ψ∞ defined above. The as-
sociated Liouville operator is LS = hS ⊗1−1⊗hS , and the modular conjugation
and modular operator associated to (MS , ψS ) are

JS (φ ⊗ χ) = χ ⊗ φ̄, ΔS = 1⊗ 1, (45)

where φ̄ denotes entrywise complex conjugation (in the canonical basis).
In order to avoid confusion between the small system and elements of the chain,

we denote by φij = φi ⊗ φj the basis of HE . We take the reference state of E to be
the (αt

E , β)-KMS state. Its representative vector is

ψE = 1√
1 + e−βEE

(φ11 + e−βEE /2φ22). (46)

The standard Liouville operator is LE = hE ⊗ 1 − 1 ⊗ hE , and the modular
conjugation and modular operator associated to (ME , ψE ) are

JE (φ ⊗ χ) = χ ⊗ φ̄, ΔE = e−βLE . (47)

We now describe the interaction between S and E . Let us denote by a and a∗
the annihilation and creation operators,

a# =
[

0 1
0 0

]

and a∗# =
[

0 0
1 0

]

,

where # = S ,E . Let a, b, c, d ∈ C and set
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I =
[
a b

c d

]

.

The interaction operator, acting on HS ⊗HE = C⊗C⊗C⊗C is then defined as

V = I ⊗ 1⊗ a∗ ⊗ 1+ I ∗ ⊗ 1⊗ a ⊗ 1. (48)

The standard Liouville operator, generating the interacting dynamics, is the self-
adjoint operator

Lλ := LS + LE + λV, (49)

where λ is a real coupling constant. In this setting, we have

Mλ=0 = P eiτLS P,

and we will always assume that τES /∈ πZ, in order to ensure that the spectrum
of Mλ=0 is nondegenerate. This assumption is made for convenience, and can most
probably be lifted.

The operator K associated to Lλ and the reference state ψS ⊗ ψE ⊗ ψE · · ·
(see (15)) is

Kλ := LS + LE + λ(V − JΔ1/2VΔ−1/2J ) = K0 + λW. (50)

We consider the following assumptions on the effectiveness of the coupling opera-
tor, where τ denotes the interaction time.

(S1) b $= 0 and τ(EE − ES ) /∈ 2πZ.

(S2) c $= 0 and τ(EE + ES ) /∈ 2πZ.

The proof of the following result is based on perturbation theory in λ. We outline it
in Sect. 5. Set sinc(x) = sin(x)/x.

Theorem 9 (Deterministic spin model [4]). Suppose that τEE /∈ πZ and that
either Assumption (S1) or (S2) is satisfied. Then, there exists λ0 > 0 such that for
all 0 < |λ| < λ0, the operator Mλ := P eiτKλP satisfies the ergodic assumption (E).
In particular the spin-spin system satisfies Theorem 3, with γ ≥ γ0λ

2 + O(λ4).
Moreover, the asymptotic state *+,λ is given by

*+,λ(AS ) = 1

α1 + α2
〈α1ψ11 + α2ψ22, AS (ψ11 + ψ22)〉 +O(λ2), (51)

where

α1 := |b|2sinc2
[
τ(EE − ES )

2

]

+ e−βEE |c|2sinc2
[
τ(EE + ES )

2

]

,

α2 := e−βEE |b|2sinc2
[
τ(EE − ES )

2

]

+ |c|2sinc2
[
τ(EE + ES )

2

]

,

γ0 := τ 2 min

[
α1 + α2

1 + e−βEE
,

1

2

α1 + α2

1 + e−βEE
+ |a − d|2

2
sinc2(

τEE

2
)

]

.
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Assumptions (S1), (S2) serve to ensure that γ0 > 0. Indeed, if (S1) is satisfied,
then α1 > 0, if (S2) is satisfied, then α2 > 0.

Recall that we denote by M(E) the set of matrices M whose spectrum on the
complex unit circle consists only of a simple eigenvalue 1 (cf. after (38)). The next
result gives an explicit bound on the coupling constant λ which ensures that M is
in M(E). We give a proof in Sect. 5.

Lemma 10. Suppose that

λ2
0 :=

1

2 cosh(‖W‖τ)
[

|b|2 sin2(τ (EE − ES )/2)

(EE − ES )2
+ |c|2 sin2(τ (EE + ES )/2)

(EE + ES )2

]

> 0.

If 0 < |λ| < λ0, then Mλ ∈ M(E).

Let us now consider the same system, but with a random interaction time
τ = τ(ω). (The following analysis extends pretty effortlessly to more general set-
tings, where e.g. also the temperature β, the energies EE , ES , or the coefficients
a, b, c, d , of the interaction matrix are random, cf. [6].) Consider the conditions

(S3) b $= 0 and there is an η− > 0, s.t.

p
(
τEE /∈ πZ, |τ [EE − ES ]/2 − πZ| ≥ η−

)
> 0.

(S4) c $= 0 and there is an η+ > 0, s.t.

p
(
τEE /∈ πZ, |τ [EE + ES ]/2 − πZ| ≥ η+

)
> 0.

Again, the condition τEE /∈ πZ is imposed so that Mλ=0 has simple spectrum,
which makes the calculations in the perturbation theory somewhat simpler. This
condition can most probably be dropped.

Theorem 11 (Random spin model). Suppose that either

1. Condition (S3) is satisfied, and

0 < λ2 <
|b|2

2 cosh(2η−‖W‖ |EE − ES |−1)

sin2(η−)
(EE − ES )2

,

or
2. Condition (S4) is satisfied, and

0 < λ2 <
|c|2

2 cosh(2η+‖W‖ |EE + ES |−1)

sin2(η+)
(EE + ES )2

.

Then the results of Theorems 6–8 hold.

We prove this result in Sect. 5.
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5 Some Proofs

Outline of the Proof of Theorem 3

We outline the proof for the special case where *+(·) = 〈ψ0, ·ψ0〉, where ψ0 =
ψS ⊗k≥1 ψE , and for observables AS ∈ MS . Recall that

αt
RI(AS ) = eiτ L̃1 · · · eiτ L̃meisL̃m+1AS e−isL̃m+1e−iτ L̃m · · · e−iτ L̃1 . (52)

The proof of Theorem 3 has four main ingredients.

1. Factorization of the free dynamics. Taking into account the decomposition (11)
of L̃k , we see that

e−isL̃m+1e−iτ L̃m · · · e−iτ L̃1 = U−
m e−isLm+1 e−iτLm · · · e−iτL1U+

m ,

where U±
m are the unitaries

U−
m = exp

[

−i
m∑

j=1

[(m− j)τ + s]LE ,j

]

,

U+
m = exp

[

−i
m+1∑

j=2

(j − 1)τLE ,j − i(mτ + s)
∑

j≥m+1

LE ,j

]

.

Clearly, U±
mψ0 = ψ0, for all m, so (52) gives

〈
ψ0, α

t
RI(AS )ψ0

〉 = 〈ψ0, eiτL1 · · · eisLm+1AS e−isLm+1 · · · e−iτL1ψ0
〉
. (53)

2. Passage to non-self-adjoint generator of dynamics. We now employ a trick that
has been recently invented to analyze the asymptotics of open quantum systems
far from equilibrium [7, 9]. We replace the operators Lm by operators Km, hav-
ing the property that Km implements the same dynamics as Lm, but satisfies in
addition the property Kmψ0 = 0. The existence of such operators is linked to
the deep Tomita-Takesaki theory of von Neumann algebras, and in fact, Km is
expressed in terms of the modular data (J,Δ) associated to the pair (M, ψ0),
[3]. It is given explicitly by (36). We thus obtain from (53)

〈
ψ0, α

t
RI(AS )ψ0

〉 = 〈ψ0, eiτK1 · · · eiτKmeisKm+1AS ψ0
〉
. (54)

3. Reduction of the dynamics. In this step we take advantage of the fact that the ele-
ments E in the chain C are independently prepared (not entangled) and dynami-
cally not directly coupled. Let P be the orthogonal projection onto HS ⊗ ψC ,
where ψC = ψE ⊗ψE ⊗· · · . Then AS ψ0 = AS Pψ0 = PAS ψ0 (since ψ0 =
Pψ0, and AS ∈ MS ), so we are led to consider P eiτK1 · · · eiτKmeisKm+1P .
Writing P = PψE ⊗ PψE ⊗ · · · , where ψE = |ψE 〉〈ψE |, we note that
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eisKm+1P = (PψE ⊗ · · ·PψE ⊗ PψE ⊗ 1l ⊗ PψE ⊗ · · · )eisKm+1P, (55)

where the identity operator stands at the spot (m + 1). This follows simply be-
cause Km+1 acts non-trivially only on the factor (m + 1) on the chain. On the
other hand, for the same reason, we have

P eiτK1 · · · eiτKm = P eiτK1 · · · eiτKm(1l⊗ 1l · · · ⊗ 1l⊗PψE ⊗PψE ⊗ · · · ), (56)

where the first nontrivial projection on the right is on factor m + 1. The combi-
nation of (55) and (56) gives

P eiτK1 · · · eiτKmeisKm+1P = P eiτK1P · · ·P eiτKmP eisKm+1P. (57)

Since the interaction is the same at each step in the repeated interaction process,
we can identify the operator

P eiτLkP ≡ M

as an operator on HS , independent of k. Thus, with (54) and (57), we obtain
〈
ψ0, α

t
RI(AS )ψ0

〉 = 〈ψ0,M
m(t)P eis(t)KPAS ψ0

〉
, (58)

where we also set P eis(t)KkP = P eis(t)KP , for any k. The dynamical process is
now clear: the term Mm(t) will have a limit as t →∞ (under suitable conditions),
while P eis(t)KP is oscillating in t (with period τ ).

4. Spectral analysis of M and decay of Mm(t). Proposition 2 shows that

∣
∣
〈
ψ0, α

t
RI(AS )ψ0

〉− 〈ψ∗
S , α

s(t)
RI (AS )ψS

〉∣
∣ ≤ Cεe−t (γ−ε)/τ ,

where we have taken into account that

〈
ψ0, P eis(t)KPAS ψ0

〉 = 〈ψ0, P eis(t)LAS e−is(t)Lψ0
〉 = 〈ψ0, α

s(t)
RI (AS )ψ0

〉
.

This concludes the proof of Theorem 6 in the special setting.

Outline of the Proof of Theorem 9

A Dyson expansion gives

eiτKλ = eiτK0 + iλ
∫ τ

0
dtei(τ−t)K0WeitK0

− λ2
∫ τ

0

∫ t

0
ei(τ−t)K0Wei(t−s)K0WeisK0 ds dt + R(τ, λ), (59)

where
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R(τ, λ)

=
∑

n≥2

(−λ)2n
∫ τ

0
dt1 · · ·

∫ t2n−1

0
dt2n P eit1K0We−it1K0 · · · eit2nK0We−it2nK0P.

(60)

After a somewhat lengthy but straightforward computation, one obtains a perturba-
tive expression for the operator M(λ) = P eiτKλP , and the following expansions for
the three eigenvalues e0(λ), e±(λ) of M(λ), other than the eigenvalue 1:

e0(λ) = 1 − λ2τ 2

1 + e−βEE
(α1 + α2)+O(λ4)

e+(λ) = eiτES

[

1 − λ2τ 2

2(1 + e−βEE )

(

α1 + α2 + (1 + e−βEE )|a − d|2

× sinc2
(
τEE

2

))

+ i
λ2τ 2

1 + e−βEE

(

(1 − e−βEE )(|a|2 − |d|2)1 − sinc(τEE )

τEE

+ (1 − e−βEE ) Im(ād)sinc2
(
τEE

2

)

− (1 + e−βEE )|b|2 1 − sinc(τ (EE − ES ))

τ (EE − ES )

+ (1 + e−βEE )|c|2 1 − sinc(τ (EE + ES ))

τ (EE + ES )

)]

+O(λ4) (61)

e−(λ) = e−iτES

[

1 − λ2τ 2

2(1 + e−βEE )

(

α1 + α2 + (1 + e−βEE )|a − d|2

× sinc2
(
τEE

2

))

+ i
λ2τ 2

1 + e−βEE

(

(1 − e−βEE )(|d|2 − |a|2)1 − sinc(τEE )

τEE

+ (1 − e−βEE ) Im(ad̄) sinc2
(
τEE

2

)

+ (1 + e−βEE )|b|2 1 − sinc(τ (EE − ES ))

τ (EE − ES )

− (1 + e−βEE )|c|2 1 − sinc(τ (EE + ES ))

τ (EE + ES )

)]

+O(λ4).

These expressions show that we have

| log |e0(λ)|| ≥ λ2τ 2

1 + e−βEE
(α1 + α2)+O(λ4),
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| log |e±(λ)|| ≥ λ2τ 2

2(1 + e−βEE )

(

α1 + α2 + (1 + e−βEE )|a − d|2sinc2
(
τEE

2

))

+O(λ4).

Therefore, minz∈spec(M)\{1} | log |z| | ≥ λ2γ0+O(λ4), where γ0 is as in Theorem 9.
In order to calculate the asymptotic state *+,λ, (51), one performs perturbation

theory in the formula (22). We do not present the calculations here.

Proof of Lemma 10. We need to show that |e0(λ)|, |e±(λ)| < 1, where e0(λ),
e±(λ) are given in (61). The error term in those expressions are bounded above
by ‖R(τ, λ)‖, cf. (59) and (60) (and [8], II.3, Theorem 3.9). We have (|λ| ≤ 1)

‖R(τ, λ)‖ ≤
∑

n≥2

λ2n‖W‖2n τ 2n

(2n!) ≤ λ4 cosh(‖W‖τ).

To ensure that |e0(λ)| < 1, we thus impose the condition

λ2 cosh(‖W‖τ) < 1

2

τ 2(α1 + α2)

1 + e−βEE
,

which is equivalent to |λ| < λ0. Next, we want to impose |e±(λ)| < 1. We write
|e±| = |1− x + iy + ξ |, where x ≥ 0, y ∈ R and ξ ∈ C are read off the expression
for e± given in (61). Here, −x + iy are the terms of order λ2 coming from the
Dyson series expansion, and ξ incorporates all higher order terms (orders ≥ 4). It
is sufficient to impose the condition |ξ | < 1 − |1 − x + iy| in order to ensure that
|e±| < 1. Using that x2 + y2 ≤ [λ2‖W‖2τ 2/2]2, one easily sees that last upper
bound on ξ holds provided

−2x +
[
λ2‖W‖2τ 2

2

]2

< −2λ2 cosh(‖W‖τ)+ λ8 cosh2(‖W‖τ). (62)

By using the explicit formula

x = λ2τ 2

2(1 + e−βEE )

(

α1 + α2 + (1 + e−βEE )|a − d|2sinc2
(
τEE

2

))

,

one easily verifies that (62) holds provided that |λ| < λ0.  !
Proof of Theorem 11. We just have to show that

p
(
M(ω) ∈ M(E)

)
> 0. (63)

We consider condition 1 only, condition 2 is dealt with in the same way. Due to
assumption (S3), there is a set Ω0 ⊂ Ω , s.t. p(Ω0) > 0, and, for all ω ∈ Ω0, we
have sin2(τ (ω)(EE − ES )/2) ≥ sin2(η−) and τ(ω) ≥ 2η−|EE − ES |−1. Due to
Lemma 10, we have that M(ω) ∈ M(E) provided λ2 satisfies the bounds given in
point 1 of Theorem 11, and this for any ω ∈ Ω0. Thus (63) holds.  !
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String-Localized Quantum Fields, Modular
Localization, and Gauge Theories

Jens Mund�

Abstract The concept of modular localization introduced by Brunetti, Guido and
Longo, and Schroer, can be used to construct quantum fields. It combines Wigner’s
particle concept with the Tomita-Takesaki modular theory of operator algebras. I re-
port on the construction of free fields which are localized in semi-infinite strings ex-
tending to space-like infinity (mainly in collaboration with B. Schroer and J. Yngva-
son). Particular applications are: The first local (in the above sense) construction of
fields for Wigner’s massless “infinite spin” particles; String-localized vector/tensor
potentials for Photons and Gravitons, respectively; Massive vector bosons. Some
speculative ideas are be presented concerning the perturbative construction of gauge
theories (and quantum gravity) completely within a Hilbert space, trading gauge de-
pendence with dependence on the direction of the localization string.

1 The Notion of String-Localized Quantum Fields

The principle of locality demands that observables be measurable in bounded re-
gions of spacetime, and that observables localized in space-like separated regions be
compatible. This principle is usually implemented by (point-like localized) quantum
fields which commute for space-like separated arguments. In addition to the observ-
ables there may be, however, unobservable charge–carrying fields. In models, these
are constructed first and then the observables are constructed from them, usually
selected by a global gauge principle. (For example, the observables in the case of a
charged scalar field ϕ(x) are generated by the currents jμ(x).)
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The unobservable fields need, in general, not be localized in bounded regions.
In some cases, the fundamental fields even cannot be localized in bounded regions:
For example, if they carry a so-called “gauge charge” [8], that is a charge which
can be determined at space-like infinity by a version of Gauss’ law. Another in-
stance are fields whose basic excitations are certain “exotic” particle types, namely
Anyons [35] in 2 + 1 dimensions and Wigner’s so-called massless “infinite spin”
particles [34]. The former correspond to irreducible massive positive-energy repre-
sentations of the Poincaré group whose spin is not integer or half-integer (which
is admitted in two space dimensions). The work of Doplicher et al. [11] implies
that the corresponding fields cannot be compactly localized. The latter correspond
to irreducible massless representations with infinitely many polarization degrees of
freedom, corresponding to a faithful representation of the little group E(2). J. Yng-
vason has shown [36] that fields with such excitations cannot be point-like localized
in the sense of Wightman fields.

Besides the necessity to introduce “non-local” fields in certain models, an impor-
tant motivation to consider such fields is that they promise better UV behaviour and
hence a larger class of renormalizable interactions. In fact, this has been the moti-
vation in the 50ies to study “non-local interactions” [17, 20], but this hope has been
disappointed in the 70ies [19]. From the present point of view, the reason was that
in these days there has not been known a proper notion of “non-locality”. Namely,
the charge carrying fields do have to satisfy some localization properties since they
must generate local observables. This has not been achieved in the mentioned ap-
proaches [19].

Later, it has been realized that a proper notion of “non-locality” is localizability
in space-like cones [18, 9]. A space-like cone is a salient cone in space-time which
extends to space-like infinity. In particular, it has been shown by Buchholz and Fre-
denhagen [9] that if the theory is purely massive and allows for the construction of
local observables, then the charged fields must be localized2 in space-like cones.

Important structural results have been shown for theories with such localization,
like the construction of scattering states [9], analyticity of the S-matrix [3], the
analysis of the superselection charge structure [10], and the Bisognano-Wichmann
and PCT theorems [21]. Similarly, Brunetti et al. [7] have shown the existence of
a free field algebra localized in space-like cones for all (bosonic) particle types,
including the massless “infinite spin” particles.

Steinmann [27], inspired by the ideas of Mandelstam [18], introduced the notion
of quantum fields localized on space-like strings, idealizing a cone. Such “string”
is a ray extending from a point in Minkowski space to infinity in some space-like
direction. More precisely, if x is a point in R

4 and e is a point in the manifold of
space-like directions,

H := {e ∈ R
4, e · e = −1}, (1)

then the string Sx,e emanating from x in direction e is given by

2 In the case of charged fields, localization means that space-like separated fields have vanishing
commutators or anti-commutators or, in 2+ 1 dimensions, satisfy more general (braided) commu-
tation relations.
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Sx,e := x + R
+
0 e. (2)

Steinmann proved the Jost-Schroer theorem for fields with such localization [27].
In [24, 25], we have elaborated on this concept, introducing the notion of a covariant
string-localized quantum field, as follows.

Definition 1. A covariant string-localized quantum field is an operator valued dis-
tribution ϕ(x, e) on R

4 ×H satisfying

(i) String-locality: If S(x, e) and S(x′, e′) are space-like separated, then

[ϕ(x, e), ϕ(x′, e′)] = 0; (3)

(ii) Covariance: There is a representation U of the Poincaré group P↑
+ such that

U(a,Λ)ϕ(x, e)U(a,Λ)−1 = ϕ(Λx + a,Λe) (4)

holds for all (a,Λ) ∈ P↑
+.

(We also consider the case where the fields have, in addition, tensor or spinor in-
dices, cf. below.) Our original aim, motivating the introduction of this concept, was
an explicit construction of free fields for the massless infinite spin particles, improv-
ing the existence result of Brunetti et al. [7]. This goal has been reached [24, 25], but
we also constructed free covariant string-localized fields for all other particle types.
These by-products turned out to be at least as interesting than the original objective,
since these fields might be a good starting point for a perturbative construction of
new interacting quantum fields, as I shall try to motivate in Sect. 4.

The next section is meant to sketch the role of modular localization in our con-
struction of free fields. Section 3 summarizes results on free fields and their (time-
ordered) two-point functions, and Sect. 4 gives a speculative outlook on the con-
struction of interacting string-localized fields.

2 Modular Localization and the Construction of Free
String-Localized Fields

In the point-localized case, covariance of free fields essentially already (almost)
implies locality. In the string-localized case, this is not so and there are no guidelines
from the usual field theory methods in implementing locality (3). Hence independent
ideas are warranted. In the context of algebraic QFT, there is an appropriate concept,
the so-called modular localization. This concept has been introduced by Brunetti et
al. [7] and by Schroer [14]. It is based on the Bisognano-Wichmann theorem [2,
21], which asserts that for a large class of models, certain algebraic invariants of the
field algebra are fixed by the (ray) representation of the Poincaré group under which
the field transforms, and the S-matrix. These algebraic invariants are the Tomita
operators S(O) of the algebra of fields localized in O , for each space-time region O .
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The principle of modular localization consists in inverting the argument: Namely,
the Tomita operators can be consistently constructed from the representation of the
Poincaré group (and the S-matrix). This has been done by the author for Anyons
in d = 2 + 1 at the single particle level [22]. Moreover, (in the non-Anyon case)
the family of Tomita operators allows for the construction of free local fields. This
concept of modular localization has been used by Brunetti et al. in the mentioned
existence proof of free fields localized in space-like cones for every bosonic particle
type, including the massless infinite spin particles [7].

As mentioned, the aim of [24, 25] was to achieve more, namely an explicit con-
struction, and idealization of the space-like cones to strings Sx,e. By the Jost-Schroer
theorem for string-localized fields [27], it suffices to solve the problem on the level
of the single particle space, consisting of L2 functions on the mass shell H+

m with
values in the “little Hilbert space” (corresponding to the spin degrees of freedom).
The field ϕ(x, e) must create from the vacuum Ω a single particle state of the form

〈p |ϕ(x, e)Ω〉 = eipxu(e, p), p ∈ H+
m , (5)

where u(e, p) is a distribution in e ∈ H and a function in p ∈ H+
m with values

in the “little Hilbert space” satisfying certain properties which encode locality and
covariance: Firstly, our requirement of string-locality (3) implies that ϕ(x, e)Ω is
(after smearing) in the domain of definition of each Tomita operator pertaining to
any space-like cone containing the string Sx,e. The concept of modular localization
then implies that for fixed p, u(e, p) is the boundary value of an analytic function
on the tuboid T+ in the natural complexification of H consisting of those complex e

whose imaginary part is in the open forward light cone. This function is of moderate
growth near the real “boundary” H , in the sense of [4], thereby defining u(e, p) as
a distribution on H . Secondly, covariance (4) implies that u satisfies the intertwiner
property

D(R(Λ, p))u(Λ−1e,Λ−1p) = u(e, p) (6)

for (e, p) ∈ T+ × H+
m and Λ ∈ L ↑

+ . Here, R(Λ,p) is the Wigner rotation and
D is the representation of the little group which induces the irreducible (ray) rep-
resentation of the Poincaré group corresponding to the particle type at hand. With
the intertwiner function u(e, p) one associates a Hermitean field acting in the Fock
space over the corresponding one particle space, via

ϕ(x, e) =
∫

H+
m

dμ(p)
{
eip·xu(e, p) ◦ a∗(p)+ e−ip·xu(e, p) ◦ a(p)}. (7)

Here, dμ(p) is the Lorentz invariant measure on H+
m , and the circle ◦ denotes (slop-

pily speaking) summation/integration over the spin degrees of freedom. (In (7) it has
been assumed that u(e, p) satisfies a certain self-conjugacy property (which can be
achieved for all particle types), yielding a Hermitean field.) This field is then in fact
covariant in the sense of (4) under the second quantization U of the corresponding
irreducible representation, and string-localized in the sense of (3).
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3 Results on Free String-Localized Fields

Along the indicated lines, we have constructed free covariant string-localized fields
for all bosonic particle types, including the massless infinite spin particles in [25].
(String-localized fermions can also be constructed; they need an additional spinor
index.) Our fields satisfy the Reeh-Schlieder and Bisognano-Wichmann properties.

We have also found the following uniqueness result. Every covariant string-
localized field is of the form (7), and the intertwiner function u is unique up to
multiplication with a function of e · p which is meromorphic on the upper com-
plex half plane. (That is to say, if û is another intertwiner function, then u(e, p) =
F(e · p)û(e, p), where F is a numerical function, meromorphic on the complex
upper half plane.)

Due to the worse localization, our fields have a better short distance behaviour
than their point-like localized counterparts in the cases where these exist. For exam-
ple, for massless particles with helicity ±1 and ±2, corresponding to photons and
gravitons, the Fourier transforms of the propagators3 behave like |p|−2 for large p,
cf. (12), (17) and (22) below. This behaviour is a prerequisite for any non-trivial
interaction, and can in the point-localized case be achieved only in the setting of
gauge theory, at the price of an indefinite metric space or loss of covariance. For
massive particles of arbitrary spin s we also have constructed fields whose propaga-
tors behave like |p|2s−2−2α , where α is a positive number smaller than 2. This is to
be contrasted with the point-localized case, where the propagators for spin s behave
at best like |p|2s−2 [32].

In the following we present some details on the fields, two-point functions and
propagators for the particular models. More details, and the proofs, shall be pub-
lished in a forthcoming paper [23].

3.1 Fields and Two-Point Functions

Let us now specify the fields and/or two-point functions for the particular cases:
Massless infinite spin particles, photons, massive vector bosons, massive fields with
arbitrary spin without vector/tensor indices, and massless fields with helicity ±2.

Massless Infinite Spin Particles

These correspond to representations of the Poincaré group where the inducing repre-
sentation of the little group E(2) = R

2
� SO(2), corresponding to the spin degrees

of freedom, is faithful. Such inducing representation Dκ is infinite dimensional,
characterized by a parameter κ > 0, and acts on L2(R2, δ(k2 − κ2)d2k) as

3 By (Feynman) propagator, we mean time-ordered two-point function.
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(Dκ(c, R)ψ)(k) := eic·kψ(R−1k),

(c, R) ∈ R
2

� SO(2). For these particles, we have found intertwiner functions uα

characterized by a real parameter α > 0:

uα(e, p)(k) = eiπα/2
∫

d2ceic·k(BpΛcξ · e)−α, (8)

where Bp is a boost which maps a fixed base point in H+
0 to p, Λc is the Lorentz

transformation corresponding to a c–translation in the stability group E(2) of the
base point, and ξ is a lightlike vector invariant under the rotation subgroup of the
E(2). This intertwiner function gives rise, via (7), to a quantum field which satisfies
all requirements from Definition 1.

The problem which has thus been solved has already been posed by Wigner [34]
and has resisted considerable efforts of several generations of elementary particle
physicists [36, 16, 34, 1]. (In the mentioned articles, covariant fields have been con-
structed, but the issue of localization has not been solved.)

Vector Potentials for Photons

For massless particles with finite helicity (i.e. finite-dimensional representation of
the little group) the fields must carry a vector index, in addition to the string direc-
tion e. For photons, we constructed a string-localized vector boson Aμ(x, e), acting
in the physical photon Hilbert space (the second quantization of the direct sum of
irreducible representation spaces for helicity 1 and −1). It transforms as

U(a,Λ)Aμ(x, e)U(a,Λ)−1 = Aν(a +Λx,Λe)Λν
μ (9)

and satisfies string-locality in the sense of (3). It is indeed a vector potential for
the field strength Fμν (the unique free Wightman field corresponding to the electro-
magnetic field strength and acting in the mentioned Hilbert space) in the sense that
its exterior derivative dA (w.r.t. x) coincides with F , i.e. Fμν(x) = ∂μAν(x, e) −
∂νAμ(x, e). It also satisfies the Lorentz and axial “gauge” conditions

∂μAμ(x, e) = 0, eμAμ(x, e) = 0. (10)

However, these conditions are satisfied by every free vector field Aμ(x, e) for pho-
tons acting in the physical Hilbert space and transforming as in (9); hence they can-
not be regarded as additional gauge conditions in this context. Our vector potential
is completely fixed by the requirements of string-locality (3), covariance (9) and that
its exterior derivative is independent of e [25, Proposition 5.1]. (The latter require-
ment is analogous to gauge independence in the usual formulation. It implies that
dA coincides with the electromagnetic field strength [25, Proof of Proposition 5.1].)
It is built as in (7) from the following intertwiner function:
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u(e, p)±,μ = lim
ε→0

ê±(p) · e
e · p + iε

pμ − ê±(p)μ. (11)

Here, ê±(p) are the polarization vectors ê±(p) := Bpê± where ê± := 2−1/2

(0, 1,∓i, 0) and Bp is the mentioned boost which maps (1, 0, 0, 1) to p. The ε-
prescription of the expression (e ·p+ iε)−1 in (11) is meant as follows: For fixed p,
first integrate over a test function in e, then take the limit ε → 0. (Since e · p has
positive imaginary part for p ∈ H+

0 and e in the mentioned tuboid T+, this pre-
scription corresponds precisely to the one indicated above, before (6).) The result is
bounded [23] by |p|−1 times a seminorm of the test function, where | · | is any norm
on R

4. This holds not only for p ∈ H+
0 , but for all p ∈ R

4 (which is relevant in the
analysis of the propagator).

The two-point function of the corresponding field is given by

(Ω,Aμ(x, e)Aν(x
′, e′)Ω) =

∫

H+
0

dμ(p)eip·(x′−x)Mμν(p; e, e′),

Mμν(p; e, e′) .=− gμν − pμpν(e · e′)
(e · p−iε)(e′ · p+iε′)

+ eνpμ

e · p−iε
+ e′μpν

e′ · p+iε′
.

(12)

Recall that in the quantization of the point-like localized vector potential, one has the
freedom of a choice of gauge, with the following two alternatives: A covariant gauge
only exists in an indefinite metric space [28]. In a Hilbert space representation, there
are only non-covariant gauges, among them the axial gauge eμAμ(x, e) = 0 where
e is a fixed direction. In this gauge, the two-point function has the same form as
in (12) (with e = e′), with two significant disadvantages compared with our string-
localized fields: Firstly, it is not Poincaré invariant since e is fixed; and secondly,
there is no convincing regularization of the singularities e ·p [33]. (In our approach,
the factors (e ·p+ iε)−1 are regular after smearing with a test function in e, and this
regularization is fixed by the same requirements as the field Aμ(x, e) itself.)

Massive Vector Bosons

There is also a string-localized field for massive vector bosons with spin one [23]. As
in the above massless case, it is fixed by the requirements of covariance (9), string-
locality and that dA(x, e) be independent of e. It has the same two-point function
as the massless (photon) counterpart, cf. (12), except that it is concentrated on the
positive mass shell H+

m , where m > 0 is the respective mass. This interesting fact
might allow for a treatment of the infrared problem (adiabatic limit) in perturbative
QED by starting from massive QED and letting m → 0. The massive analogue
of (12) implies that the propagator of our string-localized massive vector boson
behaves like |p|−2 for large momenta. This is worthwile comparing with the point-
like localized counterpart, whose propagator contains a term∼ |p|0, which excludes
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any interesting interactions (unless one adds ghost degrees of freedom and uses an
indefinite metric representation, in which case a |p|−2 behaviour can be achieved).

Massive Bosonic Particles with Arbitrary Spin

For particles with mass m and arbitrary spin s ∈ N0 we have fields ϕ(x, e) without
vector or tensor indices, as in (7). The corresponding single particle space consists
of functions from the positive mass shell H+

m into the little Hilbert space C
2s+1.

Our intertwiner functions are characterized by a positive real number α > 0, and
are given by [25]

u(e, p)k := iαu0(A
−1
p e)k(e · p + iε)−α, k = −s, . . . , s, (13)

u0(e)k := is(1 + (e0)2)s/2Ys,k(n(e)). (14)

Here, Ap is a boost which maps the reference momentum (m, 0, 0, 0) to p, Ys,k are
the spherical harmonics, and n(e) := (1 + (e0)2)−1/2(e1, e2, e3) ∈ S2. For s = 1,
the corresponding two-point function comes out as

(Ω, ϕ(x, e)ϕ(x′, e′)Ω)

= const.
∫

H+
m

dμ(p)eip·(x′−x) (e · p)(e′ · p)−m2(e · e′)
(e · p − iε)α(e′ · p + iε′)α

. (15)

For s $= 1, the numerator in (15) is replaced by a polynomial in e · p, e′ · p and
e · e′ of degree s. As indicated above, the distribution tαp (e) := (e · p + iε)−α ,
after integrating against a testfunction in e, is bounded by |p|−α . Since |p| > m for
p ∈ H+

m , it is bounded uniformly in p ∈ H+
m for any α > 0. Hence at this point

α may be taken as large as one wants, yielding an arbitrarily good UV behaviour.
However, as motivated in Sect. 3.2, one apparently has to consider the restrictions
in e of our fields to space-like hypersurfaces Σ ⊂ H . Now such restriction of tαp
exists and is bounded by |p|−α after smearing, where p is the spatial part of p in
the reference system corresponding to Σ [23]. This requires α < 3/2.

Tensor Potentials for Linearized Gravitons

For massless particles with helicity ±2, there is a string-localized tensor field
hμν(x, e) transforming as a “string-tensor”, similar to (9) [23]. It is a “potential”
for the quantized (point-localized) free, i.e. linearized, Riemann tensor Rμναβ [26],
in the sense that it has the classical relation with the linearized Riemann tensor:

Rμναβ(x) = 1

2

{
∂μ∂αhνβ(x, e)+ ∂ν∂βhμα(x, e)

− ∂ν∂αhμβ(x, e)− ∂μ∂βhνα(x, e)
}
. (16)
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It is well-known that for point-localized fields these conditions cannot be satisfied
in a Hilbert space representation with positive energy [29]. The two-point function
of our hμν is given by [23]

(Ω, hμα(x, e)hμ′α′(x
′, e′)Ω) =

∫

H+
0

dμ(p)eip·(x′−x)Mμα,μ′α′(p; e, e′),

Mμα,μ′α′(p; e, e′) .= MR
μναβ,μ′ν′α′β ′(p)

eνeβ(e′)ν′(e′)β ′

(e · p − iε)2(e′ · p + iε′)2
.

(17)

Here MR
μναβ,μ′ν′α′β ′(p) is the on-shell two-point function of the free Riemann ten-

sor, which is a homogeneous polynomial in p of degree four, cf. [31]. Consequently,
the Fourier transform of the propagator goes like |p|−2 for large p. (It is also regular
for finite p since, as mentioned above, it is being considered as a distribution in e, e′
so that the factors (e · p ± i0)−1 do not cause singularities other than |p|−1).

3.2 Feynman Propagators

One of the perturbative construction schemes of interacting fields rests on the con-
cept of time-ordered products of fields, the basic building blocks being time-ordered
two-point functions, or Feynman propagators. In the case at hand, the string local-
ization has to be taken into account. Given two strings Sx,e and Sx′,e′ we say that
Sx,e is later than Sx′,e′ , denoted as

Sx,e > Sx′,e′ , (18)

iff there is a space-like hyperplane Σ of Minkowski space such that Sx,e is in the
future and Sx′,e′ is in the past of Σ . We say that two strings S1, S2 are compara-
ble if one of them is later than the other (i.e., if there they are separated by some
space-like hyperplane). Note that a string is both later and earlier than another string
if and only if the two strings are space-like separated. The Feynman propagators
T (x, e; x′, e′) are distributions related to the two-point functions W(x, e; x′, e′) :=
(Ω, ϕ(x, e)ϕ(x′, e′)Ω) by the requirement

T (x, e; x′, e′) =
{
W(x, e; x′, e′), if Sx,e > Sx′,e′ ,

W(x′, e′; x, e), if Sx′,e′ > Sx,e.
(19)

A complication arises from the fact that the set of points (x, e; x′, e′) such that Sx,e
and Sx′,e′ are not comparable contains an open set in (R4 ×H)×2. This implies that
the propagator cannot be fixed by the time-ordering requirement (19) (neither by a
finite number of renormalization conditions.) A way out is to consider the restriction
of T to space-like hypersurfaces of the form

Σu := u⊥ ∩H, (20)
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where u is a time-like unit vector. (These are the totally geodesic space-like hy-
persurfaces.) Namely, two strings Sx,e and Sx′,e′ with (e, e′) in some Σu are not
comparable only if they intersect [23]. We are thus led to the following definition.
The Feynman propagator of a string-localized quantum field is a Poincaré invariant
symmetric distribution T on (R4 × H)×2 whose restriction to (R4 × Σu)

×2 exists
for any time-like vector u and satisfies time-ordering (19). To discuss its uniqueness
in concrete models, one has to determine its scaling degrees with respect to the sub-
manifold [5] of non-comparable pairs of strings, and w.r.t. the origin x = x′ = 0,
and compare them with the respective co-dimensions.

We have found [23] Feynman propagators of our string-localized fields describ-
ing photons and massive vector bosons (12), massive particles of arbitrary spin (15)
and the massless spin-2 particles (17). Namely, writing the two-point functions of
these fields in the form

Wσ,σ ′(x, e; x′, e′) =
∫

H+
m

dμ(p)eip·(x′−x)Mσ,σ ′(p; e, e′), (21)

where σ, σ ′ are possible vector or tensor indices, the corresponding Feynman prop-
agator is given by

Tσ,σ ′(x, e; x′, e′) := i

2π

∫
d4peip·(x′−x)Mσ,σ ′(p, e, e′)

p2 −m2 + i0
. (22)

(In the massive case with arbitrary spin (15), this distribution is well-defined iff the
positive number α is smaller than two, and the restriction to Σu exists if α is smaller
than 3/2. In the other cases, the restrictions exist without further requirements.)
Uniqueness of our propagators shall be discussed in a forthcoming paper [23].

4 Outlook: Interacting String-Localized Fields

The specific properties of our string-localized free fields raise the hope that they
should be a good starting point for a perturbative construction of interacting string-
localized fields. In contrast to the case of point-localized fields, the various construc-
tion schemes are not equivalent in the case at hand. For example, the Yang-Feldman
approach does not seem to work for string-localized fields, for reasons similar to the
ones found already in the 70’s in the context of “non-local” interactions [19]: The
(string-) localization is lost in higher orders. But there is one perturbative scheme
which seems to work for string-localized fields: The so-called causal construction
of Epstein and Glaser [13], based on ideas of Stueckelberg and Bogoliubov.

We shall briefly sketch this approach (see [5, 26] for a detailed account). One
starts with a free field ϕ or a set of basic free fields acting in a Hilbert space, and
an “interaction Lagrangean” LI . This is a Wick polynomial in the free fields, inter-
preted as the first order of the S-matrix. (However, a Lagrangean formulation of the
theory is not necessary [30]). The interaction Lagrangean determines a specific class
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of Wick polynomials, namely its derivatives w.r.t. the basic fields. For Wick poly-
nomials Wi in this class, one defines time-ordered products TW1(x1) · · ·Wn(xn)

recursively, requiring that

TW1(x1) · · ·Wn(xn) = TW1(x1) · · ·Wk(xk)TWk+1(xk+1) · · ·Wn(xn) (23)

if all of the events x1, . . . , xk are later than the events xk+1, . . . , xn in some ref-
erence frame. Together with (translational) covariance, this fixes the time-ordered
products up to the point x1 = · · · = xn = 0. (Re-) normalization then consists
in the extension into this point. Having constructed the time-ordered products, one
defines Bogoliubov’s S-Matrix, depending on a test function of compact support g
and a Wick polynomial W in the mentioned class, as the formal series

S(gW) :=
∞∑

n=0

in

n!
∫

dx1 · · · dxng(x1) · · · g(xn)TW(x1) · · ·W(xn). (24)

The interpretation of S(gLI ) is that it formally constitutes the S-matrix for the
Hamiltonian

HI (t)
.= −

∫
d3xLI (t, x)g(t, x)

in the interaction picture. (The infrared problem consists in the so-called adiabatic
limit, g → const.) One then defines for every free field ϕ an interacting field ϕI via
Bogoliubov’s formula:

ϕI (f ) := 1

i

d

dλ
S(gLI )

−1S(gLI + λf ϕ)|λ=0. (25)

Due to the time-ordering prescription (23), the S-matrix satisfies the so-called causal
factorization property which in turn implies locality of the interacting fields.

This scheme might be transferred to the string-localized case as follows. The
time-ordering prescription of string-localized Wick products W(x, e) must take the
strings Sx,e into account: (23), with (xi, ei) instead of xi , must hold if all strings
Sx1,e1 , . . . , Sxk,ek are later than the strings Sxk+1,ek+1 , . . . , Sxn,en in the sense of (18).
Bogoliubov’s S-matrix then depends on test functions g(x, e) living on R

4 × H ,
and the multiple integral in (24) extends also over H×n. S(gLI ) is then the formal
S-matrix for the interaction Hamiltonian

HI (t)
.= −

∫

x0=t

d3x
∫

H

dσ(e)LI (x, e)g(x, e)

in the interaction picture, where dσ(e) denotes the Lorentz invariant measure on H .
The interacting fields are defined as in (25), with f a test function on R

4×H . As in
the point-localized case, the time-ordering prescription implies a causal factoriza-
tion property of the S-matrix which in turn implies string-locality of the interacting
fields in the sense of (3).
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For the reason indicated in Sect. 3.2, it appears necessary to restrict the time-
ordered products to space-like hyperplanes Σu of the form (20). Then Bogoliubov’s
S-matrix and the interacting fields depend on the time-like vector u. A possible
mechanism to achieve independence of this vector, and at the same time admit the
construction of local (i.e., e-independent and point-localized) observables, is to im-
itate gauge theories, with “gauge dependence” being replaced by “dependence on
the string e”. Consider, for example, the massless or massive vector boson Aμ(x, e).
Since the exterior derivative is independent of e, Aμ(x, e) and Aμ(x, e

′) differ by
the derivative of a field Φ(x, e, e′). (In contrast to the gauge theory case, this field
is in the algebra of the Aμ’s, and needs no new degrees of freedom.) Therefore, if
we take the interaction Lagrangean LI (x, e) = :jμ(x)Aμ(x, e):, where jμ is the
conserved current of a charged field, we have

LI (x, e
′) = LI (x, e)+ i∂μW

μ(x; e, e′) (26)

in the sense of bi-distributions. This implies that Bogoliubov’s S-matrix S(gLI )

is independent of the time-like vector u and of the string e at first order, in the
adiabatic limit g → const. Independence4 at higher orders then amounts to a (re-)
normalization condition on the time-ordered products analogous to the “perturbative
gauge invariance” [26]. If this e-independence of the S-matrix in the adiabatic limit
can be implemented, then the interacting counterpart ϕI (x) of any free field ϕ(x)

which does not depend on e also does not depend on e and is point-like localized.
This holds in particular for the fields F

μν
I (x), where F = dA, and j

μ
I (x). These

fields will then generate an observable algebra with point-like localization.
We conclude with some speculative remarks on possible models based on this

construction. As indicated, the construction should be attempted to carry through
for QED, and for massive vector bosons. A more speculative possible application
is the perturbative construction of quantum gravity along rather conservative lines.
Such construction would start from a family of string-localized free tensor potentials
hμν(x, e) as described above, one for each background metric within a certain class
of space-times. Here, (x, e) is a point in the tangent bundle of the space-time, and
the string Sx,e should be defined as the semi-infinite geodesic curve starting from
x in the direction e ∈ TxM . Each hμν would describe the quantum fluctuations
around the given classical background. As interaction Lagrangean LI one would
take the (e-dependent analogue of the) usual corresponding part of the Einstein-
Hilbert Lagrangean. The family of resulting interacting fields for every background
should be constructed in such a way that a change of background metric amounts
to a symmetry of the theory, in the sense explained by Brunetti and Fredenhagen
in [6]. As explained there, this would implement independence of the gravitational
background.

It is also possible that the proposed scheme allows for the perturbative construc-
tion of non-Abelian gauge theory analogues, and that it might even admit (renormal-

4 Independence of u and e means that the nth term in the expansion (24) of Su(g ⊗ hLI ),
g ⊗ h ∈ D(R4 × H), factorizes as (

∫
Σu

hdσ)n times an operator S(n) which is independent of h
and u. The limit h → 1 then exists and yields a factor (4π)n, independent of u.



String-Localized Quantum Fields 507

izable) interactions which are not admitted in the gauge theory setting. For example,
one might speculate that there is a string-localized model with self-interacting vec-
tor bosons without a Higgs particle. (In the point-localized case, such model would
either violate unitarity or renormalizability [15].) Apart from possible new mod-
els, there is an esthetic motivation for these constructions, namely: In the gauge
theoretic approach, the construction detours through a huge realm of unphysical
quantities (ghosts and an indefinite metric space), which one would like to avoid,
following Ockham’s razor. Our approach, on the other hand, works completely in
Hilbert space and does not need ghosts (this is in accord with the well-known fact
that in the axial gauge the ghosts decouple).

If these constructions work, it would be interesting to discuss the following ques-
tion. The work of Scharf et al. [12] show that the principles of gauge invariance (of
the observable quantities) and renormalizability fix, to a great extent, the possible
interactions for a given set of particle types. The question is if the same holds in
our approach, where gauge invariance is replaced by independence of the string di-
rections e. Since this independence is equivalent with point-like localization, this
would ultimately mean the following: The principles of locality and renormalizabil-
ity fix the possible interactions. This would be very satisfying, since these principles
are, in contrast to the gauge principle, intrinsic to quantum field theory.
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Kinks and Particles in Non-integrable Quantum
Field Theories

Giuseppe Mussardo

Abstract In this talk we discuss an elementary derivation of the semi-classical
spectrum of neutral particles in two field theories with kink excitations. We also
show that, in the non-integrable cases, each vacuum state cannot generically support
more than two stable particles, since all other neutral excitations are resonances,
which will eventually decay.

1 Introduction

Two-dimensional massive Integrable Quantum Field Theories (IQFTs) have proven
to be one of the most successful topics of relativistic field theory, with a large vari-
ety of applications to statistical mechanical models. The main reason for this success
consists of their simplified on-shell dynamics which is encoded into a set of elastic
and factorized scattering amplitudes of their massive particles [33, 31]. The two-
particle S-matrix has a very simple analytic structure, with only poles in the physi-
cal strip, and it can be computed combining the standard requirements of unitarity,
crossing and factorization together with specific symmetry properties of the theory.
The complete mass spectrum is obtained looking at the pole singularities of the S-
matrix elements. Off-mass shell quantities, such as the correlation functions, can be
also determined once the elastic S-matrix and the mass spectrum are known. In fact,
one can compute the exact matrix elements of the (semi)local fields on the asymp-
totic states with the Form Factor (FF) approach [29, 20], and use them to write down
the spectral representation of the correlators. By following this approach, it has been
possible, for instance, to tackle successfully the long-standing problem of spelling
out the mass spectrum and the correlation functions of the two dimensional Ising
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model in a magnetic field [31, 8, 10], as well as many other interesting problems of
statistical physics (for a partial list of them see, for instance, [23]).

The S-matrix approach can be also constructed for massless IQFTs [32, 34, 14,
11], despite the subtleties in defining a scattering theory between massless particles
in (1+ 1) dimensions, and turns out to be useful mainly when conformal symmetry
is not present. In this case, massless IQFTs generically describe the Renormaliza-
tion Group trajectories connecting two different Conformal Field Theories, which
respectively rule the ultraviolet and infrared limits of all physical quantities along
the flows.

Given the large number of remarkable results obtained by the study of IQFTs,
one of the most interesting challenges is to extend the analysis to the non-integrable
field theories, at least to those obtained as deformations of the integrable ones and to
develop the corresponding perturbation theory. The breaking of integrability is ex-
pected to considerably increase the difficulties of the mathematical analysis, since
scattering processes are no longer elastic. Non-integrable field theories are in fact
generally characterized by particle production amplitudes, resonance states and, cor-
respondingly, decay events. All these features strongly effect the analytic structure
of the scattering amplitudes, introducing a rich pattern of branch cut singularities,
in addition to the pole structure associated to bound and resonance states. For mas-
sive non-integrable field theories, a convenient perturbative scheme was originally
proposed in [12] and called Form Factor Perturbation Theory (FFPT), since it is
based on the knowledge of the exact Form Factors (FFs) of the original integrable
theory. It was shown that, even using just the first order correction of the FFPT,
a great deal of information can be obtained, such as the evolution of their parti-
cle content, the variation of their masses and the change of the ground state energy.
Whenever possible, universal ratios were computed and successfully compared with
their value obtained by other means. Recently, for instance, it has been obtained the
universal ratios relative to the decay of the particles with higher masses in the Ising
model in a magnetic field, once the temperature is displayed away from the crit-
ical value [18] (see also the contribution by G. Delfino in this proceedings [7]).
For other and important aspects of the Ising model along non-integrable lines see
the references [22, 15, 28, 16]. Applied to the double Sine–Gordon model [9], the
FFPT has been useful in clarifying the rich dynamics of this non-integrable model.
In particular, in relating the confinement of the kinks in the deformed theory to
the non-locality properties of the perturbed operator and predicting the existence
of a Ising-like phase transition for particular ratios of the two frequencies—results
which were later confirmed by a numerical study [1]. The FFPT has been also used
to study the spectrum of the O(3) non-linear sigma model with a topological θ term,
by varying θ [3, 4].

In this talk I would like to focus the attention on a different approach to tackle
some interesting non-integrable models, i.e. those two dimensional field theories
with kink topological excitations. Such theories are described by a scalar real field
ϕ(x), with a Lagrangian density

L = 1

2
(∂μϕ)

2 − U(ϕ), (1)
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where the potential U(ϕ) possesses several degenerate minima at ϕ(0)
a (a = 1, 2,

. . . , n), as the one shown in Fig. 1. These minima correspond to the different vacua
|a〉 of the associate quantum field theory.

Fig. 1 Potential U(ϕ) of a quantum field theory with kink excitations (A) and istogram of the
masses of the kinks (B)

The basic excitations of this kind of models are kinks and anti-kinks, i.e. topolog-
ical configurations which interpolate between two neighbouring vacua. Semiclassi-
cally they correspond to the static solutions of the equation of motion, i.e.

∂2
xϕ(x) = U ′[ϕ(x)], (2)

with boundary conditions ϕ(−∞) = ϕ
(0)
a and ϕ(+∞) = ϕ

(0)
b , where b = a ± 1.

Denoting by ϕab(x) the solutions of this equation, their classical energy density is
given by

εab(x) = 1

2

(
dϕab

dx

)2

+ U(ϕab(x)), (3)

and its integral provides the classical expression of the kink masses

Mab =
∫ ∞

−∞
εab(x). (4)

It is easy to show that the classical masses of the kinks ϕab(x) are simply propor-
tional to the heights of the potential between the two minima ϕ

(0)
a and ϕ

(0)
b : their

istogram provides a caricature of the original potential (see Fig. 1).
The classical solutions can be set in motion by a Lorentz transformation, i.e.

ϕab(x) → ϕab[(x ± vt)/
√

1 − v2]. In the quantum theory, these configurations
describe the kink states |Kab(θ)〉, where a and b are the indices of the initial and final
vacuum, respectively. The quantity θ is the rapidity variable which parameterizes the
relativistic dispersion relation of these excitations, i.e.

E = Mab cosh θ, P = Mab sinh θ. (5)
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Conventionally |Ka,a+1(θ)〉 denotes the kink between the pair of vacua {|a〉, |a+1〉}
while |Ka+1,a〉 is the corresponding anti-kink. For the kink configurations it may be
useful to adopt the simplified graphical form shown in Fig. 2.

Fig. 2 Kink and antikink configurations

The multi-particle states are given by a string of these excitations, with the adja-
cency condition of the consecutive indices for the continuity of the field configura-
tion

|Ka1,a2(θ1)Ka2,a3(θ2)Ka3,a4(θ3) . . .〉, (ai+1 = ai ± 1) (6)

In addition to the kinks, in the quantum theory there may exist other excitations in
the guise of ordinary scalar particles (breathers). These are the neutral excitations
|Bc(θ)〉a (c = 1, 2, . . .) around each of the vacua |a〉. For a theory based on a
Lagrangian of a single real field, these states are all non-degenerate: in fact, there are
no extra quantities which commute with the Hamiltonian and that can give rise to a
multiplicity of them. The only exact (alias, unbroken) symmetries for a Lagrangian
as (1) may be the discrete ones, like the parity transformation P , for instance, or
the charge conjugation C . However, since they are neutral excitations, they will be
either even or odd eigenvectors of C .

The neutral particles must be identified as the bound states of the kink-antikink
configurations that start and end at the same vacuum |a〉, i.e. |Kab(θ1)Kba(θ2)〉, with
the “tooth” shapes shown in Fig. 3.

Fig. 3 Kink-antikink configurations which may give rise to a bound state nearby the vacuum |0〉a
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If such two-kink states have a pole at an imaginary value iucab within the physical
strip 0 < Im θ < π of their rapidity difference θ = θ1 − θ2, then their bound states
are defined through the factorization formula which holds in the vicinity of this
singularity

|Kab(θ1)Kba(θ2)〉 5 i
gcab

θ − iucab
|Bc〉a. (7)

In this expression gcab is the on-shell 3-particle coupling between the kinks and the
neutral particle. Moreover, the mass of the bound states is simply obtained by sub-
stituting the resonance value iucab within the expression of the Mandelstam variable
s of the two-kink channel

s = 4M2
ab cosh2 θ

2
−→ mc = 2Mab cos

ucab

2
. (8)

Concerning the vacua themselves, as well known, in the infinite volume their
classical degeneracy is removed by selecting one of them, say |k〉, out of the n avail-
able. This happens through the usual spontaneously symmetry breaking mechanism,
even though—strictly speaking—there may be no internal symmetry to break at all.
This is the case, for instance, of the potential shown in Fig. 1, which does not have
any particular invariance. In the absence of a symmetry which connects the various
vacua, the world—as seen by each of them—may appear very different: they can
have, indeed, different particle contents. The problem we would like to examine
in this talk concerns the neutral excitations around each vacuum, in particular the
question of the existence of such particles and of the value of their masses. To this
aim, let’s make use of a semiclassical approach.

2 A Semiclassical Formula

The starting point of our analysis is a remarkably simple formula due to Goldstone-
Jackiw [17], which is valid in the semiclassical approximation, i.e. when the cou-
pling constant goes to zero and the mass of the kinks becomes correspondingly very
large with respect to any other mass scale. In its refined version, given in [19] and
rediscovered in [25], it reads as follows1 (Fig. 4)

f
ϕ
ab(θ) = 〈Kab(θ1)|ϕ(0)|Kab(θ2)〉 5

∫ ∞

−∞
dxeiMabθxϕab(x), (9)

where θ = θ1 − θ2.

1 The matrix element of the field ϕ(y) is easily obtained by using ϕ(y) = e−iPμy
μ
ϕ(0)eiPμy

μ

and by acting with the conserved energy-momentum operator Pμ on the kink state. Moreover, for
the semiclassical matrix element FG

ab (θ) of the operator G[ϕ(0)], one should employ G[ϕab(x)].
For instance, the matrix element of ϕ2(0) are given by the Fourier transform of ϕ2

ab(x).
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Fig. 4 Matrix element between kink states

Notice that, if we substitute in the above formula θ → iπ − θ , the corresponding
expression may be interpreted as the following Form Factor

F
ϕ
ab(θ) = f (iπ − θ) = 〈a|ϕ(0)|Kab(θ1)Kba(θ2)〉. (10)

In this matrix element, it appears the neutral kink states around the vacuum |a〉 we
are interested in.

Equation (9) deserves several comments.

1. The appealing aspect of the formula (9) stays in the relation between the Fourier
transform of the classical configuration of the kink,—i.e. the solution ϕab(x) of
the differential equation (2)—to the quantum matrix element of the field ϕ(0)
between the vacuum |a〉 and the 2-particle kink state |Kab(θ1)Kba(θ2)〉.

Once the solution of (2) has been found and its Fourier transform has been
taken, the poles of Fab(θ) within the physical strip of θ identify the neutral bound
states which couple to ϕ. The mass of the neutral particles can be extracted by
using (8), while the on-shell 3-particle coupling gcab can be obtained from the
residue at these poles (Fig. 5)

lim
θ→iucab

(
θ − iucab

)
Fab(θ) = igcab〈a|ϕ(0)|Bc〉. (11)

Fig. 5 Residue equation for the matrix element on the kink states

2. It is important to stress that, for a generic theory, the classical kink configuration
ϕab(x) is not related in a simple way to the anti-kink configuration ϕba(x). It
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is precisely for this reason that neighbouring vacua may have a different spec-
trum of neutral excitations, as shown in the examples discussed in the following
sections.

3. It is also worth noting that this procedure for extracting the bound states masses
permits in many cases to avoid the semiclassical quantization of the breather
solutions [5, 6], making their derivation much simpler. The reason is that, the
classical breather configurations depend also on time and have, in general, a
more complicated structure than the kink ones. Yet, it can be shown that in
non-integrable theories these configurations do not exist as exact solutions of
the partial differential equations of the field theory. On the contrary, in order to
apply (9), one simply needs the solution of the ordinary differential (2). It is
worth notice that, to locate the poles of f ϕ

ab(θ), one only needs to looking at the
exponential behavior of the classical solutions at x →±∞, as discussed below.

In the next two sections we will present the analysis of a class of theories with
only two vacua, which can be either symmetric or asymmetric ones. A complete
analysis of other potentials can be found in the original paper [24].

3 Symmetric Wells

A prototype example of a potential with two symmetric wells is the ϕ4 theory in its
broken phase. The potential is given in this case by

U(ϕ) = λ

4

(

ϕ2 − m2

λ

)2

. (12)

Let us denote with | ± 1〉 the vacua corresponding to the classical minima ϕ
(0)
± =

± m√
λ

. By expanding around them, ϕ = ϕ
(0)
± + η, we have

U
(
ϕ
(0)
± + η

) = m2η2 ±m
√
λη3 + λ

4
η4. (13)

Hence, perturbation theory predicts the existence of a neutral particle for each of the
two vacua, with a bare mass given by mb =

√
2m, irrespectively of the value of the

coupling λ. Let’s see, instead, what is the result of the semiclassical analysis.
The kink solutions are given in this case by

ϕ−a,a(x) = a
m√
λ

tanh

[
mx√

2

]

, a = ±1 (14)

and their classical mass is

M0 =
∫ ∞

−∞
ε(x)dx = 2

√
2

3

m3

λ
. (15)
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The value of the potential at the origin, which gives the height of the barrier between
the two vacua, can be expressed as

U(0) = 3m

8
√

2
M0, (16)

and, as noticed in the introduction, is proportional to the classical mass of the kink.
If we take into account the contribution of the small oscillations around the clas-

sical static configurations, the kink mass gets corrected as [5, 6]

M = 2
√

2

3

m3

λ
−m

(
3

π
√

2
− 1

2
√

6

)

+ O(λ). (17)

It is convenient to define

c =
(

3

2π
− 1

4
√

3

)

> 0,

and also the adimensional quantities

g = 3λ

2πm2
; ξ = g

1 − πcg
. (18)

In terms of them, the mass of the kink can be expressed as

M =
√

2m

πξ
= mb

πξ
. (19)

Since the kink and the anti-kink solutions are equal functions (up to a sign), their
Fourier transforms have the same poles. Hence, the spectrum of the neutral particles
will be the same on both vacua, in agreement with the Z2 symmetry of the model.
We have

f−a,a(θ) =
∫ ∞

−∞
dxeiMθxϕ−a,a(x) = ia

√
2

λ

1

sinh( πM√
2m

θ)
.

By making now the analytical continuation θ → iπ − θ and using the above defin-
itions (18), we arrive to

F−a,a(θ) = 〈a|ϕ(0)|K−a,a(θ1)Ka,−a(θ2)〉 ∝ 1

sinh( (iπ−θ)
ξ

)
. (21)

The poles of the above expression are located at

θn = iπ (1 − ξn) , n = 0,±1,±2, . . . (22)

and, if
ξ ≥ 1, (23)
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none of them is in the physical strip 0 < Im θ < π . Consequently, in the range of
the coupling constant

λ

m2
≥ 2π

3

1

1 + πc
= 1.02338 . . . (24)

the theory does not have any neutral bound states, neither on the vacuum to the right
nor on the one to the left. Viceversa, if ξ < 1, there are n = [ 1

ξ
] neutral bound states,

where [x] denote the integer part of the number x. Their semiclassical masses are
given by

m
(n)
b = 2M sin

[

n
πξ

2

]

= nmb

[

1 − 3

32

λ2

m4
n2 + · · ·

]

. (25)

Note that the leading term is given by multiples of the mass of the elementary boson
|B1〉. Therefore the n-th breather may be considered as a loosely bound state of n of
it, with the binding energy provided by the remaining terms of the above expansion.
But, for the non-integrability of the theory, all particles with mass mn > 2m1 will
eventually decay. It is easy to see that, if there are at most two particles in the spec-
trum, it is always valid the inequality m2 < 2m1. However, if ξ < 1

3 , for the higher
particles one always has

mk > 2m1, for k = 3, 4, . . . , n. (26)

According to the semiclassical analysis, the spectrum of neutral particles of ϕ4 the-
ory is then as follows: (i) if ξ > 1, there are no neutral particles; (ii) if 1

2 < ξ < 1,
there is one particle; (iii) if 1

3 < ξ < 1
2 there are two particles; (iv) if ξ < 1

3
there are [ 1

ξ
] particles, although only the first two are stable, because the others are

resonances.

Fig. 6 Neutral bound states of ϕ4 theory for g < 1. The lowest two lines are the stable particles
whereas the higher lines are the resonances

Let us now briefly mention some general features of the semiclassical methods,
starting from an equivalent way to derive the Fourier transform of the kink solu-
tion. To simplify the notation, let’s get rid of all possible constants and consider the
Fourier transform of the derivative of the kink solution, expressed as
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G(k) =
∫ ∞

−∞
dxeikx

1

cosh2 x
. (27)

We split the integral in two terms

G(k) =
∫ 0

−∞
dxeikx

1

cosh2 x
+
∫ ∞

0
dxeikx

1

cosh2 x
, (28)

and we use the following series expansion of the integrand, valid on the entire real
axis (except the origin)

1

cosh2 x
= 4

∞∑

n=1

(−1)n+1ne−2n|x|. (29)

Substituting this expression into (28) and computing each integral, we have

G(k) = 4i
∞∑

n=1

(−1)n+1n

[

− 1

ik + 2n
+ 1

−ik + 2n

]

. (30)

Obviously it coincides with the exact result, G(k) = πk/ sinh π
2 k, but this deriva-

tion permits to easily interpret the physical origin of each pole. In fact, changing k

to the original variable in the crossed channel, k → (iπ − θ)/ξ , we see that the
poles which determine the bound states at the vacuum |a〉 are only those relative
to the exponential behaviour of the kink solution at x → −∞. This is precisely
the point where the classical kink solution takes values on the vacuum |a〉. In the
case of ϕ4, the kink and the antikink are the same function (up to a minus sign) and
therefore they have the same exponential approach at x = −∞ at both vacua | ± 1〉.
Mathematically speaking, this is the reason for the coincidence of the bound state
spectrum on each of them: this does not necessarily happens in other cases, as we
will see in the next section, for instance.

The second comment concerns the behavior of the kink solution near the minima
of the potential. In the case of ϕ4, expressing the kink solution as

ϕ(x) = m√
λ

tanh

[
mx√

2

]

= m√
λ

e
√

2x − 1

e
√

2x + 1
, (31)

and expanding around x = −∞, we have

ϕ(t) = − m√
λ

[
1 − 2t + 2t2 − 2t3 + · · · + 2(−1)ntn · · · ], (32)

where t = exp[√2x]. Hence, all the sub-leading terms are exponential factors, with
exponents which are multiple of the first one. Is this a general feature of the kink
solutions of any theory? It can be proved that the answer is indeed positive [24].

The fact that the approach to the minimum of the kink solutions is always through
multiples of the same exponential (when the curvature ω at the minimum is different
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from zero) implies that the Fourier transform of the kink solution has poles regularly
spaced by ξa ≡ ω

πMab
in the variable θ . If the first of them is within the physical strip,

the semiclassical mass spectrum derived from the formula (9) near the vacuum |a〉
has therefore the universal form

mn = 2Mab sin

(

n
πξa

2

)

. (33)

As we have previously discussed, this means that, according to the value of ξa ,
we can have only the following situations at the vacuum |a〉: (a) no bound state if
ξa > 1; (b) one particle if 1

2 < ξa < 1; (c) two particles if 1
3 < ξa < 1

2 ; (d) [ 1
ξa
] par-

ticles if ξa < 1
3 , although only the first two are stable, the others being resonances.

So, semiclassically, each vacuum of the theory cannot have more than two stable
particles above it. Viceversa, if ω = 0, there are no poles in the Fourier transform of
the kink and therefore there are no neutral particles near the vacuum |a〉.

4 Asymmetric Wells

In order to have a polynomial potential with two asymmetric wells, one must neces-
sarily employ higher powers than ϕ4. The simplest example of such a potential is ob-
tained with a polynomial of maximum power ϕ6, and this is the example discussed
here. Apart from its simplicity, the ϕ6 theory is relevant for the class of universality
of the Tricritical Ising Model [30]. As we can see, the information available on this
model will turn out to be a nice confirmation of the semiclassical scenario. .

A class of potentials which may present two asymmetric wells is given by

U(ϕ) = λ

2

(

ϕ + a
m√
λ

)2 (

ϕ − b
m√
λ

)2 (

ϕ2 + c
m2

λ

)

, (34)

with a, b, c all positive numbers. To simplify the notation, it is convenient to use the
dimensionless quantities obtained by rescaling the coordinate as xμ → mxμ and
the field as ϕ(x) →√

λ/mϕ(x). In this way the Lagrangian of the model becomes

L = m6

λ2

[
1

2
(∂ϕ)2 − 1

2
(ϕ + a)2(ϕ − b)2(ϕ2 + c)

]

. (35)

The minima of this potential are localized at ϕ
(0)
0 = −a and ϕ

(0)
1 = b and the

corresponding ground states will be denoted by |0〉 and |1〉. The curvature of the
potential at these points is given by

U ′′(−a) ≡ ω2
0 = (a + b)2(a2 + c);

U ′′(b) ≡ ω2
1 = (a + b)2(b2 + c).

(36)
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For a $= b, we have two asymmetric wells, as shown in Fig. 7. To be definite, let’s
assume that the curvature at the vacuum |0〉 is higher than the one at the vacuum |1〉,
i.e. a > b.

Fig. 7 Example of ϕ6 potential with two asymmetric wells and a bound state only on one of them

The problem we would like to examine is whether the spectrum of the neutral
particles |B〉s (s = 0, 1) may be different at the two vacua, in particular, whether it
would be possible that one of them (say |0〉) has no neutral excitations, whereas the
other has just one neutral particle. The ordinary perturbation theory shows that both
vacua has neutral excitations, although with different value of their mass:

m(0) = (a + b)
√

2(a2 + c), m(1) = (a + b)
√

2(b2 + c). (37)

Let’s see, instead, what is the semiclassical scenario. The kink equation is given
in this case by

dϕ

dx
= ±(ϕ + a)(ϕ − b)

√
ϕ2 + c. (38)

We will not attempt to solve exactly this equation but we can present nevertheless its
main features. The kink solution interpolates between the values −a (at x = −∞)
and b (at x = +∞). The anti-kink solution does vice versa, but with an important
difference: its behaviour at x = −∞ is different from the one of the kink. As a
matter of fact, the behaviour at x = −∞ of the kink is always equal to the behaviour
at x = +∞ of the anti-kink (and vice versa), but the two vacua are approached, in
this theory, differently. This is explicitly shown in Fig. 8 and proved in the following.

Let us consider the limit x → −∞ of the kink solution. For these large values
of x, we can approximate (38) by substituting, in the second and in the third term of
the right-hand side, ϕ 5 −a, with the result

(
dϕ

dx

)

0,1
5 (ϕ + a)(a + b)

√
a2 + c, x →−∞. (39)

This gives rise to the following exponential approach to the vacuum |0〉
ϕ0,1(x) 5 −a + A exp(ω0x), x →−∞ (40)
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Fig. 8 Typical shape of ( dϕ
dx

)01, obtained by a numerical solution of (38)

where A > 0 is a arbitrary constant (its actual value can be fixed by properly solving
the non-linear differential equation). To extract the behavior at x →−∞ of the anti-
kink, we substitute this time ϕ 5 b into the first and third term of the right hand side
of (38), so that

(
dϕ

dx

)

1,0
5 (ϕ − b)(a + b)

√
b2 + c, x →−∞. (41)

This ends up in the following exponential approach to the vacuum |1〉
ϕ1,0(x) 5 b − B exp(ω1x), x →−∞ (42)

where B > 0 is another constant. Since ω0 $= ω1, the asymptotic behaviour of the
two solutions gives rise to the following poles in their Fourier transform

F (ϕ0,1) → A

ω0 + ik
,

F (ϕ1,0) → −B

ω1 + ik
.

(43)

In order to locate the pole in θ , we shall reintroduce the correct units. Assuming to
have solved the differential equation (38), the integral of its energy density gives the
common mass of the kink and the anti-kink. In terms of the constants in front of the
Lagrangian (35), its value is given by

M = m5

λ2
α, (44)

where α is a number (typically of order 1), coming from the integral of the adimen-
sional energy density (4). Hence, the first pole2 of the Fourier transform of the kink
and the antikink solution are localized at

2 In order to determine the others, one should look for the subleading exponential terms of the
solutions.
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θ(0) 5 iπ
(

1 − ω0
m

πM

)
= iπ

(

1 − ω0
λ2

αm4

)

,

θ (1) 5 iπ
(

1 − ω1
m

πM

)
= iπ

(

1 − ω1
λ2

αm4

)

.

(45)

If we now choose the coupling constant in the range

1

ω0
<

λ2

m4
<

1

ω1
, (46)

the first pole will be out of the physical sheet whereas the second will still remain
inside it! Hence, the theory will have only one neutral bound state, localized at the
vacuum |1〉. This result may be expressed by saying that the appearance of a bound
state depends on the order in which the topological excitations are arranged: an
antikink-kink configuration gives rise to a bound state whereas a kink-antikink does
not.

Finally, notice that the value of the adimensional coupling constant can be chosen
so that the mass of the bound state around the vacuum |1〉 becomes equal to mass of
the kink. This happens when

λ2

m4
= α

3ω1
. (47)

Strange as it may appear, the semiclassical scenario is well confirmed by an ex-
plicit example. This is provided by the exact scattering theory of the Tricritical Ising
Model perturbed by its sub-leading magnetization. Firstly discovered through a nu-
merical analysis of the spectrum of this model [21], its exact scattering theory has
been discussed later in [2].

5 Conclusions

In this paper we have used simple arguments of the semi-classical analysis to investi-
gate the spectrum of neutral particles in quantum field theories with kink excitations.
We have concentrated our analysis on two cases: the first relative to a potential with
symmetric wells, the second concerning with a potential with asymmetric wells.
Leaving apart the exact values of the quantities extracted by the semiclassical meth-
ods, it is perhaps more important to underline some general features which have
emerged through this analysis. One of them concerns, for instance, the existence of
a critical value of the coupling constant, beyond which there are no neutral bound
states. Another result is about the maximum number n ≤ 2 of neutral particles
living on a generic vacuum of a non-integrable theory. An additional aspect is the
role played by the asymmetric vacua, which may have a different number of neutral
excitations above them.
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Exponential Decay Laws in Perturbation Theory
of Threshold and Embedded Eigenvalues

Arne Jensen and Gheorghe Nenciu

Abstract Exponential decay laws for the metastable states resulting from perturba-
tion of unstable eigenvalues are discussed. Eigenvalues embedded in the continuum
as well as threshold eigenvalues are considered. Stationary methods are used, i.e.
the evolution group is written in terms of the resolvent via Stone’s formula and a
partition technique (Schur-Livsic-Feschbach-Grushin formula) is used to localize
the essential terms. No analytic continuation of the resolvent is required. The main
result is about the threshold case: for Schrödinger operators in odd dimensions the
leading term of the life-time in the perturbation strength, ε, is of order ε2+ν/2, where
ν is an odd integer, ν ≥ −1. Examples covering all values of ν are given. For eigen-
values properly embedded in the continuum the results sharpen the previous ones.

1 Introduction

Let H be a self-adjoint operator in a Hilbert space H and E0 a finitely degenerate
eigenvalue of H : HP0 = E0P0, dimP0 < ∞. On P0 H the evolution is stationary:

P0e
−itHP0 = e−itE0P0. (1)

The problem we consider is what happens with the evolution compressed to P0 H,
when a perturbation is added, i.e. H is replaced by

Hε = H + εW. (2)
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On heuristic grounds one expects that

P0e
−itHεP0 = e−ithεP0 + δ(ε, t), (3)

where hε is a (dissipative) “effective hamiltonian” in P0 H and δ(ε, t) is an error
term vanishing in the limit ε → 0.

Among the questions to be answered are:

(i) Find sufficient conditions for (3) to hold true. In particular one can ask whether
there are interesting cases, in which such a simple description of the com-
pressed dynamics does not exist (e.g. non exponential decay laws).

(ii) Compute the effective Hamiltonian hε.
(iii) Estimate

sup
t>0

‖δ(ε, t)‖ = δ(ε). (4)

The above questions can be completely answered in the elementary case of a
regular perturbation of discrete eigenvalues. Here the Kato-Rellich analytic pertur-
bation theory gives

hε = h∗ε = U∗
ε PεHεPεUε, (5)

δ(ε) ≤ const · ε2, (6)

where Pε is the perturbed projection, and Uε is the Sz.-Nagy transformation matrix
of the pair Pε, P0 (see e.g. [18]). Moreover, one can show that (6) is optimal, i.e.
the power of ε in the error term cannot exceed 2. One remark is in order here. One
can ask whether hε as given by (3) and (4) is unique. The answer is no, and one
can easily see that if one takes h̃ε = W ∗

ε hεWε with Wε unitary, [Wε, P0] = 0,
and ‖Wε − 1‖ ≤ const · ε2, then h̃ε still satisfies (3) and (6). However, there is a
uniqueness statement: the spectrum, σ(hε), must coincide with the spectrum of Hε

emerging from E0, i.e. hε is unique up to a unitary rotation.
Consider now the really interesting case, when E0 is embedded (properly or at

a threshold) in the continuous spectrum of H or/and W is singular with respect to
H , as e.g. in the Stark effect. A fairly complete answer is known in the case of
dilation analytic Hamiltonians, if in addition one supposes that E0 is not situated
at a threshold. More precisely, using the analytic perturbation theory in the frame-
work of Aguilar-Balslev-Combes dilation analytic Hamiltonians, as developed by
Simon [25], Hunziker [9] proved that (3) with the estimate (6) holds true. The im-
portant point here is that hε is no more self-adjoint, but only dissipative, which
reflects the fact that generically under the effect of the perturbation the stationary
state becomes metastable with (up to a uniform error of order ε2) an exponential
decay law. In the non-degenerate case (3) gives the rigorous foundation (control on
error term included!) for the famous survival probability formula (here hε = λεP0)

|〈Ψ0, e
−itHεΨ0〉|2 ∼ e−2| Im λε |t , (7)
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as given by the Dirac second order time dependent perturbation theory (Fermi
Golden Rule).

The question we address is to what extent Hunziker’s results can be generalized
to:

(i) A non-analytic (smooth) context.
(ii) Threshold eigenvalues.

Our main interest is in the threshold eigenvalues case (however we shall give also
results for properly embedded eigenvalues, extending and sharpening the existing
ones). While for properly embedded eigenvalues one has a (generically) universal
behavior as ε → 0 of the decay rate constant, Γε ≡ 2| Im λε| ∼ ε2, given by
the “universal” Fermi Golden Rule, for threshold eigenvalues the situation is by
far more complicated. As remarked by Baumgartner [2], even at the heuristic level
the usual Fermi Golden Rule prescription to compute the decay rate constant does
not work. The deep reason is that in the neighborhood of a threshold the resolvent
(Green’s function) has a complicated non universal structure. After all it is well
known that quantum mechanics at threshold is a tricky business! It turns out that
contrary to the properly embedded eigenvalue case, for threshold eigenvalues the
behavior as ε → 0 of Γε is (generically) not universal; in the Schrödinger operators
case it depends upon the dimension of the space, angular momentum, as well as
upon the existence of threshold resonances.

Our main result [14] is that for threshold eigenvalues of Schrödinger operators
in odd dimensions, the leading term of the decay rate constant in the perturbation
strength, ε, is of order ε2+ν/2, where ν is an odd integer, ν ≥ −1. We give examples
for all values of ν, for which we compute the leading term in Γε, and give estimates
for the error term.

There are basically two general approaches to derive (3). The first one, initiated
by Soffer and Weinstein [26], consists in a direct study of the Schrödinger evolution
governed by Hε:

i∂tψ(t) = Hεψ(t) (8)

for initial conditions localized in energy around E0. The second one, initiated by
Orth [24], is the stationary approach, which by use of the Stone formula reduces the
computation of the l.h.s. of (3) to the computation of an integral over energies in-
volving the compressed resolvent. In both methods, in order to isolate the significant
contributions, one uses variants of projection techniques (appearing in the literature
under various names as: Liapunov-Schmidt projection method, Schur complements,
Livsic-Feschbach matrix, Grushin method, etc; for more comments and references
see [14]).

We use the stationary approach. We refine it as to cover the threshold eigenvalues
case (and also to sharpen the existing results for properly embedded eigenvalues) by
adding two things:

(i) Detailed asymptotic expansions near a threshold of the resolvent of Schrödinger
operators in odd dimensions obtained in [10, 11, 22, 14, 12, 13].

(ii) A careful study of the integral appearing in the Stone formula, especially re-
garding the interval of energies giving the significant contributions.
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Finally we would like to stress that we do not touch here the huge field related to
resonances, from the spectral-scattering theory point of view. For further references
we send the reader to [8, 23], as well as to the recent review [7].

2 The Basic Formula

The first step is to localize in energy. Thus we consider P0e
−itHεgε(Hε)P0, where

0 ≤ gε(x) ≤ 1 is the (possibly smoothed) characteristic function of an interval in
a neighborhood of E0. The crucial point here is the following beautiful, elementary
remark due to Hunziker [9]:

Proposition 1. Suppose that for some hε : P0 H → P0 H,

‖P0e
−itHεgε(Hε)P0 − e−ithεP0‖ ≤ δ(ε). (9)

Then
‖P0e

−itHεP0 − e−ithεP0‖ ≤ 2δ(ε). (10)

Then one can use the freedom of choice of gε(x) to be able to compute hε, and
to optimize the error estimate. We note that usually gε(x) is chosen independent
of ε. One of the key points of our approach is to make an appropriate ε-dependent
choice of gε(x). For example, in the case of perturbing threshold eigenvalues, it is
crucial that gε(x) is the characteristic function of an interval, which is “far” from
the threshold, i.e. does not contain the unperturbed eigenvalue. In what follows we
choose an interval Iε = (e0(ε) − d(ε), e0(ε) + d(ε)), and take gε(x) = χIε (x)

as the cut-off function. As already said the central point in our approach is to find
the “right” location e0(ε), and the “right” size function d(ε), such that energies in
Iε give the resonance behavior, and energies outside Iε only contribute to the error
term δ(ε, t).

A remark is in order here. By taking a smoothed out characteristic function one
can obtain a refinement of (10) in the form

P0e
−itHεP0 = (I + A(ε))e−ithε (I + A(ε))+ δ(ε, t),

where A(ε) = O(εp) for some p > 0, and δ(ε, t) now exhibits decay in t for t

large. However, our concern here is with error estimates uniform in time, so we take
just the characteristic function as our cut-off function.

The next step is to write down a workable formula for the compressed evolution
in (9). For this purpose we use the Stone formula to express the compressed evolu-
tion in terms of compressed resolvent, and then we use the Schur-Livsic-Feschbach-
Grushin (SLFG) partition formula to express the compressed resolvent as an inverse.
We briefly recall the SLFG formula (for details, further references, and historical re-
marks, we send the reader to [14]). Let Rε(z) = (H(ε) − z)−1, and let R0,ε(z) be
the resolvent of Q0H(ε)Q0, as an operator in Q0 H, where
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Q0 = 1 − P0. (11)

Then we have in the decomposed space H = P0 H ⊕Q0 H

Rε(z) =
[

Reff(z) −εReff(z)P0WQ0R0,ε(z)

−εR0,ε(z)Q0WP0Reff(z) R22

]

, (12)

with
Reff(z) =

(
P0H(ε)P0 − ε2P0WQ0R0,ε(z)Q0WP0 − zP0

)−1
.

We do not give the formula for R22, since it is not needed here, see [14] for this
formula.

More precisely, by using the Stone formula, the SLFG formula, and by rearrang-
ing the Neumann series for the perturbed resolvent, one arrives at the following
basic formula for the compressed evolution [14]:

Proposition 2.

P0e
−itHεgε(Hε)P0 = lim

η→0

1

π

∫
dxe−itxgε(x) ImP0(Hε − x − iη)−1P0

= lim
η→0

1

π

∫
dx e−itxgε(x) ImF(x + iη, ε)−1 (13)

where using the notation

W = A∗DA, D = D∗ = D−1, (14)

G(z) = AQ0(H − z)−1Q0A
∗, (15)

as an operator in P0 H, the function F(z, ε) is given by

F(z, ε) = (E0 − z)P0 + εP0WP0 − ε2P0A
∗DG(z)DAP0

+ ε3P0A
∗DG(z)[D + εG(z)]−1G(z)DAP0. (16)

The formulas (13) and (16) are the starting formulas of our approach, and at this
point the hard work starts. What is needed is to show that on the interval Iε, up
to a controllable error, F(x + iη, ε) = hε − x − iη, so that one can isolate the
resonant term and estimate the remainder. All that depends crucially on the smooth-
ness properties of F(z, ε). The main point of the formula (16) is that F(z, ε) in-
herits the smoothness properties of G(z). This allows, assuming appropriate con-
ditions on G(z), to prove “semi-abstract” results, and then apply them to various
concrete cases, by checking these assumptions. In what follows the assumptions for
the threshold case are modeled on Schrödinger operators in odd dimensions.
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3 The Results

3.1 Properly Embedded Eigenvalues

Let for a > 0
Da(E0) = {z ∈ C||z− E0| < a, Im z > 0}. (17)

We denote by Cn,θ (Da(E0)) the functions in Da(E0) that are n times continuously
norm-differentiable, with the nth derivative satisfying a uniform Hölder condition in
Da(E0), of order θ , 0 ≤ θ ≤ 1. The main assumption in this subsection is that

G(z) ∈ Cn,θ (Da(E0)). (18)

Such conditions can be verified in an abstract setting, using the Mourre estimate
and the multiple commutator technique, see e.g. [1, 3, 6], and references therein.
Note this assumption implies that G(z) has boundary values G(x + i0), which are
in Cn,θ ((E0 − a,E0 + a)). For Schrödinger operators the smoothness of G(z) also
follows, if the potential decays sufficiently fast at infinity.

We give first the result in the non-degenerate case [14].

Theorem 1. Assume G(z) ∈ Cn,θ (Da(E0)). Assume dimP0 = 1 and n + θ > 0.
Write F(x+i0, ε) = (R(x, ε)+iI (x, ε))P0. Then for ε sufficiently small there exists
a (unique for n+ θ ≥ 1) solution to R(x, ε) = 0 in the interval (E0 − a,E0 + a),
denoted by x0(ε). Let Γ (ε) = I (x0(ε), ε), write

λε = x0(ε)− iΓ (ε), (19)

and let Ψ0 denote a normalized eigenfunction for eigenvalue E0 of H . Then for ε

sufficiently small, and for all t > 0, the following results hold true:

(i) Assume n = 0, 0 < θ < 1, and

Γ (ε) ≥ Cεγ with 2 ≤ γ <
2

1 − θ
. (20)

Then we have

|〈Ψ0, e
−itH(ε)Ψ0〉 − e−it (x0(ε)−iΓ (ε))| ≤ C

1

1 − θ
εδ, (21)

where
δ = 2 − γ (1 − θ) > 0. (22)

(ii) For n+ θ ≥ 1 we have

|〈Ψ0, e
−itH(ε)Ψ0〉−e−it (x0(ε)−iΓ (ε))| ≤ C

{
ε2|ln ε| for n = 0, θ = 1,

ε2 for n+ θ > 1.
(23)
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The results in the theorem above sharpen and amplify similar results in [5, 4,
19–21, 26, 27]. Let us stress that in the high regularity case, i.e. n+ θ ≥ 1, there is
no lower bound condition for Γ (ε). In particular, λε can be an eigenvalue.

We turn now to the degenerate case. In the degenerate case the results are by
far less complete. In particular, in order to prove (3) and (4), one has to impose a
condition on the size of the imaginary part of ImF(E0 + i0), namely the so-called
Fermi Golden Rule condition (see (24) below). One can relax (24), if one imposes
conditions on the spectrum of P0WP0, such that one can apply the methods and
results from the non-degenerate case [24, 16]. Our main result [16] here sharpening
the ones in [21, 28] is contained in

Theorem 2. Assume N ≥ 2 and G(z) ∈ Cn,θ (Da(E0)) with n + θ ≥ 2. Assume
there exists γ > 0 such that

ImP0A
∗DG(E0 + i0)DAP0 ≥ γP0. (24)

Then there exists a function δ(ε, t) satisfying (4) with p = 2, such that

P0e
−itHεP0 = e−ithεP0 + δ(ε, t). (25)

Here hε on P0 H is given by

hε = E0P0 + εP0WP0 − ε2P0WQ0(H − E0 − i0)−1Q0WP0

− ε3
{

P0WQ0(H − E0 − i0)−1Q0WQ0(H − E0 − i0)−1Q0WP0

+ 1

2

[

P0WP0W
d

dE
Q0(H − E − i0)−1Q0

∣
∣
∣
∣
E=E0

WP0

+ P0W
d

dE
Q0(H − E − i0)−1Q0

∣
∣
∣
∣
E=E0

WP0WP0

]}

. (26)

3.2 Threshold Eigenvalues

As already said in the Introduction, the usual methods to prove the smoothness of
G(z) do not work at thresholds, and actually it may not be smooth, or even blows
up, in the neighborhood of the origin. The way out from this difficulty is to use
the asymptotic expansion of G(z) around the threshold (see [10–13, 22] and refer-
ences therein). Let us stress that the asymptotic expansions of the resolvent around
thresholds are not universal; e.g. in the Schrödinger case the type of expansions de-
pend on dimension, and on the threshold spectral properties of the Hamiltonian. The
asymptotic expansion in the assumption below (see [14, Sect. 3]) is modeled after
Schrödinger and Dirac operators in odd dimensions.
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Assumption 1.

(A1) There exists a > 0, such that (−a, 0) ⊂ ρ(H) (the resolvent set) and [0, a] ⊂
σess(H).

(A2) Assume that zero is a non-degenerate eigenvalue of H : HΨ0 = 0, with ‖Ψ0‖ =
1, and there are no other eigenvalues in [0, a]. Let P0 = |Ψ0〉〈Ψ0| be the or-
thogonal projection onto the one-dimensional eigenspace.

(A3) Assume
〈Ψ0,WΨ0〉 = b > 0. (27)

(A4) For Re κ ≥ 0 and z ∈ C \ [0,∞) we let

κ = −i
√
z, z = −κ2. (28)

There exist N ∈ N and δ0 > 0, such that for κ ∈ {κ ∈ C | 0 < |κ| <

δ0,Re κ ≥ 0} we have

G(z) =
N∑

j=−1

G̃j κ
j + κN+1G̃N(κ), (29)

where

G̃j are bounded and self-adjoint, (30)

G̃−1 is of finite rank and self-adjoint, (31)

G̃N(κ) is uniformly bounded in κ . (32)

From (29) we get

〈Ψ0, A
∗DG(z)DAΨ0〉 =

N∑

j=−1

gjκ
j + κN+1gN(κ), (33)

where

gj = 〈Ψ0, A
∗DG̃jDAΨ0〉, (34)

gN(κ) = 〈Ψ0, A
∗DG̃N(κ)DAΨ0〉. (35)

(A5) There exists an odd integer, −1 ≤ ν ≤ N , such that

gν $= 0, G̃j = 0 for j = −1, 1, . . . , ν − 2. (36)

The main (semi)-abstract result dealing with threshold case is as follows [14]:

Theorem 3. Let x0(ε), Γ (ε) be as in Theorem 1. Suppose (A1)–(A5) in Assump-
tion 1 hold true. Then for sufficiently small ε > 0 we have

|〈Ψ0, e
−itHεΨ0〉 − e−it (x0(ε)−iΓ (ε))| ≤ Cεp(ν). (37)
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Here p(ν) = min{2, (2 + ν)/2}, and

Γ (ε) = −iν−1gνb
ν/2ε2+ν/2(1 + O(ε)), (38)

x0(ε) = bε(1 + O(ε)). (39)

4 A Uniqueness Result

The spectrum of the effective Hamiltonian, hε, (λε in the nondegenerate case) gives
information about the “location” of resonances resulting from the perturbation of
stationary states, as can be seen in the cases, when one can define the resonances
as poles of the analytic continuation of the resolvent or the scattering matrix. Then
a natural question is to ask, to what extent the effective Hamiltonian hε as defined
by (3) and (4) is unique. If hε has an asymptotic expansion as ε → 0, the question is
how many expansion coefficients are uniquely determined. The following result [3,
17] gives the answer to this problem.

Theorem 4.

I. Assume RankP0 = 1.
Assume that h1

ε and h2
ε both satisfy (3) and (4), with the same value for p.

Assume that for some c0 > 0 and q > 0 we have

−c0ε
qP0 ≤ Imh1

ε ≤ 0 for 0 ≤ ε < ε0. (40)

Then for ε0 sufficiently small we have

‖h1
ε − h2

ε‖B(P0 H) ≤ Cεp+q, 0 ≤ ε < ε0. (41)

II. Assume 1 ≤ RankP0 < ∞.

(i) Assume that h1
ε and h2

ε both satisfy (3) and (4), with the same value for p.
Assume that h1

ε satisfies

h1
ε = E0P0 + εh1

1 + εf 1(ε), 0 ≤ ε < ε0, (42)

such that h1
1 = (h1

1)
∗, Im f 1(ε) ≤ 0, and f 1(ε) = o(1) as ε → 0. Assume that

h2
ε is a bounded family of operators on P0 H. Then for ε0 sufficiently small we

have
‖h1

ε − h2
ε‖B(P0 H) ≤ Cεp+1, 0 ≤ ε < ε0. (43)

(ii) Assume that h1
ε and h2

ε both satisfy (3) and (4), with p = 2. Assume that h1
ε

satisfies
h1
ε = E0P0 + εh1 + ε2h2 + o(ε2), 0 ≤ ε < ε0, (44)

such that h1 = h∗1 and Imh1
ε ≤ 0. Assume that h2

ε is a bounded family of
operators on P0 H. Then there exists a family of invertible operators U(ε) on
P0 H with U(ε) = P0 +O(ε2), such that for ε0 sufficiently small we have
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‖h1
ε − U(ε)−1h2

εU(ε)‖B(P0 H) ≤ Cε4, 0 ≤ ε < ε0. (45)

5 Examples

In this section, for all ν = −1, 1, 3, . . . , we give examples for which Assump-
tion 1 holds true, and then Theorem 3 gives (3) with | Im λε| ∼ ε2+ ν

2 . In each case
we compute the leading term gν . As examples we consider one and two channel
Schrödinger operators in three dimensions [14]. For more examples, see [14–16].

5.1 Example 1: One Channel Case, ν = −1

In this case

H = −Δ+ V (x), (46)

(Wf )(x) = W(x)f (x), (47)

in L2(R3), with V,W satisfying

〈·〉βV ∈ L∞(Rm), (48)

〈·〉γW ∈ L∞(Rm), (49)

and β, γ are sufficiently large (see below). Here E0 = 0. About H we suppose that
it has a non-degenerate threshold eigenvalue

(−Δ+ V )Ψ0 = 0, ‖Ψ0‖ = 1, (50)

as well as a threshold resonance with canonical resonance function Ψc. We recall
that H has a threshold resonance if there exist additional non-zero solutions to
(−Δ+ V )Ψ = 0, in the space L2,−s(R3), 1/2 < s ≤ 3/2. Among these solutions,
one can choose a distinguished one, Ψc, called the canonical zero resonance func-
tion, and all the others can be written as Ψ = αΨc+ Ψ̃ with α $= 0 and Ψ̃ ∈ L2(R3)

(for definition and further details see [14, Appendix A]). In the theorem below we
take Ψ0 to be real-valued.

Theorem 5. Assume that V and W satisfy (48) and (49) with β > 9 and γ > 5,
respectively. Assume that (A1–3) holds for H = −Δ+ V . Let

Xj =
∫

R3
Ψ0(x)V (x)xj dx, j = 1, 2, 3. (51)

Assume either that Xj $= 0 for at least one j , or that 〈Ψ0,WΨc〉 $= 0. Then ν = −1,
and we have
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g−1 = b2

12π
(X2

1 +X2
2 +X2

3)+ |〈Ψ0,WΨc〉|2. (52)

If H does not have a resonance at the threshold, but still Xj $= 0 for at least one j ,
then the second term in the right hand side of (52) should be omitted, i.e.

g−1 = b2

12π
(X2

1 +X2
2 +X2

3). (53)

The following example shows the significance of the conditions in the theorem.
Take

V (x) =
{−V0, if |x| ≤ 1,

0, if |x| > 1.

Here V0 > 0 is a parameter. By adjusting this parameter, one can get a radial solution
to (−Δ + V )ψ = 0 for any angular momentum  = 0, 1, . . . , which decays as
|x|− , as |x| → ∞. Thus for  = 0 we get a zero resonance. For  = 1 we get zero
eigenvalues, such that at least one Xj $= 0, see (51). For  ≥ 2 all Xj = 0. For
 ≥ 1 the eigenvalue at zero is not simple. Examples with a simple zero eigenvalue
can be obtained using only the radial part. Note that in order to get 〈Ψ0,WΨc〉 $= 0
one will have to take a non-radial perturbation W .

5.2 Example 2: Two Channel Case, ν = −1, 1

In the two channel case we consider examples of a non-degenerate bound state of
zero energy in the “closed” channel decaying due to the interaction with a three
dimensional Schrödinger operator in the open channel. Since only the bound state
in the closed channel is relevant in the forthcoming discussion, we shall take C as
the Hilbert space representing the closed channel, i.e. H = L2(R3) ⊕ C. As the
unperturbed Hamiltonian we take

H =
[−Δ+ V 0

0 0

]

, (54)

where V satisfies (48), and as the perturbation we take

W =
[

W11 |W12〉〈1|
|1〉〈W12| b

]

, (55)

which is a shorthand for

W

[
f (x)

ξ

]

=
[
W11(x)f (x)+W12(x)ξ
∫
W12(x)f (x)+ bξ

]

. (56)
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Here we assume

〈·〉γW11 ∈ L∞(Rm), 〈·〉γ /2W12 ∈ L∞(Rm), (57)

and furthermore that W11 is real-valued. In order to satisfy (27) we assume b > 0
in (55).

Concerning the two channel case we have the following result.

Theorem 6. Assume that V and W satisfy (48) and (49) with β > 9 and γ > 5,
respectively.

(i) Assume that −Δ+ V has neither a threshold resonance nor a threshold eigen-
value. Then ν ≥ 1, and we have

g1 = −1

4π
|〈W12, (I +G0

0V )−11〉|2. (58)

where the integral kernel of G0
0 is 1

4π |x−y| .
(ii) Assume that −Δ+ V has a threshold resonance, and no threshold eigenvalue.

Let Ψc denote the canonical zero resonance function. Assume that 〈W12, Ψc〉 $=
0. Then ν = −1, and

g−1 = |〈W12, Ψc〉|2. (59)

5.3 Example 3: Two Channel Radial Case, ν ≥ 3

Here we consider radial part of Schrödinger operator with spherical symmetric po-
tentials for angular momentum  = 1, 2, . . .

H0, = − d2

dr2
+  ( + 1)

r2
,  = 1, 2, . . . , (60)

on the space H = L2(R+) in the two channel set-up, where we now take the Hilbert
space H = L2(R+)⊕ C, and replace (54) by

H =
[
H0, 0

0 0

]

. (61)

It will provide us with examples of resolvent expansions, where we can verify As-
sumption (A5) with ν ≥ 3 odd and arbitrarily large. Note that the cases ν = −1 and
ν = 1 were covered in the preceding examples.

Theorem 7. Consider the two channel case with H given by (61). Assume that W
given by (55) satisfies (57) with γ > 2 + 5. Assume that

〈W12, r
 +1〉 $= 0.

Then we have ν = 2 + 1 and
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gν = (−1) +1

[ √
π

2 +1Γ ( + 3
2 )

]2

|〈W12, r
 +1〉|2, (62)

where Γ denotes the usual Gamma function.
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Energy Diffusion and Superdiffusion
in Oscillators Lattice Networks

Stefano Olla

Abstract I review some recent results on the thermal conductivity of chains of
oscillators whose Hamiltonian dynamics is perturbed by a noise conserving energy
and momentum.

1 Introduction

Let us consider a 1-dimensional chain of oscillators indexed by x ∈ Z, whose formal
Hamiltonian is given by

H(p, q) =
∑

x

[
p2
x

2
+ V (qx+1 − qx)+W(qx)

]

, (1)

where qx indicate the displacement of the atom x from its equilibrium position, and
px its momentum (we fix for the moment all masses equal to 1). The potential V
and W are some smooth positive function growing at infinity fast enough. The W

potential is often called pinning.
We want to understand the macroscopic properties of energy transport for the

corresponding Hamiltonian dynamics

q̇x = px, ṗx = −∂qx H. (2)

When we say “macroscopic energy transport” we are meaning a certain non-equi-
librium evolution that we want to observe in a space-time macroscopic scale that
should be specified. This space-time scale can be typical of the model and the same
model can have distinct macroscopic scalings under which it will behave very dif-
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ferently. For example in the case that W = 0 (unpinned system), total momentum
is also conserved and hyperbolic scaling (in which space and time are scaled in the
same way) is a natural one. In the hyperbolic scaling, energy is carried around by
the momentum of the particles and macroscopic evolution equation is given by the
Euler equations.

Another important scaling is the diffusive scaling (time scaled as square of space)
where transport of energy happens by diffusion. The macroscopic equation is usu-
ally given by heat equation. For example, when the pinning potential W is present,
total momentum is not conserved and nothing moves in the hyperbolic scale. En-
ergy will move on the diffusive space-time scale, and macroscopically its evolution
should be governed by heat equation. More precisely, defining the empirical distri-
bution of the energy

Ẽ ε(G, t) = ε
∑

x

G(εx)Ex(ε
−2t) (3)

where Ex = p2
x

2 + V (qx+1 − qx) +W(qx) is the energy of particle x, and G is a
smooth test function on R with compact support. We expect that

lim
ε→0

Ẽ ε(G, t) =
∫

G(y)u(y, t) dy (4)

in some statistical sense, with u(y, t) solution of the (non-linear) heat equation

∂tu = ∂x(κ(u)∂xu). (5)

The function κ(u) is called thermal conductivity and can be expressed in terms of
the dynamics in equilibrium:

κ(u) = lim
t→∞

1

2tT 2

∑

x

x2[〈Ex(t)E(0)〉T − u2] (6)

where the temperature T = T (u) correspond thermodynamically to the average en-
ergy u, < · >T is the expectation of the dynamics in equilibrium at temperature T .

Proving (4)–(5) from an Hamiltonian microscopic dynamics is one of the major
challenge in non-equilibrium statistical mechanics [8]. It is not clear under which
conditions on the interaction and initial conditions this result could be valid. Even
the proof of the existence of the limit (6) defining the thermal conductivity is com-
pletely open for any deterministic system. What is clear is that (4)–(5) are not always
valid. For example if V and W are quadratic (harmonic chains), then the energy cor-
responding to each Fourier mode is conserved and carried ballistically without any
interaction with the other modes. It results that thermal conductivity is infinite in
this case ([16], and for a macroscopic equation in the hyperbolic scaling see [9], as
explained in Sect. 4).

In nonlinear unpinned cases (W = 0) one expects, generically in dimension 1,
that κ = +∞, and correspondingly a superdiffusion of energy. This fact seems con-
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firmed by all numerical simulation of molecular dynamics [12], even though there
is not a general agreement about the order of this superdiffusivity. Most interesting
would be to understand what kind of stochastic process would govern this superdif-
fusion.

Adding a stochastic perturbation to the Hamiltonian dynamics certainly helps
to obtain some mathematical result in these problems. Of course adding noise to
the microscopic dynamics may change the macroscopic behavior. The ideal is to
add noise terms that change as little as possible the macroscopic behaviour, at least
qualitatively. For example it is important that this noise conserves energy, and even-
tually momentum, since these are the quantities we expect being conserved by the
infinite system.

2 Conservative Stochastic Dynamics

We consider the Hamiltonian dynamics weakly perturbed by a stochastic noise act-
ing only on momenta and locally preserving momentum and kinetic energy. The
generator of the dynamics is

L = A+ γ S (7)

with γ > 0, where A is the usual Hamiltonian vector field

A =
∑

yx∈Z

{px∂qx − (∂qx H)∂px }, (8)

while S is the generator of the stochastic perturbation. The operator S acts only
on the momenta {py} and generates a diffusion on the surface of constant kinetic
energy and constant momentum. S is defined as

S = 1

6

∑

z∈Z

(Yz)
2, (9)

where

Yz = (pz − pz+1)∂pz−1 + (pz+1 − pz−1)∂pz + (pz−1 − pz)∂pz+1

which is a vector field tangent to the surface of constant kinetic energy and of con-
stant momentum for three neighbouring particles. As a consequence energy and
momentum are locally conserved which, of course, implies also the conservation of
total momentum and total energy of the system, i.e. formally

S
∑

x∈Z

px = 0, SH = 0.

Since also the Hamiltonian dynamics conserves energy, we also have LH = 0.
Furthermore in the unpinned case (W = 0), L

∑
x px = 0.
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The evolution of {p(t), q(t)} is given by the following stochastic differential
equations

dqx = pxdt,

dpx = −∂x Hdt + γ

6
Δ(4px + px−1 + px+1)dt (10)

+
√

γ

3

∑

k=−1,0,1

(Yx+kpx)dwx+k(t).

Here {wy(t)}y∈Z are independent standard Wiener processes and Δ is the discrete
Laplacian on Z: Δf (z) = f (z+ 1)+ f (z− 1)− 2f (z) .

In the unpinned 1-dimensional case, the equilibrium measures are particularly
simple. In fact the right coordinates are rx = qx+1 − qx , and the family of product
measures

μλ,p,β(dp, dr) =
∏

x∈Z

e−β(px−p)2/2

√
2π

e−βV (rx)+λrx

Z(λ, β)
(11)

are stationary for the dynamics. The three parameters λ, p, β correspond to the 3
conserved quantities of the dynamics (energy, momentum and

∑
x rx , the stretch

of the chain), while Z(λ, β) is the normalization constant. It can be proven that
these are the only translation invariant stationary measures of the dynamics ([6],
we call this property “ergodicity of the infinite dynamics”). In more dimensions the
unpinned case is much more complex and even the definition of these equilibrium
measures are problematic (cf. [10]).

In the unpinned one-dimensional case, since momentum is conserved, there is
a non trivial macroscopic evolution on the conserved quantities in the hyperbolic
scaling (space and time scaled in the same way). Let us define the energy of particle
x as

Ex = p2
x

2
+ 1

2
(V (rx−1)+ V (rx)).

Locally the conservation of energy can be written as

LEx = jE
x−1,x − jE

x,x+1 (12)

where the instantaneous current of energy jE
x,x+1 is the sum of the current due to the

Hamiltonian mechanism plus the current due to the stochastic term of the dynamics:

jE
x,x+1 = j

E,a
x,x+1 + j

E,s
x,x+1

(13)

j
E,a
x,x+1 = −1

2
(px + px+1)V

′(rx), j
E,s
x,x+1 = −γ∇ϕx

with ϕx = (p2
x+1 + 4p2

x + p2
x−1 + px+1px−1 − 2px+1px − 2pxpx−1). Similarly

conservation of momentum reads as
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Lpx = j
p

x−1,x − j
p

x,x+1, (14)
j
p

x,x+1 = V ′(rx)+ γ

6
∇(4px + px−1 + px)

while mass conservation is simply given by

Lrx = px+1 − px. (15)

Let G(y) a test function continuous with compact support. We expect that

ε
∑

x

G(εx)

⎛

⎝
rx(ε

−1t)

px(ε
−1t)

Ex(ε
−1t)

⎞

⎠ probability−→
ε→0

∫
G(y)

⎛

⎝
r(t, y)

p(t, y)

e(t, y)

⎞

⎠ dy (16)

where r(t, y), p(t, y), e(t, y) are given by the solution of the Euler hyperbolic sys-
tem of equations

∂t r = ∂yp

∂tp = ∂yP (r, e− p
2/2)

∂te = ∂y

(

pP(r, e− p
2/2)

)

.

(17)

Here P(r, u) is the thermodynamic pressure, which is related to the thermodynamic
entropy S(r, u) by the relation

P(r, u) = − ∂rS(r, u)

∂uS(r, u)
(18)

and S is defined from Z(λ, β) with a Legendre transform:

S(r, u) = sup
λ,β

{
λr − βu− log

(
Z(λ, β)

√
β/2π

)}
. (19)

Pressure P(r, u) is also given by the expectation of V ′(rx) with respect to μλ,p,β ,
for the corresponding values of the parameters λ and β.

The hydrodynamic limit (16) can be proven rigorously in the smooth regime of
equation (17), by using the relative entropy method ([14], see also [1] and [6] for the
application to this specific model). Note that (16) does not depend on the strength of
the microscopic noise γ . Noise here is used only to prove some ergodic properties
for the dynamics, necessary to obtain the result. In fact without noise this limit
may not be true, as for example in the linear case (V quadratic, see below). Note
also that for smooth solutions the macroscopic evolution (17) is locally isoentropic,
i.e.

d

dt
S

(

r(t, y), e(t, y)− p(t, y)2

2

)

= 0. (20)

A challenging open problem is to extend this result to solutions that present shocks,
where the above derivative is (presumably) strictly positive.
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3 Diffusive Evolution: Green-Kubo Formula

In the pinned model (W > 0) momentum is not conserved, energy is the only rele-
vant conserved quantity for the infinite system and the equilibrium measure are the
Gibbs measures at given temperature, corresponding to the Hamiltonian H. These
probability measures are defined by the usual DLR equations. Consequently the hy-
perbolic scaling is trivial (nothing moves at that time scale). In order to see energy
moving at a macroscopic scale, one has to look at larger time scale. The natural
scaling is the diffusive one: we expect, for a given test function G as above,

ε
∑

x

G(εx)Ex(ε
−2t)

probability−→
ε→0

∫
G(y)T(t, y) dy (21)

where T(t, y) is the solution of the (non-linear) heat equation

∂tT = ∂x(κ(T)∂xT) (22)

where κ(T ) is the thermal conductivity at temperature T . This is given by the Green-
Kubo formula

κ(T ) = 1

2χ(T )

[∫ ∞

0

+∞∑

x=−∞

〈
j

E,a
x,x+1(t)j

E,a
0,1 (0)

〉
T
dt + γ T 2

]

(23)

where 〈jE,a
x,x+1(t)j

E,a
0,1 (0)〉T denote the expectation with respect to the dynamics in

equilibrium at temperature T = β−1. The explicit γ T 2/2χ(T ) term is the contribu-
tion of the stochastic part of the dynamics. Formula (23) can be obtained from (6)
using the conservation of energy (see [3] for a proof). We believe that such state-
ment is always true for non-linear pinned dynamics, also in the deterministic case
(γ = 0). But even for γ > 0, this is hard to prove and still an open problem.
Even the convergence of the integrals defining (23) is not known if non-linearities
are present (some bounds are proven in [3]). The only case with non-linear interac-
tion in which (23) is proven convergent is when the noise is generated by Langevin
heat bath attached at each particle of the system [7], a non conservative stochastic
perturbation.

In unpinned systems the situation is more complex because of the momentum
conservation. To avoid complicate re-centering along characteristics of (17), we can
consider initial random configurations with momentum of (locally) zero average and
constant density profile, only gradients of temperature admitted. Then conductivity
κ is also a function of the density of particles and in formula (23) the expectation
should be taken with respect to the equilibrium dynamics with p = 0 (i.e. start-
ing with configurations distributed by μλ,0,β defined by (11)). Numerical evidence
shows that in this one-dimensional case κ = +∞ ([12], also for γ > 0, as long
as momentum is conserved [4]). In the physics literature there is a long discussion
about the nature and the order or this superdiffusion. From dimension 3 on, it is
expected that formulas corresponding to (23) give a finite diffusivity.
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Rigorous results can be proven for the harmonic case with γ > 0 [2, 3]. It turns
out that κ is finite if system is pinned or in dimension d ≥ 3, while the 1 and 2
dimensional unpinned cases are superdiffusive.

4 Kinetic Limits: Phonon Boltzmann Equation

The harmonic case is enough simple to obtain some non-equilibrium results. In [5]
we consider the hyperbolic scaling in a weak noise limit. Noise is rescaled by multi-
plying its strength γ by ε. This way the effect of the noise per particle remains finite
in the macroscopic scale (that motivates the term kinetic in defining this limit). This
is in the same spirit as the model of hard sphere with random collision considered
in [15]. The right quantity to look here is the Wigner distribution of the energy,
formally defined as

Wε(y, k, t) = 1

2

∫ 1/2

−1/2
ei2πyη/ε〈ψ(k − η/2, t/ε)∗ψ(k + η/2, t/ε)〉dη (24)

where

ψ(k, t) = 1√
2
(ω(k)q̂(k, t)+ ip̂(k, t))

here q̂(k, t), p̂(k, t) are the Fourier transform of the qy(t), py(t), and ω(k) is the
dispersion relation of the lattice, which in this one-dimensional nearest neighbour
case is given by ω(k) = c| sin(πk)| (acoustic dispersion). The result in [5] states
that Wε(y, k, t) converges, as a distribution on R × [0, 1], to the solution of the
linear transport equation

∂tW(y, k, t)+ ω′(k)
2π

∂yW(y, k, t)

= γ

∫
C(k, k′)(W(y, k′, t)−W(y, k, t))dk. (25)

In the deterministic case (γ = 0) this result was obtained by Dobrushin et al. in [9],
see also [13]. The collision kernel C(k, k′) is positive and symmetric. It is com-
putable explicitly (cf. [5]), but the important point is that C(k, k′) ∼ k2 for small
k. This is a consequence of the conservation of momentum: long waves scatter very
rarely. Because C(k, k′) is positive, (25) has a simple probabilistic interpretation:
W is the density at time t of the energy of particles (phonons) of mode k. A phonon
of mode k moves with velocity ω′(k) and after an exponentially distributed ran-
dom time of intensity γC(k, k′) changes its mode to k′. Defining a Markov jump
process K(t) in [0, 1] with jumping rate γC, the position of the phonons is given
by Y(t) = ∫ t

0 ω′(K(s))ds.
Thermal conductivity can be computed from (25) (cf. [5]) and the results are in

accord with the direct calculations done in [3].
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5 Levy’s Superdiffusion of Energy

As we mention in the previous section, phonons of small k scatter rarely, but their
velocity ω′(k), in the unpinned case, are still of order 1 as k → 0. This induces a su-
perdiffusive behavior of these phonons. In [11], as application of new limit theorems
for functionals of Markov chains and processes, we prove that, for
α = 3/2,

εY (ε−αt) −→
law

L(t) (26)

where L(t) is a Levy α-stable process, i.e. a stochastic process with independent
stationary increments and with L(1) distributed by a α-stable law. In terms of the
solution W(y, k, t) of (25) this result implies the convergence

lim
ε→0

∫
|W(ε−αt, ε−1y, k)− ū(t, y)|2dk = 0 (27)

where ū(t, y) is the solution of the fractional heat equation

∂t ū = −c(−Δy)
α/2ū. (28)

where c is a positive constant.
In the pinned case all the above results are still valid, but since the velocity of the

phonons ω′(k) ∼ k for small k, we have a regular diffusive behavior, and α = 2.
It would be very interesting to understand how these results extends to the anhar-

monic cases. Equation (25) will be substituted by the non-linear phonon Boltzmann
equation [17]. In the unpinned one-dimensional case this equation still will produce
a superdiffusion. Is it again of Levy type, or will have some non-Markovian terms?
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Trying to Characterize Robust and Generic
Dynamics

Enrique R. Pujals

Abstract If we consider that the mathematical formulation of natural phenomena
always involves simplifications of the physical laws, real significance of a model
may be accorded only to those properties that are robust under perturbations. In
loose terms, robustness means that some main features of a dynamical system are
shared by all nearby systems. In this short article, we will explain the structure
related to the presence of robust transitivity and the universal mechanisms that lead
to lack of robustness. Providing a conceptual framework, the goal is to show how
this approach helps to describe ‘generic’ dynamics in the space of all dynamical
systems.

1 Introduction

In a broad sense, the goal of dynamics is to describe the long term evolution of
systems for which an “infinitesimal” evolution rule is known. It is natural to try
to solve the “equations” by looking for analytic expressions for the trajectories, and
indeed that was the prevailing point of view in differential equations until little more
than a century ago. However, that turns out to be impossible in most cases, both
theoretically and in practice. Moreover, even when such an analytic expressions
can be found, it is usually difficult to deduce from them useful conclusions about
the global dynamics. Then, by the end of the 19th century, Poincare proposed to
find qualitative information on the dynamics without actually finding the solutions.
Its goal will be the understanding of the essential nature of what the properties
that generic mathematical equations has, rather than focusing with the equations
themselves.
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Following this approach, for a long time it has been a goal in the theory of dynam-
ical systems to describe the dynamics from the generic viewpoint, that is, describ-
ing the dynamics of “big sets” (residual, dense, etc.) of the space of all dynamical
systems. In other words: can we describe the behavior in the long run of typical
trajectories for the ‘majority’ of systems?

In this sense, to study a dynamic system is to look for mathematically describ-
able patterns that a system tends to settle. These sets are sets which are “dynami-
cally indecomposable”, “invariant”, and “isolated” (also called elementary pieces)
that contain the recurrent part of the dynamic (the so called nonwandering set). In-
variant, means that any trajectory starting in the set remains in the set; dynamically
indecomposable means that the set is transitive (i.e., contains trajectories which are
dense in the set); isolated, means that the set is maximal invariant (i.e., the set is
given by the trajectories that for the past and the future remains in a neighborhood
of the set).

During the early times of nonconservative dynamics was a common sense that
“non pathological” systems behaves in a very simple form: the nonwandering set
consisting of finitely many periodic elements. The achievement of Peixoto that an
open and dense subset of C1 vector fields on surfaces consist of the now-called
Morse-Smale systems is paradigmatic of this view. However, in the early sixties
(by Anosov and Smale and following Birkhoff, Cartwright and Littlewood, etc.) it
was shown that “chaotic behavior” may exist within stable systems and this was
the starting point of the hyperbolic theory and the modern nonconservative dynam-
ical systems theory. A major result in this theory is the fact that for these systems
(nowadays called hyperbolics, see Sect. 2.1), the nonwandering set can be decom-
posed into finitely many compact, disjoint and transitive pieces. Although this pieces
could exhibit a chaotic behavior there are just finitely many of them and this recover
the old vision by replacing finitely many periodic elements by these finitely many
“non-trivial elementary” pieces.

It was soon realized that hyperbolic systems were not as universal as was initially
thought: there were given examples of open sets of diffeomorphism were none of
them are hyperbolic. Nevertheless in all these new examples the nonwandering set
still decompose into finitely many compact, disjoint and transitive pieces. Moreover,
this phenomena holds in a robust way: Any perturbation of the initial system still has
a only a finite number of transitive pieces.

It was through the seminal work of Newhouse (see [41–43]) where a new phe-
nomena was shown: the existence of infinitely many periodic attractors (today called
Newhouse’s phenomena) for residual subsets in the space of Cr diffeomorphisms
(r � 2) of compact surfaces. The underlying mechanism here was the presence of a
homoclinic bifurcation named homoclinic tangency: non-transversal intersection of
the stable and unstable manifold of a periodic point (see Sect. 3).

In the light of those results, the following dichotomy was formulated for generic
dynamics (see [1] for more details):

1. Robust/Tame dynamics: those having in a robust way, finitely many elementary
dynamical pieces in the ambient manifold;
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2. Wild dynamics (Newhouse’s phenomena): those with infinitely many elementary
pieces having independent dynamical behaviors.

Once the dichotomy is presented, one tried to understand the structure related to
the presence of robust phenomena and the universal mechanisms that lead to lack of
robustness and to wild dynamics. Following this approach, the theory moves in the
ongoing directions:

1. Characterization of the properties and structure that robust (tame) dynamics have;
in particular, the study and characterization of isolated transitive sets that remain
transitive for all nearby systems (robust transitivity).

2. Characterization of the properties and structure that wild dynamics exhibit.
3. Characterization of universal mechanisms (understood as homoclinic bifurca-

tions) that lead to robust and wild dynamics.

These problems are all related to each other and in many cases provide a concep-
tual framework that makes possible to understand a twofold problem: the relation
between mechanisms and phenomenas. As we are going to show, a global panorama,
although partial and very incomplete, is beginning to appear. In this approach, local
mechanism are used to characterize global properties of the dynamics. In this sense,
the strategy consists in building new mechanisms, enough for characterizing all the
possible behaviors. Therefore, one focus is to understand which are the mechanisms
that make a transitive either to be robust or to “explode/implode” in infinitely many
other sets.

In the present note we focus our attention on diffeomorphism acting on a smooth
boundaryless compact manifold. Some references to the flow case are also made.
Moreover, the present note focus on nonconservative systems; however, we mention
some results for the conservative case (recall that in this case, a long and successful
theory had been developed where the KAM theorem is the major highlight).

In Sect. 2 we extend ourselves explaining the relevant examples of robust dy-
namics. In the three following subsections we details the main structure that those
systems exhibit. In Sect. 3 we focus in the main mechanisms that generate wild dy-
namics and in Sect. 4 we expose partial results in the direction to describe generic
type of dynamics.

2 Robust Transitivity: Hyperbolicity, Partial Hyperbolicity and
Dominated Splitting

A diffeomorphisms f : M → M is robustly transitive if every diffeomorphism in a
C1 neighborhood has dense orbits. More generally:

An invariant compact set Λ is robustly transitive if there is an open neighborhood
U of Λ and a neighborhood V of the diffeomorphism f in Diff1(M) such that for
every g ∈ V the maximal invariant set Λg = ⋂n∈Z

gn(U) of g in U is a transitive
set.
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The description of these systems is an important challenge: on the one hand,
being robust, they can not be ignored in any global picture of dynamical systems;
on the other hand, their dynamics is often chaotic.

The typical models showing robust properties are the well known Anosov maps
(as examples of global hyperbolic dynamics) and the Smale’s horseshoes (as exam-
ples of local hyperbolic ones).

However, it was shown that there are open sets in the space of dynamics which
are nonhyperbolic although transitive. Indeed, in [52], an open set of non-hyperbolic
transitive diffeomorphisms in the 4-torus were exhibited (open sets of diffeomor-
phisms exhibiting hyperbolic periodic points of different indices inside a transi-
tive set). On one hand, these examples were a serious blow at the time, since they
meant that even such seemingly simple situations, exhibiting a unique dynami-
cal piece, cannot be understood within the framework of hyperbolicity. On the
other hands these systems exhibit a weaker form of hyperbolicity called partial
hyperbolicity: the tangent bundle is allowed to split into Df -invariant subbundles
TM = Es ⊕ Ec ⊕ Eu, such that the behavior of vectors in Es,Eu is similar to the
hyperbolic case, but vectors in Ec may be neutral for the action of the tangent map.
See Sect. 2.2 for more details.

But the story about robust transitivity does no finish with the partially hyperbolic
ones: In the late 90’s, examples of robust transitive dynamics without any hyper-
bolic subbundles were exhibited. More precisely, in [15] was shown that there are
robustly transitive diffeomorphisms in the 4-torus which have no expanding or con-
tracting invariant sub-bundle; therefore, they are neither hyperbolic nor partially
hyperbolic. However, those examples still exhibit a some kind of structure of their
tangent dynamics: there is a splitting TM = Ecs ⊕Ecu preserved by the derivative
of the map, called dominated splitting, where Ecs and Ecu are indecomposable and
nonhyperbolic. See Sect. 2.3 for more details.

All those examples pushes the theory in the following directions:

1. The general characterization of isolated transitive sets that remain transitive for
all nearby systems;

2. The dynamical consequences of weaker forms of hyperbolicity;
3. The characterization of universal mechanisms that could lead to robustly nonhy-

perbolic behavior.

Respect to the first question proposed a general principle is concluded: robust
dynamical phenomena reflect some robust structure of the tangent map.

In fact, in [35] for surface diffeomorphisms, in [25] for dimension three, and in
[17] for any dimension it is shown that this is the main characteristic of C1-robust
transitivity. More precisely, the following was proved:

Any C1-robust transitive diffeomorphism exhibits a dominated splitting such that its
extremal bundles are uniformly volume contracted or expanded.

This last theorem has other formulations in terms of certain generic dichotomy
and also in conservative terms: see [1, 10, 11, 13, 12, 5].

A similar theory can be developed for flows that include that includes the Geo-
metric models for the Lorenz equations proposed in [2, 29]. Diverse results that
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characterize robustly transitive flows with an equilibrium point have been devel-
oped. We refer to [38, 8, 4, 49] for further reading.

In the next subsection, we are going to extend ourselves in explaining the notion
of hyperbolicity, partially hyperbolicity and dominated splitting. We also going to
explain certain relevance that those models has in some physical problems: in the
hyperbolic case we describe a mechanical model with hyperbolic dynamics; in the
partial hyperbolic case, we explain certain construction in the context of symplectic
dynamics which are relevant to the problem of Arnold’s diffusion; in the context
of dominated splitting, we relate these dynamics with Gaussian thermostats and
isokinetic dynamics.

2.1 Hyperbolicity

The study of hyperbolicity goes back to the work of Hadamard in 1898 concerning
geodesic flows for surfaces with negative curvature, showing the density of closed
geodesics and the instability of the flow with respect to initial conditions. In the 20s
and 30s, Hedlund and Hopf showed that these flows are topologically mixing and
that they are ergodic with respect to the Liouville measure.

Later, in [3] it was shown that geodesic flows for compact manifolds with nega-
tive sectional curvature are hyperbolic (Anosov) flows.

Let us start defining the notion of hyperbolicity for diffeomorphisms: Given a
compact invariant set Λ ⊂ M of a diffeomorphism f , one says that Λ is a hy-
perbolic set of f if the tangent bundle of Λ splits into two invariant sub-bundles:
TΛM = Es ⊕ Eu, and there are two constants λ < 0 and c > 0 such that the
following properties hold:

1. ‖Df n|Es‖ < c exp(λn) for n > 0; that is, Es is uniformly contracted in the
future.

2. ‖Df−n|Eu‖ < c exp(λn) for t > 0; that is, Eu is uniformly contracted in the
past.

The classical example of hyperbolic diffeomorphisms are the Anosov ones where
Λ is the whole manifold, and the Axiom A where in this case Λ is the nonwandering
set and the periodic points are dense.

For a vector field X, a compact set Λ invariant by the flow is a hyperbolic set
of Φt if the tangent bundle of Λ splits into three invariant sub-bundles: TΛM =
Es ⊕ [X] ⊕ Eu, such that [X] is the subbundle induced by the vector field, and the
subbundle Es is uniformly contracted in the future and Eu is uniformly contracted in
the past. One of the most important property of hyperbolic systems is that in contrast
to the instability of their orbits, the hyperbolic dynamics are stable in the sense
that any perturbation of the system is conjugate to the initial one, meaning that the
relevant dynamical behavior is actually the same, in some appropriate sense, again
for all nearby systems. In particular, this shows that transitive hyperbolic systems
(hyperbolic systems that have a dense trajectory) are in fact Cr robust transitive
ones; i.e: any Cr small perturbation of the initial system remains transitive.
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A long standing question has been whether there is a physical example of a
Hamiltonian system with Anosov energy levels—i.e., the Hamiltonian flow is
Anosov on some energy level sets. A positive answer to this question was given
in the remarkable paper of [31] where the dynamics of a triple linkage is studied:
three disks in a plane, free to rotate about pivots fixed in a triangle, but constrained
by three rods connecting one point of each disk to a pivot x. For its free frictionless
motion Hunt and Mackay proved existence of an open set of three linkage configura-
tions for which the dynamics in each positive energy level set is a geodesic Anosov
flow arising from negative curvature.

2.2 Partial Hyperbolicity

Given a closed invariant set Λ we say that it is strong partially hyperbolic if TΛM =
Ess ⊕ Ec ⊕ Euu and there are constants 0 < σ−1 < γ−1 < 1 < γ < σ such that

‖Df|Ess
x
‖ < σ−1 < σ < ‖Df−1

|Euu‖−1 ∀x ∈ Λ

‖Df|Ess
x
‖∥∥Df−1

|Ec

f−1(x)

∥
∥ < γ−1, ‖Df|Ec

x
‖∥∥Df−1

|Euu

f−1(x)

∥
∥ < γ−1 ∀x ∈ Λ.

We say that Λ is partially hyperbolic if TΛM = Es ⊕ Ecu, constants 0 < σ <

γ < 1 such that

‖Df|Es
x
‖ < σ, ‖Df|Es

x
‖∥∥Df−1

|Ec

f−1(x)

∥
∥ < γ ∀x ∈ Λ.

There exists many different constructions of robustly transitive partial hyperbolic
systems. We list some of them: Product and Skew products of a hyperbolic sys-
tem with a non-hyperbolic one; Bifurcation of Anosov maps or maps isotopic to an
Anosov system; Time one map of an Anosov flow; Toral automorphisms with some
hyperbolic subbundles; Partially hyperbolic affine diffeomorphisms of finite volume
compact homogeneous spaces of simple Lie groups.

Now we are going to describe some of them that has relevant connotations in
symplectic dynamics. In this context, the theory of Kolmogorov, Arnold and Moser,
(KAM) gives a precise description of the dynamics of a set of large measure of or-
bits for any small perturbation of a non-degenerate integrable Hamiltonian system.
These orbits lie on the invariant KAM tori for which the dynamics are equivalent to
irrational (Diophantine) rotations. This theory applies for the autonomous Hamilto-
nians, time-periodic Hamiltonians and also for symplectic diffeomorphisms.

In the case of autonomous systems in two degrees of freedom or time-periodic
systems in one degree of freedom (i.e., 1.5 degrees of freedom), the KAM theorem
proves the stability of all orbits, in the sense that the actions do not vary much
along the orbits. Since each KAM torus has codimension one in the phase space,
its complement is disconnected and contains two connected invariant components.
Thus, any orbit remains between two nearby invariant tori. This, of course, is not
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the case if the degree of freedom is larger than two, where the KAM tori are of
codimension at least two. A natural question arises: Do generic perturbations of
integrable systems in higher dimensions exhibit instabilities?

The problem of instabilities for high dimensional nearly integrable Hamiltonian
systems (i.e. small perturbations of integrable systems) has been considered one of
the most important problems in Hamiltonian dynamics. The first example of insta-
bility is due to Arnold [6], who constructed a family of small perturbations of a
non-degenerate integrable Hamiltonian system that exhibits instability in the sense
that there are orbits for which the variation of action is large. This kind of topolog-
ical instability is sometimes called the Arnold diffusion. In fact, he had conjectured
[7, pp. 176] that the answer of the above question should be positive. While there
is a large number of works and announcements towards this conjecture, specially
in the recent years (see e.g. [19, 26, 22, 33, 34, 54], and references there), little is
known about “most of the orbits” in the complement of invariant or periodic Dio-
phantine tori. Although it is very difficult to prove the existence of “some” instable
orbits in general, it is the simplest expected non-trivial behavior in the complement
of invariant tori. For instance, one may ask about transitivity or topological mixing.

A goal therefore, is to study the dynamics in the complement of invariant KAM
tori with a focus on the non-local robust phenomena, mainly robust transitivity and
robust topological mixing. In particular, the methods of robust transitivity and par-
tially hyperbolicity can be developed into the context of symplectic and Hamiltonian
systems, and apply them for the nearly integrable symplectic and Hamiltonian sys-
tems with more than two degrees of freedom. This allows to introduce Hamiltonians
or symplectic diffeomorphisms exhibiting unbounded or large robustly transitive
sets. Then, the instability (or the so-called Arnold diffusion) is obtained as a conse-
quence of the existence of large or unbounded robustly transitive sets. In particular,
theorem A in [40], says:

If the product of a hyperbolic basic set Λ by any non-wandering dynamics on N is
partially hyperbolic then we can perturb it in such a way that (the continuation of )
Λ×N become a robustly topological mixing set.

To exemplify this, consider a product of a hyperbolic set (for instance a horseshoes)
by a Twist map. Similar results can be stated in the context of exact and Hamiltonian
diffeomorphisms, and also time-dependent Hamiltonians. These results concern the
class of integrable systems that contains the so-called a priori unstable integrable
Hamiltonian systems H (cf. [19, 22, 54]).

2.3 Dominated Splitting

There is also another category which includes the partially hyperbolic system: dom-
inated splitting. An f -invariant set Λ is said to have dominated splitting if we can
decompose its tangent bundle in two invariant subbundles TΛM = E ⊕ F , such
that:

‖Df n
/E(x)‖‖Df−n

/F(f n(x))‖ ≤ Cλn, for all x ∈ Λ,n ≥ 0
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with C > 0 and 0 < λ < 1. Of course, it is assumed that neither of the subbundless
is trivial (otherwise, the other one has a uniform hyperbolic behavior: contracting or
expanding).

Let us explain briefly the meaning of the above definition: it says that, for n

large, the “greatest expansion” of Df n on E is less than the “greatest contraction”
of Df n on F and by a factor that becomes exponentially small with n. In other
words, every direction not belonging to E must converge exponentially fast under
iteration of Df to the direction F . This notion was first introduced independently
by Mañé, Liao, and Pliss, as a first step in the attempt to prove that structurally sta-
ble systems satisfy a hyperbolic condition on the tangent map. Simple examples of
invariant sets exhibiting dominated splitting which are not hyperbolic splitting are
normally hyperbolic closed invariant curves with dynamics conjugate to irrational
rotations and homoclinic classes associated to non-hyperbolic fixed points. These
examples are not robustly transitive. However, as it was said in the introduction, in
[15] it was proved that in dimension larger and equal than four there are robustly
transitive diffeomorphisms exhibiting a dominated splitting which have no expand-
ing or contracting invariant sub-bundle therefore, they are neither hyperbolic nor
partially hyperbolic. See [15, 18, 47, 49] for references about this constructions.

To explain a natural framework, where the dominated splitting dynamics appears,
we have to recall a natural generalization of a Riemann manifold which are the
Weyl structure. It is a torsion free connection whose parallel transport preserves a
given conformal class of metrics. We follow the work and exposition of Maciej P.
Wojtkowski [53] to describe the interplay between a Weyl manifold, a Weyl flow, a
Gaussian thermostat, and a dominated splitting.

Fixed a Riemannian metric 〈,〉, let ∇ be the Levi-Civita connection, and let E be
a vector field. Define the connection ∇̂ as

∇̂XY = ∇XY + 〈X,E〉Y + 〈Y,E〉X − 〈X, Y 〉E;
where X, Y denote arbitrary vector fields. The geodesics of the Weyl connection are
given by the equations in TM

∂q

∂s
= w,

D̂w

∂s
= 0

where D̂w
∂s

denotes the covariant derivative ∇̂w. These equations provide geodesics
with a distinguished parameter s, unique up to scale. The W-flow Φt : SM → SM

is obtained by parameterizing the geodesics of the Weyl connection with the arc
length of g.

There are examples that reveals a major departure from geodesic flows and Ham-
iltonian dynamics (see [53]): W-flows may contract phase volume and they may
have no absolutely continuous invariant measure; in particular, they can exhibit at-
tractors.
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The curvature tensor can be defined and therefore the sectional curvature. The
next theorem (see [53]) is similar to the one obtained for geodesic flows on mani-
folds of negative curvature, replacing hyperbolicity by a dominated splitting:

If the sectional curvatures of the Weyl structure are negative everywhere in M then
the W-flow has a dominated splitting E ⊕ F such that the flow shows exponential
growth of volume in F and exponential decay of volume in E.

Moreover, in [53], Wojtkowski conjectured that there are three-dimensional man-
ifolds and vector fields such that the sectional curvatures of the corresponding Weyl
structure are negative but the W-flow is not Anosov neither partially hyperbolic. In
this context, the construction performed in [15] could play an important role.

Such W-flows turn out to have a natural physical interpretation: they are identi-
cal to Gaussian thermostats, or isokinetic dynamics, introduced by Hoover in [30].
Isokinetic dynamics provides useful models in nonequilibrium statistical mechanics,
discussed in the papers of Gallavotti and Ruelle, [27, 51, 28].

2.4 A General Question About “Weak Form of Hyperbolicity”

One of the reason of the success of hyperbolic dynamics follows from the fact that
under the assumption of hyperbolicity one obtains a satisfactory (complete) descrip-
tion of the dynamics of the system from a topological and statistical point of view.
One example of this is the well known spectral decomposition theorem for hyper-
bolic systems: Under the assumption that the nonwandering set is hyperbolic and
the periodic points are dense, Smale proved that the nonwandering set can be de-
composed into the disjoint union of finitely compact invariant and transitive sets.

This is far from be true in the case of partially hyperbolic dynamics and domi-
nated splitting. To give an example of that, let us consider the following result easily
obtained in the case of hyperbolic dynamics: A transitive Anosov diffeomorphism is
Cr robust transitive. A similar statement is false both in the case of partially hyper-
bolic dynamics and dominated splitting. Therefore, the natural question arise:

Can we characterize robust transitive partially hyperbolic dynamics? Can we char-
acterize robust transitive dynamics exhibiting dominated splitting?

Regarding the type of structure that robust transitive systems exhibit and describe in
Sect. 2, answering previous question would be essential to have a complete descrip-
tion of C1 robust transitive systems.

2.5 Robust Transitivity and Mechanisms: Heterodimensional Cycle

As we said in the introduction, one of the goals in the theory of robust transitivity,
is to understand which is the mechanisms underlying the robustness. Here, we are
going to summarize the role played, in the robust transitivity, by a type of bifurcation
called heterodimensional cycles (see [24, 23]). More precisely:
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Let f ∈ Diffr (M) (r ≥ t1). Let us assume that f has a pair of hyperbolic saddles P
and Q with different indices, that is, different dimensions of their unstable subspaces.
Assume Ws(P ) and Wu(Q) have non-empty intersection, and the same for Wu(P )

and Ws(Q). We say that f has a heterodimensional cycle associated to P and Q.

It follows immediately from the definition that heterodimensional cycles can only
exist in dimension bigger or equal to 3. The main result about this bifurcation, can
be summarize in the following theorem

Let f ∈ Diff1(M) and Λf (U) = ⋂{n∈Z} gn(U) be a maximal invariant nonhyper-

bolic C1-robust transitive sets. Then, there is g C1-close to f such that g exhibits a
heterodimensional cycles contained in Λg(U) =⋂{n∈Z} gn(U).

In the same sense, these cycles play the role for the partial hyperbolic theory as
transverse intersection play for the hyperbolic theory. In the paper [16] is studied
the interplay done between heterodimensional cycles and robust transitive systems
in any dimension.

To show the richness of the heterodimensional cycles we will expose one theorem
related to them. The next theorem asserts that given a heterodimensional cycle, the
homoclinic classes obtained after the bifurcation of the cycle often explode, and
become intermingled (non-empty intersection) when the cycle is unfolded ([24]):

Let f ∈ Diff1(Mn) exhibiting a heterodimensional cycle associated to two fixed
points p and q. Then, there is a small neighborhood U containing p and q and g C1

arbitrarily close to f such that Λg(U) a maximal invariant nonhyperbolic C1-robust
transitive sets.

3 Wild Dynamics

Recall that with wild diffeomorphisms, it is called a diffeomorphisms having infi-
nitely many isolated transitive sets such that the same holds for a residual set of
perturbation of it. The first examples of wild dynamics were discovered by New-
house, in the setting of C2 surface diffeomorphisms. He proved that there exist an
open subset U of Diffr (M), r ≥ 2, and a residual subset in U consisting of dif-
feomorphisms with infinitely many sinks or sources. As we mentioned before, this
construction is intimately associated to homoclinic phenomena.

3.1 Wild Dynamic and Homoclinic Tangency

In this section we will mention some of the dynamical phenomena related to the
presences of homoclinic tangencies. For that, first we recall that the stable and un-
stable sets

Ws(p) = {y ∈ M : dist(f n(y), f n(p)) → 0 as n →∞},
Wu(p) = {y ∈ M : dist(f n(y), f n(p)) → 0 as n →−∞}
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are Cr -injectively immersed submanifolds when p is a hyperbolic periodic point
of f .

Given f : M → M a diffeomorphism, it is said that f exhibits a homoclinic tan-
gency if there is a hyperbolic periodic point p of f such that the stable and unstable
manifolds of p have a non-transverse intersection.

It is important to say that a homoclinic tangency is (locally) easily destroyed by
small perturbation of the invariant manifolds. To get open sets of diffeomorphisms
where each system exhibits an homoclinic tangency, Newhouse study system where
the homoclinic tangency is associated to an invariant hyperbolic set with the prop-
erty that it has large fractal dimension (here is important to remark that his construc-
tion only works in the C2 topology).

Other fundamental dynamic prototypes were found in the context of this bifurca-
tion, namely the so called cascade of bifurcations, the Hénon-like strange attractor
([9, 37]) (infinitely many coexisting ones [20]), and super exponential growth of
periodic points ([32]).

Nevertheless the rich dynamics that appear after the unfolding of an homoclinic
tangency, Palis conjectured (see [44]) that for a generic one parameter family of
surfaces maps unfolding a homoclinic tangency, the set of parameter values corre-
sponding to diffeomorphisms with infinitely many sinks or infinitely many Hénon-
like attractors has (Lebesgue) measure zero.

In this direction in [46] is announced that given a surface diffeomorphisms f0
such that the maximal invariant set in an open set V is the union of a horseshoe and
a quadratic tangency between the stable and unstable foliations of this horseshoe
such that the dimension of the horseshoe is larger than but close to one, then for
most diffeomorphisms f close to f0, the maximal f -invariant set in V is a non-
uniformly hyperbolic horseshoe, with dynamics of the same type as met in Henon
attractors. In particular, most diffeomorphisms (in a measure theoretical point of
view for parameters in one-parameter families) does not exhibit attracting periodic
points.

In higher dimension, many of the previous result were generalized (see [45, 51,
39]).

As it was mentioned at the beginning when we referred to the Newhouse’s tech-
niques, all the previous results hold when are considered at least C2 diffeomor-
phisms. However, in [14] was obtained the (coexistence of infinitely many sinks or
sources) for C1 diffeomorphisms on three dimensional manifolds.

3.2 Surfaces Diffeomorphisms and Beyond

The presence of homoclinic tangencies have many analogies with the presence of
critical points for one-dimensional endomorphisms. On one hand, homoclinic tan-
gencies correspond in the one dimensional setting to preperiodic critical points and
it is known that its bifurcation leads to complex dynamics. On the other hand, Mañé
(see [36]) showed that for regular and generic one-dimensional endomorphisms, the
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absence of critical points is enough to guarantee hyperbolicity. This result raises the
question about the dynamical properties of surface maps exhibiting no homoclinic
tangencies. As dominated splitting prevents the presence of tangencies, we could
say that domination plays for surface diffeomorphisms the role that the non critical
behavior does for one dimensional endomorphisms.

One may ask whether a set having dominated splitting is hyperbolic. Two nec-
essary conditions follows trivially: all the periodic points in the set must be hyper-
bolic and no attracting (repelling) closed invariant (periodic) curve supporting an
irrational rotation is in the set.

The next result says that these two conditions are also sufficient as long as the
diffeomorphism is smooth enough. It is the analogous of a one dimensional theorem
by Mañe (see [36, 48, 50]).

Let f ∈ Diff2(M2) and assume that Λ ⊂ Ω(f ) is a compact invariant set exhibiting
a dominated splitting such that any periodic point in Λ is hyperbolic. Then, Λ =
Λ1 ∪ Λ2 where Λ1 is a hyperbolic set and Λ2 consists of a finite union of periodic
simple closed curves C1, . . . ,Cn, normally hyperbolic, and such that f mi : Ci →
Ci is conjugated to an irrational rotation (mi denotes the period of Ci ).

This result, permit to prove the following theorem which describes the C1 generic
dynamics in terms of Palis’s conjecture stated in next section:

Let f ∈ Diff2(M2) be C1 far from tangencies. Then, f can be C1 approximated by
an Axiom A diffeomorphism.

Moreover, it is possible to relate wild dynamics with the unfolding of homoclinic
tangencies:

Let f ∈ Diff2(M2) have infinitely many sinks or sources with unbounded period.
Then, f can be C1 approximated by a diffeomorphism exhibiting a homoclinic tan-
gency.

The previous results are false in higher dimension due to the existence of robust
transitive diffeomorphisms with partially hyperbolic splitting.

4 Generic Dynamics: Mechanisms and Phenomenas

Two basic mechanisms were found to the obstruction of hyperbolicity, are heterodi-
mensional cycles and homoclinic tangencies. In fact, as we described in Sect. 2.5,
heterodimensional cycle are the core mechanisms for robust non-hyperbolic dynam-
ics and tangencies are generating wild dynamics (recall Sect. 3). Addressing this
remark, in the early 80’s Palis conjectured that these are very common in the com-
plement of the hyperbolic systems:

Palis’Conjecture:

1. Every Cr diffeomorphism of a compact manifold M can be Cr approximated by
one which is hyperbolic or by one exhibiting a heterodimensional cycle or by one
exhibiting a homoclinic tangency.

2. When M is a two-dimensional compact manifold every Cr diffeomorphism of
M can be Cr approximated by one which is hyperbolic or by one exhibiting a
homoclinic tangency.
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This conjecture may be thought as a start point to obtaining a generic description of
Cr diffeomorphisms. If it turns out to be true, we may focus on the two mechanisms
mentioned above in order to understand the dynamics. Nevertheless, the unfolding
of these homoclinic bifurcations is still mainly a local study.

For the case of surfaces and the C1 topology, the theorem A in [48] proves the
conjecture. When the manifold has dimension greater than two the main result in
this direction is the following one proved in [21].

Any f ∈ Diff1(M) can be C1-approximated by another diffeomorphism such that
either

1. it has a homoclinic tangency or,
2. it has a heterodimensional cycle or,
3. it is essentially hyperbolic.

Given f ∈ Diff1(M), it is said that f is essentially hyperbolic if there exists a
finite number of transitive hyperbolic attractors such that the union of their basins
of attraction are open and dense.
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Dynamics of Bose-Einstein Condensates

Benjamin Schlein

Abstract We report on some recent results concerning the dynamics of Bose-
Einstein condensates, obtained in a series of joint papers [7, 8] with L. Erdős and
H.-T. Yau. Starting from many body quantum dynamics, we present a rigorous
derivation of a cubic nonlinear Schrödinger equation known as the Gross-Pitaevskii
equation for the time evolution of the condensate wave function.

1 Introduction

Bosonic systems at very low temperature are characterized by the fact that a macro-
scopic fraction of the particles collapses into a single one-particle state. Although
this phenomenon, known as Bose-Einstein condensation, was already predicted in
the early days of quantum mechanics, the first empirical evidence for its existence
was only obtained in 1995, in experiments performed by groups led by Cornell
and Wieman at the University of Colorado at Boulder and by Ketterle at MIT (see
[2, 4]). In these important experiments, atomic gases were initially trapped by mag-
netic fields and cooled down at very low temperatures. Then the magnetic traps were
switched off and the consequent time evolution of the gas was observed; for suffi-
ciently small temperatures, the particles remained close together and the gas moved
as a single particle, a clear sign for the existence of condensation.

In the last years important progress has also been achieved in the theoretical un-
derstanding of Bose-Einstein condensation. In [10], Lieb, Seiringer, and Yngvason
considered a trapped Bose gas consisting of N three-dimensional particles described
by the Hamiltonian
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H
trap
N =

N∑

j=1

(−Δj + Vext(xj )
)+

N∑

i<j

Va(xi − xj ) (1)

where Vext is an external confining potential and Va(x) is a repulsive interaction po-
tential with scattering length a (here and in the rest of the paper we use the notation
∇j = ∇xj and Δj = Δxj ). Letting N → ∞ and a → 0 with Na = a0 fixed, they
showed that the ground state energy E(N) of (1) divided by the number of particle
N converges to

lim
N→∞, Na=a0

E(N)

N
= min

ϕ∈L2(R3): ‖ϕ‖=1
EGP(ϕ)

where EGP is the Gross-Pitaevskii energy functional

EGP(ϕ) =
∫

dx(|∇ϕ(x)|2 + Vext(x)|ϕ(x)|2 + 4πa0|ϕ(x)|4). (2)

Later, in [9], Lieb and Seiringer also proved that trapped Bose gases characterized by
the Gross-Pitaevskii scaling Na = a0 = const exhibit Bose-Einstein condensation
in the ground state. More precisely, they showed that, if ψN is the ground state wave
function of the Hamiltonian (1) and if γ (1)

N denotes the corresponding one-particle
marginal (defined as the partial trace of the density matrix γN = |ψN 〉〈ψN | over the
last N − 1 particles, with the convention that Tr γ (1)

N = 1 for all N ), then

γ
(1)
N → |φGP〉〈φGP| as N →∞. (3)

Here φGP ∈ L2(R3) is the minimizer of the Gross-Pitaevskii energy functional (2).
The interpretation of this result is straightforward; in the limit of large N , all parti-
cles, apart from a fraction vanishing as N → ∞, are in the same one-particle state
described by the wave-function φGP ∈ L2(R3). In this sense the ground state of (1)
exhibits complete Bose-Einstein condensation into φGP.

In joint works with L. Erdős and H.-T. Yau (see [7, 8, 6]), we prove that the
Gross-Pitaevskii theory can also be used to describe the dynamics of Bose-Einstein
condensates. In the Gross-Pitaevskii scaling (characterized by the fact that the scat-
tering length of the interaction potential is of the order 1/N ) we show, under some
conditions on the interaction potential and on the initial N -particle wave function,
that complete Bose-Einstein condensation is preserved by the time evolution. More-
over we prove that the dynamics of the condensate wave function is governed by the
time-dependent Gross-Pitaevskii equation associated with the energy functional (2).

As an example, consider the experimental set-up described above, where the dy-
namics of an initially confined gas is observed after removing the traps. Mathemat-
ically, the trapped gas can be described by the Hamiltonian (1), where the confining
potential Vext models the magnetic traps. When cooled down at very low tempera-
tures, the system essentially relaxes to the ground state ψN of (1); from [9] it follows
that at time t = 0, immediately before switching off the traps, the system exhibits
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complete Bose-Einstein condensation into φGP in the sense (3). At time t = 0 the
traps are turned off, and one observes the evolution of the system generated by the
translation invariant Hamiltonian

HN = −
N∑

j=1

Δj +
N∑

i<j

Va(xi − xj ).

Our results (stated in more details in Sect. 3 below) imply that, if ψN,t = e−iHN tψN

is the time evolution of the initial wave function ψN and if γ
(1)
N,t denotes the one-

particle marginal associated with ψN,t , then, for any fixed time t ∈ R,

γ
(1)
N,t → |ϕt 〉〈ϕt | as N →∞

where ϕt is the solution of the nonlinear time-dependent Gross-Pitaevskii equation

i∂tϕt = −Δϕt + 8πa0|ϕt |2ϕt (4)

with the initial data ϕt=0 = φGP. In other words, we prove that at arbitrary time
t ∈ R, the system still exhibits complete condensation, and the time-evolution of
the condensate wave function is determined by the Gross-Pitaevskii equation (4).

The goal of this manuscript is to illustrate the main ideas of the proof of the re-
sults obtained in [7, 8, 6]. The paper is organized as follows. In Sect. 2 we define
the model more precisely, and we give a heuristic argument to explain the emer-
gence of the Gross-Pitaevskii equation (4). In Sect. 3 we present our main results.
In Sect. 4 we illustrate the general strategy used to prove the main results and, fi-
nally, in Sects. 5 and 6 we discuss the two most important parts of the proof in some
more details.

2 Heuristic Derivation of the Gross-Pitaevskii Equation

To describe the interaction among the particles we choose a positive, spherical sym-
metric, compactly supported, smooth function V (x). We denote the scattering length
of V by a0.

Recall that the scattering length of V is defined by the spherical symmetric solu-
tion to the zero energy equation

(

−Δ+ 1

2
V (x)

)

f (x) = 0 f (x) → 1 as |x| → ∞. (5)

The scattering length of V is defined then by

a0 = lim|x|→∞ |x| − |x|f (x).
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This limit can be proven to exist if V decays sufficiently fast at infinity. Note that,
since we assumed V to have compact support, we have

f (x) = 1 − a0

|x| (6)

for |x| sufficiently large. Another equivalent characterization of the scattering length
is given by

8πa0 =
∫

dxV (x)f (x). (7)

To recover the Gross-Pitaevskii scaling, we define VN(x) = N2V (Nx). By scal-
ing it is clear that the scattering length of VN equals a = a0/N . In fact if f (x) is
the solution to (5), it is clear that fN(x) = f (Nx) solves

(

−Δ+ 1

2
VN(x)

)

fN(x) = 0 (8)

with the boundary condition fN(x) → 1 as |x| → ∞. From (6), we obtain

fN(x) = 1 − a0

N |x| = 1 − a

|x|
for |x| large enough. In particular the scattering length a of VN is given by a =
a0/N .

We consider the dynamics generated by the translation invariant Hamiltonian

HN =
N∑

j=1

−Δj +
N∑

i<j

VN(xi − xj ) (9)

acting on the Hilbert space L2
s (R

3N, dx1 · · · dxN), the bosonic subspace of L2(R3N,

dx1 · · · dxN) consisting of all permutation symmetric functions (although it is possi-
ble to extend our analysis to include an external potential, to keep the discussion as
simple as possible we only consider the translation invariant case (9)). We consider
solutions ψN,t of the N -body Schroedinger equation

i∂tψN,t = HNψN,t . (10)

Let γN,t = |ψN,t 〉〈ψN,t | denote the density matrix associated with ψN,t , defined
as the orthogonal projection onto ψN,t . In order to study the limit N → ∞, we
introduce the marginal densities of γN,t . For k = 1, . . . , N , we define the k-particle
density matrix γ

(k)
N,t associated with ψN,t by taking the partial trace of γN,t over

the last N − k particles. In other words, γ (k)
N,t is defined as the positive trace class

operator on L2
s (R

3k) with kernel given by

γ
(k)
N,t (xk; x′k) =

∫
dxN−kψN,t (xk, xN−k)ψN,t (x

′
k, xN−k). (11)



Dynamics of Bose-Einstein Condensates 569

Here and in the rest of the paper we use the notation x = (x1, x2, . . . , xN), xk =
(x1, x2, . . . , xk), x′k = (x′1, x′2, . . . , x′k), and xN−k = (xk+1, xk+2, . . . , xN).

We consider initial wave functions ψN,0 exhibiting complete condensation in a
one-particle state ϕ. Thus at time t = 0, we assume that

γ
(1)
N,0 → |ϕ〉〈ϕ| as N →∞. (12)

It turns out that the last equation immediately implies that

γ
(k)
N,0 → |ϕ〉〈ϕ|⊗k as N →∞ (13)

for every fixed k ∈ N (the argument, due to Lieb and Seiringer, can be found in
[9], after Theorem 1). It is also interesting to notice that the convergence (12) (and
(13)) in the trace class norm is equivalent to the convergence in the weak* topol-
ogy defined on the space of trace class operators on R

3 (or R
3k , for (13)); we thank

A. Michelangeli for pointing out this fact to us (the proof is based on general argu-
ments, such as Grümm’s Convergence Theorem).

Starting from the Schroedinger equation (10) for the wave function ψN,t , we
can derive evolution equations for the marginal densities γ (k)

N,t . The dynamics of the
marginals is governed by a hierarchy of N coupled equations usually known as the
BBGKY hierarchy,

i∂t γ
(k)
N,t =

N∑

j=1

[−Δj , γ
(k)
N,t

]+
k∑

i<j

[
VN(xi − xj ), γ

(k)
N,t

]

+ (N − k)

k∑

j=1

Trk+1
[
VN(xj − xk+1), γ

(k+1)
N,t

]
. (14)

Here Trk+1 denotes the partial trace over the (k + 1)-th particle.
Next we study the limit N → ∞ of the density γ

(k)
N,t for fixed k ∈ N. For sim-

plicity we fix k = 1. From (14), the evolution equation for the one-particle density
matrix, written in terms of its kernel γ (1)

N,t (x1; x′1) is given by

i∂t γ
(1)
N,t (x1, x

′
1)

= (−Δ1 +Δ′
1)γ

(1)
N,t (x1; x′1)

+ (N − 1)
∫

dx2(VN(x1 − x2)− VN(x′1 − x2))γ
(2)
N,t (x1, x2; x′1, x2). (15)

Suppose now that γ (1)
∞,t and γ

(2)
∞,t are limit points (with respect to the weak* topol-

ogy) of γ (1)
N,t and, respectively, γ (2)

N,t as N →∞. Since, formally,

(N − 1)VN(x) = (N − 1)N2V (Nx) 5 N3V (Nx) → b0δ(x)
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with b0 =
∫

dxV (x) as N →∞, we could naively expect the limit points γ (1)
∞,t and

γ
(2)
∞,t to satisfy the limiting equation

i∂t γ
(1)
∞,t (x1; x′1) = (−Δ1 +Δ′

1)γ
(1)
∞,t (x1; x′1)

+ b0

∫
dx2(δ(x1 − x2)− δ(x′1 − x2))γ

(2)
∞,t (x1, x2; x′1, x2). (16)

From (13) we have, at time t = 0,

γ
(1)
∞,0(x1; x′1) = ϕ(x1)ϕ(x

′
1)

γ
(2)
∞,0(x1, x2; x′1, x′2) = ϕ(x1)ϕ(x2)ϕ(x

′
1)ϕ(x

′
2).

(17)

If condensation is really preserved by the time evolution, also at time t $= 0 we have

γ
(1)
∞,t (x1; x′1) = ϕt (x1)ϕt (x

′
1)

γ
(2)
∞,t (x1, x2; x′1, x′2) = ϕt (x1)ϕt (x2)ϕt (x

′
1)ϕt (x

′
2).

(18)

Inserting (18) in (16), we obtain the self-consistent equation

i∂tϕt = −Δϕt + b0|ϕt |2ϕt (19)

for the condensate wave function ϕt . This equation has the same form as the time-
dependent Gross-Pitaevskii equation (4), but a different coefficient in front of the
nonlinearity (b0 instead of 8πa0).

The reason why we obtain the wrong coupling constant in (19) is that going
from (15) to (16), we took the two limits

(N − 1)VN(x) → b0δ(x) and γ
(2)
N,t → γ

(2)
∞,t (20)

independently from each other. However, since the scattering length of the interac-
tion is of the order 1/N , the two-particle density γ

(2)
N,t develops a short scale cor-

relation structure on the length scale 1/N , which is exactly the same length scale
on which the potential VN varies. For this reason the two limits in (20) cannot be
taken independently. In order to obtain the correct Gross-Pitaevskii equation (4) we
need to take into account the correlations among the particles, and the short scale
structure they create in the marginal density γ

(2)
N,t .

To describe the correlations among the particles we make use of the solution
fN(x) to the zero energy scattering equation (8). Assuming that the function
fN(xi − xj ) gives a good approximation for the correlations between particles i

and j , we may expect that the one- and two-particle densities associated with the
evolution of a condensate are given, for large but finite N , by

γ
(1)
N,t (x1; x′1) 5 ϕt (x1)ϕt (x

′
1)

γ
(2)
N,t (x1, x2; x′1, x′2) 5 fN(x1 − x2)fN(x′1 − x′2)ϕt (x1)ϕt (x2)ϕt (x

′
1)ϕt (x

′
2).

(21)
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Inserting this ansatz into (15), we obtain a new self-consistent equation

i∂tϕt = −Δϕt +
(

lim
N→∞(N − 1)

∫
dxfN(x)VN(x)

)

|ϕt |2ϕt

= −Δϕt +
(

lim
N→∞N3

∫
dxf (Nx)V (Nx)

)

|ϕt |2ϕt

= −Δϕt + 8πa0|ϕt |2ϕt (22)

because of (7). This is exactly the Gross-Pitaevskii equation (4), with the correct
coupling constant in front of the nonlinearity.

Note that the presence of the correlation functions fN(x1 − x2) and fN(x′1 − x′2)
in (21) does not contradict complete condensation of the system at time t . On the
contrary, in the weak limit N →∞, the function fN converges to one, and therefore
γ
(1)
N,t and γ

(2)
N,t converge to |ϕt 〉〈ϕt | and |ϕt 〉〈ϕt |⊗2, respectively. The correlations

described by the function fN can only produce nontrivial effects on the macroscopic
dynamics of the system because of the singularity of the interaction potential VN .

From this heuristic argument it is clear that, in order to obtain a rigorous deriva-
tion of the Gross-Pitaevskii equation (22), we need to identify the short scale struc-
ture of the marginal densities and prove that, in a very good approximation, it
can be described by the function fN as in (21). In other words, we need to show
a very strong separation of scales in the marginal density γ

(2)
N,t (and, more gen-

erally, in the k-particle density γ
(k)
N,t ) associated with the solution of the N -body

Schrödinger equation; the Gross-Pitaevskii theory can only be correct if γ (k)
N,t has a

regular part, which factorizes for large N into the product of k copies of the orthog-
onal projection |ϕt 〉〈ϕt |, and a time independent singular part, due to the correla-
tions among the particles, and described by products of the functions fN(xi − xj ),
1 ≤ i, j ≤ k.

3 Main Results

To prove our main results we need to assume the interaction potential to be suffi-
ciently weak. To measure the strength of the potential, we introduce the dimension-
less quantity

α = sup
x∈R3

|x|2V (x)+
∫

dx

|x|V (x). (23)

Apart from the smallness assumption on the potential, we also need to assume that
the correlations characterizing the initial N -particle wave function are sufficiently
weak. We define therefore the notion of asymptotically factorized wave functions.
We say that a family of permutation symmetric wave functions ψN is asymptotically
factorized if there exists ϕ ∈ L2(R3) and, for any fixed k ≥ 1, there exists a family
ξ
(N−k)
N ∈ L2

s (R
3(N−k)) such that
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∥
∥ψN − ϕ⊗k ⊗ ξ

(N−k)
N

∥
∥→ 0 as N →∞. (24)

It is simple to check that, if ψN is asymptotically factorized, then it exhibits com-
plete Bose-Einstein condensation in the one-particle state ϕ (in the sense that the
one-particle density associated with ψN satisfy γ

(1)
N → |ϕ〉〈ϕ| as N → ∞). As-

ymptotic factorization is therefore a stronger condition than complete condensation,
and it provides more control on the correlations of ψN .

Theorem 1. Assume that V (x) is a positive, smooth, spherical symmetric, and com-
pactly supported potential such that α (defined in (23)) is sufficiently small. Con-
sider an asymptotically factorized family of wave functions ψN ∈ L2

s (R
3N), ex-

hibiting complete Bose-Einstein condensation in a one-particle state ϕ ∈ H 1(R3),
in the sense that

γ
(1)
N → |ϕ〉〈ϕ| as N →∞ (25)

where γ
(1)
N denotes the one-particle density associated with ψN . Then, for any

fixed t ∈ R, the one-particle density γ
(1)
N,t associated with the solution ψN,t of the

N -particle Schrödinger equation (10) satisfies

γ
(1)
N,t → |ϕt 〉〈ϕt | as N →∞ (26)

where ϕt is the solution to the time-dependent Gross-Pitaevskii equation

i∂tϕt = −Δϕt + 8πa0|ϕt |2ϕt (27)

with initial data ϕt=0 = ϕ.

The convergence in (25) and (26) is in the trace norm topology (which in this
case is equivalent to the weak* topology defined on the space of trace class operators
on R

3). Moreover, from (26) we also get convergence of higher marginal. For every
k ≥ 1, we have

γ
(k)
N,t → |ϕt 〉〈ϕt |⊗k as N →∞.

Theorem 1 can be used to describe the dynamics of condensates satisfying the
condition of asymptotic factorization. The following two corollaries provide exam-
ples of such initial data.

The simplest example of N -particle wave function satisfying the assumption of
asymptotic factorization is given by a product state.

Corollary 2. Under the assumptions on V (x) stated in Theorem 1, let ψN(x) =∏N
j=1 ϕ(xj ) for an arbitrary ϕ ∈ H 1(R3). Then, for any t ∈ R,

γ
(1)
N,t → |ϕt 〉〈ϕt | as N →∞

where ϕt is a solution of the Gross-Pitaevskii equation (27) with initial data
ϕt=0 = ϕ.
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The second application of Theorem 1 gives a mathematical description of the
results of the experiments depicted in the introduction.

Let

H
trap
N =

N∑

j=1

(−Δj + Vext(xj ))+
N∑

i<j

VN(xi − xj ) (28)

with a confining potential Vext. Let ψN be the ground state of H
trap
N . By [9], ψN

exhibits complete Bose Einstein condensation into the minimizer φGP of the Gross-
Pitaevskii energy functional EGP defined in (2). In other words

γ
(1)
N → |φGP〉〈φGP| as N →∞.

In [7], we demonstrate that ψN also satisfies the condition (24) of asymptotic fac-
torization. From this observation, we obtain the following corollary.

Corollary 3. Under the assumptions on V (x) stated in Theorem 1, let ψN be the
ground state of (28), and denote by γ

(1)
N,t the one-particle density associated with the

solution ψN,t = e−iHN tψN of the Schrödinger equation (10). Then, for any fixed
t ∈ R,

γ
(1)
N,t → |ϕt 〉〈ϕt | as N →∞

where ϕt is the solution of the Gross-Pitaevskii equation (27) with initial data
ϕt=0 = φGP.

Although the second corollary describes physically more realistic situations, also
the first corollary has interesting consequences. In Sect. 2, we observed that the
emergence of the scattering length in the Gross-Pitaevskii equation is an effect due
to the correlations. The fact that the Gross-Pitaevskii equation describes the dy-
namics of the condensate also if the initial wave function is completely uncorre-
lated, as in Corollary 2, implies that the N -body Schrödinger dynamics generates
the singular correlation structure in very short times. Of course, when the wave
function develops correlations on the length scale 1/N , the energy associated with
this length scale decreases; since the total energy is conserved by the Schrödinger
evolution, we must conclude that together with the short scale structure at scales of
order 1/N , the N -body dynamics also produces oscillations on intermediate length
scales 1/N �  � 1, which carry the excess energy (the difference between the
energy of the factorized wave function and the energy of the wave function with
correlations on the length scale 1/N ) and which have no effect on the macroscopic
dynamics (because only variations of the wave function on length scales of order one
and order 1/N affect the macroscopic dynamics described by the Gross-Pitaevskii
equation).
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4 General Strategy of the Proof and Previous Results

In this section we illustrate the strategy used to prove Theorem 1. The proof is
divided into three main steps.

Step 1. Compactness of γ (k)
N,t . Recall, from (11), the definition of the marginal

densities γ
(k)
N,t associated with the solution ψN,t = exp(−iHN t)ψN of the N -body

Schrödinger equation. By definition, for any N ∈ N and t ∈ R, γ (k)
N,t is a positive

operator in L 1
k = L 1(L2(R3k)) (the space of trace class operators on L2(R3k))

with trace equal to one. For fixed t ∈ R and k ≥ 1, it follows by standard general
argument (Banach-Alaouglu Theorem) that the sequence {γ (k)

N,t }N≥k is compact with

respect to the weak* topology of L 1
k . Note here that L 1

k has a weak* topology be-
cause L 1

k = K ∗
k , where Kk = K (L2(R3k)) is the space of compact operators on

L2(R3k). To make sure that we can find subsequences of γ (k)
N,t which converge for

all times in a certain interval, we fix T > 0 and consider the space C([0, T ],L 1
k )

of all functions of t ∈ [0, T ] with values in L 1
k which are continuous with respect

to the weak* topology on L 1
k . Since Kk is separable, it follows that the weak*

topology on the unit ball of L 1
k is metrizable; this allows us to prove the equicon-

tinuity of the densities γ (k)
N,t , and to obtain compactness of the sequences {γ (k)

N,t }N≥k

in C([0, T ],L 1
k ).

Step 2. Convergence to an infinite hierarchy. By Step 1 we know that, as
N → ∞, the family of marginal densities ΓN,t = {γ (k)

N,t }Nk=1 has at least one limit

point Γ∞,t = {γ (k)
∞,t }k≥1 in

⊕
k≥1 C([0, T ],L 1

k ) with respect to the product topol-

ogy. Next, we derive evolution equations for the limiting densities γ
(k)
∞,t . Starting

from the BBGKY hierarchy (14) for the family ΓN,t , we prove that any limit point
Γ∞,t satisfies the infinite hierarchy of equations

i∂tγ
(k)
∞,t =

k∑

j=1

[−Δj , γ
(k)
∞,t

]+ 8πa0

k∑

j=1

Trk+1
[
δ(xj − xk+1), γ

(k+1)
∞,t

]
(29)

for k ≥ 1. It is at this point, in the derivation of this infinite hierarchy, that we need
to identify the singular part of the densities γ (k+1)

N,t . The emergence of the scattering
length in the second term on the right hand side of (29) is due to short scale structure
of γ (k+1)

N,t .
It is worth noticing that the infinite hierarchy (29) has a factorized solution. In

fact, it is simple to see that the infinite family

γ
(k)
t = |ϕt 〉〈ϕt |⊗k for k ≥ 1 (30)

solves (29) if and only if ϕt is a solution to the Gross-Pitaevskii equation (27).
Step 3. Uniqueness of the solution to the infinite hierarchy. To conclude the proof

of Theorem 1, we show that the infinite hierarchy (29) has a unique solution. This
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implies immediately that the densities γ
(k)
N,t converge; in fact, a compact sequence

with at most one limit point is always convergent. Moreover, since we know that the
factorized densities (30) are a solution, it also follows that, for any k ≥ 1,

γ
(k)
N,t → |ϕt 〉〈ϕt |⊗k as N →∞

with respect to the weak* topology of L 1
k .

Similar strategies have been used to obtain rigorous derivations of the nonlinear
Hartree equation

i∂tϕt = −Δϕt + (v ∗ |ϕt |2)ϕt (31)

for the dynamics of initially factorized wave functions in bosonic many particle
mean field models, characterized by the Hamiltonian

Hmf
N

N∑

j=1

−Δj + 1

N

N∑

i<j

v(xi − xj ). (32)

In this context, the approach outlined above was introduced by Spohn in [11],
who applied it to derive (31) in the case of a bounded potential v. In [5], Erdős and
Yau extended Spohn’s result to the case of a Coulomb interaction v(x) = ±1/|x|
(partial results for the Coulomb case, in particular the convergence to the infinite
hierarchy, were also obtained by Bardos, Golse, and Mauser, see [3]). More recently,
Adami, Golse, and Teta used the same approach in [1] for one-dimensional systems
with dynamics generated by a Hamiltonian of the form (32) with an N -dependent
pair potential vN(x) = NβV (Nβx), β < 1. In the limit N → ∞, they obtain the
nonlinear Schrödinger equation

i∂tϕt = −Δϕt + b0|ϕt |2ϕt with b0 =
∫

V (x)dx.

Notice that the Hamiltonian (9) has the same form as the mean field Hamil-
tonian (32), with an N -dependent pair potential vN(x) = N3V (Nx). Of course,
one may also ask what happens if we consider the mean field Hamiltonian (32) with
the N -dependent potential vN(x) = N3βV (Nβx), for β $= 1. If β < 1, the short
scale structure developed by the solution of the Schrödinger equation is still char-
acterized by the length scale 1/N (because the scattering length of N3β−1V (Nβx)

is still of order 1/N ); but this time the potential varies on much larger scales, of the
order N−β ' N−1. For this reason, if β < 1, the scattering length does not appear
in the effective macroscopic equation (8πa0 is replaced by b0 =

∫
dxV (x)). In [8]

(and previously in [7] for 0 < β < 1/2) we prove in fact that Corollary 2 can be
extended to include the case 0 < β < 1 as follows.

Theorem 4. Suppose ψN(x) = ∏N
j=1 ϕ(xj ), for some ϕ ∈ H 1(R3). Let ψN,t =

e−iHβ,N tψN with the mean-field Hamiltonian
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Hβ,N =
N∑

j=1

−Δj + 1

N

N∑

i<j

N3βV (Nβ(xi − xj ))

for a positive, spherical symmetric, compactly supported, and smooth potential V
such that α (defined in (23)) is sufficiently small. Let γ (1)

N,t be the one-particle density

associated with ψN,t . Then, if 0 < β ≤ 1 we have, for any fixed t ∈ R, γ (1)
N,t →|ϕt 〉〈ϕt | as N →∞. Here ϕt is the solution to the nonlinear Schrödinger equation

i∂tϕt = −Δϕt + σ |ϕt |2ϕt

with initial data ϕt=0 = ϕ and with

σ =
{

8πa0 if β = 1,

b0 if 0 < β < 1.

5 Convergence to the Infinite Hierarchy

In this section we give some more details concerning Step 2 in the strategy out-
lined above. We consider a limit point Γ∞,t = {γ (k)

∞,t }k≥1 of the sequence ΓN,t =
{γ (k)

N,t }Nk=1 and we prove that Γ∞,t satisfies the infinite hierarchy (29). To this end we
use that, for finite N , the family ΓN,t satisfies the BBGKY hierarchy (14), and we
show the convergence of each term in (14) to the corresponding term in the infinite
hierarchy (29) (the second term on the r.h.s. of (14) is of smaller order and can be
proven to vanish in the limit N →∞).

The main difficulty consists in proving the convergence of the last term on the
right hand side of (14) to the last term on the right hand side of (29). In partic-
ular, we need to show that in the limit N → ∞ we can replace the potential
(N − k)N2V (N(xj − xk+1)) 5 N3V (Nx) in the last term on the r.h.s. of (14)
by 8πa0δ(xj − xk+1) . In terms of kernels we have to prove that

∫
dxk+1(N

3V (N(xj−xk+1))−8πa0δ(xj−xk+1))γ
(k+1)
N,t (xk, xk+1, x′k, xk+1) → 0

(33)

as N →∞. It is enough to prove the convergence (33) in a weak sense, after testing
the expression against a smooth k-particle kernel J (k)(xk; x′k). Note, however, that
the observable J (k) does not help to perform the integration over the variable xk+1.

The problem here is that, formally, the N -dependent potential N3V (N(xj −
xk+1)) does not converge towards 8πa0δ(xj − xk+1) as N → ∞ (it converges to-
wards b0δ(xj − xk+1), with b0 =

∫
dxV (x)). Equation (33) is only correct because

of the correlations between xj and xk+1 hidden in the density γ
(k+1)
N,t . Therefore, to

prove (33), we start by factoring out the correlations explicitly, and by proving that,
as N →∞,
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∫
dxk+1

(
N3V (N(xj − xk+1))fN(xj − xk+1)

− 8πa0δ(xj − xk+1)
)γ (k+1)

N,t (xk, xk+1, x′k, xk+1)

fN(xj − xk+1)
→ 0 (34)

where fN(x) is the solution to the zero energy scattering equation (8). Then, in a sec-
ond step, we use the fact that fN → 1 in the weak limit N →∞, to prove that the
ratio γ

(k+1)
N,t /fN(xj −xk+1) converges to the same limiting density γ

(k+1)
∞,t as γ (k+1)

N,t .

Equation (34) looks now much better than (33) because, formally, N3V (N(xj −
xk+1))fN(xj − xk+1) does converge to 8πa0δ(xj − xk+1). To prove that (34) is in-

deed correct, we only need some regularity of the ratio γ
(k+1)
N,t (xk, xk+1; x′k, xk+1)/

fN(xj − xk+1) in the variables xj and xk+1. In terms of the N -particle wave func-
tion ψN,t we need regularity of ψN,t (x)/fN(xi − xj ) in the variables xi , xj , for any
i $= j . To establish the required regularity we use the following energy estimate.

Proposition 5. Consider the Hamiltonian HN defined in (9), with a positive, spher-
ical symmetric, smooth and compactly supported potential V . Suppose that α (de-
fined in (23)) is sufficiently small. Then there exists C = C(α) > 0 such that

〈ψ,H 2
Nψ〉 ≥ CN2

∫
dx

∣
∣
∣
∣∇i∇j

ψ(x)
fN(xi − xj )

∣
∣
∣
∣

2

(35)

for all i $= j and for all ψ ∈ L2
s (R

3N, dx).

Making use of this energy estimate it is possible to deduce strong a-priori bounds
on the solution ψN,t of the Schrödinger equation (10). These bounds have the form

∫
dx

∣
∣
∣
∣∇i∇j

ψN,t (x)
fN(xi − xj )

∣
∣
∣
∣

2

≤ C (36)

uniformly in N ∈ N and t ∈ R. To prove (36) we use that, by (35), and because of
the conservation of the energy along the time evolution,

∫
dx

∣
∣
∣
∣∇i∇j

ψN,t (x)
fN(xi − xj )

∣
∣
∣
∣

2

≤ CN−2〈ψN,t ,H
2
NψN,t 〉

= CN−2〈ψN,0,H
2
NψN,0〉. (37)

From (37) and using an approximation argument on the initial wave function to
make sure that the expectation of H 2

N at time t = 0 is of the order N2, we obtain
(36).

The bounds (36) are then sufficient to prove the convergence (33) (using a non-
standard Poincaré inequality; see Lemma 7.2 in [8]).

Remark that the a-priori bounds (36) do not hold true if we do not divide the solu-
tion ψN,t of the Schrödinger equation by fN(xi−xj ) (replacing ψN,t (x)/fN(xi−xj )

by ψN(x) the integral in (36) would be of order N ). It is only after removing the
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singular factor fN(xi − xj ) from ψN,t (x) that we can prove useful bounds on the
regular part of the wave function.

It is through the a-priori bounds (36) that we identify the correlation structure of
the wave function ψN,t and that we show that, when xi and xj are close to each other,
ψN,t (x) can be approximated by the time independent singular factor fN(xi − xj ),
which varies on the length scale 1/N , multiplied with a regular part (regular in the
sense that it satisfy the bounds (36)). It is therefore through (36) that we establish the
strong separation of scales in the wave function ψN,t and in the marginal densities
γ
(k)
N,t which is of fundamental importance for the Gross-Pitaevskii theory.

Since it is quite short and it shows why the solution fN(xi−xj ) to the zero energy
scattering equation (5) can be used to describe the two-particle correlations, we
reproduce in the following the proof of Proposition 5. Note that this is the only step
in the proof of our main theorem where the smallness of the constant α, measuring
the strength of the interaction potential, is used. The positivity of the interaction
potential, on the other hand, also plays an important role in many other parts of the
proof.

Proof (of Proposition 5). We decompose the Hamiltonian (9) as

HN =
N∑

j=1

hj with hj = −Δj + 1

2

∑

i $=j

VN(xi − xj ).

For an arbitrary permutation symmetric wave function ψ and for any fixed i $= j ,
we have

〈ψ,H 2
Nψ〉 = N〈ψ, h2

i ψ〉 +N(N − 1)〈ψ, hihjψ〉 ≥ N(N − 1)〈ψ, hihjψ〉.
Using the positivity of the potential, we find

〈ψ,H 2
Nψ〉

≥ N(N − 1)

〈

ψ,

(

−Δi + 1

2
VN(xi − xj )

)(

−Δj + 1

2
VN(xi − xj )

)

ψ

〉

. (38)

Next, we define φ(x) by ψ(x) = fN(xi − xj )φ(x) (φ is well defined because
fN(x) > 0 for all x ∈ R

3); note that the definition of the function φ depends
on the choice of i, j . Then

1

fN(xi − xj )
Δi(fN(xi − xj )φ(x))

= Δiφ(x)+ (ΔfN)(xi − xj )

fN(xi − xj )
φ(x)+ ∇fN(xi − xj )

fN(xi − xj )
∇iφ(x). (39)

From (5) it follows that

1

fN(xi − xj )

(

−Δi + 1

2
VN(xi − xj )

)

fN(xi − xj )φ(x) = Liφ(x)
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and analogously

1

fN(xi − xj )

(

−Δj + 1

2
VN(xi − xj )

)

fN(xi − xj )φ(x) = Ljφ(x)

where we defined

L = −Δ + 2
∇ fN(xi − xj )

fN(xi − xj )
∇ , for  = i, j.

Remark that, for  = i, j , the operator L satisfies
∫

dxf 2
N(xi − xj )L φ(x)ψ(x) =

∫
dxf 2

N(xi − xj )φ(x)L ψ(x)

=
∫

dxf 2
N(xi − xj )∇ φ(x)∇ ψ(x). (40)

Therefore, from (38), we obtain

〈ψ,H 2
Nψ〉 ≥ N(N − 1)

∫
dxf 2

N(xi − xj )Liφ(x)Ljφ(x)

= N(N − 1)
∫

dxf 2
N(xi − xj )∇iφ(x)∇iLjφ(x)

= N(N − 1)
∫

dxf 2
N(xi − xj )∇iφ(x)Lj∇iφ(x)

+N(N − 1)
∫

dxf 2
N(xi − xj )∇iφ(x)[∇i , Lj ]φ(x)

= N(N − 1)
∫

dxf 2
N(xi − xj )|∇j∇iφ(x)|2

+N(N − 1)
∫

dxf 2
N(xi − xj )

(

∇i

∇fN(xi − xj )

fN(xi − xj )

)

∇iφ(x)∇jφ(x).

(41)

To control the second term on the right hand side of the last equation we use bounds
on the function fN , which can be derived from the zero energy scattering equa-
tion (5):

1 − Cα ≤ fN(x) ≤ 1, |∇fN(x)| ≤ C
α

|x| , |∇2fN(x)| ≤ C
α

|x|2 (42)

for constants C independent of N and of the potential V (recall the definition of the
dimensionless constant α from (23)). Therefore, for α < 1,
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∣
∣
∣
∣

∫
dxf 2

N(xi − xj )

(

∇i

∇fN(xi − xj )

fN(xi − xj )

)

∇iφ(x)∇jφ(x)

∣
∣
∣
∣

≤ Cα

∫
dx

1

|xi − xj |2 |∇iφ(x)||∇j φ(x)|

≤ Cα

∫
dx

1

|xi − xj |2
(|∇iφ(x)|2 + |∇jφ(x)|2

)

≤ Cα

∫
dx|∇i∇jφ(x)|2 (43)

where we used Hardy inequality. Thus, from (41), and using again the first bound in
(42), we obtain

〈ψ,H 2
Nψ〉 ≥ N(N − 1)(1 − Cα)

∫
dx|∇i∇jφ(x)|2

which implies (35).  !

6 Uniqueness of the Solution to the Infinite Hierarchy

In this section we discuss the main ideas used to prove the uniqueness of the solution
to the infinite hierarchy (Step 3 in the strategy outlined in Sect. 4).

First of all, we need to specify in which class of family of densities Γt={γ (k)
t }k≥1

we want to prove the uniqueness of the solution to the infinite hierarchy (29).
Clearly, the proof of the uniqueness is simpler if we can restrict our attention to
smaller classes. But of course, in order to apply the uniqueness result to prove The-
orem 1, we need to make sure that any limit point of the sequence ΓN,t = {γ (k)

N,t }Nk=1
is in the class for which we can prove uniqueness.

We are going to prove uniqueness for all families Γt = {γ (k)
t }k≥1 ∈ ⊕C([0, T ],

L 1
k ) with

‖γ (k)
t ‖Hk

:= Tr|(1 −Δ1)
1/2 . . . (1 −Δk)

1/2γ
(k)
t (1 −Δk)

1/2 . . . (1 −Δ1)
1/2|

≤ Ck (44)

for all t ∈ [0, T ] and for all k ≥ 1 (with a constant C independent of k).
The following proposition guarantees that any limit point of the sequence ΓN,t

satisfies (44).

Proposition 6. Assume the same conditions as in Proposition 5. Suppose that
Γ∞,t = {γ (k)

∞,t }k≥1 is a limit point of ΓN,t = {γ (k)
N,t }Nk=1 with respect to the prod-

uct topology on
⊕

k≥1 C([0, T ],L 1
k ). Then γ

(k)
∞,t ≥ 0 and there exists a constant C

such that
Tr(1 −Δ1) . . . (1 −Δk)γ

(k)
∞,t ≤ Ck (45)

for all k ≥ 1 and t ∈ [0, T ].
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Because of Proposition 6, it is enough to prove the uniqueness of the infinite
hierarchy (29) in the following sense.

Theorem 7. Suppose that Γ = {γ (k)}k≥1 is such that

‖γ (k)‖Hk
≤ Ck (46)

for all k ≥ 1 (the norm ‖.‖Hk
is defined in (44)). Then there exists at most one

solution Γt = {γ (k)
t }k≥1 ∈⊕C([0, T ],Lk) of (29) such that Γt=0 = Γ and

‖γ (k)
t ‖Hk

≤ Ck (47)

for all k ≥ 1 and all t ∈ [0, T ] (with the same constant C as in (46)).

In the next two subsections we explain the main ideas of the proofs of Proposi-
tion 6 and Theorem 7.

6.1 Higher Order Energy Estimates

The main difficulty in proving Proposition 6 is the fact that the estimate (45) does
not hold true if we replace γ

(k)
∞,t by the marginal density γ

(k)
N,t . More precisely,

Tr(1 −Δ1) · · · (1 −Δk)γ
(k)
N,t ≤ Ck (48)

cannot hold true with a constant C independent of N . In fact, for finite N and k > 1,
the k-particle density γ

(k)
N,t still contains the short scale structure due to the correla-

tions among the particles. Therefore, when we take derivatives of γ
(k)
N,t as in (48),

the singular structure (which varies on a length scale of order 1/N ) generates con-
tributions which diverge in the limit N →∞.

To overcome this problem, we cutoff the wave function ψN,t when two or more
particles come at distances smaller than some intermediate length scale  , with
N−1 �  � 1 (more precisely, the cutoff will be effective only when one or more
particles come close to one of the variable xj over which we want to take deriva-
tives). For fixed j = 1, . . . , N , we define θj ∈ C∞(R3N) such that

θj (x) 5
{

1 if |xi − xj | '  for all i $= j

0 if there exists i $= j with |xi − xj | �  
.

It is important, for our analysis, that θj controls its derivatives (in the sense that, for

example, |∇iθj | ≤ C −1θ
1/2
j ); for this reason we cannot use standard compactly

supported cutoffs, but instead we have to construct appropriate functions which de-
cay exponentially when particles come close together. Making use of the functions
θj (x), we prove the following higher order energy estimates.
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Proposition 8. Choose  � 1 such that N 2 ' 1. Suppose that α is small enough.
Then there exist constants C1 and C2 such that, for any ψ ∈ L2

s (R
3N),

〈ψ, (HN + C1N)kψ〉 ≥ C2N
k

∫
dxθ1(x) · · · θk−1(x)|∇1 · · · ∇kψ(x)|2. (49)

The meaning of the bounds (49) is clear. We can control the L2-norm of the
k-th derivative ∇1 · · · ∇kψ by the expectation of the k-th power of the energy per
particle, if we only integrate over configurations where the first k − 1 particles are
“isolated” (in the sense that there is no particle at distances smaller than  from
x1, x2, . . . , xk−1). In this sense the energy estimate in Proposition 5 (which, com-
pared with Proposition 8, is restricted to k = 2) is more precise than (49), because it
identifies and controls the singularity of the wave function exactly in the region cut-
off from the integral on the right side of (49). The point is that, while Proposition 5
is used to identify the two-particle correlations in the marginal densities γ (k)

N,t (which
are essential for the emergence of the scattering length a0 in the infinite hierarchy
(29)), we only need Proposition 8 to establish properties of the limiting densities;
this is why we can introduce cutoffs in (49), provided we can show their effect to
vanish in the limit N →∞.

Note that we can allow one “free derivative”; in (49) we take the derivative over
xk although there is no cutoff θk(x). The reason is that the correlation structure
becomes singular, in the L2-sense, only when we differentiate it twice (if one uses
the zero energy solution fN introduced in (5) to describe the correlations, this can
be seen by observing that ∇fN(x) 5 1/|x|, which is locally square integrable).
Remark that the condition N 2 ' 1 is a consequence of the fact that, if  is too
small, the error due to the localization of the kinetic energy on distances of order  
cannot be controlled. The proof of Proposition 8 is based on induction over k; for
details see Sect. 9 in [8].

From the estimates (49), using the preservation of the expectation of Hk
N along

the time evolution and a regularization of the initial N -particle wave function ψN ,
we obtain the following bounds for the solution ψN,t = e−iHN tψN of the Schrödinger
equation (10).

∫
dxθ1(x) · · · θk−1(x)|∇1 · · · ∇kψN,t (x)|2 ≤ Ck (50)

uniformly in N and t , and for all k ≥ 1. Translating these bounds in the language of
the density matrix γN,t , we obtain

Trθ1 · · · θk−1∇1 · · · ∇kγN,t∇∗
1 · · · ∇∗

k ≤ Ck. (51)

The idea now is to use the freedom in the choice of the cutoff length  . If we fix the
position of all particles but xj , it is clear that the cutoff θj is effective in a volume at
most of the order N 3. If we choose now  such that N 3 → 0 as N →∞ (which
is of course compatible with the condition that N 2 ' 1), then we can expect that,
in the limit of large N , the cutoff becomes negligible. This approach yields in fact
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the desired results; starting from (51), and choosing  such that N 3 � 1, we can
complete the proof of Proposition 6 (see Proposition 6.3 in [8] for more details).

6.2 Expansion in Feynman Graphs

To prove Theorem 7, we start by rewriting the infinite hierarchy (29) in the integral
form

γt = U (k)(t)γ0 + 8iπa0

k∑

j=1

∫ t

0
dsU (k)(t − s)Trk+1

[
δ(xj − xk+1), γ

(k+1)
s

]

= U (k)(t)γ0 +
∫ t

0
dsU (k)(t − s)B(k)γ (k+1)

s (52)

where U (k)(t) denotes the free evolution of k particles,

U (k)(t)γ (k) = e
it
∑k

j=1 Δj γ (k)e
−it

∑k
j=1 Δj

and the collision operator B(k) maps (k + 1)-particle operators into k-particle oper-
ators according to

B(k)γ (k+1) = 8iπa0

k∑

j=1

Trk+1
[
δ(xj − xk+1), γ

(k+1)] (53)

(recall that Trk+1 denotes the partial trace over the (k + 1)-th particle).
Iterating (52) n times we obtain the Duhamel type series

γ
(k)
t = U (k)(t)γ

(k)
0 +

n−1∑

m=1

ξ
(k)
m,t + η

(k)
n,t (54)

with

ξ
(k)
m,t =

∫ t

0
ds1 · · ·

∫ sm−1

0
dsmU (k)(t − s1)B

(k)U (k+1)(s1 − s2)B
(k+1)

· · ·B(k+m−1)U (k+m)(sm)γ
(k+m)
0

=
k∑

j1=1

k+1∑

j2=1

· · ·
k+m∑

jm=1

∫ t

0
ds1 · · ·

∫ sm−1

0
dsmU (k)(t − s1)Trk+1

[
δ(xj1 − xk+1),

U (k+1)(s1 − s2)Trk+2
[
δ(xj2 − xk+2), . . .

Trk+m

[
δ(xjm − xk+m),U

(k+m)(sm)γ
(k+m)
0

]
. . .
]]

(55)

and the error term
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η
(k)
n,t =

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−1

0
dsnU

(k)(t − s1)B
(k)U (k+1)(s1 − s2)B

(k+1)

· · ·B(k+n−1)γ (k+m)
sn

. (56)

Note that the error term (56) has exactly the same form as the terms in (55), with the
only difference that the last free evolution is replaced by the full evolution γ

(k+m)
sn .

To prove the uniqueness of the infinite hierarchy, it is enough to prove that the
error term (56) converges to zero as n → ∞ (in some norm, or even only after
testing it against a sufficiently large class of smooth observables). The main prob-
lem here is that the delta function in the collision operator B(k) cannot be con-
trolled by the kinetic energy (in the sense that, in three dimensions, the operator
inequality δ(x) ≤ C(1 − Δ) does not hold true). For this reason, the a priori es-
timates ‖γ (k)

t ‖Hk
≤ Ck are not sufficient to show that (56) converges to zero, as

n → ∞. Instead, we have to make use of the smoothing effects of the free evo-
lutions U (k+j)(sj − sj+1) in (56) (in a similar way, Stricharzt estimates are used
to prove the well-posedness of nonlinear Schrödinger equations). To this end, we
rewrite each term in the series (54) as a sum of contributions associated with certain
Feynman graphs, and then we prove the convergence of the Duhamel expansion by
controlling each contribution separately.

The details of the diagrammatic expansion can be found in Sect. 9 of [7]. Here
we only present the main ideas. We start by considering the term ξ

(k)
m,t in (55). After

multiplying it with a compact k-particle observable J (k) and taking the trace, we
expand the result as

TrJ (k)ξ
(k)
m,t =

∑

Λ∈Fm,k

KΛ,t (57)

where KΛ,t is the contribution associated with the Feynman graph Λ. Here Fm,k

denotes the set of all graphs consisting of 2k disjoint, paired, oriented, and rooted
trees with m vertices. An example of a graph in Fm,k is drawn in Fig. 1. Each vertex
has one of the two forms drawn in Fig. 1, with one “father”-edge on the left (closer
to the root of the tree) and three “son”-edges on the right. One of the son edge is
marked (the one drawn on the same level as the father edge; the other two son edges

Fig. 1 A Feynman graph in Fm,k and its two types of vertices
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are drawn below). Graphs in Fm,k have 2k + 3m edges, 2k roots (the edges on the
very left), and 2k + 2m leaves (the edges on the very right). It is possible to show
that the number of different graphs in Fm,k is bounded by 24m+k .

The particular form of the graphs in Fm,k is due to the quantum mechanical
nature of the expansion; the presence of a commutator in the collision operator (53)
implies that, for every B(k+j) in (55), we can choose whether to write the interaction
on the left or on the right of the density. When we draw the corresponding vertex in
a graph in Fm,k , we have to choose whether to attach it on the incoming or on the
outgoing edge.

Graphs in Fm,k are characterized by a natural partial ordering among the vertices
(v ≺ v′ if the vertex v is on the path from v′ to the roots); there is, however, no total
ordering. The absence of total ordering among the vertices is the consequence of a
rearrangement of the summands on the r.h.s. of (55); by removing the order between
times associated with non-ordered vertices we significantly reduce the number of
terms in the expansion. In fact, while (55) contains (m+ k)!/k! summands, in (57)
we are only summing over 24m+k contributions. The price we have to pay is that the
apparent gain of a factor 1/m! because of the ordering of the time integrals in (55)
is lost in the new expansion (57). However, since the time integrations are already
needed to smooth out singularities, and since they cannot be used simultaneously
for smoothing and for gaining a factor 1/m!, it seems very difficult to make use of
the apparent factor 1/m! in (55). In fact, we find that the expansion (57) is better
suited for analyzing the cumulative space-time smoothing effects of the multiple
free evolutions than (55).

Because of the pairing of the 2k trees, there is a natural pairing between the 2k
roots of the graph. Moreover, it is also possible to define a natural pairing of the
leaves of the graph (this is evident in Fig. 1); two leaves  1 and  2 are paired if there
exists an edge e1 on the path from  1 back to the roots, and an edge e2 on the path
from  2 to the roots, such that e1 and e2 are the two unmarked son-edges of the same
vertex (or, if there is no unmarked sons in the path from  1 and  2 to the roots, if the
two roots connected to  1 and  2 are paired).

For Λ ∈ Fm,k , we denote by E(Λ), V (Λ), R(Λ) and L(Λ) the set of all edges,
vertices, roots and, respectively, leaves in the graph Λ. For every edge e ∈ E(Λ),
we introduce a three-dimensional momentum variable pe and a one-dimensional
frequency variable αe. Then, denoting by γ̂

(k+m)
0 and by Ĵ (k) the kernels of the

density γ
(k+m)
0 and of the observable J (k) in Fourier space, the contribution KΛ,t

in (57) is given by

KΛ,t =
∫ ∏

e∈E(Λ)

dpedαe

αe − p2
e + iτeμe

∏

v∈V (Λ)

δ

(∑

e∈v
±αe

)

δ

(∑

e∈v
±pe

)

× exp

(

−it
∑

e∈R(Λ)

τe(αe + iτeμe)

)

Ĵ (k)({pe}e∈R(Λ))

× γ̂
(k+m)
0 ({pe}e∈L(Λ)). (58)
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Here τe = ±1, according to the orientation of the edge e. We observe from (58)
that the momenta of the roots of Λ are the variables of the kernel of J (k), while
the momenta of the leaves of Λ are the variables of the kernel of γ (k+m)

0 (this also
explain why roots and leaves of Λ need to be paired).

The denominators (αe−p2
e+iτeμe)

−1 are called propagators; they correspond to
the free evolutions in the expansion (55) and they enter the expression (58) through
the formula

eitp
2 =

∫ ∞

−∞
dα

eit (α+iμ)

α − p2 + iμ

(here and in (58) the measure dα is defined by dα = d′α/(2πi) where d′α is the
Lebesgue measure on R).

The regularization factors μe in (58) have to be chosen such that μfather =∑
e= son μe at every vertex. The delta-functions in (58) express momentum and fre-

quency conservation (the sum over e ∈ v denotes the sum over all edges adjacent to
the vertex v; here±αe = αe if the edge points towards the vertex, while±αe = −αe

if the edge points out of the vertex, and analogously for ±pe).
An analogous expansion can be obtained for the error term η

(k)
n,t in (56). The

problem now is to analyze the integral (58) (and the corresponding integral for the
error term). Through an appropriate choice of the regularization factors μe one can
extract the time dependence of KΛ,t and show that

|KΛ,t | ≤ Ck+mtm/4
∫ ∏

e∈E(Γ )

dαedpe

〈αe − p2
e 〉

∏

v∈V (Γ )

δ

(∑

e∈v
±αe

)

δ

(∑

e∈v
±pe

)

× ∣∣Ĵ (k)({pe}e∈R(Γ ))
∣
∣
∣
∣γ̂ (k+m)

0 ({pe}e∈L(Γ ))
∣
∣ (59)

where we introduced the notation 〈x〉 = (1 + x2)1/2.
Because of the singularity of the interaction at zero, we may be faced here with

an ultraviolet problem; we have to show that all integrations in (59) are finite in
the regime of large momenta and large frequency. Because of (46), we know that
the kernel γ̂ (k+m)

0 ({pe}e∈L(Λ)) in (59) provides decay in the momenta of the leaves.
From (46) we have, in momentum space,

∫
dp1 · · · dpn(p

2
1 + 1) · · · (p2

n + 1)γ̂ (n)
0 (p1, . . . , pn;p1, . . . , pn) ≤ Cn

for all n ≥ 1. Power counting implies that

|γ̂ (k+m)
0 ({pe}e∈L(Λ))| �

∏

e∈L(Λ)

〈pe〉−5/2. (60)

Using this decay in the momenta of the leaves and the decay of the propagators
〈αe − p2

e 〉−1, e ∈ E(Λ), we can prove the finiteness of all the momentum and
frequency integrals in (58). Heuristically, this can be seen using a simple power
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counting argument. Fix κ ' 1, and cutoff all momenta |pe| ≥ κ and all frequen-
cies |αe| ≥ κ2. Each pe-integral scales then as κ3, and each αe-integral scales as
κ2. Since we have 2k + 3m edges in Λ, we have 2k + 3m momentum- and fre-
quency integrations. However, because of the m delta functions (due to momen-
tum and frequency conservation), we effectively only have to perform 2k + 2m
momentum- and frequency-integrations. Therefore the whole integral in (58) car-
ries a volume factor of the order κ5(2k+2m) = κ10k+10m. Now, since there are
2k + 2m leaves in the graph Λ, the estimate (60) guarantees a decay of the or-
der κ−5/2(2k+2m) = κ−5k−5m. The 2k+ 3m propagators, on the other hand, provide
a decay of the order κ−2(2k+3m) = κ−4k−6m. Choosing the observable J (k) so that
Ĵ (k) decays sufficiently fast at infinity, we can also gain an additional decay κ−6k .
Since

κ10k+10m · κ−5k−5m−4k−6m−6k = κ−m−5k � 1

for κ ' 1, we can expect (58) to converge in the large momentum and large fre-
quency regime. Remark the importance of the decay provided by the free evolution
(through the propagators); without making use of it, we would not be able to prove
the uniqueness of the infinite hierarchy.

This heuristic argument is clearly far from rigorous. To obtain a rigorous proof,
we use an integration scheme dictated by the structure of the graph Λ; we start by
integrating the momenta and the frequency of the leaves (for which (60) provides
sufficient decay). The point here is that when we perform the integrations over the
momenta of the leaves we have to propagate the decay to the next edges on the left.
We move iteratively from the right to the left of the graph, until we reach the roots;
at every step we integrate the frequencies and momenta of the son edges of a fixed
vertex and as a result we obtain decay in the momentum of the father edge. When
we reach the roots, we use the decay of the kernel Ĵ (k) to complete the integration
scheme. In a typical step, we consider a vertex as the one drawn in Fig. 2 and we
assume to have decay in the momenta of the three son-edges, in the form |pe|−λ,
e = u, d,w (for some 2 < λ < 5/2). Then we integrate over the frequencies
αu, αd, αw and the momenta pu, pd, pw of the son-edges and as a result we obtain
a decaying factor |pr |−λ in the momentum of the father edge. In other words, we
prove bounds of the form

Fig. 2 Integration scheme: a typical vertex
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∫
dαudαddαwdpudpddpw

|pu|λ|pd |λ|pw|λ
δ(αr = αu + αd − αw)δ(pr = pu + pd − pw)

〈αu − p2
u〉〈αd − p2

d〉〈αw − p2
w〉

≤ const

|pr |λ . (61)

Power counting implies that (61) can only be correct if λ > 2. On the other hand,
to start the integration scheme we need λ < 5/2 (from (60) this is the decay in
the momenta of the leaves, obtained from the a-priori estimates). It turns out that,
choosing λ = 2+ ε for a sufficiently small ε > 0, (61) can be made precise, and the
integration scheme can be completed.

After integrating all the frequency and momentum variables, from (59) we obtain
that

|KΛ,t | ≤ Ck+mtm/4

for every Λ ∈ Fm,k . Since the number of diagrams in Fm,k is bounded by Ck+m, it
follows immediately that

∣
∣TrJ (k)ξ

(k)
m,t

∣
∣ ≤ Ck+mtm/4.

Note that, from (55), one may expect ξ (k)m,t to be proportional to tm. The reason why
we only get a bound proportional to tm/4 is that we effectively use part of the time
integration to control the singularity of the potentials.

Note that the only property of γ
(k+m)
0 used in the analysis of (58) is the esti-

mate (46), which provides the necessary decay in the momenta of the leaves. How-
ever, since the a-priori bound (47) hold uniformly in time, we can use a similar
argument to bound the contribution arising from the error term η

(k)
n,t in (56) (as ex-

plained above, also η
(k)
n,t can be expanded analogously to (57), with contributions

associated to Feynman graphs similar to (58); the difference, of course, is that these
contributions will depend on γ

(k+n)
s for all s ∈ [0, t], while (58) only depends on

the initial data). Thus, we also obtain
∣
∣TrJ (k)η

(k)
n,t

∣
∣ ≤ Ck+ntn/4. (62)

This bound immediately implies the uniqueness. In fact, given two solutions Γ1,t =
{γ (k)

1,t }k≥1 and Γ2,t = {γ (k)
2,t }k≥1 of the infinite hierarchy (29), both satisfying the a-

priori bounds (47) and with the same initial data, we can expand both in a Duhamel
series of order n as in (54). If we fix k ≥ 1, and consider the difference between
γ
(k)
1,t and γ

(k)
2,t , all terms (55) cancel out because they only depend on the initial data.

Therefore, from (62), we immediately obtain that, for arbitrary (sufficiently smooth)
compact k-particle operators J (k),

∣
∣TrJ (k)(γ

(k)
1,t − γ

(k)
2,t )
∣
∣ ≤ 2Ck+ntn/4.
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Since it is independent of n, the left side has to vanish for all t < 1/C4. This proves
uniqueness for short times. But then, since the a-priori bounds hold uniformly in
time, the argument can be repeated to prove uniqueness for all times.
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Locality Estimates for Quantum Spin Systems

Bruno Nachtergaele and Robert Sims

Abstract We review some recent results that express or rely on the locality prop-
erties of the dynamics of quantum spin systems. In particular, we present a slightly
sharper version of the recently obtained Lieb-Robinson bound on the group velocity
for such systems on a large class of metric graphs. Using this bound we provide ex-
pressions of the quasi-locality of the dynamics in various forms, present a proof of
the Exponential Clustering Theorem, and discuss a multi-dimensional Lieb-Schultz-
Mattis Theorem.

1 Introduction

Locality is a fundamental property of all current physical theories. Sets of observ-
ables can be associated with points or bounded regions in space or space-time and a
relativistic dynamics will preserve this structure [7]. How the locality property man-
ifests itself mathematically in important situations continues to be an active topic of
investigation [12].

There is a wide range of important physical systems, however, which we prefer
to describe by very effective non-relativistic quantum theories with Hamiltonian
dynamics. Even if the Hamiltonian has only finite-range interactions, the dynamics
it generates generally does not preserve locality, i.e., there is no strict equivalent to
the finite speed of light. However, locality still holds in an approximate sense, and
there is an associated finite velocity, which is sometimes referred to as the group
velocity. We call it the Lieb-Robinson velocity since Lieb and Robinson were the
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first to prove its existence and to obtain a bound for it [14]. They proved that to a
high degree of accuracy locality is preserved by quantum spin dynamics in the sense
that any local observable evolved for a time t > 0 remains localized in a region of
space with diameter proportional to t , up to an arbitrarily small correction. This
also means that spatial correlations between observables separated by a distance d

cannot be established faster than a time of order d .
The fundamental issue of locality may be sufficient motivation to extend the

Lieb-Robinson bounds to more general situations, but there are other good reasons
to try to generalize their result and to improve the estimates they obtained. As we
will discuss below, locality, or the approximate locality of the dynamics, has been
shown to be responsible for a considerable number of other important properties
relevant for models of many-body systems. In many situations, however, the impli-
cations of locality have yet to be fully explored.

We will begin this note by presenting a short proof of the new Lieb-Robinson
bounds obtained successively in [18, 10], and [21]. This improved result we give
below sharpens the bounds previously obtained in that the prefactor now only grows
as the smallest surface area of the supports of the local observables. We do this
in Sect. 2. An application where this surface area dependence, rather than volume
dependence, is important can be found in [5].

In Sect. 3, we present two perspectives on how Lieb-Robinson bounds may be
used to provide explicit estimates on the local structure of the time evolution. As
a consequence, one easily derives bounds on, for example, multiple commutators
and the rate at which spatial correlations can be established in normalized product
states.

Section 4 discusses the so-called Exponential Clustering Theorem. In the rela-
tivistic context it has been known for a long time that a gap in the spectrum above
the vacuum state implies exponential decay of spatial correlations in that state [3,
23, 6]. That a similar result should hold in the non-relativistic setting such as quan-
tum spin systems was long expected and taken for granted by theoretical physicists
[24]. In [9], Hastings proposed to use Lieb-Robinson bounds to obtain such a result
and a complete proof was recently given in [18, 10].

As a final application of these locality bounds, we describe a new proof of the
Lieb-Schultz-Mattis theorem, see [9, 19], in Sect. 5. These results can be traced back
to [9] where Hastings introduced a new way to construct and analyze variational
states for low-lying excitations of gapped Hamiltonians. He developed a notion of
a quasi-adiabatic evolution [11] which he then used to present a multi-dimensional
analogue of the celebrated Lieb-Schultz-Mattis theorem [15]. Such a theorem is
applicable, for example, to the standard spin-1/2, anti-ferromagnetic Heisenberg
model and yields an upper bound on the first excited state of order c(logL)/L for
systems of size L. His arguments rely on Lieb-Robinson bounds and the Exponential
Clustering Theorem in an essential way, and we have recently obtained a rigorous
proof of this result which holds in a rather general setting, see [19].

We expect that the ideas currently emerging from recent applications of Lieb-
Robinson bounds will continue to lead to interesting new results for quantum spin
systems in the near future.
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2 Lieb-Robinson Bounds

The first proof of locality bounds in the context of quantum spin systems appeared
in 1972 in a paper by Lieb and Robinson [14]. They proved a bound on the group
velocity corresponding to the dynamics generated by a variety of short range Hamil-
tonians. In a series of works [18, 10], and [21], these estimates have been general-
ized, and the proof we provide below, see Theorem 1, illustrates many of the new
insights which have recently been developed.

The result stated in Theorem 1 below differs from that which may be found in
[14] in two important ways. First, the new proof does not require the use of the
Fourier transform, and therefore, it extends to models defined on sets without an
underlying lattice structure. These results may be of interest to those who wish to
study quantum spin systems in the context of quasi-crystals or in the study of cir-
cuits for quantum computation. Second, and most importantly, the constants which
appear in our bound do not depend on the dimensions of the underlying, single-site
Hilbert spaces. This opens up the possibility of applying them to models with an
infinite-dimensional Hilbert space, such as lattice oscillators [22].

The basic set up in this theory concerns quantum spins systems, in particular, a
finite or infinite number of spins labeled by x ∈ V . A finite dimensional Hilbert
space Hx is assigned to each site x ∈ V . These may represent the spin of an elec-
tron, photon, or an atom. In other contexts, these states may represent the ground
state and first exited state of an atom or a molecule. More abstractly, these systems
may, for example, model a collection qubits, the basic units of quantum information
theory and quantum computation.

If the set V is finite, the Hilbert space of states is given by HV = ⊗
x∈V Hx .

For each spin x, the observables are the complex nx × nx matrices, Mnx , where
nx = dim(Hx). In this context, the algebra of observables for the whole system is
AV =⊗x∈V Mnx .

The locality results we wish to describe pertain to observables with finite support.
Here, the support of an observable is understood as follows. If X ⊂ V , we write
AX = ⊗

x∈X Mnx . By identifying A ∈ AX with A ⊗ 1l ∈ AV , we have that
AX ⊂ AV . The support of an observable A ∈ AV in the minimal set X ⊂ V for
which A = A′ ⊗ 1l with A′ ∈ AX.

For infinite V , the algebra of observables is the completion of the algebra of local
observables given by

AV =
⋃

X⊂V

AX

where the union is over all finite X ⊂ V .
To describe the models we wish to investigate, we must first define interactions,

local Hamiltonians, and the corresponding dynamics. An interaction is a map Φ

from the set of subsets of V to AV with the property that Φ(X) ∈ AX and Φ(X) =
Φ(X)∗ for all finite X ⊂ V . A quantum spin model is defined by a family of local
Hamiltonians, parametrized by finite subsets Λ ⊂ V , given by
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HΦ
Λ =

∑

X⊂Λ

Φ(X). (1)

For notational convenience, we will often drop the dependence of HΦ
Λ on Φ. The dy-

namics, or time evolution, generated by a quantum spin model is the one-parameter
group of automorphisms, {τΛt }t∈R, defined by

τΛt (A) = eitHΛAe−itHΛ, A ∈ AΛ, (2)

which is always well defined for finite sets Λ. In the context of infinite systems, a
boundedness condition on the interaction is required in order for the finite-volume
dynamics to converge to a strongly continuous one-parameter group of automor-
phisms on AV .

The locality results we prove in Theorem 1 are valid for a large class of interac-
tions. To describe this class precisely, we first put a condition on the set V , which
is relevant only in the event that V is infinite. We assume that the set V is equipped
with a metric d and that there exists a non-increasing function F : [0,∞) → (0,∞)

for which:

(i) F is uniformly integrable over V , i.e.,

‖F‖ = sup
x∈V

∑

y∈V
F (d(x, y)) < ∞, (3)

and
(ii) F satisfies

C = sup
x,y∈V

∑

z∈V

F (d(x, z))F (d(z, y))

F (d(x, y))
< ∞. (4)

Given such a set V , it is easy to see that for any F which satisfies (i) and (ii)
above, then the family of functions Fa , for a ≥ 0, defined by

Fa(x) = e−axF (x), (5)

also satisfy i) and ii) with ‖Fa‖ ≤ ‖F‖ and Ca ≤ C. In this context, we define the
set Ba(V ) to be those interactions Φ on V which satisfy

‖Φ‖a = sup
x,y∈V

∑

X*x,y

‖Φ(X)‖
Fa(d(x, y))

< ∞. (6)

The Lieb-Robinson bounds we will prove are valid for all Φ ∈ Ba(V ) with
a ≥ 0. Simply stated, these results correspond to estimates of the form

‖[τΛt (A), B]‖ ≤ c(A,B)e−μ(d(A,B)−vΦ |t |), (7)

where A and B are local observables, τΛt (·) is the time evolution corresponding to
a finite volume Hamiltonian generated by an interaction Φ ∈ Ba(V ), and d(A,B)



Locality Estimates for Quantum Spin Systems 595

is the distance between the supports of A and B. What is crucial in these estimates
is that the constants c(A,B), μ, and vΦ are independent of the volume Λ ⊂ V on
which τΛt (·) is defined. Physically, the constant vΦ corresponds to a bound on the
velocity at which the dynamics, generated by Φ, propagates through the system.

Intuitively, it is clear that the spread of the interactions through the system should
depend on the surface area of the support of the local observable A, typically de-
noted by X, not it’s volume. To make this explicit in our bound, we will denote the
surface of a set X, regarded as a subset of Λ ⊂ V , by

SΛ(X) = {Z ⊂ Λ : Z ∩X $= ∅ and Z ∩Xc $= ∅}. (8)

Here we will use the notation S(X) = SV (X), and define

‖Φ‖a(x;X) =
{

supy∈Λ
∑

Z∈S(X):
x,y∈Z

‖Φ(Z)‖
Fa(d(x,y))

if x ∈ X,

0 otherwise,
(9)

a quantity corresponding to the interaction terms across the surface of X. Comparing
the local quantity appearing in (9) with the norm on the full interaction given by (6),
one trivially has that

‖Φ‖a(x;X) ≤ ‖Φ‖aχ∂ΦX(x), (10)

where we have used χY to denote the characteristic function of a set Y ⊂ Λ, and we
have introduced the Φ-boundary of a set X, written ∂ΦX, given by

∂ΦX = {x ∈ X : ∃Z ∈ S(X) with x ∈ Z and Φ(Z) $= 0}. (11)

The Lieb-Robinson bound may be stated as follows.

Theorem 1 (Lieb-Robinson Bound). Let a ≥ 0 and take Φ ∈ Ba(V ). For any
finite set Λ ⊂ V , denote by τΛt (·) the time evolution corresponding to the local
Hamiltonian

HΛ =
∑

Z⊂Λ

Φ(Z). (12)

Given any pair of local observables A ∈ AX and B ∈ AY with X, Y ⊂ Λ and
d(X, Y ) > 0, one may estimate

‖[τΛt (A), B]‖ ≤ 2‖A‖‖B‖
‖Φ‖aCa

(e2‖Φ‖aCa |t | − 1)Da(X, Y ), (13)

for any t ∈ R. Here the function Da(X, Y ) is given by

Da(X, Y )

= min

[∑

x∈X

∑

y∈Y
‖Φ‖a(x;X)Fa(d(x, y)),

∑

x∈X

∑

y∈Y
‖Φ‖a(y;Y)Fa(d(x, y))

]

. (14)

A number of comments are useful in interpreting this theorem. First, we note
that if X and Y have a non-empty intersection, then the argument provided below
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produces an analogous bound with the factor e2‖Φ‖aCa |t | −1 replaced by e2‖Φ‖aCa |t |.
In the case of empty intersection and for small values of |t |, (13) is a better and
sometimes useful estimates than the obvious bound ‖[τt (A), B]‖ ≤ 2‖A‖‖B‖, valid
for all t ∈ R.

Next, if Φ ∈ Ba(V ) for some a > 0, then one has the trivial estimate that

Da(X, Y ) ≤ ‖F0‖‖Φ‖a min(|∂ΦX|, |∂ΦY |)e−ad(X,Y ). (15)

Clearly then, we have that

‖[τΛt (A), B]‖ ≤ 2‖A‖‖B‖‖F0‖
Ca

min(|∂ΦX|, |∂ΦY |)e−a[d(X,Y )− 2‖Φ‖aCa
a

|t |], (16)

which corresponds to a bound on the velocity of propagation given by

vΦ ≤ inf
a>0

2‖Φ‖aCa

a
. (17)

Next, we observe that for fixed local observables A and B, the bounds above, (13)
and (16), are independent of the volume Λ ⊂ V ; given that Λ contains the supports
of both A and B. Furthermore, we note that these bounds only require that one of
the observables has finite support; in particular, if |X| < ∞ and d(X, Y ) > 0, then
the bounds are valid irrespective of the support of B.

Proof (of Theorem 1). To prove (13), we will provide an estimate on the quantity

CB(Z; t) = sup
A∈AZ

‖[τΛt (A), B]‖
‖A‖ , (18)

where B is a fixed observable with support in Y , and the subset Z ⊂ Λ we regard
as arbitrary. Introduce the function

f (t) = [τΛt (τX−t (A)), B
]
, (19)

where A and B are as in the statement of the theorem. Due to the strict locality of
the Hamiltonian HX, as defined e.g. in (12) and the fact that the observable A ∈ AX,
we have that supp(τX−t (A)) ⊂ X for all t ∈ R. It is straight forward to verify that

f ′(t) = i
∑

Z∈SΛ(X)

[
τΛt (Φ(Z)), f (t)

]− i
∑

Z∈SΛ(X)

[
τΛt (τX−t (A)),

[
τΛt (Φ(Z)), B

]]
.

(20)
Since the first term in (20) is norm preserving, we find that

∥
∥[τΛt (τX−t (A)), B]∥∥ ≤ ‖[A,B]‖ + 2‖A‖

∑

Z∈S(X)

∫ t

0

∥
∥[τΛs (Φ(Z)), B]∥∥ds. (21)

The inequality (21) and the fact that ‖τX−t (A)‖ = ‖A‖ together imply that



Locality Estimates for Quantum Spin Systems 597

CB(X; t) ≤ CB(X; 0)+ 2
∑

Z∈S(X)

‖Φ(Z)‖
∫ |t |

0
CB(Z; s)ds. (22)

It is clear from the definition, see (18), that for any finite Z ⊂ Λ,

CB(Z; 0) ≤ 2‖B‖δY (Z) (23)

where δY (Z) = 0 if Z ∩ Y = ∅ and δY (Z) = 1 otherwise. Using this fact, iteration
of (22) yields that

CB(X, t) ≤ 2‖B‖
∞∑

n=0

(2|t |)n
n! an, (24)

where for n ≥ 1,

an =
∑

Z1∈S(X)

∑

Z2∈S(Z1)

· · ·
∑

Zn∈S(Zn−1)

δY (Zn)

n∏

i=1

‖Φ(Zi)‖. (25)

For an interaction Φ ∈ Ba(V ), one may estimate that

a1 ≤
∑

x∈X

∑

y∈Y

∑

Z∈S(X):
x,y∈Z

‖Φ(Z)‖ ≤
∑

x∈X

∑

y∈Y
‖Φ‖a(x;X)Fa(d(x, y)). (26)

In addition,

a2 ≤
∑

x∈X

∑

y∈Y

∑

z∈Λ

∑

Z1∈S(X):
x,z∈Z1

‖Φ(Z1)‖
∑

Z2∈S(Z1):
z,y∈Z2

‖Φ(Z2)‖

≤ ‖Φ‖a
∑

x∈X

∑

y∈Y

∑

z∈Λ
Fa(d(z, y))

∑

Z1∈S(X):
x,z∈Z1

‖Φ(Z1)‖

≤ ‖Φ‖a
∑

x∈X

∑

y∈Y

∑

z∈Λ
Fa(d(x, z))Fa(d(z, y))‖Φ‖a(x;X)

≤ ‖Φ‖aCa

∑

x∈X

∑

y∈Y
‖Φ‖a(x;X)Fa(d(x, y)), (27)

where we have used (4) for the final inequality. With analogous arguments, one finds
that for all n ≥ 1,

an ≤ (‖Φ‖aCa)
n−1

∑

x∈X

∑

y∈Y
‖Φ‖a(x;X)Fa(d(x, y)). (28)

Inserting (28) into (24) we see that

CB(X, t) ≤ 2‖B‖
‖Φ‖aCa

(e2‖Φ‖aCa |t | − 1)
∑

x∈X

∑

y∈Y
‖Φ‖a(x;X)Fa(d(x, y)), (29)

from which (13) immediately follows.  !
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3 Quasi-Locality of the Dynamics

The Lieb-Robinson bounds of Theorem 1 imply that the dynamics of quantum lat-
tice systems, those generated by short range interactions, are quasi-local in the sense
that the diameter of the support of any evolved local observable does not grow faster
than linearly with time, up to an arbitrarily small error. There are at least two inter-
esting ways to give precise meaning to this quasi- locality property of the dynamics.
In the first, one shows that the time-evolved observable can be well-approximated in
norm by one with a strictly local support. This is achieved by the quantum version of
integrating out the variables in the complement of a ball with a radius proportional
to time. In the second, we show that to compute the dynamics up to a time t > 0,
one can replace the Hamiltonian with a local Hamiltonian supported in a ball of ra-
dius proportional to t . Clearly, the net result is the same: the support of observables
evolved with approximate dynamics remains contained in the ball where the local
Hamiltonian is supported. After presenting the details of these two approaches, we
conclude this section with a few interesting applications that immediately follow
from quasi-locality.

As in the previous section, we will work with an interaction Φ ∈ Ba(V ) with
a > 0. For the purpose of the discussion below, we will consider a finite subset
Λ ⊂ V and restrict our attention to the dynamics τΛt (·) generated by the finite
volume Hamiltonian HΛ as defined in (1); our bounds will be independent of the
volume Λ. For any X ⊂ Λ we will denote by Xc = Λ \X.

In the first approach to obtaining a local approximation with support contained in
X ⊂ Λ, one takes the normalized partial trace over the Hilbert space associated with
Xc. In order to estimate the norm difference it is convenient to calculate the partial
trace as an integral over the group of unitaries [4]. Given an arbitrary observable
A ∈ AΛ and a set X ⊂ Λ, define

〈A〉Xc =
∫

U (Xc)

U∗AUμ(dU), (30)

where U (Xc) denotes the group of unitary operators over the Hilbert space HXc

and μ is the associated, normalized Haar measure. It is easy to see that for any
A ∈ AΛ, the quantity 〈A〉Xc has been localized to X in the sense that 〈A〉Xc ∈ AX.
Moreover, the difference may be written in terms of a commutator, i.e. as

〈A〉Xc − A =
∫

U (Xc)

U∗[A,U ]μ(dU). (31)

To localize the dynamics, let A ∈ AX and fix ε > 0. Based on our estimates in
Theorem 1, we approximate the support of τΛt (A) with a time-dependent ball

Bt(ε, A) =
{

x ∈ Λ : d(x,X) ≤ 2‖Φ‖aCa

a
|t | + ε

}

. (32)

For any unitary U ∈ U (Bt (ε, A)c), we clearly have that
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d(X, supp(U)) ≥ 2‖Φ‖aCa

a
|t | + ε, (33)

and therefore, using (31) above and our bound (16), we immediately conclude that

∥
∥τΛt (A)− 〈τΛt (A)〉Bt (ε,A)c

∥
∥ ≤

∫

U (Bc
t (ε))

∥
∥
[
τΛt (A),U

]∥
∥μ(dU)

≤ 2‖A‖|∂ΦX|
Ca

‖F0‖e−aε. (34)

The tolerance ε > 0 can be chosen to optimize estimates.
In the second approach, one shows that only those terms in the Hamiltonian sup-

ported in BT (ε,A) contribute significantly to the time evolution of A up to time T

[21]. Again, we consider the finite volume dynamics applied to a local observable
A ∈ AX. Fix ε > 0, T > 0, and consider the ball BT (ε,A) as defined in (32) above.
The estimate

∥
∥τΛt (A)− τ

BT (ε,A)
t (A)

∥
∥ ≤ ‖A‖‖F0‖|∂ΦX|

C2
a

(Ca + ‖Fa‖)e−aε, (35)

valid for all |t | ≤ T , readily follows from the results in [21]. In fact, the proof of (35)
uses the following basic estimate, see e.g. Lemma 3.3 in [21],

Lemma 2. Let Φ ∈ Ba(V ) with a > 0 and take a finite subset Λ ⊂ V . If the
finite volume Hamiltonian is written as the sum of two self-adjoint operators, HΛ =
H

(1)
Λ + H

(2)
Λ , and for i = 1, 2, τ (i)t (·) denotes the dynamics corresponding to H

(i)
Λ ,

then the following estimate is valid:

∥
∥τΛt (A)− τ

(1)
t (A)

∥
∥ ≤

∫ |t |

0

∥
∥
[
H

(2)
Λ , τ (1)s (A)

]∥
∥ds, (36)

for any observable A and t ∈ R.

To apply Lemma 2 in the context discussed above, we write the local Hamiltonian
as the sum of two terms:

HΛ =
∑

Z⊂Λ:
Z/∈SΛ(BT (ε,A))

Φ(Z)+
∑

Z⊂Λ:
Z∈SΛ(BT (ε,A))

Φ(Z) = H
(1)
Λ +H

(2)
Λ . (37)

Recall that for any X ⊂ Λ, we defined SΛ(X), the surface across X in Λ, with (8).
Dropping the surface terms comprising H

(2)
Λ above, decouples the dynamics, i.e.,

τ
(1)
t (A) = τ

BT (ε,A)
t (A), and we find that for any |t | ≤ T ,

∥
∥τΛt (A)− τ

BT (ε,A)
t (A)

∥
∥ ≤

∑

Z∈Λ:
Z∈SΛ(BT (ε,A))

∫ |t |

0

∥
∥
[
Φ(Z), τBT (ε,A)

s (A)
]∥
∥ds. (38)
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For each of the terms on the right hand side above, the Lieb-Robinson estimates
imply that

∥
∥
[
Φ(Z), τBT (ε,A)

s (A)
]∥
∥ ≤ 2‖Φ(Z)‖‖A‖

Ca

e2‖Φ‖aCa |s|∑

z∈Z

∑

x∈∂ΦX

Fa(d(x, z)). (39)

Careful consideration of the combinatorics of these sums, exactly as done in [21],
yields (35) as claimed.

It is interesting to ask about locality bounds for complex times. For one-dimens-
ional systems with finite range interactions, Araki proved that the support does not
grow faster than an exponential in |z|, where z is the complex time [2, Theorem 4.2].
In other words, the complex time evolution

τ [−R,R]
z (A) = eizHΛAe−izHΛ

can be approximated by τ
[−N,N ]
z (A) with small error, uniformly in R, as long as

log |z| ≤ cN , for a suitable constant c. For stochastic dynamics of classical par-
ticle systems, good locality bounds that are very similar to Theorem 1 are known
[16, Theorem 4.20]. Since these classical models with stochastic dynamics can be
thought of as quantum systems, generated by particular Hamiltonians and evolving
with purely imaginary times, this may indicate that the general result, which allows
for no more than logarithmic growth of |z|, should not be considered the final word
on this issue in regards to specific models of interest.

The quasi-locality formulation of the Lieb-Robinson bounds makes it easy to
derive bounds on double and higher order commutators of the form

[τt1(A), [τt2(B), τt3(C]].
Such commutators remain small in norm as long as t1, t2, and t3 are such that the in-
tersection of the time-dependent “quasi-supports” remains empty. That is whenever
t1, t2, t3 ∈ R are such that

Bt1(ε, A) ∩ Bt2(ε, B) ∩ Bt3(ε, C) = ∅.
Another immediate application of the quasi-locality property is a bound on the

rate at which spatial correlations can be created by the dynamics starting from a
product state. In [21], we proved the following.

Theorem 3. Let a > 0, Φ ∈ Ba(V ), and take Ω to be a normalized product state.
Given X, Y ⊂ Λ with d(X, Y ) > 0 and local observables A ∈ AX and B ∈ AY ,
the estimate

|〈τt (AB)〉 − 〈τt (A)〉〈τt (B)〉| ≤ 4‖A‖‖B‖‖F‖(|∂ΦX| + |∂ΦY |)Ga(t)e
−ad(X,Y )

(40)
is valid for all t ∈ R. Here, for any observable A, the expectation value of A in the
state Ω is denoted by 〈A〉 = 〈Ω,AΩ〉, and the function



Locality Estimates for Quantum Spin Systems 601

Ga(t) = Ca + ‖Fa‖
Ca

‖Φ‖a
∫ |t |

0
e2‖Φ‖aCa |s|ds. (41)

4 Exponential Clustering

As a second application of these locality bounds, we will present a proof of the Ex-
ponential Clustering Theorem, see Theorem 4 below, which improves on the esti-
mates found in [18], see also [10]. The proof of exponential clustering demonstrates
that models with a spectral gap above the ground state energy necessarily exhibit
exponential decay of spatial correlations in their ground state. Such results have re-
cently appeared in a variety of contexts, e.g. [18, 10]. Using valence bond states,
as is done in [17], one can easily construct gapless models with exponentially de-
caying ground state correlations indicating that, in general, there is no converse to
Theorem 4.

In the finite volume, the notion of a gapped Hamiltonian is clear. If the system
is infinite, we express the gap condition in terms of the limiting dynamics, the exis-
tence of which is guaranteed by the Lieb-Robinson bounds as discussed above, by
considering a representation of the system on a Hilbert space H . This means that
there is a representation π : AV → B(H ), and a self-adjoint operator H on H
such that

π(τt (A)) = eitHπ(A)e−itH , A ∈ AV . (42)

We will assume that the representative operator H is non-negative and that there
exists a vector Ω ∈ H for which HΩ = 0. We say that the system has a spectral
gap in the representation if there exists δ > 0 such that spec(H) ∩ (0, δ) = ∅. In
this case, the spectral gap, γ , is defined by

γ = sup{δ > 0 | spec(H) ∩ (0, δ) = ∅}. (43)

Let P0 denote the orthogonal projection onto kerH . From now on, we will work in
this representation and simply write A instead of π(A).

Theorem 4 (Exponential Clustering). Let a > 0 and take Φ ∈ Ba(V ). Suppose
that the dynamics corresponding to Φ on V can be represented by a Hamiltonian
H with a gap γ > 0 above the ground state energy, as described above. Let Ω be
a normalized ground state vector for H ; i.e. satisfy HΩ = 0 with ‖Ω‖ = 1. Then,
there exists a constant μ > 0 such that for any local observables A ∈ AX and
B ∈ AY with X, Y ⊂ V and d(X, Y ) > 0 satisfying P0BΩ = P0B

∗Ω = 0, the
bound

|〈Ω,Aτib(B)Ω〉| ≤ C(A,B, γ )e
−μd(X,Y )(1+ γ 2b2

4μ2d(X,Y )2
)

(44)

is valid for all non-negative b satisfying 0 ≤ bγ ≤ 2μd(X, Y ). One may take

μ = aγ

4‖Φ‖aCa + γ
, (45)
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as well as a constant

C(A,B, γ ) = ‖A‖‖B‖
[

1 +
√

1

μd(X, Y )
+ 2‖F0‖

πCa

min(|∂ΦX|, |∂ΦY |)
]

. (46)

Note that in the case of a non-degenerate ground state, the condition on B is
equivalent to 〈Ω,BΩ〉 = 0. In this case, the theorem with b = 0 becomes

|〈Ω,ABΩ〉 − 〈Ω,AΩ〉〈Ω,BΩ〉| ≤ C(A,B, γ )e−μd(X,Y ), (47)

which is the standard (equal-time) correlation function. For small b > 0, the esti-
mate (44) can be viewed as a perturbation of (47). Moreover, for b > 0 large, there
is a trivial bound

|〈Ω,Aτib(B)Ω〉| ≤ ‖A‖‖B‖e−bγ . (48)

Proof. (of Theorem 4) We will follow very closely the proof which appears in [18]
and refer to it whenever convenient. Consider the function f given by

f (z) = 〈Ω,Aτz(B)Ω〉 =
∫ ∞

γ

eizEd〈A∗Ω,PEBΩ〉, (49)

where we have used the spectral theorem and the fact that B projects off the ground
state. It is clear that the function f defined in (49) is analytic in the upper half plane
and has a continuous (and bounded) boundary value on the real axis. The quantity
we wish to bound corresponds to f (ib) for b > 0. The case b = 0 will follow by a
limiting argument.

Since the boundary value of f on R is continuous, one may show by a limiting
argument that for any T > b,

f (ib) = 1

2πi

∫

ΓT

f (z)

z− ib
dz, (50)

where ΓT is the semi-circular contour from−T to T (on the real axis) into the upper
half plane. As is shown in [18], the fact that the Hamiltonian is gapped, see also (49),
implies that the integral over the circular part of the contour vanishes in the limit as
T →∞, and therefore we have the bound

|〈Ω,Aτib(B)Ω〉| = |f (ib)| ≤ lim sup
T→∞

∣
∣
∣
∣

1

2πi

∫ T

−T

f (t)

t − ib
dt

∣
∣
∣
∣. (51)

The proof is then complete once we estimate this integral over the real line. While
this inequality is true for any value of b > 0, to get the desired estimate, we will
have to choose b > 0 sufficiently small; see the comments following (64) below.

Let α > 0. We will choose this free parameter later. Observe that one may write

f (t) = e−αb2[
f (t)e−αt2 + f (t)

(
eαb

2 − e−αt2)]
. (52)
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Clearly then, the integral we wish to bound, the one on the right hand side of (51)
above, can be estimated by

e−αb2
∣
∣
∣
∣

1

2πi

∫ T

−T

f (t)e−αt2

t − ib
dt

∣
∣
∣
∣+ e−αb2

∣
∣
∣
∣

1

2πi

∫ T

−T

f (t)(eαb
2 − e−αt2

)

t − ib
dt

∣
∣
∣
∣. (53)

We will bound the absolute value of each of the integrals appearing in (53) sepa-
rately; the prefactor e−αb2

will be an additional damping made explicit by the choice
of α.

To bound the first integral appearing in (53), we further divide the integrand into
two terms. Note that

f (t)e−αt2 = 〈Ω, τt (B)AΩ〉e−αt2 + 〈Ω, [A, τt (B)]Ω〉e−αt2
. (54)

By the spectral theorem, we have that

1

2πi

∫ T

−T

〈Ω, τt (B)AΩ〉e−αt2

t − ib
dt =

∫ ∞

γ

1

2πi

∫ T

−T

e−itEe−αt2

t − ib
dtd〈PEB

∗Ω,AΩ〉,
(55)

where we have used now that B∗Ω is also orthogonal to the ground state. Applying
Lemma 5, stated below, to the inner integral above, we have that

lim
T→∞

1

2πi

∫ T

−T

e−itEe−αt2

t − ib
dt = 1

2
√
πα

∫ ∞

0
e−bwe−

(w+E)2
4α dw ≤ 1

2
e−

γ 2

4α , (56)

where for the final inequality above we used that E ≥ γ > 0, α > 0, and b > 0.
From this we easily conclude that

lim sup
T→∞

∣
∣
∣
∣

1

2πi

∫ T

−T

〈Ω, τt (B)AΩ〉e−αt2

t − ib
dt

∣
∣
∣
∣ ≤

‖A‖‖B‖
2

e−
γ 2

4α . (57)

For the integral corresponding to the second term in (54), it is easy to see that

∣
∣
∣
∣

1

2πi

∫ T

−T

〈Ω, [A, τt (B)]Ω〉e−αt2

t − ib
dt

∣
∣
∣
∣ ≤

1

2π

∫ ∞

−∞
‖[A, τt (B)]‖

|t | e−αt2
dt, (58)

where we have taken advantage of the fact that b > 0. To complete our estimate, we
will introduce another free parameter s > 0. Here we use the Lieb-Robinson bound,
Theorem 1, for times |t | ≤ s and a basic norm estimate otherwise. The result is that
the right hand side of (58) is bounded from above by

2‖A‖‖B‖
π‖Φ‖aCa

Da(X, Y )(e2‖Φ‖aCas − 1)+ ‖A‖‖B‖
s
√
πα

e−αs2
. (59)

This completes the bound of the first integral appearing in (53).
Using again the spectral theorem, the second integral in (53) may be written as
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∣
∣
∣
∣

∫ ∞

γ

1

2πi

∫ T

−T

eitE(eαb
2 − e−αt2

)

t − ib
dtd〈A∗Ω,PEBΩ〉

∣
∣
∣
∣. (60)

As is described in detail in [18], we find that for E ≥ γ and α chosen such that
γ ≥ 2αb,

lim
T→∞

1

2πi

∫ T

−T

eitE

t − ib
(eαb

2 − e−αt2
)dt ≤ 1

2
e−

γ 2

4α , (61)

which produces an estimate (one analogous to the bound in (57) above) for (60).
All of our estimates above combine to demonstrate that the right hand side of

(51) is bounded by

‖A‖‖B‖
[

e−
γ 2

4α + 2Da(X, Y )

π‖Φ‖aCa

(e2‖Φ‖aCas − 1)+ 1

s
√
πα

e−αs2
]

(62)

if α satisfies γ ≥ 2αb. The choice α = γ /2s yields:

‖A‖‖B‖e− γ s
2

[

1 +
√

2

πγ s
+ 2Da(X, Y )

π‖Φ‖aCa

e(2‖Φ‖aCa+ γ
2 )s

]

(63)

As is demonstrated in (15), Da(X, Y ) decays exponentially as e−ad(X,Y ). In this
case, if we choose s to be the solution of the equation

s(2‖Φ‖aCa + γ /2) = ad(X, Y ), (64)

then we have proven the result. Notice that we have chosen α in terms of s, which
is defined independently of b, thus the condition γ ≥ 2αb will be satisfied for
sufficiently small b > 0.  !

In our proof of the Exponential Clustering Theorem above, we used several times
the following useful fact, a proof of which appears in [18].

Lemma 5. Let E ∈ R, α > 0, and z ∈ C
+ = {z ∈ C : Im[z] > 0}. One has that

lim
T→∞

1

2πi

∫ T

−T

eiEt e−αt2

t − z
dt = 1

2
√
πα

∫ ∞

0
eiwze−

(w−E)2
4α dw. (65)

Moreover, the convergence is uniform for z ∈ C
+.

5 The Lieb-Schultz-Mattis Theorem

As a final application of these locality bounds, in particular both Theorem 1 and
Theorem 4, we were recently able to provide a rigorous proof the Lieb-Schultz-
Mattis theorem, see [20], which is valid in arbitrary dimensions. In this section, we
will discuss this result and outline the ideas which motivate our proof.
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5.1 The Result and Some Words on the Proof

The classical Lieb-Schultz-Mattis Theorem (LSM), [15], concerns the spin-1/2,
anti-ferromagnetic Heisenberg chain. This model is defined through a family of
Hamiltonians HL, acting on the Hilbert space H[1,L] =⊗x∈[1,L] C2, with the form

HL =
L−1∑

x=1

Sx · Sx+1. (66)

Here, for each integer x ∈ [1, L], the spin vectors Sx have components

S
j
x = 1l ⊗ · · · ⊗ 1l ⊗ Sj ⊗ 1l ⊗ · · · ⊗ 1l, j = 1, 2, 3, (67)

where Sj is the corresponding spin-1/2 (Pauli) matrix acting on the x-th factor of
H[1,L]. The LSM Theorem may be stated as follows.

Theorem 6. (LSM, 1961) If the ground state of HL is unique, then the gap in energy
between the ground state and the first excited state is bounded by C/L.

A further result by Lieb and Mattis in 1966, [13], verified that under certain
conditions, for example when L is even, the main assumption in the LSM Theorem,
specifically the uniqueness of the ground state, is indeed satisfied. Almost twenty
years later, the LSM Theorem was generalized to encompass a variety of other one
(and quasi-one) dimensional models by Affleck and Lieb in [1]. In particular, this
result applies to those chains of even length with spins having arbitrary half-integer
magnitude. Note: Here and in the rest of this section the term half-integer, or half-
integral, refers to one-half of a positive odd integer, i.e., an element of the set N +
1/2.

For models to which the LSM Theorem applies, one expects that the excitation
spectrum corresponding to the thermodynamic limit has no gap above the ground
state energy. It is interesting to note that the predictions of Haldane [8] suggest that
such a result is rather sensitive to the type of interaction terms. In fact, the spin-
1, anti-ferromagnetic Heisenberg chain is predicted to have a robust gap above the
ground state energy in the thermodynamic limit.

In a work of 2004, see [9], Hastings argued that a higher dimensional analogue
of the LSM Theorem could be proven using the improved locality bounds which
have recently been established. We will now summarize these ideas and indicate
how they may be implemented to demonstrate a rigorous proof of this theorem.

The multi-dimensional LSM Theorem, stated as Theorem 7 below, is valid for
a large class of models; a detailed proof of this is contained in [20]. For simplicity
of presentation in this review article, we will restrict our attention to the spin-1/2,
Heisenberg anti-ferromagnet, however, our general assumptions are discussed in
Sect. 5.2.4. In ν dimensions, the model of interest is defined on subsets VL ⊂ Z

ν in
analogy to (66) above, i.e. one considers Hamiltonians



606 Bruno Nachtergaele and Robert Sims

HL =
∑

x,y∈VL :|x−y|=1

Sx · Sy (68)

acting on the Hilbert space HVL
=⊗x∈VL

C
2. It is easy to state the new result.

Theorem 7. If the ground state of HL is non-degenerate, then the gap, γL, above
the ground state energy satisfies

γL ≤ C
log(L)

L
. (69)

The logarithmic correction which appears in Theorem 7, in contrast to the orig-
inal result of Theorem 6, seems to be an inevitable consequence of the locality
bounds we incorporate in our proof. It is an interesting open question to determine
whether or not there is a class of models, in dimensions ν > 1, for which one can
prove such a bound without the logarithmic correction.

In essense, Theorem 7 is proven using a variational argument. Letting ψ0 denote
the unique, normalized ground state, we know that for any normalized vector ψ1
with |〈ψ0, ψ1〉| $= 1, the bound

0 < γ ≤ 〈ψ1, (H − E0)ψ1〉
1 − |〈ψ0, ψ1〉|2 (70)

is always valid. Here we have dropped the dependence of all quantities on the length
scale L. From this perspective, there are only three steps necessary to prove the
desired result. First, we must construct a normalized trial state ψ1, as indicated
above. Next, we must estimate the difference in the energy corresponding to ψ1
and E0. Lastly, we must ensure that the inner product |〈ψ0, ψ1〉| remains sufficiently
small.

This method of proof is complicated by the fact that the ground state is virtually
unknown, and therefore the means by which one should construct a trial state is not
a priori clear. Inspiration for the construction of our variational state comes from the
work of Hastings, again see [9], in which he proposes to consider the ground state
of a modified Hamiltonian, Hθ , where the interactions in a given hyperplane have
been twisted by an angle of θ ; more on this below. The ground state of this modified
Hamiltonian may be regarded as the solution of a specific differential equation, in
the variable θ , whose initial condition corresponds to the unique ground state whose
existence we assumed. The solution of Hastings’ differential equation is amenable
to analysis, in particular, one can apply both the Lieb-Robinson bounds and the Ex-
ponential Clustering Theorem to provide the desired energy and orthogonality esti-
mates mentioned above. One may recall that the clustering bounds, as in Theorem 4,
provide estimates which themselves depend on the size of gap γL. For this reason,
the argument proceeds by way of contradiction. In fact, by assuming that there ex-
ists a sufficiently large constant C for which the gap satisfies γL > C log(L)/L
for large enough L, we construct a trial state whose energy eventually violates this
bound.



Locality Estimates for Quantum Spin Systems 607

5.2 A More Detailed Outline of the Proof

5.2.1 Constructing the Trial State

In our proof, we use the fact that the Hamiltonians we consider are assumed to have
at least one direction of translation invariance. We incorporate this into our notation
by considering finite subsets VL ⊂ Z

ν of the form VL = [1, L]×V ⊥
L where we have

isolated a particular direction, which we will often refer to as the horizontal direc-
tion, and perpendicular sets V ⊥

L ⊂ Z
ν−1 with cardinality |V ⊥

L | ≤ CLν−1. For the
orthogonality result, we will also need to assume that |V ⊥

L | is odd, see Sect. 5.2.3.
The trial state is constructed from a perturbation of the Hamiltonian HL defined
by “twisting” certain interaction terms. A twist in the hyperplane situated at a site
m ∈ [1, L] is defined by replacing all interaction terms Sx ·Sy in (68) corresponding
to horizontal bonds with x = (m, v), y = (m + 1, v), and some v ∈ V ⊥

L by terms
of the form

hxy(θ) = Sx · e−iθS3
ySye

iθS3
y (71)

for some θ ∈ R. A doubly twisted Heisenberg Hamiltonian is then given by

Hθ,θ ′ =
∑

x,y∈VL :|x−y|=1

hxy(θxy) (72)

where

θxy =

⎧
⎪⎪⎨

⎪⎪⎩

θ, if x = (m, v), y = (m+ 1, v) for some v ∈ V⊥
L ,

θ ′, if x = (m+ L/2, v), y = (m+ 1 + L/2, v) for v ∈ V⊥
L ,

0, otherwise.

(73)

Here we have taken periodic boundary conditions in the horizontal direction.
It is interesting to note the behavior of the lowest eigenvalues of the singly twisted

Heisenberg Hamiltonian Hθ,0 for a simple spin ring with an even number of spins.
The behavior depends in an interesting way on the magnitude of the spins. When the
spins are half-integer, the two lowest eigenvalues cross at θ = π . In contrast, when
the spins are integer, they remain non-degenerate. The quasi-adiabatic evolution is a
device designed to construct a continuous path from the ground state of H0,0 to the
first excited state of H2π,0 which, of course, are both identical to the unperturbed
Hamiltonian.

One of Hastings’ crucial insights in [9] is that, for the half-integer spin case, the
first excited state can be obtained by applying a “quasi-adiabatic evolution” to the
ground state; here θ is the evolution parameter. More concretely, let ψ0(θ, θ

′) and
E0(θ, θ

′) denote the ground state and ground state energy of the doubly twisted
Hamiltonian Hθ,θ ′ , respectively. It is easy to see that along the path θ ′ = −θ , the
Hamiltonian Hθ,−θ is unitarily equivalent to the unperturbed Hamiltonian HL =
H0,0. By differentiating the eigenvalue equation Hθ,−θψ0(θ,−θ) = E0(θ,−θ) ×
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Fig. 1 Plot of the three lowest eigenvalues of Hθ,0, the singly twisted Heisenberg Hamiltonian for
a ring of 8 spins. The magnitude of spins is S = 1/2 in the plot on the left and S = 1 on the right

ψ0(θ,−θ) and using that ∂θE0(θ,−θ) = 0, one obtains

∂θψ0(θ,−θ) = − 1

Hθ,−θ − E0
[∂θHθ,−θ ]ψ0(θ,−θ). (74)

Formally, (74) may be re-written using the Heisenberg dynamics as follows,

∂θψ0(θ,−θ) = B(θ)ψ0(θ,−θ), (75)

where the operator B(θ) is defined by

B(θ) = −
∫ ∞

0
τit (∂θHθ,−θ )P0(θ,−θ)dt. (76)
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Here we have denoted by τt (·) the dynamics generated by the Hamiltonian Hθ,−θ ,
and P0(θ,−θ) is the corresponding spectral projection onto the ground state. Due
to the gap assumption, (76) is well-defined.

Equation (75) captures the evolution of the ground state of a doubly twisted
Hamiltonian along the path θ ′ = −θ where the effect of the first twist is canceled
by the second. The trial state is obtained by using an approximation of the differen-
tial equation in (75) to describe the ground state of the singly twisted Hamiltonian
Hθ,0. Introduce the parameters α > 0 and T > 0. To approximate the imaginary
time evolution corresponding to an arbitrary Hamiltonian H , with dynamics τs(·),
at time t > 0, we define

Aα(it,H) = 1

2πi

∫ +∞

−∞
τs(A)

e−αs2

s − it
ds (77)

for any observable A. In general, an anti-Hermitian operator of the form

Bα,T (A,H) = −
∫ T

0
[Aα(it,H)− Aα(it,H)∗]dt, (78)

will be used in place of (76).
Note that the observable which is evolved in (76), ∂θHθ,−θ , contains terms of

two types. The first are localized around the twist of angle θ which correspond to
horizontal bonds (x, y) of the type x = (m, v), y = (m+ 1, v), and some v ∈ V ⊥

L .
The second are similar, yet localized around the twist of angle −θ . We group these
two types of terms together and write ∂θHθ,−θ = ∂1Hθ,−θ − ∂2Hθ,−θ to simplify
notation. By linearity, the operator

Bα,T (∂θHθ,−θ ,Hθ,−θ ) = Bα,T (∂1Hθ,−θ ,Hθ,−θ )− Bα,T (∂2Hθ,−θ ,Hθ,−θ ). (79)

Given a sufficiently large gap γL, there is a choice of the parameters α and T for
which the ground state ψ0(θ,−θ) is well approximated by the solution of the differ-
ential equation (75) with B(θ) replaced by Bα,T (∂θHθ,−θ ,Hθ,−θ ). Hastings’ clever
proposal is that one may also approximate the ground state of the singly twisted
Hamiltonian, ψ0(θ, 0), by evolving with just the first term on the right hand side
of (79) above. More concretely, consider the operator Bα,T (θ) defined by setting
Bα,T (θ) = Bα,T (∂1Hθ,−θ ,Hθ,−θ ) and solve the Hastings’ Equation given by

∂θψα,T (θ) = Bα,T (θ)ψα,T (θ) (80)

with initial condition ψα,T (0) = ψ0(0, 0), i.e., the ground state of the unperturbed
Hamiltonian. Under the choice of parameters α = γL/L and T = L/2, the resulting
variational state ψ1 = ψα,T (2π) may be estimated in such a way that Theorem 7
follows. We note that a particularly nice feature of the differential equation (80)
is that the operator Bα,T (θ) is anti-Hermitian, and therefore the solution remains
normalized for all θ ∈ [0, 2π]. Hastings interprets the solution of (80) as a quasi-
adiabatic evolution of the ground state ψ0 = ψ0(0, 0).
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5.2.2 Locality and the Trial State

One key technical lemma, which we use repeatedly in all of the estimates that fol-
low, concerns the local evolution of the solution to (80). Consider a sub-volume
ΛL(m) ⊂ VL localized around the twist of angle θ , for example, take ΛL(m) to be
of the form [m− (L/4−2),m+ (L/4−2)]×V ⊥

L which is slightly less than half of
the system. Let ρα,T (θ) and ρ0(θ,−θ) denote the density matrices corresponding
to the states ψα,T (θ) and ψ0(θ,−θ).

Lemma 8. Suppose there exists a constant c > 0 such that LγL ≥ c and choose
α = γL/L and T = L/2. Then, there exists constants C > 0 and k > 0 such that

sup
θ∈[0,2π]

∥
∥TrVL\ΛL(m)[ρα,T (θ)− ρ0(θ,−θ)]∥∥1 ≤ CL2νe−kLγL.

Since the proof proceeds by way of contradiction, the assumption LγL ≥ c is
part of the argument. Moreover, it is easy to produce a bound on γL from above
that is independent of the length scale L. Lemma 8 demonstrates that if LγL is
sufficiently large, then the effect of ignoring the second twist in the definition of
ψα,T (θ) is negligible when one restricts their attention to observables localized in
ΛL(m). The proof of this lemma uses both the Lieb-Robinson bound, Theorem 1,
and the Exponential Clustering result, Theorem 4.

5.2.3 The Estimates

The Energy Estimate: To estimate the energy of the trial state, we consider the func-
tion

E(θ) = 〈ψα,T (θ),Hθ,−θψα,T (θ)〉. (81)

Due to the initial condition used to define ψα,T (θ), we know that E(0) = E0 the
ground state energy, and since H2π,−2π = HL, E(2π) corresponds to the energy
of the trial state ψ1 = ψα,T (2π). The main idea here is to use the locality property
of the trial state, i.e. Lemma 8, and the unitary equivalence of the Hamiltonians
Hθ,−θ to obtain an estimate on the derivative of this function which is uniform for
θ ∈ [0, 2π]. Explicitly, we can prove the following result.

Theorem 9. Suppose there exists a constant c > 0 such that LγL ≥ c and choose
α = γL/L and T = L/2. Then, there exists constants C > 0 and k > 0 such that

|〈ψ1,HLψ1〉 − E0| ≤ CL3ν−1e−kLγL.

The Orthogonality Estimate: As we mentioned before, Hastings’ quasi-adiabatic
evolution is norm preserving. In particular, we are guaranteed that ‖ψ1‖ =
‖ψ0‖ = 1. Our argument that ψ1 is sufficiently orthogonal to ψ0 makes essen-
tial use of the fact that the total spin in each perpendicular set, V ⊥

L , is half-integer.
In the case of the spin-1/2, anti-ferromagnetic Heisenberg model, this corresponds
to the assumption that |V ⊥

L | is odd. We have the following theorem.
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Theorem 10. Suppose there exists a constant c > 0 such that LγL ≥ c and choose
α = γL/L and T = L/2. Then, there exists constants C > 0 and k > 0 such that

|〈ψ1, ψ0〉| ≤ CL2νe−kLγL.

To prove this result we observe that, although the ground state ψ0(θ,−θ) of
the perturbed Hamiltonian is not translation invariant, it is invariant with respect
to “twisted” translations. In fact, let T be a unitary implementing the translation
symmetry in the horizontal direction, specifically the direction in which we have
imposed periodic boundary conditions, chosen such that T ψ0 = ψ0. This is possible
since ψ0 is the unique ground state and the Hamiltonian is translation invariant with
respect to T , i.e., T ∗HLT = HL.

Define twisted translations by setting

Tθ,θ ′ = T Um(θ)Um+L/2(θ
′) (82)

where the column rotation, Un(θ), applies the rotation eiθS
3
x to all sites for the form

x = (n, v), for some v ∈ V ⊥
L . The unitary equivalence of the doubly twisted Hamil-

tonian Hθ,−θ to HL = H0,0 can also be expressed in terms of these column rotations

Hθ,−θ = W(θ)∗H0,0W(θ), (83)

where
W(θ) =

⊗

m<n≤m+L/2

Un(θ). (84)

With these definitions, it is easy to see that W(θ)∗TW(θ) = Tθ,−θ commutes with
Hθ,−θ , and therefore,

Tθ,−θψ0(θ,−θ) = ψ0(θ,−θ), (85)

as we claimed.
The main idea in the proof of Theorem 10 is to again use the locality properties

of the solution of Hastings’ Equation (80) to show that

Tθ,0ψα,T (θ) ∼ ψα,T (θ). (86)

Since the total spin in each V ⊥
L is half-integer, again a consequence of assuming

|V ⊥
L | is odd, the column rotation Um(2π) = −1l. Clearly then, T2π,0 = −T , and

therefore, T ψ1 ∼ −ψ1. As we have chosen T so that, T ψ0 = ψ0, this implies that
ψ1 is nearly orthogonal to ψ0.

5.2.4 Generalizations

As we previously indicated, the proof of the multi-dimensional Lieb-Schultz-Mattis
Theorem, demonstrated in [20], applies to a large variety of models. In what follows
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below, we will outline a list of assumptions which define a wide class of Hamiltoni-
ans for which the LSM Theorem remains valid.

The Basic Set-Up: It is not important for our argument that the underlying sets
have a lattice structure, in particular the sets VL need not be subsets of Z

ν . Rather,
we need only assume that there is, at least, one direction of increase, which previ-
ously we labeled the horizontal direction. We make this notion concrete by assuming
that there exists an increasing sequence of finite sets {VL}L≥1, exhausting some in-
finite set V , which are of the form VL = [1, L] × V ⊥

L . We also assume a bound on
the cardinality of the perpendicular sets of the form |V ⊥

L | ≤ cLα for some α ≥ 0,
and it is natural, but not necessary, to take α = ν − 1.

The interactions can also be of a general form. We assume that the set V is
equipped with a metric d and a function F as described in Sect. 2. To start with,
we work with interactions Φ ∈ Ba(V ) for some a > 0 so that the infinite volume
dynamics is well defined from the beginning. In contrast to (68), the more general
finite volume Hamiltonians are of the form

HL =
∑

X⊂VL

Φ(X)+ boundary terms, (87)

where we will assume periodic boundary conditions in the horizontal direction and
arbitrary boundary conditions in the other directions.

Assumption I. Our first assumption is that the interaction Φ ∈ Ba(V ) is transla-
tion invariant in the horizontal direction. This is clearly the case for the Heisenberg
anti-ferromagnet, and in general, it means that for any X ⊂ VL,

Φ(X + e1) = α1(Φ(X)), (88)

where X+ e1 is the translation of all points in X by one unit in the horizontal direc-
tion and α1(·) is the translation automorphism which maps A(n,V⊥

L ) into A(n+1,V⊥
L )

for all n ∈ Z. Here the column sets (n, V ⊥
L ) are defined by (n, V ⊥

L ) = {x ∈ VL :
x = (n, v) for some v ∈ V ⊥

L }. Due to the assumed periodicity in the horizontal di-
rection, this translation invariance can be implemented by a unitary T ∈ AVL

, i.e.
Φ(X + e1) = T ∗Φ(X)T for all X ⊂ VL. This unitary T will depend on the length
scale L, but we will suppress this in our notation.

Assumption II. We further assume that the interaction has a finite range R > 0 in
the horizontal direction. This assumption is not strictly necessary. It is clear from
the estimates in [20] that the result remains true even if the interactions are of long
range with sufficiently fast decay.

Assumption III. We assume the interaction Φ has rotation invariance about one
axis. Again, this is clearly the case for the Heisenberg model. In the more abstract
setting, we specifically assume that for each x ∈ V there is a local hermitian matrix,
which we will denote by S3

x , with eigenvalues that are either all integer or all half-
integer. These matrices are also required to be translates of one another, i.e., for any
x ∈ V , α1(S

3
x) = S3

x+e1
. Rotation invariance for a general interaction Φ means that
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for any X ⊂ VL,

U∗(θ)Φ(X)U(θ) = Φ(X) for all θ ∈ R, (89)

where the rotation U(θ) is defined by

U(θ) =
⊗

x∈VL

eiθS
3
x . (90)

Assumption IV. We assume that the matrices introduced above, i.e. S3
x , are uni-

formly bounded in the sense that there exists a positive real number S for which
supx∈V ‖S3

x‖ ≤ S. In addition, we must assume an odd parity condition on the
spins. Define the parity px of a site x ∈ V to be 0 if the eigenvalues of S3

x are all
integers and 1/2 if they are all half-integers. The odd parity assumption is that

∑

v∈V⊥
L

p(n,v) ∈ N+ 1/2, (91)

for all n ∈ Z. For the spin-1/2 Heisenberg model, we satisfied this assumption by
taking the cardinality of the perpendicular sets, |V ⊥

L |, to be odd. In general, the sum
of the spins over the perpendicular set needs to be half-integer to ensure that the
column rotations Un(θ), as defined after equation (82), satisfy Un(2π) = −1l. As
we have seen, such an identity plays a crucial role in our argument for orthogonality.

Assumption V. The ground state of HL is assumed to be non-degenerate. In this
case, it is also an eigenvector of the translation T and the rotations U(θ) introduced
above. We assume that the ground state has eigenvalue one for both T and U(θ).

Assumption VI. We assume that there are orthonormal bases of the Hilbert spaces
HVL

with respect to which S3
x and Φ(X) are real for all x ∈ V and all finite X ⊂

V . This assumption is satisfied by the Heisenberg model, and it is an important
symmetry which allows us, in general, to prove that the ground state eigenvalue is
invariant with respect to the doubly twisted Hamiltonian Hθ,−θ .

The following theorem was proven in [20].

Theorem 11. Let Φ ∈ Ba(V ) for some a > 0. If Φ satisfies assumptions I-VI
above, then the gap, γL, above the ground state energy of HL satisfies

γL ≤ C
log(L)

L
. (92)
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On Resolvent Identities in Gaussian Ensembles
at the Edge of the Spectrum

Alexander Soshnikov

Abstract We obtain the recursive identities for the joint moments of the traces of
the powers of the resolvent for Gaussian ensembles of random matrices at the soft
and hard edges of the spectrum. We also discuss the possible ways to extend these
results to the non-Gaussian case.

1 Introduction

Consider the Gaussian Orthogonal Ensemble (GOE) of real symmetric n×n random
matrices

An = 1√
n
(aij )

n
i,j=1, (1)

where {aij = aji}i≤j are independent N(0, 1 + δij ) random variables. GOE is the
archetypal example of a Wigner real symmetric random matrix where the matrix
entries {aij = aji}i≤j are assumed to be independent up from the diagonal, central-
ized, and to have the same variance (except, possibly, on the diagonal). It follows
from the classical Wigner semi-circle law [20, 21, 1] that the empirical distribution
function of the eigenvalues of An converges as n → ∞ to the limiting distrib-
ution with the probability density 1

2π

√
4 − x2 supported on the interval [−2, 2].

Celebrated work by Tracy and Widom (see [18] for the GOE case) proved that the
largest eigenvalues of An deviate from the right edge of the spectrum on the order
of n−2/3. In particular, Tracy and Widom calculated the limiting distribution of the
largest eigenvalue:
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lim
n→∞P

(
λmax ≤ 2 + xn−2/3) = F1(x) = exp

(

−1/2
∫ ∞

x

q(t)+ (t − x)q2(t)dt

)

,

(2)

where q(x) is the solution of the Painléve II differential equation q ′′(x) = xq(x)+
2q3(x) with the asymptotics at infinity q(x) ∼ Ai(x) as x → +∞. Here Ai(x)
denotes the Airy function.

To consider the joint distribution of the largest eigenvalues at the edge of the
spectrum, we rescale the eigenvalues as

λ
(n)
j = 2 + ξ

(n)
j n−2/3, j = 1, 2, . . . , n, (3)

where λ
(n)
1 ≥ λ

(n)
2 · · · ≥ λ

(n)
n are the ordered eigenvalues of An. It then follows

from the results of [14, 19] that the random point configuration {ξ (n)j , 1 ≤ j ≤ n}
converges in distribution on the cylinder sets to the random point process on the real
line with the k-point correlation functions given by

ρk(x1, . . . , xk) =
(
det(K(xi, xj ))1≤i,j≤k

)1/2
, (4)

where K(x, y) is a 2 × 2 matrix-valued kernel with the entries

K11(x, y) = KAiry(x, y)+ 1

2
Ai(x)

(

1 −
∫ +∞

y

Ai(z)dz

)

, (5)

K12(x, y) = −∂yKAiry(x, y)− 1

2
Ai(x)Ai(y), (6)

K21(x, y) = −
∫ +∞

x

KAiry(z, y)dz

+ 1

2

(∫ x

y

Ai(z)dz+
∫ +∞

x

Ai(z)dz
∫ +∞

y

Ai(z)dz

)

, (7)

K22(x, y) = K11(y, x), (8)

and the Airy kernel KAiry(x, y) is defined as

KAiry(x, y) =
∫ +∞

0
Ai(x + z)Ai(y + z)dz = Ai(x)Ai′(y)− Ai′(x)Ai(y)

x − y
. (9)

Therefore, the k-point correlation function of the limiting random point process is
given by the square root of the determinant of the 2k × 2k matrix defined in (4)
and (5). One can also rewrite the k-point correlation function in the pfaffian form
(see e.g. [9]) which shows that the limiting random point process belongs to the
family of the pfaffian random point processes (see e.g. [15]). In particular, the right-
most particle of this pfaffian random point process is given by the Tracy-Widom
distribution (2). Moreover, it was shown in [12] that the asymptotic behavior of
the largest eigenvalues is universal for Wigner real symmetric matrices with sub-
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Gaussian and symmetrically distributed entries. We refer to [10] for recent results
on wigner matrices with nonsymmetrically distributed entries.

Define
Gn(z) =

(
An − 2 − zn−2/3)−1 (10)

for complex z with non-zero imaginary part Im z $= 0. Here and throughout the
paper, we will use (An − z)−1 as the shorthand notation for the resolvent matrix
(An − zId)−1.

Let

gn,k(z) = n−2k/3 TrGk
n(z) = n−2k/3 Tr

(
An − 2 − zn−2/3)−k

=
n∑

1

(
ξ
(n)
j − z

)−k (11)

for positive integers k = 1, 2, . . . . It can be shown that for k ≥ 2, gn,k(z) is a “lo-
cal” statistic of the largest eigenvalues in the GOE. Indeed, only eigenvalues from
the O(n−2/3)-neighborhood of the right edge of the spectrum give non-vanishing
contribution to gn,k(z) in the limit n → ∞. For example, the joint contribution of
the eigenvalues from (−∞, 2 − δ] can be trivially bounded in absolute value by
n1−2k/3|δ+ zn−2/3|k = o(1) for large n uniformly in z with Re z bounded from be-
low. More delicate estimates involving the asymptotics of the one-point correlation
function, imply that the joint contribution of the eigenvalues from (−∞, 2−n−2/3+ε)

to gn,k(z) is still negligible for all ε > 0 and k > 1. Moreover, the one-point correla-
tion function ρ1(x) of the limiting pfaffian random point process defined in (3)–(9)
decays super-exponentially at +∞ and grows proportionally to |x|1/2 at −∞. Con-
sequently, if ξ = {ξj , j ∈ Z} is a random point configuration of the limiting pfaffian
random process then

E

∑

j

|ξj − z|−k =
∫ +∞

−∞
|x − z|−kρ1(x)dx < ∞ (12)

for any integer k ≥ 2. The integral at the r.h.s. of (12) diverges for k = 1 which
emphasizes the fact that gn,1(z) is not a “local statistic” as the main contribution to
gn,1(z) = n−2/3 Tr(An − 2 − zn−2/3)−1 comes from the eigenvalues in the bulk.
Moreover, it could be shown from the asymptotics of the GOE one-point correlation
function that

E
(
Tr
(
An − 2 − zn−2/3)−1) = −n+O(n2/3). (13)

Eventhough the eigenvalues from the bulk of the spectrum give the main contribu-
tion to the mathematical expectation of Tr(An−2− zn−2/3)−1, their joint contribu-
tion to the fluctuations of Tr(An − 2 − zn−2/3)−1 around its mean is much smaller
(namely, it can be shown to be of order of constant if one smoothes their contribu-
tion by a test function with the support inside [−2 + δ, 2 − δ]). On the other hand,
the largest eigenvalues of An give smaller (namely, of the order of O(n2/3)) contri-
bution to the mean of Tr(An− 2− zn−2/3)−1 but they give the main contribution to
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the fluctuations of Tr(An−2−zn−2/3)−1 around its mean. This suggests to consider

gcn,1(z) = n−2/3 (n+ TrGn(z)) = n−2/3(n+ Tr
(
An − 2 − zn−2/3)−1) (14)

which is a “local” statistic in a sense that the main contribution to gcn,1(z) comes
from the largest eigenvalues (i.e. the eigenvalues that deviate from the right edge of
the spectrum on the order of O(n−2/3)).

In Theorem 1, we obtain the recursive relations on the joint moments of the
local linear statistics gcn,1(z) and gn,k(z), k ≥ 2. Let K be a multi-index, K =
(k1, . . . , kj ), j ≥ 1, with the components kl , 1 ≤ l ≤ j , nonnegative integers. The
number of components j is not fixed. We will denote by mK the corresponding joint
moment of gcn,1(z) and gn,k(z), k ≥ 2, namely:

mK = E

⎛

⎝
(
gcn,1(z)

)k1

j∏

l=2

(gn,l(z))
kl

⎞

⎠ . (15)

Let el denote the multi-index with the l-th component equal to 1 and the other com-
ponents equal to zero.

Theorem 1. Let K be a non-zero multi-index, then the following equation holds:

mK(z+O(n−2/3))−mK+2e1(1 +O(n−2/3))−mK+e2(1 +O(n−2/3))

− 2
∑

l≥1

lklmK−el+el+2(1 +O(n−2/3)) = O(n−1/3)mK+e1 . (16)

Also, the following “boundary” condition holds:

z+O(n−2/3)−m2e1(1+O(n−2/3))−me2(1+O(n−2/3)) = O(n−1/3)me1 . (17)

Remark 2. We will always assume in (16) that klmK−el+el+2 = 0 if kl = 0. The
bounds on the error term in (16) and (17) are uniform for z from compact subsets of
{z : Im z > 0}.

Theorem 1 will be proved in the next section. Let us now consider the Gaussian
Unitary Ensemble (GUE) of Hermitian n× n random matrices.

An = 1√
n
(ajk)

n
j,k=1, (18)

where {Re ajk = Re akj }j<k and {Im ajk = −Im akj }j<k are i.i.d. N(0, 1/2) ran-
dom variables, and {aii}1≤i≤n are i.i.d. N(0, 1) random variables.

The global distribution of the eigenvalues of An still satisfies the Wigner semi-
circle law in the limit n → ∞. The limiting local distribution of the largest eigen-
values of An was calculated by Tracy and Widom in [16]. In particular,

lim
n→∞P

(
λmax ≤ 2 + xn−2/3

)
= F2(x) = exp

(

−
∫ ∞

x

(t − x)q2(t)dt

)

, (19)
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where, as before, q(x) is the solution of the Painléve II differential equation with
the same asymptotics at infinity.

Consider the same rescaling at the right edge of the spectrum as in the GOE case,
namely

λ
(n)
j = 2 + ξ

(n)
j n−2/3, j = 1, 2, . . . , (20)

where λ
(n)
1 ≥ λ

(n)
2 · · · ≥ λ

(n)
n are the ordered eigenvalues of An. It then follows from

the results of [16] that the random point configuration {ξ (n)j , 1 ≤ j ≤ n} converges
in distribution on the cylinder sets to the random point process on the real line with
the k-point correlation functions given by

ρk(x1, . . . , xk) = det
(
K(xi, xj )

)
1≤i,j≤k

(21)

where K(x, y) = KAiry(x, y) is the Airy kernel defined in (9). The limiting random
point process belongs to the class of determinantal random point processes (see
[13, 6]).

Let us use the same notations Gn(z), gn,k(z), gcn,1(z), and MK in the GUE case as
they were defined in (10), (11), (14), and (15) in the GOE case above. The following
analogue of the Theorem 1 holds:

Theorem 3. Let K be a non-zero multi-index, then the following equation holds:

mK(z+O(n−2/3))−mK+2e1(1 +O(n−2/3))

−
∑

l≥1

lklmK−el+el+2(1 +O(n−2/3)) = O(n−1/3)mK+e1 . (22)

Also, the following “boundary” condition holds:

z+O(n−2/3)−m2e1(1 +O(n−2/3)) = O(n−1/3)me1 . (23)

We now turn our attention to Wishart (a.k.a Laguerre) ensembles of random ma-
trices. Again, we start with the real case. Let A = An,N = 1√

n
(aij ) be a rectangular

n×N matrix with {aij , 1 ≤ i ≤ n, 1 ≤ j ≤ N} real i.i.d. N(0, 1) random variables.
Let us assume that N ≥ n, and N − n = ν is fixed. Consider a nonnegative-definite
random matrix

Mn,N = AAt . (24)

The ensemble of random matrices Mn,N is known as the real Wishart distribution
in the statistical literature or the Laguerre ensemble in the mathematical physics.
The empirical distribution function of the eigenvalues of Mn,N converges to the
Marchenko-Pastur law as n →∞ [8, 11]. The density of the Marchenko-Pastur law
is given by

ρMP(x) =
{

1
2π
√
x

√
4 − x if 0 ≤ x ≤ 4,

0 otherwise.
(25)

Our goal is to study the distribution of the smallest eigenvalues of Mn,N in the
limit n → ∞, N − n = ν. It can be shown (see e.g. [4, 5, 3]) that the smallest
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eigenvalue of Mn,N are of the order of n−2. Moreover, if we consider the rescaling
at the hard edge of the spectrum

λ
(n,N)
i = ξ

(n,N)
i

4n2
, 1 ≤ i ≤ n, (26)

one can show that the random point configuration {ξ (n)i , 1 ≤ i ≤ n} converges in
distribution on the cylinder sets to the pfaffian random point process on (0,+∞).
The k-point correlation functions of the limiting process are of the same form as
in (4), where K(x, y) is again a 2 × 2 matrix-valued kernel. The formulas for the
entries of K(x, y) are similar to (5) with the important difference being that the Airy
kernel KAiry(x, y) is replaced by the Bessel kernel

KBessel(x, y) = Jν(
√
x)
√
yJν+1(

√
y)− Jν(

√
y)
√
xJν+1(

√
x)

2(x − y)
, (27)

where Jν(x) is the usual Bessel function of index ν.
Define

Gn,N(t) =
(

Mn,N + t2

n2

)−1

, (28)

where t is a real number. Then

gk(t) = gn,N,k(t) = n−2k TrGk
n,N(t) = n−2k Tr

(

Mn,N + t2

n2

)−k

=
n∑

1

(
ξ
(n,N)
i + t2)−k (29)

is a “local” statistics for any positive integer k = 1, 2, 3, . . . . Indeed, one can show
that the eigenvalues from the bulk of the spectrum give vanishing contribution to
gk(t). In particular, if ξ = {ξi, i ∈ N} is a random point configuration of the
limiting pfaffian process, then

E

∑

j

(ξj + t2)−k =
∫ +∞

0

1

(x + t2)k
ρ1(x)dx < ∞. (30)

We are interested to study the joint moments of the linear statistics gk(t), k ≥ 1.
Let, as before, K = (k1, . . . , kj ), j ≥ 1, denote a multi-index, and mK stand for
the corresponding joint moment

mK = E

j∏

l=1

(gl(t))
kl . (31)

The following theorem holds.

Theorem 4. Let K be a non-zero multi-index, then the following equation holds:



On Resolvent Identities in Gaussian Ensembles at the Edge of the Spectrum 621

(

ν − t−2 + 1

n

)

mK+e1 +mK+e2 +mK+2e1 + 2
j∑

l=1

lklmK−el+el+2

− 2

t2

j∑

l=1

lklmK−el+el+1

= 1

n

1

t2
mK. (32)

Also, the following “boundary” condition holds:
(

ν − t−2 + 1

n

)

me1 +me2 +m2e1 = t−2. (33)

We recall that ν = N − n ≥ 0 is the difference between the dimensions of the
rectangular matrix An,N .

We finish the Introduction by the discussion of the complex Wishart ensemble.
Let A = An,N = 1√

n
(aij ) be a rectangular n× N matrix with {Re aij , Im aij , 1 ≤

i ≤ n, 1 ≤ j ≤ N, } i.i.d. N(0, 1/2) random variables. As before, we us assume
that N ≥ n, and N − n = ν is fixed. Consider now a nonnegative-definite random
matrix

Mn,N = AA∗. (34)

The ensemble of random matrices Mn,N is known as the complex Wishart/Laguerre
ensemble of random matrices. Consider the rescaling of the eigenvalues at the hard
edge of the spectrum

λ
(n,N)
i = ξ

(n,N)
i

4n2
, 1 ≤ i ≤ n. (35)

It follows from the results of [4, 17] that the random point configuration {ξ (n)i , i ≥ 1}
converges in distribution on the cylinder sets to the determinantal random point
process on (0,+∞) with the correlation kernel given by the Bessel kernel (27) in
the limit n →∞, N = n+ ν. For universality results, we refer to [2]. Define Gn,N ,
gk(t), k ≥ 1, and mK in the same way as in (28), (29), and (31). The following
theorem holds.

Theorem 5. Let K be a non-zero multi-index, then the following equation holds:

(

ν + 1

n

)

mK+e1 +mK+2e1 +
j∑

l=1

lklmK−el+el+2 −
1

t2

j∑

l=1

lklmK−el+el+1

= 1

n

1

t2
mK. (36)

Also, the following “boundary” condition holds:
(

ν + 1

n

)

me1 +m2e1 = t−2. (37)
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We recall that ν = N − n ≥ 0 is the difference between the dimensions of the
rectangular matrix An,N . Theorems 4 and 5 will be proved in Sect. 3.

2 Proof of Theorems 1 and 3

Let us start with the proof of Theorem 1. Our first goal is to establish (17). To this
end, we consider n1/3me1 = E(n−1/3(n + TrGn(z))), where, as before, Gn(z) =
(An − 2 − zn−2/3)−1. By using the resolvent identity

Gn(z) =
(
An − 2 − zn−2/3)−1

= −(2 + zn−2/3)−1
Id + (2 + zn−2/3)−1

An

(
An − 2 − zn−2/3)−1

= −(2 + zn−2/3)−1
Id + (2 + zn−2/3)−1

AnGn, (38)

we arrive at

n1/3me1 = n2/3 − (2+ zn−2/3)−1
n2/3 + (2+ zn−2/3)−1

n−1/3
E

∑

ij

AijGji . (39)

Here Aij = aij√
n

denote the matrix entries of An, and Gij denote the matrix entries of

Gn(z). To calculate EAijGji , we recall that random variables Aij , 1 ≤ i ≤ j ≤ n,
are independent. Therefore, we can first fix all matrix entries (up from the diagonal)
except Aij and integrate with respect to Aij . Applying the Gaussian decoupling
formula

Eηf (η) = σ 2
Ef ′(η), η ∼ N(0, σ 2), (40)

with η = Aij and f (η) = Gij , and taking into account that Var(Aij ) = 1+δij
n

, and

∂Gkl

∂Aij

=
{
−GkiGjl −GkjGil i $= j,

−GkiGjl i = j,
(41)

we arrive at

n1/3me1 = n2/3 − (2 + zn−2/3)−1
n2/3

− (2 + zn−2/3)−1
n−4/3

E

∑

ij

(GjiGji +GiiGjj ). (42)

The term n−4/3
E
∑

ij GjiGji is equal to

n−4/3
E

∑

ij

GjiGji = En−4/3 Tr
(
G2

n(z)
) = me2 . (43)

To deal with the term n−4/3
E
∑

ij GiiGjj , we rewrite it as
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n−4/3
E

∑

ij

GiiGjj = n−4/3
E
(
(TrGn(z))

2)

= n−4/3
E
(
(−n+ n+ TrGn(z))

2)

= n2/3 − 2n−1/3
E(n+ TrGn(z))+ n−4/3

E
(
(n+ TrGn(z))

2)

= n2/3 − 2n1/3me1 +m2e1 . (44)

As a result, we obtain

n1/3me1 = n2/3 − (2 + zn−2/3)−1n2/3 − (2 + zn−2/3)−1me2

− (2 + zn−2/3)−1n2/3 + 2(2 + zn−2/3)−1n1/3me1

− (2 + zn−2/3)−1m2e1 , (45)

which is equivalent to

n2/3(1 − (1 + zn−2/3/2)−1)−m2e1(2 + zn−2/3)−1 −me2(2 + zn−2/3)−1

= me1n
1/3(1 − (1 + zn−2/3/2)−1). (46)

After trivial arithmetical simplifications, this leads to (17). The formula (16) can
be proven along the same lines if one starts with n1/3mK+e1 . One can say that the
formula (17) gives us the boundary term in the recursive system of linear equations
satisfied by {mK} since it corresponds to K = 0. Turning our attention to (16), we
write

n1/3mK+e1 = n1/3
E

⎛

⎝(gcn,1(z))
k1+1

j∏

l=2

(gn,k(z))
kl

⎞

⎠

= E

[

n−1/3(n+ TrGn)
(
n−2/3(n+ TrGn)

)k1
∏

l≥2

(
n−2l/3 TrGl

)kl
]

,

(47)

we then rewrite, as before, the first term n−1/3(n+ TrGn) as

n−1/3(n+TrGn) = n2/3− (2+ zn−2/3)−1n2/3+ (2+ zn−2/3)−1n−1/3
∑

ij

AijGji .

(48)
This leads to

n1/3mK+e1 = n2/3mK − (2 + zn−2/3)−1n2/3mK

+ (2 + zn−2/3)−1n−1/3

× E

⎡

⎣
(∑

ij

AijGji

)
(
n−2/3(n+ TrGn)

)k1
∏

l≥2

(
n−2l/3 TrGl

)kl

⎤

⎦ .

(49)
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As in the case K = 0 considered above, we fix all matrix entries (up from the
diagonal) except Aij , and apply (40) with η = Aij and f (η) = Gji(n

−2/3(n +
TrGn))

k1
∏

l≥2(n
−2l/3 TrGl)kl . Taking into account (41) and the equation

∂ Tr(Gl)

∂Aij

= −2l(Gl+1)ij , (50)

one then obtains (16) after some simple algebraic calculations. Theorem 1 is proven.
The proof of Theorem 3 is quite similar. The only alteration required in the GUE

case is that one needs to replace (41) with

∂Gkl

∂Re(Aij )
=
{
−GkiGjl −GkjGil i $= j

−GkiGjl i = j,
(51)

and
∂Gkl

∂Im(Aij )
= −i(GkiGjl −GkjGil) for i $= j. (52)

The remaining calculations are very similar and are left to the reader.

3 Proof of Theorems 4 and 5

The proofs will be similar to the ones given in the previous section. Let us start with
the proof of Theorem 4. Our first goal is to establish (33). To this end, we consider
n−1me1 = E(n−3 TrGn,N(t)), where Gn,N(t) was defined in (28). By using the
resolvent identity

Gn,N =
(

Mn,N + t2

n2

)−1

= n2

t2
Id − n2

t2
AAtGn,N (53)

we arrive at

n−1me1 =
1

t2
− 1

n

1

t2
E

∑

1≤i,j≤n

∑

1≤p≤N

AipAjpGji . (54)

Here Aip = aip√
n

denote the matrix entries of An, and Gji denote the matrix entries of

Gn,N(z). To calculate EAipAjpGji , we again use the Gaussian decoupling formula
(40) and the equation

∂Gkl

∂Aip

= −Gki(A
tG)pl − (GA)kpGil. (55)

Therefore,
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n−1me1 =
1

t2
+ 1

n2

1

t2
E

∑

1≤i,j≤n

∑

1≤p≤N

Ajp

(
Gji(GA)ip +Gii(GA)jp

)

− 1

n2

1

t2
E

∑

1≤i≤n

∑

1≤p≤N

Gii

= 1

t2
+ 1

n2

1

t2
E
[
Tr(GAAtG)+ Tr(GAAt)TrG

]− N

n2

1

t2
E TrG. (56)

Using the identity GAAt = Id − t2

n2 G, the last formula can rewritten as

n−1me1 =
1

t2
+ 1

t2
me1 −me2 +

n

t2
me1 −m2e1 −

n+ ν

t2
me1 , (57)

which implies (33). The formula (32) can be proven along the same lines if one
starts with n−1mK+e1 . Let us write

n−1mK+e1 = n−1
E

⎛

⎝(g1(t))

j∏

l=1

(gl(t))
kl

⎞

⎠

= E

⎡

⎣n−3 TrGn,N)
∏

l≥1

(
n−2l TrGl

n,N

)kl
⎤

⎦ , (58)

Using the resolvent identity, we can rewrite the first term in the product as

Gn,N = n2

t2
Id − n2

t2
AAtGn,N .

After integration by parts and a few lines of careful calculations, we obtain (32).
Theorem 5 can be proven along similar lines.

4 Non-Gaussian Case

The generalization of the Gaussian decoupling formula (40) to the non-Gaussian
case can be found, for example, in [7]:

E[ξf (ξ)] =
p∑

k=0

ck+1

k! E

[
dkf

dxk
(ξ)

]

+ ε, (59)

where ξ is a real random variable such that E(|ξ |p+2) < ∞, cl , l ≥ 1, are the cumu-
lants of the random variable ξ , complex-valued function f (x) has first p + 1 con-
tinuous and bounded derivatives, and the error term satisfies the upper bound |ε| ≤
Bp+1supx | d

p+1f

dxp+1 (x)|E(|ξ |p+2) with the constant Bp+1 depending only on p + 1.
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It is conjectured that the distribution of the largest eigenvalues in Wigner ran-
dom matrices is universal provided the fourth moment of the matrix entries is finite.
Currently, we are unable to prove this conjecture. Instead, we speculate below on
the possible approach to extend the results of Theorems 1, 3–5 to the non-Gaussian
case. Let us consider a real Wigner random matrix An = 1√

n
(aij )

n
i,j=1, and assume

that the entries (aij = aji)i<j are i.i.d. centralized random variables with the unit
variance and the finite fourth moment. In addition, we assume that the diagonal
entries aii , 1 ≤ i ≤ n, are i.i.d. centralized random variables, independent from
the non-diagonal entries. We assume that the diagonal entries also have the finite
fourth moment. Let us also assume for simplicity that Var(aii) = 2. In an attempt
to extend the result of Theorem 1 to the non-Gaussian situation, we apply the gen-
eralized decoupling formula (59). To be specific, let us concentrate our attention on
the “boundary” equation (17). Looking at (39), we apply (59) to EAijGji . Since
c1(aij ) = 0, c2(aij ) = 1 + δij , c3(aij ) = c3, for i < j , and Ea4

ij ≤ ∞, one might
wish to truncate (59) after the first three terms (i.e. p = 2) to obtain

n−1/3
E

∑

ij

AijGji = −n−4/3
E

∑

ij

(
G2

ji +GiiGjj

)

+ n−11/6
E

∑

ij

(
3GijGiiGjj +G3

ij

)+ ε. (60)

The first sum in (60) is the same as in the Gaussian case. The hope is to show that
the second sum and the remainder term give negligible contributions in the limit
n → ∞. However, it is currently unclear to us how to efficiently bound the terms
n−11/6

E
∑

ij GijGiiGjj and n−11/6
E
∑

ij G
3
ij .
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Energy Current Correlations for Weakly
Anharmonic Lattices

Herbert Spohn

Abstract We discuss properties of the Boltzmann-Peierls equation for weakly an-
harmonic lattice dynamics. In particular, we explain how energy type correlations
are predicted from this transport equation. An intriguing application is the famous
Fermi-Pasta-Ulam β chain, for which we prove that the energy current correlations
in equilibrium decay for long times as t−3/5, in the kinetic approximation.

1 Introduction

A solid transports energy. Besides the mobile electrons, one important mechanism
for energy transport are the vibrations of the crystal lattice. There is no difficulty
in writing down the appropriate lattice dynamics. To extract from it the thermal
conductivity remains a fairly untractable problem. The most successful approach
exploits that even rather close to the melting temperature the typical deviations of
the crystal atoms from their equilibrium position are small as compared to the lattice
constant. This observation then leads to the phonon kinetic equation, which goes
back to the seminal paper by Peierls [9]. (For electron transport a corresponding
idea was put forward by Nordheim [6].) Phonon kinetic theory flourished in the
50ies, an excellent account of the 1960 status being the book by Ziman [17]. Of
course, transport of heat and thermal conductivity remain an important experimental
research area, in particular since novel materials become available and since more
extreme properties are in demand. On the other hand, if the very recent collection of
articles by Tritt [15] is taken to be representative, it is obvious that after 1960 hardly
any new elements have been added to the theory. The real innovation are fast and
efficient molecular dynamics algorithms. The currently available techniques allow
the simulation of 6 × 6 × 6 periodized lattices with two atoms per unit cell [5].
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According to the Green-Kubo formula the thermal conductivity is determined
through the time-integral over the energy current correlation in thermal equilibrium.
In my contribution I will explain its structure for weakly anharmonic lattices. While
I do not add anything novel in substance, I believe that, with the post 1960 insights
gained from the kinetic theory of rarified gases, the story can be presented more con-
cisely and systematically than done usually. As a bonus, the mathematical physics
issues left unresolved will become more sharply in focus.

2 Anharmonic Lattice Dynamics

Physically, one starts from a given crystal structure, which means to specify the
lattice and the number of atoms per unit cell. The interaction potential is expanded
in the displacements away from the equilibrium positions. Then the first order term
vanishes, because one expands at a stationary point. The second order term is the
harmonic approximation and higher order terms are regarded as small corrections.
It is argued that for real crystals mostly the third order term suffices unless there are
special symmetries which make it vanish and requires to go to fourth order. In this
article, the focus will be on the analysis of the linearized Boltzmann equation and
its relation to the energy current correlations. For this purpose we take the liberty
to employ a single band model for the anharmonic lattice dynamics. There is no
difficulty, in principle, to add on extra features so to make the model more realistic.

We assume a simple hypercubic lattice Z
d with a single atom per unit cell. Phys-

ically d = 3, but we keep the general dimension d because of recent interest in
chains, for which d = 1. A single band model corresponds to scalar atomic dis-
placements.

Fourier transform will be convenient. Let T
d = [− 1

2 ,
1
2 ]d be the first Brioullin

zone of the dual lattice. For f : Z
d → R its Fourier transform, f̂ , is defined by

f̂ (k) =
∑

x∈Zd

e−i2πk·xfx. (1)

Here k ∈ T
d and f̂ (k) extends periodically to a function on R

d . The inverse Fourier
transform is given by

fx =
∫

Td

dkei2πk·xf̂ (k). (2)

For x ∈ Z
d the deviation away from x is denoted by qx ∈ R. The corresponding

momentum is denoted by px ∈ R. We choose units such that the atomic mass equals
one. The harmonic approximation to the interaction potential reads

Uharm(q) = 1

2

∑

x,y∈Zd

α(x − y)qxqy. (3)
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The elastic constants α(x) satisfy

α(x) = α(−x), |α(x)| ≤ γ0e
−γ1|x| (4)

for suitable constants γ0, γ1 > 0. Mechanical stability requires

α̂(k) ≥ 0. (5)

In addition, because of the invariance of the interaction between crystals atoms un-
der the translation qx � qx + a, one imposes

∑

x∈Zd

α(x) = 0, i.e. α̂(0) = 0. (6)

For an optical band, because of the internal structure of the unit cell, the condition
(6) is not satisfied, which in the framework of our model can be interpreted as adding
to the physical harmonic interaction satisfying (6) a harmonic on-site potential of
the form

Usite(q) = 1

2
ω2

0

∑

x∈Zd

q2
x . (7)

The harmonic lattice dynamics is governed by the Hamiltonian

Hha = 1

2

∑

x∈Zd

(p2
x + ω2

0q
2
x )+

1

2

∑

x,y∈Zd

α(x − y)qxqy (8)

and has plane wave solutions with dispersion relation

ω(k) = (ω2
0 + α̂(k))1/2. (9)

Clearly, ω(k) = ω(−k) and ω(k) ≥ ω0 ≥ 0. We concatenate qx and px into a
single complex-valued field a(k) as

a(k) = 1√
2

(√
ω(k)̂q(k)+ i

1√
ω(k)

p̂(k)

)

(10)

with the inverse

q̂(k) = 1√
2

1√
ω(k)

(
a(k)+ a(−k)∗

)
,

p̂(k) = i√
2

√
ω(k)

(−a(k)+ a(−k)∗
)
.

(11)

The a-field evolves as
∂

∂t
a(k, t) = −iω(k)a(k, t). (12)

In nature lattice vibrations are quantized. In our model this is easily implemented
by promoting a(k)∗ and a(k) to creation and annihilation operators of a scalar Bose
field. a(k)∗ is the operator adjoint to a(k) and the a(k)’s satisfy the canonical com-
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mutation relations

[a(k), a(k′)∗] = δ(k − k′), [a(k), a(k′)] = 0. (13)

The Heisenberg evolution for the a-field is still governed by (12).
Continuing the expansion scheme we add to H0 the next order terms. The sim-

plest one would be a cubic on-site potential as

V3 = 1

3

∑

x∈Zd

q3
x , (14)

which in terms of the a-field reads

V3 = 1

3

∫

T3d
dk1dk2dk3δ(k1 + k2 + k3)

3∏

j=1

(2ω(kj ))
−1/2(a(kj )+ a(−kj )

∗). (15)

Correspondingly, at fourth order,

V4 = 1

4

∑

x∈Zd

q4
x (16)

which in terms of the a-field becomes

V4 = 1

4

∫

T4d
dk1dk2dk3dk4δ(k1 + k2 + k3 + k4)

×
4∏

j=1

(2ω(kj ))
−1/2(a(kj )+ a(−kj )

∗). (17)

Hha+λV3 is not bounded from below. This can be remedied by adding λ2V4, for
example, which would then not contribute on the kinetic scale.

If the potential depends only on the displacement differences, then the lowest
order nonlinearity is

V3di = 1

3

∑

x,y∈Zd

α3(x − y)(qx − qy)
3 (18)

with α3(−x) = −α3(x) and |α3| exponentially bounded. Switching to the a-field
V3di becomes

V3di = 1

3

∫

T4d
dk1dk2dk3δ(k1 + k2 + k3)

×
∑

x∈Zd

α3(x)

3∏

j=1

(2ω(kj ))
−1/2(ei2πkj ·x − 1)

(
a(kj )+ a(−kj )

∗). (19)
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In the kinetic limit the square of the vertex function determines the collision rate.
Thus, from the collision rate

3∏

j=1

(2ω(kj ))
−1 (20)

for the on-site V3 the collision rate for V3di is obtained by the replacement

3∏

j=1

(2ω(kj ))
−1
∣
∣
∣
∣
∑

x∈Zd

α3(x)

3∏

j=1

(ei2πkj ·x − 1)

∣
∣
∣
∣

2

. (21)

Because of such a simple substitution rule we continue to work with V3. The corre-
sponding rule also applies to the switch from V4 to V4di.

From other areas of mathematical physics one is accustomed to have a given
starting Hamiltonian. In our context this means to specify the elastic constants α(x),
α3(x), α4(x). For real crystals their determination requires a lot of experimental
(and also theoretical) efforts, as discussed in [15], see also [16, 8, 7] for a modeling
of aluminium and silicon. It would be thus of importance to have a stability result
available, which ensures that certain qualitative properties do not depend so much
on the specific choice of elastic constants.

3 Energy Current Correlations

Let us consider the Hamiltonian

H = Hha + λV3 + λ2V4. (22)

The total energy current correlation function is computed in thermal equilibrium
at inverse temperature β. It is denoted by Cλ(t) and will be defined below. Since
λ � 1, the plan is to compute Cλ(t) in the limit of λ → 0. The phonons then hardly
interact and Cλ(t) decays slowly on the time scale λ−2. Thus one expects that the
limit

lim
λ→0

Cλ(λ
−2t) = Ckin(t) (23)

exists and is determined by the phonon Boltzmann equation linearized at equilib-
rium.

Let us first find the local energy current. Since H is not local, there is some
arbitrariness involved in defining the local energy. One conventional choice for the
energy at site x is to set

Hx = 1

2
p2
x +

1

2
ω2

0q
2
x +

1

2

∑

y∈Zd

α(x − y)qxqy + 1

3
λq3

x +
1

4
λ2q4

x . (24)
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In the Heisenberg picture Hx becomes time-dependent. Writing dHx(t)/dt as a
divergence, the energy current can be identified with

Jx = 1

4

∑

y∈Zd

yα(y)(−qxpx+y + qx+ypx) (25)

which happens to be independent of λ. To verify (25), one chooses a large box Λ

with faces ∂Λ. The energy inside Λ is

HΛ(t) =
∑

x∈Λ
Hx(t) (26)

and it satisfies
d

dt
HΛ(t) = −

∑

x∈Λ
nx · Jx(t)+ O(∂Λ), (27)

where nx is the outward normal to Λ at x ∈ ∂Λ. The errors come from the corners
of Λ and from the possibly infinite range of α.

With this input the total energy current correlation is defined by

 · Cλ(t) =
∑

x∈Zd

〈( · J0(t))( · Jx(0))〉β, (28)

where  ∈ R
d , Jx ∈ R

d , “ · ” is the scalar product in R
d , and Cλ(t) is a d×d matrix.

〈·〉β refers to the thermal average with respect to Z−1e−βH . By time-stationary and
time-reversal, Cλ(t) is symmetric and it suffices to consider its numerical range. At
the expense of an error of order λ, we may replace in e−βH the full Hamiltonian H

by the harmonic approximation

Hha =
∫

Td

dkω(k)a(k)∗a(k). (29)

For the total current one finds

J =
∑

x∈Zd

Jx = 1

2π

∫

Td

dk(∇ω(k))ω(k)a(k)∗a(k), (30)

where it is used that ∇α̂ = 2ω(∇ω). Since [Hha, J ] = 0,
∑

x∈Zd  · Jx can be lifted
to the exponent. Thus we define the new average 〈·〉β,τ with respect to the state
Z−1 exp[−βHha + τ · J ]. Then

 · Cλ(t) = lim
τ→0

1

τ
〈 · J0(t)〉β,τ + O(λ). (31)

The anharmonicity now resides only in the dynamics.
The limit λ → 0 on the right hand side in (31) is discussed in [13]. The initial

state is spatially homogeneous and determines the Wigner function Wβ,τ (k) through
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〈a(k′)∗a(k)〉β,τ = δ(k − k′)Wβ,τ (k) (32)

with
Wβ,τ (k) =

(
exp
[
βω(k)− τ( · ∇ω(k))ω(k)

]− 1
)−1

. (33)

On the kinetic time scale, λ−2t , the Wigner function Wβ,τ evolves to Wτ(t) which
is determined as the solution of the spatially homogeneous Boltzmann equation. For
our model, i.e. for the anharmonic on-site potential V3, it reads

∂

∂t
W(t) = C (W(t)) (34)

with the collision operator

C (W)1 = π

2

∫

T2d
dk2dk3(ω1ω2ω3)

−1

× {2δ(ω1 + ω2 − ω3)δ(k1 + k2 − k3)(W̃1W̃2W3 −W1W2W̃3)

+ δ(ω1 − ω2 − ω3)δ(k1 − k2 − k3)(W̃1W2W3 −W1W̃2W̃3)}. (35)

Here we use the shorthands Wj = W(kj ), ωj = ω(kj ), j = 1, 2, 3, and W̃ (k) =
1 +W(k). Using (30), the average in (31) becomes then

〈 · J0(λ
−2t)〉β,τ = 1

2π

∫

Td

dk( · ∇ω(k))ω(k)Wτ (k, t)+ O(λ). (36)

The next task is to take the limit τ → 0 in (31). One has Wβ,0(k) = (eβω(k) − 1)−1

which is a stationary solution of (34). Thus the limit τ → 0 amounts to linearize
(35) at the equilibrium Wigner function

Wβ(k) = (eβω(k) − 1)−1, (37)

to say
Wβ,τ = Wβ + τWβW̃β( · ∇ω)ω +O(τ 2). (38)

Note that
∫
dk(∇ω)ωWβ = 0. As suggested by (38), with a significance which

will become more convincing in the context of the Gaussian fluctuation theory, see
Sect. 5, the natural linearization of C is

C (Wβ + δWβW̃βf ) = −δLf + O(δ2). (39)

From (35) one deduces

(Lf )1 = π

2

∫

T2d
dk2dk3(ω1ω2ω3)

−1

× (2δ(ω1 + ω2 − ω3)δ(k1 + k2 − k3)W̃β1W̃β2Wβ3(f1 + f2 − f3)

+ δ(ω1 − ω2 − ω3)δ(k1 − k2 − k3)W̃β1Wβ2Wβ3(f1 − f2 − f3)).

(40)
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Properties of L will be discussed in the subsequent section.
Let A be the linear operator obtained from flat linearization as

C (Wβ + δf ) = δAf +O(δ2). (41)

Clearly A(WβW̃βf ) = −Lf . Combining (31) and (36) we finally conclude

lim
λ→0

 · Cλ(λ
−2t) =  · Ckin(t) (42)

with

 · Ckin(t) = 〈(2π)−1( · ∇ω)ω, e−A|t |WβW̃β(2π)
−1( · ∇ω)ω〉, (43)

where 〈·, ·〉 is the inner product in L2(Td , dk).
For future use it will be convenient to write Ckin(t) in a more symmetric form.

Expanding the exponential one notes that

 · Ckin(t) =
〈
(2π)−1( · ∇ω)ω(WβW̃β)

1/2,

exp
[−(WβW̃β)

−(1/2)L(WβW̃β)
−(1/2)|t |]

× (WβW̃β)
1/2(2π)−1( · ∇ω)ω

〉
. (44)

As will be shown, L = L∗, i.e. L is a symmetric operator in L2(Td , dk). Therefore
Ckin(t) is a positive symmetric d × d matrix.

In the kinetic limit the thermal conductivity is given through

 κkin ·  = β2
∫ ∞

0
dt · Ckin(t) 

= (2π)−2β2〈( · ∇ω)ωWβW̃β, L
−1( · ∇ω)ωWβW̃β〉. (45)

Reversing our argument, and assuming uniformity in t for the limit λ → 0, one
infers that the true thermal conductivity, κ(λ), of the anharmonic model behaves as

κ(λ) ∼= λ−2κkin (46)

for small λ.
In the classical limit [a(k), a(k′)∗] = 0, i.e., W = W̃ . In the definition of L one

has thus to replace

Wβ, W̃β by W cl
β (k) = 1

βω(k)
. (47)

We presented the argument for a cubic on-site potential. But, clearly, the result
holds also for other small anharmonicities. Only the collision operator, and its lin-
earization L, would have to be modified.
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4 The Linearized Collision Operator

If one accepts the argument leading to (42), the remaining task is to study the spec-
tral properties of the linearized collision operator, from which the time decay of
Ckin(t) can be inferred. While this looks like a conventional mathematical physics
problem, the difficulty comes from the energy-momentum constraint. Only in a few
special cases there is an explicit solution. Otherwise one has to work with the im-
plicit definition. In fact, there can be no solution at all, in which case L = 0, or
several solutions, in which case one has to sum over all collision branches.

(i) quadratic form. For three phonon processes, on-site potential V3, the quadratic
form of the linearized collision operator L = L3 is given by

〈g,L3f 〉 = π

2

∫

T3d
dk1dk2dk3(ω1ω2ω3)

−1δ(ω1 + ω2 − ω3)δ(k1 + k2 − k3)

×Wβ1Wβ2W̃β3(g1 + g2 − g3)(f1 + f2 − f3). (48)

Correspondingly for the on-site potential V4 one has

〈g,L4f 〉 = 3π

4
· 3

4

∫
dk1dk2dk3dk4(ω1ω2ω3ω4)

−1

× δ(ω1 + ω2 − ω3 − ω4)δ(k1 + k2 − k3 − k4)

×Wβ1Wβ2W̃β3W̃β4(g1 + g2 − g3 − g4)(f1 + f2 − f3 − f4)

+ 3π

4

∫
dk1dk2dk3dk4(ω1ω2ω3ω4)

−1δ(ω1 + ω2 + ω3 − ω4)

× δ(k1 + k2 + k3 − k4)Wβ1Wβ2Wβ3W̃β4(g1 + g2 + g3 − g4)

× (f1 + f2 + f3 − f4)

= 〈f,L4pf 〉 + 〈f,L4tf 〉. (49)

L4p corresponds to the collision of a pair of phonons and L4t to a merger of three
phonons into a single one, and its time reversal. The quadratic forms for L3, L4p, L4t
(for notational simplicity from now on commonly denoted by L) are somewhat for-
mal. Firstly, if ω(0) = 0 and ω(k) > 0 otherwise, the smooth functions g, f have
to vanish at k = 0. More seriously, the proper definition of the δ-function requires
to study more carefully the solutions to the energy constraint

ω(k1)+ ω(k2) = ω(k1 + k2), (50)

say in the case of L3. For the purpose of our exposition, let us simply assume
that the quadratic form defines L as a self-adjoint operator. Clearly, L ≥ 0 since
〈f,Lf 〉 ≥ 0. As ( · ∇ω)ω is bounded, one has

 · Ckin(t) ≤ (2π)−2〈( · ∇ω)ω, ( · ∇ω)ω〉. (51)
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(ii) zero subspace. To establish that limt→∞ Ckin(t) = 0, ( · ∇ω)ω has to be or-
thogonal to the zero subspace of L. There seems to be no cheap argument and one
has to study the solutions to

Lf = 0. (52)

From (48), (49) it follows that f has to be a collisional invariant, see [13, 14] for
the definition. Considering only the first summand of (49), there is a general ar-
gument [14], that the solutions to 〈f,L4pf 〉 = 0 are spanned by 1, ω. Note that
〈1, ( · ∇ω)ω〉 = 0, 〈ω, ( · ∇ω)ω〉 = 0. The constant function results from phonon
number conservation in a pair collision. This conservation law will be destroyed by
adding a little bit of either three-phonon, L3, or the second term of the four-phonon
processes, L4t. The zero subspace is then one-dimensional and spanned by ω only.
For L3 of (48), the classification of the collisional invariants is an open problem.

(iii) spectral gap. If L has a spectral gap, the energy current correlation decays
exponentially. If in addition ( · ∇ω)ω is orthogonal to the zero subspace of L,
then the conductivity, as the time-integral over Ckin(t), is finite (and non-zero). In
particular (46) holds.

L is a sum of a multiplication operator and an integral operator,

L = V + I, Vf (k) = V (k)f (k), If (k) =
∫

Td

dk′I (k, k′)f (k′), (53)

where, say in the case of L3,

V (k) = π

2
Wβ(k)ω(k)−1

∫

Td

dk1
(
ω(k1)ω(k + k1)

)−1

× (2δ(ω(k)+ ω(k1)− ω(k + k1))Wβ(k1)W̃β(k + k1)

+ δ(ω(k)− ω(k1)− ω(k + k1))W̃β(k1)W̃β(k + k1)
)
. (54)

The integral kernel I (k, k′) is implicitly defined. It has no definite sign and tends to
be divergent on lower-dimensional submanifolds of T

d × T
d . It would be useful to

know under what conditions the integral operator I is compact.
In the very common relaxation time approximation, I is simply dropped and one

sets in approximation

 · Ckin(t) = (2π)−2〈( · ∇ω)ω, e−|t |/τWβW̃β( · ∇ω)ω〉 (55)

with the relaxation time

τ(k) = Wβ(k)W̃β(k)V (k)−1, (56)

see (44).
(iv) FPU chains. The Fermi-Pasta-Ulam chain is the special case d = 1 with

nearest neighbor coupling and no quantization. For a harmonic on-site potential the
dispersion relation is ω(k) = (ω2

0 + 1 − cos(2πk))1/2, k ∈ T. Although d = 1, the
conservation laws of energy and momentum allow for non-degenerate pair collision



Energy Current Correlations for Weakly Anharmonic Lattices 639

and L4p $= 0, while L4t = 0 [10, 1, 4]. There are fairly explicit formuli for the po-
tential V and the integral kernel I [3]. For ω0 > 0 and a quartic on-site potential V4,
the linearized collision operator has a gap and the zero subspace is two-dimensional.
The gap seems to close as ω0 → 0. On the basis of numerical simulations, the con-
ductivity should be finite even for ω0 = 0 [1]. The FPU-β chain has the nonlinearity
Vdi4. V and I has been computed by Pereverzev [10]. He uses the relaxation time
approximation and finds that Ckin(t) ∼= t−3/5 for large t . Using a resolvent expan-
sion, in [4] we prove corresponding sharp bounds and thereby confirm the relaxation
time approximation in this particular case. For a finite chain of length N with ther-
mal reservoirs at both ends, the energy transport is then anomalous and the thermal
conductivity diverges as N2/5, which seems to be in agreement with molecular dy-
namics. For a more detailed discussion we refer to [2], Sect. 6.

5 Gaussian Fluctuation Theory

Energy transport can be viewed in the more general context of time-dependent
Gaussian fluctuation theory close to thermal equilibrium. For low density gases this
link is reviewed in [11] with further examples discussed in [12]. The purpose of
this section is to explain how phonon kinetic theory makes no exception. In [11,
12] spatial variation is included. Since our exposition deals only with the spatially
homogeneous system, we stick to such a set-up also for the fluctuation theory.

Physically, one considers time-dependent fluctuations in equilibrium for the num-
ber of phonons with wave number k. Technically one has to sum over phonons
in a small volume element in k-space. To be more precise we partition the tours
T = [−1/2, 1/2] by a grid with spacing ε and denote it by Tε. (Tε)

d corresponds
to the crystal volume [1, . . . , l]d ⊂ Z

d with periodic boundary conditions, l = 1/ε.
Let f : T

d → R be a smooth test function. Then the fluctuation field, indexed by f

and t , is defined through

ξε(f, t) = εd/2
∑

k∈(Tε)d

f (k)
(
aε(k, t)∗aε(k, t)− 〈aε(k)∗aε(k)〉β

)
. (57)

aε(k, t) depends on ε through the finite crystal volume ε−d , through setting λ2 = ε,
and through the rescaled time ε−1t in microscopic units. The claim is that, in distri-
bution, the limit

lim
ε→0

ξε(f, t) = ξt (f ) (58)

exists and that the limit random field ξt (f ) is classical. In fact, the limit field should
be jointly Gaussian and governed by the linear Langevin equation

∂

∂t
ξt (k) = Aξt (k)+ Bηt (k), (59)
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where ξt (f ) = ∫
Td dkf (k)ξt (k). A is the generator from the linearized Boltzmann

equation, compare with (41), and ηt is normalized Gaussian white noise with

E(ηt (k)ηt ′(k
′)) = δ(t − t ′)δ(k − k′). (60)

The linear operator B controls the strength and correlations for the noise input to
the various k-modes.

The main observation of the fluctuation theory is the relationship between A and
B through the equal-time equilibrium fluctuations. We set, as a linear operator,

〈g, Cf 〉 = lim
ε→0

〈ξε(g, 0)ξε(f, 0)〉β. (61)

Using that

〈a∗(k1)a(k2)a
∗(k3)a(k4)〉β − 〈a∗(k1)a(k2)〉β〈a(k3)

∗a(k4)〉β
δ(k1 − k4)δ(k2 − k3)Wβ(k1)W̃β(k2),

(62)

one obtains

〈g, Cf 〉 =
∫

Td

dkg(k)Wβ(k)W̃β(k)f (k), (63)

in other words C is the operator of multiplication by WβW̃β . The fluctuation-dissi-
pation relation takes then the form

AC + CA∗ = −BB∗. (64)

Since AC = L = L∗ = CA∗, one concludes that the noise strength is

BB∗ = 2L. (65)

A posteriori this identity explains also the at first sight unexpected linearization
in (39). Only then the linearized operator is symmetric, as is obvious from (65).

Solving (59), the covariance of the stationary fluctuation field is given by

〈ξt (g)ξ0(f )〉 = 〈g, eA|t |Cf 〉, (66)

in agreement with the special case f = g = (2π)−1( · ∇ω)ω of interest in Sect. 4.
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Metastates, Translation Ergodicity,
and Simplicity of Thermodynamic States
in Disordered Systems: an Illustration

Charles M.Newman and Daniel L. Stein

Abstract In the context of short-range Edwards-Anderson spin glasses, we propose
an approach to obtaining rigorous results based on combining the use of metastates,
translation-ergodicity and the dependence of certain quantities on small changes of
one or more couplings (or fields). This seems especially suited to showing that the
structure of thermodynamic states cannot be too complex. As an illustration, we use
this approach to prove that thermodynamic states appearing in (e.g.) the periodic
boundary condition metastate cannot decompose into a number of pure state pairs
strictly between one and infinity.

1 Introduction

The statistical mechanics, equilibrium and nonequilibrium, of systems with quench-
ed disorder, of which spin glasses are a prototype, present a rich array of open prob-
lems. As demonstrated in previous work of the authors [14–32], some of the central
questions for short-range systems are amenable to rigorous analysis. However, it re-
mains uncertain whether spin glasses possess nontrivial equilibrium properties and
their study presents numerous mathematical challenges, some of which we address
here.

Most theoretical investigations take as a starting point the Edwards-Anderson
(EA) Ising Hamiltonian [6]:
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H = −
∑

<x,y>

Jxyσxσy − h
∑

x

σx, (1)

where x is a site in Zd , σx = ±1 is the spin at site x, the spin couplings Jxy
are independent, identically distributed random variables, h is an external magnetic
field, and the first sum is over nearest neighbor pairs of sites only. We will choose
h = 0 and the Jxy to be taken from the standard normal distribution N (0, 1);
consequently, (1) has global spin inversion symmetry.

A pure phase α of an EA spin glass (at a sufficiently low temperature T in a
sufficiently high dimension d) should then be characterized by a vanishing magne-
tization per spin

〈M〉α = lim
L→∞

1

|ΛL|
∑

x∈ΛL

〈σx〉α (2)

accompanied by a nonvanishing “EA order parameter,”

qEA = lim
L→∞

1

|ΛL|
∑

x∈ΛL

〈σx〉2α, (3)

where ΛL is a cube of side length L and volume |ΛL| centered at the origin, and
〈·〉α denotes a thermal average in the pure state α. It is generally assumed that qEA,
which depends on d and T , is independent of α.

2 The Sherrington-Kirkpatrick Model and the Parisi Replica
Symmetry Breaking Solution

The Sherrington-Kirkpatrick (SK) model [35] is an infinite-range version of the EA
model in which mean field theory is presumably exact. For a system of N spins in
zero field the SK Hamiltonian is

HN = −(1/
√
N)

∑

1≤i<j≤N

Jijσiσj , (4)

where the couplings Jij are again i.i.d. N (0, 1) r.v.’s. This model has a sharp phase
transition at Tc = 1 [35] (see also [7, 39]).

The low-temperature phase has an unusual thermodynamic structure, worked out
by Parisi and collaborators in a series of papers [33, 34, 10, 11]. Following the
procedures underlying the analysis, it came to be known as replica symmetry break-
ing (RSB). The main features of this structure include an infinity of pure thermody-
namic states [34] with the features of non-self-averaging and ultrametricity of spin
overlap functions [10, 11]. For details see [3, 4, 12, 36, 5]. A number of features
(though not all) of the Parisi solution for the SK model have been rigorously ver-
ified; see, for example [2, 7, 37–39]. Many workers in the field now believe that
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the essential physical features of the low-temperature phase of the SK model are
understood.

3 Open Problems

For the more realistic EA model, the nature of the low-temperature phase, or even
the existence of such a phase, remains open, even from a nonrigorous physics stand-
point. Some of the basic open questions are:

Does the EA Ising model really have an equilibrium phase transition above some
lower critical dimension dc?

If the answer to the above question is yes, is the spin-flip symmetry broken in the
low-temperature phase (i.e., is qEA > 0)?

If the answer to both of the above questions is yes, what is the number of equi-
librium pure state pairs for 0 < T < Tc(d) and ground state pairs (at T = 0)?

If there exist infinitely many equilibrium pure states in some dimensions and
at some temperatures, are they organized according to the mean-field RSB picture
(i.e., nontrivial mixtures of pure states with non-self-averaging and ultrametricity of
overlaps)?

We have argued [18, 19, 28, 29] that the proper mathematical tool to address
these last two questions (which we hereafter focus on) is the metastate.

4 Metastates

Consider an EA spin glass with fixed coupling realization, hereafter denoted J . If
there exist many pure states, a sequence of volumes ΛL with boundary conditions
chosen independently of the couplings will generally not converge to a limiting ther-
modynamic state, in the sense that correlations 〈σi1 · · · σin〉L, computed in ΛL from
the finite-volume Gibbs state (with, e.g., periodic boundary conditions), will not
have a single limit as L → ∞ but rather many different limits along different sub-
sequences of L’s (necessarily chosen in a J -dependent manner). We have called
this phenomenon chaotic size dependence [14]. Such behavior in L is analogous
to chaotic behavior in time t along the orbit of a dynamical system: the behavior
of any particular orbit is deterministic but effectively unpredictable, appearing to
be a random sample from some distribution κ on the state space of the dynamical
system. Nevertheless, one can in principle reconstruct κ by keeping a record of the
proportion of time the particle spends in each coarse-grained region of state space.
Similarly, one can prove [18, 19] that for inhomogeneous (disordered) systems like
spin glasses, a similar distribution exists: roughly speaking, the fraction of ΛL’s in
which a given thermodynamic state Γ appears converges. The state Γ can be either
pure or mixed, depending on the boundary conditions.
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Mathematically, a metastate κ is a probability measure on the space of all (fixed
J ) thermodynamic states. Of course, the metastate depends on the boundary condi-
tions used: we will refer to the metastate constructed from a deterministic sequence
of volumes, all with periodic boundary conditions, as the “periodic b.c. metastate”,
and similarly for the antiperiodic b.c. metastate, the free b.c. metastate, and so on.
One can also construct metastates in which the b.c.’s vary with L.

A simplified empirical construction of κ would be as follows: consider a “micro-
canonical” ensemble κL, in which each of the finite volume Gibbs states ρ(1), . . . ,

ρ(L) in volumes Λ1, . . . , ΛL has weight L−1. Then κ = limL→∞ κL. The meaning
of the limit is that for every well-behaved function g(·) on states,

lim
L→∞L−1

L∑

 =1

g(ρ( )) = {g(Γ )}κ , (5)

where the bracket {.}κ denotes the average over the metastate κ .
There is an alternative (and earlier) construction due to Aizenman and Wehr [1],

where one replaces the microcanonical ensemble κL by the ensemble of states ob-
tained by varying the couplings outside ΛL. Here, for every well-behaved function
F of finitely many couplings and finitely many correlations,

lim
L→∞[F(J , ρ(L))]av =

[{F(J , Γ )}κ(J )

]
av

, (6)

where [.]av denotes the average over the quenched coupling distribution. It has not
been proved that these relatively simple limits, using all  ’s and L’s, exist, but it can
be proved [19] that there exist deterministic (i.e., J -independent) subsequences of
 ’s and L’s for which limits such as in both (5) and (6) exist and yield the same
κ(J ). (In some cases these subsequences may need to be sparse; see, e.g., [8, 9].)

5 Invariance and Ergodicity

The metastate is a central tool we will use to analyze whether the type of ordering
present in the RSB solution of the SK model can hold in more realistic short-ranged
models. We will combine it with some basic invariance and ergodicity properties
of functions on the disorder random variables to draw rigorous conclusions about
some of these functions that are of physical and mathematical interest.

Our results basically apply to any disorder distribution ν(J ) in which the cou-
plings are independent, identically distributed random variables (although parts of
the arguments are most easily carried out when each coupling has a continuous dis-
tribution as in the Gaussian case). At some fixed dimension d and temperature T ,
consider a function F (d, T ,J ) on Zd that is translation-invariant on the couplings
in at least one coordinate. For example, F (d, T ,J ) might denote the number of
pure states, or the spin overlap function [12] or the sum of the squares of the pure
state weights (if there are a countable number of pure states) averaged over the
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metastate. Then it can be proved that F (d, T ,J ) is constant in J almost surely;
i.e., it is the same for a.e. J , at fixed T and d . Of course, F (d, T ,J ) can have
some dependence on both d and T . It also can depend on ν, although that depen-
dence is not explicitly indicated. But once all of these are determined, it cannot
depend on any realization J of the couplings (outside of a set of measure zero). In
the language of spin glass theory, F is a self-averaged quantity.

The proof of such a statement lies in a straightforward use of the ergodic the-
orem [13], and depends on three ingredients: measurability of F as a function of
J , translation-invariance of F with respect to a uniform shift of the xy indices
of the couplings, and translation-ergodicity of the underlying disorder distribution
ν. By the ergodic theorem, any (measurable) translation-invariant function of J
chosen from a translation-ergodic distribution is constant almost surely (that is, is
the same for a.e. realization of J ). Now the couplings Jxy are independent, iden-
tically distributed random variables. The distribution for such random variables is
translation-ergodic [40], and so ν(J ) is translation-ergodic. So, because F is a
translation-invariant function of J , which is drawn from the translation-ergodic
distribution ν(J ), it follows that F is the same for a.e. J (at fixed T and d).
We note that although this line of reasoning might be regarded as trivial from a
probability or ergodic theory perspective, it seems to lead to physically nontrivial
consequences.

This reasoning can be used to rule out the “standard” RSB picture [16, 29], in
which an infinite-volume thermodynamic mixed state is constructed, its overlaps
taken, and the resulting distribution on the overlaps shown to be self-averaging.
However, the metastate allows one to construct alternative scenarios, and one of
these—the “nonstandard” RSB picture, although different from the usual version of
the mean-field scenario, represents the maximal allowable low-temperature struc-
ture that still retains some features of the Parisi solution. Its properties are described
in [18, 19, 29]. A further property of the metastate, that of invariance with respect
to gauge-related boundary conditions [21], renders the nonstandard RSB picture
highly implausible. But a complete proof ruling it out remains to be found. In the
next section we add one more ingredient—manipulation of couplings (and/or fields)
that we hope might lead to further progress both in resolving not only this question,
but also others, such as numbers of pure states.

6 A Strategy for Rigorous Studies of Spin Glasses

The previous discussion points towards a strategy for obtaining rigorous results on
spin glasses and other systems with quenched disorder. Given a suitable Hamil-
tonian, such as (1), the first step is to construct an appropriate metastate. Because
translation-invariance and ergodicity are crucial ingredients, it is often easiest to
use a manifestly translation-covariant construction, such as the periodic boundary
condition metastate. (However, with a little more work, many other boundary con-
ditions, such as free or fixed, can be used [26].) The next step is to choose some
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translation-invariant function F on the couplings (and/or fields, if present), as de-
scribed in Sect. 5. The final step is to manipulate finitely many couplings (or fields)
by a finite amount (so that the resulting set of realizations remains of nonzero mea-
sure) in such a way as to change F (unless the metastate has a simple enough
structure), leading to a contradiction. Such a strategy (or more accurately, a variant
of it), was employed in studying ground state incongruence in 2D EA models [25,
26].

As an illustration, we will show how this procedure can be used to prove a mod-
erately interesting result (valid in any finite dimension) restricting the nature of a
putative low-temperature spin glass phase. Consider the periodic boundary condi-
tion metastate of the Hamiltonian (1) in zero field, and suppose further that this
metastate is supported on many thermodynamic states Γ , with each Γ comprising
a countable decomposition into pure states:

Γ (σ) =
∑

α

Wαρα(σ ), (7)

where Wα = Wα(Γ ) is the weight of pure state ρα(σ ) in Γ . We will show how
to prove that for every Γ (more precisely, for a.e. Γ in the metastate), the above
decomposition consists of either a single pair or infinitely many. The theorem does
not rule out the possibility that some Γ ’s in the metastate comprise a single pure
state pair while others consist of infinitely many.

We note that a similar but somewhat different result was proved in [31] using
other methods—namely, that if the periodic b.c. metastate is supported on Γ ’s with
some having nontrivial decompositions into multiple pure state pairs, then the entire
metastate is supported on an uncountable infinity of pure states. This latter result
does not address the distribution of pure states within the different Γ ’s that together
constitute the support of the metastate.

We will make an assumption that is not needed but which simplifies and shortens
the proof; namely, that if EL0 is the edge set in ΛL0 , then the spatially averaged
quantity eEA = limL0→∞ |EL0 |−1∑〈xy〉∈EL0

〈σxσy〉2α is independent of α. (Note
that this is just a two-spin generalization of the analogous one-spin formula (3),
where the assumption of independence with respect to α is standard.)

We now sketch the proof of the claim made above. Suppose that a nonzero frac-
tion of Γ ’s in the metastate (i.e., a set of Γ ’s with strictly positive metastate mea-
sure) are decomposable according to (7) into a finite number (greater than one) of
pure state pairs. Consider a function F (Γ ) on the states Γ (or equivalently, on the
correlation functions that characterize Γ ). The average of F over the entire metas-
tate is

F (J ) =
∫

dκJ (Γ )F (Γ ). (8)

If F (J ) is a (measurable) translation-invariant function of the coupling realiza-
tion J , then by the (spatial) ergodic theorem it must be the same for almost every J ,
as discussed above.
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One F (Γ ) leading to such an F is the quantity (for ease of notation, dependence
on J is hereafter dropped)

F (n)(Γ ) = 1

n

∑

α

Wn
α , (9)

where n > 0 need not be an integer and the index α will refer to a globally flip-
related pure state pair with Wα denoting the sum of the weights of the two states in
the pair. Thus 0 ≤ Wα ≤ 1 for every α in Γ and

∑
α Wα = 1 for every Γ .

We will now suppose that every Γ consists of only finitely many pure state pairs
with an upper bound on the number of pairs as Γ varies over the metastate and with
a nonzero fraction having more than a single pair. These assumptions can be sub-
stantially weakened, as we explain later, by a slight modification of the arguments.
For some fixed J , we choose an arbitrary bond 〈xy〉 and change its coupling value
by a finite amount: Jxy → J ′xy = Jxy + ΔJxy . In any Γ , every pure state pair α

transforms [1] (see also [19–21, 28, 29]) to a new pure state pair (also denoted α),
with corresponding weight transformation

Wα → W ′
α = rαWα/

∑

γ

rγWγ (10)

where
rα =

〈
exp(βΔJxyσxσy)

〉

α
. (11)

For notational simplicity we will absorb the inverse temperature β into ΔJxy from
here on. Now consider the derivative of F (n)(Γ ) with respect to ΔJxy , evaluated at
ΔJxy = 0. A straightforward calculation gives

∂F (n)(Γ )

∂(ΔJxy)

∣
∣
∣
ΔJxy=0

=
∑

α

Wn
α

(
〈σxσy〉α − 〈σxσy〉Γ

)
, (12)

where 〈σxσy〉Γ =∑α Wα〈σxσy〉α . The second derivative is

∂2F (n)(Γ )

∂(ΔJxy)2

∣
∣
∣
ΔJxy=0

=
∑

α

Wn
α

[
n
(
〈σxσy〉α − 〈σxσy〉Γ

)2

+ 〈σxσy〉2Γ − 〈σxσy〉2α
]
. (13)

The ‘average’ edge overlap in Γ is

eΓ = lim
L0→∞ |EL0 |−1

∑

〈xy〉∈EL0

〈σxσy〉2Γ

= lim
L0→∞ |EL0 |−1

∑

〈xy〉∈EL0

∑

αβ

WαWβ〈σxσy〉α〈σxσy〉β. (14)
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By assumption, eEA (defined earlier) is independent of α; it is also nonzero since
T < ∞. Then by a Cauchy-Schwarz inequality, eΓ ≤ eEA with the equality holding
if and only if Γ consists of a single pure state pair.

We now use the assumption that a nonzero fraction of Γ ’s have a nontrivial pure
state pair decomposition, and therefore have eΓ < eEA. It is then easy to see that
the spatially averaged second derivative of F (n) approaches a strictly negative limit
as n → 0. This means that it must have taken a negative value before the limit was
reached—i.e., for some small n > 0. We have therefore shown that for sufficiently
small n > 0 the value of the spatially averaged second derivative of the integrand
in (8) with F (Γ ) given by (9) is strictly negative if a nonzero fraction of Γ ’s have
finitely many (but more than one) pure state pairs. This in turn implies that there
would be a nontrivial dependence on J of a translation-invariant quantity, leading
to a contradiction with ergodicity.

One might wonder why the above result can’t be extended to rule out Γ ’s whose
decompositions have an infinite number of pure states. However, when n → 0, the
second derivative of F (n)(Γ ) given by (13) is guaranteed to remain finite for every
Γ only if all Γ ’s have a decomposition into a finite number of pure state pairs.
By extension, the site-averaged second derivative of F (n) is guaranteed to remain
finite, and more significantly to be negative for some small n > 0. One might then
ask about ruling out situations where Γ ’s can have an infinite set of pure states by
considering a quantity such as F (n)(Γ ), but with the sum in (9) restricted to a finite
number of pure state pairs (e.g., the ten pairs in each Γ with largest weight), and
then using similar arguments as above. The problem with that approach, which we
have not yet overcome, is that as one varies the individual couplings, the “identity”
of the ten maximal weight states can change discontinuously so (10)–(11) do not
apply. This leads to the need to analyze the “internal boundaries” in the support of
the metastate where there is more than one pure state tied for the tenth largest weight
and to understand the nature of their contribution to some modified version of (13).

As stated, our proof doesn’t rule out the possibility that one could have a situa-
tion where Γ ’s with a decomposition into a finite number of pure state pairs might
coexist with Γ ’s with a decomposition into an infinite number of pure state pairs
(because then F (n) isn’t guaranteed to be finite). However, this is easily handled by
redefining F (n)(Γ ) to equal 0 for Γ ’s with an infinite set of pure states; otherwise,
it remains as defined in (9). The argument then goes through as before. Similarly,
this type of modification allows one to remove the assumption that the number of
pure state pairs in Γ is bounded as Γ varies over the metastate.

The only remaining issue is the assumption that an extended “bond” version of
the EA order parameter was assumed to be independent of α. With more work, this
assumption can be dropped, but we do not present the argument here.
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7 Summary

In this note, we first reviewed some of the open questions concerning the structure of
thermodynamic states at low temperature in disordered finite-dimensional systems
such as the Edwards-Anderson spin glass. We then discussed the use of metastates
and translation-ergodicity with respect to changes of the basic disorder variables,
such as the couplings or fields. To illustrate the potential use of this approach to
rigorously prove that the thermodynamic state structure cannot be too complicated
(in arbitrary dimensions and temperatures), we showed how to prove by these meth-
ods that the thermodynamic states appearing in the metastate cannot have nontrivial
decompositions into finitely many pure states.
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Random Matrices, Non-intersecting Random
Walks, and Some Aspects of Universality

Toufic M. Suidan

Abstract The connection between various probabilistic and combinatorial mod-
els on the one hand and random matrices on the other hand is often understood
through non-intersecting random walk descriptions of the quantities of interest.
Two prominent distributions which appear in the fluctuation theory of both ran-
dom matrices and models such as last passage percolation, longest increasing sub-
sequence of random permutations, random tilings of the ABC-hexagon, and various
non-intersecting walk ensembles are the GUE Tracy-Widom and sine kernel dis-
tributions. In this paper, we describe several of these models and related questions
pertaining to the universality of these distributions.

1 Introduction

The last decade has seen an abundance of research activity at the interface of ran-
dom matrix theory (RMT), combinatorics, number theory, probability, stochastic
processes, statistics, and applied mathematics (see, for example [7, 37, 55, 20, 41]
and the references within). In this paper we select a number of probabilistic and
combinatorial models, connected to random matrices, whose analysis can be ap-
proached by first associating a non-intersecting random walk ensemble to the model
and then analyzing this ensemble as the number of walkers grows. In particular,
we will discuss the longest increasing subsequence of a random permutation, last
passage percolation, random tiling of the ABC-hexagon, and collections of non-
intersecting Brownian motions.

These models are exactly solvable in certain regimes. However, several of the
models can be formulated in greater generality leading to questions of universality
analogous to those of the central limit theorem of classical probability theory. Al-
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though there are many seminal results in the context of Orthogonal and Symplectic
ensembles (see for example [54, 3, 4, 2, 24]), we will focus exclusively on models
in the “universality class” of the Gaussian Unitary ensemble.

1.1 Selected Basic Facts from Random Matrix Theory

The most prominent ensemble of N × N random matrices is the Gaussian Unitary
Ensembe, GUE(N), which consists of the N ×N Hermitian matrices equipped with
the probability measure P

(N)(dH) = 1
ZN

e−T r(H 2)dH where ZN is a normaliz-
ing constant. Denote the eigenvalues of H by λ1(H) ≥ · · · ≥ λN(H). Define the
kernels

A(x, y) = Ai(x)Ai′(y)− Ai′(x)Ai(y)

x − y
S(x, y) = sin(π(x − y))

π(x − y)
, (1)

where Ai(x) is the classical Airy function. Two probability distribution functions
of particular significance are expressed in terms of the following Fredholm determi-
nants:

FTW(ξ) = det(1 − A)L2(ξ,∞) FSine(η) = det(1 − S)L2[−η,η]. (2)

The Tracy-Widom distribution, FTW , is the limiting distribution of the correctly
scaled largest eigenvalue of a GUE random matrix as the size of the matrix grows
[53, 55]:

lim
N→∞P

(N)
(
N

1
6 (λ1(H)−√

2N) ≤ x
) = FTW(x). (3)

FSine is the limiting distribution for the gap probability of the eigenvalues ‘in the
bulk’ of the spectrum:

lim
N→∞P

(N)

(

λi(H) /∈
[ −x√

2N
,

x√
2N

]

for all i

)

= FSine(x). (4)

1.2 The Karlin-McGregor Formula

The Karlin-McGregor formula [36] and related arguments are useful when calculat-
ing probabilities connected to non-intersecting Markov processes. Loosely speak-
ing, this formula applies to one dimensional Markov processes whose ordering can-
not change unless two paths have a moment of incidence. For example, the Karlin-
McGregor formula applies to non-intersecting one dimensional diffusions. It also
applies to non-intersecting simple symmetric random walks whose initial positions
are on the lattice 2Z. However, it does not apply to simple symmetric random walks
whose initial positions are at general locations on Z as this ensemble of walkers
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can exchange ordering without having to be incident at some moment of time prior
to the exchange. In this paper, we discuss a variety of situations in which Karlin-
McGregor type arguments play a prominent role.

We state the Karlin-McGregor formula without proof. However, we stress that
the arguments used to prove this formula apply to more general situations than
those of the theorem and are often referred to as Lindström-Gessel-Viennot type
arguments [28, 39, 51].

Theorem 1 (Karlin-McGregor). Let X
(1)
t , . . . , X

(N)
t be independent identically

distributed one-dimensional stochastic processes supported on a filtered probability
space, (Ω,F ,Ft ,P), such that each X(i) is a strong Markov process with respect
to the filtration. Assume that X(1)

0 < · · · < X
(N)
0 . Suppose that X(j)

t ≥ X
(i)
t for some

t > 0 and i < j implies that there is a time τ ≤ t such that X(i)
τ = X

(j)
τ . Then, for

any collection of disjoint Borel subsets A1, . . . , AN ⊂ R such that x ∈ Ai , y ∈ Aj

and i > j imply x < y,

P(X
(1)
T ∈ A1, . . . , X

(N)
T ∈ AN ;X(1)

t < · · · < X
(N)
t for all t ∈ [0, T ])

= det
(
PT (X

(i)
0 , Aj )

)N
i,j=1 (5)

where Pt(x,A) is the time t transition probability for the X(i) processes to move
from x to A.

2 The Models

In this section we describe a selection of combinatorial and probabilistic models
whose fluctuations are related to random matrix theory and whose analysis can be
approached by considering non-intersecting random walk ensembles.

2.1 Longest Increasing Subsequence of a Random Permutation

The longest increasing subsequence problem can be formulated in the following
manner. Denote by Sn the symmetric group on n symbols endowed with uniform
measure. Given π ∈ Sn, a subsequence π(i1), . . . , π(ir ) is called an increasing
subsequence if i1 < · · · < ir and π(i1) < · · · < π(ir ). Denote by  n(π) the
length of the longest increasing subsequence of π (this subsequence need not be
unique). For applications of  n and problems related to the asymptotic behavior of
 n see [1, 7, 21], for example. In particular, Baik, Deift, and Johansson [7] proved
the following remarkable limit theorem:

lim
n→∞P

(
 n(π)− 2

√
n

n1/6
< x

)

= FTW(x). (6)
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A closely related object is the uniform measure on the set of pairs of standard Young
tableaux having the same shape (equivalently, the so-called Plancherel measure on
the set of partitions). Given a partition of n, λ = (λ1, . . . , λr ), where λ1 ≥ · · · ≥
λr > 0 and λ1 + · · · + λr = n, a standard Young tableaux of shape λ consists of
r rows of boxes with distinct entries from {1, . . . , n} such that the rows are left-
justified, the ith row has λi boxes, and the entries are constrained to increase along
rows and columns from left to right and top to bottom, respectively. These objects
will be called row increasing Young tableaux if the rows increase but the columns do
not necessarily increase. The Robinson-Schensted bijection implies that the number
of boxes in the top row of the pair of standard Young tableaux corresponding to
π ∈ Sn is equal to  n(π) [50]. Therefore, the distribution of  n is same as the
distribution of the number of boxes in the top row of the pair of standard Young
tableaux having the same shape chosen uniformly. This correspondence provides a
representation of  n which is computable in terms of explicit formulae if the number
of standard Young tableaux of a given shape is computable.

One way (among many) to compute the number of standard Young tableaux of
shape λ is by employing a non-intersecting continuous time random walk argument
[35]. Let N1

t , . . . , N
r
t be independent rate 1 Poisson processes with initial conditions

Ni
0 = 1 − i for i = 1, 2, . . . , r . Define Aλ to be the event that Ni

1 = λi + (1 − i)

for all i = 1, 2, . . . , r . For almost every element of Aλ (the elements of Aλ where
no two jumps of these processes occurs at the same time) there is a natural map
to a row increasing Young tableaux. The map is defined as follows: If Ni jumps
first then place a 1 in the leftmost box in row i; if Nj jumps second then place a
2 in the first box of row j if j $= i and a 2 in the second box of row i if j = i;
continue in this fashion to produce a row increasing Young tableaux of shape λ. It
is not hard to show that this map induces the uniform probability measure (when
properly normalized by P(Aλ)) on the row increasing Young tableaux. The subset
Bλ ⊂ Aλ which is mapped to the standard Young tableaux of shape λ corresponds to
the realizations whose paths do not intersect each other for all t ∈ [0, 1]. Since the
mapping described induces uniform measure on the row increasing Young tableaux
of shape λ and the standard Young tableaux correspond to non-intersecting path
realizations, Bλ, the number of standard Young tableaux of shape λ can be computed
by evaluating:

|row increasing Young tableaux of shape λ|P(Bλ)

P(Aλ)
. (7)

The denominator of (7) is e−r
∏r

i=1
1
λi ! by definition of Poisson processes and

the independence of the Ni while |row increasing Young tableaux of shape λ| =
n!

λ1!···λr ! by elementary combinatorics. On the other hand, via the Karlin-McGregor
formula [36],

P(Bλ) = det

(
e−1

(λi − i + j)!
)r

i,j=1
. (8)

Hence, the number of standard Young tableaux of shape λ is n! det( 1
(λi−i+j)! )

r
i,j=1.



Random Matrices, Non-Intersecting Random Walks 657

In tandem with the RSK correspondence this formula leads to an algebraic for-
mula for the number of π ∈ Sn for which  n(π) ≤ m. Moreover, a slight extension
of this argument shows that the result (6) can be stated in terms of the top curve
of the nonintersecting Poisson processes if these processes were forced to return to
their initial locations at time 2 by imposing that their dynamics between times 1 and
2 have negative rather than positive jumps. The asymptotic behavior of other curves
can also be studied [8, 44, 18, 32, 9]. Essentially, one can analyze the asymptotic
behavior of  n by studying the fluctuations of the top path of a non-intersecting ran-
dom walk ensemble. For related non-intersecting Poisson random walk ensembles,
see for example [11, 38].

2.2 ABC-Hexagon

Kurt Johansson [34] discovered that random matrix theory is intimately related to
several random tiling models. His analysis relied heavily on non-intersecting ran-
dom walk technology applied to random tilings of both the Aztec diamond and the
ABC-hexagon. We discuss the ABC-hexagon as the analysis fits more easily into
the theory of non-intersecting Markov processes while the analysis of the Aztec di-
amond is more intimately connected to a graph theoretic presentation of the Karlin-
McGregor formula.

Consider n symmetric simple random walks S(m) = (S(1)(m), . . . , S(n)(m)),
conditioned both not to intersect and to satisfy S(0) = (2(n−1), 2(n−2), . . . , 0) =
S(2k). Any realization of such walks is in one-to-one correspondence to a rhombus
tiling of a hexagon with sides of lengths k, k, n, k, k, n as Fig. 1 illustrates. Using
the theorem of Karlin and McGregor, the distribution of S(k) can be expressed in
terms of a determinant. This determinant was significantly simplified and was shown
to be related to the so-called Hahn orthogonal polynomials by Johansson [34]. In a
tour de force, Baik, Kriecherbauer, McLaughlin, and Miller [10, 12] analyzed the
asymptotic behavior of the Hahn polynomials and showed that as n, k →∞ in such
a way that k = O(n), the distribution of the top walker’s position, S(1)(k), converges
to FTW and the gap distribution in the ‘bulk’ converges to a discrete version of FSine.
A similar asymptotic result was obtained by Johansson [34] for random domino
tilings of the Aztec diamond. Okounkov and Reshetikhin also considered a model
closely related to the ABC-hexagon, see [45].

2.3 Last Passage Percolation

Consider the N × N lattice and a family of associated independent identically dis-
tributed random variables {Xj

i }∞i,j=1. An up/right path π from the site (1, 1) to

the site (N, k) is a collection of sites {(ik, jk)}N+k−1
k=1 satisfying (i1, j1) = (1, 1),

(iN+k−1, jN+k−1) = (N, k), and (ik+1, jk+1) − (ik, jk) ∈ {(1, 0), (0, 1)}. Let
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Fig. 1 Lozenge Tiling of the ABC-hexagon

(1, 1) ↗ (N, k) denote the set of such up/right paths. The directed last passage time
to (N, k) ∈ N× N, denoted by L(N, k), is defined by

L(N, k) = max
π∈(1,1)↗(N,k)

∑

(i,j)∈π
X

j
i . (9)

If Xj
i is interpreted as the time to pass the site (i, j), L(N, k) represents the maximal

time to travel from the site (1, 1) to (N, k) along an admissible path. It is interesting
to note that the directed last passage percolation time can be viewed as a departure
time in queuing theory (see e.g. [29]). In addition, directed last passage percolation
is related to the flux of particles at a given site in the totally asymmetric simple
exclusion process (see e.g. [48]).

Kurt Johansson [31] discovered that if the {Xj
i }∞i,j=1 are independent identically

distributed geometric random variables with parameter q then the probability distri-
bution for the correctly normalized fluctuations of the last passage time, L(N, k), is
given by the Tracy-Widom distribution, FTW . The precise statement of this remark-
able fact is: For any ρ ∈ (0, 1],

lim
N→∞P

(
L(N, 3ρN4)− c1(ρ, q)N

c2(ρ, q)N
1
3

≤ s

)

= FTW(s), (10)

where c1 and c2 are explicit constants depending only on ρ and q. By a limiting
argument, Johansson was also able to prove this result in the case of exponential
random variables [31].
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In order to understand the connection between non-intersecting paths and last
passage percolation, we briefly introduce a construction due to Neil O’Connell and
Marc Yor [43, 42]. Let D0([0,∞),R) be the Skorohod space of real valued right
continuous functions with left hand limits subject to f (0) = 0 and topologized with
respect to the Skorohod metric. For f, g ∈ D0([0,∞),R), define

f ⊗ g(t) = inf
0≤s≤t

[
f (s)+ g(t)− g(s)

]
, (11)

f 2 g(t) = sup
0≤s≤t

[
f (s)+ g(t)− g(s)

]
. (12)

In the present context, the order of operations is from left to right. Define a sequence
of mappings Γk : D0([0,∞),R)k → D0([0,∞),R)k by

Γ2(f, g) = (f ⊗ g, g 2 f ), (13)

and for k > 2,

Γk(f1, . . . , fk) =
(
f1 ⊗ f2 ⊗ f3 ⊗ · · · ⊗ fk,

Γk−1(f2 2 f1, f3 2 (f1 ⊗ f2), . . . ,

fk 2 (f1 ⊗ · · · ⊗ fk−1))
)
. (14)

O’Connell and Yor proved that if B1, . . . , Bk are independent standard one-dimens-
ional Brownian motions, Γk(B1, . . . , Bk) is a Markov process with respect to its
own filtration and has the same distribution on path space, D0([0,∞),R)k , as k

one-dimensional Brownian motions starting from the origin and conditioned (in the
sense of Doob) never to collide. It is well known that this process can be interpreted
as the k-dimensional GUE Dyson eigenvalue process. The first coordinate of Γk is
the smallest eigenvalue, the second coordinate of Γk is the second smallest eigen-
value, and so on.

Fixing k, letting N tend to ∞, and employing Brownian scaling, it is not hard
to see that last passage problem is intimately related to the non-intersecting path
description of O’Connell and Yor. In particular, by considering the last passage
problem with the random variables {Y j

i } where Y
j
i = −X

j
i , we see that the first

coordinate of the Γ process is the last passage time. Under Brownian scaling, the
Γ process converges to the GUE Dyson Brownian motion [43]. So, the last passage
time for k fixed and N → ∞ is given by the top eigenvalue of the k-dimensional
Dyson Brownian motion, thus showing that the fluctuations of the last passage time
are exactly the same as those of the top eigenvalue of the Gaussian Unitary En-
semble of k × k random matrices. Formally taking the limit as k → ∞ explains,
in a heuristic fashion, the appearance of FTW in the last passage percolation prob-
lem. For another point of view on the last passage problem (which does not use
non-intersecting paths), see [30, 13].

The universality conjecture in this context is a natural and unsolved problem. In
particular, does the same fluctuation theorem hold for random variables other than
geometric and exponential? We discuss further aspects of this question in Sect. 3.1.
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2.4 Non-intersecting Brownian Motion

In this section we describe an example, due to Kurt Johansson [34], which con-
nects non-intersecting Markov processes to random matrix theory in a finite n set-
ting, i.e. no limit is involved. This example is also appealing from a probabilistic
point of view in the same sense as Donsker’s theorem for classical random walks:
Non-intersecting path conditions provide a natural testing ground for central limit
theorems with random matrix limiting distributions since one could imagine that
non-intersecting Brownian motions are a natural limit of non-intersecting random
walks.

Let Bt = (B
(1)
t , . . . , B

(n)
t ) be an n-dimensional standard Brownian motion. We

compute the density function of B1 conditioned on the event that B(1)
t > B

(2)
t >

· · · > B
(n)
t for 0 < t < 2 and B0 = B2 = (0, . . . , 0). Let pt(x, y) = 1√

2πt
e−

(x−y)2

2t .
The Karlin-McGregor formula [36] shows that the time t the density function of n
one-dimensional non-intersecting Brownian motions with initial positions (x1, . . . ,

xn), x1 > · · · > xn, is given by

ft (b1, . . . , bn) = det(pt (xi, bj ))
n
i,j=1, b1 > · · · > bn. (15)

Hence, the density function of B1 for b1 > · · · > bn is equal to

f (b1, . . . , bn) = lim
x,y→0

det(p1(xi, bj ))
n
i,j=1 · det(p1(bi, yj ))

n
i,j=1

det(p2(xi, yj ))
n
i,j=1

= 2n(n−1)/2

πn/2
∏n−1

j=1 j !
∏

1≤i<j≤n

|bi − bj |2
n∏

j−1

e
−b2

j . (16)

Equation (16) is precisely the eigenvalues density of an n × n random Hermitian
matrix which has been chosen from the GUE. Well-known results of random matrix
theory [53, 55] imply

lim
n→∞P

(
(B

(1)
1 −√

2n)
√

2n1/6 ≤ x
) = FTW(x). (17)

In other words, the fluctuations of the top Brownian path are exactly described by
the fluctuations of the top eigenvalue of a GUE random matrix, not only in the
n →∞ limit but also at finite n. In Sect. 3.2 we discuss a non-intersecting random
walk version of this model and issues related to universality with respect to the
increments of the random walks. For other interesting non-intersecting Brownian
motion processes, see for example [56, 16].
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3 Universality

The notion of universality has played an important role in both mathematics and
physics. For example, one of the basic theorems in classical probability theory is
the central limit theorem which states that, when centered and scaled correctly, the
distribution of a sum of independent identically distributed random variables with
finite second moment converges to the Gaussian distribution. Universality has also
played a prominent role in the development of many statistical mechanical models.
Random matrix theory is no exception, see for example [22].

Before describing universality results in the context of last passage percolation
and non-intersecting random walks we briefly mention two types of universality
results in the context of random matrix theory. The first class of results pertain to
universality of the Tracy-Widom and sine kernel distributions in the context of en-
sembles of random matrices whose distribution is invariant under unitary conjuga-
tion while the second pertains to universality of the Tracy-Widom and sine kernel
distributions for the fluctuations of the top eigenvalue and the eigenvalue spacings
of Wigner matrices.

Unitary Invariant Ensembles: Rather than considering the case of the GUE one can
consider a random matrix ensemble equipped with the measure e−T rV (H)dH on
Hermitian matrices where V is a function which tends to∞ at both±∞ and satisfies
one of a variety of technical conditions. In this case, the goal is to prove universality
of the fluctuations of the top eigenvalue and gap probabilities in the bulk. Obtaining
such universality results, even when dealing with explicit correlation functions/gap
probabilities, is not trivial and requires new non-classical methods, see [25–27, 46,
15, 23, 40]. However, under the correct scaling and centering, the top eigenvalue
does indeed display Tracy-Widom fluctuations and the fluctuations in the bulk are
described by the sine kernel, thus providing a variety of important cases in which
universality of the Tracy-Widom and sine kernel distribution can be proven.

Wigner Matrices: Wigner matrices also display universality of the Tracy-Widom dis-
tribution for the fluctuations of the top eigenvalue [49]. In particular, Soshnikov [49]
proved that the fluctuations of the properly scaled and centered top eigenvalue are
given by the GUE Tracy-Widom law for any ensemble of Hermitian matrices with
independent identically distributed entries subject to the Hermitian condition and
several technical assumptions. S. Péché and A. Soshnikov [47] have recently made
further progress in this direction. Johansson proved a universality result in the bulk
for a special class of Wigner matrices [33]. G. BenArous and S. Péché [14] proved
an analogous result in the case of sample covariance matrices. However, the general
universality conjecture in the bulk, if true, remains an important open problem.

In the next two subsections we describe results which hint at universality of the
Tracy-Widom and sine kernel distributions in the case of last passage percolation
and non-intersecting walks.
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3.1 Last Passage Percolation

The fluctuations of the last passage percolation time in the case of general ran-
dom variables is interesting from the probabilistic point of view and pertains to the
question of universality of the Tracy-Widom distribution in a non-exactly solvable
setting, i.e. there are no known algebraically tractable formulae which describe the
distribution of the last passage time for finite size rectangles.

However, universality can be proven if the lengths of the sides of the rectangles
do not grow linearly with respect to each other. In particular, Jinho Baik and the
author [5] and independently Thierry Bodineau and James Martin [17] proved that
universality holds in thin rectangles. One version of the main result of these investi-
gations follows.

Theorem 2 ([17], see also [5] when p = 4). Suppose that {Xj
i }∞i,j=1 is a family of

independent identically distributed random variables such that EX
j
i = μ, E|Xj

i |2−
μ2 = σ 2, and E|Xj

i |p < ∞ for some p > 2. For any x ∈ R,

lim
N,k→∞P

(
L(N, k)− μ(N + k − 1)− 2σ

√
Nk

σk−1/6N
1
2

≤ x

)

= FTW(x), (18)

where k = o(Nα) and α < 6
7 (

1
2 − 1

p
).

This states that the Tracy-Widom distribution is indeed universal, at least in some
scaling regimes, in the case of last passage percolation. The proof of this result uses
strong approximation techniques which couple random walks to Brownian motion.
For the case E|Xj

i |3 < ∞ the present author [52] proved the above result using
a different technique which relies on the ideas of S. Chatterjee [19] in the spirit
of Lindeberg’s proof of the central limit theorem. It is interesting that, in the case
p = 3, both techniques break down at the scaling α = 1

7 .
These techniques do not effectively lead to analysis of the regime in which k and

N grow linearly with respect to each other. This scaling is the most interesting and
presents a challenge.

3.2 Non-intersecting Random Walks

As already noted, many models which give rise to random matrix fluctuations can
be formulated in terms of non-intersecting random walks. With this in mind, Jinho
Baik and the author [6] considered ensembles of non-intersecting random walks
with general increments with the hope of understanding the robustness of the Tracy-
Widom and sine kernel distributions in the context of general non-intersecting ran-
dom walks. This section describes the results of that investigation.

Let k be a positive integer. Let
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xi = 2i − k

k
, i ∈ {0, . . . , k}. (19)

Note that xi ∈ [−1, 1] for all i. Let {Y j
l }k,Nk

j=0,l=1 be a family of independent iden-
tically distributed random variables where Nk is a positive integer. Assume that

EY
j
l = 0 and Var(Y j

l ) = 1. Further assume that there is λ0 > 0 such that E(eλY
j
l ) <

∞ for all |λ| < λ0.
Define the random walk process S(t) = (S0(t), . . . , Sk(t)) by

Sj (t) = xj+
√

2

Nk

(3 tNk
2 4∑

i=1

Y
j
i +
(
tNk

2
−
⌊
tNk

2

⌋)

Y
j

3 tNk
2 4+1

)

, for t ∈ [0, 2]. (20)

For Nk equally spaced times, Sj is given by

Sj

(
2

Nk

l

)

= xj +
√

2

Nk

(Y
j

1 + · · · + Y
j
l ), l = 1, 2, . . . , Nk. (21)

For t between 2
Nk

l and 2
Nk

(l + 1), Sj (t) is simply defined by linear interpolation.

Let (C([0, 2];Rk+1),C ) be the family of measurable spaces constructed from
the continuous functions on [0, 2] taking values in R

k+1 equipped with their Borel
sigma algebras (generated by the sup norm). Let Ak,Bk ∈ C be the events defined
by

Ak = {y0(t) < · · · < yk(t) for t ∈ [0, 2]}, (22)

Bk = {yi(2) ∈ [xi − hk, xi + hk] for i ∈ {0, . . . , k}} (23)

where hk > 0. The results described below concerns the S(t) process conditioned
on the event Ak ∩ Bk where hk � 2

k
. In other words, the particles never intersect

and all particles essentially return to their original location at the final time t = 2.
Under technical conditions on hk and Nk , as k →∞, the limiting fluctuations of

the locations of the particles at time t = 1, after suitable scaling, are given by the
Tracy-Widom and sine kernel distributions at the edge and in the bulk, respectively.
The conditions for hk and Nk are that {hk}k>0 is a sequence of positive numbers and
{Nk}k>0 is a sequence of positive integers satisfying

hk ≤ (2k)−2k2
and Nk ≥ h

−4(k+2)
k . (24)

Let Ck,Dk ∈ C be defined by

Ck =
{

yk(1) ≤
√

2k + ξ√
2k1/6

}

, (25)

Dk =
{

yi(1) /∈
[

− πη√
2k

,
πη√

2k

]

for all i ∈ {0, . . . , k}
}

, (26)
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where ξ and η > 0 are fixed real numbers. The event Ck is a constraint on the
location of the right-most particle, and Dk is the event that no particle is in a small
neighborhood of the origin at time 1.

Theorem 3. Let P
(k) be the probability measure induced on (C([0, 2];Rk+1),C )

by the random walks {S(t) : t ∈ [0, 2]}. Let {hk}k>0 and {Nk}k>0 satisfy (24). Then

lim
k→∞P

(k)(Ck|Ak ∩ Bk) = FTW(ξ). (27)

A similar theorem holds for the bulk.

Theorem 4. Let P
(k) be the probability measure induced on (C([0, 2];Rk+1),C )

by the random walks {S(t) : t ∈ [0, 2]}, and let {hk}k>0 and {Nk}k>0 satisfy (24).
Then

lim
k→∞Pk(Dk|Ak ∩ Bk) = FSine(η). (28)

These results are derived from strong approximation theorems and the Deift-Zhou
steepest descent method applied to Stieljes-Wigert polynomials. It would be inter-
esting to know the full range of scalings of k,Nk for which the above theorems
hold.
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Homogenization of Periodic Differential
Operators as a Spectral Threshold Effect

Mikhail S. Birman and Tatiana A. Suslina

Abstract The present paper is devoted to the homogenization problem for a wide
class of periodic second order differential operators (DO’s) in R

d . This class in-
cludes a number of classical DO’s of mathematical physics. We propose a brief sur-
vey of the results obtained in a series of Birman and Suslina (Systems, Approxima-
tions, Singular Integral Operators and Related Topics, Oper. Theory Adv. Appl., vol.
129, pp. 71–107, 2001; Algebra Anal. 15(5):108, 2003; Algebra Anal. 17(5):69–90,
2005; Algebra Anal. 17(6):1–104, 2005; Algebra Anal. 18(6):1–130, 2006).

1 Introduction

The present paper is devoted to the homogenization problem for a wide class of peri-
odic second order differential operators (DO’s) in R

d . This class includes a number
of classical DO’s of mathematical physics. We propose a brief survey of the results
obtained in a series of papers [2, 3, 5–7]. In these papers, for the first time, conver-
gence in the small period limit (as ε → 0) for the resolvent of the operator family
to the resolvent of the homogenized operator with sharp-order error estimate in the
operator norm is established.

By L2(R
d ;Cn) we denote the L2-space of C

n-valued functions in R
d ; and by

H 1(Rd;Cn) we denote the Sobolev class of first order. Let A be a matrix ellip-
tic second order DO acting in L2(R

d ;Cn) and given by the differential expression
A(x,D), x ∈ R

d , D = −i∇. Suppose that coefficients of A(x,D) are periodic with
respect to some lattice Γ ⊂ R

d . By Ω we denote the elementary cell of the lattice

Mikhail S. Birman
Faculty of Physics, St. Petersburg State University, Ulyanovskaya, 3, St. Petersburg 198504,
Russian Federation

Tatiana A. Suslina
Faculty of Physics, St. Petersburg State University, Ulyanovskaya, 3, St. Petersburg 198504,
Russian Federation, e-mail: suslina@list.ru
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Γ ; Γ̃ is the lattice dual to Γ , and Ω̃ stands for the central Brillouin zone of Γ̃ .
(For instance, if Γ = Z

d , then Ω = (0, 1)d ; Γ̃ = (2πZ)d and Ω̃ = (−π, π)d .)
The precise definition of DO A is given in Sect. 2; see (5), (6). The operator A is
selfadjoint and non-negative, the bottom of its spectrum is the point λ = 0.

Along with A, we consider the family of operators Aε given by the expression
A(x/ε,D) with rapidly oscillating (as ε → 0) coefficients. Our goal is to describe
the behavior of the resolvent (Aε + I )−1 as ε → 0. In [2, 3, 5–7], new results
in the homogenization theory are obtained. Namely, we find approximation for the
resolvent (Aε + I )−1 in the operator norm in L2(R

d ;Cn) in terms of the resolvent
of the effective operator with sharp-order remainder estimate (by Cε). Besides, we
obtain more accurate approximation for the resolvent in the L2(R

d;Cn)-operator
norm with the error term of order ε2 and also approximation for the resolvent in
the operator norm from L2(R

d;Cn) to H 1(Rd ;Cn) with error of order ε. In such
approximations, besides the principal term, we have to take into account terms of
order ε (the so called corrector). Herewith, it turns out that the form of the corrector
depends on the type of operator norm in approximation.

The method of investigation is described in Sect. 6. Now we only give some
comments on the simplest Theorem 1. Periodicity of the operator Â of the form (6)
allows us to apply the Floquet-Bloch decomposition (see relation (32)). Next, let Tε
be the (unitary) scale transformation: (Tεu)(x) = εd/2u(εx). Then

(Âε + I )−1 = ε2T ∗
ε (Â + ε2I )−1Tε. (1)

The identity (1) shows that, in essential, the problem is reduced to the study of the re-
solvent (Â+ε2I )−1. Therefore, it turns out that the homogenization effect is closely
related to the behavior of the resolvent of Â near the bottom of its spectrum λ = 0.
That is why the homogenization procedure can be treated as a spectral threshold
effect. We prove that the resolvent (Â+ ε2I )−1 can be approximated in terms of the
resolvent of the effective operator Â0 with constant coefficients (see (39)). Since Tε
is unitary operator, (1) and (39) imply the main estimate (11).

It must be mentioned that the Floquet-Bloch decomposition was employed for the
study of homogenization problems before (see, e. g., [10, 18, 9], where the scalar el-
liptic operator − div g(x)∇ was considered). However, the question about estimates
of the form (11) has not been even asked. Some weaker types of convergence were
studied; then relations of the form (1) are useless, since the behavior of Tε as ε → 0
is non-controlled.

2 Periodic DO’s. The Effective Matrix

We distinguish a wide class of second order matrix periodic DO’s acting in
L2(R

d;Cn). Let m ≥ n, and let X : L2(R
d ;Cn) → L2(R

d ;Cm) be a homoge-
neous first order DO of the form X = h(x)b(D)f (x). Here an (m × m)-matrix-
valued function h(x) and an (n × n)-matrix-valued function f (x) are Γ -periodic
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and bounded together with the inverse matrices:

h, h−1 ∈ L∞; f, f−1 ∈ L∞. (2)

Next, b(D) is a homogeneous first order DO with constant coefficients; its symbol
b(ξ) is an (m × n)-matrix-valued linear homogeneous function of ξ ∈ R

d . We
assume that rank b(ξ) = n, ξ $= 0. Then

α01n ≤ b(θ)∗b(θ) ≤ α11n, |θ | = 1, 0 < α0 ≤ α1 < ∞, (3)

for some constants α0, α1. (By 1n we denote the unit (n× n)-matrix.) Under condi-
tions (2) and (3), the operator X is closed on the domain Dom X =
{u ∈ L2(R

d;Cn) : f u ∈ H 1(Rd ;Cn)}.
Our main object is the selfadjoint operator A = X ∗X in L2(R

d;Cn). The oper-
ator A is generated by the closed quadratic form

a[u,u] =
∫

Rd

|h(x)b(D)f (x)u|2 dx, u ∈ Dom X .

Conditions (2) and (3) imply that

c0

∫

Rd

|D(f u)|2 dx ≤ a[u,u] ≤ c1

∫

Rd

|D(f u)|2 dx, u ∈ Dom X ,

c0 = α0‖h−1‖−2
L∞ , c1 = α1‖h‖2

L∞ . (4)

Formally, A corresponds to the differential expression

A = A(g, f ) = f (x)∗b(D)∗g(x)b(D)f (x), g(x) := h(x)∗h(x). (5)

In the case where f = 1n, we use the notation

Â = Â(g) = b(D)∗g(x)b(D). (6)

Many operators of mathematical physics admit such factorization. The acoustics
operator and the operator of elasticity theory have the form (6). The Schrödinger
operator and the two-dimensional Pauli operator can be written in the form (5) with
f $= 1n.

By H̃ 1(Ω;Cn) we denote the subspace of functions in H 1(Ω;Cn), whose Γ -
periodic extension to R

d belongs to H 1
loc(R

d ;Cn). Let e1, . . . , em be the standard
orthonormal basis in C

m. Let vj ∈ H̃ 1(Ω;Cn) be the (weak) periodic solution of
the following problem on the cell Ω:

b(D)∗g(x)(b(D)vj (x)+ ej ) = 0,
∫

Ω

vj (x) dx = 0, j = 1, . . . , m.
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By Λ(x) we denote the (n×m)-matrix with the columns vj (x). We put

g̃(x) = g(x)(b(D)Λ(x)+ 1m), (7)

g0 = |Ω|−1
∫

Ω

g̃(x) dx.

It turns out that the constant (m×m)-matrix g0 is positive. It is called the effective
matrix. This matrix satisfies the estimates g ≤ g0 ≤ g, where

g = |Ω|−1
∫

Ω

g(x) dx, g−1 = |Ω|−1
∫

Ω

g(x)−1 dx.

These estimates are well known in the homogenization theory for particular DO’s
(the Voight-Reuss bracketing). It is interesting that, if m = n, then g0 = g (see [3,
Chap. 3, Theorem 1.5]). In particular, this is always true for the two-dimensional
Pauli operator.

The operator
Â0 = b(D)∗g0b(D) (8)

with constant coefficients is called the effective operator for the operator (6).

3 Homogenization of Periodic DO’s. Principal Term
of Approximation for the Resolvent

Let ε > 0 be a parameter. For any Γ -periodic function φ we denote: φε(x) =
φ(ε−1x). We consider the following operators

Âε = Â(gε) = b(D)∗gεb(D), (9)

Aε = A(gε, f ε) = (f ε)∗b(D)∗gεb(D)f ε (10)

with rapidly oscillating (as ε → 0) coefficients. Our goal is to approximate the
resolvents (Âε+ I )−1, (Aε+ I )−1 for small ε > 0. We start with the principal term
of approximation in the operator norm in L2(R

d;Cn).

Theorem 1. Let Âε be the operator (9), and let Â0 be the effective operator (8).
Then

‖(Âε + I )−1 − (Â0 + I )−1‖L2→L2 ≤ C1ε, 0 < ε ≤ 1. (11)

The constant C1 depends only on the norms ‖g‖L∞ , ‖g−1‖L∞ , on constants α0, α1
from (3), and on parameters of the lattice Γ .

If f $= 1, it is impossible to find operator with constant coefficients such that its
resolvent is the limit of the resolvent of Aε. However, it is possible to approximate
(Aε + I )−1 in terms of the “generalized” resolvent of the operator Â0, sandwiched
by rapidly oscillating coefficients.
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Theorem 2. Let Aε be the operator (10), and let Â0 be the operator (8). We put

Q(x) = (f (x)f (x)∗)−1, Q = |Ω|−1
∫

Ω

Q(x) dx. (12)

Then we have

‖(Aε+I )−1−(f ε)−1(Â0+Q)−1((f ε)∗)−1‖L2→L2 ≤ C
(Q)
1 ε, 0 < ε ≤ 1. (13)

The constant C(Q)
1 depends only on the norms ‖g‖L∞ , ‖g−1‖L∞ , ‖f ‖L∞ , ‖f−1‖L∞ ,

on constants α0, α1, and on parameters of the lattice Γ .

Though the approximating operator in (13) contains rapidly oscillating coeffi-
cients, the inverse is taken only for operator with constant coefficients.

Estimates (11) are (13) are order-sharp, and constants in estimates are controlled
explicitly. For the first time, Theorem 1 was established in [2], and Theorem 2 was
proved in [3].

4 More Accurate Approximation for the Resolvent
in the L2-Operator Norm

In order to obtain more accurate approximations, we should take terms of order ε
(the so called “corrector”) into account. We start with the result for the operator (9).

Theorem 3. Let Âε be the operator (9), and let Â0 be the effective operator (8). We
have

‖(Âε + I )−1 −
(
(Â0 + I )−1 + εK(ε)

)
‖L2→L2 ≤ C2ε

2, 0 < ε ≤ 1. (14)

Here the corrector K(ε) is the sum of three terms:

K(ε) = K1(ε)+K1(ε)
∗ +K3. (15)

The operator
K1(ε) = ΛεΠεb(D)(Â0 + I )−1 (16)

contains the rapidly oscillating matrix Λε and also the smoothing operator Πε given
by

(Πεu)(x) = (2π)−d/2
∫

Ω̃/ε

ei〈x,ξ 〉û(ξ) dξ . (17)

Here û(ξ) is the Fourier image of u(x). The operator K3 does not depend on ε. It is
selfadjoint pseudodifferential operator of order (−1) given by

K3 = −(Â0 + I )−1b(D)∗L(D)b(D)(Â0 + I )−1,
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where L(D) is the first order DO with the symbol

L(ξ) = |Ω|−1
∫

Ω

(Λ(x)∗b(ξ)∗g̃(x)+ g̃(x)∗b(ξ)Λ(x)) dx.

The constant C2 in (14) depends only on the norms ‖g‖L∞ , ‖g−1‖L∞ , on α0, α1, and
on parameters of the lattice Γ . In expression (16) for K1(ε) the smoothing operator
Πε can be replaced by I in the following cases: (a) d ≤ 4, (b) for the scalar operator
Â = D∗g(x)D, where g(x) has real entries (d is arbitrary), (c) in the case where
g0 = g (d is arbitrary); in particular, if m = n. Under such replacement, only the
constant C2 will change.

Note that the traditional corrector used in the homogenization theory differs from
the term K1(ε) only by the absence of the operator Πε. The term K3 has not been
known before.

In certain sense, the third term of the corrector is the most important. The weak
operator limit as ε → 0 for first two terms is equal to zero (because of the presence
of the rapidly oscillating factor Λε with zero mean value). Therefore,
(w)- limε→0 K(ε) = K3. In some cases K3 = 0. In particular, this is true for the
scalar operator D∗g(x)D, where g(x) has real entries. However, in general case K3
is non-trivial, which is confirmed by examples for the scalar operator with complex-
valued coefficients and also for matrix operators with real-valued coefficients.

The similar result is obtained for general operators Aε, but approximation con-
tains rapidly oscillating factors.

Theorem 4. Let Aε be the operator (10), and let Â0 be the operator (8). Suppose
that Q(x) and Q are defined by (12). For 0 < ε ≤ 1 we have

‖(Aε + I )−1 − (f ε)−1
(
(Â0 +Q)−1 + εK(Q)(ε)

)
((f ε)∗)−1‖L2→L2 ≤ C

(Q)
2 ε2.

(18)
Here

K(Q)(ε) = K
(Q)
1 (ε)+ (K

(Q)
1 (ε))∗ +K

(Q)
3 ,

K
(Q)
1 (ε) = ΛεΠεb(D)(Â0 +Q)−1, (19)

K
(Q)
3 = −R0

Q

(
b(D)∗L(D)b(D)+ b(D)∗(QΛ)∗ + (QΛ)b(D)

)
R0

Q,

R0
Q := (Â0 + Q)−1, and QΛ is the mean value of the matrix-valued function

Q(x)Λ(x) over the cell Ω . The constant C(Q)
2 in (18) depends only on the norms

‖g‖L∞ , ‖g−1‖L∞ , ‖f ‖L∞ , ‖f−1‖L∞ , on α0, α1, and on parameters of the lattice

Γ . In the expression for K
(Q)
1 (ε) the smoothing operator Πε can be replaced by I

in the same cases as in Theorem 3.

Theorems 3 and 4 have been proved in [6].
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5 (L2 → H 1)-Approximation of the Resolvent. Approximation
of the Fluxes in L2

In order to approximate the resolvent in the operator norm from L2(R
d;Cn) to

H 1(Rd;Cn) with the error O(ε), it suffices to take into account only the first term
K1(ε) of the corrector (15).

Theorem 5. Let Âε be the operator (9), and let Â0 be the effective operator (8). Let
K1(ε) be the operator (16). Then we have

‖(Âε + I )−1 −
(
(Â0 + I )−1 + εK1(ε)

)
‖L2→H 1 ≤ C3ε, 0 < ε ≤ 1. (20)

The constant C3 in (20) depends only on the norms ‖g‖L∞ , ‖g−1‖L∞ , on α0, α1,
and on parameters of the lattice Γ . In the expression for K1(ε), the smoothing
operator Πε can be replaced by I in the following cases: (a) d ≤ 2, (b) for the
scalar operator Â = D∗g(x)D, where g(x) has real entries (d is arbitrary), (c) if
g0 = g (in particular, if m = n).

For the operator Aε of the form (10) we obtain the following result.

Theorem 6. Let Aε be the operator (10), and let Â0 be the operator (8). Suppose
that Q is defined by (12) and that K(Q)

1 (ε) is the operator (19). Then for 0 < ε ≤ 1
we have

‖f ε(Aε + I )−1 −
(
(Â0 +Q)−1 + εK

(Q)
1 (ε)

)
((f ε)∗)−1‖L2→H 1 ≤ C

(Q)
3 ε. (21)

The constant C(Q)
3 in (21) depends only on the norms ‖g‖L∞ , ‖g−1‖L∞ , ‖f ‖L∞ ,

‖f−1‖L∞ , on α0, α1, and on parameters of the lattice Γ . In the expression for

K
(Q)
1 (ε) the smoothing operator Πε can be replaced by I in the same cases as in

Theorem 5.

Theorems 5 and 6 have been proved in [7].
The results can be reformulated in terms of solutions. Let uε be the solution of

the equation
Âεuε + uε = F, F ∈ L2(R

d ;Cn), (22)

and let u0 be the solution of the “homogenized” equation

Â0u0 + u0 = F. (23)

Then inequalities (11) and (20) mean that

‖uε − u0‖L2 ≤ C1ε‖F‖L2, 0 < ε ≤ 1,

‖uε − (u0 + εΛεΠεu0)‖H 1 ≤ C3ε‖F‖L2, 0 < ε ≤ 1. (24)

Besides H 1(Rd;Cn)-approximation of the solution uε (see (24)), it is interesting
to find L2(R

d ;Cm)-approximation for the so called flux
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pε = gεb(D)uε. (25)

Theorem 7. Let uε be the solution of (22), and let u0 be the solution of (23). Let pε

be defined by (25), and let g̃(x) be the matrix (7). Let Πε be the operator (17). Then
we have

‖pε − g̃εΠεb(D)u0‖L2 ≤ C4ε‖F‖L2, 0 < ε ≤ 1. (26)

The constant C4 in (26) depends only on the norms ‖g‖L∞ , ‖g−1‖L∞ , on α0, α1, and
on parameters of the lattice Γ . In (26) the smoothing operator Πε can be replaced
by I in the same cases as in Theorem 5.

Now, let wε be the solution of the equation

Aεwε + wε = F, F ∈ L2(R
d ;Cn). (27)

Suppose that Q is defined in (12), and that w0
ε is the solution of the equation

Â0w0
ε +Qw0

ε = ((f ε)∗)−1F. (28)

The role of the flux for (27) is played by the function

rε = gεb(D)f εwε. (29)

Theorem 8. Let wε be the solution of (27), and let w0
ε be the solution of (28).

Let rε be defined by (29), and let g̃(x) be the matrix (7). Suppose that Πε is the
operator (17). Then we have

‖rε − g̃εΠεb(D)w0
ε‖L2 ≤ C

(Q)
4 ε‖F‖L2, 0 < ε ≤ 1. (30)

The constant C(Q)
4 depends only on ‖g‖L∞ , ‖g−1‖L∞ , ‖f ‖L∞ , ‖f−1‖L∞ , α0, α1,

and on parameters of the lattice Γ . In (30) the smoothing operator Πε can be re-
placed by I in the same cases as in Theorem 5.

Theorems 7 and 8 have been proved in [7].

6 The Method of Investigation

Applying the Floquet-Bloch theory, we decompose A in the direct integral of op-
erators A(k), acting in L2(Ω;Cn) and depending on the parameter k ∈ R

d called
quasimomentum. For this we need the Gelfand transformation U . First, U is defined
on functions of the Schwartz class by the formula

(U f)(k, x) = |Ω̃|−1/2
∑

a∈Γ
exp(−i〈k, x + a〉)f(x + a), x ∈ Ω, k ∈ Ω̃,

f ∈ S(Rd;Cn). Next, U is extended by continuity to the unitary operator
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U : L2(R
d ;Cn) →

∫

Ω̃

⊕L2(Ω;Cn) dk.

The operator A(k) acting in L2(Ω;Cn) is formally given by the differential ex-
pression A(x,D+k) with periodic (in x) boundary conditions. The precise definition
of the operator A(k) is given in terms of the closed quadratic form

a(k)[u,u] =
∫

Ω

〈g(x)b(D + k)f (x)u, b(D + k)f (x)u〉 dx, f u ∈ H̃ 1(Ω;Cn).

(Here the symbol 〈·, ·〉 stands for the standard inner product in C
m.) Using the

Fourier series for f u and conditions (2), (3), it is easy to check that

c0

∫

Ω

|(D + k)(f u)|2 dx ≤ a(k)[u,u] ≤ c1

∫

Ω

|(D + k)(f u)|2 dx, (31)

for f u ∈ H̃ 1(Ω;Cn), where c0 and c1 are the same as in (4).
The direct integral decomposition for A is given by the relation:

U A U−1 =
∫

Ω̃

⊕A(k) dk. (32)

Estimates (31) and compactness of the embedding of H̃ 1(Ω;Cn) in L2(Ω;Cn)

imply that the resolvent of the operator A(k) is compact. The spectrum of each
operator A(k) is discrete. By Ej(k), j ∈ N, we denote consecutive eigenvalues
of the operator A(k), enumerated with multiplicities in non-decreasing order. The
band functions Ej(·) are continuous and Γ̃ -periodic in k. The spectrum of A has a
band structure: it consists of closed intervals that are the ranges of the band func-
tions Ej(·). Spectral bands can overlap; at the same time, there may be gaps in the
spectrum.

By simple variational arguments, estimates (31) show that the first n bands over-
lap and have the common bottom: mink∈Ω̃ Ej (k) = Ej(0) = 0, j = 1, . . . , n. At
the same time the edge of the (n+1)-th band is separated from zero: mink En+1(k) >
0. Moreover, using the lower estimate (31) and variational arguments, we obtain the
inequalities

Ej(k) ≥ c∗|k|2, k ∈ Ω̃, j = 1, . . . , n, (33)

where c∗ = α0‖f−1‖−2
L∞‖h−1‖−2

L∞ .
We study the family of operators A(k) in order to approximate the resolvent

(A(k) + ε2I )−1 for small ε. The operators A(k) depend on the parameter k ∈ R
d

analytically. However, if d > 1 (parameter k is multidimensional) and n > 1 (the
eigenvalue λ = 0 is multiple eigenvalue of A(0)), then the classical analytic pertur-
bation theory does not work. We suggest the following solution of this difficulty. We
view t = |k| as the main perturbation parameter; herewith, we should make our con-



676 Mikhail S. Birman and Tatiana A. Suslina

structions and estimates uniform with respect to the parameter θ = t−1k ∈ S
d−1.

We study the operator family A(k) = A(tθ) = A(t, θ) by methods of spectral
perturbation theory with respect to the one-dimensional parameter t .

Consider the kernel of the operator A(0):

N = Ker A(0) = {u ∈ L2(Ω;Cn) : f u = c ∈ C
n}, dim N = n.

Let P be the orthogonal projection of L2(Ω;Cn) onto the subspace N.
It is crucial to distinguish the so called spectral germ S(θ) of the operator A(t, θ)

at t = 0. The germ is a selfadjoint operator acting in the finite-dimensional sub-
space N. Now we give the spectral definition of the germ. By the analytic perturba-
tion theory, for t ≤ t0 there exist real-analytic (in t) branches of eigenvalues λl(t, θ)
and real-analytic branches of (orthonormal in L2(Ω;Cn)) eigenvectors ϕl(t, θ) of
the operator A(t, θ), l = 1, . . . , n:

A(t, θ)ϕl(t, θ) = λl(t, θ)ϕl(t, θ), l = 1, . . . , n, t = |k| ≤ t0.

Herewith, the number t0 is controlled explicitly. Namely, we can take

t0 = (r0/2)α1/2
0 α

−1/2
1 ‖f ‖−1

L∞‖f−1‖−1
L∞‖h‖−1

L∞‖h−1‖−1
L∞, (34)

where r0 is the radius of the ball inscribed in Ω̃ .
For sufficiently small t∗ and t ≤ t∗ we have the convergent expansions:

λl(t, θ) = γl(θ)t
2 + μl(θ)t

3 + · · · , l = 1, . . . , n, (35)

ϕl(t, θ) = ωl(θ)+ tϕ
(1)
l (θ)+ · · · , l = 1, . . . , n. (36)

It follows from (33) that γl(θ) ≥ c∗ > 0, l = 1, . . . , n. The vectors ωl(θ), l =
1, . . . , n, form an orthonormal basis in the subspace N. Numbers γl(θ) and vectors
ωl(θ) are the threshold characteristics of the operator A(t, θ).

Definition 9. The selfadjoint operator S(θ) : N → N such that

S(θ)ωl(θ) = γl(θ)ωl(θ), l = 1, . . . , n,

is called the spectral germ of the operator A(t, θ).

It turns out that the germ is responsible for threshold effects, since it contains
information about threshold characteristics of the operator A(t, θ).

It is possible to approximate the resolvent (A(t, θ) + ε2I )−1 for small ε in the
operator norm in L2(Ω;Cn) in terms of the germ. For 0 < ε ≤ 1 we have

‖(A(t, θ)+ε2I )−1− (t2S(θ)+ε2IN)−1P‖L2(Ω)→L2(Ω) ≤ C1ε
−1, t ≤ t0. (37)

This estimate is order-sharp, the constants C1 and t0 are controlled explicitly.
It is possible to calculate the germ S(θ). Now we formulate the result for the sim-

pler operator family Â(t, θ) = Â(k) corresponding to the operator (6). In this case
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the germ Ŝ(θ) can be represented as Ŝ(θ) = b(θ)∗g0b(θ), θ ∈ S
d−1, where g0 is the

effective matrix. Next, it turns out that the family Â0(t, θ) = Â0(k) corresponding
to the effective operator (8) has the same spectral germ. By (37), this allows to ap-
proximate the resolvent (Â(k)+ ε2I )−1 in terms of the resolvent (Â0(k)+ ε2I )−1:

‖(Â(k)+ ε2I )−1 − (Â0(k)+ ε2I )−1‖L2(Ω)→L2(Ω) ≤ C2ε
−1,

t ≤ t̂0, 0 < ε ≤ 1. (38)

(It turns out that the value t̂0 for the effective operator may be taken the same as for
Â; t̂0 is given by the formula (34) with f = 1n.)

For k ∈ Ω̃ and |k| = t > t̂0 the estimate is trivial: each term in (38) is estimated
by constant. Hence, the estimate (38) is true for all k ∈ Ω̃ . Using the Gelfand
transformation (see (32)), we conclude that

‖(Â + ε2I )−1 − (Â0 + ε2I )−1‖L2(R
d )→L2(R

d ) ≤ C1ε
−1, 0 < ε ≤ 1. (39)

Finally, the result of Theorem 1 follows from (39) by the scale transformation.
Let Tε be the unitary operator in L2(R

d;Cn) given by (Tεf)(x) = εd/2f(εx). Then
Âε = ε−2T ∗

ε ÂTε, and (Âε+I )−1 = ε2T ∗
ε (Â+ε2I )−1Tε. Similarly, (Â0+I )−1 =

ε2T ∗
ε (Â0 + ε2I )−1Tε. Thus,

‖(Âε + I )−1 − (Â0 + I )−1‖L2→L2 = ε2‖(Â + ε2I )−1 − (Â0 + ε2I )−1‖L2→L2 .

Combining this with (39), we arrive at (11). This proves Theorem 1.
The study of the resolvent for the operator (10) is based on the identity

(Aε + I )−1 = (f ε)−1(Âε +Qε)−1((f ε)∗)−1, (40)

where Q(x) = (f (x)f (x)∗)−1, Qε(x) = Q(ε−1x). The generalized resolvent (Âε+
Qε)−1 is studied by the same method as the ordinary resolvent for Âε. We have the
following approximation (obtained in [3]):

‖(Âε +Qε)−1 − (Â0 +Q)−1‖L2→L2 ≤ C̃1ε, 0 < ε ≤ 1.

Combining this with (40), we arrive at the result of Theorem 2.
In order to prove Theorem 3, we apply the method described above, but now in-

stead of (37) we have to find more accurate approximation for the resolvent
(A(t, θ)+ ε2I )−1 in terms of appropriate finite rank operator with the error term of
order O(1). This approximation has been found in [5]. Note that, in order to obtain
such approximation, we have to take into account terms of order t3 in the expan-
sions (35) for eigenvalues and terms of order t in the expansions (36) for eigen-
vectors of the operator A(t, θ). The proof of Theorem 4 is based on more accurate
approximation for the generalized resolvent (Âε +Qε)−1 and on the identity (40).

In order to find (L2 → H 1)-approximation of the resolvent (Âε+I )−1, we study
the operator Â1/2

ε (Âε + I )−1 in L2(R
d ;Cn) and establish the estimate
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‖Â1/2
ε

(
(Âε + I )−1 − (Â0 + I )−1 − εK1(ε)

)
‖L2→L2 ≤ Cε, 0 < ε ≤ 1, (41)

which implies (20). For the proof of (41), it is possible to apply the scale trans-
formation and develop the method described above. For the proof of estimate (21),
we study the operator Â1/2

ε (Âε + Qε)−1 in L2(R
d ;Cn) and use the identity (40).

Finally, Theorems 7 and 8 about approximations of the fluxes are deduced from
Theorems 5 and 6.

7 Some Applications

The general results are applied to particular periodic operators of mathematical
physics. The simplest example is the acoustics operator

Â = D∗g(x)D = − div g(x)∇,

where g(x) is a periodic positive definite (d × d)-matrix-valued function with real
entries. Now n = 1, m = d , b(D) = D. The matrix Λ(x) is a row: Λ(x) =
i(Φ1(x), . . . , Φd(x)), where Φj(x) is a periodic solution of the problem

div g(x)(∇Φj(x)+ ej ) = 0,
∫

Ω

Φj (x) dx = 0.

Next, g̃(x) is the (d×d)-matrix with the columns g(x)(∇Φj(x)+ej ), j = 1, . . . , d ,
and g0 is defined as the mean value of the matrix g̃(x) over the cell Ω . The effective
operator is given by Â0 = D∗g0D. The kernel N is one-dimensional and consists of
constants: N = {u ∈ L2(Ω) : u = const}. The spectral germ S(θ) is the operator
of multiplication by the number γ (θ) = 〈g0θ, θ〉. The bottom of the spectrum is
realized as the edge of the first band, and the first band function E1(k) has the
following asymptotics: E1(k) = 〈g0k,k〉 +O(|k|4), |k| → 0.

Applying Theorem 1 to the operator Âε = D∗gεD, we obtain

‖(Âε + I )−1 − (Â0 + I )−1‖L2→L2 ≤ Cε.

Theorems 3 and 5 are also applicable. Now the third term of the corrector (15)
vanishes. Besides, the corrector does not contain the smoothing operator Πε and is
given by

K(ε) = K1(ε)+K1(ε)
∗, K1(ε) =

d∑

j=1

Φε
j ∂j (Â0 + I )−1. (42)

Theorems 3 and 5 imply the estimates
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‖(Âε + I )−1 −
(
(Â0 + I )−1 + εK(ε)

)
‖L2→L2 ≤ Cε2,

‖(Âε + I )−1 −
(
(Â0 + I )−1 + εK1(ε)

)
‖L2→H 1 ≤ Cε.

Finally, Theorem 7 yields the following approximation for the fluxes:

‖gε∇uε − g̃ε∇u0‖L2 ≤ Cε‖F‖L2 .

Here uε is the solution of the equation − div gε∇uε+uε = F , F ∈ L2(R
d), and u0

is the solution of the equation − div g0∇u0 + u0 = F .
Now, we consider the periodic Schrödinger operator H with the metric a(x) and

potential p(x):
H = D∗a(x)D + p(x).

Here a(x) is (d × d)-matrix-valued function with real entries, a(x) is bounded and
positive definite. Potential p(x) is subject to the conditions: p ∈ Ls(Ω), where s =
1 for d = 1 and 2s > d for d ≥ 2. Adding an appropriate constant to the potential
p(x), we assume that the bottom of the spectrum of H is the point λ = 0. Then
there exists a positive periodic solution of the equation D∗a(x)Dω + p(x)ω = 0. It
is convenient to fix the solution ω by the condition

∫
Ω
ω2(x) dx = |Ω|.

The operator H admits the following factorization: H = ω−1D∗aω2Dω−1. Then
H = A(g, f ) with g = aω2 and f = ω−1. Let g0 be the effective matrix for the
acoustics operator Â = D∗g(x)D = D∗a(x)ω2(x)D, and let Â0 = D∗g0D. Now,
the kernel N is one-dimensional: N = {u ∈ L2(Ω) : u = cω}. The spectral germ
S(θ) is the operator of multiplication by the number γ (θ) = 〈g0θ , θ〉. For the first
band function E1(k), we have E1(k) = 〈g0k,k〉 + O(|k|4), |k| → 0. In quantum
mechanics the tensor inverse to γ is called the tensor of effective masses. Thus,
under the conditions g = aω2 and

∫
Ω
ω2 dx = |Ω|, the tensors of effective masses

for the Schrödinger operator and for the acoustics operator Â = D∗gD coincide.
In the one-dimensional case (d = 1) with a(x) = 1 (i. e., for the operator H =

− d2

dx2 + p(x)), the number γ is calculated explicitly:

γ = |Ω|2‖ω‖−2
L2(Ω)

‖ω−1‖−2
L2(Ω)

. (43)

This formula is well known in quantum mechanics as the formula for the effective
mass of the one-dimensional Schrödinger operator at the bottom of the spectrum.

Now, we consider the operator Hε with rapidly oscillating coefficients Hε =
(ωε)−1D∗gεD(ωε)−1. In the initial terms, we have Hε = D∗aεD + ε−2pε. Theo-
rems 2, 4, 6 and 8 are applicable. Let Â0 = D∗g0D. By the normalization condition
on ω(x), we have Q = 1. Applying Theorem 2, we obtain

‖(Hε + I )−1 − ωε(Â0 + I )−1ωε‖L2→L2 ≤ Cε.

Applying Theorems 4 and 6, we obtain the estimates
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‖(Hε + I )−1 − ωε
(
(Â0 + I )−1 + εK(ε)

)
ωε‖L2→L2 ≤ Cε2,

‖(ωε)−1(Hε + I )−1 −
(
(Â0 + I )−1 + εK1(ε)

)
ωε‖L2→H 1 ≤ Cε.

Here K(ε) and K1(ε) correspond to the operator Â = D∗gD = D∗aω2D and are
defined in (42). The result of Theorem 8 can be also realized for the operator Hε;
we will not dwell on this.

As it was recently shown by R. G. Shterenberg [11], the magnetic Schrödinger
operator with sufficiently small periodic magnetic potential can be also written as
A(g, f ) with appropriate (complex-valued) g and f . For this operator we obtain
similar results. The difference is that, in general, for the magnetic Schrödinger op-
erator K3 $= 0 (since coefficients of this operator are complex-valued). See details
in [6, Sect. 11] and [7, Sect. 19].

Now we consider the two-dimensional Pauli operator P with the periodic mag-
netic potential A(x) = {A1(x), A2(x)}. For simplicity, assume that A ∈ C1. The
operator P acts in L2(R

2;C2) and is given by

P =
(
P− 0

0 P+

)

, P± = (D − A(x))2 ± B(x),

where B(x) = ∂1A2 − ∂2A1 is the magnetic field. By the gauge transformation, we
subject A(x) to the conditions div A(x) = 0 and

∫
Ω

A(x) dx = 0. Then there exists a
real-valued Γ -periodic function ϕ(x) such that ∇ϕ = {A2,−A1} and

∫
Ω
ϕ(x) dx =

0. We put

f (x) =
(
eϕ(x) 0

0 e−ϕ(x)

)

, b(D) =
(

0 D1 − iD2

D1 + iD2 0

)

.

The Pauli operator P is factorized as P = f (x)b(D)f 2(x)b(D)f (x). Thus, the
operator P has the form A(g, f ) with m = n = 2, g = f 2. The effective matrix is
calculated explicitly:

g0 = g =
⎛

⎝
|Ω| (∫

Ω
e−2ϕ dx

)−1
0

0 |Ω| (∫
Ω
e2ϕ dx

)−1

⎞

⎠ .

The kernel N is two-dimensional and is given by

N =
{

u(x) =
(
c1e

−ϕ(x)

c2e
ϕ(x)

)}

.

The spectral germ S(θ) does not depend on θ and is operator of multiplication by
the number

γ = |Ω|2‖eϕ‖−2
L2(Ω)‖e−ϕ‖−2

L2(Ω).
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This formula is analogous to expression (43) for the effective mass of the one-
dimensional Schrödinger operator. First two band functions of the Pauli operator
coincide and have the following asymptotics E1(k) = E2(k) = γ |k|2 + O(|k|3),
|k| → 0. Thus, we observe a hidden symmetry: the tensor of effective masses for
the two-dimensional Pauli operator is scalar.

Now we consider the operator

Pε = f εb(D)(f ε)2b(D)f ε =
(
P−,ε 0

0 P+,ε

)

,

where P±,ε = (D − ε−1Aε)2 ± ε−2Bε. Theorem 2 yields approximation for the
resolvent (Pε + I )−1:

‖(Pε + I )−1 − f̃ ε(−γΔ+ I )−1f̃ ε‖L2→L2 ≤ Cε,

where

f̃ =
(
ω̃− 0

0 ω̃+

)

, ω̃± = c±e±ϕ, ‖ω̃±‖2
L2(Ω) = |Ω|.

Theorems 4, 6 and 8 are also applicable to the operator Pε. We will not dwell on
detailed formulations here.

Besides examples considered above, the general results are applicable to the pe-
riodic operator of elasticity theory, which can be written in the form (6) (see [3,
Sect. 5.2], [6, Sect. 13], [7, Sect. 21]).

8 On Further Development of the Method

In fact, a significant part of considerations is made on the abstract operator theory
level for some class of operators admitting an appropriate factorization. The corre-
sponding abstract material can be found in [3, Chap. 1], [5], [7, Chap. 1]. Next, these
abstract results were applied to DO’s of the form (5), (6), and specific properties of
such DO’s were used.

The homogenization problem for the stationary periodic Maxwell system turned
out to be the most difficult. In the case where one of coefficients (the dielectric
permittivity or the magnetic permeability) is constant, the problem is (partially) re-
duced to the study of the second order operator Â = rot η(x)−1 rot−∇ div, which
admits a factorization of the form (6). Then general results for this class of opera-
tors are applicable. This case was studied in [3, Chap. 7], but only in [8] necessary
approximations for all physical fields have been found.

The problem is even harder, if both coefficients are non-constant. The corre-
sponding “model” second order operator cannot be written in the form (6) or (5).
However, it is possible to apply abstract results from [3, 5, 7]. The homogenization
problem for the Maxwell system in the case where both coefficients are variable pe-
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riodic matrices was studied in [12, 15, 17]. Finally, in [17] the problem was solved
completely; namely, approximations in the L2(R

3;C3)-norm for all physical fields
have been found.

The method developed by the authors was also applied to the homogenization of
the periodic parabolic Cauchy problem (see [13, 16]).

Besides operators with coefficients periodic in all directions, it is interesting to
study homogenization problems in domains like layer, cylinder, etc., when coef-
ficients are periodic only in longitudinal variables. Herewith, the homogenization
procedure concerns only longitudinal variables, and coefficients of the effective op-
erator still depend on transversal variables. The model problem of such type was
studied in [14]. It turned out that it is possible to apply the method of [3] “layer-
wise”, but additional technical difficulties arise.

The analogue of the homogenization procedure can be associated with an internal
gap in the spectrum of the initial operator. The papers [1] and [4] are devoted to these
questions.

The papers by the authors stimulated interest to approximation of the resolvent
in the homogenization theory with the error estimate in the operator norm. Recently,
estimates of the form (11) and (20) were proved by V. V. Zhikov by another (non-
spectral) method (see [19–21]).
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ABCD and ODEs

Patrick Dorey, Clare Dunning, Davide Masoero, Junji Suzuki and Roberto Tateo

Abstract We outline a relationship between conformal field theories and spectral
problems of ordinary differential equations, and discuss its generalization to models
related to classical Lie algebras.

1 Introduction

The ODE/IM correspondence [8, 4, 20, 13] has established a link between two di-
mensional conformal field theory (CFT) and generalised spectral problems in or-
dinary differential and pseudo-differential equations. It is based on an equivalence
between transfer matrix eigenvalues [1, 2] and Baxter Q-functions in integrable
models (IMs), and spectral determinants [19, 22] of ordinary differential equations
(ODEs).

In statistical mechanics, the transfer matrix and its largest eigenvalue—denoted
by T in the following—are central objects. For example, consider the six-vertex
model defined on a square lattice with N columns and N ′ rows; T can be written in
terms of an auxiliary entire function Q through the so-called Baxter TQ relation.
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V. Sidoravičius (ed.), New Trends in Mathematical Physics,
© Springer Science + Business Media B.V. 2009

685

mailto:p.e.dorey@durham.ac.uk
mailto:t.c.dunning@kent.ac.uk
mailto:masoero@sissa.it
mailto:sjsuzuk@ipc.shizuoka.ac.jp
mailto:tateo@to.infn.it


686 Patrick Dorey, Clare Dunning, Davide Masoero, Junji Suzuki and Roberto Tateo

Up to an overall constant, Q is completely determined by the knowledge of the
positions of its zeros, the Bethe roots, which are constrained by the Bethe ansatz
equations (BAE). Subject to some qualitative information on the positions of the
Bethe roots, easily deduced by studying systems with small size, the Bethe ansatz
leads to a unique set of ground-state roots. In the N ′ → ∞ limit the free energy per
site f is simply related to T by

f ∼ − 1

N
ln T . (1)

In [1, 2], Bazhanov, Lukyanov and Zamolodchikov showed how to adapt the same
techniques directly to the conformal field theory (CFT) limit of the six-vertex model.
In this setting, we consider the conformal field theory with Virasoro central charge
c = 1 corresponding to the continuum limit of the six-vertex model, defined on an
infinitely-long strip with twisted boundary conditions along the finite size direction.
The largest transfer matrix eigenvalue T depends on three independent parameters:
the (rescaled) spectral parameter ν, the anisotropy η and the twist φ. Defining E,
M , l, ω, Ω through the following relations

E = e2ν, η = π

2

M

M + 1
, ω = ei

π
M+1 ,

Ω = ω2M, φ = (2l + 1)π

2M + 2

(2)

the resulting TQ relation is

T (E, l,M)Q(E, l,M) = ω−
2l+1

2 Q(ΩE, l,M)+ ω
2l+1

2 Q(Ω−1E, l,M). (3)

The Baxter function Q for this largest eigenvalue is fixed by demanding entirety of
both T and Q, and reality, positivity and ‘extreme packing’ for l > −1/2 of the set
{Ei} of zeros of Q. The BAE follow from the entirety of T and Q via

Q(Ei) = 0 ⇒ T (Ei)Q(Ei) = 0 ⇒ Q(ΩEi)

Q(Ω−1Ei)
= −ω2l+1. (4)

Surprisingly, (3) and (4) also emerge from an apparently unrelated context: the study
of particular spectral problems for the following differential equation

((
d

dx
− l

x

)(
d

dx
+ l

x

)

− x2M + E

)

y(x,E, l) = 0 , (5)

with x and E possibly complex. To see the emergence of (4) from (5), we start from
the unique solution ψ(x,E, l) of (5) on the punctured complex plane x ∈ C \ {0}
which has the asymptotic

ψ ∼ x−M/2 exp

(

− 1

M + 1
xM+1

)

, (M > 1) (6)
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as |x| → ∞ in any closed sector contained in the sector |arg x| < 3π
2M+2 . This

solution is entire in E and x. From ψ we introduce a family of solutions to (5) using
the ‘Sibuya trick’ (also known as ‘Symanzik rescaling’):

ψk = ψ(ωkx,ΩkE, l). (7)

In (7), k takes integer values; any pair {ψk,ψk+1} constitutes a basis of solutions to
(5). An alternative way to characterize a solution to (5) is through its behaviour near
the origin x = 0. The indicial equation is

(λ− 1 − l)(λ+ l) = 0 , (8)

and correspondingly we can define two (generally) independent solutions

χ+(x, E) = χ(x,E, l) ∼ xl+1 +O(xl+3) , (9)

and χ−(x, E) = χ(x,E,−l−1), which transform trivially under Symanzik rescal-
ing as

χ+k = χ+(ωkx,ΩkE) = ω(l+1)kχ+(x, E) . (10)

The trick is now to rewrite χ+0 = χ+(x, E) respectively in terms of the basis
{ψ0, ψ1} and {ψ−1, ψ0}:

2iχ+0 = ω−l− 1
2 Q(ΩE)ψ0 −Q(E)ω−

1
2 ψ1 (11)

2iχ+0 = 2iωl+1χ+−1 = ω
1
2 Q(E)ψ−1 − ωl+ 1

2 Q(Ω−1E)ψ0 (12)

where the coefficients has been fixed by consistency among (11), (12) and (10) and

Q(E, l) = W [ψ0, χ
+
0 ]. (13)

Here W [f, g] = f
dg
dx

− g
df
dx

denotes the Wronskian of f and g. Taking the ratio
(11)/(12) evaluated at a zero E = Ei of Q leads immediately to the Bethe ansatz
equations (4) without the need to introduce the TQ relation, though in this case it
can be done very easily (see, for example the recent ODE/IM review article [13]).
Correspondingly, χ becomes subdominant at x → ∞ on the positive real axis:
χ(x,Ei, l) ∝ ψ(x,Ei, l). The motivation of dealing with χ , instead of ψ (6), is
two-fold. Firstly, χ can be obtained by applying the powerful and numerically ef-
ficient iterative method proposed by Cheng many years ago [7] in the context of
Regge pole theory, and applied to spectral problems of this sort in [11]. To this end
we introduce the linear operator L, defined through its formal action

L[xp] = xp+2

(p + l)(p − l − 1)
. (14)

So for any polynomial P(x) of x ,
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(
d

dx
− l

x

)(
d

dx
+ l

x

)

L[P(x)] = P(x), (15)

and the basic differential equation (5), with the boundary conditions (9) at the origin,
is equivalent to

χ(x,E, l) = xl+1 + L
[
(x2M − E)χ(x,E, l)

]
. (16)

Equation (16) is solvable by iteration and it allows the predictions of the ODE/IM
correspondence to be checked with very high precision.

The initial results of [8, 4, 20] connected conformal field theories associated
with the Lie algebra A1 to (second-order) ordinary differential equations. The gen-
eralisation to An−1-models was established in [21, 9] but it was only recently [12]
that the ODE/IM correspondence was generalised to the remaining classical Lie
algebras Bn, Cn and Dn. Our attempts to derive generalised TQ relations from
the proposed set of pseudo-differential equations were unsuccessful, but a series of
well-motivated conjectures led us directly to the BAE, allowing us to establish the
relationship between BAE and pseudo-differential equation parameters. Moreover,
while the numerics to calculate the analogs of the functions ψ turned out to be very
costly in CPU time, the generalisation of Cheng’s method proved very efficient and
allowed very high precision tests to be performed. This is our second main reason to
deal with solutions defined through the behaviour about x = 0, rather than x = ∞.

2 Bethe Ansatz for Classical Lie Algebras

For any classical Lie algebra g, conformal field theory Bethe ansatz equations de-
pending on a set of rank(g) twist parameters γ={γa} can be written in a compact
form as

rank(g)∏

b=1

Ω
Babγb

Q
(b)
Bab

(E
(a)
i , γ )

Q
(b)
−Bab

(E
(a)
i , γ )

= −1, i = 0, 1, 2, . . . (17)

where Q
(a)
k (E, γ ) = Q(a)(ΩkE, γ ), and the numbers E(a)

i are the (in general com-
plex) zeros of the functions Q(a). In (17) the indices a and b label the simple roots
of the Lie algebra g, and

Bab = (αa, αb)

|long roots|2 , a, b = 1, 2, . . . , rank(g) (18)

where the α’s are the simple roots of g. The constant Ω = exp(i 2π
h∨μ) is a pure

phase, μ is a positive real number and h∨ is the dual Coxeter number.
It turns out that the Bethe ansatz roots generally split into multiplets (strings) with

approximately equal modulus |E(a)
i |. The ground state of the model corresponds to

a configuration of roots containing only multiplets with a common dimension da =
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K/Baa ; the model-dependent integer K corresponds to the degree of fusion (see for
example [16]).

3 The Pseudo-Differential Equations

To describe the pseudo-differential equations corresponding to the An−1, Bn, Cn

and Dn simple Lie algebras we first introduce some notation. We need an nth-order
differential operator [9]

Dn(g) = D(gn−1 − (n−1))D(gn−2 − (n−2)) . . . D(g1 − 1)D(g0), (19)

D(g) =
(

d

dx
− g

x

)

, (20)

depending on n parameters

g = {gn−1, . . . , g1, g0}, g† = {n−1−g0, n−1−g1, . . . , n−1−gn−1}. (21)

Also, we introduce an inverse differential operator (d/dx)−1, generally defined
through its formal action

(
d

dx

)−1

xs = xs+1

s + 1
, (22)

and we replace the simple ‘potential’ P(E, x) = (x2M − E) of (5) with

PK(E, x) = (xh
∨M/K − E)K. (23)

Using the notation of Appendix B in [12] the proposed pseudo-differential equa-
tions are reported below.

An−1 models

The An−1 ordinary differential equations are

Dn(g†)χ
†
n−1(x, E) = PK(x,E)χ

†
n−1(x, E), (24)

with the constraint
∑n−1

i=0 gi=n(n−1)
2 and the ordering gi < gj < n − 1, ∀i < j .

We introduce the alternative set of parameters γ = γ (g) = {γa(g)}

γa = 2K

h∨M

(a−1∑

i=0

gi − a(h∨ − 1)

2

)

. (25)
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The solution χ
†
n−1(x, E) is specified by its x ∼ 0 behaviour

χ
†
n−1 ∼ xn−1−g0 + subdominant terms, (x → 0+). (26)

In general, this function grows exponentially as x tends to infinity on the positive
real axis. In Appendix B of [12], it was shown that the coefficient in front of the lead-
ing term, but for an irrelevant overall constant, is precisely the function Q(1)(E, γ )

appearing in the Bethe Ansatz, that is

χ
†
n−1 ∼ Q(1)(E, γ (g)) x(1−n)M2 e

xM+1
M+1 + subdominant terms, (x →∞). (27)

Therefore, the set of Bethe ansatz roots

{E(1)
i } ↔ Q(1)(E

(1)
i , γ ) = 0 (28)

coincide with the discrete set of E values in (24) such that

χ
†
n−1 ∼ o

(
x(1−n)M2 e

xM+1
M+1

)
, (x →∞). (29)

This condition is equivalent to the requirement of absolute integrability of

(
x(n−1)M2 e−

xM+1
M+1

)
χ

†
n−1(x, E) (30)

on the interval [0,∞). It is important to stress that the boundary problem defined
above for the function χ

†
n−1 (26) is in general different from the one discussed in

Sects. 3 and 4 in [12] involving ψ(x,E). The latter function is instead a solution
to the adjoint equation of (24) and characterised by recessive behaviour at infinity.
Surprisingly, the two problems are spectrally equivalent and lead to identical sets of
Bethe ansatz roots.

Dn models

The Dn pseudo-differential equations are

Dn(g†)

(
d

dx

)−1

Dn(g)χ2n−1(x, E)

= √PK(x,E)

(
d

dx

)√
PK(x,E) χ2n−1(x, E). (31)

Fixing the ordering gi < gj < h∨/2, the g ↔ γ relationship is
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γa = 2K

h∨M

(
a−1∑

i=0

gi − a

2
h∨
)

, (a = 1, . . . , n− 2) (32)

γn−1 = K

h∨M

(
n−1∑

i=0

gi − n

2
h∨
)

,

γn = K

h∨M

(
n−2∑

i=0

gi − gn−1 − n− 2

2
h∨
)

.

(33)

The solution is specified by requiring

χ2n−1 ∼ xh
∨−g0 + subdominant terms, (x → 0+), (34)

χ2n−1 ∼ Q(1)(E, γ (g)) x−h∨ M
2 e

xM+1
M+1 + subdominant terms, (x →∞).

(35)

Figure 1 illustrates Ψ (x,E) = xh
∨ M

2 e−
xM+1
M+1 χ2n−1(x, E) for the first three eigen-

values of the D4 pseudo-differential equation defined by K=1,M = 1/3 and
g = (2.95, 2.3, 1.1, 0.2).

Fig. 1 Lowest three functions Ψ (x,E) for a D4 pseudo-differential equation

Bn models

The Bn ODEs are

Dn(g†)Dn(g)χ
†
2n−1(x, E) = √PK(x,E)

(
d

dx

)√
PK(x,E)χ

†
2n−1(x, E). (36)

With the ordering gi < gj < h∨/2, the g ↔ γ relation is

γa = 2K

h∨M

(a−1∑

i=0

gi − a

2
h∨
)

. (37)

The asymptotic behaviours about x = 0 and x = ∞ are respectively
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χ
†
2n−1 ∼ xh

∨−g0 + subdominant terms, (x → 0+) , (38)

and

χ
†
2n−1 ∼ Q(1)(E, γ (g)) x−h∨ M

2 e
xM+1
M+1 + subdominant terms, (x →∞). (39)

Cn models

The pseudo-differential equations associated to the Cn systems are

Dn(g†)

(
d

dx

)

Dn(g) χ2n+1(x, E) = PK(x,E)

(
d

dx

)−1

PK(x,E) χ2n+1(x, E)

(40)
with the ordering gi < gj < n. The relation between the g’s and the twist parame-
ters in the BAE is

γa = 2K

h∨M

(
a−1∑

i=0

gi − an

)

, γn = K

h∨M

(
n−1∑

i=0

gi − n2

)

(41)

and

χ
†
2n+1 ∼ x2n−g0 + subdominant terms, (x → 0+), (42)

χ
†
2n+1 ∼ Q(1)(E, γ )x−nMe

xM+1
M+1 + subdominant terms, (x →∞). (43)

Using a generalisation of Cheng’s algorithm, the zeros of Q(1)(E, γ ) can be found
numerically and shown to match the appropriate Bethe ansatz roots [12].

In general, the ‘spectrum’ of a pseudo-differential equation may be either real or
complex. In the An−1, Bn, Dn models with K = 1,1 the special choice gi = i leads
to pseudo-differential equations with real spectra, a property which is expected to
hold for a range of the parameters g (see, for example, [9]). The K > 1 generali-
sation of the potential (23), proposed initially by Lukyanov for the A1 models [17]
but expected to work for all models, introduces a new feature. The eigenvalues cor-
responding to a K = 2, 3 and K = 4 case of the SU(2) ODE are illustrated in
Fig. 2.

The interesting feature appears if we instead plot the logarithm of the eigenvalues
as in Fig. 3. We see that the logarithm of the eigenvalues form ‘strings’, a well-
known feature of integrable models. The string solutions approximately lie along
lines in the complex plane, the deviations away from which can be calculated [12]
using either WKB techniques, or by studying the asymptotics of the Bethe ansatz
equations directly.

1 The Cn spectrum is complex for any integer K ≥ 1.
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Fig. 2 Complex E-plane: the eigenvalues for the SU(2) model with M = 3, g0 = 0 for K = 2, 3
and 4 respectively

Fig. 3 Complex (lnE)-plane: two, three- and four-strings

To end this section, we would like to comment briefly on the motivation behind
the conjectured pseudo-differential equations of Bn, Cn and Dn type. Modulo the
generalisation to K>1, the An−1 type ODEs were derived in [9]. We began with
the D3 case since it coincides up to relabeling with A3, implying that the D3 func-
tion Q(1)(E, γ ) coincides with the A3 function Q(2)(E, γ ). Fortunately, the latter is
known [9] to encode the spectrum of a differential equation satisfied by the Wron-
skian of two solutions of the Q(1)-related ODE. The generalisation to Dn models
with larger n was then clear. Further supporting evidence came from a relationship
between certain Dn lattice models and the sine-Gordon model, which appears as
an SU(2) problem. This relationship also extends to a set of Bn models, and leads
naturally to the full Bn proposal. Finally, the Cn proposal arose from the Bn cases
via a consideration of negative-dimension W-algebra dualities [15]. Numerical and
analytical tests provided further evidence for the connection between these spectral
problems and the Bethe ansatz equations for the classical Lie algebras.

4 Conclusions

The link between integrable models and the theory of ordinary differential equations
is an exciting mathematical fact that has the potential to influence the future devel-
opment of integrable models and conformal field theory, as well as some branches of
classical and modern mathematics. Perhaps the most surprising aspect of the func-
tions Q and T , only briefly discussed in this short note, is their variety of possible
interpretations: transfer matrix eigenvalues of integrable lattice models in their CFT
limit [1, 2], spectral determinants of Hermitian and PT-symmetric [5, 6] spectral
problems (see for example [11]), g-functions of CFTs perturbed by relevant bound-
ary operators [1, 10], and particular expectation values in the quantum problem of a
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Brownian particle [3]. Further, the (adjoint of the) operators (24), (31), (36) and (40)
resemble in form the Miura-transformed Lax operators introduced by Drinfel’d and
Sokolov in the context of generalised KdV equations, studied more recently in rela-
tion to the geometric Langlands correspondence [18, 14]. Clarifying this connection
is an interesting open task. Here we finally observe that the proposed equations re-
spect the well-known Lie algebras relations D2 ∼ A1 ⊕ A1, A3 ∼ D3, B1 ∼ A1,
B2 ∼ C2. Also, at special values of the parameters the Cn equations are formally re-
lated to the Dn ones by the analytic continuation n → −n, matching an interesting
W-algebra duality discussed by Hornfeck in [15]:

(D̂−n)K × (D̂−n)L

(D̂−n)K+L

∼ (Ĉn)−K/2 × (Ĉn)−L/2

(Ĉn)−K/2−L/2
. (44)

The relationship between our equations and coset conformal field theories is another
aspect worth investigation. We shall return to this point in a forthcoming publication.
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Nonrational Conformal Field Theory

Jörg Teschner

Abstract We introduce a formalism for the construction of correlation functions in
certain classes of nonrational conformal field theories. An important role is played
by non-degenerate hermitian forms on the spaces of conformal blocks, which allow
us to gain some control on the issues coming from the infinite-dimensionality of
these spaces. Appropriate generalizations of the concept of a modular functor and
of the Friedan-Shenker modular geometry are presented. It is argued that the her-
mitian form on the spaces of conformal blocks is in fact a scalar product when the
representations involved are all unitary, which is illustrated by the case of the c > 1
Virasoro conformal blocks.

1 Introduction

In these notes we will discuss the problem to develop a mathematical theory of a
certain class of conformal field theories (CFT) which contain the unitary CFT.1 In
similar attempts of this kind the focus mostly was on the so-called rational CFT.
The author believes that this restriction is unnatural and may obscure where the real
issues are. From a physical point of view it seems that rational CFT are exceptional
rather than generic, owing their existence to some remarkable arithmetic accidents.
Although the rational CFT are certainly a mathematically rich and interesting sub-
ject in its own right, it seems to the author that the simplifications resulting from
rationality obscure what CFTs really are.

The present approach will be based on the so-called gluing construction of the
conformal blocks in which one constructs large classes of conformal blocks from
the conformal blocks associated to the three punctured sphere. Some aspects of
the resulting “Lego-Teichmüller game” are well-understood in the case of rational

Jörg Teschner
DESY Theory, Notkestr. 85, 22603 Hamburg, Germany, e-mail: teschner@mail.desy.de

1 See [20] to an alternative approach to irrational CFT from a rather different perspective.
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CFT including relations to modular tensor categories, modular functors etc., see [2]
and references therein. However, it seems to the author that the gluing construction
had not yet been developed for the case of arbitrary Riemann surfaces before. This
may be due to the fact that key mathematical results concerning Riemann surface
theory like [30] have become available only recently. The author was also unable to
find a satisfactory treatment of the consequences of projectiveness of the canonical
connection on spaces of conformal blocks within this framework. We will outline
an approach to CFT based on the gluing construction that properly deals with these
issues.

Of particular importance for us will be to find a proper generalization of the con-
cept of a modular functor which does not assume finite-dimensionality of the spaces
of conformal blocks. This immediately raises the issue to control convergence of
expansions w.r.t. to a basis for (sub-) spaces of the space of conformal blocks by
means of suitable topologies. Also for other reasons it will be seen to be of foun-
dational importance to have a nondegenerate hermitian form, or, in good cases, a
scalar product on the spaces of conformal blocks. This is not only required for the
construction of correlation functions out of the conformal blocks, it also serves the
task to select a subspace of “tempered” conformal blocks among the space of all so-
lutions to the conformal Ward identities. This is one of the main issues which makes
the nonrational case much more subtle and interesting than the rational case: As we
will illustrate by an example one will generically find that the space of tempered
conformal blocks is much smaller than the space of all solutions to the conformal
Ward identities. However, the latter contains a subspace of “factorizable” conformal
blocks—those that have a reasonable behavior at all boundaries of the moduli space
M(Σ) of complex structures on a given two-dimensional surface Σ . In the exam-
ple discussed below it turns out that the space of all factorizable conformal blocks
can be fully understood2 provided one understands the much smaller space of all
tempered conformal blocks.

The variant of the concept of a modular functor that will be proposed below is
based on the consideration of stable surfaces3 only. This is not usually done in the
context of modular functors related to rational CFT, where cutting the surface into
pieces containing discs etc. is also allowed. One of the issues that arise is to properly
formulate the distinguished role played by insertions of the vacuum representation.
This turns out to be somewhat more subtle in nonrational cases.

An important issue is the existence of a canonical nondegenerate hermitian form
on spaces of conformal blocks. We will propose a generalization of known relations
between the canonical hermitian form and other data characterizing modular func-
tors like the so-called fusion transformation in Sect. 6. Existence of a scalar product
on spaces of conformal blocks seems to be an open question even for many rational
CFT. In Sect. 6 we will present arguments indicating that the hermitian form gives
a scalar product whenever one restricts attention to the conformal blocks associated
to unitary representations.

2 Via meromorphic continuation.
3 Surfaces X with 2g − 2 + n > 0, with g being the genus of X and n the number of marked
points.
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It may also be worth mentioning the analogies between CFT and the theory of
automorphic forms [39, 14, 15] in which, very roughly speaking, the role of the auto-
morphic forms is taken by the conformal blocks. These analogies play an important
role in certain approaches to the geometric Langlands-correspondence, see [15] for
a review. An ingredient of the classical theory of automorphic forms that does not
seem to have a good counterpart within CFT at the moment is a good analog of the
scalar product on spaces of automorphic forms. This structure is the foundation for
doing harmonic analysis on spaces of automorphic forms. The author believes that
the scalar products on spaces of conformal blocks discussed in this paper provide a
natural analog of such a structure.

In any case, one of my aims in this paper will be to advertise the harmonic analy-
sis on spaces of conformal blocks as an attractive future field of mathematical re-
search, naturally generalizing the theory of automorphic forms and the harmonic
analysis on real reductive groups.

2 Constraints from Conformal Symmetry

2.1 Motivation: Chiral Factorization of Physical Correlation
Functions

A point of view shared by many physicists is that a conformal field theory is char-
acterized by the set of its n-point correlation functions

〈
Vn(zn, z̄n) . . . V1(z1, z̄1)

〉
X
, (1)

which can be associated to any Riemann surface X with n marked points z1, . . . , zn
and a collection of vertex operators Vk(zk, z̄k) k = 1, . . . , n. The vertex operators
Vk(zk, z̄k) are in one-to-one correspondence with states Vk in representations Rk of
the conformal symmetry Vir × Vir by the state-operator correspondence.

A lot of work on CFT was stimulated by the observation that conformal sym-
metry combined with physical consistency requirements constrain the correlation
functions of a CFT strongly.

We will assume that the representations Rk factorize as Rk = Rk ⊗ R′
k . It is

then sufficient to know the correlation functions in the case that the vectors Vk ∈ Rk

factorize as Vk = vk⊗v′k ∈ Rk⊗R′
k . The notation Σ̂ will be used as a short-hand for

the topological surface Σ with marked points zk “decorated” by the representations
Rk , R′

k . There are general arguments which indicate that the correlation functions
should have a holomorphically factorized structure

〈
Vn(zn, z̄n) . . . V1(z1, z̄1)

〉
X
=
∫

F
Σ̂
×F

Σ̂

dμ
Σ̂
(S, S′) FS(v;X)F S′(v

′;X) . (2)

This decomposition disentangles the relevant dependencies by encoding them into
the following objects:
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• The conformal blocks FS(v;X) and F̄
S′(v

′;X) depend holomorphically and an-
tiholomorphically on the complex structure of the Riemann surface X, respec-
tively. The set F

Σ̂
of labels S that the integration is extended over will be specified

more explicitly below. They furthermore depend on the vectors v = ⊗n
k=1 vk ∈⊗n

k=1 Rk and v′ =⊗n
k=1 v

′
k ∈

⊗n
k=1 R

′
k , respectively.

• The measure dμ
Σ̂
(S, S′) does not depend on the complex structure of the Rie-

mann surface X but only on its topological type Σ . together with the assignment
of representations Rk , R′

k to the punctures zk .

Given that the correlation functions of a CFT factorize as in (2), it has turned out
to be fruitful to approach the construction of correlation function in three steps:

• First construct the conformal blocks FS(v;X) by exploiting the constraints com-
ing from the conformal symmetry of the theory.

• Describe the restrictions on the measure dμ
Σ̂
(S, S′) that follow from basic phys-

ical consistency requirements (locality, crossing symmetry, modular invariance).
• Identify the solution to these requirements which fulfills further model-specific

conditions.

We will in the following mainly focus on the first two of these items. Concerning
the third let us only remark that the specification of the chiral symmetries will in
general not be sufficient to determine the CFT. One may think e.g. of the CFTs
with N = 2 superconformal symmetry where one expects to find multi-parametric
families of such CFTs in general.

2.2 Vertex Algebras

Vertex algebras V represent the chiral symmetries of a CFT. We will require that
these symmetries form an extension of the Virasoro algebra

[Ln,Lm] = (n−m)Ln+m + c

12
n(n2 − 1)δn+m,0 . (3)

A convenient formalism for describing extensions of the conformal symmetry gen-
erated by the Virasoro algebra is provided by the formalism of vertex algebras, see
[3, 16, 22, 17]. The symmetries are generated from the modes of the “currents”
denoted Y(A, z), with formal Laurent-expansion of the form

Y(A, z) =
∑

n∈Z

Anz
−n−1. (4)

There is a canonical Lie algebra U ′(V ) which can be attached to a vertex alge-
bra V , see [17, Sect. 4.1]. U ′(V ) is generated from the expansion coefficients An

introduced in (4).
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2.3 Representations of Vertex Algebras

As indicated above, one wants to assign representations of the vertex algebra V to
the marked points of Σ . Representations M of the vertex algebra V must in particu-
lar be representations of the Lie-algebra U ′(V ) generated from the coefficients An,
see [17, Sect. 5] for more details.

Note that V can be considered as a representation of itself, the so-called vac-
uum representation which is generated from a distinguished vector v0 such that
Y(v0, z) = id. This realizes the idea of state-operator correspondence: The currents
Y(A, z) are in one-to-one correspondence with the states A ≡ A−1v0 that they gen-
erate from the “vacuum” v0 via limz→0 Y(A, z)v0. The energy-momentum tensor
T (z) =∑n∈Z

Lnz
−n−2 is identified with Y(A, z) for A = L−2v0.

We will mainly be interested in unitary representations M of the vertex alge-
bra V . To define the notion of a unitary representation of V we need to say how
hermitian conjugation should act on the generators of U ′(V ). Formally this means
that we need to assume that V is equipped with a ∗-structure, a conjugate linear
anti-automorphism ∗ : An → A∗

n of U ′(V ) such that ∗2 = id. M is a unitary rep-
resentation of V if it has the structure of a Hilbert space with scalar product 〈., .〉M
such that A†

n = A∗
n. We will assume in particular that L∗n = L−n, as it is usually

done to define unitary representations of the Virasoro algebra.
Let U be the set of all (equivalence classes) of irreducible unitary representations

with positive energy of V . Following the terminology from Lie group theory we
will call U the unitary dual of V . General unitary representations M can then be
parametrized by measures μM on U. The corresponding Hilbert space HM consists
of all families of vectors v = ( vu ; u ∈ U ) such that vu ∈ Mu for μM -almost all
u ∈ U which are square-integrable w.r.t.

‖v‖2 =
∫

U

dμM(u) ‖vu‖2
Mu

. (5)

We will in the following sometimes restrict attention to the example of the Vi-
rasoro algebra itself. This may be motivated by the observation that in physics the
presence of a large symmetry is a lucky accident rather than generic, but most of
our discussion can be generalized to other vertex algebras as well.

2.4 Conformal Blocks

We will start by recalling a definition of the conformal blocks that has become stan-
dard in the mathematical literature.

2.4.1 Definition

Let X be a Riemann surface of genus g with n marked points P1, . . . , Pn and choices
of local coordinates tk near Pk , k = 1, . . . , n such that the value tk = 0 parametrizes
the point Pk ∈ X.
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Definition 1. A Virasoro conformal block is a linear functional F : MX ≡∏n
r=1 Mr → C that satisfies the following invariance condition:

F(T [η] · v) = 0, (6)

for all v ∈ MX and all meromorphic vectors fields η on X that have poles only at
z1, . . . , zn. The operator T [η] is defined as

T [η] =
n∑

k=1

∑

n∈Z

η(k)n L(k)
n , L(k)

n = id ⊗ . . .⊗ Ln
(k−th)

⊗ . . .⊗ id, (7)

where the η
(k)
n are the Laurent expansion coefficients of η near Pk , η(tk) =

∑
n∈Z

η
(k)
n tn+1

k .

The definition of conformal blocks for a general conformal vertex algebra V

is given in [17]. In addition to the conformal invariance condition formulated in
Definition 1 one imposes conditions which express invariance w.r.t. the symmetries
generated by the other currents that generate the vertex algebra V .

We then denote by CV (X,R) the space of all conformal blocks associated to a
vertex algebra V , a Riemann surface X and the assignment R of a representation
Mk to each of the marked points zk on X.

2.4.2 Insertions of the Vacuum Representation

Let us consider the case that one of the marked points z0, . . . , zn is decorated by the
vacuum representation V . If e.g. R0 = V we may compare the space CV (X,R) to
the space CV (X

′, R′) where X′ is the Riemann surface obtained from X by “filling”
the marked point z0, and with representations Rk ∈ Rep(V ), k = 1, . . . , n assigned
to the marked points z1, . . . , zn, respectively. It can then be shown that the spaces
F (X,R) and F (X′, R′) are canonically isomorphic [17, Theorem 10.3.1]. The
isomorphism is defined by demanding that

F ′(v) = F(v0 ⊗ v), (8)

holds for all v ∈⊗n
k=1 Rk . In other words: Insertions of the vacuum do not change

the space of conformal blocks. This innocent looking fact will be referred to as the
“propagation of vacua”. It has important consequences.

2.4.3 Deformations of the Complex Structure of X

A key point that needs to be understood about spaces of conformal blocks is the
dependence on the complex structure of X. There is a canonical way to represent
infinitesimal variations of the complex structure on the spaces of conformal blocks.
By combining the definition of conformal blocks with the so-called “Virasoro uni-
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formization” of the moduli space Mg,n one may construct a representation of infin-
itesimal motions on Mg,n on the space of conformal blocks.

The “Virasoro uniformization” of the moduli space Mg,n may be formulated as
the statement that the tangent space TMg,n to Mg,n at X can be identified with the
double quotient

TMg,n = Γ
(
X \ {x1, . . . , xn},ΘX

)
∖ n⊕

k=1

C((tk))∂k

/ n⊕

k=1

C[[tk]]∂k, (9)

where Γ (X \ {x1, . . . , xn},ΘX) is the set of vector fields that are holomorphic on
X \ {x1, . . . , xn}, while C((tk)) and C[[tk]] are formal Laurent and Taylor series
respectively.

Let us then consider F(T [η] · v) with T [η] being defined in (7) in the case that
η ∈ ⊕n

k=1 C((tk))∂k and Lrvk = 0 for all r > 0 and k = 1, . . . , n. The defining
invariance property (6) together with Lrvk = 0 allow us to define

δϑF (v) = F(T [ηϑ ] · v), (10)

where δϑ is the derivative corresponding a tangent vector ϑ ∈ TMg,n and ηϑ is any
element of

⊕n
k=1 C((tk))∂k which represents ϑ via (9). Generalizing these obser-

vations one is led to the conclusion that derivatives w.r.t. to the moduli parameters
of Mg,n are (projectively) represented on the space of conformal blocks, the central
extension coming from the central extension of the Virasoro algebra (3).

It is natural to ask if the infinitesimal motions on Mg,n defined above can be
integrated. The space of conformal blocks would then have the structure of a holo-
morphic vector bundle with a projectively flat connection4. This would in particular
imply that locally on Mg,n one may define families of conformal blocks X → FX

such that the functions X → FX(v) depend holomorphically on the complex struc-
ture μ on X.

Examples where this property has been established in full generality are some-
what rare, they include the WZNW-models, the minimal models and certain classes
of rational conformal field theories in genus zero. However, from a physicists point
of view, a vertex algebra whose conformal blocks do not have this property is patho-
logical. We are not going to assume integrability of the canonical connection in the
following.

2.5 Correlation Functions vs. Hermitian Forms

Let us return to our original problem, the problem to construct correlation functions
〈Vn(zn, z̄n) . . . V1(z1, z̄1)〉X. Assuming a holomorphically factorized structure as in
(2), it seems natural to identify F

Σ̂
with an index set for a “basis”5 {FS(v;X); S ∈

4 Projective flatness means flatness up to a central element.
5 Possibly in the sense of generalized functions.
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F
Σ̂
} for a subspace F(Σ̂) of the space of solutions to the conformal Ward identities

(6) that is defined as follows.
Let us focus attention on the dependence of FS(v;X) w.r.t. the label S by using

the notation fv,X(S) ≡ FS(v;X). The measure dμ
Σ̂

on F
Σ̂
×F

Σ̂
introduced in (2)

allows one to consider the space F(Σ̂) of functions on F
Σ̂

such that

∫

F
Σ̂
×F

Σ̂

dμ
Σ̂
(S, S′)(f (S))∗f (S′) < ∞. (11)

By definition, the space F(Σ̂) comes equipped with a hermitian form H
Σ̂

which
allows one to represent the correlation functions in the form

〈
Vn(zn, z̄n) . . . V1(z1, z̄1)

〉
X
= H

Σ̂
(fv′,X, fv,X). (12)

The elements of the space F(Σ̂) are identified with elements of a subspace of the
space of conformal blocks by associating to each f ∈ F(Σ̂) a solution Ff to the
conformal Ward identities via

Ff (v;X) ≡
∫

F
Σ̂
×F

Σ̂

dμ
Σ̂
(S, S′)(f (S))∗FS′(v;X). (13)

We are therefore confronted with the task to construct suitable hermitian forms on
subspaces of the space of conformal blocks which allow us to represent the correla-
tion functions in the form (12).

3 Behavior Near the Boundary of Moduli Space

It is of particular importance for most applications of CFT within physics to under-
stand the behavior of correlation functions near the boundaries of the moduli space
M(Σ) of complex structures on a given two-dimensional surface Σ . Such bound-
aries may be represented by surfaces on which a closed geodesic c was shrunk to
zero length, thereby pinching a node. Two cases may arise:

(A) Cutting X along c produces two disconnected surfaces X1 and X2 with bound-
ary.

(B) Cutting X along c produces a connected surface X′ with boundary whose genus
is smaller than the genus of X (“pinching a handle”).

In the following we will propose certain assumptions which ensure existence of
an interpretation of the CFT in question as a quantum field theory with Hilbert space

HCFT =
∫ ⊕

U2
dμ(r, r ′)Rr ⊗ Rr ′ . (14)

These assumptions may be loosely formulated as follows.
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In case (A) it is required that there exists a representations of the correlation
functions by “inserting complete sets of intermediate states”, schematically

〈
Vn(zn, z̄n) . . . V1(z1, z̄1)

〉
X
=
∑

v∈B

〈
0|OX1

qL0 q̄L̄0 |v〉
X1

〈
v|OX2

|0〉
X2

, (15)

where OXr : HCFT → HCFT, r = 1, 2 are certain operators associated to the surfaces
X1 and X2, respectively, and the summation is extended over the vectors v which
form a basis B for the space of states HCFT of the conformal field theory in question.

In case (B) it is required that there exists a representations of the correlation
functions as a trace

〈
Vn(zn, z̄n) . . . V1(z1, z̄1)

〉
X
= trHCFT

(
qL0 q̄L̄0OX′

)
, (16)

where OX′ : HCFT → HCFT is a certain operator associated to the surface X′.
One may formulate these two conditions more precisely by demanding that the

conformal blocks which appear in (2) can be obtained by the gluing construction
that we will now describe in more detail.

3.1 Gluing of Riemann Surfaces

For the following it will be more convenient to consider Riemann surfaces whose
boundary components are represented by holes with parametrized boundaries rather
than marked points with choices of local coordinates around them. Conformal in-
variance allows to relate the two ways of representing boundary components, see
[29] for a mathematical discussion of some of the issues involved.

3.1.1

Let X′ be a possibly disconnected Riemann surface with 2m + n parametrized
boundaries which are labelled as C+

1 , C−
1 , . . . , C+

m,C−
m,B1, . . . , Bn. We will as-

sume that the parameterizations of the boundaries C±
r , r = 1, . . . , m extend holo-

morphically to give coordinates t±r for annular neighborhoods A±
r of C±

r such that
the boundaries C±

r are represented by the circles |t±r | = 1, while the coordinates of
points in the interior of A±

r satisfy |t±r | < 1. We will furthermore assume that the
annuli A±

r are mutually non-intersecting.
We may then define a new Riemann surface X by identifying all the points P1,

P2 which satisfy
t+r (P1)t

−
r (P2) = qr, (17)

for given complex numbers qr such that |q| < 1 and all r = 1, . . . , m. The annuli
A±

r are thereby mapped to annuli Ar embedded into the new surface X.
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One may apply this construction to a family X′
t of surfaces of the kind above

with a set of parameters collectively denoted t = (t1, . . . , tk). This yields a family
Xq,t of Riemann surfaces that is labelled by the m+k parameters q = (q1, . . . , qm)

and t . The family of surfaces obtained in this way contains the nodal surfaces Xd

which are obtained when at least one of the qr equals zero. If X′
t is stable, i.e. if its

disconnected components all have a number n of punctures larger than 2 − 2g, one
gets the nodal surfaces Xd that represent the points of the Deligne-Mumford com-
pactification M(Σ) of the moduli space M(Σ) of complex structures on surfaces
Σ homotopic to X.

3.1.2

It will be important for us to notice that there exists a universal family of this kind:
A family Xp of surfaces such that for any other family Yq of surfaces which contains
a nodal surface Yq0

isomorphic to Xd there exists a holomorphic map p = ϕ(q),
defined in some neighborhood of the point q0, such that Yq and Xϕ(q) are isomorphic
(related by a holomorphic map).

More precisely let us consider families πU : X → U of surfaces degener-
ating into a given nodal surface Xd . This means that π is holomorphic and that
Xp ≡ π−1(p) is a possibly degenerate Riemann surface for each point p in a
neighborhood U of the boundary component ∂Mg,n containing the nodal surface
Xd . Following [30] we will call families πU : X → U as above an unfolding of
the degenerate surface Xd . The surface Xd is called the central fiber of the unfold-
ing πU .

Let us call a family πU : X → U universal if for any other family πV : Y →
V which has a central fiber Yd isomorphic to Xd , there exists a unique extension
of the isomorphism f : Yd → Xd to a pair of isomorphisms (holomorphic maps)
(ϕ, φ), where ϕ : V → U and φ : Y → X such that πU ◦ φ = ϕ ◦ πV .
Theorem 2 — [30] —
A nodal punctured Riemann surface Xd admits a universal unfolding if and only if
it is stable, i.e. iff n > 2 − 2g.

It is no loss of generality to assume that the family surfaces Xp are obtained by
the gluing construction, so Xp ≡ Xq,t .

3.1.3

It is possible to apply the gluing construction in the cases where X′ =⊔2g−2+n

p=1 Sp
is the disjoint union of three-holed spheres. One thereby gets families of surfaces
Xq parametrized only by the gluing parameters q = (q1, . . . , qm) with m being
given as m = 3g − 3 + n. The different possibilities to get surfaces X by gluing
three punctured spheres can be parametrized by the choice of a cut system, i.e. a
collection c = {c1, . . . , c3g−3+n} of nonintersecting simple closed curves on X.
X′ is reobtained by cutting X along the curves cr , r = 1, . . . , m. The coordinates
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q = (q1, . . . , qm) parametrize a neighborhood Uc of the point in Mg,n represented
by the maximally degenerate surface Xc corresponding to q = 0. It is known [23,
21] that one may cover all of Mg,n with the coordinate patches Uc if one considers
all possible cut systems c on X.

One may similarly use the coordinates τ = (τ1, . . . , τm) such that qr = e−τr

as system of coordinates for subsets of the Teichmüller space Tg,n. One should
note, however, that the coordinates τ are not unambiguously determined by the cut
system c. Indeed, the coordinates τ ′ obtained by τ ′r = τr + 2πikr , kr ∈ Z, would
equally well do the job.

In order to resolve this ambiguity, one may refine the cut system c by introducing
a marking σ of X, a three-valent graph on X such that each curve of the cut system
intersects a unique edge of σ exactly once.

Fig. 1 Standard marking of a three holed sphere

With the help of the graph σ one may then define a “fundamental domain” Vσ for
the variables τ as follows: Let us introduce a standard graph like the one depicted in
Fig. 1 on each of the three-holed spheres Sp. We may assume that our coordinates
are such that the standard graphs in the three holed spheres intersect the boundaries
of the annuli Ar in the points P±

r given by t±r (P±
r ) = |q|, respectively. On each

annulus consider the curve γr : [0, 1] → Ar , where t+r (γ (θ)) = |q|eτ̄θ . The curve
γr connects the points P±

r , winding around the annulus Ar a number of times speci-
fied by the integer part of Im(τ )/2π . We thereby get a three valent connected graph
σ ′(τ ) on X. The fundamental domain Vσ for the coordinates τ may then be defined
by the requirement that the graph σ ′(τ ) is homotopic to the given graph σ .

3.1.4

It is clear from the definitions that each marking σ determines a cut system c =
c(σ ). The set M of markings may be regarded as a cover c : M → C of the set
C of all cut systems. The subgroup MCG(Σ)c of the mapping class group which
preserves a cut system c acts transitively on the set of all markings which correspond
to the same cut system. The group MCG(Σ)c is generated by the Dehn twists along
the curves cr , r = 1, . . . , 3g − 3 + n representing the cut system, together with the
braiding transformations of the three holed spheres obtained by cutting X along the
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curves cr , r = 1, . . . , 3g − 3 + n. An example for the braiding transformations is
graphically represented in Fig. 2.

Fig. 2 The B-move

3.2 Gluing of Conformal Blocks

3.2.1

Let us keep the set-up from paragraph 3.1.1. Let R be an assignment of representa-
tions of a vertex algebra V to the boundary components of X′

t which is such that rep-
resentation R−

r assigned to boundary component C−
r is the dual of the representation

R+
r assigned to boundary component C+

r for all r = 1, . . . , m. Let Ft ∈ CV (X
′
t ;R)

be a family of conformal blocks assigned to the family Xt of surfaces with an as-
signment R of representations to the boundary components of Xt as above. Let
finally

eτ ≡
m⊗

r=1

er(τr ), er (τr ) ≡
∑

ı∈Ir

e−r,ı ⊗ e−τrL0,r e+r,ı ,

where {e+r,ı; ı ∈ Ir} and {e−r,ı; ı ∈ Ir} are bases for R+
r and R−

r , respectively, which
are dual to each other in the sense that 〈e−r,ı , e+r,j 〉R+

r
= δı,j , with 〈., .〉R+

r
being the

dual pairing.
We may then consider the expression

Gt,τ (v)=Ft(v ⊗ eτ ), (18)

where v1 ⊗ . . .⊗ vn. As it stands, the expression is defined as a formal power series
in powers of e−τr .

3.2.2

To proceed, we will need to introduce a nontrivial assumption:
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The series in (18) have a finite radius of convergence. The resulting
domains of definition Dσ of the conformal blocks Gt,τ cover the neigh-
borhoods Uc(σ ) ⊂ Mg,n which form an atlas of Mg,n according to
[23, 21].

It is not yet clear how large the class of vertex algebras is for which this as-
sumption is satisfied. For rational CFT it is to be expected that the conformal blocks
satisfy a closed system of differential equations which allow one to show conver-
gence and existence of an analytic continuation. The situation is more subtle in the
case of nonrational CFT. Validity of the assumption above is known [35] in the case
of the Virasoro algebra for surfaces with g = 0. A key observation is the analyticity
of the vector-valued function e−τL0ψ in the cases where the underlying representa-
tion of the Virasoro algebra is unitary. Let us also remark that an assumption related
to the one above is built into Segal’s approach to CFT by requiring that the operators
associated to cobordisms are trace-class. For further comments see also Remark 3
at the end of Sect. 3.3 below.

3.2.3 Conformal Ward Identities

We want to check that the expression in (18) satisfies the conformal Ward identities.
To this aim it suffices to notice that η can be split as the sum of ηout and ηin, where
ηout is holomorphic in X′, and ηin is holomorphic in

⋃3g−3+n

r=1 Ar . This means that
Gt,τ (T [η]v) can be represented as

Gt,τ

(
T [η]v) = Ft

(
T [ηout](v ⊗ eτ )

)+ Ft

(
v ⊗ T [ηin]eτ

)
. (19)

We have Ft(T [ηout]w) = 0 for all ηout that are holomorphic in X′
t by the conformal

Ward identities satisfied by Ft . It is furthermore possible to show that the vectors
er(τr ) are invariant under the action of the holomorphic maps ηrin ≡ ηin|Ar ,

T [ηrin]er(τr ) = 0, r = 1, . . . , m.

The conformal Ward identities follow from the combination of these two observa-
tions.

Keeping in mind Theorem 2 it follows from the conformal Ward identities that
the conformal blocks defined in (18) do not depend on the choices involved in the
gluing construction. The resulting families Gt,τ of conformal blocks are therefore
well-defined in a neighborhood Vσ of the component of ∂Tg,n that is obtained by
τr →∞ for r = 1, . . . , m.

It seems to the author that the foundational importance for CFT of the work [30]
was hitherto not as widely appreciated as it should be. It explains in particular why
it is absolutely preferable to formulate CFT in terms of stable surfaces.

3.2.4 Decorated Marking Graphs

In the gluing construction above one assigns elements of a basis for the space of
conformal blocks of the three punctured sphere to each vertex of a marking graph.
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The definition of a basis for this space will generically depend on the choice of a
distinguished boundary component of the three punctured sphere in question. In or-
der to parametrize different bases in spaces of conformal blocks one needs to choose
for each vertex p ∈ σ0 a distinguished edge emanating from it. The distinguished
edge will sometimes be called “outgoing”. As a convenient graphical representa-
tion we will use the one introduced in Fig. 3. The term marking will henceforth be
used for graphs σ as defined above together with the choice of a distinguished edge
emanating from each vertex.

Fig. 3 Two representations for the decoration on a marking graph

3.2.5

The following data label the conformal blocks on X that can be constructed by
means of the gluing construction. We will denote by σ0 and σ1 the sets of vertices
and edges of σ , respectively.

• The marking σ .
• An assignment ρ of representation labels re ∈ U to the edges e ∈ σ1.
• An assignment w of conformal blocks wp ∈ CV (Sp, ρp) to each vertex p ∈ σ0

of σ with assignment ρp of representations to the edges that emanate from p

determined by ρ.

We will use the notation Gστ (δ) for the family of conformal blocks which is essen-
tially uniquely defined by the data σ and the “decoration” δ = (ρ,w).

3.3 Correlation Functions

We are now in the position to formulate our requirements concerning the behavior of
the correlation functions 〈Vn(zn, z̄n) . . . V1(z1, z̄1)〉X near the boundary of moduli
space more precisely. Let us consider a marking σ . The marking σ determines a
maximally degenerate surface Xc(σ) and a neighborhood Uc(σ ) ⊂ Mg,n of Xc(σ).
Let us recall the set-up from Sect. 2.5, in particular the representation (12). We will
adopt the following two requirements:
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3.3.1 First Requirement: Factorization of Conformal Blocks

The functions FS(v;X) can be identified with the values Gστ (δ|v) of the conformal
blocks obtained from the gluing construction provided that a suitable identification
between the labels S and the decorations δ is adopted. This means in particular that
the space F

Σ̂
of all labels S should be identified with the sub-space Iσ,R of the space

Iσ of all decorations δ which contains all decorations δR with fixed assignment R
of representations to the external edges6 of σ .

The space Iσ of all decorations can be described more explicitly as

Iσ ≡
∏

ρ∈Uσ1

⊗

p∈σ0

Ip(ρp), (20)

where U
σ1 is the vector space of all assignments ρ of elements re ∈ U to the edges

e ∈ σ1 and Ip(ρp) is the index set for a basis in C (Sp, ρp), p ∈ σ0.
The role of the functions fv,X from Sect. 2.5 is then taken by the functions

ER
στ (v) which map a decoration δR ∈ Iσ,R to Gστ (δR|v). We will later find it

more convenient to consider the functions Eστ (v) : Iσ → C which map an ar-
bitrary decoration δ ∈ Iσ to Gστ (δ|v). This is natural in view of the fact that the
assignment R of representations to boundary components is part of the data con-
tained in the decoration δ. The space of all complex-valued functions on Iσ will be
denoted Fσ .

3.3.2 Second Requirement: Factorization of the Hermitian form H
Σ̂

In order to have a representation for the correlation functions in the form of (12)
there must exist a hermitian form HR′R

σ on suitable subspaces of Fσ × Fσ such that

〈
Vn(zn, z̄n) . . . V1(z1, z̄1)

〉
X
= HR′R

σ

(
Eστ (v

′), Eστ (v)
)
. (21)

Our second main requirement is that the hermitian form HR′R
σ can be factorized as

HR′R
σ =

∫

Uσ1×Uσ1

dμR′R(ρ
′, ρ)

⊗

p∈σ0

H
ρ′pρp
p , (22)

where

• The measure dμR′R has support only when the assignment of representations to
the external edges given by ρ′ and ρ coincides with R′ and R, respectively, and

• The hermitian forms H
ρ′pρp
p are defined on certain subspaces of the spaces F(ρ′p)×

F(ρp) of complex-valued functions on I (ρ′p)×I (ρp).

Assuming that the hermitian forms Hρ′ρ
p can be represented in the form

6 The edges ending in the boundary components of Σ .
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Hρ′ρ
p (f, g) =

∑

ı′,ı∈I

(f (ı′))∗Hı′ı (ρ
′, ρ)g(ı), (23)

one may in particular represent the three point functions 〈V3(y3, ȳ3)V2(y2,

ȳ2)V1(y1, ȳ1)〉S0,3 as

〈
V3(∞)V2(1)V1(0)

〉
S0,3

=
∑

ı′,ı∈I

Hı′ı (ρ
′, ρ)Gı′(ρ

′|v′3 ⊗ v′2 ⊗ v′1)Gı(ρ|v3 ⊗ v2 ⊗ v1). (24)

In (24) we have used the standard model for S0,3 as P
1 \ {0, 1,∞} and assumed that

y3 = ∞, y2 = 1, y1 = 0. {Gı′(ρ′); ı′ ∈ I (ρ′)} and {Gı(ρ); ı ∈ I (ρ)} are bases
for C (S0,3.ρ

′) and C (S0,3.ρ), respectively.

3.4 Conformal Blocks as Matrix Elements

For future use, let us note that in the case that X has genus zero there is a convenient
reformulation of the gluing construction of the conformal blocks in terms of chiral
vertex operators.

3.4.1 Chiral Vertex Operators

The chiral vertex operators are families of operators Yr2
r3r1(v2|z), v2 ∈ R2, z ∈

C \ {0} mapping the representation Rr1 to the dual R̄r3 of Rr3 . They are defined
such that the conformal blocks G(3) associated to the three punctured sphere S(3) are
related to the matrix elements of Yr2

r3r1(v2|z) as

F (3)(ρ|v3 ⊗ v2 ⊗ v1) =
〈
v3,Yr2

r3r1
(v2|1)v1

〉
R3

. (25)

It is assumed that the assignment ρ : k �→ rk , k ∈ {1, 2, 3} is in correspondence to
the numbering of boundary components introduced in Fig. 3. A simplified diagram-
matical representation is introduced in Fig. 4.

Fig. 4 Diagrammatical representation for chiral vertex operators

The chiral vertex operators Yr2
r3r1(v2|z) are well-defined by (25) in the sense of

formal power series in z.
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3.4.2

There are two different ways to glue two decorated three-punctured spheres such
that the outgoing boundary component of the first is glued to one of the incom-
ing boundary components of the other. To each of the two gluing patterns we may
associate two natural ways to compose chiral vertex operators, namely

Y
r3
r4r21

(v3|1)Yr2
r21r1

(v2|z)v1 and Y
r32

r4r1

(
Y
r3
r32r2(v3|1 − z)v2|1

)
v1, (26)

respectively. A diagrammatic representation for these two ways to compose chiral
vertex operators is given in Fig. 5, respectively.

Fig. 5 Diagrammatic representation for the compositions in (26)

Let us call a marking σ on a surface X of genus 0 admissible if the outgoing
boundary components of one pair of pants are always glued to an incoming bound-
ary component of another. The resulting markings σ distinguish a unique outgoing
boundary component of the surface X. We will assign the representation Rn to this
boundary component. Using the rule for compositions of chiral vertex operators re-
cursively we can construct an operator YX,σ : Rn−1 ⊗ · · · ⊗R1 → R̄n such that the
conformal block associated to σ can be represented as

Gσ (vn ⊗ · · · ⊗ v1) =
〈
vn,YX,σ (vn−1 ⊗ · · · ⊗ v1)

〉
Rn

,

for all vk ∈ Rk , k = 1, . . . , n. The fact that the matrix elements above represent the
conformal blocks follows from the observation that the composition of chiral vertex
operators is equivalent to the gluing operation.

Remark 3. The issues of convergence of the power series defined by the gluing con-
struction and convergence of the power series representing the chiral vertex opera-
tors are closely related. In rational CFT one can settle this issue with the help of the
differential equations satisfied by the conformal blocks, see e.g. [37]. In the case of
the Virasoro algebra one may use analytic arguments for deriving such results [35].
The typical situation seems to be that the power series representing, for example,
〈vn+1,Yrn

rn+1sn−1(vn|zn) . . .Yr1
s1r0(v1|z1)v0〉 converge provided that the variables zk

are radially ordered |zn| > · · · > |z1|.

4 From one Boundary to Another

For a given pair of markings σ2, σ1 it may happen that the domains Dσr , r = 1, 2
in which the corresponding conformal blocks can be defined by means of the gluing
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construction have a nontrivial overlap, Dσ2
∩ Dσ1

$= ∅. Assume that τ1 and τ2
parametrize the same point in Dσ2

∩Dσ1
⊂ Tg,n. We then have two possible ways

to represent the correlation function 〈Vn(zn, z̄n) . . . V1(z1, z̄1)〉X in the form (21),
namely either as Hσ1

(Gσ1τ1 ,Gσ1τ1) or as Hσ2
(Gσ2τ2 ,Gσ2τ2), respectively. It is a

natural requirement to demand that these two representations agree,

Hσ1

(
Gσ1τ1 ,Gσ1τ1

) = Hσ2

(
Gσ2τ2 ,Gσ2τ2

)
. (27)

These constraints generalize what is often called crossing symmetry, locality and
modular invariance. Keeping in mind our assumption that the domains Dσr cover
the neighborhoods Uc(σ ) ⊂ Mg,n which form an atlas of Mg,n we arrive at an
unambiguous definition of the correlation functions on all of Mg,n.

In order to analyze the conditions further, we need to introduce another assump-
tion:

The families Gσ1τ1 and Gσ2τ2 are linearly related.

This assumption will be formulated more precisely below. It is, on the one hand,
absolutely necessary for the validity of (27) at least in the case of rational CFT
[24]7. The assumption above is, on the other hand, a rather deep statement about a
given vertex algebra V from the mathematical point of view, especially if V is not
rational.

What simplifies the analysis somewhat is the fact that the relations between pairs
of markings can be reduced to a few simple cases associated to Riemann surfaces
of low genus g = 0, 1 and low number of marked points n ≤ 4. In order to explain
how this reduction works we will begin by briefly reviewing the necessary results
from Riemann surface theory.

4.1 The Modular Groupoid

The physical requirements above boil down to understanding the relations between
conformal blocks associated to pairs [σ2, σ1] of markings. In order to break down
understanding such relations to a sort of Lego game it will be very useful to ob-
serve that all transitions between two markings can be factorized into a simple set
of elementary moves. One may formalize the resulting structure by introducing a
two-dimensional CW complex M (Σ) with set of vertices M0(Σ) given by the
markings σ , set of edges M1(Σ) associated to the elementary moves. It will then
be possible to identify the set M2(Σ) of “faces” (relations between the elemen-
tary moves) that ensure simply-connectedness of M (Σ), as we are now going to
describe in more detail.

7 It seems likely that the argument in [24] can be generalized to the nonrational case if there
exists an analytic continuation of the correlation functions from the euclidean section τ̄ = τ ∗ to
functions analytic in independent variables τ, τ̄ .
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4.1.1 Generators

The set of edges M1(Σ) of M (Σ) will be given by elementary moves denoted
as (pq), Zp, Bp, Fpq and Sp. The indices p, q ∈ σ0 specify the relevant three
holed spheres within the pants decomposition of Σ that is determined by σ . The
move (pq) will simply be the operation in which the labels p and q get exchanged.
Graphical representations for the elementary moves Zp, Bp, Fpq and Sp are given
in Figs. 6, 2, 7 and 8, respectively.

Fig. 6 The Z-move

Fig. 7 The F-move

Fig. 8 The S-move

Proposition 4 ([1]). Any two markings σ , σ ′ can be connected to each other by a
path composed out of the moves (pq), Zp, Bp, Fpq and Sp.
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4.1.2 Relations

It is useful to notice that any round trip can be broken up into elementary ones. A
complete list of these elementary round trips was first presented in [24], see [1] for
a mathematical treatment.

To simplify notation we will write π2 ∼ π1 if the round trip π in question can
be represented as π = π2 ◦ π−1

1 .

Relations supported on surfaces of genus zero.

g = 0, s = 3: Zp ◦ Zp ◦ Zp ∼ id. (28)

g = 0, s = 4:
(a) Fqp ◦ Bp ◦ Fpq ∼ (pq) ◦ Bq ◦ Fpq ◦ Bp,

(b) Fqp ◦ B−1
p ◦ Fpq ∼ (pq) ◦ B−1

q ◦ Fpq ◦ B−1
p ,

(c) Apq ◦ Aqp ∼ (pq).

(29)

g = 0, s = 5: Fqr ◦ Fpr ◦ Fpq ∼ Fpq ◦ Fqr . (30)

We have used the abbreviation

Apq ≡ Z−1
q ◦ Fpq ◦ Z−1

q ◦ Zp. (31)

Relations supported on surfaces of genus one.

In order to write the relations transparently let us introduce the following composites
of the elementary moves.

g = 0, s = 3: (a) B ′
p ≡ Z−1

p ◦ Bp ◦ Z−1
p ,

(b) Tp ≡ Z−1
p ◦ Bp ◦ Zp ◦ Bp,

(32)

g = 0, s = 4: Bqp ≡ Z−1
q ◦ F−1

qp ◦ B ′
q ◦ F−1

pq ◦ Z−1
q ◦ (pq), (33)

g = 1, s = 2: Sqp ≡ (Fqp ◦ Zq)
−1 ◦ Sp ◦ (Fqp ◦ Zq). (34)

It is useful to observe that the move Tp, represents the Dehn twist around the bound-
ary component of the trinion tp numbered by i = 1 in Fig. 3.

With the help of these definitions we may write the relations supported on sur-
faces of genus one as follows:

g = 1, s = 1: (a) S2
p ∼ B ′

p,

(b) Sp ◦ Tp ◦ Sp ∼ T −1
p ◦ Sp ◦ T −1

p .
(35)

g = 1, s = 2: Bqp ∼ S−1
qp ◦ T −1

q Tp ◦ Spq. (36)
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Theorem 5 – [1] – The complex M (Σ) is connected and simply connected for any
e-surface Σ .

4.2 Representation of the Generators on Spaces of Conformal
Blocks

Definition 6. We will say that a vertex algebra V has the factorization property if

(i) there exists an analytic continuation of the family Gστ (ρ,w) into a domain in
Tg,n that contains the fundamental domain Vσ in Tg,n.

(ii) For each pair (σ2, σ1) of markings related by one of the elementary transforma-
tions Zp, BP , Fpq and Sp there exists a nontrivial intersection Dσ2σ1

⊂ Tg,n

of the domains Dσ2
and Dσ1

within which the conformal blocks Gσ1τ1(ρ1, w1)

and Gσ2τ2
(ρ2, w2) can be uniquely defined by the gluing construction and an-

alytic continuation. There exists a relation of the form

Gσ1τ1(ρ1, w1) =
∫

dμ
Σ
(ρ2)

∑

w2

Fσ1σ2
(ρ1|ρ2)

w2
w1

Gσ2τ2
(ρ2, w2), (37)

which holds whenever τ2, τ1 parameterize the same point in Dσ2σ1
.

Let us note that the conjecture can be verified by elementary means in the cases
of the moves Zp and Bp. These are the moves which do not change the cut system.
Existence of a relation like (37) for the cases that σ2 and σ1 are related by a Fpq -
or Sp-move is a deep statement. It is, on the one hand, a requirement without which
a CFT can hardly be of physical relevance. It may, on the other hand, be hard to
prove mathematically that a given vertex operator algebra has this property. State-
ments of this type are presently only known in the case of certain rational vertex
algebras (from the differential equations satisfied by the conformal blocks) or in the
nonrational case of the Virasoro algebra reviewed in Sect. 6.

4.2.1

The relation (37) suggests to consider an operator Mσ1σ2
between certain subspaces

of Fσ2
and Fσ1

, respectively, which is defined such that

(Mσ2σ1
f )w1

(ρ1) =
∫

dμ
Σ
(ρ2)

∑

w2

Fσ1σ2
(ρ1|ρ2)

w2
w1

fw2
(ρ2). (38)

The conditions (27) can be seen to be equivalent to the following condition of in-
variance of the family of hermitian forms Hσ ,

Hσ1

(
Mσ1σ2

fσ2
,Mσ1σ2

gσ2

) = Hσ2

(
fσ2

, gσ2

)
. (39)
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Combined with the factorization (22) one gets nontrivial restrictions on the family
of hermitian forms Hρ′ρ on F(ρ′)× F(ρ).

4.3 Representation of the Relations on Spaces of Conformal Blocks

4.3.1

The operators Zp, Bp, Fpq and Sp defined in the previous subsection are not in-
dependent. The faces 0 of the complex M (Σ) correspond to round trips in Tg,n

starting and ending in the fundamental domain Vσ associated to some marking σ .
The realization of such round trip on the conformal blocks can be realized by means
of parallel transport w.r.t. the canonical connection on spaces of conformal blocks,
in general. The operator U(π) which is associated to a round trip therefore has to
be proportional to the identity. It does not have to be equal to the identity since the
canonical connection is not flat but only projectively flat. One thereby gets a relation
U(0) = ξ0 between the “generators” Zp, Bp, Fpq and Sp for every round trip 0

that one can compose out of the elementary moves (pq) Zp, Bp, Fpq or Sp.

4.3.2 Insertions of the Vacuum

Taking into account the propagation of vacua implies that the operators Zp, Bp, Fpq

must simplify considerably if one of the representations inserted is the vacuum. We
must have, in particular, the relations

F · [H0
r̄3r3

⊗ H
r3
r2r1

] = Z · Hr1
r3r2

⊗ H
0
r̄1r1

(40)

F · [Hr3
0r̄3

⊗ H
r3
r2r1

] = H
r̄2
0r2

⊗ H
r3
r2r1 (41)

B · Hr̄
0r = H

r̄
r0 (42)

B · H0
rr̄ = T · H0

r̄r . (43)

We are using the notation H
r3
r2r1 for C (S0,3, ρ) if ρ = (r3, r2, r1), with labelling of

boundary components in correspondence to the decoration introduced in Fig. 3.
Some of the relations in which these operators appear trivialize accordingly. By

rescaling the operators Zp, Bp, Fpq and Sp, if necessary, one can achieve that ξ0 =
1 for some other relations. With the help of these observations it is easy to see that
one may assume ξ0 = 1 for each of the relations (28)–(30) associated to Riemann
surfaces of genus zero.

In the case of genus one let us observe that the relation (36) trivializes if one of
the two external representations is the vacuum representation. One may furthermore
always redefine Sp such that ξ0 = 1 in the case of the relation which corresponds
to (35), (b). One is left with the relation (35), (a). The arguments well-known from
rational CFT [24, 2] lead one to the conclusion that the corresponding relation is
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S2
p = e−πi c2 B′p, (44)

where c is the central charge of the Virasoro algebra introduced in (3).

5 Notion of a Stable Modular Functor

We shall now formulate an abstract framework that we believe to be suitable for
large classes of not necessarily rational CFT. This framework can be seen as a vari-
ant of the concept of a modular functor from [33]. Combined with the gluing con-
struction of the conformal blocks it will be shown to yield a concrete realization of
the point of view of Friedan and Shenker [18] who proposed to view the partition
function of a CFT as a hermitian metric on a projective line bundle over the moduli
space of Riemann surfaces, with expectation value of the stress-energy tensor being
the canonical connection.

An important feature is that we will assume existence of a scalar product on the
spaces of conformal blocks. The topology defined by the scalar product gives us
control on the possible infinite-dimensionality of these spaces. Existence of a scalar
product may seem to be an overly strong assumption, but we will discuss in the
following sections why we believe that the class of vertex algebras that is covered
by our formalism is rather large.

5.1 Towers of Representations of the Modular Groupoid

Definition 7. A tower of representations of the modular groupoid assigns to a topo-
logical surface Σ the following objects:

• The family of Hilbert spaces [Hσ ]σ∈M0(Σ) of the form

Hσ ≡
∫ ⊕

Uσ1

dμσ (ρ)
⊗

p∈σ0

F(ρp), (45)

where dμσ (ρ) is the product measure dμσ (ρ) =∏e∈σ1
dμPl(re) if ρ : σ1 * e →

re ∈ U.
• For each pair [σ2, σ1] of markings a unitary operator Mσ2σ1 : Hσ1

→ Hσ2
such

that
Mσ1σ3

· Mσ3σ2
· Mσ2σ1

= ξσ3σ2σ1
· id, Mσ1σ2

· Mσ2σ1
= 1, (46)

where ξσ3σ2σ1
∈ C, |ξσ3σ2σ1

| = 1.

This assignment is such that the following requirements hold:

Disjoint union: Let X = X′ ! X′′ be the disjoint union of X′ and X′′, and let
σi = σ ′i ! σ ′′i , i = 1, 2 be two markings on X. Then
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Hσ = Hσ ′ ⊗ Hσ ′′, (47)

Mσ2σ1
= Mσ ′2σ ′1 ⊗ Mσ ′′2σ ′′1 . (48)

Gluing: Assume that X′ is obtained from X by gluing the boundary components
B2 and B1. Let σ be a marking on X with edges e2 and e1 ending in B2 and B1,
respectively, and let σ ′ be the marking on X obtained from σ by gluing e2 and
e1.
There is a dense subset Tσ of Hσ such that for each Ψ ∈ Tσ the following gluing
projection is well defined:

Ge2e1Ψ = Ψ |re2=re1
,

where Ψ |re2=re1
is obtained from Ψ by restricting it to the subset of Iσ where

re1 = re2 .
The projection Ge2e1 is then required to be compatible with the representations
of the modular groupoids of X and X′ in the following sense: It is required that
Mσ2σ1 maps from Tσ1

to Tσ2
and that

Ge2e1Mσ2σ1Ψ = Mσ ′2σ ′1Ge2e1Ψ, (49)

holds for all pairs (σ ′2, σ ′1) of markings on X obtained from the corresponding
markings (σ2, σ1) on X by gluing, and all Ψ ∈ Tσ1

.
Propagation of vacua: Let X′ be obtained from X by gluing a disc into the bound-

ary component B0. Let σ be a marking of X, e0 be the edge of σ that ends in B0

and p0 be the vertex from which e0 emanates. One gets a marking σ ′ on X′ by
deleting e0 and p0 and gluing the other two edges that emanate from p0 into a
single edge of σ ′.
There then exist dense subsets Tσ and Tσ ′ of Hσ and Hσ ′ , respectively, together
with projection mappings Pσ,B0

: Tσ �→ Tσ ′ such that

Pσ2,B0
Mσ2σ1Ψ = Mσ ′2σ ′1Pσ1,B0

Ψ, (50)

holds for all pairs (σ2, σ1) of markings on X and the corresponding markings
(σ ′2, σ ′1) on X′ defined above.

The requirements concerning disjoint union and gluing imply that the representa-
tions of the modular groupoids are constructed out of the representatives of the
elementary moves Bp, Zp, Fpq and Sp. A tower of representations of the modular
groupoid is therefore characterized by the following data:

• The measure set U (labels of unitary representations of V ), equipped with a mea-
sure dμPl.

• The Hilbert spaces H
(3)

σ (ρ) associated to the markings σ on the three punctured
sphere Σ0,3 with assignment ρ : k �→ rk , k ∈ {1, 2, 3}.

• The operators Z, B, F and S mapping Hσ1
(ρ) to Hσ2

(ρ) with respective markings
σ1 and σ2 being chosen as depicted in Figs. 6–8.
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Let us furthermore remark that the constraints imposed on these data by the prop-
agation of vacua requirement are related to (40)–(43). The precise relationship can
be subtle if the vacuum representation is not contained in support of dμPL as it
may happen for nonrational CFT (see Sect. 6 for an example). The definition of
the projection mappings Pσ,B0

then involves analytic continuation w.r.t. the confor-
mal dimensions of the representations, and the compatibility condition (50) requires
that the dependence of Z, B, F and S on the labels of external representations has a
sufficiently large domain to analyticity.

5.2 Unitary Modular Functors

Given a tower of representations of the modular groupoids there is a canonical way
to construct a corresponding modular functor, as we shall now explain. The main
issue is to eliminate the apparent dependence on the choice of the marking σ .

Each of the spaces Hσ becomes a representation of the mapping class group
MCG(Σ) by choosing for each m ∈ MCG(Σ) a sequence πm of elementary moves
that connects σ to m(σ). Taking advantage of the fact that the isomorphism Hσ 5
Hm(σ) is canonical one gets an operator M(m) on Hσ .

It is easily seen that for each pair [σ2, σ1] there exist numbers ζσ2σ1
which satisfy

ζσ1σ3
· ζσ3σ2

· ζσ2σ1
= ξσ3σ2σ1

· id. (51)

Indeed, given a fixed reference marking σ0 one may take e.g. ζσ2σ1
≡ ξ−1

σ2σ0σ1
. This

means that one can use the numbers ζσ2σ1
to define a projective holomorphic line

bundle LV over Tg,n. To this aim, use the Vσ as local coordinate patches, with
transition functions ζσ2σ1

. Projectiveness follows from the nontriviality of the phase
ξσ3σ2σ1

associated to triples of markings.

Definition 8. Let H(Σ) be the Hilbert space whose elements Φ are collections of
vectors Ψσ ∈ Hσ such that

Ψσ2
= ζ−1

σ2σ1
Mσ2σ1

Ψσ1
, (52)

holds for all pairs of markings σ1, σ2 and a given collection of complex numbers
ζσ2σ1

of modulus one which satisfy (51).
For a given collection of numbers ησ ∈ C, σ ∈ M0(Σ), |ησ | = 1, let us call the

operation Ψσ → ησΨσ for all Ψσ ∈ Hσ a gauge transformation. We will identify
the Hilbert spaces H(Σ) related by gauge transformations.

Let ρ(Σ) be the family of mapping class group representations (ρσ (R))σ∈M0(Σ)

on the spaces Hσ (R) modulo the equivalence relation ∼ that is induced by the iden-
tifications (52).

The assignment Σ → (H(Σ),M(Σ)) will be called a stable unitary projective
functor.
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5.3 Similarity of Modular Functors

For rational CFT there exist deep results on the equivalence of modular functors
from conformal field theory to similar objects coming from quantum group theory
[9]. In order to formulate analogous statements about nonrational CFT we will pro-
pose the following natural notion of similarity of modular functors.

Definition 9. We will call two modular functors F and F ′ with data

[
U , dμPl,H

(3)
σ (ρ), Z ,B , F ,S

]

[
U
′, dνPl,K

(3)
σ (ρ′), Z′,B′, F′,S′

]

similar iff the following conditions are satisfied:

• There exists a bijection between U and U
′. The measures dμPl and dνPl are equiv-

alent, i.e. there exists a positive function m(r) on U such that

dμPl(r) = m(r)dνPl.

• There exist families of invertible operators E0,3(ρ) : H(3)(ρ) → K(3)(ρ′), the
dependence on each representation label rk ∈ U, k = 1, 2, 3 measurable w.r.t.
dμPl(s) such that the operators Eσ : Hσ → Kσ defined as

Eσ ≡
∫ ⊕

Uσ1

dνσ (ρ)
∏

p∈σ0

E0,3(ρp) (53)

are invertible.
• The resulting operators Eσ : Hσ → Kσ satisfy

M′
σ2σ1

= Eσ2
· Mσ2σ1

· E−1
σ1

.

5.4 Friedan-Shenker Modular Geometry

Let us temporarily restrict attention to surfaces X with one marked point at position
z ∈ X, decorated with the vacuum representation V . We will assume that the values
of the conformal blocks Gστ (δ|v) at a given vector v ∈ V may be considered as a
family (Gστ (v))τ∈Vσ

of elements of the Hilbert space Hσ .
Out of (Gστ (v))τ∈Vσ

one may then define a collection of vectors {Ψσ ;σ ′(v|τ);
σ ′ ∈ M0(Σ)}, where Ψσ ;σ ′(v|τ) ∈ Hσ ′ for all σ ′ ∈ M0(Σ) such that the condi-
tions

Ψσ ;σ2
(v|τ) = ζ−1

σ2σ1
Mσ2σ1

Ψσ ;σ1
(v|τ) and Ψσ ;σ (v|τ) = Gστ (v) ∈ Hσ (54)

are satisfied. Indeed, consistency of the definition of Ψσ ;σ ′(v|τ) implied by (54)
follows from (46) and (51). Let (Ψστ (v))τ∈Vσ

be the holomorphic family of vectors
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in H(Σ) which is associated by Definition 8 to the collection {Ψσ ;σ ′(v|τ); σ ′ ∈
M0(Σ)}.

Given two markings σ2, σ1 such that Vσ2
∩ Vσ1

$= ∅ it is easy to see that the
families of vectors (Ψσ2τ2(v))τ2∈Vσ2

and (Ψσ1τ1(v))τ1∈Vσ1
are related as

Ψσ2τ
(v) = ζσ2σ1

Ψσ1τ
(v) (55)

if τ2 and τ1 parametrize the same point in Vσ2
∩Vσ1

. Indeed, we had defined Mσ2σ1

in (37), (38) such that Gσ1τ1(v)=Mσ1σ2
Gσ2τ2(v). This implies

Ψσ1;σ1
(v|τ1) = Gσ1τ1(v) = Mσ1σ2

Gσ2τ2(v) = Mσ1σ2
Ψσ2;σ2

(v|τ2)
(52)= ζσ1σ2

Ψσ2;σ1
(v|τ2).

This means that for each σ one may regard the family (Ψστ (v))τ∈Vσ
as a local

holomorphic section of the projective line bundle LV over Tg,n.
The invariance conditions (39) imply that the family of hermitian forms Hσ de-

fines a hermitian form H on H(Σ). Objects of particular interest for the case at hand
are the partition function Zg(X),

Zg(X) ≡ H
(
Ψστ (v0), Ψστ (v0)

)
(56)

and the expectation values 〈〈Y(A, z)〉〉 of local fields Y(A, z) from the vertex alge-
bra V ,

〈〈Y(A, z)〉〉 ≡ H(Ψστ (A), Ψστ (A))

H(Ψστ (v0), Ψστ (v0))
. (57)

Following [18] we will regard the partition function Zg(X) as a hermitian metric
H on the projective line bundle LV . It follows easily from (10) that

δϑ logZg(X) = 〈〈Y(T [ηϑ ]v0, z)
〉〉
, (58)

where T [η] = ∑
n∈Z

ηnLn, δϑ is the derivative corresponding a tangent vector
ϑ ∈ TMg,0 and ηϑ is any element of C((t))∂t which represents ϑ via (9). Equa-
tion (58) can be seen as a more precise formulation of the claim from [18] that
the expectation value of the stress-energy tensor coincides with the connection on
the projective line bundle LV which is canonically associated with the metric H .
We have thereby reconstructed the main ingredients of the formulation proposed by
Friedan and Shenker [18] within the framework provided by the gluing construction.

6 Example of a Nonrational Modular Functor

There is considerable evidence for the claim that the most basic example of a ver-
tex algebra, the Virasoro algebra, yields a realization of the framework above. The
results of [35] are essentially equivalent to the construction of the corresponding
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modular functor in genus 0. In the following section we shall review the main char-
acteristics of this modular functor.

6.1 Unitary Positive Energy Representations of the Virasoro
Algebra

The unitary highest weight representations RΔ of the Virasoro algebra are labelled
by the eigenvalue Δ of the Virasoro generator L0 on the highest weight vector. It
will be convenient to parametrize Δ as follows

Δα = α(2δ − α), where c = 1 + 24δ2. (59)

The representations Rα ≡ RΔα are unitary iff Δ ∈ [0,∞). In terms of the parame-
trization (59) one may cover this range by assuming that

α ∈ U ≡ [0, δ] ∪ (δ + iR+). (60)

The representation Rα for α = 0 corresponds to the vacuum representation V . The
set parametrizes the unitary dual of the Virasoro algebra. In order to indicate an im-
portant analogy with the representation theory of noncompact Lie groups we shall
call the family of representations Rα with α ∈ δ + iR+ the principal series of
representations, which constitute the tempered dual T of the Virasoro algebra. Pur-
suing these analogies it seems natural to call the family of representations Rα with
α ∈ [0, δ] the complementary series.

6.1.1 Free Field Representation

The Fock space F is defined to be the representation of the commutation relations

[an, am] = n

2
δn+m, (61)

which is generated from the vector Ω ∈ F characterised by anΩ = 0 for n > 0.
There is a unique scalar product (., .)F on F such that a†

n = a−n and
(Ω,Ω)F = 1.

Within F we may define a one-parameter family of representations Fp of the
Virasoro algebra by means of the formulae

Ln(p) = 2(p + inδ)an +
∑

k $=0,n

akan−k, n $= 0,

L0(p) = p2 + δ2 + 2
∑

k>0

a−kak.
(62)
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The representation Fp is unitary w.r.t. the scalar product (., .)F if p ∈ R. It is
furthermore known [13] to be irreducible and therefore isomorphic to Rα if p =
−i(α − δ) for all α ∈ U.

6.2 Construction of Virasoro Conformal Blocks in Genus Zero

In the case of the Virasoro algebra there exists a unique conformal block G associ-
ated to the three punctured sphere which satisfies

G(ρ|vα3
⊗ vα2

⊗ vα1
) = 1, (63)

vαk , k ∈ {1, 2, 3} being the highest weight vectors of the representations Rαk , re-
spectively. The corresponding family of operators Yα2

α3α1
(v2|z) : Rα1

→ Rα3
is

uniquely characterized by its member corresponding to v2 = vα2 , which will be
denoted Yα2

α3α1
(z).

6.2.1 Free Field Construction of Chiral Vertex Operators

Let us introduce the (left-moving) chiral free field ϕ(x) = q+px+ϕ<(x)+ϕ>(x),

by means of the expansions

ϕ<(x) = i
∑

n<0

1

n
ane

−inx, ϕ>(x) = i
∑

n>0

1

n
ane

−inx . (64)

The operators q and p are postulated to have the following commutation and her-
miticity relations

[q, p] = i

2
, q† = q, p† = p, (65)

which are naturally realized in the Hilbert-space

H
F ≡ L2(R)⊗F . (66)

Diagonalizing the operator p corresponds to decomposing HF as direct integral of
irreducible unitary representations of the Virasoro algebra,

M 5
∫ ⊕

T

dαRα. (67)

The basic building blocks of all constructions will be the following objects:

NORMAL ORDERED EXPONENTIALS:

Eα(x) ≡ Eα
<(x)E

α
>(x),

Eα
<(x) = eαqe2αϕ+<(x)eαxp

Eα
>(x) = eαxpe2αϕ+>(x)eαq.

(68)
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SCREENING CHARGES:

Q(x) ≡ e−πbp
∫ 2π

0
dx′Eb(x + x′)e−πbp. (69)

The following property is of considerable importance:

POSITIVITY: The screening charges are densely defined positive operators, i.e.

(
ψ,Q(σ)ψ

)
M ≥ 0

holds for ψ taken from a dense subset of H.
Out of the building blocks introduced in the previous subsection we may now

construct an important class of chiral fields,

hαs (σ ) = Eα(σ )
(
Q(σ )

)s
. (70)

Positivity of Q allows us to consider these objects for complex values of s and α.
One of the most basic properties of the hαs (w) are the simple commutation rela-

tions with functions of the operator p,

hαs (w)f (p) = f
(
p − i(α + bs)

)
hαs (w). (71)

By projecting onto eigenspaces of p one may therefore define a family of operators
hα2
α3α1(w) : Rα1

→ Rα3
. Specifically, for each w ∈ F and each α ∈ δ + iR let

us define a distribution wα on dense subspaces of M by the relation (wα, v)M =
(w, vα)F if v is represented via (67) by the family of vectors vα , vα ∈ Rα . This
implies that the matrix elements of the operators hα2

α3α1(w) are determined by the
relation (

w, hα2
α3α1

(w)u
)
F = (wα3

, hα2
s (w)û

)
M , (72)

where bs = α3 − α1 − α2 and û is any vector in M represented by the family of
vectors ûα such that ûα1

= u.
The uniqueness of the conformal block G(3) implies that the operator Yα2

α3α1
(v2|z)

must be proportional to hα2
α3α1

(v2|z) via

Yα2
α3α1

(v2|z) = Nα2
α3α1

hα2
α3α1

(v2|z). (73)

The explicit formula for the normalizing factor Nα2
α3α1

was found in [35].

6.3 Factorization Property

The results of [35] show that the conformal blocks in genus zero satisfy the factor-
ization property with linear relations (37) composed from the elementary transfor-
mations Fpq , Bp and Zp whose representatives can be calculated explicitly.
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F: Let X be a four-punctured sphere and let σs , σu be the two markings depicted
in Fig. 7. We will denote the respective assignments of representation labels to
the edges of σs and σu by ρs(αs) and ρu(αu), respectively, leaving implicit the
assignment of labels α1, α2, α3, α4 to the external edges with numbering being
indicated in Fig. 7. The operator Fpq may then be represented as the integral
operator

Gσsτ2(ρs(αs)) =
∫

dμPl(αu)Fαsαu

[
α3 α2

α4 α1

]

Gσuτ1(ρu(αu)). (74)

The explicit expression for the kernel Fαsαu

[
α3 α2

α4 α1

]
can be found in [34, 35]. More

illuminating is probably the observation that the kernel Fαsαu is closely related to
the 6j symbols [27] of the modular double [6, 4] of Uq(sl(2,R)),

Fαsαu

[
α3 α2

α4 α1

]

= ν
α4

α3αs ν
αs
α2α1

ν
α4

αuα1
ν
αu
α3α2

{
α1 α2 αs

α3 α4 αu

}

. (75)

The explicit formula for the normalizing factors ναsα2α1
can be found in [34].

B: Let X be a three-punctured sphere and let σ2, σ1 be the two markings depicted
on the left and right halves of Fig. 2, respectively. Let ρ be the assignment ρ :
k → αk , k = 1, 2, 3 of representation labels to edges as numbered in Fig. 2. We
then have

Gσ2
(ρ) = Bα3α2α1Gσ1

(ρ), Bα3α2α1 ≡ eπi(α3(Q−α3)−α1(Q−α1)−α2(Q−α2)).

(76)
Z: Z is represented by the identity operator.

An important part of the statements above may be reformulated as the claim that the
modular functor FTeich is similar in the sense of Definition 9 to a modular functor
FQgrp that is constructed in close analogy to the construction of Reshetikhin-Turaev
from the representations of the modular double of Uq(sl(2,R)) introduced in [28,
6] and studied in more detail in [28, 4].

6.4 The Hilbert Space Structure

As explained above, we need a pair
[
H(3)

σ (ρ), dμPl

]
of objects in order to characterize

the Hilbert space structures on the spaces of conformal blocks.
Hilbert space H

(3)
σ (ρ): It is well-known that the space of conformal blocks on

the three punctured sphere is at most one-dimensional. More precisely we have:

H
(3)
σ (ρ) 5 C, ρ : k �→ αk, k ∈ {1, 2, 3}, (77)

if αi $= 0 for i = 1, 2, 3. If αi = 0 for some i ∈ {1, 2, 3} and if k, l ∈ {1, 2, 3} are
not equal to i we have
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H
(3)
σ (ρ) 5

{
C if αk = αl or αk = 2δ − αl,

∅ otherwise.
(78)

As a standard basis for H(3)
σ (ρ) we shall use the conformal block G(3)(ρ) that is

uniquely defined by the normalization (63). The Hilbert space structure on the one-
dimensional space Hs i

(3)(ρ) is then described by the numbers

D(α3, α2, α1) ≡ ‖G(3)(ρ)‖2, (79)

that are given explicitly by the formula

D(α3, α2, α1) =
∣
∣
∣
∣
Γb(α123 −Q)

Γb(Q)

3∏

k=1

Γb(α123 − 2αk)

Γb(2αk)

∣
∣
∣
∣

2

, (80)

where Γb(x) ≡ Γ2(x|b, b−1) with Γ2(x|ω1, ω2) being the Barnes Double Gamma
function, and we have used the abbreviation α123 = α1 + α2 + α3.

The measure dμPl on U will then be equal to

dμPl(α) = dα sin(2b(α − δ)) sin(2b−1(δ − α)) on δ + iR+, (81)

with dα being the standard Lebesque measure on δ + iR+.

6.5 Extension to Higher Genus

Claim. There exists a unique extension of the g = 0 modular functor FVir to g > 0
that is compatible with the propagation of vacua.

The proof of this claim has not appeared in the literature yet. Let us therefore
briefly sketch the path along which the author has arrived at the claim above.

The main observation to be made is that there exists a unitary modular functor
FTeich whose restriction to g = 0 is similar to FVir in the sense of Definition 9. FTeich

was constructed in [36].8

Uniqueness is in fact quite easily seen by noting that arguments well-known from
rational conformal field theory [25] carry over to the case at hand and allow us to

derive an explicit formula for the coefficients Sαβ(γ ) in terms of Fαsαu

[
α3 α2

α4 α1

]
and

Bα3α2α1 , namely

8 The key step in the verification of our claim above is to notice that the restriction of FTeich to
surfaces with g = 0 is similar to the modular functor F g=0

Qgrp coming from the harmonic analysis on
the modular double of Uq(sl(2,R)) that was mentioned above. This establishes the existence of
an extension of FVir to g > 0.
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F0β

[
α1 α1

α1 α1

]

Sα1α2
(β)

= S0α2
(0)
∫

dμPL(γ )e
πi(2Δα2+2Δα1−2Δγ−Δβ)F0γ

[
α2 α1

α2 α1

]

Fγβ

[
α1 α1

α2 α2

]

.

(82)

6.6 Remarks

It is often natural to first focus attention on the subspace of “tempered” confor-
mal blocks which are obtained from the gluing construction by using three point
conformal blocks associated to representations from the tempered dual T only. The
formulation of the theory as a modular functor applies straightforwardly to this case.

However, in the case of the Virasoro algebra we may observe rather nice analytic
properties of the conformal blocks when considered as functions of the represen-
tation labels αk [34]. The dependence w.r.t. the external representations is entire
analytic, while the dependence w.r.t. the internal representations is meromorphic.
The poles are given by the zeros of the Kac determinant.

The factorization property of the analytically continued conformal blocks follows
from the corresponding property of the tempered conformal blocks. Analytic con-
tinuation w.r.t. the representation labels therefore allows us to generate a large class
of conformal blocks with reasonable behavior at the boundaries of the Teichmüller
spaces from the tempered conformal blocks. We will call this class of conformal
blocks the factorizable conformal blocks. It is not clear to the author how this class
compares to the set of all solutions to the conformal Ward identities.

7 Existence of a Canonical Scalar Product?

We propose that for each vertex algebra V whose conformal blocks have the fac-
torization property there always exists a distinguished choice for Hσ , canonically
associated to V , which is “diagonal”, i.e. such that Hσ is of the form

Hσ =
∫

Uσ1

∏

e∈σ1

dμPl(re)
⊗

p∈σ0

H
ρ̄pρp
p , (83)

where ρ̄p is the decoration of Sp obtained from ρp by replacing each representation
by its dual, σ1 is the set of edges and σ0 is the set of vertices of the graph σ . In
rational CFT this case is often referred to as the CFT corresponding to the “diag-
onal modular invariant”. We propose the terminology “V-minimal model” for the
corresponding CFT.
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Whenever the hermitian form H is positive definite we get a scalar product on
the space of conformal blocks. We will subsequently argue that this is always the
case if the representations in question are unitary.

7.1 Existence of a Canonical Hermitian Form
from the Factorization Property

Note that dimH
r3
r2r1 = 1 whenever one of the representations Rri , i = 1, 2, 3 coin-

cides with the vacuum representation, and the two other representations are R and R̄,
with R̄ being the dual of R. This implies that there is a unique (up to a constant)
conformal block associated to the diagram on the left of Fig. 9 if the representation
associated to the edges with label 0 is the vacuum representation and if the represen-
tations associated to the edges with labels 1, 1̄, 2, 2̄ are chosen as R1, R̄1, R2, R̄2,
respectively. This conformal block will be denoted as Gσ1

0τ

[
r2 r̄1
r̄2 r1

]
.

Let us, on the other hand, use the notation G
σ2
r3τ

[
r̄2 r2
r̄1 r1

]
ıı̄

for the conformal blocks
associated to the diagram on the right of Fig. 9 in the case that the representations
associated to the edges with labels 1, 2, 1̄, 2̄ are chosen as above. The indices ı, ı̄
are associated to the vertices enclosed in little circles in a manner that should be
obvious.

Fig. 9 Simplified representation for the markings involved in the relation (84)

Bear in mind that we are considering vertex algebras whose conformal blocks
have the factorization property. It follows in particular that the conformal blocks
G

σ1
0τ

[
r2 r̄1
r̄2 r1

]
and G

σ2
r3τ

[
r̄2 r2
r̄1 r1

]
ı̄ı

are related by an expansion of the form

Gσ1
0τ

[
r2 r̄1
r̄2 r1

]

=
∫

dμ12(r3)
∑

ı,ı̄∈Ip

Dı̄ı(r3|r2, r1)Gσ2
r3τ

[
r̄2 r2
r̄1 r1

]

ı̄ı

. (84)

Conjecture 10 There exists a subset T of U parameterizing “tempered” represen-
tations such that for r1, r2 ∈ T the measure dμ12 is supported in T. In this case
there exists a factorization of the form

dμ12(r3)Dıı̄ (r3|r2, r1) = dμPl(r3)Dı̄ı(r3, r2, r1), (85)
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with dμPl being independent of r2, r1 such that the hermitian forms on spaces of
conformal blocks constructed via (83) from dμPl(s) and Dı̄ı(r3, r2, r1)

9 satisfy the
invariance property (39).

In other words, the data appearing in the relationship (84) characterize a her-
mitian form on spaces of conformal blocks canonically associated with any vertex
algebra V that has the factorization property.

7.1.1

Let us note that validity of the conjecture above is known in the case of rational
CFT’s. Indeed, let us keep in mind that according to Sect. 3.3.2 above one may
express the three point function in the V-minimal model in terms of the numbers
Dıı̄(r3, r2, r1) introduced in the conjecture above. In the case that the operators
Zp, Bp and Fpq are represented by matrices it is easy to figure out an expression
of Dıı̄(r3, r2, r1) in terms of the matrix elements of Zp and Fpq . This expression
coincides with the formula for the three point function that was obtained as a special
case of the general formalism developed in [32] for the description of correlation
function in rational CFT. Invariance of the corresponding hermitian form follows
from the relations satisfied by the operators Zp, Bp Fpq , Sp that were discussed in
the previous section.

Fig. 10 Proof of invariance under F

Our main point is of course to propose that a similar relationship also holds in
nonrational cases. And indeed, given that there exists a factorization of the form (85)
it is not hard to show invariance under F by considering the sequence of transforma-
tions indicated in Fig. 10. Invariance under B is verified similarly. Invariance under

9 H
ρ̄ρ
p (f, g) =∑ı̄,ı∈I

(f (ı′))∗Dı̄ı(r3, r2, r1)g(ı).
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Z follows from the invariance under F thanks to (40). The conjecture is furthermore
supported by the results from [35] reviewed in Sect. 6 above.

7.2 Unitary Fusion

There is a generalization of the tensor product for unitary representations of certain
vertex algebras that has the virtue to make unitarity of the resulting representation
manifest. The underlying theory is closely related to the theory of superselection
sectors from algebraic quantum field theory [12, 19]. We will in the following briefly
discuss a reformulation called “Connes-fusion” [38].

In order to simplify the exposition, we will restrict attention to the case of the
Virasoro algebra with c > 25. What follows is a sketch of the picture that would
result from using the results of [35] within a theory of “Connes-fusion” of represen-
tations of Diff(S1) along the lines of [38]. The author believes that similar things
can be done for many other vertex algebras, which would allow one to show that the
canonical hermitian form proposed in the previous subsection is positive definite in
the case of unitary representations.

7.2.1

It is temporarily useful to replace the states vm within the representations Rm,
m = 1, 2 by the vertex operators Vm ≡ Vm(vm) which generate the states vm from
the vacuum, vm = VmΩ . We want to think of representations Rm, m = 1, 2 as
representations of Diff(Im) associated to the intervals Im ⊂ S1, I1 ∪ I2 = S1, re-
spectively. The vertex operators Vm should therefore commute with the action of
Diff(Icm), Icm = S1 \ Im as

π
Rm

(g)Vm = Vmπ0(g) for all g ∈ Diff(Icm), (86)

with π0(g) being the action of Diff(Icm) on the vacuum representation V . Operators
with such a property can be constructed from the chiral vertex operators Yα2

α3α1
(v2|z)

as

Vm ≡
∫

Im
dxfm(x)Y

rm
rm0(vm|eix), m = 1, 2, (87)

f being a smooth function with support in Im. Operators like the one defined in (87)
will be unbounded in general, but bounded operators can be obtained by taking the
phase of its polar decomposition.

Let us then consider the spaces Vm of bounded intertwiners Vm : V → Rm which
satisfy (86). On V1 ⊗ V2 define an inner product by

〈
w1 ⊗ w2, v1 ⊗ v2

〉 = 〈Ω,W∗
2V2.W

∗
1V1Ω

〉
. (88)
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The Hilbert space completion of V1 ⊗ V2 is denoted R1 � R2. We observe that
the scalar product of the “fused” representation is defined in terms of the conformal
block G

σ1
0τ

[
r2 r̄1
r̄2 r1

]
that had previously appeared in the relations (84).

7.2.2

In the case of the Virasoro algebra one may deduce the validity of relations (84)
from (74) by analytically continuing αs to the value αs = 0. This allows one to
write ‖v1 ⊗ v2‖2 in the form

‖v1 ⊗ v2‖2 =
∫

U

dμ21(αs)‖V(2)
αs
(v2, v1)‖2

Rαs
, (89)

where V(2)
αs
(v2, v1) is a certain vector in the irreducible representation Rαs that may

be written as

V(2)
αs
(v2, v1) ≡ V2

s1v1 =
∫

I2
dxf2(x)Y

α2
αsα1

(v2|eix)V1Ω,

provided that V2 can be represented in the form (87). Note that the space R1 � R2

is naturally a representation of Diff(I1)×Diff(I2). Equation (89) is interpreted as an
expression for the unitary equivalence

R1 � R2 5
∫ ⊕

U

dμ21(s)Rs (90)

which implies in particular the fact that the representation of Diff(I1) × Diff(I2)

on R1 � R2 can be extended to a representation of Diff(S1). The factorization
dμ21(s) = dμPl(s)D(r3, r2, r1) then allows us to rewrite (90) as

R1 � R2 5
∫ ⊕

U

dμPl(s)Rs ⊗ Hom(R1 � R2;Rs), (91)

where Hom(R1 �R2;Rs) is the one-dimensional Hilbert space of intertwiners with
metric given by D(r3, r2, r1).

7.3 Associativity of Unitary Fusion

It should be possible to show on general grounds that the fusion operation is asso-
ciative,

(R1 � R2) � R3 ≡ R1 � R2 � R3 ≡ R1 � (R2 � R3). (92)

Indeed, let us consider
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‖(v1 ⊗ v2)⊗ v3‖2 and ‖v1 ⊗ (v2 ⊗ v3)‖2. (93)

The left hand side and the right hand side of (93) can be represented respectively as
∫

U

dμ12(αs)
〈
Ω,V∗3V3V∗21(αs)V21(αs)Ω

〉
, V21(αs) ≡ V2

s1V1, (94)
∫

U

dμ23(αu)
〈
Ω,V∗32(αu)V32(αu)V

∗
1V1Ω

〉
, V32(αu) ≡ V3

u2V2. (95)

It is useful to note that the compositions of chiral vertex operators which appear in
(94) and (95) correspond to the diagrams on the left and right in the middle line
of Fig. 10, respectively. From this diagrammatic representation it is easily seen that
(94) and (95) are both equal to

〈Ω,V∗3V3V∗2V2V∗1V1Ω〉 ≡ ‖v1 ⊗ v2 ⊗ v3‖2, (96)

corresponding to the diagram on the bottom of Fig. 10, which makes the associa-
tivity of the fusion operation manifest. By using (89) one may rewrite (94) and (95)
respectively in the form

∫

U

dμ123(α4)
∥
∥V(3)

α4,s
(v3, v2, v1)

∥
∥2

,

(97)
V(3)
α4,s

(v3, v2, v1) ≡
∫

U

dμ12(αs)V
(2)
α4
(v3,V(2)

αs
(v2, v1))

∫

U

dμ123(α4)
∥
∥V(3)

α4,u
(v3, v2, v1)

∥
∥2

,

(98)
V(3)
α4,u

(v3, v2, v1) ≡
∫

U

dμ23(αu)V
(2)
α4
(V(2)

αu
(v3, v2), v1).

These relations may both be seen as expressions for the unitary equivalences

(R1 � R2) � R3 5
∫ ⊕

U

dμPl(α)Rα ⊗ L2(U, dμα
(12)3), (99)

R1 � (R2 � R3) 5
∫ ⊕

U

dμPl(α)Rα ⊗ L2(U, dμα
1(23)), (100)

where
dμα

(12)3(αs) = dμPl(αs)D(αs, α2, α1)D(α, α3, αs)

dμα
1(23)(αu) = dμPl(αu)D(αu, α3, α2)D(α, αu, α1).

It should be noted that the Hilbert spaces L2(U, dμα
(12)3) and L2(U, dμα

1(23)) which
appear in (99) and (100), respectively, are nothing but different models for Hilbert-
subspaces of Hom(R1 � R2 � R3;Rα). These Hilbert spaces are canonically iso-
morphic to the spaces of conformal blocks Hσ1

and Hσ2
associated to the markings

on the left and right of Fig. 7, respectively. It therefore follows from the associativity
of the fusion product that there exists a one-parameter family of unitary operators
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F : Hσ1
→ Hσ2

that represents the unitary equivalence between the representations
(99) and (100), respectively.

7.4 Discussion

The author believes that the link between the hermitian form on spaces of conformal
blocks and unitary fusion has not received the attention it deserves. More specifi-
cally, there are two reasons why the authors believes that the connection between
the unitary fusion and the hermitian form on spaces of conformal blocks is worth
noting and being better understood:

On the one hand, it offers an explanation for the positivity of the coefficients
Dıı̄(r3, r2, r1) defining the hermitian form HV in the unitary case, thereby elevating
it to a scalar product.

If, on the other hand, one was able to show on a priori grounds that the represen-
tation Diff(I1)×Diff(I2) on R1�R2 can be extended to a representation of Diff(S1)

then one might use this as a basis for a conceptual proof of the factorization property
(37) in genus 0 along the lines sketched above.

It does not seem to be possible, however, to give a simple explanation of the
factorization (85) in Conjecture 10 from this point of view. This deep property seems
to require new ideas for its explanation. We see it as a hint towards an even deeper
level of understanding CFT in its relation to the harmonic analysis of Diff(S1), or
some extension thereof.

8 Outlook

First we would like to stress that the class of nonrational CFT covered by the for-
malism described in this paper is expected to contain many CFTs of interest. To
illustrate this claim, let us formulate the following conjecture.

8.1 Modular Functors from W-algebras and Langlands Duality

We would finally like to formulate a conjecture. Let Wk(g) be the W-algebra con-
structed in [7, 8]
Conjecture 11 There exists a family of stable unitary modular functors

(
Σ, g, k

) �−→ (
Hg,k(Σ),Mg,k(Σ)

)

that is canonically isomorphic to either

the space of conformal blocks for certain classes of unitary represen-
tations of the W-algebra Wk(g) with its natural unitary mapping class
group action,



736 Jörg Teschner

or

the space of states obtained via the quantization of the higher Teich-
müller spaces [10, 11] together with its canonical mapping class group
action

such that Langlands duality holds: There is a canonical isomorphism

(
Hg,k(Σ),Mg,k(Σ)

) 5 (HLg,ǩ
(Σ),MLg,ǩ

(Σ)
)
,

with Lg being the Langlands dual to the Lie algebra g and ǩ being related to k via
(k + h∨)r∨ = (ǩ + h∨)−1, h∨ being the dual Coxeter number.

8.2 Boundary CFT

It seems interesting to note a link to boundary CFT. In the case of the V -minimal
model one expects following Cardy’s analysis [5] to find a one-to-one correspon-
dence between conformal boundary conditions and irreducible representations.
There should in particular exist a distinguished boundary condition B0 which cor-
responds to the vacuum representation.

This boundary condition is fully characterized by the measure appearing in the
expansion of the corresponding boundary state into the Ishibashi-states |r〉〉 which
preserve the full chiral algebra V ,

|B0〉 =
∫

U

dμB0
(r)|r〉〉. (101)

It is not hard to see that the two-point function 〈V2(z2, z̄2)V1(z1, z̄1)〉B0
in the pres-

ence of a boundary with condition B0 is proportional to G
σ1
0τ

[
r2 r̄1
r̄2 r1

]
. The expansion

(84) describes the OPE of the two fields V1, V2. It easily follows from these obser-
vations that the one-point function (in a suitable normalization) coincides with the
Plancherel-measure dμPl(s),

dμB0
(r) = dμPl(r). (102)

We take this observation as an intriguing hint concerning the generalization of our
considerations to boundary CFT.

8.3 Nonrational Verlinde Formula?

In the case of rational CFT one can deduce a lot of useful relations [24, 25] between
the defining data of a modular functor from the relations (28)–(30), (35)–(36) and
(40)–(43). These relations give the key to some derivations of the famous Verlinde
formula. Much of this remains intact in the nonrational case, as the example of
formula (82) illustrates.



Nonrational Conformal Field Theory 737

A fundamental difference comes from the fact that the vacuum representation is
not in the support of μPl. This implies that objects like Fαβ

[α3

α4

α2
α1

]
or Sαβ(γ ) are not

necessarily well-defined at β = 0. This means that many of the relations valid in
rational CFT do not have obvious counterparts in the nonrational case.

As a particularly interesting example let us note that in the case of the minimal
models one has the relation [31]

F0r

[
r2 r1
r2 r1

]

Fr0

[
r2 r2
r1 r1

]

= S0rS00

S0r2S0r1
, Sr1r2 ≡ Sr1r2(0). (103)

As explained above, the left hand side does not have an obvious counterpart in the
nonrational case in general. However, in the case of the Virasoro algebra with c > 25
it turns out that

F′′α0

[
α3 α2

α4 α1

]

= lim
β→0

β2Fαβ

[
α3 α2

α4 α1

]

(104)

exists and satisfies the relation

F0α

[
α2 α1

α2 α1

]

F′′α0

[
α2 α2

α1 α1

]

= B0B(α)

B(α2)B(α1)
, (105)

where B(α) = sin 2b(α − δ) sin 2b−1(δ − α). Equation (105) can be verified with
the help of the explicit expressions for the objects involved.

The relation (105) is particularly suggestive in view of the fact that S0r gets iden-
tified with the so-called quantum dimension in the correspondence between modular
functors and modular tensor categories [2]. What appears on the right hand side of
(105) is related to the measure dμPl via dμPl(α) = dαB(α), with dα being the
standard Lebesque measure on T.

This measure can be seen as the most natural counterpart of the quantum dimen-
sion in the nonrational case. This is seen most clearly when considering the quantum
group structure10 associated to a rational modular functor [26]. The quantum dimen-
sion represents the weight of a representation in the Plancherel (or Peter-Weyl) de-
composition of the space of functions on the quantum group. As mentioned above,
there is a quantum group “dual” to the modular functor defined by the representation
theory of the Virasoro algebra with c > 25 [28, 34]. The natural measure appearing
in the decomposition of the space of functions on the corresponding quantum group
is precisely dμPl [28].

It is clearly an important open task for the future to analyze more systematically
the set of relations that can be obtained in such a way.
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10 More precisely: weak Hopf algebra structure.
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Kinetically Constrained Models

Nicoletta Cancrini, Fabio Martinelli, Cyril Roberto and Cristina Toninelli

Abstract Kinetically constrained spin models (KCSM) are interacting particle sys-
tems which are intensively studied in physics literature as models for systems un-
dergoing glass or jamming transitions. KCSM leave on discrete lattices and evolve
via a Glauber-like dynamics which is reversible w.r.t. a simple product measure.
The key feature is that the creation/destruction of a particle at a given site can oc-
cur only if the current configuration satisfies proper local constraints. Due to the
fact that creation/destruction rates can be zero, the whole analysis of the long time
behavior becomes quite delicate. From the mathematical point of view, the basic
issues concerning positivity of the spectral gap inside the ergodicity region and its
scaling with the particle density remained open for most KCSM (with the exception
of the East model in d = 1 Aldous and P. Diaconis, J. Stat. Phys. 107(5–6):945–975
2002). Here we review a novel multi-scale approach which we have developed in
Cancrini et al. (Probab. Theory Relat. Fields 140:459–504, 2008; Lecture Notes in
Mathematics, vol. 1970, pp. 307–340, Springer, 2009) trough which we: (i) prove
positivity of the spectral gap in the whole ergodic region for a wide class of KCSM
on Z

d , (ii) establish (sometimes optimal) bounds on the behavior of the spectral gap
near the boundary of the ergodicity region and (iii) prove pure exponential decay
at equilibrium for the persistence function, i.e. the probability that the occupation
variable at the origin does not change before time t . Our findings disprove certain
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conjectures which appeared in the physical literature on the basis of numerical sim-
ulations. In particular (i) above establishes exponential decay of auto-correlation
functions disproving the stretched exponential decay which had been conjecture
for some KCSM and (ii) disproves some of the scalings which had been extrapo-
lated from numerical simulations for the relaxation times (inverse of the spectral
gap).

Many fascinating questions still remain unsettled for condensed matter physi-
cists who study the glass and jamming transitions. These phenomena, which lead to
the formation of amorphous solids, occur in several microscopically different sys-
tems as supercooled liquids, colloidal suspensions and vibrated granular materials
[9, 27]. Basic glassy properties include a dramatic slowing down of dynamics when
a proper external parameter is tuned (e.g. temperature is lowered for liquids) and
the occurrence of a complicated relaxation: non exponential and spatially heteroge-
neous. When relaxation times become longer than experimental scales, equilibrium
can no more be achieved: the system undergoes a dynamical arrest and freezes into
an amorphous phase (the glass). The main issues in understanding these phenom-
ena remain unsolved. In particular, it is not clear whether the dynamical arrest is
due to the proximity of a phase transition and whether this is a static or purely dy-
namical one. The experiments on molecular liquids show that, if such an ideal glass
transition occurs, it should have an unconventional behavior with mixed first and
second order features. On the one hand, the divergence of relaxation times and the
fact that both entropy and internal energy seem continuous is indicative of a sec-
ond order transition. On the other hand a discontinuous order parameter is detected:
the height of the plateau of the Fourier transform of the density–density correlation
has a finite jump. This corresponds to the fact that the modulation of the micro-
scopic density profile of the glass does not appear continuously from the flat liquid
profile. Besides these mixed first/second order properties, another unconventional
feature concerns the scaling of relaxation times which increase much more rapidly
than for conventional second order transitions. Indeed most liquids display a faster
than power law divergence around the glass transition, a signal of a cooperative re-
laxation on increasingly large scales as the temperature is decreased towards the
transition. A very successful fit is the Vogel-Fulcher law: log τ 5 1/(T − T0). Fi-
nally another puzzling features is the absence of any experimental evidence of a
static diverging correlation length: typical glass configurations are not very differ-
ent from instantaneous configurations of the liquid and the dramatic slowing down
of dynamics is apparently not due to an increasing long range order. An enormous
amount of theoretical approaches has been proposed in the last fifty years to de-
scribe these phenomena. Among the theories which assume that a thermodynamic
glass transition takes place at a finite temperature we recall mode coupling theories
[14] and the random first order scenario [20]. Here we deal instead with Kinetically
Constrained Models (KCM) which have been introduced in the 80’s (see [24] for
a review) and are based on the ansatz of a purely dynamical transition. The latter
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would be the result of the geometrical constraints on the rearrangements of mole-
cules which become more and more important as the temperature of the liquid is
lowered (the density is increased).

KCM are stochastic lattice gases with hard core exclusion, namely on each site
there is one or zero particle. The configuration on a lattice Λ is thus defined by
assigning to each x ∈ Λ its occupation variable: ηx = 1 or ηx = 0 if the site
is occupied or empty, respectively. The dynamics is given by a continuous time
Markov process which consists of a sequence of jumps for models with conser-
vative (Kawasaki) dynamics and creation/destruction of particles for models with
non conservative (Glauber) dynamics. The former are also known as Kinetically
Constrained Lattice Gases (KCLG) and the latter as Kinetically Constrained Spin
Models (KCSM)1 (the occupation variables can indeed be interpreted as up and
down spins which can be flipped). For all the models introduced in physics liter-
ature dynamics satisfies detailed balance w.r.t. to Bernoulli product measure (see
instead [6] for the extension to models which are reversible w.r.t. high tempera-
ture Gibbs measures). Thus there are no static interactions beyond hard core and an
equilibrium transition cannot take place. The key feature of both KCSM and KCLG
is that an elementary move can occur only if the configuration verifies proper lo-
cal constraints besides hard core. The latter mimic the geometric constraints on
the possible rearrangements in physical systems, which could be at the root of the
dynamical arrest [13, 21]. As we shall discuss, numerical simulations show that for
proper choices of the constraints KCM indeed display glassy features. These include
heterogeneous relaxation, faster than power law divergence of relaxation times τ

and dynamical transitions. Therefore several analytical and numerical works have
recently attempted to understand the mechanism which induces these glassy prop-
erties and to derive the typical time/length scales which are involved. Numerical
simulations are however very delicate due to the rapid divergence of τ as the par-
ticle density p is increased as well as the non-trivial scaling of finite size effects.
(Note that in order to compare with the above discussion on liquid/glass transition
one should perform the change p → 1/(1+exp(−1/T )) to have temperature rather
than density as the control parameter.)

Here we review our recent mathematical results [8, 6, 7] on KCM which have
contributed to settle some debated questions arising in numerical simulations. In
particular in [8] we have introduced a new technique trough which we obtain up-
per and lower bounds on the spectral gap of the Markov process and therefore on
the relaxation time τ which, as we shall see, is directly related to the inverse of
the spectral gap. We focus for simplicity on KCSM and discuss only at the end the
more recent results [7] for KCLG. The dynamics of a KCSM on an integer lattice
Λ ⊂ Z

d is precisely defined as follows. Each site waits an independent mean one
exponential time and then, provided that the current configuration satisfies a local
constraint which does not involve ηx , it refreshes its state. This is set to occupied
with probability p and empty with probability q = 1 − p. In other words, if cx(η)

1 In physics literature the equivalent terminology “Facilitated Spin Models” is also used which,
instead of emphasizing the presence of constraints, puts the accent on the complementary fact that
proper events facilitate, i.e. allow, the elementary moves.
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is the function which equals one (zero) when the constraint is (is not) verified, each
site changes its current state with rate cx(η)[(1 − p)ηx + p(1 − ηx)]. Since cx(η)

does not depend on ηx detailed balance w.r.t. Bernoulli(p) measure μp is easily ver-
ified and μp is an invariant measure. As a direct consequence of the fact that the
rates can degenerate to zero, there exist blocked configurations (s.t. on each site
the constraint is not satisfied) as well as configurations which are not blocked but
nevertheless contain a frozen backbone, i.e. a subset of sites on which for sure the
constraint is not verified at any instant of time. Thus μp is not the unique invari-
ant measure, for example any measure concentrated on a blocked configuration is
also invariant. By taking proper superpositions of blocked configurations it is also
possible to construct stationary measures which are also translational invariant (see
[22] for a more detailed discussion). In order to model the geometric constraints on
highly dense liquids, cx usually specifies the maximal number of occupied sites in
a proper neighborhood of x. Thus the dynamics becomes increasingly slow as p is
increased and an ergodicity breaking transition may occur at a finite critical density,
pc < 1. More precisely, if we denote by L the generator of the Markov process on
Z
d , pc separates the density regime in which the semigroup Pt := etL does (does

not) converge to μp in the large time limit, namely limt→∞ Ptf = μp(f ) for all
f ∈ L2(μp) iff p < pc. As it is explained in Sect. 2.3 of [8], the dynamical arrest
at pc corresponds to the fact that an infinite spanning cluster of mutually blocked
particles occurs. One of the main issues studied in physics literature is the long-time
dynamics in the ergodic regime, in particular the scaling of the typical times when p

approaches pc from below. The most studied dynamical quantities are the spin-spin
time auto-correlation C(t) and the persistence function F(t) defined as follows

C(t) :=
∫

dμp(η(0))η0(0)Eη[η0(t)] − p2

where Eη(0)[f (η(t))] is the expectation over the Markov process at time t when the
initial configuration is η(0) and

F(t) :=
∫

dμp(η(0))P [η0(s) = η0(0) ∀s < t],

namely F(t) is the probability that up to time t the occupation variable of the origin
has never changed. A first key issue is whether C(t) and F(t) decay exponentially
as for the unconstrained models (i.e. for cx(η) = 1). Furthermore one would like to
determine the scalings with p of the typical time scale τ which enter in their decay.
By analyzing the spectral gap of the generator L , namely

gap(L ) := inf
f∈L2(μp)

f $=const.

μp(f,−L f )

μp(f − μp(f ))2
(1)

and using the Poincaré inequality

Var(Pt (f )) ≤ exp(−2t gap(L ))Var(f ) (2)
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and the inequality established in Theorem 3.6 of [8] via a Feynman-Kac bound

F(t) ≤ exp(−qtcgap) (3)

where c is a constant independent on q, we will obtain rigorous answers to the
above questions. In particular a strictly positive spectral gap together with (2) and
(3) imply an exponential decay for both C(t) and F(t). As we will detail below,
in some cases we prove and in other cases we disprove the conjectures in physics
literature. Note that the above Poincaré inequality means that the inverse of the
spectral gap is the worst relaxation time over all one time quantities. Thus, when
referring to our results, τ will always stand for 1/gap. Analogously τ(L) will be
the inverse of the spectral gap of the generator of the process restricted to a square
lattice ΛL of linear size L (with properly specified boundary conditions).

Let us recall a standard classification before introducing the specific choices of
the constraints that we analyze. KCSMs can be divided into two classes: (i) non-
cooperative and (ii) cooperative models. For the former it is (for the latter it is not)
possible to construct an allowed path which completely empties any configuration
which contains somewhere a proper finite cluster of vacancies. Non-cooperative
models are ergodic at any density, namely pc = 1, while pc is finite for some of
the cooperative models. Thus we can further classify cooperative models into: (iia)
models that are ergodic in the thermodynamic limit at any p < 1, i.e. pc = 1;
(iib) models that display an ergodicity breaking transition at pc < 1. Coopera-
tive models are usually considered more interesting since their relaxation involves
the collective rearrangements of increasingly large regions as the density increases,
analogously to what experiments suggest near the glass transition.

Among non cooperative models we recall the Fredrickson-Andersen [13] one
spin facilitated (FA1f) for which a move at x is allowed only if at least one of its
nearest neighbors is empty: cx(η) = 1 if

∑
y n.n.x(1−ηx) > 0, cx(η) = 0 otherwise.

In this case the presence of a single vacancy allows to empty the whole lattice. In
[3, 4] a dynamical field theory was derived yielding an exponential decay for C(t)

with a typical scale for q → 0 as τ ∝ 1/qz with z = 3 for d = 1, z = 2 + ε(d)

with ε(2) 5 0.3, ε(3) 5 0.1 and ε(d ≥ 4) = 0. An exact mapping into a diffusion
limited aggregation model and its renormalization [18] gives instead d = 2 as the
upper critical dimension and ε(d) = 0 in d ≥ 2. Our results are: gap ∝ q3 in d = 1,
q2/| log q| ≤ gap ≤ q2 in d = 2 and q2 ≤ gap ≤ q1+2/d in d = 3. Thus we
get ε(2) = 0 and ε(3) ≤ 0, disproving the findings in [3, 4] and confirming those
in [18].

Another popular model is the one-dimensional East model [10] for which the
constraint requires a vacancy on the right nearest neighbor, i.e. cx(η) = (1− ηx+1).
On a finite volume the presence of a single vacancy on the rightmost site allows to
empty the whole lattice. However the East does not belong to the non-cooperative
class since, due to the directed nature of constraints, the vacancy should occur
in a specific position and the relaxation involves the cooperative rearrangements
of large regions as p → 1. The scaling log τ ∼ (log(1/q))2 had indeed been
conjectured in [10, 11] and proved in [2]. In [8] we prove the exact asymptotics



746 Nicoletta Cancrini, Fabio Martinelli, Cyril Roberto and Cristina Toninelli

log τ = c(log(1/q))2 where c = 1/(2 log 2). Our result differs from the c = 1/ log 2
value incorrectly derived in [11]. As we clarify in [6], this is due to the fact that the
relation between length and time scales extrapolated in [11] from coarsening dy-
namics does not lead to the correct equilibrium result unless relaxation on scales
smaller than the typical distance of two vacancies is also taken into account.

Among cooperative models without transition (iia) we consider instead FAjf on
an hyper-cubic lattice of dimension d with 2 ≤ j ≤ d [13]: the constraint requires
at least j empty nearest neighbours. As can be directly checked, for all these mod-
els it is not possible to devise a finite seed of vacancies which allows emptying the
whole lattice, thus the models are cooperative. Consider, e.g., the case d = 2, j = 2
(with periodic boundary conditions) and focus on a configuration which contains
two adjacent rows which are completely filled. It is easy to verify that these par-
ticles can never be erased, not even if the rest of the lattice is completely empty.
The upper restriction on j comes from the fact if j > d there exist finite sets of
forever blocked particles. Thus a fraction of the system is frozen at all densities
(pc = 0) and the models are not suitable to describe the slow dynamics close to
glass-jamming transitions. The choices which have been most studied in physics lit-
erature are j = 2 both in d = 2 and d = 3 and j = 3 in d = 3. In all cases stretched
exponential relaxation has been numerically detected: C(t) and F(t) are fitted with
exp(−(t/τ )β) with β decreasing as the density p is increased [15, 12, 16]. For the
scaling of τ with p, as pointed out in [24], little is known beyond the general recog-
nition that the behavior is reminiscent to the one of supercooled liquids. Among the
different forms proposed for FA2f we recall Vogel-Fulcher [15] and exp(c/q) [5].
The latter form is supported by the conjecture that relaxation occurs via the diffu-
sion of critical droplets of size 1/q over distances exp(c/q) [23]. Our results are as
follows. For all j ≤ d and all dimensions we prove that the spectral gap is strictly
positive for p < pc = 1: exponential relaxation occurs both for C(t) and F(t)

contradicting the stretched exponential conjecture of [15, 16, 12] and confirming
the exponential decay derived in [11]. Furthermore for FA2f and FA3f we prove
exp q−1 ≤ τ ≤ exp q−5 and exp exp q−1 ≤ τ ≤ exp exp q−2, respectively. Thus
we establish a super-Arrhenius scaling compatible with [5, 23] and exclude the form
proposed in [15]. Also, we believe that the upper bound for FA2f can be ameliorated
to τ ≤ exp q−2.

Among (iib) models, we consider the two dimensional North-East and the Spiral
models. For the former [19] both the up (x+e2) and right (x+e1) neighbors should
be empty in order for a move at x to be allowed (ei are the unit basis vectors). For
the Spiral model [25] the constraint is more complicated. Let the NE, NW, SW and
SE neighbours of x be defined respectively as (x + e2, x + e1 + e2), (x − e1, x −
e1 + e2), (x − e2, x − e1 − e2) and (x + e1, x + e1 − e2). Then the constraint at
x goes as follows: (a) the two NE and/or the two SW neighbours of x should be
empty and (b) the two NW and/or the two SE neighbours of x should be empty
too. For both the North-East and Spiral model the cluster of frozen particles arises
at pc = ρdp with ρdp the critical density of directed percolation. In the case of
North-East there is a trivial one to one correspondence between directed percolation
clusters and frozen clusters. As a consequence the transition is continuous, namely
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the density of the frozen backbone is zero at pc. Instead for the Spiral model the
mechanism is much more subtle [25]: the presence of proper directed clusters imply
the occurrence of blocked clusters but the converse is not true. Indeed the proof of
pc = ρdp is much more involved [25] and the transition is here due to the interaction
between two independent directed percolation processes. Furthermore the transition
is expected to display mixed first/second order features [25, 26]: the density of the
frozen backbone is finite at pc and the size of the frozen cluster diverges as p ↗
pc. Thus the Spiral model is a KCSM whose ergodicity breaking transition has the
features of an ideal glass transition. For both North-East and Spiral models we prove
that the spectral gap in infinite volume is strictly positive for any p < pc. Therefore
in the whole ergodic region C(t) and F(t) decay exponentially. At criticality, p =
ρdp, we prove that relaxation is instead polynomial or slower than polynomial in
time. Finally, for p > ρdp, we prove that a strong signature of the infinite volume
ergodicity breaking occurs if one considers the model on a finite volume of linear
size L. The relaxation time is uniform on L for p < pc and diverges as τ(L) ∝
exp(L c(p)) for p > pc.

We will sketch our technique to derive the positivity of the spectral gap and its
scaling when p ↗ pc by focusing on FA2f in d = 2 (see [8] for rigorous proofs).
We will comment at the end on the flexibility of the tools which allow indeed to
deal with all the other choices of the constraints discussed above as well as with
more general models, including those with long range constraints [7] and with sta-
tic interactions other than hard core [6]. Before entering in the details we wish to
underline that from the mathematical point of view the main difficulties come from
the existence of several invariant measures and from the fact that KCSM are not
attractive, thus the usual coupling arguments cannot be applied. Both features are
a direct consequence of the constraints, i.e. of the fact that the creation/destruction
rates may degenerate to zero. This explains why the basic issues concerning the
large time behavior of KCSM are non trivial and why they remained open for most
of the interesting models, with the notable exception of the East for which in [2] the
positivity of the spectral gap had been established. However the method of [2] uses
the specifics of the East model and it cannot be applied neither to higher dimen-
sions nor to the above discussed cooperative models which are relevant for physics
literature.

In order to study the spectral gap of FA2f we proceed as follows. First we in-
troduce an auxiliary KCSM model, the General Model (GM), which has N -valued
occupation variables and we study its relaxation time, τGM . Then we establish an
upper bound on the relaxation time for FA2f, τFA, by using a renormalization pro-
cedure which forces the GM constraints on scales larger than a proper block size
and leaves inside each block the original FA2f dynamics. Finally we derive a lower
bound on τFA by using the knowledge of the typical regions which have to be re-
arranged to create/destruct a particle.

Let nx ∈ S be an N -valued occupation variable and choose a probability mea-
sure, ν, on S. We identify a subset G of S which we call the good event and
we say that a site x is good if nx ∈ G. GM dynamics is defined as follows.
Each site x waits a mean one exponential time and then nx is refreshed by a new
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Fig. 1 (a) Block dynamics for GM: percolating path of good sites (•) required to renew config-
uration on 3. (b) Blocking event for FA2f. • (◦) stand for particles which do (do not) belong to
the backbone. Sites inside dotted line form one of the sequences of ≥ δLc/2 sites to be emptied
before O

value n′x sampled from ν, provided its North, North-East and East neighbors (i.e.
x + e1, x + e1 + e2, x + e2) are good. If this constraint is not satisfied nx remains
unchanged. We consider GM on a square lattice ΛL of linear size L with good
boundary conditions on the top and right boundaries to ensure ergodicity (i.e. the
existence of an allowed path which connects any two configurations which in fi-
nite volume guarantees τGM(L) < ∞). In order to evaluate τGM(L) we follow a
bisection-constrained method. Partition ΛL into four blocks as in Fig. 1a) and de-
fine the following auxiliary block accelerated dynamics. Each block waits a mean
one exponential time and then its configuration is replaced by a new one chosen
according to the product equilibrium probability given by ν. On the top right block
(block 2 in Fig. 1a)) this move is always allowed. For the others, a constraint should
be satisfied: on an l-shaped frame of width Lδ , δ < 1, there should be a percolating
cluster of good sites as in Fig. 1a). In other words the constraint requires the good
GM boundary conditions on block 3 (see Fig. 1a)) and the same for blocks 1 and 4
(instead on block 2 they are automatically guaranteed by the boundary condition on
ΛL). Then

τGM(L) ≤ τGM
block(L)τGM(L/2)

with τGM
block(L) the relaxation time for the block dynamics. The above inequality (see

[8] for a rigorous proof) corresponds intuitively to a two step relaxation: first on
the block scale, then inside each individual block. If the probability that a site is
good, ν(G), is larger than the threshold of site percolation ρsp the constraint of the
block dynamics is satisfied with probability ∼ 1 − exp(−mLδ) and τGM

block(L) 5
(1+exp(−mLδ)). Then, by dividing ΛL/2 into four blocks and so on up to constant
size, we get

τGM(L) ≤ c
∏

n

τGM
block(2

−nL),

where c is a finite constant and the product contains O(logL) terms. Therefore
we get a bound for τGM(L) which does not dependent on L provided the product
over the τGM

block’s converges. From the above observation, this certainly occurs for
ν(G) > ρsp.
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Let us now consider FA2f in d = 2 on ΛL with empty boundary conditions on
the top and right borders. We partition ΛL into disjoint blocks of size k Lc, where
k ' 1 and Lc = exp(π2/(18q)). We can now define the following auxiliary dy-
namics: each block waits a mean one exponential time and then its configuration
is replaced by a new one chosen according to μp provided the three neighbouring
blocks in the North, East and North-East direction are internally spanned. By in-
ternally spanned we mean that each of these blocks can be completely emptied by
a proper sequence of allowed moves when we consider occupied boundary condi-
tions on it. The probability that a block of linear size  is internally spanned has been
evaluated in the context of bootstrap percolation: it goes to one exponentially fast
when  exceeds the crossover length Lc defined above [1, 17]. Applying as before a
two step relaxation argument, we get τFA(L) ≤ τFA

block(L) τFA(kLc) where τFA
block(L)

is the relaxation time of the above defined block dynamics, which a priori depends
on the number of blocks and therefore on L. We will now show that τFA

block(L) 5 1.

Take a square lattice with (L/kLc)
2 sites and define on each site a 2(kLc)

2
-valued

occupation variable, nx , belonging to S = (0, 1)(kLc)
2
. It is immediate to verify that

S and S(L/kLc)
2

are the configuration space of FA2f on a block of size kLc and on
ΛL, respectively. Furthermore, in terms of the nx variables, the above defined block
dynamics coincides with GM with the choices: nx is good when the corresponding
block in ΛL is internally spanned and ν equals μp restricted to the block. Therefore,
thanks to this mapping and our result for τGM , we get τFA

block(L) = τGM(L/kLc) 5 1
since the probability of the good event “a block of size kLc with k ' 1 is internally
spanned” is ν(G) 5 1 [17]. A few remarks are in order. In our renormalization
procedure we have forced on the block scale the directed GM constraint which is
more restrictive than the one of FA2f. This choice, which is due to the necessity of
boundary conditions which ensure ergodicity for FA2f dynamics inside each block
[8], is allowed because we are deriving an upper bound on τFA and the effect of a
stronger constraint is to slow down the dynamics. Furthermore, as explained above,
for our choice of the block scale τGM 5 1. This means that using GM instead of
FA2f constraints on large blocks does not change the leading behavior of the upper
bound. Putting above results together we conclude that τFA(L) ≤ τFA(kLc) and,
since Lc depends on p but not on L and Lc(p) < ∞ for p < pc = 1, the re-
laxation time of FA2f is uniformly bounded in L. This leads for any p < 1 to an
exponential relaxation in the infinite volume limit for all one time functions as well
as for the persistence function [8]. At the same time the density dependence of τFA

is completely encoded in the size Lc(p). To evaluate the latter we reduce the scale
from Lc to 1/q2 via a strategy similar to the previous one. However, since on scales
smaller than Lc the event “the block is internally spanned” becomes very unlikely,
we are forced to make a different choice for the good event of the renormalized
dynamics in order to keep τGM 5 1. The new choice is suggested by the following
two observations: (i) any straight empty segment of length  can be displaced by
one step in a given direction if there is at least one vacancy on the adjacent seg-
ment in that direction; (ii) the probability that there exists at least one vacancy on
each segment of length  inside a square of size Lc is very near to one as soon as
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 ' 1/q2. Thus, we choose good events which force on ΛkLc at least one straight
empty segment of length 1/q2 and at least one vacancy on all other segments of
this length. By applying again a bisection procedure together with the construction
of suitable paths which allow the creation/destruction of a particle starting from
straight empty segment, we get τFA(Lc) ≤ cLcτFA(1/q2) where the term Lc comes
from the length of the path. Finally we bound τFA(1/q2) with the highest entropy
cost and get τFA(L) < cLc exp(1/q2) = O(exp(1/q2)).

In order to establish lower bounds for τ one can devise as usual a suitable choice
of test functions and use the variational characterization of the spectral gap (1). In
some cases it is however simpler to follow a strategy which uses the knowledge of
the typical blocked configurations together with our bound for the persistence (3).
Consider a set of configurations B, called the blocking event, and let PB(t) be the
infimum over the initial configurations η(0) ∈ B of the probability that the origin
is occupied up to time t . The inequality (3) implies μp(B)PB(t) ≤ exp(−tq/τ).
For FA2f we define the blocking event B as the set of configurations for which,
after standard bootstrap percolation inside ΛδLc (i.e. after removing all particles
which can be removed until exhausting the set of possible movements), a backbone
of particles containing the origin survives. By choosing δ � 1 and recalling the
bootstrap percolation results of [1, 17] we have μp(B) 5 1. In finite volume this
backbone will eventually get unblocked thanks to the vacancies outside ΛδLc . How-
ever, this requires an ordered sequence of at least δLc/2 moves (Fig. 1b). Thus,
PB(t = εδLc) 5 1 for sufficiently small ε. Therefore O(1) ≤ exp(−tq/τ) for
t 5 εδLc, i.e. τ ≥ O(Lc).

In conclusion we have developed a technique which allows to obtain rigorous re-
sults on τFA via the knowledge of the typical region which has to be emptied around
a given site in order to perform a move on it. This size can in turn be determined
via a deterministic procedure which corresponds to subsequently erase all particles
which are unconstrained. The latter, due to the peculiar form of FA constraints, co-
incides with the very much studied bootstrap algorithm. Our main new results are
exponential relaxation in the whole ergodic regime as well as faster than power law
divergence of τ in p − pc when p ↗ pc = 1.

In higher dimensions and for the other KCSM one can proceed analogously [8].
The only delicate point is to choose an “internally spanned event” adapted to the
constraints at hand, see e.g. [8] and [6] for the natural choices in the case of the
North-East and the Spiral model, respectively. In some cases, e.g. for the Spiral
model [6], even the form of the blocks for the partition of ΛL before the renormal-
ization procedure has to be adapted to the constraints leading to a non rectangular
geometry. The scaling of τ on p depends on the specific choice of the constraints
but in all cases the upper bound τ < τ(Lc) holds, where Lc is the typical size over
which the proper “internally spanned event” is likely to occur. The latter can be al-
ways determined via a properly modified bootstrap-like deterministic procedure [8]
and it is finite for p < pc. Thus we establish that the inverse of the spectral gap is
finite which implies exponential relaxation for all one times quantities (e.g. C(t)) as
well as for F(t).
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Furthermore proper modifications of the bisection-constrained technique also al-
low to deal with models which are reversible w.r.t. a high temperature Gibbs mea-
sure instead of μp [6] as well as models with long range constraints [7]. In both
cases we establish positivity of the spectral gap in the whole ergodic region. The
result for the long range models is particularly relevant since it allows, via proper
renormalization and path techniques [7], to study the models with Kawasaki dynam-
ics, namely the KCLG. In particular, by using the positivity of the spectral gap for a
proper long range KCSM, we recently established [7] polynomial decay to equilib-
rium in infinite volume as well as 1/L2 decay for the spectral gap on finite volume
with boundary sources for the most popular KCLG, the so called Kob-Andersen
model [21].
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The Distributions of Random Matrix Theory
and their Applications �

Craig A. Tracy and Harold Widom

Abstract This paper surveys the largest eigenvalue distributions appearing in ran-
dom matrix theory and their application to multivariate statistical analysis.

1 Random Matrix Models: Gaussian Ensembles

A random matrix model (RMM) is a probability space (Ω,P,F ) where the sam-
ple space Ω is a set of matrices. There are three classic finite-N RMM called the
Gaussian ensembles (see, e.g. [23] and for early history [30]):

• Gaussian Orthogonal Ensemble (GOE, β = 1)
– Ω = N ×N real symmetric matrices
– P = unique (up to a choice of the mean and variance) measure that is invari-

ant under orthogonal transformations and the algebraically independent matrix
elements are i.i.d. random variables. Explicitly (for mean zero and a choice of
the variance), the density is

cN exp
(− tr(A2)/2

)
dA, (1)

where cN is a normalization constant and dA =∏i dAii

∏
i<j dAij , the prod-

uct Lebesgue measure on the algebraically independent matrix elements.
• Gaussian Unitary Ensemble (GUE, β = 2)
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– Ω = N ×N hermitian matrices
– P = unique measure (again up to a choice of the mean and variance) that is

invariant under unitary transformations and the algebraically independent real
and imaginary matrix elements are i.i.d. random variables. Again the density is
of the form (1) with dA =∏i dAii

∏
i<j d Re(Aij ) d Im(Aij ).

• Gaussian Symplectic Ensemble (GSE, β = 4) (see [23] for a definition)

For A in any of the above Gaussian ensembles, let λ1(A) ≤ · · · ≤ λN(A) :=
λmax denote the eigenvalues of A. These eigenvalues are real and define random
variables on the respective probability spaces. (With probability one the eigenvalues
are distinct.) Since these Gaussian ensembles are defined by invariant measures, one
can explicitly compute the joint distribution of eigenvalues and show that it has the
following density with respect to Lebesgue measure:

Pβ,N (x1, . . . , xN) = CN,β

∏

1≤i<j≤N

|xi − xj |β
N∏

i=1

e−βx2
i /2, β = 1, 2, 4,

where CN,β is a known normalization constant [23]. The form of the joint density
explains the usefulness of the β notation.

1.1 Largest Eigenvalue Distributions Fβ .
Painlevé II Representations

Generally speaking, the interest lies in limit laws as N → ∞. As is familiar from
the central limit theorem, to get nontrivial limits one must center and normalize the
random variables. Here the main focus is on the limit law associated with the largest
eigenvalue. If

FN,β(t) := Pβ,N (λmax < t) , β = 1, 2, 4,

denotes the distribution function of the largest eigenvalue, then the basic limit laws
[37–39] state that1

Fβ(x) := lim
N→∞FN,β

(
2σ
√
N + σx

N1/6

)
, β = 1, 2, 4,

exist and are given explicitly by

F2(x) = exp

(

−
∫ ∞

x

(y − x)q2(y) dy

)

(2)

1 Here σ is the standard deviation of the Gaussian distribution on the off-diagonal matrix ele-

ments. For the normalization we’ve chosen, σ = 1/
√

2; however, other choices are common.
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where q is the unique solution2 to the Painlevé II equation

d2q

dx2
= xq + 2q3

satisfying the boundary condition3

q(x) ∼ Ai(x) as x →∞. (3)

It is known [17] that

q(x) =
√

−x

2

(

1 + 1

8x3
+ O

(
1

x6

))

as x →−∞.

The orthogonal and symplectic distributions [39] are

F1(x) = exp

(

−1

2

∫ ∞

x

q(y) dy

)

(F2(x))
1/2 , (4)

F4(x/
√

2) = cosh

(
1

2

∫ ∞

x

q(y) dy

)

(F2(x))
1/2 . (5)

Graphs of the densities fβ := dFβ/dx are in Fig. 1 and some statistics of Fβ can
be found in the Table 1.

Fig. 1 Largest eigenvalue densities fβ(x) = dFβ/dx, β = 1, 2, 4 where Fβ are defined in (2), (4)
and (5)

2 That such a unique solution exists is a nontrivial fact first proved by Hastings and McLeod [17];
and for this reason, q is often called the Hastings-McLeod solution. See [15] for a detailed account
of Painlevé transcendents.
3 Ai is the Airy function.
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1.1.1 Tail behavior of Fβ

The asymptotics for Fβ(x) as x →+∞ follows straightforwardly from (2)–(5). To
state the results it is first convenient to introduce

F(x) = exp

(

−1

2

∫ ∞

x

(y − x)q(y)2 dy

)

,

E(x) = exp

(

−1

2

∫ ∞

x

q(y) dy

)

so that

F1(x) = E(x)F (x), F2(x) = F(x)2, and

F4(x/
√

2) = 1

2

(

E(x)+ 1

E(x)

)

F(x).

Then as x →+∞

F(x) = 1 − e− 4
3 x

3/2

32πx3/2

(

1 + O

(
1

x3/2

))

,

E(x) = 1 − e− 2
3 x

3/2

4
√
πx3/2

(

1 + O

(
1

x3/2

))

from which the asymptotics for Fβ follows.
The asymptotics as x →−∞ are much more difficult and the complete solution

was only recently achieved for β = 1, 2, 4 [4]. We quote the final results and refer
the reader to [4] for a history of this problem. As x →−∞

F1(x) = τ1
e
− 1

24 |x|3− 1
3
√

2
|x|3/2

|x|1/16

(

1 − 1

24
√

2|x|3/2
+ O

(|x|−3)
)

,

F2(x) = τ2
e− 1

12 |x|3

|x|1/8

(

1 + 3

26|x|3 + O
(|x|−6)

)

,

F4(x/
√

2) = τ4
e
− 1

24 |x|3+ 1
3
√

2
|x|3/2

|x|1/16

(

1 + 1

24
√

2|x|3/2
+ O

(|x|−3)
)

where

τ1 = 2−11/48e
1
2 ζ

′(−1), τ2 = 21/24eζ
′(−1), τ4 = 2−35/48e

1
2 ζ

′(−1)

and ζ ′(−1) = −0.1654211437 . . . is the derivative of the Riemann zeta function
evaluated at −1.
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1.1.2 Numerical evaluation of Fβ

Particularly for applications to data analysis, it is useful to have numerical evalu-
ations of the distributions Fβ . Chapter 7 of Dieng’s Ph.D. thesis [12] gives MAT-
LABTM code to evaluate and plot these distributions. Tables of the Hastings-
McLeod solution to Painlevé II and F1,2 can be found on Prähofer’s homepage [31].4

A different approach [6] to the numerical evaluation of Fβ is based on the Fredholm
determinant representations for Fβ (see, e.g. [40]).

Table 1 The mean (μβ ), variance (σ 2
β ), skewness (Sβ ) and kurtosis (Kβ ) of Fβ . The high-precision

numbers are courtesy of Michael Prähofer and Folkmar Bornemann

β μβ σ 2
β Sβ Kβ

1 −1.206 533 574 1.607 781 034 0.293 464 524 0.165 242 938
2 −1.771 086 807 0.813 194 792 0.224 084 203 0.093 448 087
4 −2.306 884 893 0.517 723 721 0.165 509 494 0.049 195 157

1.2 Next-Largest, Next-Next Largest, Etc. Eigenvalue Distributions

There exist Painlevé II type representations for the limiting distributions of the next-
largest eigenvalue (λN−1), next-next largest eigenvalue (λN−2), etc. The unitary case
was examined some time ago [38] but only recently did Dieng [11] derive limit-
ing distributions for the orthogonal and symplectic cases. It should be remarked
that the results in the orthogonal case were somewhat surprising. Figure 2 displays
simulations for the four largest eigenvalues of N = 1000 GOE matrices and their
respective limiting distributions.

2 Universality Theorems

A natural question is to what extent do the above limit laws depend upon the
Gaussian and invariance assumptions for the probability measure?

2.1 Invariant Ensembles

A more general class of invariant RMM results by replacing the Gaussian measures
with

4 Note that the Hastings-McLeod solution in the Prähofer tables is denoted u(s) and in the nota-
tion here u(s) = −q(s).
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Fig. 2 A histogram of the four largest (centered and normalized) eigenvalues for 104 realizations
of 103×103 GOE matrices. Solid curves are the limiting distributions from [11]. Figure a courtesy
of Momar Dieng

dPN(A) = cN,β exp (−β tr(V (A))/2) dA

where V is a polynomial of even degree and positive leading coefficient. This im-
plies that the joint density for the eigenvalues is

Pβ,V,N (x1, . . . , xN) = CV,N,β

∏

1≤i<j≤N

|xi − xj |β
N∏

i=1

e−βV (xi )/2, β = 1, 2, 4,

(6)

where CV,N,β is a normalization constant [23]. Unitary ensembles (β = 2) are tech-
nically simpler than the orthogonal and symplectic ensembles (β = 1, 4), but both
require for general V powerful Riemann-Hilbert methods [9] for the asymptotic
analysis. The main conclusions from these studies for the limiting distribution of
the largest eigenvalue are

Theorem 1. There exist constants z(β)N and s
(β)
N such that

lim
N→∞Pβ,V,N

(
λmax − z

(β)
N

s
(β)
N

≤ t

)

= Fβ(t), β = 1, 2, 4,

where the Fβ are given by (2), (4) and (5).

The results for the unitary case (β = 2) are due to Deift, Kriecherbaur, McLaugh-
lin, Venakides and Zhou [10] and the orthogonal/symplectic results are recent work
of Deift and Gioev [8]. The universality theorem for special case V (A) = 1

4A
4 −

gA2 is due to Bleher and Its [5] (β = 2) and Stojanovic [36] (β = 1). These deep
theorems broadly extend the domain of attraction of the Fβ limit laws. Deift’s ICM
2006 lecture [7] is a recommended overview for these developments.
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2.2 Wigner Ensembles

Wigner matrices are RMM of complex hermitian or real symmetric N × N matri-
ces H

H = 1√
N

(Aij )
N
i,j=1

where Aij , 1 ≤ i < j ≤ N are i.i.d. complex or real random variables with distrib-
ution μ. The diagonal matrix elements are i.i.d. real random variables independent
of the off-diagonal elements. The diagonal probability distribution is centered, inde-
pendent of N and has finite variance. They are called Wigner matrices since Wigner
in 1955 first studied the limiting distribution of the empirical spectral measure un-
der the assumption that μ has finite variance. The limiting spectral measure is the
famous Wigner semicircle distribution. We denote the Wigner measure on the space
of either complex Hermitian or real symmetric N ×N matrices by PW,N

Except in the case of the Gaussian distribution, the Wigner ensembles define non-
invariant measures. For this reason no explicit formulas for the joint distribution of
eigenvalues, such as (6) for invariant measures, are known. Thus the techniques used
to prove universality theorems have a completely different flavor.

Soshnikov [33] proved, under the additional assumptions that μ is symmetric (all
odd moments are zero) and the distribution decays as at least as fast as a Gaussian
distribution together with a normalization on the variances,5 the following univer-
sality statement for the largest eigenvalue λmax of Wigner random matrices

Theorem 2.
lim

N→∞PW,N

(
λmax ≤ 1 + x

2N2/3

)
= Fβ(x)

with β = 1 for real symmetric matrices and β = 2 for complex hermitian matrices.

The importance of Soshnikov’s theorem is the universality of Fβ has been estab-
lished for ensembles for which the “integrable” techniques, e.g. Fredholm theory,
Riemann-Hilbert methods, Painlevé theory, are not directly applicable. Current re-
search [29] is exploring the relaxation of the symmetry constraint on the underlying
distribution μ.

3 Multivariate Statistical Analysis

As Johnstone [22] remarked:
It is a striking feature of the classical theory of multivariate statistical analysis that
most of the standard techniques—principal components, canonical correlations, mul-
tivariate analysis of variance (MANOVA), discriminant analysis and so forth—are
founded on the eigenanalysis of covariance matrices.

5 For real symmetric matrices the normalization is EW,N (H 2
ij ) = 1

4 , 1 ≤ i < j ≤ N and for

complex hermitian matrices EW,N (Re(Hij )
2) = EW,N (Im(Hij )

2) = 1
8 .
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Thus it is not surprising that the methods of random matrix theory have important
applications to multivariate statistical analysis. We now survey some of these recent
developments drawing heavily on Johnstone’s 2006 ICM lecture [21]. We have also
benefited from the unpublished survey by Péché [28].

3.1 Principal Component Analysis (PCA)

Recall that in PCA with p variables one distinguishes between the population eigen-
values  j , which are the eigenvalues of the underlying p × p covariance matrix

Σ = (Cov(Xk,Xk′))1≤k,k′≤p ,

and the sample eigenvalues  ̂j , which are the (random) eigenvalues of the sample
covariance matrix

S = 1

n
XXT .

Here X is the p × n data matrix and n is the number of observations of the p

variables. (A column of X represents one observation of the p variables.) Since
the parameters of the underlying probability model describing the random variables
X1, . . . , Xp are unknown, the problem is to deduce properties of Σ from the ob-
served sample covariance matrix S.

The simplest model is to assume X = (X1, . . . , Xp) is a p-variate Gaussian
distribution Np(μ,Σ) and the data matrix X is formed by n independent draws
X1, . . . ,Xn. (For simplicity we consider μ = 0.) The p × p matrix A = XXT is
said to have p-variate Wishart distribution on n degrees of freedom, Wp(n,Σ). We
denote the eigenvalues of A by l1 ≥ l2 ≥ · · · lp ≥ 0 (so lj = n ̂j ). The joint dis-
tribution of the eigenvalues lj has been known for some time (e.g. Muirhead [24],
Theorem 3.2.18) and is complicated by the fact it involves an integral over the or-
thogonal group O(p).

3.2 Testing the Null Hypothesis

The null hypothesis H0 is the statement that there are no correlations amongst the
p variables, i.e. Σ = I . Under H0 all the population eigenvalues equal one, but as
been known for some time6 there is a “spread” in the sample eigenvalues  ̂j . To
assess whether “large” observed eigenvalues justify rejecting the null hypothesis,
we need an approximation to the null hypothesis distribution of the largest sample
eigenvalue,

6 For Σ = I , the density of eigenvalues of S follows the Marchenko-Pastur distribution, a gen-
eralization of the Wigner semicircle distribution.
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P

(
 ̂1 > t |H0 = Wp(n, I )

)
. (7)

This approximation is provided by the following theorem of Johnstone [20].

Theorem 3.
P

(
n ̂1 ≤ μnp + σnpx|H0

)
→ F1(x)

where the limit is n →∞, p →∞ such that p/n → γ ∈ (0,∞), F1 is the largest
eigenvalue distribution (4), and the centering and norming constants are

μnp =
(√

n− 1

2
+
√

p − 1

2

)2

, (8)

σnp =
(√

n+√
p
)
⎛

⎝ 1
√
n− 1

2

+ 1
√
p − 1

2

⎞

⎠

1/3

. (9)

Several remarks are in order.

1. The appearance of the fractions 1
2 in μnp and σnp appear to improve the rate

of convergence to F1 to “second-order accuracy” [21]. With this choice of con-
stants, F1 provides a good approximation for rather small values of p. (See John-
stone’s comparisons with the tables of Chen [21].)

2. El Karoui [14] shows the theorem holds more generally as

p/n → γ ∈ [0,∞].
3. For complex data matrices with Σ = I , there are corresponding limit theorems

where now convergence is to F2 [18, 20].
4. Soshnikov [34] and Péché [27] have removed the assumption of Gaussian sam-

ples. They assume that the matrix elements Xij of the data matrix X are indepen-
dent random variables with a common symmetric distribution whose moments
grow not faster than the Gaussian ones. We refer the reader to [27] for a descrip-
tion of the centering and norming constants. Limit theorems for complex data
matrices are also proved.

5. To summarize, given the centering and norming constants (8) and (9) together
with tables such as Table 2, one has a good approximation to the null distribution
function (7).

3.3 Spiked Populations: BBP Phase Transition

As mentioned above, an essential difficulty in extending the above limit laws for
 ̂1 when the A = XXT ∈ Wp(n,Σ), Σ $= I , is the presence of a certain integral
over the orthogonal group O(p) in the joint distribution of eigenvalues of A. In the
case of complex Wishart matrices, the corresponding integral in the joint distribution
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Table 2 Values of x for given P(χ1 ≥ x) where χ1 has distribution F1

x P(χ1 ≥ x)

2.02345 0.01
1.59776 0.02
1.33321 0.03
1.13706 0.04
0.97931 0.05
0.84633 0.06
0.73069 0.07
0.62792 0.08
0.53508 0.09
0.45014 0.10

of eigenvalues is over the unitary group U(p) which, fortunately, can be explicitly
evaluated by use of the Harish-Chandra-Itzykson-Zuber formula, see, e.g. [41].

We now describe the limit theorem of Baik, Ben Arous and Péché [3] where they
consider the complex Wishart ensemble with the p × p covariance matrix

Σ = diag ( 1, . . . ,  r , 1, . . . , 1) .

For ease of exposition of their results, we consider r = 1 with  1 > 1. As before we
consider the limit

p →∞, n →∞ such that
p

n
→ γ ≥ 1. (10)

Define
wc = 1 +√

γ .

Theorem 4. With Σ as above (r = 1), let  ̂1 denote the largest eigenvalue of the
sample covariance matrix.

• If 1 ≤  1 < wc, then in the limit (10)

P

(
n2/3

σ

(
 ̂1 − μ

)
≤ x

)

→ F2(x),

where F2 is given by (2) and

μ = (1 +√
γ )2, σ = (1 +√

γ )

(

1 + 1√
γ

)1/3

.

• If π1 > wc, then in the limit (10)

P

(
n1/2

σ1

(
 ̂1 − μ1)

)
≤ x

)

→ Φ(x),

where Φ is the standard normal distribution and
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μ1 =  1

(

1 + γ

 1 − 1

)

, σ1 =  2
1

(

1 − γ

( 1 − 1)2

)

.

Remarks:

1. The BBP theorem “shows that a single eigenvalue of the true covariance Σ may
drastically change the limiting behavior of the largest eigenvalue of sample co-
variance matrices. One should understand the above result as the statement that
the eigenvalues exiting the support of the Marchenko-Pastur distribution form a
small bulk of eigenvalues. This small bulk exhibits the same eigenvalue statistics
as the eigenvalues of a non-normalized GUE (resp. GOE) matrix” [28].

2. If π1 = wc the limiting distribution is a generalization of F2 expressible in terms
of the same Painlevé II function q [1].

3. For real Wishart matrices, Paul [26] shows that if π1 > wc is simple, then  ̂1
exhibits Gaussian fluctuations.

4. El Karoui [13] finds a large class of complex Wishart matrices Wp(Σ, n) which
have a F2 limit law for  ̂1.

5. Patterson, Price and Reich [25] have applied these results to problems of popu-
lation structure arising from genetic data. See Harding [16] for an application in
economics.

4 Conclusions

In this note we have surveyed some basic properties of the largest eigenvalue distri-
butions Fβ , their appearance as limit laws for large classes of random matrix models
as well as their application to principal component analysis. We mention that these
same distributions play an analogous role in canonical correlations [22] as they do
in PCA.

We have not discussed the appearance of the Fβ limit laws in growth processes.
This line of research began with Baik, Deift & Johansson’s work [2] on Ulam’s
Problem of the length of the longest increasing subsequence of a random permu-
tation. (See also Johansson [18, 19] as well as [35] for a recent review.) Nor have
we discussed the generalization of Fβ to all real β > 0 by Ramírez, Rider and
Virág [32].
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Hybrid Formalism and Topological Amplitudes

Jürg Käppeli, Stefan Theisen, and Pierre Vanhove

Abstract We study four-dimensional compactifications of type II superstrings on
Calabi-Yau spaces in the hybrid formalism. Chiral and twisted-chiral interactions
are rederived, which involve the coupling of the compactification moduli to two
powers of the Weyl-tensor and of the derivative of the universal tensor field-strength.
We review the formalism and provide details of some of its technicalities.

1 Introduction

Type II string compactified on a Calabi–Yau 3-fold gives rise to N = 2 super-
gravity in four dimension. Most calculations of string scattering amplitudes, and
therefore of the construction of the low-energy-effective action, are based on the
Ramond-Neveu-Schwarz (RNS) formulation of the superstring. A drawback of this
formulation is that spacetime supersymmetry is not manifest and is achieved only
after GSO projection.

An alternative formulation without these complications is the hybrid formula-
tion. Hybrid string theory can be obtained by a field redefinition from the gauge-
fixed RNS string or by covariantizing the Green-Schwarz (GS) string in light-cone
gauge. In this sense, worldsheet reparametrizations are gauge-fixed in the hybrid
formulation. Nevertheless, there is no need for ghost-like fields in the formalism
since the theory can be formulated as a N = 4 topological theory and amplitudes
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can be computed directly by the methods of topological string theory [12]. The the-
ory consists of two completely decoupled twisted worldsheet SCFT, one describing
the spacetime part, one the internal part. Despite being twisted, hybrid string theory
describes the full theory, i.e., it computes also non-topological amplitudes. Hybrid
type IIA and IIB string theories are distinguished by the relative twisting of the left-
and right-moving sector of the internal SCFT. When working with either type one
is therefore committed to a given fixed twisting.

The hybrid formulation was developed in a series of papers by N. Berkovits and
various collaborators [12, 7, 10]. It was reviewed in [9]. One purpose of this note is
our attempt to fill in details of some of the more technical aspects. This is done in
Sect. 2 and the Appendices B and C, the content of which is well known to the few
experts in the field, but often not readily accessible.

The main application of hybrid strings in this note are presented in Sects. 3 and 4.
We extend the analysis of higher order derivative interactions to the twisted-chiral
sector. The procedure is analogous to the computation in the chiral sector given [12].
Even though one is working with a fixed relative twisting, giving rise to either type
IIA or type IIB, it is shown that the chiral and twisted-chiral couplings of each type
II theory depend on both the A-model and B-model topological partition functions.
In the effective action these amplitudes give rise to couplings of compactification
moduli to two powers of the Weyl tensor or of the derivative of the universal tensor
field-strength. In the RNS formulation these couplings were discussed in [4].

Another possible application is flux compactifications of the type II string with
N = 1 spacetime supersymmetry. The breaking N = 2 → N = 1 results
from auxiliary fields acquiring vacuum expectation values [30]. Due to its manifest
spacetime supersymmetry, the hybrid formulation might be the most suitable. First
steps in this direction were already taken in [24, 26].

2 Compactified String Theory in RNS and Hybrid Variables

In this section we present a detailed account of the field mapping between the vari-
ables of the Ramond-Neveu-Schwarz (RNS) formulation of those of the hybrid for-
mulation of the superstring. We consider here only Calabi-Yau compactifications to
four spacetime dimensions and split all variables into a spacetime and an internal
part. The internal part is practically the same for the RNS and the hybrid formula-
tion, while the two descriptions of the spacetime are different.

2.1 Hybrid Variables

Type II and heterotic string theory compactified on a Calabi-Yau three-fold can be
formulated within a covariant version of the Green-Schwarz (GS) formulation [7,
10]. The spacetime part consists of four bosons xm, two pairs of left-moving canon-
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ically conjugate Weyl fermions (pα, θ
β) and (p̄α̇, θ̄β̇ ), both of conformal weight

(1, 0) and a chiral boson ρ with action

S = 1

π

∫
d2z

{
1

2
∂̄xm∂xm + pα∂̄θα + p̄α̇ ∂̄ θ̄

α̇ + p̃α∂θ̃α + ¯̃pα̇∂
¯̃
θ α̇ + 1

2
∂̄ρ∂ρ

}

.

(1)
The chiral boson is periodic with period ρ ∼ ρ + 2πi and

ρ(z)ρ(w) = − ln(z− w). (2)

From these fields one constructs the generators

T = −1

2
∂xm∂xm − pα∂θα − p̄α̇∂θ̄

α̇ − 1

2
∂ρ∂ρ − 1

2
Qρ∂

2ρ,

G− = 1√
32

eρ d2, G+ = − 1√
32

e−ρ d̄2,

J = ∂ρ.

(3)

We have defined the fermionic currents (cf. Appendix A)

dα = pα + iθ̄ α̇∂xαα̇ − θ̄2∂θα + 1

2
θα∂θ̄

2,

d̄α̇ = p̄α̇ + iθα∂x
αα̇ − θ2∂θ̄ α̇ + 1

2
θ̄ α̇∂θ2.

(4)

In the definition of the energy-momentum tensor a background charge Qρ for the
chiral boson ρ is included. It is obtained from the coupling of the field ρ to the
world-sheet curvature. This coupling is not visible in conformal gauge. The back-
ground charge implies the conformal weights wt(exp(qρ)) = − 1

2q(q + Qρ), and
therefore wt(exp(±ρ)) = − 1

2 (1±Qρ) and wt(G±) = 1
2 (3±Qρ). Also the central

charge of the Virasoro algebra depends on the value of Qρ . It is cx + cp,θ + cp̄,θ̄ +
cρ = 4− 4− 4+ (1+ 3Q2

ρ) = 3(Q2
ρ − 1). For Qρ = 0, (T ,G+,G−, J ) generate

an untwisted c = −3, N = 2 superconformal algebra while for non-vanishing Qρ

the algebra is twisted. It is topological for Qρ = ±1. When checking the algebra
for this case, in particular, the correct overall sign on the right-hand side of

G+(z)G−(w) ∼
c
3

(z− w)3
+ J (w)

(z− w)2
+ T (w)

z− w
, (5)

for c = −3, the relative minus sign in the definitions of G± is crucial. It is also
consistent with the requirement (G+)† = G− if we define (eρ)† = −e−ρ . The
hermiticity properties of the hybrid variables are further discussed in Appendices A
and B. As explained in Sect. 2.3, the field mapping from the RNS variables deter-
mines the background charge as Qρ = −1. The four-dimensional part is therefore
a twisted c = −3, N = 2 superconformal algebra.
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The Calabi-Yau compactification is described by an internal N = 2 SCFT. The
generators (TC,G

+
C,G

−
C, JC) form an untwisted c = 9, N = 2 superconformal al-

gebra and commute with (3). The generators (T ,G±,J ) of the combined system
are obtained by adding1 the twisted generators (TC + 1

2∂JC,G
+
C,G

−
C, JC) to those

of (3),

T = T + TC + 1

2
∂JC, G± = G± +G±

C, J = J + JC. (6)

They form a twisted c = 6, N = 2 superconformal algebra. The current JC can
be represented in terms of a free boson H as JC = i

√
3H . The generators G±

C can

then be written in the form G+
C = e

+ i√
3
H
G′ and G−

C = e
− i√

3
H
Ḡ′ where G′ and Ḡ′

are uncharged under JC . The conformal weight of e
iq√

3
H

is q
6 (q − 3).

For a twisted algebra, the conformal anomaly vanishes (though the other currents
are anomalous). There are, therefore, two options: either, one untwists the resulting
algebra, couples the system to a set of c = −6, N = 2 superconformal ghosts
(thereby canceling the central charge) and calculates scattering amplitudes utilizing
the N = 2 prescription [6]. Alternatively, one embeds the twisted c = 6, N = 2
SCFT into a (small version of the) twisted N = 4 algebra and uses the topological
prescription [12, 14] to compute the spectrum and correlation functions. This is the
method we follow.

The embedding into a twisted small N = 4 superconformal algebra2 proceeds
as follows: The U(1)-current J = J + JC is augmented to a triplet of currents
(J ++,J ,J −−). The J -charge of J ±± is ±2 and the conformal weights are
wt(J ++) = 0 and wt(J −−) = 2. They satisfy the SU(2) relation

J ++(z)J −−(w) ∼ 1

(z− w)2
+ J (w)

(z− w)
. (7)

There are two SU(2) doublets of fermionic generators: (G+, G̃−) and (G−, G̃+)
that transform in the 2 and 2∗ of SU(2), respectively. The G̃± are defined via the
operator products

J ±±(z)G∓(w) ∼ ∓ G̃±(w)

z− w
, J ±±(z)G̃∓(w) ∼ ±G±(w)

z− w
(8)

and have wt(G̃+) = 1 and wt(G̃−) = 2. The other OPEs of J ±± with the fermi-
onic generators are finite. The notation Õ refers to a more general operator conju-
gation O → Õ , for which (8) is a special case. It is explained in Appendix B.

The nontrivial OPEs of the supercurrents are

1 When working with the explicit realizations (3) of G± cocycle factors must be included in
order for the space-time and the internal part of G± to anticommute. The explicit expressions are
given in (12).
2 Small N = 4 superconformal algebras were constructed in [2, 3]. Our conventions are based

on the algebra presented in [35].
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G+(z)G̃+(w) ∼ 2J ++(w)

(z− w)2
+ ∂J ++(w)

z− w
,

G̃−(z)G−(w) ∼ 2J −−(w)

(z− w)2
+ ∂J −−(w)

z− w

(9)

and

G+(z)G−(w) ∼ 2

(z− w)3
+ J (w)

(z− w)2
+ T (w)

z− w
, (10)

and the very same OPE for G̃+(z) and G̃−(w). The explicit form of the currents and
super-currents is

J ±±(z) = c±e±
∫ z J = c±e±(ρ+i

√
3H), (11)

and

G+ = −
(

1√
32

e−ρd̄2 + c+G+
C

)

G− = 1√
32

eρd2 + c−G−
C

G̃+ = −
(

1√
32

c+e2ρ+i
√

3Hd2 + eρG++
C

)

G̃− = −
(

1√
32

c−e−2ρ−i
√

3H d̄2 + e−ρG−−
C

)

(12)

Here G±±
C are defined3 as G±±

C = e±i
√

3H (G∓
C) and c± = e±iπ

∮
J =

e±iπ(pρ+
√

3pH ).4 The various signs and cocycle factors c± are necessary in or-
der to guarantee the hermiticity relations (J ++)† = J −−, (G+)† = G− and
(G̃+)† = G̃−, the appropriate Grassmann parity of the generators, and for correctly
reproducing the algebra.

In type II theories the spacetime fields are supplemented by two pairs of right-
moving canonically conjugate Weyl fermions and a periodic right-moving chiral bo-
son. We will use the subscripts “L” and “R” in order to distinguish left-moving from
right-moving fields and adopt the notation |A|2 = ALAR . For notational simplicity
we discuss mostly type IIB string theory, for which the left- and right-movers are
twisted in the same way. For type IIA theories the right-moving part of the algebra
is obtained by the opposite twisting as compared to IIB. Operationally, the expres-
sions for IIA can be obtained from those of IIB by replacing (JC)R → −(JC)R
(thereby reversing the background charge) in above definitions of the currents and
by reversing, e.g., (G±

C)R → (G∓
C)R . The spacetime part remains unaffected.

3 The expression A(B(w)) denotes the residue in the OPE of A(z) with B(w) and equals the
(anti)commutator [∮ A,B(w)}. The notation is

∮
A ≡ 1

2πi

∮
dzA(z).

4 The momentum modes pρ = ∮
∂ρ and pH = i

∮
∂H satisfy the commutation relations

[pρ, ρ] = −1 and [pH ,H ] = −i. Their hermiticity properties are discussed in Appendix B and
imply (c+)† = c−.
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2.2 RNS Variables

In the RNS representation the spacetime fields are (xm,ψm) with m = 1, . . . , 4.
They contribute with cx,ψ = 6 to the central charge of the Virasoro algebra. We will
concentrate on the left-moving sector in what follows.

It is convenient to bosonize the (Euclideanized) worldsheet fermions,

ψ1 ± iψ2 = e±iϕ1
, ψ3 ± iψ4 = e±iϕ2

. (13)

As usual we suppress cocycle factors. The bosonized expression for the SO(4)-spin
fields of positive and negative chirality are

Sα = e±
i
2 (ϕ

1+ϕ2), S̄α̇ = e±
i
2 (ϕ

1−ϕ2). (14)

The internal sector (the Calabi-Yau threefold) is accounted for by a c = 9 CFT
with N = 2 worldsheet superconformal symmetry generated by T̆C , ĞC

±, and J̆C .
Their relation to the generators introduced in the previous section is explained in
Sect. 2.3. The U(1) R-current J̆C can be expressed in terms of a free chiral boson H̆

as
J̆C = i

√
3∂H̆ , H̆ (z)H̆ (w) = − ln(z− w). (15)

Any field O(q) with R-charge q can be decomposed as O(q) = exp( iq√
3
H̆ )O ′ where

O ′ is uncharged with respect to J̆C . For the generators Ğ±
C this part is independent

of H̆ .
Covariant quantization requires fixing the local reparametrization invariance of

N = 1 worldsheet supergravity. This introduces the (b, c) and (β, γ ) ghost sys-
tems. With cgh = −15 the total central charge vanishes. Following [23], we ‘bosonize’
the ghosts

b = e−σ , c = eσ ,

β = e−ϕ∂ξ = e−ϕ+χ∂χ, γ = eϕηeϕ−χ ,

ξ = eχ , η = e−χ .

(16)

The total energy-momentum tensor is

TRNS = −1

2
∂xm∂xm − 1

2
ψm∂ψm + T̆C

+ 1

2

[
(∂σ )2 + (∂χ)2 − (∂ϕ)2

]
− 1

2
∂2(2ϕ − 3σ − χ). (17)

The generators (TRNS, b, jBRST, J
gh) form a twisted N = 2 algebra. The U(1)-

current is J gh = −(bc + ξη). The BRST-current jBRST is given in Appendix B.
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2.3 Field Redefinition from RNS to Hybrid Variables

The RNS variables are mapped to the hybrid variables in a two-step procedure. From
the RNS variables one first forms a set of variables, called the “chiral GS-variables”
in [7, 12]. In this section, we refer to these variables. The hybrid variables of the
previous section are obtained in a second step by performing a field redefinition on
the chiral GS-variables. We will suppress this field redefinition in the following and
refer to Appendix B for a detailed account.

Following [7, 12] we define the following superspace variables:5

θα = cξe−
3
2ϕΣ̄Sα, θ̄ α̇ = e

ϕ
2 ΣS̄α̇,

pα = bηe
3
2ϕΣSα, p̄α̇ = e−

ϕ
2 Σ̄S̄α̇,

(18)

where
Σ = e

i
2

√
3H̆ , Σ̄ = e−

i
2

√
3H̆ . (19)

In this definition, θα (pα) carries charge qC = − 3
2 (+ 3

2 ). Here and in the following,
qC denotes the charge under

∮
J̆C , the U(1) R-symmetry of the internal c = 9 SCFT.

In order to implement a complete split between the spacetime and the internal
part one must require that the hybrid variables (18) do not transform under the c = 9
SCFT generators. For instance, the variables (18) should not carry a charge with
respect to the U(1) R-symmetry. This can be realized by shifting the U(1) charge by
the picture-counting operator,

P = −βγ + ξη = −∂ϕ + ∂χ. (20)

The variable θα , for instance, has picture − 1
2 . This motivates the following defini-

tion of the shifted U(1) current

JC = J̆C − 3P = J̆C + 3∂(ϕ − χ). (21)

More generally, the fields of the internal part are transformed by the field transfor-
mation [7, 12]

FC = eW F̆Ce
−W , W =

∮
(ϕ − χ)J̆C. (22)

For the other generators of the internal N = 2 algebra this implies

G+
C = e(ϕ−χ)Ğ+

C,

G−
C = e−(ϕ−χ)Ğ−

C,

TC = T̆C + ∂(ϕ − χ)J̆C + 3

2
(∂ϕ − ∂χ)2 .

(23)

5 The RNS variables are actually subject to the rescaling given in Appendix B.1. We neglect this
issue here.
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These are the generators that couple to the chiral GS-variables defined in (18).
The generators coupling to the hybrid variables are related to these by the field
redefinition discussed in Appendix B, which does not affect the algebraic structure
discussed in the following. The currents (TC,G

+
C,G

−
C, JC) generate an untwisted

N = 2 superconformal algebra. The shift by the picture changing current in the
relation (21) amounts to a background charge QJC = −3 for the current JC . The
RNS ghost-current

J gh = −(bc + ξη) = ∂σ − ∂χ, (24)

which is obtained from the ghost current of the “small Hilbert space”−(bc+βγ ) =
∂σ − ∂ϕ by adding the picture-counting operator (20), is mapped to a combination
of the current J = ∂ρ and the shifted internal U(1) R-current [7, 12],

J = ∂ρ = J gh − JC = ∂σ + 2∂χ − 3∂ϕ − J̆C. (25)

This equation defines the chiral boson ρ in terms of the RNS variables. The mapping
is such that the ρ-system6 acquires a background charge Qρ = −1 and that it
has regular OPEs with the internal generators (TC,G

+
C,G

−
C, JC). The superspace

variables θ , θ̄ , p and p̄, and the redefined internal operators (22) all have zero ρ-
charge. This, in particular, means that (22) leads to a complete decoupling of the
internal sector from the chiral GS-variables.

The field redefinitions (18) are such that the RNS generators (TRNS, b, jBRST, J
gh)

map to the hybrid generators of the N = 2 algebra

TRNS = T , b = G−, jBRST = G+, J gh = J . (26)

We hasten to add that in order to arrive at this correspondence one must correctly
take into account the field mapping from the chiral GS-variables to the hybrid vari-
ables (cf. Appendix B).

It is straightforward to express the raising and lowering operators (11) of the
N = 4 algebra in terms of RNS variables, since one can verify that these are not
affected by the additional field redefinition, mapping hybrid to chiral GS-variables
as discussed in Appendix B. From (18) one therefore concludes

J ++ = cη, J −− = bξ. (27)

Using this it is easy to verify that the generators G̃±, defined through (8), are ex-
pressed in RNS variables by

G̃− = [QBRST, bξ ] = Z + ξTRNS, G̃+ = η, (28)

where Z is the picture changing operator of the RNS formalism, given in (B.20). We
summarize the dictionary between the RNS and the hybrid currents in the following
table:

6 The current which satisfies T (z)j (w) ∼ Qρ

(z−w)3 + · · · and leads to ∂̄j = 1
8Qρ

√
gR is j =

−∂ρ = −J .
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T = TRNS,

J ++ = cη, J −− = bξ, J = J gh = −(bc + ξη), (29)

G+ = jBRST, G̃+ = η, G− = b, G̃− = bZ + ξTRNS.

So far we have concentrated on the left-moving (holomorphic) sector of the the-
ory. For the heterotic string the right-moving sector is treated in the same way as in
the RNS formulation: it is simply the bosonic string. For the type II string, however,
the distinction between type IIA and IIB needs to be discussed. Since the construc-
tion presented above involves twisting the internal c = 9 SCFT, the distinction
between IIA and IIB is analogous to the one in topological string theory where one
deals with the so-called A and B twists (which are related by mirror symmetry). In
type IIB, the left- and right-moving sectors are treated identically and the distinc-
tion is merely in the notation, i.e., to replace all fields ϕL(z) by ϕR(z̄). In type IIA,
however, the twists in the two sectors are opposite. The two possible twists differ
in the shift of the conformal weight, which is either h → h − 1

2q or h → h + 1
2q.

Above we have discussed the first possibility. The second twist is implemented by
the replacement T̆C → T̆C − 1

2∂J̆C and follows from the first by the substitution
J̆C → −J̆C . This also implies that the transformation (22) is now defined with
W = − ∮ (ϕ − χ)J̆C which leads to

TC = T̆C − ∂(ϕ − χ)J̆C + 3

2
(∂ϕ − ∂χ)2,

JC = J̆C + 3P,

(30)

and
J = ∂ρ = J gh + JC = ∂σ + 2∂χ − 3∂ϕ + J̆C. (31)

With this definition, ρ still has background charge Qρ = −1. The twisted c = 9
SCFT is generated by (TC− 1

2∂JC,G
+
C,G

−
C, JC), where now the conformal weights

of G+
C and G−

C are two and one, respectively. The full right-moving supersymmetry
generators for the type IIA theory are (suppressing signs and cocycle factors)

G±
R = G±

R +G∓
CR. (32)

The map between RNS and hybrid variables must also be modified for the latter to
be neutral under JC :

θα = cξe−
3
2ϕΣSα, θ̄ α̇ = e

ϕ
2 Σ̄S̄α̇,

pα = bηe
3
2ϕΣ̄Sα, p̄α̇ = e−

ϕ
2 ΣS̄α̇.

(33)

In the type IIA theory this applies for the right-movers, given (18) for the left
movers. Summarizing, the difference between type IIA and type IIB is seen in the
different right-moving U(1) charge assignment to ρR .
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2.4 Physical State Conditions and N = 4-embeddings

Having the dictionary (29) at hand it is simple to rephrase the standard physical state
conditions of the RNS formalism in terms of hybrid variables. We refer to [9, 14] for
details. Physical RNS vertex operators are in the cohomology of QBRST =

∮
jBRST

and
∮
η:

jBRST(V
+) = 0, η(V +) = 0, δV + = jBRST(η(Λ

−)). (34)

The condition imposed by
∮
η implies that V + is in the small RNS Hilbert space,

i.e., it does not depend on the ξ zero-mode. Furthermore, V + has ghost number 1
with respect to (24) as indicated with the superscript. The charge with respect to
−(bc+ βγ ) is 1+P , where P is the picture (20). Using (29), the conditions (34)
are expressed in hybrid variables as

G+(V +) = 0, G̃+(V +) = 0, δV + = G+(G̃+(Λ−)). (35)

In addition, V + has J -charge 1 as indicated. Note that G+ and G̃+ have trivial
cohomologies, since

G+ (√2eρθ̄2
)
= 1, G̃+

(√
2 ˜(eρ θ̄2)

)

= 1. (36)

Therefore, one can solve, e.g., the G̃+-constraint by introducing the U(1)-neutral
field V satisfying

V + = G̃+(V ). (37)

Up to the gauge transformations δV = G̃+(Λ̃−), V is determined in terms of V +

by V = √
2(̃eρθ2)V +, where we used (36). It follows that (35) can be rephrased in

terms of V as

G+(G̃+(V )) = 0, δV = G+(Λ−)+ G̃+(Λ̃−). (38)

Using RNS variables these manipulations become much more transparent. Notice

that
√

2 ˜(eρ θ̄2) = e−2ρ−i
√

3Hθ2 = ξ . The first equality follows from the defini-
tion (B.23), the second from (18) (the additional conjugation in Appendix B.2 does
not affect this result). Therefore, V lives in the large RNS Hilbert space. Using
the RNS variables it is straightforward to show that G+(V ) = ZV + = ZG̃+(V ),
hence G+(V ) and G̃+(V ) are related by picture changing. This will play a role
momentarily when we discuss integrated vertex operators. From now on we will
often drop the bracket on expressions like G±(V ) when the generators G± and
alike are involved, i.e., G±V ≡ G±(V ).

Following [14] we fix the gauge symmetry (38) by choosing a gauge condition
which resembles Siegel gauge: we require the vanishing of the second-order poles in
the OPE’s of G− and G̃− with V . Vertex operators V in this gauge have conformal
weight 0. For SU(2) singlets these gauge fixing conditions are equivalent to the
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vanishing of the second-order poles of G− and G+ with V . For massless fields
V (x, θ, θ̄ ) that depend only on x, θα , and θ̄ α̇ but not their derivatives, there are
no poles of order 3 or higher in the OPE of V (x, θ, θ̄ ) with G±. Hence for these
operators the gauge fixing constraints are equivalent to the primarity constraints of
the N = 2 subalgebra, which here means the vanishing of all poles of order 2
and higher in the OPE of V with G±. This has also been explained in [9, 12, 10]
and we will use these gauge-fixing constraints in the next sections also for massless
fields that depend non-trivially on the compactification. So far we have discussed
the unintegrated vertex operators V + and V residing in the small and large Hilbert
spaces, respectively. To construct integrated vertex operators one proceeds like in
the RNS formulation:

∫
b(V +) = ∫ G−V +. Note that for this choice the integrated

and the unintegrated vertex operators are in the same picture P . To obtain different
pictures one considers

∫
G̃−V +. As is shown in [14], this provides the integrated

vertex operator in a different ghost picture,
∫

G̃−V + = ∫ G−(Z0V
+). Expressing

the operators V + in terms of V opens new though related possibilities: using the
previous result that relates G̃+V and G+V , one concludes that the four possible
integrated vertex operators,

∫
G−G̃+V ,

∫
G−G+V ,

∫
G̃−G̃+V , and

∫
G̃−G+V

are all related by picture changing.
In the next sections we will use the following canonical ghost pictures: we take

the unintegrated NS- and R-vertex operators in the −1 and − 1
2 picture, respectively,

the integrated ones in the 0 and + 1
2 picture. Therefore, the relevant prescription is

∫
b(ZV +) =

∫
G−G+V =

∫
G̃−G̃+V (39)

Adding the right-moving sector, the relevant expression for the integrated vertex
operators can be written as

∫
d2zW (z, z̄) =

∫
d2z

∣
∣G−G+∣∣2 V (z, z̄). (40)

For better readability we drop the parenthesis here and in the following when the
first-order poles in OPE with the generators G± and alike are meant.

It is convenient to label the fermionic generators by indices i, j1, 2 according to

G+
i = (G+, G̃+), G−

i = (G−, G̃−). (41)

They satisfy the hermiticity property (G+
i )†G−

i . Consider general linear combina-
tions

Ĝ−
i = uijG

−
j , Ĝ+

i = u∗ijG
+
j , (42)

where the second equation follows from the first by hermitian conjugation. Requir-
ing that Ĝ±

i satisfy the same N = 4 relations as G±
i implies that uij are SU(2)

parameters: u11 = u∗22 ≡ u1 and u∗21 = −u12 ≡ u2 with |u1|2 + |u2|2 = 1. This
shows that the N = 4 algebra has an SU(2) automorphism group that rotates the
fermionic generators among each other. The ui’s parameterize the different embed-
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dings of the N = 2 subalgebras into the N = 4 algebra. More explicitly, we
have

̂̃G+ = Ĝ+
2 = u1G̃

+ + u2G
+,

Ĝ− = Ĝ−
1 = u1G

− − u2G̃
−,

(43)

and analogous expressions for Ĝ+ = G+
1 and ̂̃G− = Ĝ−

2 , which involve the com-
plex conjugate parameters u∗i .

It is advantageous to formulate the physical state conditions for general embed-
dings. This generalization also plays a role in the definition of scattering amplitudes.
As will become clearer in Sect. 3, the choice of a specific embedding is related
to working in a specific picture in the RNS setting. Vertex operators are therefore

defined in terms of the cohomologies of the operators
∮

Ĝ+ and
∮ ̂̃G+ as in (35)

and (38). Correspondingly, integrated vertex operators have zero total U(1)-charge
and can be written in the form

U =
∫

d2z|Ĝ−Ĝ+|2V . (44)

We have
∫
d2z|Ĝ−Ĝ+|2V = ∫ d2z|Ĝ+Ĝ−|2V where one drops a total derivative

under the integral. Further, if V is an SU(2)-singlet one has
∫
d2z|Ĝ−Ĝ+|2V =

∫
d2z|̂̃G−̂̃G+|2V . Therefore, as will be used later, Ĝ+U = ̂̃G+U = 0.

2.5 Massless Vertex Operators

Of particular interest are the universal, compactification independent vertex opera-
tors contained in the real superfield V = V (x, θL, θ̄L, θR, θ̄R) which was discussed
in [11] (cf. Appendix C for some details). It contains the degrees of freedom of
N = 2 supergravity and those of the universal tensor multiplet. It satisfies the
N = 2 primarity constraints which imply transversality constraints and linearized
equations of motion for the component fields. In the amplitude computations of the
next section, we will pick a certain fixed term in the ui expansion of the integrated
vertex operators (44), namely

∫ |G+G−|2V = ∫ |G̃+G̃−|2V . These operators sat-
isfy the same properties listed below (44) as the full ui-dependent operators (44).
For this choice, the corresponding integrated vertex operator is obtained from the
definition (40) and is (up to an overall numerical factor, cf. Appendix A.3)

U =
∫

d2z

∣
∣
∣d̄α̇D

2D̄α̇ − dαD̄2Dα

−2iΠαα̇[Dα, D̄α̇] + 8(Π̄α̇D̄
α̇ −ΠαDα)

∣
∣
∣
2
V (z, z̄). (45)
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The integrated vertex operator contains (among other parts) the field strengths of the
supergravity and universal tensor multiplets:

∫
d2z(dα

Ld
β
RPαβ + dα

Ld̄
β̇
RQαβ̇)+ h.c., (46)

where Pαβ = (D̄2Dα)L(D̄
2Dβ)RV and Qαβ̇ = (D̄2Dα)L(D

2D̄α̇)RV are chiral

and twisted-chiral superfields7. As discussed below, on-shell, these superfields de-
scribe the linearized Weyl multiplet and the derivative of the linearized field-strength
multiplet of the universal tensor. For later purposes we also introduce U ′ and U ′′
defined by U = |G+|2U ′ and U = |G̃+|2U ′′, i.e., U ′ = ∫ d2z|eρdαDα|2V and
U ′′ = ∫ d2z|e−2ρ−∫ JC d̄α̇D̄α̇|2V .

The complex structure moduli are in one-to-one correspondence to elements of
H 2,1(CY ) and related to primary fields Ωc of the chiral (c, c) ring [25]. The corre-
sponding type IIB hybrid vertex operators are8

Vcc = |eρθ̄2|2McΩc, Vaa = (Vcc)
† = |e−ρθ2|2M̄cΩ̄c, (47)

where Mc is a real chiral superfield (vector multiplet). Note that in the (twisted) type
IIB theory Ωc has conformal weight hL = hR = 0, while Ω̄c has conformal weight
hL = hR = 1. The complexified Kähler moduli are in one-to-one correspondence
to elements of H 1,1(CY ) and related to primary fields Ωtc of the twisted-chiral ring
(c, a):

Vca = eρL−ρR θ̄2
Lθ

2
RMtcΩtc, Vac = (Vca)

† = e−ρL+ρRθ2
Lθ̄

2
RM̄tcΩ̄tc, (48)

where Mtc are real twisted-chiral superfields (tensor multiplets). The conformal
weight of Ωtc is hL = 0 and hR = 1. The integrated vertex operators are

Ucc =
∫

d2zMc|G−
C |2Ωc + · · · ,

Uca =
∫

d2zMtc(G
−
C)L(G

+
C)RΩtc + · · · ,

(49)

where we have suppressed terms involving derivatives acting on Mc and Mtc. These
terms carry nonzero ρ-charge and will not play a role in the discussion of the am-
plitudes in Sect. 4.

The vertex operators of IIA associated to elements of the (c, c) (complex struc-
ture) and (c, a) ring (Kähler) are

Vcc = eρL−ρR θ̄2
Lθ

2
RMtcΩc, Vca = |eρθ̄2|2McΩtc. (50)

For type IIA the conformal weights of Ωc are hL = 0 and hR = 1 while Ωtc has
weight hL = hR = 0. The integrated vertex operators involve

7 See Appendix C.3 for details.
8 We are suppressing the indices distinguishing between the different elements of the ring.
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Ucc =
∫

d2zMtc(G
−
C)L(G

−
C)RΩc + · · · ,

Uca =
∫

d2zMc(G
−
C)L(G

+
C)RΩtc + · · · .

(51)

3 Amplitudes and Correlation Functions

In this section we review the definition of scattering amplitudes on Riemann surfaces
Σg with genus g ≥ 2 as given in [12]. We also collect correlation functions for chiral
bosons.

3.1 Amplitudes

Scattering amplitudes of hybrid string theory are defined in [12] for g ≥ 2 as9

Fg(uL, uR)

=
∫

M

[dmg]
det(Imτ)

×
g∏

i=1

〈 ∫
d2vi

g−1∏

j=1

|̂̃G+
(vj )|2|J (vg)|2

3g−3∏

k=1

|(μk, Ĝ
−)|2

N∏

l=1

Ul

〉

. (52)

Since Fg(uL, uR) is a homogeneous polynomial in both uiL and uiR of degree 4g−4
(we are taking U to carry no uiL,R dependence as is explained in Sect. 2.4) this
definitions provides a whole set of amplitudes Fn,m

g given by the coefficients in the
uiL,R-expansion:

Fg(uL, uR)

=
∑

n,m

(
4g − 4

2g − 2 − n

)(
4g − 4

2g − 2 −m

)

× Fn,m
g u

2g−2+n

1L u
2g−2−n

2L u
2g−2+m

1R u
2g−2−m

2R , (53)

where 2 − 2g ≤ m, n ≤ 2g − 2. We focus on either the left- or right-moving sector
in the following. In view of (43) it is clear that Fn

g involves 2g − 2 + n insertions

of G̃+ and G− and 2g − 2 − n insertions of G+ and G̃+. It is shown in [12] that
up to contact terms all distributions of G̃+’s, G−’s, G+’s, and G̃+’s satisfying these
constraints are equivalent. We can therefore determine F

n,m
g (53) by evaluating a

single amplitude with an admissible distribution of insertions.

9 This differs by the factor (det(Imτ))−1 from the expression given in [12] and [14]. We will
comment on this below.
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In addition there is a selection rule that relies on the cancellation of the R-parity
anomaly [12]. The R-charge is

R =
∮ (

∂ρ + 1

2
θαdα − 1

2
θ̄α̇ d̄

α̇

)

, (54)

with background charge 1 − g. In the RNS formulation R coincides with the su-
perconformal ghost-number (picture) operator, i.e., R = ∮ P . G̃± carry R-charges
∓1 while those of G± are zero. The contribution to the R-charge of the insertions
is g − 1 − n. The anomaly is therefore canceled only if the vertex operators inser-
tions have total R-charge n. Put differently: given vertex operators

∏N
i=1 Ui with

total R-charge n, the only non-vanishing contribution to (53) is Fn
g . This selection

rule is completely analogous to the one that relies on picture charge in the RNS
formulation.

It is convenient to rewrite (52) in the form

Fg(uL, uR)

=
∫

M

[dmg]
det(Imτ)

×
g∏

i=1

〈 ∫
d2vi

g∏

j=1

|̂̃G+
(vj )|2

3g−4∏

k=1

|(μk, Ĝ
−)|2|(μ3g−3,J

−−)|2
N∏

l=1

Ul

〉

.

(55)

This is obtained from (52) by contour deformation using Ĝ− = ∮ ̂̃G+J −− and
̂̃G+ = − ∮ ̂̃G+J and the fact that

∮ ̂̃G+ has no non-trivial OPE with any of the
other insertions except a simple pole with J . Consider the integrand of (55). As a
function of, say, v1, it has a pole only at the insertion point of J −−. But the residue

〈∏g

i=2
̂̃G+(vi)

∏3g−3
j=1 (μj ,G−)

∏
l Ul〉 vanishes: each of the remaining ̂̃G+(vi) can

be written as − ∮ ̂̃G+J (vi) and ̂̃G+ has no singular OPE with any of the other

insertions. Analyticity and the fact that ̂̃G+ are Grassmann odd and of weight one,
fixes the v-dependence of the integrand as det(ωi(vj )). The ωi are the g holomor-
phic one-forms on Σg . In (55) we can thus replace

∏̂̃G+(vi) = det(ωi(vj ))

∏̂̃G+(ṽl)
det(ωk(ṽl))

, (56)

where ṽk are g arbitrary points on Σg that can be chosen for convenience. Combin-
ing left- and right-movers the v-integrations can be performed with the result

g∏

i=1

∫
d2vi | det(ωk(vl))|2 ∝ det(Imτ). (57)

τ is the period matrix of Σg . Using similar arguments one can rewrite
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1

det(Imτ)

(∫

Σg

|̂̃G+|2
)g ∝

∣
∣
∣

g∏

i=1

∮

ai

̂̃G+
∣
∣
∣
2
. (58)

The reason for the insertion
∮ ̂̃G+ on every a-cycle of Σg was presented in [12,

14]: it projects to the reduced Hilbert space formed by the physical fields of an
N = 2 twisted theory. Amplitudes for these states can be calculated using the rules
of N = 2 topological strings.

3.2 Correlation Functions of Chiral Bosons

In this section we provide the correlation functions which are necessary to com-
pute the amplitudes, cf. [31–33, 22, 17]. In the hybrid formulation there is no sum
over spin structures and no need for a GSO projection. The correlation functions
are with periodic boundary conditions around all homology cycles of the Riemann
surface Σg .

We start with the correlators of the chiral boson H :
〈∏

k

e
i
qk√

3
H(zk)

〉

= Z
−1/2
1 F

(
1√
3

∑
qkzk −QHΔ

)∏

i<j

E(zi, zj )
1
3 qiqj

∏

l

σ (zl)
1√
3
QHql

, (59)

where Z1 is the chiral determinant of [31–33]. The prime forms E(z,w) express the
pole and zero structure of the correlation function while the σ ’s express the coupling
to the background charge. Of the remaining part F , which is due to the zero-modes
of H , only the combination in which the insertion points enter will be relevant. It
is, in fact, an appropriately defined theta-function [4]. Also F(−z) = F(z). In the
above expression (and below), z either means a point on Σg or its image under the
Jacobi map, i.e., I(z) = ∫ z

p0
ω, depending on the context.

The ρ-correlation functions are subtle. The field ρ is very much like the chiral
boson ϕ which appears in the ‘Bosonization’ of the superconformal (β, γ ) ghost
system in the RNS formulation, the only difference being the value of its background
charge. In the RNS superconformal ghost system ϕ is accompanied by a fermionic
spin 1 (η, ξ) system. Expressions for correlation functions of products of eqiϕ(zi )

which are used in RNS amplitude calculations are always done in the context of the
complete (β, γ ) ghost system. Following [12] our strategy will be to combine an
auxiliary fermionic spin 1 (η, ξ) system with the ρ-scalar to build a bona-fide spin
1 (β, γ ) system. We then compute correlation functions as in the RNS formulation,
which we divide by the contribution of the auxiliary (η, ξ)-system. Following [17],
we obtain
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〈∏

k

eqkρ(zk)
〉

(β,γ )
= Z

1/2
1

θ(
∑

qkzk −QρΔ)

∏

k<l

E(zk, zl)
−qkql

∏

r

σ (zr )
−Qρqr (60)

with Qρ = −1. As in [17], the correlation function had to be regularized due to
the fact that the zero-mode contribution of the ρ-field diverges. The regularization
involved a projection of the ρ-momentum plus the momentum of the regulating
(η, ξ) system in the loops to arbitrary but fixed values. These projections were ac-
companied by factors

∮
ai
η for each a-cycle on Σ and one factor of ξ to absorb its

(constant) zero mode. The contribution of (η, ξ) has to be divided out in order to ob-
tain the regulated correlators of the ρ-system. This means that (60) must be divided
by

〈 g∏

i=1

∮

ai

dzi

2πi
η(zi)ξ(w)

〉
= Z1. (61)

Altogether we thus find

〈∏

k

eqkρ(zk)
〉

reg.
= Z

−1/2
1

θ(
∑

qkzk +Δ)

∏

k<l

E(zk, zl)
−qkql

∏

r

σ (zr )
qr . (62)

A useful identity is the ‘Bosonization formula’ [31–33]:

g∏

i=1

E(zi, w)σ (w) =
∏

i<j E(zi, zj )
∏g

i=1 σ(zi)

Z
3/2
1 det(ωi(zj ))

θ

( g∑

i=1

zi − w −Δ

)

. (63)

Using this identity one finds

〈 g∏

k=1

e−ρ(zk)eρ(w)

〉

reg.

= 1

Z2
1 det(ωk(zl))

, (64)

which differs by a factor of det(Imτ) from the corresponding expression used in [12].

4 Topological Amplitudes

4.1 Generalities

The expressions for Fn
g that one obtains by inserting the generators (43) into (52)

in general are very involved. Certain restrictions are imposed by background charge
cancellation. Since the total U(1) charge of the vertex operators is zero the insertions

of ̂̃G+ and Ĝ− in (52) are precisely such that they cancel the anomaly of the total
U(1) current. It is therefore sufficient to study the constraints imposed by requiring
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cancellation of the background charge of the ρ-field.10 A consequence of this con-
straint is that if the vertex operators are not charged under ∂ρ then |n| ≤ g − 1. For
|n| < g−1 there are several possibilities how the various parts of the operators (43)
can contribute. For |n| = g−1 and uncharged vertex operators there is only a single
amplitude that must be considered. These cases are studied in the following. We
restrict to the case with 2g vertex operator insertions. There are then just enough
insertions of θ and p to absorb their zero modes an no nontrivial contractions occur.

4.2 R-charge (g − 1, g − 1)

This amplitude was computed in the RNS formalism in [4]. In this section we review
the computation in the hybrid formalism of [12]. Imposing ρ and H background
charge saturation (52) leads to11

Ag =
∫

M
[dmg] 1

| det(ωi(ṽj ))|2
〈∣∣
∣
∣

m∏

j=1

eρG++
C (ṽj )

g∏

j=m+1

e−ρd̄2(ṽj )

×
m∏

l=1

(μl, e
−2ρ−∫ JC d̄2)

3g−3∏

l=m+1

(μl,G
−
C)

∣
∣
∣
∣

2

U ′U 2g−1
〉

. (65)

We have used the fact that
∮
e−ρd̄2, when pulled off from U ′, only gets stuck at

J (vg). 0 ≤ m ≤ g − 1 parametrizes different ways to saturate the background
charges.12 We now use the freedom to choose ṽl = zl for l = 1, . . . , g where zl are
the arguments of the Beltrami differentials μl (which are integrated over). This is
possible since the OPEs which one encounters are the naive products (no poles or
zeros). This gives

Ag =
∫

M
[dmg]

∫ g∏

l=1

d2zl

× 1

| det(ωi(zl))|2
〈∣
∣(μl, e

−ρG−
C d̄

2(zl))
∣
∣2

2g−3∏

k=1

∣
∣(μk,G

−
C)
∣
∣2U ′U 2g−1

〉

(66)

10 Since the JC current is a linear combination of the ∂ρ and the total U(1)-current, background
charge cancellation for H is then automatic.
11 Here and in the following we drop certain numerical factors and use the notation as explained
below (43).
12 For notational simplicity we have chosen the same m for the left- and for the right-movers.
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which is independent of m.13 Its evaluation is straightforward. One easily sees that
there are just enough operator insertions to absorb the p and p̄ zero modes. θ and
θ̄ then also only contribute with their (constant) zero modes. The p zero modes
must come from the explicit d-dependence of the vertex operator. The (p, θ)L and
(p, θ)R correlation functions contribute a factor |Z1|4(det Imτ)2, where the inte-
grals over the insertion points have already been performed. What is left is the in-
tegral over the θ zero-modes which are the Grassmann odd co-ordinates of N = 2
chiral superspace. The spinor indices arrange themselves to produce (PαβP

αβ)g−1 ×
PγδD

γ

LD
δ
RV . The (p̄, θ̄ ) correlators give a term |Z1|4|detωi(zl)|4, leaving only

the θ̄ zero-mode integrations. They can be performed using
∫
(d2θ̄ )L(d

2θ̄ )RΨ =
D̄2

LD̄
2
RΨ |θ̄L=θ̄R=0. Since D̄α̇Pβγ = 0, the only effect of this is to convert Dα

LD
β
RV

to Pαβ . Finally, the ρ-correlator gives, using (62) and (63), (|Z1|4 | detωi(zl)|2)−1.
The partition function of the xm contributes a factor |Z1|−4(det Imτ)−2. To the given
order of spacetime derivatives, the xm-dependence of the vertex operators is only
through its zero mode. Combining arguments we obtain

Ag =
∫

(d2θ)L(d
2θ)R(PαβP

αβ)g
∫

M
[dmg]

〈3g−3∏

i=1

|(μi,G
−
C)|2

〉

. (67)

The last part of this expression is the string partition function of the topological
B-model:

FB
g =

∫

M
[dmg]

〈3g−3∏

i=1

|(μi,G
−
C)|2

〉

. (68)

To determine the dependence of FB
g on the chiral or twisted-chiral moduli one in-

serts the appropriate expressions (C.9) into these correlation functions. It can be
shown, using the arguments of [15], that FB

g does not depend on perturbations in-
duced by either (c, a) or (a, c) operators. It therefore depends only on the complex
structure moduli and the amplitudes calculated are therefore vector multiplet cou-
plings (type IIB).

4.3 R-charge (1 − g, 1 − g)

Starting from (52) and imposing ρ and H -background charge saturation, one ob-
tains, in close analogy to (65),

13 This shows that for this amplitude all admissible distributions of vertex operators parametrized
by m indeed lead to the same result and that the only subtleties that arise from contact terms are
the ones analyzed in [15, 27]. We are not aware of an argument that this is generally the case.
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A ′
g =

∫

M
[dmg] 1

| det(ωi(ṽj ))|2
〈∣∣
∣
∣

m∏

j=1

G+
C(ṽj )

g∏

j=m+1

e2ρ+∫ JCd2(ṽj )

m∏

l=1

(μl, e
ρd2)

×
3g−3∏

l=m+1

(μl, e
−ρG−−

C )

∣
∣
∣
∣

2

U ′′U 2g−1
〉

. (69)

0 ≤ m ≤ g−1 parametrizes the different ways of saturating the background charges.
By appropriate choices of the ṽj this amplitude can be brought to the form

A ′
g =

∫

M
[dmg]

∫ g∏

j=1

d2zj
1

| detωi(zj )|2
〈∣∣
∣
∣(μ(zj ), e

ρd2G+
C(zj ))

×
2g−3∏

k=1

(μk, e
−ρG−−

C )

∣
∣
∣
∣

2

U ′′U 2g−1
〉

, (70)

which shows that also this amplitude is independent of m. However, its evaluation
is most easily done for a different choice of the insertion points ṽj . To fix them, we
start from (69) with the choice m = 0 and compute the ρ and the H correlators.
Their product is, using (59) and (62),

1

Z1

F(
√

3
∑

ṽj − 2√
3

∑
zk −

√
3w +√

3Δ)

θ(2
∑

ṽj −∑ zk − 2w +Δ)

×
∏

k<l E(zk, zl)
1
3
∏

j E(ṽj , w)
∏

k σ (zk)σ (w)
∏

i<j E(ṽi, ṽj )
∏

j σ (ṽj )
, (71)

where we have only displayed the holomorphic part. With the help of the iden-
tity (63) this is equal to

1

(Z1)
5
2

F(
√

3
∑

ṽj − 2√
3

∑
zk −

√
3w +√

3Δ)

θ(2
∑

ṽj −∑ zk − 2w +Δ)
(72)

× θ(
∑

ṽj − w −Δ)

detwi(ṽj )
·
∏

k<l

E(zk, zl)
1
3
∏

k

σ (zk). (73)

We now choose the g positions ṽj such that I(
∑

ṽj −w−Δ) = I(2
∑

ṽj −∑ zk−
2w +Δ). Then the theta functions cancel and the remaining terms are

1

(Z1)
5
2 detωi(ṽj )

· F
(

1√
3

∑
zk −

√
3Δ

)

·
∏

k<l

E(zk, zl)
1
3
∏

k

σ (zk). (74)

This can be written as
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1

Z2
1 detωi(ṽj )

〈3g−3∏

k=1

e
− i√

3
H(zk)

〉

. (75)

The p, θ, p̄ and θ̄ correlators are as in the previous amplitude (with the roles on
barred and unbarred variables interchanged) and one finally obtains

A ′
g =

∫
(d2θ̄ )L(d

2θ̄ )R(P̄α̇β̇ P̄
α̇β̇ )g

∫

M
[dmg]

〈3g−3∏

i=1

|(μi, Ǧ
−
C)|2

〉

. (76)

Here Ǧ−
C = e

− i√
3
H
G′

C where G′
C is defined to be G+

C = e
i√
3
H
G′

C . Note that
G−

C and Ǧ−
C both have conformal weight two. The internal amplitude multiplying

the spacetime part is the complex conjugate of the B-model amplitude (68): this
follows from the fact that the expression (74) can be written as

1

Z2
1 detωi(ṽj )

〈3g−3∏

k=1

e
i√
3
H(zk)

〉

QH=
√

3

, (77)

where we used (59) but with the reversed background charge as compared to (75).
This happens if one chooses the opposite twisting in (6). Since the operators Ǧ−

C

and G+
C both contain the same operator G′

C , the internal part of the amplitude (76)
is equal to

〈3g−3∏

i=1

|(μi, Ǧ
−
C)|2

〉

++
=
〈3g−3∏

i=1

|(μi,G
+
C)|2

〉

−−
. (78)

The subscripts refer to the two possible twistings TC → TC+ 1
2∂JC and TC → TC−

1
2∂JC for left- and right-movers. Finally, since for unitary theories (G−

C)
† = G+

C , the
right-hand side of (78) is the complex conjugate of FB

g given in (68), and therefore
A ′

g defined in (69) is the complex conjugate of the chiral amplitude Ag of (65).

4.4 R-charges (g − 1, 1 − g) and (1 − g, g − 1)

The ‘mixed’ amplitudes with R-charges (g − 1, 1− g) and (1− g, g − 1) can now
be written down immediately. They are expressed as integrals over twisted chiral
superspace and involve the superfields Qαβ̇ and Q̄α̇β . They are

A ′′
g =

∫
(d2θ)L(d

2θ̄ )R(Qαβ̇Q
αβ̇)g

∫

M
[dmg]

〈3g−3∏

i=1

(μi,G
−
C)L(μ̄i , Ǧ

−
C)R

〉

+ c.c.

(79)
By the same arguments as given before, one shows that this type IIB string amplitude
only depends on deformations in the (a, c) (and (c, a) for the complex conjugate
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piece) ring, i.e., on Kähler moduli. In type IIB, these are in tensor multiplets. From
the discussion in Sect. 4.3 it also follows that

∫

M
[dmg]

〈3g−3∏

i=1

(μi,G
−
C)L(μ̄i , Ǧ

−
C)R

〉

++

=
∫

M
[dmg]

〈3g−3∏

i=1

(μi,G
−
C)L(μ̄i ,G

+
C)R

〉

+−
= FA

g , (80)

which is the topological A-model amplitude.
So far we have computed amplitudes of type IIB string theory. To compute type

IIA amplitudes we need to twist the left- and right-moving internal SCFTs oppo-
sitely. In the amplitudes this induces the following changes: (G−

C)R → (G+
C)R and

(Ǧ−
C)R → (Ǧ+

C)R where Ǧ+
C = e

i√
3
H
Ḡ′

C . Due to the opposite twist, the conformal
weights are preserved under this operation. For instance, the spacetime part of (67)
gets combined with FA

g , that of (79) with FB
g . According to (C.9) and (C.12), FA

g

depends on the moduli contained in vector multiplets, FB
g on those contained in

tensor multiplets.

4.5 Summary of the Amplitude Computation

We have recomputed certain chiral and twisted-chiral couplings that involve g pow-
ers of P 2 or Q2, respectively, using hybrid string theory. The amplitudes involve
the topological string partition functions FA

g and FB
g . FA

g depends on the moduli
parametrizing the (c, a) ring, FB

g on those of the (c, c) ring. In type IIA or type
IIB, these are contained in spacetime chiral (vector) or twisted-chiral (tensor) mul-
tiplets, as summarized in the table. The dependence on the moduli of the complex

Type IIA Type IIB
(P 2)gFA

g (c, a): vector (P 2)gFB
g (c, c): vector

(Q2)gFB
g (c, c): tensor (Q2)gFA

g (c, a): tensor

conjugate rings is only through the holomorphic anomaly [15]. As discussed in [11,
13], on-shell, the superfield Pαβ describes the linearization of the Weyl multiplet. Its
lowest component is the selfdual part of the graviphoton field strength, Pαβ | = Fαβ .
The θLθR-component is the selfdual part Cαβγ δ of the Weyl tensor. The bosonic
components of Qαβ̇ are Qαβ̇ | = ∂αβ̇Z, where Z is the complex R-R-scalar of the

RNS formulation of the type II string; its θLθ̄R-component is ∂αα̇∂ββ̇S. The real
component of S is the dilaton, its imaginary component is dual to the antisymmetric
tensor of the NS-NS-sector. These results can be obtained by explicit computation
from the θ -expansion of the superfield V . After integrating (67) and (79) over chiral
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and twisted-chiral superspace, respectively, 2g−2 powers of Fαβ are coupled to two
powers of Cαβγ δ , while 2g−2 powers of ∂Z are coupled to two powers of ∂2S, with
the tensorial structure discussed in [4]. In [11, 8, 29] the question is addressed how
these (and other) couplings can be described in an off-shell (projective) superspace
description at the non-linearized level.
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enfeld, A. Schwimmer and H. Verlinde for discussions. This work was partially supported by the
RTN contracts MRTN-CT-2004-503369 and MRTN-CT-2004-005104 and ANR grant BLAN06-
3-137168.

A Appendix: Conventions and Notations

A.1 Spinors and Superspace

Throughout this paper we use the conventions of Wess and Bagger [34, 16]. In
particular the space-time metric is ηmn = diag(−1,+1,+1,+1) and the spinor
metric is ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = 1. Spinor indices are raises and lowered as
ψα = εαβψβ,ψα = εαβψ

β , and likewise for the dotted indices. Spinor indices
are contracted in the following way: ψχ = ψαχα, ψ̄χ̄ = ψ̄α̇χ̄

α̇ . Barred spinors
always have dotted indices. We define xαα̇ = σm

αα̇xm where σm
αα̇ = (−1, σ ) with

vmvm = − 1
2v

αα̇vαα̇ and ∂αα̇ = σm
αα̇∂m such that ∂αα̇xββ̇ = −2δβα δ

β̇
α̇ . Starting from

the supersymmetry invariant one-forms on superspace

ea = dxa − idθσ aθ̄ + iθσ adθ̄,

eα = dθα, (A.1)

eα̇ = dθ̄α̇,

one finds their pullbacks to the world-sheet

Παα̇ = ∂xαα̇ + 2i∂θαθ̄ α̇ + 2i∂θ̄ α̇θα,

Πα = ∂θα, (A.2)

Π̄α̇ = ∂θ̄α̇,

and likewise for the right-movers. Expressed in terms of the Π ’s, the energy mo-
mentum tensor of the x, θ, p variables is

T = 1

4
Παα̇Παα̇ −Παdα − Π̄α̇d̄

α̇ − 1

2
(∂ρ)2 + 1

2
∂2ρ, (A.3)

with dα and d̄ α̇ defined by
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dα = pα + iθ̄ α̇∂xαα̇ − θ̄2∂θα + 1

2
θα∂θ̄

2,

d̄ α̇ = p̄α̇ + iθα∂x
αα̇ − θ2∂θ̄ α̇ + 1

2
θ̄ α̇∂θ2.

(A.4)

A.2 Hybrid Variables and N = 2 Algebra

The singular parts of the operator products of the hybrid variables are

xm(z, z̄)xn(w, w̄) ∼ −ηmn ln|z− w|2,

θα(z)p
β(w) ∼ δ

β
α

(z− w)
,

θ̄ α̇(z)p̄β̇ (w) ∼
δα̇
β̇

(z− w)
,

ρ(z)ρ(w) ∼ − ln(z− w).

(A.5)

Both (A.3) and (A.5) follow from the action (1). We also note that

dα(z)d̄α̇(w) ∼ 2iΠαα̇(w)

(z− w)
, (A.6)

while dd and d̄ d̄ are finite. The action of d and d̄ on a generic superfield M is

dα(z)M(w) ∼ −DαM(w)

(z− w)
where Dα ≡ ∂α + iθ̄ α̇∂αα̇

dα̇(z)M(w) ∼ − D̄α̇M(w)

(z− w)
where D̄α̇ ≡ −∂̄α̇ − iθα∂αα̇

(A.7)

with {Dα, D̄α̇} = −2i∂αα̇ . For later purposes we note the useful identities

[Dα, D̄
2] = −4i∂αα̇D̄

α̇,
1

16
[D̄2,D2] = ∂m∂m + i

2
∂αα̇D

αD̄α̇ (A.8)

One defines the space-time supercharges

Qα =
∮ (

pα − iθ̄ α̇∂xαα̇ + 1

2
θ̄2∂θα

)

Q̄α̇ =
∮ (

p̄α̇ − iθα∂x
αα̇ + 1

2
θ2∂θ̄ α̇

) (A.9)

such as to satisfy
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{Qα, Q̄α̇} = −2i
∮

∂xαα̇

{Qα,Qβ} = {Q̄α̇, Q̄β̇} = 0
(A.10)

and to (anti)commute with the d’s and Π ’s. In deriving these relations we have
dropped total derivatives involving fermion bilinears. Note that {Qα, Q̄α̇}ϕ =
2iσm

αα̇∂mϕ, as expected.
Vertex operators for physical states are required to be primary. By definition, a

primary state is annihilated by all positive modes of the generators of the supercon-
formal algebra. For a superfield U which is independent of ρ and of the internal
CFT this leads to the on-shell conditions ∂m∂mU = D2U = D̄2U = 0.

A.3 The Integrated Vertex Operator

We compute [19, 20]
W (z) = G−G+V (z) (A.11)

where V (z) is primary (assumed to be bosonic) and depends on x, θ, θ̄ but is in-
dependent of ρ. The first commutator is straightforward to compute. With the help
of (A.7) one finds

√
32G+V (w) =

∮

Cw

dze−ρ(z)

(

−D̄2V (w)

(z− w)2
+ 2d̄D̄V (w)

z− w

)

= 2e−ρ(w)d̄α̇D̄
α̇V (w)

(A.12)
where D̄2V = 0 has been used. The computation of the second commutator is more
involved. Applying the rules stated in [21] one finds

−32G−G+V (w)

= 16∂θ̄α̇D̄
α̇Φ(w)+ 8idα∂αα̇D̄

α̇V (w)

− 4iΠαα̇D
αD̄α̇V (w)+ d̄α̇D

2D̄α̇V (w) (A.13)

where normal ordering is implied in all terms. A term −4i∂ρ∂αα̇DαD̄α̇V (w) has
been dropped; using (A.8) it can be shown to vanish if V is primary, as we have
assumed. One can cast (A.13) into a more symmetric form if one adds a total deriv-
ative14 of V :

−32G−G+V (w)+ 8∂V (w)

= −8(ΠαDα − Π̄α̇D̄
α̇)V (w)− 2iΠαα̇[Dα, D̄α̇]V (w)

+ (d̄α̇D
2D̄α̇ − dαD̄2Dα)V (w). (A.14)

Here we have used the notation defined in (A.2).

14 This total derivative could contribute to boundary terms when two vertex operators collide and
might thus play an important role in amplitude computation.
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B Appendix: Mapping the RNS to the Hybrid Variables

In this appendix we give the details of the field mapping suppressed in Sect. 2.3
which relate the RNS and the hybrid variables, following closely [9]. It is easiest to
split this map into a part involving a field redefinition and one involving a similarity
transformation. The field redefinition defines a set of Green-Schwarz-like variables
in terms of the RNS variables. These are then related to the hybrid variables by a
similarity transformation.

B.1 Field Redefinition from RNS to Chiral GS Variables

From the RNS variables one first forms a set of variables according to (18) and (25).
Following [7, 12], these are called the “chiral GS-variables”. In [7, 12] these vari-
ables were denoted collectively by Φ̃, whereas in [9] they were labeled with the
superscript “old”. In this section we label the chiral GS-variables with the subscript
“GS” for clarity, while this is suppressed in the main text.

In order to achieve the correct normalization (29) we must perform the following
rescaling of RNS variables:

b → 2
√

2b, c → (2
√

2)−1c, η → 2
√

2η,

ξ → (2
√

2)−1ξ, e−ϕ → 2
√

2e−ϕ.
(B.1)

These rescalings preserve all the OPEs. We use the rescaled RNS variables in this
section.

B.2 Similarity Transformation Relating Chiral GS to Hybrid
Variables

The chiral GS-variables ΦGS, including those of the internal SCFT, are related to
the hybrid ones Φ by the similarity transformation

(Φ)GS = eM+MC
−
(Φ)e−(M+MC

−). (B.2)

We have defined

M =
∮

iθαθ̄ α̇∂xαα̇ + 1

4
(θ2∂θ̄2 − θ̄2∂θ2), (B.3)

and

M−
C = −√2c−

∮
e−ρθ2G−

C, M+
C = √

2c+
∮

eρθ̄2G+
C, (B.4)
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with [M±
C ,M ] = 0. One way to see that this is indeed the correct transformation

is to verify that
eMpαe

−M = dα, (B.5)

from which

eM+M−
C

(
1√
32

eρpαpα

)

e−(M+M−
C ) = 1√

32
eρdαdα + c−G−

C = G− (B.6)

follows. By definition (B.2), the l.h.s. of this expression equals ( 1√
32
e−ρpαpα)GS,

which, according to (18) and (B.1), equals the RNS ghost field b. One therefore
concludes

b =
(

1√
32

e−ρpαpα

)

GS
= 1√

32
e−ρdαdα + c−G−

C = G− (B.7)

as stated in (26).
It can be verified that for the generators J = JGS, T = TGS, J ±± = J ±±

GS .
They are therefore not affected by (B.2). These results were used in Sect. 2.4.

B.3 Hermitian Conjugation of the Hybrid Variables

Hermitian conjugation acts on the hybrid variables as

(xm)† = xm, (θα)† = θ̄ α̇, (pα)
† = −p̄α̇. (B.8)

From these properties one concludes that (∂xm)† = −∂xm and (∂θα)† = −∂θ̄ α̇ . In
addition, we define

ρ† = −ρ − ln z+ iπ, H † = H − i
√

3 ln z+ π
√

3. (B.9)

Some comments are in order here. The ln z terms are due to the background charges
of currents J = ∂ρ and JC = i

√
3∂H . In the presence of a (real) background charge

Q, the operator product of the energy-momentum tensor and a generic (hermitian)
current is modified to T (z)j (w) ∼ Q

(z−w)3 + j (w)

(z−w)2 + ∂j (w)
(z−w)

. In terms of the modes

this reads [Ln, jm] = 1
2Qn(n + 1)δn+m − mjn+m and implies j

†
n = j−n − Qδn,0

and L
†
n = L−n − Q(n − 1)j−n. These results are to be applied for the currents

j = −∂ρ = −J and j = JC with the background charges −1 and −3, respectively.
This implies that (pρ)

† = pρ − 1 and (pH )† = pH + √
3 such that the cocycle

factors introduced in Sect. 2.1 satisfy (c+)† = c−. The constant shifts +iπ and
+π

√
3 seem to be needed in order to obtain the correct hermiticity relations between

various N = 4 generators and the correct algebra. It is consistent with the fact that
ρ and H are compact bosons with periodicity 2πi and 2π

√
3, respectively. Using

the general CFT rule, [ϕ(z)]† = ϕ†( 1
z̄
)z̄−2h, valid for a primary field ϕ of dimension
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h, one shows exp(qρ)† = (−1)q exp(−qρ) and exp( iq√
3H

)† = (−1)q exp(− iq√
3
H).

This, together with (G±
C)

† = G∓
C , completes the discussion of hermitian conjugation

of the hybrid variables.

B.4 Hermitian Conjugation of the RNS Variables

Going through the sequence of similarity transformations and field redefinitions out-
lined in Appendices B.1 and B.2, the hybrid conjugation rules induce a hermitian
conjugation for the RNS variables. This conjugation is not the standard one. We
discuss this in detail below and obtain, as a side-product, the a justification for the
complete dictionary given in (29).

Using M † = M and (M−
C )† = M+

C , hermitian conjugation of (B.6) and (B.7)
(or direct computation) yields

b† = e−(M+M+
C )

(

− 1√
32

e−ρp̄α̇p̄
α̇

)

eM+M+
C

= − 1√
32

e−ρd̄α̇ d̄
α̇ − c+G+

C = G+. (B.10)

As is argued below, this expression equals the current jBRST in accordance with (26).
The hybrid hermiticity properties therefore imply in particular that b† = jBRST.
We work this out in more detail: one first remarks that (B.10) is not the similarity
transformation (B.2), since latter involves the charge M +M−

C . In fact, under this
transformation − 1√

32
e−ρp̄2 is mapped to

eM+M−
C

(

− 1√
32

e−ρp̄α̇p̄
α̇

)

e−(M+M−
C ) =

(

− 1√
32

e−ρp̄α̇p̄
α̇

)

GS

= −bγ 2. (B.11)

The first equality is just the definition (B.2), while the second one is a consequence
of the field redefinition (18) and (B.1). Inverting this relation and inserting the result
in (B.10) one finds

b† = e−R(−bγ 2)eR. (B.12)

The claim is that the r.h.s. is jBRST. We have defined

eR = eM+M−
C eM+M+

C = e2M+M−
C +M+

C + 1
2 [M−

C ,M+
C ]. (B.13)

While the first equality is the definition, the second one holds whenever one has
[M−

C , [M−
C ,M+

C ]] = [M+
C , [M+

C ,M−
C ]] = 0. That this is indeed the case as can

be seen by calculating the commutator
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[M−
C ,M+

C ] = 2
∮ [

θ2θ̄2
(

JC + c

3
∂ρ

)

− c

3
θ̄2∂θ2

]

. (B.14)

We used the normalization

G−
C(z)G

+
C(w) ∼

c
3

(z− w)3
− JC(w)

(z− w)2
+ TC(w)− ∂JC(w)

z− w
, (B.15)

which follows from (5). Since G±
C has only a simple pole with JC , M±

C commute
with this commutator and (B.13) is established. The explicit expression for R in
terms of hybrid variables is

R =
∮ [

2iθαθ̄ α̇∂xαα̇ −
√

2c−e−ρθ2G−
C +√

2c+eρθ̄2G+
C

+ θ2θ̄2
(

JC + c

3
∂ρ

)

+
(

1 + c

3

)

θ2∂θ̄2
]

. (B.16)

In order to evaluate the r.h.s. of (B.12), we re-express this operator in terms of
RNS variables. Thereby one must bear in mind that the field map (B.2) affects all
fields, including the generators of the internal SCFT. In particular, one finds that
under (B.2)

(∂xαα̇)GS = ∂xαα̇ + 2i∂(θαθ̄α̇),

(c+eρθ̄2G+
C)GS = c+eρθ̄2G+

C +√
2

[

θ2θ̄2
(

JC + c

3
∂ρ

)

− c

3
θ̄2∂θ2

]

,
(B.17)

while θα , θ̄α̇ , and the combinations θ2θ̄2JC and θ2θ̄2∂ρ remain unaffected. Us-
ing (21), (23), and (25) and dropping total derivatives one finds that R is the follow-
ing simple expression in RNS variables:15

R =
∮ [

cξe−ϕTF + 1

2
e−2ϕc∂cξ∂ξ

(

∂ϕ + c − 9

3
∂σ

)]

. (B.18)

The terms in (B.16) involving the current J̆C have canceled and the last term in (B.18)
vanishes for c = 9. We have defined TF = T

x,ψ
F + Ğ+

C + Ğ−
C , where T

x,ψ
F is the

supercurrent of the space-time matter sector. It is normalized as TF (z)TF (w) ∼
2
3 (c

x,ψ + c)(z− w)−3 + · · · , with cx,ψ = 6 [see also (B.15)].
Using the conventions of [23] one can verify that (B.12) with R given in (B.18)

indeed produces the BRST current (this current differs from the usual current by
addition of total derivative terms),

15 In order to obtain this result, one must take special care of the overall signs for the RNS ex-
pressions of θ2, θ̄2, θ2∂θ̄2, and alike. We suppress these details in this note.
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e−R(−bγ 2)eR = jBRST

= c

(

T − b∂c − 1

2
(∂ϕ)2 − ∂2ϕ + 1

2
(∂χ)2 + 1

2
∂2χ

)

+ γ TF − bγ 2 + ∂2c + ∂(c∂χ), (B.19)

where T = T x,ψ + T̆C . Details of this computation can be found in [1]. The BRST
charge is

QBRST =
∮ [

cT + eϕηTF + bc∂c + be2ϕη∂η + c

(

∂ξη − 1

2
(∂ϕ)2 − ∂2ϕ

)]

and coincides with the charge which follows from the BRST current in [28] after
Bosonization. From this one derives an expression for the picture-changing operator
in bosonized form,

Z = {QBRST, ξ} = eϕTF + c∂ξ − b∂ηe2ϕ − ∂(bη2ϕ), (B.20)

which enters in (28).
It does not seem possible to give a closed formula for the hermitian conjugation

of a generic RNS field. If, however, an RNS field ΦRNS is expressible in terms of
chiral GS-variables, ΦGS = ΦRNS, one can use the same argument as above and
deduce the rule:

(ΦRNS)
† = e−RΨRNSe

R, with ΨRNS := (ΦGS)
†, (B.21)

where (ΦGS)
† is calculated the same way as the corresponding expression in hybrid

variables. For instance, in above argument, ΦRNS = b = ( 1√
32
e−ρp2)GS = ΦGS,

and ΨRNS = (ΦGS)
† = (− 1√

32
eρp̄2)GS = −bγ 2, which leads to (B.12).

Some clarifying remarks on the hermitian conjugation rule of RNS variables are
in place here. The conformal weights of ΦRNS and ΨRNS generally differ when eval-
uated w.r.t. TRNS. The reason for this is the following: as we have reviewed above,
in the presence of a background charge, T † = T − Q∂j . If O is an operator with
U(1) charge q, it can be written in the form O = exp(q

∫ z
j)O ′ with O ′ neutral

under j . (Here we have normalized the current according to j (z)j (w) ∼ 1
(z−w)2 .)

The hermitian conjugate operator is O† = exp(−q
∫ z

j)(O ′)†. Its conformal weight
measured with T † is the same as that of O measured with T . One defines the oper-
ator Õ = exp(q

∫ z
j)(O ′)† which has the same U(1) charge and weight (w.r.t. T )

as O .
For the case of interest, this means that T = − 1

2 (∂ρ)
2 − 1

2 (∂H)2 + 1
2∂

2ρ +
i
2

√
3∂2H becomes T † = T − ∂2ρ − i

√
3∂2H = T − ∂J . The conformal weight

of ΨRNS w.r.t. T † is then the same as that of ΦRNS w.r.t. T . It is now straightforward
to find that the ΨRNS corresponding to ΦGS = eσ , eχ , and eϕ , for example are
given (up to overall signs and rescalings) by eσ+2χ−2ϕ , e2σ+χ−2ϕ , and e2σ+2χ−3ϕ ,
respectively. Finally, we define the operator conjugation O → Õ for the case at
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hand. We write any operator with ρ-charge p (with respect to the current ∂ρ) and
U(1)C-charge q as

O = e
−pρ+ iq√

3
H

O ′ = e
1
2 (p+q)

∫ z J e
− 1

2 (3p+q)(ρ+ i√
3
H)

O ′. (B.22)

Then an operator conjugation preserving the conformal w.r.t. to T is defined by

Õ = e
1
2 (p+q)

∫ z J e
1
2 (3p+q)(ρ+ i√

3
H)

(O ′)† = e
(2p+q)ρ+(3p+2q) i√

3
H
(O ′)†. (B.23)

This is the conjugation used in Sect. 2.1.

C Appendix: Vertex Operators

C.1 Massless RNS Vertex Operators

The field redefinition between the RNS and hybrid variables presented in Sect. 2.3
induces a map of the vertex operators of the RNS formulation to those of the hybrid
formulation. We first discuss the unintegrated vertex operators for massless states.
The field redefinition (18) [or (33) for the right-moving sector of the type IIA string]
relates the RNS vertex operators in the large Hilbert space to operators expressed in
terms of chiral GS-variables. To obtain the vertex operators in the hybrid variables
one needs to perform the additional map (B.2). It can be shown, however, that this
map does not affect any of the expressions discussed below. The reason is that at the
massless level the unintegrated vertex operators do not depend on p or p̄. Further-
more, they contain at least two powers of θ and θ̄ such that the map is trivial as long
as the internal part of the vertex operators are primary.

The vertex operators of the bosonic components of the space-time N = 2 mul-
tiplets descend from the NSNS and RR sectors of the 10d superstring. The vertex
operators in the large Hilbert space are of the general form

V (q,q̃) = |cξeαϕ |2Φ̆(q,q̃)W. (C.1)

As explained in Sect. 2.4, V has conformal weight 0 and ghost number 0 with
respect to (24). W is the space-time part of the vertex operator; Φ(q,q̃) are primary
fields of U(1)L × U(1)R charge (q, q̃) of the internal c = 9, N = (2, 2) SCFT. In
what follows, we mainly concentrate on the left-moving part of the vertex operators,
which we denote by V (q). Notice that the charge of Φ̆(q) with respect to J̆C is the
same as the one of Φ(q) defined by (22) with respect to JC of (21). According
to (25), the charge of the vertex operators V (q) under J = ∂ρ is −q + 3(1+ α) and
must therefore carry a factor of e[q−3(1+α)]ρ when expressed in hybrid variables.
Since the ghost number Jgh = J = ∂ρ + JC of the vertex operator V (q) is zero,
the ρ-charge is minus the JC-charge. Therefore the internal part of V (q) in hybrid
variables must involve Φ(q−3[1+α]). Given any RNS vertex operator, this rule fixes
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the form of the vertex operator in the hybrid formulation up to the spacetime part.
The latter is determined by (18) from which one derives, for example,16

e−ρθ2 = c, eρθ̄2 = ce−2(ϕ−χ). (C.2)

The RNS vertex operators are restricted by the requirement that their operator

product with the spacetime gravitino e− 1
2ϕSαΣ is local. This applies to the

left-moving part. For the right-moving part of type IIB (IIA) locality with

(e− 1
2ϕSαΣ)R((e

− 1
2ϕSαΣ̄)R) is required. Given the OPE Σ(z)Φ̆(q)(w) ∼

(z− w)
q
2 Φ̆(q+ 3

2 )(w)+ · · · this implies restrictions on q.
It is now straightforward to find the following maps of vertex operators in the NS

sector in the canonical ghost picture (α = −1):17

V (0)
NS = cξe−ϕψm(θσmθ̄),

V (+1)
NS = cξe−ϕΦ̆(+1) = eρθ̄2Φ(+1),

V (−1)
NS = cξe−ϕΦ̆(−1) = e−ρθ2Φ(−1).

(C.3)

In the R sector in the canonical ghost picture (α = − 1
2 ) one finds, for example,

V
(+ 3

2 )

R = cξe−
ϕ
2 SαΣ = θαθ̄2,

V
(+ 1

2 )

R = cξe−
ϕ
2 S̄α̇Φ̆(+ 1

2 ) = e−ρθ̄ α̇θ2Φ(−1),

V
(− 1

2 )

R = cξe−
ϕ
2 SαΦ̆(− 1

2 ) = e−2ρθα∂θ2Φ(−2).

(C.4)

These expressions illustrate that RNS vertex operators, which are (RNS) hermitian
conjugates of each other, are generally not mapped to operators which are hermitian
conjugates in the hybrid sense (cf. Appendix B). Conversely, two hermitian conju-
gate hybrid operators are related to RNS operators in different ghost pictures. For

instance, θ̄ α̇θ2(w) = c∂cξ∂ξe− 5
2ϕS̄α̇Σ̄(w) = limz→w Y(z)cξe−

ϕ
2 S̄α̇Σ̄(w) where

Y = c∂ξe−2ϕ is the inverse picture changing operator.
For type IIB compactifications (C.2), (C.3) and (C.4) are the same for both the

left- and right-moving sectors. For type IIA compactifications the expressions for the
right-movers are different; they can be obtained from above relations by reversing
the signs of all explicit charge labels and replacing Σ ↔ Σ̄ .

16 Here and in what follows we suppress overall signs and numerical factors.
17 We do not display the eik·X factors which must be included in the complete expression for each
vertex.
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C.2 Universal Massless Multiplets

The vertex operators for the universal sector of type II strings on CY3 [18, 5]
are associated to the identity Φ(0,0) = 1 and the states in the RR sector con-
nected to the identity by spectral flow. They are grouped in to the real superfield
U (x, θL,R, θ̄L,R), which was constructed in [10], and contains the 24+ 24 degrees
of freedom of supergravity multiplet and the 8+8 degrees of freedom of the univer-
sal tensor multiplet (which can be dualized to the universal dilaton multiplet). In the
Wess-Zumino gauge, the metric, the antisymmetric tensor, and the dilaton appear at
the lowest non-vanishing order of the θ -expansion of U . Other fields, such as the
(anti)selfdual part of the graviphoton field strength Fαβ (Fα̇β̇ ) and the derivative of
the complex RR-scalar Z, to which we referred to in the main text, appear at higher
orders in the θ -expansion:

U = ζmn(θσ
mθ̄)L(θσ

nθ̄)R +
[
Fαβθ

α
Lθ

β
R |θ̄2|2 + h.c.

]

+
[
(∂αβ̇Z + . . .)θαLθ̄

2
Lθ̄

β̇
Rθ

2
R + h.c.

]
+ · · · (C.5)

The full expansion can be found in [10]. Using the expressions (C.3) and (C.4) these
operators are identified as the RNS vertex operators. One finds, for instance,

Uζ = ζmnψ
m
L ψn

R

∣
∣cξe−ϕ

∣
∣2

U∂Z = ∂mZ(SLσ
mS̄R)

∣
∣
∣cξe−

1
2ϕΣ

∣
∣
∣
2

U ′
∂Z̄

= ∂mZ̄(S̄Lσ
mSR)

∣
∣
∣cξe−

1
2ϕΣ̄

∣
∣
∣
2

(C.6)

As explained in the previous section, it is not U ′
∂Z̄

that is mapped directly to the
hybrid vertex operator, but the picture changed operator YU ′

∂Z̄
.

C.3 Compactification Dependent Massless Multiplets

The spacetime parts of the massless vertex operators, the presence of which depends
on the particular choice of Calabi-Yau compactification, can be grouped into real
chiral or twisted-chiral multiplets as described in Sect. 2.5.

Chiral superfields Mc satisfy D̄α̇LMc = 0 = D̄α̇RMc. Real chiral superfields
(vector multiplets) satisfy in addition D2

LMc = D̄2
RM̄c and comprise 8 + 8 compo-

nents. The chirality constraint means that Mc is a function of ym = xm+i(θσmθ̄)L+
i(θσmθ̄)R , θL and θR where ym satisfies DLy

m = D̄Ry
m = 0. Parts of the θ -

expansion are

Mc(y
m, θL, θR) = t + · · · + fαβθ

α
Lθ

β
R + · · · + |θ2|2∂m∂mt̄ ′, (C.7)
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where the complex scalars t and t ′ and the selfdual two-tensor fαβ are functions
of ym. The reality constraint implies in particular that t = t ′ and that the two-tensor
satisfies the Bianchi constraints, which are solved by writing it as a vector field
strength. The complete expansion can be found in [10].

Twisted-chiral superfields Mtc satisfy D̄α̇LMtc = 0 = DαRMtc. Real twisted-
chiral superfields (tensor multiplets) satisfy in addition D2

LMtc = D2
RM̄tc and com-

prise 8 + 8 components. The relevant parts of its expansion are

Mtc(z, θL, θ̄R) = l++ + · · · + vαβ̇θ
α
Lθ̄

β̇
R + · · · + θ2

Lθ̄
2
R∂

m∂ml−−, (C.8)

where vαβ̇ = vmσ
m

αβ̇
is a complex vector and l±± complex scalars. All component

fields are functions of zm = xm+ i(θσmθ̄)L− i(θσmθ̄)R with D̄Lz
m = DRz

m = 0.
The reality condition implies l̄++ = l−−. Its real part requires ∂mvn − ∂nvm = 0
while for its imaginary part we need ∂mvm = 0. These conditions are solved for
vm = ∂ml+−+iεmnpqH

npq with H = dB. The three scalars (l+−, l−− = l̄++) form
a SU(2) triplet. The antisymmetric tensor with field strength H can be dualized to
a fourth scalar which can be combined with l+− to a complex scalar. The complete
expansion of this field can again be found in [10].

C.3.1 Kähler Moduli

The h1,1 complexified Kähler deformations are in one-to-one correspondence to
elements of H 1,1(CY3). In the CFT description they are described by twisted-chiral
primaries Ωtc in the (c, a) ring of charge qL = −qR = 1 and conformal weight
hL = hR = 1

2 (in the untwisted theory). They are obtained, via spectral flow, from
RR ground states with qL = −qR = − 1

2 and hL = hR = 3
8 . In type IIA these

deformations are associated with the complex scalars of vector multiplets and for
type IIB with the NSNS-scalars of hypermultiplets (or tensor multiplets).

Here, we focus on type IIA, but the generalization to type IIB is straightforward.
The corresponding hybrid vertex operators were given in (50)

Uca = |eρθ̄ |2McΩtc. (C.9)

Note that for the twisted type IIA theory Ωtc has conformal weight hL = hR = 0
(while Ω̄tc has conformal weight hL = hR = 1) such that Mc indeed describes
massless states. In the large volume limit the twisted-chiral primary operators can
be written as18

Ωtc = hij̄ χ
i
Lχ

j̄
R, Ω̄tc = hij̄ λ

j̄
Lλ

i
R. (C.10)

Here hij̄ is an element of H 1,1(CY3). For notational simplicity we drop the addi-
tional index which distinguishes between the h1,1 different elements.

18 The left-moving (ψi
L, ψ

ı̄
L) are twisted to (χi

L, λ
ı̄
L) with conformal weights (0, 1). For the type

IIA twist the right-movers (ψi
R, ψ

ı̄
R) are twisted to (λiR, χ

ı̄
R) with conformal weight (1, 0).
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The bosonic degrees of freedom of the h1,1 vector multiplets are found by ex-
panding Mc in powers of θL and θR ,

Ut = t |eρθ̄2|2Ωtc,

Uf = fαβθ
α
Lθ

β
R |eρθ̄2|2Ωtc.

For each Kähler modulus there is a complex polarization t . Its real (imaginary) part
is the space-time scalar field corresponding to fluctuations of the internal NSNS B-
field Bij̄ (mixed components of the CY metric gij̄ ). fαβ is the selfdual part of a field
strength of the vector multiplet’s gauge field which arises from the reduction of the
three-form potential. This can be seen by relating these expressions to the vertex
operators in the RNS formulation. Using (C.3) and (C.4) one finds

Ut = t |cξe−ϕ |2Ω̆tc,

(Ut )
† = t̄ |cξe−ϕ |2 ¯̆Ωtc, (C.11)

(Uf )
† = fα̇β̇ S̄

α̇
LS̄

β̇
R|cξe−

1
2ϕ |2 ¯̆Ωtc.

Incidentally, the choice in (18) is such that (Uf )
† is mapped to a simple RNS vertex

operator in the canonical ghost picture while Uf is mapped to a RNS operator in
another ghost picture.

C.3.2 Complex Structure Moduli

The h2,1 complex structure deformations are related to chiral primary fields Ωc in
the chiral (c, c) ring of charge qL = qR = 1 and conformal weight hL = hR = 1

2
(in the untwisted theory). These are related to operators describing RR ground states
with charges qL = qR = ± 1

2 and hL = hR = 3
8 by spectral flow. Again, we

focus on the type IIA string, in which case they correspond to the NSNS scalars
in hypermultiplets, other than the universal one which contains the dilaton. In the
hybrid formalism the space-time part of these states is described by a real twisted-
chiral multiplet Mtc with the field content of a tensor multiplet. The vertex operators
are contained in the potentials given in (50)

Ucc = eρL−ρR θ̄2
Lθ

2
RMtcΩc. (C.12)

The chiral primary field Ωc has conformal weight hL = 0 and hR = 1 (while Ω̄c

has weights hL = 1 and hR = 0) such that Mtc indeed describes massless states. In
the large volume limit one has

Ωc = hijχ
i
Lλ

j
R, Ω̄c = hı̄j̄ λ

ı̄
Lχ

j̄
R, (C.13)
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where hij = gjj̄ hi
j̄ , and hi

j̄ is related to elements Yij̄ k̄hi
ı̄ Ω̄ı̄j̄ k̄ of H 1,2(CY3).

Again, we suppress the index that distinguishes between these h2,1 different ele-
ments.

The vertex operators contained in this multiplet can be extracted by expanding
Mtc in powers of θL and θ̄R . The lowest components are

Ul++ = l++eρL−ρR θ̄2
Lθ

2
RΩc,

Uv = vαβ̇θ
α
Lθ̄

β̇
Re

ρL−ρR θ̄2
Lθ

2
RΩc.

(C.14)

The scalar l++ parameterizes the fluctuations hij = gjj̄ h
j̄
i of the pure components

of the internal graviton gij . The complex polarization vm is related to the internal
components of the RR 3-form as Cijk̄CYij k̄ . The complex scalar C can be expressed
by the real scalar l+− and the dual of a real two-form field strength Hmnp such that
vm = ∂mC = (∂ml+− + iεmnpqH

npq). Reducing the RNS vertex operators for
the type IIA RR three-form and of the internal graviton one finds, in agreement
with (C.3) and (C.4),

Ul++ = l++|cξe−ϕ |2Ω̆c,

(Uv)
† = v̄α̇β S̄

α̇
LS

β
R|cξe−

ϕ
2 |2 ¯̆Ωc.

(C.15)

As for the Kähler moduli, the operator Uv maps to a RNS vertex operator in a non-
canonical ghost-picture.
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Quantum Phases of Cold Bosons in an Optical
Lattice�

Michael Aizenman, Elliot H. Lieb, Robert Seiringer, Jan Philip Solovej
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Abstract In recent years it has become possible to trap ultracold atoms and mole-
cules in lattices generated by laser beams (optical lattices). By varying the experi-
mentally tunable parameters transitions between various phases of the trapped gas,
in particular between a Bose-Einstein condensate and a Mott insulator phase, can be
produced. Theoretical investigations of this phenomenon are mostly based on varia-
tional or numerical studies of a Bose-Hubbard model but a rigorous proof of a phase
transition in this model is still lacking. There exists, however, a related model where
such a phenomenon can be analysed rigorously. This is the hard core lattice gas
where the optical lattice is modeled by a periodic potential of strength λ. For small
λ and temperature Bose-Einstein condensation (BEC) is proved to occur, while at
large λ BEC disappears, even in the ground state, which is a Mott insulator state
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with a characteristic gap. The inter-particle interaction is essential for this effect.
This contribution gives a pedagogical survey of these results.

1 Introduction

Recent experiments [18, 19] with ultra-cold quantum gases in optical traps have
verified a prediction [12, 21] of a reversible transition between a Bose-Einstein con-
densate and a state composed of localized atoms as the strength of a periodic trap-
ping potential is varied. This is an example of a quantum phase transition [32] where
quantum fluctuations and correlations rather than energy-entropy competition is the
driving force and its theoretical understanding is quite challenging. The model usu-
ally considered for describing this phenomenon is the Bose-Hubbard model and a
transition between a superfluid and a Mott insulator in this model was originally
suggested in [12] with an application to He4 in porous media in mind. The possibil-
ity of applying this scheme to a gas of alkali atoms in a periodic potential generated
by laser beams (‘optical lattice’) was first realized in [21]. The articles [37, 4, 20,
26, 5] review these and some of the subsequent developments. The physics of cold
atoms in optical lattices has now become a major research subject and it is impos-
sible to do justice here to the large number of papers devoted to this topic that have
appeared. As a representative sample we mention only [35, 36, 8, 17, 28, 6, 3, 33,
7, 27, 31, 34, 24] where further references can be found.

Physically, we are dealing with a trapped Bose gas with short range interaction.
The model used in the cited papers, however, is not a continuum model but rather a
lattice gas, i.e., the particles are confined to move on a d-dimensional, hyper-cubic
lattice and the kinetic energy is given by the discrete Laplacian. In terms of bosonic
creation and annihilation operators, a†

x and ax , the Hamiltonian of the Bose-Hubbard
model is

HBH = −1

2

∑

〈xy〉

(
a†

xay + axa
†
y
)+ U

∑

x

a†
xax
(
a†

xax − 1
)
. (1)

The sites x are in a cube Λ ⊂ Z
d with opposite sides identified (i.e., a d-dimensional

torus) and 〈xy〉 stands for pairs of nearest neighbors. The first term in (2) is the dis-
crete Laplacian

∑
〈xy〉(a

†
x−a

†
y)(ax−ay) minus 2d

∑
x a

†
xax , i.e., we have subtracted

a chemical potential that equals d . Units are chosen such that the hopping parameter
in front of the kinetic term is 1/2.

The investigations of a phase transition in the Bose-Hubbard model as the inter-
atomic on-site repulsion U is varied are mostly based on variational or numerical
methods. The signal of the phase transition is usually taken to be that an ansatz with
a sharp particle number at each lattice site leads to a lower energy than a delocalized
Bogoliubov state. There are several papers, e.g., [13, 10] and the recent paper [11],
where rigorous results are obtained by other methods, but so far there exists no proof
that the true ground state of the model has off-diagonal long range order at one end
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of the parameter regime that disappears at the other end. In the present contribution,
which is based on the paper [2], we study a slightly different model where just this
phenomenon can be rigorously proved and which, at the same time, captures the
salient features of the experimental situation.

Our model is that of a hard-core lattice gas which corresponds formally to
U = ∞ in the Bose-Hubbard model. The optical lattice is modeled by a periodic,
one-body potential, whose strength is measured by an adjustable parameter λ. In-
stead of (1) we thus consider the Hamiltonian

H = −1

2

∑

〈xy〉

(
a†

xay + axa
†
y
)+ λ

∑

x

(−1)xa†
xax . (2)

The operators a#
x in this model commute at different sites as appropriate for Bosons

but satisfy anti-commutation relations on the same site, reflecting the hard-core con-
dition. When discussing BEC, it is convenient not to fix the particle number but to
work in a grand-canonical ensemble. The chemical potential is fixed in such a way
that the average particle number equals half the number of lattice sites, i.e., we con-
sider half filling. (This restriction is dictated by our method of proof.) In experiments
the gas is enclosed in an additional trap potential that is slowly varying on the scale
of the optical lattice but we neglect here the inhomogeneity due to such a potential
and consider instead the thermodynamic limit.

The optical lattice gives rise to the potential λ(−1)x which alternates in sign
between the A and B sublattices of even and odd sites. In the Bose-Hubbard model,
on the other hand, all sites are equivalent and the lattice represents only the attractive
sites of the optical lattice. In our case the adjustable parameter is λ instead of U and
for large λ the atoms will try to localize on the B sublattice. Because of the periodic
potential the unit cell in our model consists of two lattice sites, so that we have on
average one particle per unit cell. This corresponds, physically, to filling factor 1 in
the Bose-Hubbard model.

The Hamiltonian (2) conserves the particle number N and it is shown in [2],
Appendix A, that the lowest energy is obtained uniquely for N = 1

2 |Λ|, i.e., half the
number of lattice sites.

For given temperature T , we consider grand-canonical thermal equilibrium states,
described by the Gibbs density matrices Z−1 exp(−βH) with Z the normalization
factor (partition function) and β = 1/T the inverse temperature. Units are chosen
so that Boltzmann’s constant equals 1. The thermal expectation value of some ob-
servable O will be denoted by 〈O〉 = Z−1 Tr O exp(−βH). In the proof of BEC we
focus on dimensions d ≥ 3, but, using the technique employed in [22], an extension
to the ground state in two dimensions is possible.

Our main results about this model can be summarized as follows:

1. If T and λ are both small, there is Bose-Einstein condensation. In this parame-
ter regime the one-body density matrix γ (x, y) = 〈a†

xay〉 has exactly one large
eigenvalue (in the thermodynamic limit), and the corresponding condensate wave
function is φ(x) = constant.
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2. If either T or λ is big enough, then the one-body density matrix decays expo-
nentially with the distance |x − y|, and hence there is no BEC. In particular, this
applies to the ground state T = 0 for λ big enough, where the system is in a Mott
insulator phase.

3. The Mott insulator phase is characterized by a gap, i.e., a jump in the chemical
potential. We are able to prove this, at half-filling, in the region described in
item 2 above. More precisely, there is a cusp in the dependence of the ground
state energy on the number of particles; adding or removing one particle costs
a non-zero amount of energy. We also show that there is no such gap whenever
there is BEC.

4. The interparticle interaction is essential for items 2 and 3. Non-interacting bosons
always display BEC for sufficiently low, but positive T (depending on λ, of
course).

5. For all T ≥ 0 and all λ > 0 the diagonal part of the one-body density ma-
trix 〈a†

xax〉 (the one-particle density) is not constant. Its value on the A sub-
lattice is constant, but strictly less than its constant value on the B sublattice
and this discrepancy survives in the thermodynamic limit. In contrast, in the
regime mentioned in item 1, the off-diagonal long-range order is constant, i.e.,
〈a†

xay〉 ≈ φ(x)φ(y)∗ for large |x − y| with φ(x) = constant.

Fig. 1 Schematic phase diagram at half-filling

Because of the hard-core interaction between the particles, there is at most one
particle at each site and our Hamiltonian (2) thus acts on the Hilbert space H =⊗

x∈Λ C
2. The creation and annihilation operators can be represented as 2 × 2 ma-

trices with

a†
x ↔

(
0 1
0 0

)

, ax ↔
(

0 0
1 0

)

, a†
xax ↔

(
1 0
0 0

)

,
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for each x ∈ Λ. More precisely, these matrices act on the tensor factor associated
with the site x while a

†
x and ax act as the identity on the other factors in the Hilbert

space H =⊗x∈Λ C
2.

The Hamiltonian can alternatively be written in terms of the spin 1/2 operators

S1 = 1

2

(
0 1
1 0

)

, S2 = 1

2

(
0 −i
i 0

)

, S3 = 1

2

(
1 0
0 −1

)

.

The correspondence with the creation and annihilation operators is

a†
x = S1

x + iS2
x ≡ S+x , ax = S1

x − iS2
x ≡ S−x ,

and hence a
†
xax = S3

x + 1
2 . (This is known as the Matsubara-Matsuda correspon-

dence [25].) Adding a convenient constant to make the periodic potential positive,
the Hamiltonian (2) is thus equivalent to

H = −1

2

∑

〈xy〉

(
S+x S−y + S−x S+y

)+ λ
∑

x

[
1

2
+ (−1)xS3

x

]

= −
∑

〈xy〉

(
S1

xS
1
y + S2

xS
2
y
)+ λ

∑

x

[
1

2
+ (−1)xS3

x

]

. (3)

Without loss of generality we may assume λ ≥ 0. This Hamiltonian is well known as
a model for interacting spins, referred to as the XY model [9]. The last term has the
interpretation of a staggered magnetic field. We note that BEC for the lattice gas is
equivalent to off-diagonal long range order for the 1- and 2-components of the spins.

The Hamiltonian (3) is clearly invariant under simultaneous rotations of all the
spins around the 3-axis. In particle language this is the U(1) gauge symmetry asso-
ciated with particle number conservation of the Hamiltonian (2). Off-diagonal long
range order (or, equivalently, BEC) implies that this symmetry is spontaneously bro-
ken in the state under consideration, cf., e.g. [23]. It is notoriously difficult to prove
such symmetry breaking for systems with a continuous symmetry. One of the few
available techniques is that of reflection positivity (and the closely related property
of Gaussian domination) and fortunately it can be applied to our system. For this,
however, the hard core and half-filling conditions are essential because they imply
a particle-hole symmetry that is crucial for the proofs to work. Naturally, BEC is
expected to occur at other fillings, but no one has so far found a way to prove con-
densation (or, equivalently, long-range order in an antiferromagnet with continuous
symmetry) without using reflection positivity and infrared bounds, and these require
the additional symmetry.

Reflection positivity was first formulated by K. Osterwalder and R. Schrader
[29, 30] in the context of relativistic quantum field theory. Later, J. Fröhlich, B. Si-
mon and T. Spencer used the concept to prove the existence of a phase transition
for a classical spin model with a continuous symmetry [16, 15], and E. Lieb and
J. Fröhlich [14] as well as F.J. Dyson, E.H. Lieb and B. Simon [9] applied it for the
analysis of quantum spin systems. The proof of off-diagonal long range order for
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the Hamiltonian (3) (for small λ) given here is based on appropriate modifications
of the arguments in [9].

2 Reflection Positivity

In the present context reflection positivity means the following. We divide the torus
Λ into two congruent parts, ΛL and ΛR, by cutting it with a hyperplane orthogonal
to one of the d directions. (For this we assume that the side length of Λ is even.)
This induces a factorization of the Hilbert space, H = HL ⊗HR, with

HL,R =
⊗

x∈ΛL,R

C
2.

There is a natural identification between a site x ∈ ΛL and its mirror image ϑx ∈
ΛR. If F is an operator on H = HL we define its reflection θF as an operator on
HR in the following way. If F = Fx operates non-trivially only on one site, x ∈ ΛL,
we define θF = VFϑxV

† where V denotes the unitary particle-hole transformation
or, in the spin language, rotation by π around the 1-axis. This definition extends in
an obvious way to products of operators on single sites and then, by linearity, to
arbitrary operators on HL. Reflection positivity of a state 〈 · 〉 means that

〈FθF 〉 ≥ 0 (4)

for any F operating on HL. Here F is the complex conjugate of the operator F in the
matrix representation defined above, i.e., defined by the basis where the operators
S3

x are diagonal.
We now show that reflection positivity holds for any thermal equilibrium state of

our Hamiltonian. We can write the Hamiltonian (3) as

H = HL +HR − 1

2

∑

〈xy〉∈M

(
S+x S−y + S−x S+y

)
, (5)

where HL and HR act non-trivially only on HL and HR, respectively. Here, M de-
notes the set of bonds going from the left sublattice to the right sublattice. (Because
of the periodic boundary condition these include the bonds that connect the right
boundary with the left boundary.) Note that HR = θHL, and

∑

〈xy〉∈M

(
S+x S−y + S−x S+y

) =
∑

〈xy〉∈M

(
S+x θS+x + S−x θS−x

)
.

For these properties it is essential that we included the unitary particle-hole trans-
formation V in the definition of the reflection θ . For reflection positivity it is also
important that all operators appearing in H (5) have a real matrix representation.
Moreover, the minus sign in (5) is essential.
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Using the Trotter product formula, we have

TrFθFe−βH = lim
n→∞TrFθFZn

with

Zn =
⎡

⎣e−
1
n
βHLθe−

1
n
βHL

∏

〈xy〉∈M

(

1 + β

2n

[
S+x θS+x + S−x θS−x

]
)
⎤

⎦

n

. (6)

Observe that Zn is a sum of terms of the form
∏

i

AiθAi, (7)

with Ai given by either e− 1
n
βHL or

√
β
2nS

+
x or

√
β
2nS

−
x . All the Ai are real matrices,

and therefore

TrH FθF
∏

i

AiθAi = TrH F
∏

i

Aiθ

⎡

⎣F
∏

j

Aj

⎤

⎦ =
∣
∣
∣
∣TrHL F

∏

i

Ai

∣
∣
∣
∣

2

≥ 0.

(8)
Hence TrFθFZn is a sum of non-negative terms and therefore non-negative. This
proves our assertion.

3 Proof of BEC for Small λ and T

The main tool in our proof of BEC are infrared bounds. More precisely, for p ∈
Λ∗ (the dual lattice of Λ), let S̃#

p = |Λ|−1/2∑
x S

#
x exp(ip · x) denote the Fourier

transform of the spin operators. We claim that

(
S̃1

p, S̃
1−p
) ≤ T

2Ep
, (9)

with Ep = ∑d
i=1(1 − cos(pi)). Here, pi denotes the components of p, and ( , )

denotes the Duhamel two point function at temperature T , defined by

(A,B) =
∫ 1

0
Tr
(
Ae−sβHBe−(1−s)βH

)
ds/Tr e−βH (10)

for any pair of operators A and B. Because of invariance under rotations around the
S3 axis, (9) is equally true with S1 replaced by S2, of course.

The crucial lemma (Gaussian domination) is the following. Define, for a complex
valued function h on the bonds 〈xy〉 in Λ,
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Z(h) = Tr exp
[−βK(h)

]
, (11)

with K(h) the modified Hamiltonian

K(h) = 1

4

∑

〈xy〉

((
S+x − S−y − hxy

)2 + (S−x − S+y − hxy
)2)

+ λ
∑

x

[
1

2
+ (−1)xS3

x

]

. (12)

Note that for h ≡ 0, K(h) agrees with the Hamiltonian H , because (S±)2 = 0. We
claim that, for any real valued h,

Z(h) ≤ Z(0). (13)

The infrared bound then follows from d2Z(εh)/dε2|ε=0 ≤ 0, taking hxy = exp(ip ·
x)− exp(ip · y). This is not a real function, though, but the negativity of the (real!)
quadratic form d2Z(εh)/dε2|ε=0 for real h implies negativity also for complex-
valued h.

The proof of (13) is very similar to the proof of the reflection positivity prop-
erty (4) given above. It follows along the same lines as in [9], but we repeat it here
for convenience of the reader.

The intuition behind (13) is the following. First, in maximizing Z(h) one can
restrict to gradients, i.e., hxy = ĥx − ĥy for some function ĥx on Λ. (This fol-
lows from stationarity of Z(h) at a maximizer hmax.) Reflection positivity implies
that 〈AθB〉 defines a scalar product on operators on HL, and hence there is a cor-
responding Schwarz inequality. Moreover, since reflection positivity holds for re-
flections across any hyperplane, one arrives at the so-called chessboard inequality,
which is simply a version of Schwarz’s inequality for multiple reflections across
different hyperplanes. Such a chessboard estimate implies that in order to maximize
Z(h) it is best to choose the function ĥx to be constant. In the case of classical spin
systems [16, 15], this intuition can be turned into a complete proof of (13). Because
of non-commutativity of K(h) with K(0) = H , this is not possible in the quantum
case. However, one can proceed by using the Trotter formula as follows.

Let hmax be a function that maximizes Z(h) for real valued h. If there is more
than one maximizer, we choose hmax to be one that vanishes on the largest number
of bonds. We then have to show that actually hmax ≡ 0. If hmax $≡ 0, we draw a
hyperplane such that hxy $= 0 for at least one pair 〈xy〉 crossing the plane. We can
again write

K(h) = KL(h)+KR(h)+ 1

4

∑

〈xy〉∈M

((
S+x − S−y − hxy

)2

+ (S−x − S+y − hxy
)2)

. (14)

Using the Trotter formula, we have Z(h) = limn→∞ αn, with
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αn = Tr

⎡

⎣e−βKL/ne−βKR/n
∏

〈xy〉∈M
e−β(S+x −S−y −hxy)

2/4ne−β(S−x −S+y −hxy)
2/4n

⎤

⎦

n

.

(15)
For any matrix, we can write

e−D2 = (4π)−1/2
∫

R

dk eikDe−k2/4. (16)

We apply this to the last two factors in (15), noting that S−y = θS+x if 〈xy〉 ∈ M .
Denoting by x1, . . . , xl the points on the left side of the bonds in M , we then have

αn = (4π)−nl

∫

R2nl
d2nlk Tr

[
e−βKL/ne−βKR/ne

ik1(S
+
x1
−θS+x1

)β1/2/2n1/2
. . .
]

× e−k2/4e−ik1hx1ϑx1β
1/2/2n1/2.... (17)

Here we denote k2 = ∑
k2
i for short. Since matrices on the right of M commute

with matrices on the left, and since all matrices in question are real, we see that the
trace in the integrand above can be written as

Tr
[
e−βKL/ne

ik1S
+
x1
β1/2/2n1/2

. . .
]

Tr
[
e−βKR/neik1θS

+
x1β

1/2/2n1/2
. . .
]
. (18)

Using the Schwarz inequality for the k integration, and ‘undoing’ the above step,
we see that

|αn|2 ≤
(

(4π)−nl

∫

R2nl
d2nlk e−k2/4

× Tr
[
e−βKL/ne−βθKL/ne

ik1(S
+
x1
−θS+x1

)β1/2/2n1/2
. . .
])

×
(

(4π)−nl

∫

R2nl
d2nlk e−k2/4

× Tr
[
e−βθKR/ne−βKR/ne

ik1(S
+
x1
−θS+x1

)β1/2/2n1/2
. . .
])

. (19)

In terms of the partition function Z(h), this means that

|Z(hmax)|2 ≤ Z(h(1))Z(h(2)), (20)

where h(1) and h(2) are obtained from hmax by reflection across M in the following
way:

h(1)xy =

⎧
⎪⎨

⎪⎩

hxy if x, y ∈ ΛL

hϑxϑy if x, y ∈ ΛR

0 if 〈xy〉 ∈ M

(21)
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and h(2) is given by the same expression, interchanging L and R. Therefore also h(1)

and h(2) must be maximizers of Z(h). However, one of them will contain strictly
more zeros than hmax, since hmax does not vanish identically for bonds crossing M .
This contradicts our assumption that hmax contains the maximal number of zeros
among all maximizers of Z(h). Hence hmax ≡ 0 identically. This completes the
proof of (13).

The next step is to transfer the upper bound on the Duhamel two point func-
tion (9) into an upper bound on the thermal expectation value. This involves con-
vexity arguments and estimations of double commutators like in Sect. 3 in [9]. For
this purpose, we have to evaluate the double commutators

[
S̃1

p,
[
H, S̃1−p

]]+[S̃2
p, [H, S̃2−p]

] = − 2

|Λ|
(

H− 1

2
λ|Λ|+2

∑

〈xy〉
S3

xS
3
y cos p·(x−y)

)

.

(22)
Let Cp denote the expectation value of this last expression,

Cp =
〈[
S̃1

p,
[
H, S̃1−p

]]+ [S̃2
p,
[
H, S̃2−p

]]〉 ≥ 0.

The positivity of Cp can be seen from an eigenfunction-expansion of the trace. From
[9, Corollary 3.2 and Theorem 3.2] and (9) we infer that

〈
S̃1

pS̃
1−p + S̃2

pS̃
2−p
〉 ≤ 1

2

√
Cp

Ep
coth

√
β2CpEp/4. (23)

Using coth x ≤ 1 + 1/x and Schwarz’s inequality, we obtain for the sum over all
p $= 0,

∑

p$=0

〈
S̃1

pS̃
1−p + S̃2

pS̃
2−p
〉 ≤ 1

β

∑

p$=0

1

Ep
+ 1

2

(∑

p$=0

1

Ep

)1/2(∑

p$=0

Cp

)1/2

. (24)

We have
∑

p∈Λ∗ Cp = −2〈H 〉 + λ|Λ|, which can be bounded from above using the
following lower bound on the Hamiltonian:

H ≥ −|Λ|
4

[
d(d + 1)+ 4λ2]1/2 + 1

2
λ|Λ|. (25)

This inequality follows from the fact that the lowest eigenvalue of

−1

2
S1

x

2d∑

i=1

S1
yi −

1

2
S2

x

2d∑

i=1

S2
yi + λS3

x (26)

is given by − 1
4 [d(d + 1)+ 4λ2]1/2. This can be shown exactly in the same way as

[9, Theorem C.1]. Since the Hamiltonian H can be written as a sum of terms like
(26), with yi the nearest neighbors of x, we get from this fact the lower bound (25).

With the aid of the sum rule
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∑

p∈Λ∗

〈
S̃1

pS̃
1−p + S̃2

pS̃
2−p
〉 = |Λ|

2

(which follows from (S1)2 = (S2)2 = 1/4), we obtain from (24) and (25) the
following lower bound in the thermodynamic limit:

lim
Λ→∞

1

|Λ|
〈
S̃1

0 S̃
1
0 + S̃2

0 S̃
2
0

〉

≥ 1

2
− 1

2

(
1

2

[
d(d + 1)+ 4λ2]1/2

cd

)1/2

− 1

β
cd, (27)

with cd given by

cd = 1

(2π)d

∫

[−π,π]d
dp

1

Ep
. (28)

This is our final result. Note that cd is finite for d ≥ 3. Hence the right side of (27)
is positive, for large enough β, as long as

λ2 <
1

c2
d

− d(d + 1)

4
.

In d = 3, c3 ≈ 0.505 [9], and hence this condition is fulfilled for λ � 0.960. In
[9] it was also shown that dcd is monotone decreasing in d , which implies a similar
result for all d > 3.

The connection with BEC is as follows. Since H is real, also γ (x, y) is real and
we have

γ (x, y) = 〈S+x S−y 〉 =
〈
S1

xS
1
y + S2

xS
2
y
〉
.

Hence, if ϕ0 = |Λ|−1/2 denotes the constant function,

〈ϕ0|γ |ϕ0〉 =
〈
S̃1

0 S̃
1
0 + S̃2

0 S̃
2
0

〉
,

and thus the bound (27) implies that the largest eigenvalue of γ (x, y) is bounded
from below by the right side of (27) times |Λ|. In addition one can show that the
infrared bounds imply that there is at most one large eigenvalue (of the order |Λ|),
and that the corresponding eigenvector (the ‘condensate wave function’) is strictly
constant in the thermodynamic limit [2]. The constancy of the condensate wave
function is surprising and is not expected to hold for densities different from 1

2 ,
where particle-hole symmetry is absent. In contrast to the condensate wave function
the particle density shows the staggering of the periodic potential [2, Theorem 3]. It
also contrasts with the situation for zero interparticle interaction, as discussed at the
end of this paper.

In the BEC phase there is no gap for adding particles beyond half filling (in the
thermodynamic limit): The ground state energy, Ek , for 1

2 |Λ| + k particles satisfies

0 ≤ Ek − E0 ≤ (const.)

|Λ| (29)
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(with a constant that depends on k but not on |Λ|.) The proof of (29) is by a varia-
tional calculation, with a trial state of the form (S̃+0 )k|0〉, where |0〉 denotes the ab-
solute ground state, i.e., the ground state for half filling. (This is the unique ground
state of the Hamiltonian, as can be shown using reflection positivity. See Appen-
dix A in [2].) Also, in the thermodynamic limit, the energy per site for a given
density, e(*), satisfies

e(*)− e

(
1

2

)

≤ const.

(

* − 1

2

)2

. (30)

Thus there is no cusp at * = 1/2. To show this, one takes a trial state of the form

|ψy〉 = eiε
∑

x S
2
x

(

S1
y +

1

2

)

|0〉. (31)

The motivation is the following: we take the ground state and first project onto a
given direction of S1 on some site y. If there is long-range order, this should imply
that essentially all the spins point in this direction now. Then we rotate slightly
around the S2-axis. The particle number should then go up by ε|Λ|, but the energy
only by ε2|Λ|. We refer to [2, Sect. IV] for the details.

The absence of a gap in the case of BEC is not surprising, since a gap is charac-
teristic for a Mott insulator state. We show the occurrence of a gap, for large enough
λ, in the next section.

4 Absence of BEC and Mott Insulator Phase

The main results of this section are the following: If either

• λ ≥ 0 and T > d/(2 ln 2), or
• T ≥ 0 and λ ≥ 0 such that λ + |e(λ)| > d , with e(λ) = ground state energy per

site,

then there is exponential decay of correlations:

γ (x, y) ≤ (const.) exp(−κ|x − y|) (32)

with κ > 0. Moreover, for T = 0, the ground state energy in a sector of fixed
particle number N = 1

2 |Λ| + k, denoted by Ek , satisfies

Ek + E−k − 2E0 ≥ (λ+ |e(λ)| − d)|k|. (33)

I.e., for large enough λ the chemical potential has a jump at half filling.
The derivation of these two properties is based on a path integral representation of

the equilibrium state at temperature T , and of the ground state which is obtained in
the limit T →∞. The analysis starts from the observation that the density operator
e−βH has non-negative matrix elements in the basis in which {S3

x} are diagonal, i.e.
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of states with specified particle occupation numbers. It is convenient to focus on the
dynamics of the ‘quasi-particles’ which are defined so that the presence of one at
a site x signifies a deviation there from the occupation state which minimizes the
potential-energy. Since the Hamiltonian is H = H0 + λW , with H0 the hopping
term in (3) and W the staggered field, we define the quasi-particle number operators
nx as:

nx = 1

2
+ (−1)xS3

x =
{
a

†
xax, for x even

1 − a
†
xax, for x odd

. (34)

Thus nx = 1 means presence of a particle if x is on the A sublattice (potential
maximum) and absence if x is on the B sublattice (potential minimum).

The collection of the joint eigenstates of the occupation numbers, {|{nx}〉}, pro-
vides a convenient basis for the Hilbert space. The functional integral representa-
tion of 〈{nx}| e−β(H0+λW) |{nx}〉 involves an integral over configurations of quasi-
particle loops in a space × time for which the (imaginary) ‘time’ corresponds to a
variable with period β. The fact that the integral is over a positive measure facili-
tates the applicability of statistical-mechanics intuition and tools. One finds that the
quasi-particles are suppressed by the potential energy, but favored by the entropy,
which enters this picture due to the presence of the hopping term in H . At large
λ, the potential suppression causes localization: long ‘quasi-particle’ loops are rare,
and the amplitude for long paths decays exponentially in the distance, both for paths
which may occur spontaneously and for paths whose presence is forced through the
insertion of sources, i.e., particle creation and annihilation operators. Localization
is also caused by high temperature, since the requirement of periodicity implies that
at any site which participates in a loop there should be at least two jumps during
the short ‘time’ interval [0, β) and the amplitude for even a single jump is small, of
order β.

The path integral described above is obtained through the Dyson expansion

et(A+B) = etA
∑

m≥0

∫

0≤t1≤t2≤···≤tm≤t

B(tm) · · ·B(t1)dt1 · · · dtm (35)

for any matrices A and B and t > 0, with B(t) = e−tABetA. (The m = 0 term in
the sum is interpreted here as 1.)

In evaluating the matrix elements of e−βH = e−β(H0+λW), in the basis {|{nx}〉},
we note that W is diagonal and 〈{nx}|H0|{n′x}〉 is non-zero only if the configurations
{nx} and {n′x} differ at exactly one nearest neighbor pair of sites where the change
corresponds to either a creation of a pair of quasi-particles or the annihilation of
such a pair. I.e., the matrix elements are zero unless nx = n′x for all x except for a
nearest neighbor pair 〈xy〉, where nx = ny, n′x = n′y, and nx + n′x = 1. In this case,
the matrix element equals −1/2.

Introducing intermediate states, the partition function can thus be written as fol-
lows:
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Tr e−βH =
∞∑

m=0

∫

0≤t1≤t2≤···≤tm≤β

∑

|{n(i)x }〉,1≤i≤m

× exp

(

−λ

m∑

i=1

(ti − ti−1)
∑

x

n(i)x

)

dt1 · · · dtm

× (−1)m〈{n(1)x }|H0|{n(m)
x }〉〈{n(m)

x }|H0|{n(m−1)
x }〉

× 〈{n(m−1)
x }|H0|{n(m−2)

x }〉 · · · 〈{n(2)x }|H0||{n(1)x }〉 (36)

with the interpretation t0 = tm − β. Note that the factor in the last two lines of (36)
equals (1/2)m if adjacent elements in the sequence of configurations {n(i)x } differ by
exactly one quasi-particle pair, otherwise it is zero.

Expansions of this type are explained more fully in [1]. A compact way of writing
(36) is:

Tr e−βH =
∫

v(dω)e−λ|ω|. (37)

Here the ‘path’ ω stands for a set of disjoint oriented loops in the ‘space-time’
Λ × [0, β], with periodic boundary conditions in ‘time’. Each ω is parametrized
by a number of jumps, m, jumping times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm ≤ β, and a
sequence of configurations {n(i)x }, which is determined by the initial configuration
{n(1)x } plus a sequence of ‘rungs’ connecting nearest neighbor sites, depicting the
creation or annihilation of a pair of neighboring quasi-particles (see Fig. 2). As
in Feynman’s picture of QED, it is convenient to regard such an event as a jump
of the quasi-particle, at which its time-orientation is also reversed. The length of
ω, denoted by |ω|, is the sum of the vertical lengths of the loops. The measure
v(dω) is determined by (36); namely, for a given sequence of configurations {n(i)x },
1 ≤ i ≤ m, the integration takes places over the times of the jumps, with a measure
(1/2)mdt1 · · · dtm.

One may note that the measure v(dω) corresponds to a Poisson process of ran-
dom configurations of oriented ‘rungs’, linking neighboring sites at random times,
and signifying either the creation or the annihilation of a pair of quasiparticles. The
matrix element 〈{nx}|e−βH |{n′x}〉 gets no contribution from rung configurations that
are inconsistent, either internally or with the boundary conditions corresponding
to the specified state vectors. A consistent configuration yields a family of non-
overlapping loops which describe the motion of the quasi-particles in the ‘space-
time’ Λ × [0, β). Each such configuration contributes with weight e−λ|ω| to the
above matrix element (another positive factor was absorbed in the measure v(dω)).
One may note that long paths are suppressed in the integral (39) at a rate which
increases with λ.

Likewise, for x $= y, we can write

Tr a†
xaye

−βH =
∫

A (x,y)
v(dω)e−λ|ω|, (38)
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Fig. 2 Loop gas describing paths of quasi-particles for particle number N = |Λ|/2− 1. A line on
an A site means presence of a particle, while on a B site it means absence. The horizontal rungs
correspond to hopping of a particle

where A (x,y) denotes the set of all loops that, besides disjoint closed loops, contain
one curve which avoids all the loops and connects x and y at time zero. The one-
particle density matrix can thus be written

γ (x, y) =
∫
A (x,y) v(dω)e

−λ|ω|
∫
v(dω)e−λ|ω| . (39)

For an upper bound, we can drop the condition in the numerator that the loops
and the curve from x to y do not intersect. The resulting measure space is simply a
Cartesian product of the measure space appearing in the denominator and the space
of all curves, ζ , connecting x and y, both at time 0. Denoting the latter by B(x, y),
we thus get the upper bound

γ (x, y) ≤
∫

B(x,y)
v(dζ )e−λ|ζ |. (40)

The integral over paths is convergent if either λ or T is small enough, and away
from the convergence threshold the resulting amplitude decays exponentially. A nat-
ural random walk estimate, see [2, Lemma 4], leads to the claimed exponential
bound provided

d
(
1 − e−βλ

)
< λ. (41)

This includes, in particular, the cases T > d for any λ, and λ > d for any T .
Exponential decay actually holds for the larger range of parameters where

d
(
1 − e−β(λ−f )

)
< λ− f, (42)

where f = f (β, λ) = −(β|Λ|)−1 ln Tr e−βH is the free energy per site. Note that
f < 0. This condition can be obtained by a more elaborate estimate than the one
used in obtaining (40) from (39), as shown in [2, Lemma 3]. The argument there
uses reflection positivity of the measure v(dω). Using simple bounds on f one can
then obtain from (42) the conditions stated in the beginning of this section.
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The proof of the energy gap is based on an estimate for the ratio Tr Pke
−βH

Tr P0e
−βH where

Pk projects onto states in Fock space with particle number N = 1
2 |Λ| + k, ex-

pressing numerator and denominator in terms of path integrals. The integral for the
numerator is over configurations ω with a non-trivial winding number k. Each such
configuration includes a collection of ‘non-contractible’ loops with total length at
least β|k|. An estimate of the relative weight of such loops yields the bound

Tr Pke
−βH

Tr P0e−βH
≤ (const.)(|Λ|/|k|)|k|(e1−(const.)β)|k| (43)

which gives for β →∞
Ek − E0 ≥ (const.)|k| (44)

independently of |Λ|. We refer to [2] for details.

5 The Non-interacting Gas

The interparticle interaction is essential for the existence of a Mott insulator phase
for large λ. In case of absence of the hard-core interaction, there is BEC for any
density and any λ at low enough temperature (for d ≥ 3). To see this, we have
to calculate the spectrum of the one-particle Hamiltonian − 1

2Δ + V (x), where Δ

denotes the discrete Laplacian and V (x) = λ(−1)x. The spectrum can be easily
obtained by noting that V anti-commutes with the off-diagonal part of the Laplacian,
i.e., {V,Δ+ 2d} = 0. Hence

(

−1

2
Δ− d + V (x)

)2

=
(

−1

2
Δ− d

)2

+ λ2, (45)

so the spectrum is given by

d ±
√√
√
√
(
∑

i

cospi

)2

+ λ2, (46)

where p ∈ Λ∗. In particular, E(p) − E(0) ∼ 1
2d(d

2 + λ2)−1/2|p|2 for small |p|,
and hence there is BEC for low enough temperature. Note that the condensate wave
function is of course not constant in this case, but rather given by the eigenfunction
corresponding to the lowest eigenvalue of − 1

2Δ+ λ(−1)x.
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6 Conclusion

In this paper a lattice model is studied, which is similar to the usual Bose-Hubbard
model and which describes the transition between Bose-Einstein condensation and
a Mott insulator state as the strength λ of an optical lattice potential is increased.
While the model is not soluble in the usual sense, it is possible to prove rigorously
all the essential features that are observed experimentally. These include the ex-
istence of BEC for small λ and its suppression for large λ, which is a localization
phenomenon depending heavily on the fact that the Bose particles interact with each
other. The Mott insulator regime is characterized by a gap in the chemical potential,
which does not exist in the BEC phase and for which the interaction is also essential.
It is possible to derive bounds on the critical λ as a function of temperature.
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Random Walks in Random Environments
in the Perturbative Regime

Ofer Zeitouni

Abstract We review some recent results concerning motion in random media sat-
isfying an appropriate isotropy condition, in the perturbative regime in dimension
d ≥ 3.

1 Introduction

This talk reports on joint work with E. Bolthausen [1], as well as earlier joint work
with A.-S. Sznitman [7]. We consider random walks in random environments on
Z
d , d ≥ 3, when the environment is a small perturbation of the fixed environment

corresponding to simple random walk. More precisely, let P be the set of probabil-
ity distributions on Z

d , charging only neighbors of 0. If ε ∈ (0, 1/2d), we set, with
{ei}di=1 denoting the standard basis of R

d ,

Pε
def=
{

q ∈ P :
∣
∣
∣
∣q(±ei)− 1

2d

∣
∣
∣
∣ ≤ ε, ∀i

}

. (1)

Ω
def= PZ

d
is equipped with the natural product σ -field F . We call an element

ω ∈ Ω a random environment. For ω ∈ Ω, and x ∈ Z
d, we consider the transition

probabilities pω(x, y)
def= ωx(y − x), if |x − y| = 1, and pω(x, y) = 0 otherwise,

and construct the random walk in random environment (RWRE) {Xn}n≥0 with initial
position x ∈ Z

d which is, given the environment ω, the Markov chain with X0 = x

and transition probabilities

Pω,x(Xn+1 = y|Xn = z) = ωz(y − z).
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We are mainly interested in the case of a random ω. Given a probability measure

μ on P, we consider the product measure Pμ
def= μ⊗Z

d
on (Ω,F ). We usually

drop the index μ in Pμ. In all that follows we make the following basic assumption.
Isotropy Condition μ is invariant under lattice isometries, i.e. μf−1 = μ for

any orthogonal mapping f which leaves Z
d invariant, and μ(Pε) = 1 for some

ε ∈ (0, 1/2d) which will be specified later.
The model of RWRE has been studied extensively. We refer to [6] and [8] for

recent surveys. A major open problem is the determination, for d > 1, of laws of
large numbers and central limit theorems in full generality (the latter, both under
the quenched measure, i.e. for Pμ-almost every ω, and under the annealed measure
Pμ ⊗ Px,ω). Although much progress has been reported in recent years ([2, 4, 5]), a
full understanding of the model has not yet been achieved.

In view of the above state of affairs, attempts have been made to understand the
perturbative behavior of the RWRE, that is the behavior of the RWRE when μ is sup-
ported on Pε and ε is small. The first to consider such a perturbative regime were
[3], who introduced the Isotropy Condition and showed that in dimension d ≥ 3, for
small enough ε a quenched CLT holds.1 Unfortunately, the multiscale proof in [3] is
rather difficult, and challenging to follow. This in turns prompted the derivation, in
[7], of an alternative multiscale approach, in the context of diffusions in random en-
vironments. The main result of [7] can be described as follows. Consider a diffusion
with random coefficients on R

d ,

dXt = b(Xt , ω)dt + σ(Xt , ω)dWt ,

with W· a d-dimensional Brownian motion and a(x, ω) = σ(x, ω)σT (x, ω). As-
sume the local characteristics a, b are uniformly Lipshitz in the space variable, sta-
tionary, and of finite range dependence, and further satisfy an isotropy condition of
the type described above. One then has the following.

Theorem 1 ([7]). (d ≥ 3) There is η0 > 0, such that when

|a(x, ω)− I | ≤ η0, |b(x, ω)| ≤ η0, for all x ∈ R
d , ω ∈ Ω, (2)

then for P -a.e., ω

1√
t
X·t converges in P0,ω-law as t →∞, to a Brownian motion

on R
d with deterministic variance σ 2 > 0, (3)

for all x ∈ R
d , Px,ω-a.s., lim

t→∞ |Xt | = ∞. (4)

One expects that the approach of [7] could apply to the discrete setup, as well.

1 As the examples in [2] demonstrate, for every d ≥ 7 and ε > 0 there are measures μ supported

on Pε , with Eμ[∑d
i=1 ei(q(ei ) − q(−ei))] = 0, such that Xn/n →n→∞ v $= 0, Pμ-a.s. One of

the goals of the Isotropy Condition is to prevent such situations from occurring.
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The proof of Theorem 1 is based on a multiscale analysis that includes the ap-
propriate smoothing (with respect to Hölder norms) of the transition density of the
diffusion, together with controlling exit measures from boxes, and in particular their
large deviations. The latter is a crucial part of the control of exit time from traps.
A naturally related question is whether focusing on exit measures from balls, i.e.
not considering at all the time to exit, can simplify the analysis on the one hand, and
provide sharp (local) estimates on exit on the other. The affirmative answer to these
questions in provided in [1], which we summarize in the next section. In contrast
with [7], we focus on two ingredients. The first is a propagation of the variational
distance between the exit laws of the RWRE from balls and those of simple random
walk (which distance remains small but does not decrease as the scale increases).
The second is the propagation of the variation distance between the convolution of
the exit law of the RWRE with the exit law of a simple random walk from a ball
of (random) radius, and the corresponding convolution of the exit law of simple
random walk with the same smoothing, which distance decreases to zero as scale
increases.

2 Local Limits for Exit Measures

Throughout, for x ∈ R
d, |x| is the Euclidean norm. If L > 0, we write VL

def= {x ∈
Z
d : |x| ≤ L}, and for x ∈ Z

d , VL(x)
def= x + VL.

If F,G are functions Z
d × Z

d → R we write FG for the (matrix) product:

FG(x, y)
def= ∑

u F (x, u)G(u, y), provided the right hand side is absolutely sum-
mable. We interpret F also as a kernel, operating from the left on functions f :
Z
d → R, by Ff (x)

def= ∑
y F (x, y)f (y). For a function f : Z

d → R, ‖f ‖1
def=∑

x |f (x)|. If F is a kernel then, we write

‖F‖1
def= sup

x
‖F(x, ·)‖1. (5)

For V ⊂ Z
d, we use πV (x, ·) to denote the exit measure from V of simple

random walk started from x, and use ΠV (x, ·) for the analogous quantity for the
RWRE. Fix once for all a probability density

ϕ : R
+ → R

+, ϕ ∈ C∞, support(ϕ) = [1, 2]. (6)

If m > 0, the rescaled density is defined by ϕm(t)
def= (1/m)ϕ(t/m). We then let

π̂Ψm(x, ·) denote the exit measure of simple random walk started at x from a ball
with random radius R distributed according to ϕm.

For x ∈ Z
d , t ∈ R, and L > 0, we define the random variables

DL,t (x)
def= ∥
∥
([
ΠVL(x) − πVL(x)

]
π̂Ψt

)
(x, ·)∥∥1, (7)

DL,0(x)
def= ∥
∥ΠVL(x)(x, ·)− πVL(x)(x, ·)

∥
∥

1, (8)
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and with δ > 0, we set

b(L, t, δ)
def= P

({
(logL)−9 < DL,t (0)

} ∪ {DL,0(0) > δ}).
The following theorem is the main result of [1]. It provides a local limit theorem for
the exit law.

Theorem 2 ([1]). (d ≥ 3) There exists ε0 > 0, such that if the Isotropy Condition is
satisfied with ε ≤ ε0, then for any δ > 0, and for any integer r ≥ 0,

lim
t→∞ lim sup

L→∞
Lrb(L,Ψt , δ) = 0.

Further, the RWRE Xn is transient, that is

for all x ∈ Z
d , Px,ω-a.s., limn→∞ |Xn| = ∞.

The Borel-Cantelli lemma implies that under the conditions of Theorem 2,

lim sup
L→∞

DL,Ψt (0) ≤ ct , Pμ-a.s.,

where ct is a (random) constant such that ct →t→∞ 0, a.s.
We remark that the rate of decay of probabilities in Theorem 2 is not expected

to be optimal, rather it is dictated by the multiscale-scale scheme employed in the
proof. We also remark that proving an analogue of the local limit result for the exit
measure in Theorem 2 for dimension d = 2 is an open problem; the method of proof
employed both in [7] and [1] uses the transience of simple random walk (and the
finiteness of associated Green functions) in a crucial way.
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1 Young Researchers Symposium Plenary Lectures

1.0.1 Dynamics of Quasiperiodic Cocycles and the Spectrum of the Almost
Mathieu Operator

Artur Avila
CNRS
artur@math.sunysb.edu

The almost Mathieu operator is the operator H : l2(Z) → l2(Z),

(Hu)n = un+1 + un−1 + 2λ cos 2π(θ + nα),

where λ (the coupling), α (the frequency) and θ (the phase) are parameters. Origi-
nally introduced and studied in the physics literature, it turned out to also give rise to
a rich mathematical theory, where algebra, analysis and dynamical systems interact.
We will discuss several conjectures that have focused the developments since 1980,
emphasizing the connection with dynamical systems.

1.0.2 Magic in Superstring Amplitudes

Nathan Jacob Berkovits
UNESP, São Paulo
nberkovi@ift.unesp.br

In this talk, a chronological review will be given of scattering amplitudes in super-
string theory and their remarkable properties. I will start with the Veneziano ampli-
tude of 1968 which led to bosonic string theory, and subsequent developments in
the 70’s which led to supersymmetry and superstring theory. I will then discuss the
amplitude calculations of Green and Schwarz in the 80’s which led to aspirations of

V. Sidoravičius (ed.), New Trends in Mathematical Physics,
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unifying the forces, and the non-perturbative dualities discovered in the 90’s which
led to the M-theory conjecture. Finally, I will discuss recent developments using a
covariant description of the superstring in which some of these magical properties
are easier to study.

1.0.3 The Instructive History of Quantum Groups

Ludwig Faddeev
Petersburg Department of Steklov Institute of Mathematics
faddeev@euclid.pdmi.ras.ru

I shall try to use this example to show, how concrete problems in Mathematical
Physics (here quantum spin chains) can lead to new construction in pure mathemat-
ics.

1.0.4 Scaling Limit of Two-Dimensional Critical Percolation

Charles M. Newman
Courant Institute, NYU
newman@courant.nyu.edu

We introduce and discuss the continuum nonsimple loop process (joint work with
F. Camia). This process, which describes the full scaling limit of 2D critical perco-
lation, consists of countably many noncrossing nonsimple loops in the plane on all
spatial scales; it is based on the Schramm Loewner Evolution (with parameter 6) and
extends the work of Schramm and Smirnov on the percolation scaling limit. If time
permits, we will introduce some ideas associated with the further extension to scal-
ing limits of “near-critical” percolation (joint work with F. Camia and L.R. Fontes).

1.0.5 Topics in Dynamics and Physics

David Ruelle
IHES
ruelle@ihes.fr

The study of dynamics (i.e., time evolutions) is central to physics. I shall discuss
several questions of mathematical physics connected with differentiable dynamical
systems and related, as it happens, to the ideas of Henri Poincare. I shall go from
chaos in turbulence and celestial mechanics to the symbolic dynamics of horseshoes
and other hyperbolic dynamical systems, to the dynamics underlying nonequilib-
rium statistical mechanics.
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1.0.6 Quantum Dynamics in a Random Environment

Thomas Spencer
IAS, Princeton
spencer@ias.edu

The first part of this talk will review results and conjectures on the quantum and clas-
sical dynamics of a particle moving in a random environment. In general, classical
and quantum dynamics are qualitatively different. We review a particular network
model studied by J. Cardy and others for which classical and quantum motion are
equivalent and compare it to the mirror model.

The second part of the talk will describe a supersymmetric approach to quantum
evolution generated by band random matrices. The supersymmetric approach con-
verts time evolution into a problem in which the randomness is integrated out. This
produces a statistical mechanics model with hyperbolic symmetry. One is lead to
study of determinants and Greens functions of nonuniformly elliptic PDE.

1.0.7 Geometry of Low Dimensional Manifolds

Gang Tian
Princeton
tian@Math.Princeton.edu

In this talk, I will first discuss Perelman’s work on proving the Poincare conjecture
and the geometrization of 3-manifolds. Perelman’s work is based on Hamilton’s fun-
damental work on Ricci flow. In the end, I will discuss recent progress on geometry
and analysis of 4-manifolds and propose some problems.

1.0.8 Gauge Theory and the Geometric Langlands Program

Edward Witten
IAS, Princeton
witten@ias.edu

I will explain how electric-magnetic duality in gauge theory can be used to under-
stand a problem in algebraic geometry known as the geometric Langlands program.
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2 XV International Congress on Mathematical Physics Plenary
Lectures

2.0.1 Mathematical Developments Around the Ginzburg-Landau Model in 3D
Program

Jean Bourgain
IAS, Princeton
bourgain@ias.edu

We are discussing the 3D Ginzburg Landau functional without magnetic field in the
London limit,which is the 3D counterpart of the work of Bethuel-Brezis-Helein.In
particular the role of the minimal connection in the evaluation of the Ginzburg-
Landau energy is explained and optimal regularity properties of the minimizers
stated. A key role is played by certain novel Hodge decompositions at the critical
Sobolev index.

2.0.2 The Riemann-Hilbert Problem: Applications

Percy Deift
Courant Institute, NYU
deift@courant.nyu.edu

In this talk the speaker will describe the application of Riemann-Hilbert techniques
to a variety of problems in mathematics and mathematical physics. Algebraic and
analytical applications will be discussed. The nonlinear steepest descent method
plays a key role.

2.0.3 Fluctuations and Large Deviations in Non-equilibrium Systems

Bernard Derrida
ENS, Paris
derrida@lps.ens.fr

Systems in contact with two heat baths at unequal temperatures or two reservoirs of
particles at unequal densities reach non-equilibrium steady states. For some simple
models, one can calculate exactly the large deviation functions of the density profiles
or of the current in such steady states.

These simple examples show that non-equilibrium systems have a number of prop-
erties which contrast with equilibrium systems: phase transitions in one dimension,
non local free energy functional, violation of the Einstein relation between the com-
pressibility and the density fluctuation, non-Gaussian density fluctuations.
In collaboration with T. Bodineau, J.L. Lebowitz, E.R. Speer.
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2.0.4 Hamiltonian Perturbations of Hyperbolic PDE’s: from Classification
of Equations to Properties of Solutions

Boris Dubrovin
SISSA, Trieste
dubrovin@sissa.it

The talk will deal with the classification of Hamiltonian perturbations of hyperbolic
PDEs with one spatial dimension and with the comparative study of their singulari-
ties.

2.0.5 Spontaneous Replica Symmetry Breaking in the Mean Field Spin Glass
Model

Francesco Guerra
Universita Roma 1 “La Sapienza”
Francesco.Guerra@roma1.infn.it

We give a complete review about recent methods and results in the mean field spin
glass theory. In particular, we show how it has been possible to establish the rig-
orous validity of the Parisi representation for the free energy in the infinite volume
limit. The origin of the Parisi functional order parameter is explained in the frame
of Derrida-Ruelle probability cascades. Finally, we conclude with an outlook on
possible future developments.

2.0.6 Spectral Properties of Quasi-Periodic Schrödinger Operators: Treating
Small Denominators without KAM

Svetlana Jitomirskaya
UC-Irvine
szhitomi@math.uci.edu

Two classical small divisor problems arise in the study of spectral properties of
quasiperiodic Schroedinger operators, one related to Floquet reducibility (for low
couplings of the potential term), and the other related to localization (for high cou-
plings). Both have been traditionally attacked by sophisticated KAM-type methods.

In this talk I will discuss more recent non-KAM based methods for both local-
ization and reducibility, that are significantly simpler and lead, where applicable,
to stronger results. In particular they usually lead to so-called nonperturbative (i.e.
uniform in the Diophantine frequency) estimates on the coupling, and sometimes to
the results covering the entire expected region of couplings.

I will discuss the recent joint work with A. Avila on nonperturbative reducibility,
with various sharp spectral consequences in the low coupling regime, and review
earlier results by J. Bourgain, M. Goldstein, W. Schlag, and the speaker, on nonper-
turbative localization.
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2.0.7 Conformal Field Theory and Operator Algebras

Yasuyuki Kawahigashi
University of Tokyo
yasuyuki@ms.u-tokyo.ac.jp

Algebraic quantum field theory is an operator algebraic approach to quantum field
theory and its main object is a family of operator algebras parameterized by space-
time regions, rather than Wightman fields. I will present recent progress on classifi-
cation of conformal field theories within this approach.

Chiral, full and boundary conformal field theories are described in a unified
framework and we present their complete classification for the case where the cen-
tral charge is less than 1. In the chiral case, our classification list contains an example
which does not seem to be known in other approaches to conformal field theory. Our
tools are based on operator algebraic representation theory and are applications of
the Jones theory of subfactors. Similar methods are also useful for operator algebraic
studies of the Moonshine conjecture.

This is a joint work with Roberto Longo.

2.0.8 Random Schrödinger Operators, Localization and Delocalization, and
all that

Abel Klein
UC, Irvine
aklein@math.uci.edu

In the widely accepted picture of the spectrum of a random Schrödinger operator in
three or more dimensions, there is a transition from an insulator region, character-
ized by “localized states”, to a very different metallic region, characterized by “ex-
tended states”. The energy at which this metal-insulator transition occurs is called
the mobility edge. The standard mathematical interpretation of this picture translates
“localized states” as pure point spectrum with exponentially decaying eigenstates
(Anderson localization) and “extended states” as absolutely continuous spectrum.

Forty some years have passed since Anderson’s seminal article but our mathemat-
ical understanding of this picture is still unsatisfactory and one-sided: the occurrence
of Anderson localization is by now well established, but with the exception of the
special case of the Anderson model on the Bethe lattice, there are no mathematical
results on the existence of continuous spectrum and a metal-insulator transition.

In this lecture I will first review localization, including the recent proofs of local-
ization for the Bernoulli-Anderson Hamiltonian (Bourgain and Kenig) and for the
Poisson Hamiltonian (Germinet, Hislop and Klein).

I will then present an approach to the metal-insulator transition based on dynam-
ical (i.e., transport) instead of spectral properties (Germinet and Klein). Here trans-
port refers to the rate of growth, with respect to time, of moments of a wave packet
initially localized both in space and energy. The region of dynamical localization is
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defined to be the spectral region where the random Schrödinger operator exhibits
strong dynamical localization, and hence no transport. The region of dynamical de-
localization is the spectral region with nontrivial transport. There is a natural defini-
tion of a dynamical metal-insulator transition and of a dynamical mobility edge. We
proved a structural result on the dynamics of Anderson-type random operators: at a
given energy there is either dynamical localization or dynamical delocalization with
a nonzero minimal rate of transport. The region of dynamical localization turns out
to be the analogue for random operators of Dobrushin-Shlosman’s region of com-
plete analyticity for classical spin systems, and may be called the region of complete
localization.

I will close with the proof of the occurrence of this dynamical metal-insulator
transition in random Landau Hamiltonians (Germinet, Schenker and Klein). More
precisely, we show the existence of dynamical delocalization for random Landau
Hamiltonians near each Landau level, which combined with the known dynamical
localization at the edges of each disordered-broadened Landau band, implies the
existence of at least one dynamical mobility edge in each Landau band.

2.0.9 Perelman’s Work on the Geometrization Conjecture

Bruce Kleiner
Yale
bruce.kleiner@yale.edu

The lecture will discuss the Ricci flow approach to Geometrization.

2.0.10 Trying to Characterize Robust and Generic Dynamics

Enrique Ramiro Pujals
IMPA, Rio de Janeiro
enrique@impa.br

If we consider that the mathematical formulation of natural phenomena always in-
volves simplifications of the physical laws, real significance of a model may be ac-
corded only to those properties that are robust under perturbations. In loose terms,
robustness means that some main features of a dynamical system (an attractor, a
given geometric configuration, or some form of recurrence, to name a few possibil-
ities) are shared by all nearby systems.

In the talk, we will explain the structure related to the presence of robust phe-
nomena and the universal mechanisms that lead to lack of robustness. Providing
a conceptual framework, the goal is to show how this approach helps to describe
“generic” dynamics in the space of all dynamical systems.
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2.0.11 Cauchy Problem in General Relativity

Igor Rodnianski
Princeton
irod@Math.Princeton.edu

The talk will describe some of the classical and recent results on the Cauchy problem
in General Relativity. Special focus will be on the problems concerning existence of
a Cauchy development, break-down criteria for general large data solutions, stability
questions, and connections to the nonlinear hyperbolic equations.

2.0.12 Survey of Recent Mathematical Progress in the Understanding
of Critical 2d Systems

Wendelin Werner
Université Paris-Sud
wendelin.werner@math.u-psud.fr

In this talk, I will try to survey some aspects of the recent progress in the mathe-
matical understanding of random and conformally invariant two-dimensional struc-
tures. I will in particular describe work by or in collaboration with Greg Lawler,
Oded Schramm, Scott Sheffield, Stas Smirnov, and I will mention and define SLE
processes, Brownian loop-soups, Gaussian Free Fields. These conformally invariant
structures are supposed to (and in some cases it is proved) to appear as scaling lim-
its of two-dimensional critical models from statistical physics, and to be therefore
rather directly related to conformal field theory.

2.0.13 Random Methods in Quantum Information Theory

Andreas Winter
University of Bristol
a.j.winter@bristol.ac.uk

The probabilistic method—or “random coding” in information theory—is the most
powerful tool to construct efficient information processing protocols. I will review
the status of random coding in quantum information theory in the light of recent
progress in understanding random channel codes and entanglement distillation pro-
cedures. Applications include an operational interpretation of quantum conditional
entropy (“negative information”), an approach to the foundations of statistical me-
chanics based on entanglement and the existence of exotic, highly entangled yet
barely correlated states.
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2.0.14 Gauge Fields, Strings and Integrable Systems

Konstantin Zarembo
Uppsala University
Konstantin.Zarembo@teorfys.uu.se

The discovery of the holographic duality made it clear that there is a tight relation-
ship between gauge fields and strings. Quite unexpectedly, this relationship involves
close ties to quantum spin chains and integrable systems. I will review various as-
pects of the gauge/string duality, and will explain how integrability arises in gauge
and string theories.

3 XV International Congress on Mathematical Physics
Specialized Sessions

3.1 Condensed Matter Physics

Organizer J.P. Solovej (Copenhagen)

3.1.1 Rigorous Construction of Luttinger Liquids Through Ward Identities

Giuseppe Benfatto
Università di Roma “Tor Vergata”
benfatto@mat.uniroma2.it

There are up to now two different ways to prove the key property on which our
Luttinger liquid rigorous construction rests, the vanishing of the leading part of the
Beta function.

The first one was developed in the last years and is based in an essential way on the
exact Mattis-Lieb solution of the Luttinger model.

More recently, we found a new proof, based on the Ward identities obtained by a
chiral local gauge transformation, applied to a Luttinger model with ultraviolet and
infrared cutoffs. This is an old approach in the physical literature, but its imple-
mentation in an RG scheme is not trivial at all, because the ultraviolet and infrared
cutoffs destroy local Gauge invariance and produce “correction terms” with respect
to the formal Ward identities. We discover however a new set of identities, called
“Correction Identities”, relating the corrections to the Schwinger functions. By com-
bining Ward and Correction identities with a Dyson equation, the vanishing of the
Beta function follows, so that the infrared cutoff can be removed.

As a byproduct, even the ultraviolet cutoff can be removed, after a suitable ultravi-
olet renormalization, so that a Quantum Field Theory corresponding to the Thirring
model is constructed, showing the phenomenon of Chiral anomaly.
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3.1.2 Edge and Bulk Currents in the Integer Quantum Hall Effect

Jeffrey Schenker
Institute for Advanced Study
jeffrey@ias.edu

Two apparently different conductances σBulk and σEdge have been used to explain the
integer quantum Hall effect, depending on whether the currents in the sample are as-
cribed to the bulk or the edge. The bulk conductance σBulk, as expressed through a
linear response formula, is well defined when the Fermi energy falls in a mobility
gap, that is a band of localized states. However, the edge conductance σEdge, ex-
pressed as the derivative of the steady state edge current with respect to the Fermi
energy, is ill defined unless the Fermi energy falls in true gap. A physically suit-
able expression for σEdge can be obtained from a modified formula involving either
(1) a truncated trace and a correction term or (2) time averaging. With this modi-
fied expression the equality σEdge = σBulk is a theorem, as expected from heuristic
arguments. (Joint work with A. Elgart and G.M. Graf)

3.1.3 Quantum Phases of Cold Bosons in Optical Lattices

Jakob Yngvason
Universität Wien
yngvason@thor.thp.univie.ac.at

In recent years it has become possible to trap ultracold atoms and molecules in lat-
tices generated by laser beams (optical lattices). By varying the experimentally tun-
able parameters transitions between various phases of the trapped gas, in particular
between a Bose Einstein condensate and a Mott insulator phase, can be produced.
The talk reviews these developments, and rigorous theoretical results on such tran-
sitions, obtained in collaboration with M. Aizenman, E.H. Lieb, R. Seiringer and
J.P. Solovej, will be presented.

3.2 Dynamical Systems

Organizers W. de Mello (Rio de Janeiro), F. Ledrappier (Notre Dame)

3.2.1 Statistical Stability for Hénon Maps of Benedics-Carleson Type

Jose Ferreira Alves
University of Porto
jfalves@fc.up.pt



Appendix: Complete List of Abstracts 837

We consider the two-parameter family of Hénon maps in the plane (x, y) �→ (1 −
ax2 + y, bx). Benedicks and Carleson proved that there is a positive Lebesgue
measure set A of parameters (a, b) for which the corresponding Hénon map has
a chaotic attractor. Subsequent work by Benedicks and Young showed that each of
these attractors supports an SRB measure, i.e. a probability measure which describes
the statistics of Lebesgue almost every point in a neighborhood of the attractor. Here
we show that the SRB measures vary continuously in weak* topology with the pa-
rameters (a, b) ∈ A. This is a joint work with M. Carvalho and J.M. Freitas.

3.2.2 Entropy and the Localization of Eigenfunctions

Nalini Anantharaman
ENS-Lyon
Nalini.Anantharaman@umpa.ens-lyon.fr

We study the large eigenvalue limit for eigenfunctions of the Laplacian, on a com-
pact negatively curved manifold. According to the Quantum Unique Ergodicity
conjecture, eigenfunctions must become equidistributed in phase space, meaning
that the Wigner transforms of eigenfunctions must converge weakly to the Liouville
measure. We find a positive lower bound for the Kolmogorov-Sinai entropy of lim-
its of these Wigner measures, which shows that eigenfunctions must be delocalized
to a certain extent. Part of this work is joint with Stephane Nonnenmacher (CEA
Saclay).

3.2.3 The Spectrum of the Almost Mathieu Operator in the Subcritical
Regime

Artur Ávila
CNRS-Jussieu
artur@math.sunysb.edu

We discuss the almost Mathieu operator H : l2(Z) → l2(Z), (Hu)n = un+1 +
un−1 + 2λ cos 2π(θ + nα), where λ > 0 (the coupling), α ∈ R \Q (the frequency),
and θ ∈ R (the phase) are parameters. The nature of the spectral measures has
been subject of several conjectures since 1980, when Aubry-André proposed the
following picture:

1-Localization (point spectrum with exponentially decaying eigenfunctions) for
the supercritical regime λ > 1,

2-Absolutely continuous spectrum for the subcritical regime λ < 1, both regimes
being linked by Aubry duality.

Localization turns out to be very sensitive to arithmetics (and fails generically),
so the description of the supercritical regime could only be proved in the “almost
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every” sense. Whether something similar happened in the subcritical regime re-
mained unclear. We will discuss recent progress towards the complete solution of
this problem.

3.2.4 Hyperbolicity Through Entropy

Jerome Buzzi
École Polytechnique
buzzi@math.polytechnique.fr

We show how (robust) entropy assumptions yields (what we call) semi-uniform
hyperbolic structures which allow the global analysis of some classes of smooth
dynamical systems from the point of view of their complexity. These classes in-
clude coupled interval maps with positive entropy and models for surface diffeo-
morphisms.

3.2.5 Robust Cycles and Non-dominated Dynamics

Lorenzo J. Diaz
PUC – Rio de Janeiro
lodiaz@mat.puc-rio.br

The Newhouse’s construction of C2-surface diffeomorphisms having a hyperbolic
sets with robust tangencies relies on the notion of thick hyperbolic set. These thick
hyperbolic sets are the key for so-called coexistence phenomenon (existence of lo-
cally residual sets of diffeomorphisms having simultaneously infinitely many sinks
and sources). These constructions are typically C2. The goal of this talk is to discuss
similar phenomena in higher dimensions and in the C1-topology.

We first explain the generation of robust cycles in the C1-topology and obtain some
dynamical consequences from this fact. We also discuss the role of the robust cycles
for generating robustly non-dominated dynamics and deduce some strong forms of
the coexistence phenomenon from the lack of domination.

3.2.6 Hyperbolicity in One Dimensional Dynamics

Oleg Kozlovskiy
Warwick Mathematics Institute
oleg@maths.warwick.ac.uk

Recently together with W. Shen and S. van Strien we were able to prove dencity
of hyperbolicity for all real one dimensional maps and also for a large class of
one dimensional holomorphic maps. During the talk we will discuss these results
together with other recent developments in the subject.
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3.3 Equilibrium Statistical Mechanics

Organizer C.M. Newman (New York)

3.3.1 The Scaling Limit of (Near-)Critical 2d Percolation

Federico Camia
Vrije Universiteit Amsterdam
fede@few.vu.nl

The introduction of the random fractal curves described by Schramm-Loewner Evo-
lutions (SLEs) has greatly deepened our understanding of the large-scale structure
and fractal properties of certain two-dimensional lattice models whose continuum
scaling limit is known or conjectured to be conformally invariant.

A particularly illuminating example is that of critical percolation, where the con-
nection with SLE can be made rigorous and can be exploited to describe the scaling
limit of the model in terms of the collection of all its interfaces.

In turn, this description can be used to analyze the scaling limit of near- critical
percolation and related models. The emerging picture suggests that the conformal
invariance typical of critical models is replaced by a more general type of invariance
under conformal transformation.

In this talk I will describe joint work with C.M. Newman and with L.R. Fontes and
C.M. Newman on the scaling limit of critical and near-critical percolation.

3.3.2 Short-Range Spin Glasses in a Magnetic Field

Daniel Stein∗+
NYU
daniel.stein@nyu.edu

The thermodynamic behavior of short-range spin glasses in small magnetic fields
and at low temperatures remains an open problem. Results elucidating the conse-
quences of applying a magnetic field can provide a powerful tool in understanding
the low-temperature behavior of realistic spin glasses, in particular the nature of
their broken symmetry, phase diagram, and other fundamental thermodynamic in-
formation. I will discuss new techniques that have recently been developed to treat
this problem, and present some preliminary results that clarify the effects of a mag-
netic field on short-range spin glasses.

∗In collaboration with C.M. Newman, Courant Institute, New York University.
+Research supported by the U.S. National Science Foundation.
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3.3.3 Relaxation Times of Kinetically Constrained Spin Models with Glassy
Dynamics

Cristina Toninelli
Université Paris Sud—CNRS
Cristina.Toninelli@lpt.ens.fr

We discuss kinetically constrained spin models (KCSM), that is interacting particle
systems with Glauber-like dynamics in which the creation/destruction of a particle
can occur only if the configuration satisfies some local constraints. KCSM were
introduced in physical literature to model liquid/glass transition. Numerical simula-
tions show that, as density ρ is increased, they display an anomalously slow dynam-
ics and glassy features including stretched exponential relaxation. We present a new
probabilistic technique through which we determine the scaling with the system size
of the relaxation time, τ , and we obtain upper and lower bounds for its dependence
on ρ. On the one hand, we prove that τ diverges for some models faster than any
power law of 1− ρ as ρ ↗ 1. On the other hand, we establish exponential decay of
spin-spin time auto-correlation functions for all the models in the ergodic regime.
This excludes the stretched exponential relaxation conjectured from simulations,
which is due to the rapid divergence of τ .

3.4 Non-equilibrium Statistical Mechanics

Organizers G. Jona-Lasinio (Rome), B. Nachtergaele (Davis)

3.4.1 Current Fluctuations in Boundary Driven Interacting Particle Systems

Claudio Landim
IMPA
landim@impa.br

We present a review of recent work on the statistical mechanics of non equilibrium
processes based on the analysis of large deviations properties of microscopic sys-
tems. Stochastic lattice gases are non trivial models of such phenomena and can
be studied rigorously providing a source of challenging mathematical problems. In
this way, some principles of wide validity have been obtained leading to interesting
physical consequences.
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3.4.2 Fourier Law and Random Walks in Evolving Environments

Carlangelo Liverani
Università di Roma “Tor Vergata”
liverani@mat.uniroma2.it

Motivated by the problem of rigorously establishing the Fourier law for solids we
introduce a simple toy model consisting of a spatially extended partially hyperbolic
dynamical system. In turn such a model can be interpreted as a random walk in an
evolving environment. Some rigorous results are obtained for the latter systems.

3.4.3 Asymptotics of Repeated Interaction Quantum Systems

Marco Merkli
McGill University
mmerkli@fields.utoronto.ca

A quantum system S interacts in a successive way with elements E of a chain of
identical independent quantum subsystems. Each interaction lasts for a duration τ

and is governed by a fixed coupling between S and E . We show that the system,
initially in any state close to a reference state, approaches a repeated interaction
asymptotic state in the limit of large times. This state is τ -periodic in time and does
not depend on the initial state. If the reference state is chosen so that S and E are
individually in equilibrium at positive temperatures, then the repeated interaction
asymptotic state satisfies an average second law of thermodynamics.

This is a collaboration with L. Bruneau and A. Joye.

3.4.4 Linear Response of Non-equilibrium Steady States for Open Quantum
System

Claude-Alain Pillet
Université Toulon-Var
pillet@univ-tln.fr

I will present recent results with V. Jaksic and Y. Ogata on the linear response theory
of thermally driven open quantum systems. These include

– A derivation of the Green-Kubo formulas and Onsager reciprocity relations in the
abstract framework of nonequilibrium steady states (NESS).

– Two classes of realization of this framework: The scattering approach to locally
interacting Fermi gases and the Liouvillean resonance approach to open systems.

These two classes of models are well suited for application to the physics of nano-
scopic devices out of equilibrium. I will briefly discuss the connections with other
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well known approaches (Weak coupling or master equation approach, Landauer-
Buettiker scattering approach to independent electron systems, Keldysh formalism
and Meir-Wingreen approach to locally interacting Fermions).

3.4.5 Derivation of the Gross-Pitaevski Equation for the Dynamics
of Bose-Einstein Condensates

Benjamin Schlein
Harvard
schlein@math.harvard.edu

In this talk I am going to report on a recent result obtained in collaboration with
L. Erdoes and H.-T. Yau. We consider a system of N interacting bosons in the Gross-
Pitaevskii limit, where N tends to infinity and the scattering length a of the pair
potential tends to zero so that Na remains constant. In this limit we prove that the
macroscopic dynamics of the system is correctly described by the time-dependent
Gross-Pitaevskii equation.

3.4.6 Energy Transport in One-Dimensional Chains: Predictions
from the Phonon Kinetic Equation

Herbert Spohn
TU Muenchen
spohn@ma.tum.de

For low density gases in one space-dimension the Boltzmann collision term van-
ishes. In contrast, for the phonon Boltzmann equation the wave number space is
a one-dimensional torus and the kinetic energy is a periodic function. This allows
for non degenerate phonon collisions. We investigate the spectrum of the linearized
collision operator. For an on-site potential this operator has a spectral gap implying
diffusive energy transport, while for the FPU β chain we prove the non integrable
decay as t−3/5 for the energy current correlation function. This is joint work with
Jani Lukkarinen.
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3.5 Exactly Solvable Systems

Organizer F. Smirnov (Paris)

3.5.1 Correlation Functions and Hidden Fermionic Structure of the XYZ Spin
Chain

Herman Boos
Universität Wuppertal
boos@physik.uni-wuppertal.de

We discuss our recent results on the correlation functions of the XXZ model. The
main our point is the application of the exponential formula and the Q-matrix tech-
nique for the correlation functions of the XXZ model with ‘disordered field’. We
obtain the operator in the exponent as a quadratic form wrt some fermionic oper-
ators which satisfy the standard anti-commutation relations. In the case of the XX
model which corresponds to free fermions the above operators are connected with
usual fermionic operators obtained through the well-known Jordan-Wigner trans-
formation.

3.5.2 Particle Decay in Ising Field Theory with Magnetic Field

Gesualdo Delfino
SISSA, Trieste
delfino@fm.sissa.it

The scaling region of the two-dimensional Ising model in a magnetic field is de-
scribed by a quantum field theory which admits exactly solvable directions and,
away from these, displays confinement and unstable particles. We use form fac-
tor perturbation theory to determine decay widths for small deviations from critical
temperature at non-zero magnetic field.

3.5.3 ABCD—Integrable Models and Ordinary Differential Equations

Roberto Tateo
Torino Univ.
tateo@to.infn.it

We outline a relationship between conformal field theories and spectral problems of
ordinary differential equations, and discuss its generalization to models related to
A, B, C, D Lie algebras.
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3.6 General Relativity

Organizers P. Chrusciel (Tours), H. Nicolai (Golm)

3.6.1 Einstein Spaces as Attractors for the Einstein Flow

Lars Andersson
Albert Einstein Institut, Golm
laan@aei.mpg.de

I will discuss a proof of nonlinear stability of Lorentz cones over Riemannian neg-
ative Einstein spaces M of arbitrary dimension, generalizing earlier work in the
3 + 1 dimensional case. In the higher dimensional case several new phenomena
arise. The asymptotic rate of decay depends on the spectral properties of the back-
ground geometry. Further, there may be a nontrivial deformation space of negative
Einstein spaces on M , examples are provided by Kähler-Einstein spaces. In space-
time dimensions greater than 10, our work allows one to construct large families of
vacuum spacetimes with quiescent singularity and asymptotically Friedman behav-
ior in the expanding direction. This talk is based on joint work with Vince Moncrief.

3.6.2 Loop Quantum Cosmology

Martin Bojowald
Penn State Univ.
bojowald@gravity.psu.edu

Focussing on mathematical aspects, this talk will give a review of loop quantum cos-
mology, which is an application of background independent quantization techniques
to cosmological models. Due to discrete spatial geometry as a consequence of the
quantization, dynamical equations in such models are difference rather than dif-
ferential equations. Suitable solutions display typical features in quantum regimes,
where they can resolve classical space-time singularities, but should also approach
semiclassical behavior in classical regimes. Such solutions can be found using gen-
erating function or continued fraction techniques. Semiclassical behavior and cor-
rections to the classical one are derived using effective equations which approximate
partial difference equations by ordinary differential equations.

3.6.3 The Red-Shift Effect and Radiation Decay on Black Hole Space-Times

Mihaelis Dafermos
Cambridge
M.Dafermos@dpmms.cam.ac.uk
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I will present proofs of uniform decay rates for solutions to the wave equation on
various black hole exterior backgrounds. This is joint work with I. Rodnianski.

3.6.4 Angular Momentum-Mass Inequality for Axisymmetric Black Holes

Sergio Dain
Univ. de Cordoba
dain@famaf.unc.edu.ar

In this talk I will discuss the physical relevance of the inequality
√
J ≤ m, where

m and J are the total mass and angular momentum, for axially symmetric (non-
stationary) black holes. In particular, I will prove that for vacuum, maximal, com-
plete, asymptotically flat, axisymmetric initial data, this inequality is satisfied. The
proof consists in showing that extreme Kerr is a global minimum of the mass.

3.6.5 Black Hole Entropy in Supergravity and String Theory

Gabriel Cardoso
Universität München
gcardoso@theorie.physik.uni-muenchen.de

We review recent results on subleading corrections to the entropy of extremal black
holes in supergravity and string theory.

3.6.6 Infinite-Dimensional R-Symmetry in Supergravity

Axel Kleinschmidt
Universtät Oldenburg
axel.kleinschmidt@aei.mpg.de

Recent work devoted to the study of symmetry structures of supergravity, or the uni-
fying M-theory, has revealed interesting links to the theory of Kac-Moody algebras
and their subalgebras. After reviewing these links for the bosonic fields of the theory
I will discuss how the fermionic fields fit into the picture. This requires non-trivial
results on the mathematical structure of some infinite-dimensional algebras which
go beyond the Kac-Moody class. These results permit one to find a common origin
of all fermionic fields appearing in the various maximal supergravity theories.
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3.7 Operator Algebras

Organizer R. Longo (Rome)

3.7.1 From Vertex Algebras to Local Nets of von Neuman Algebras

Sebastiano Carpi
Università di Chieti e Pescara
carpi@gotham.sci.unich.it

We explain recent results on the connection between vertex algebras and local nets
of von Neumann algebras.

(Joint work with Y. Kawahigashi, R. Longo and M. Weiner)

3.7.2 Non-Commutative Manifolds and Quantum Groups

Giovanni Landi
Università di Trieste
landi@units.it

For quite sometime, it has been problematic to endow spaces coming from quan-
tum groups with a noncommutative spin structure and such a possibility has eluded
several approaches. We explicitly construct equivariant spectral triples on a vari-
ety of examples that include the manifold of quantum SU(2), families of quantum
two-spheres, as well as higher dimensional quantum spheres.

3.7.3 L2 Invariants, Free Probability and Operator Algebras

Dimitri Shlyakhtenko
UCLA
shlyakht@math.ucla.edu

The Cheeger-Gromov L2 Betti numbers of a discrete group are numerical invariants,
going back to Atiyah’s work on the equivariant Atiyah-Singer index theorem. On the
other hand, Voiculescu has introduced another discrete group invariant, coming from
his free probability theory, called the free entropy dimension. Very roughly, this
number measures the “asymptotic dimensions” of the sets of approximate embed-
dings of a group into unitary matrices. We describe our joint work with A. Connes
and I. Mineyev that has provided a connection between these numbers.
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3.8 Partial Differential Equations

Organizers S. Mueller (Leipzig), I.M. Sigal (Toronto)

3.8.1 Weak Turbulence for Periodic NSL

James Colliander
Univ. of Toronto
colliand@math.toronto.edu

I will describe recent work with G. Staffilani, M. Keel, H. Takaoka and T. Tao.
We construct a global-in-time solution of periodic cubic NLS on the 2-torus which
transfers the conserved L2 mass from low frequencies to arbitrarily high frequen-
cies. In particularly, norms measuring smoothness of the solution can grow from
their initial size to arbitrarily large size in a finite time. The solution is built using a
combinatorial construction on resonant frequencies and the existence of a travelling
wave solution in a system of ordinary differential equations which moves from low
to high frequencies.

3.8.2 Ginzburg-Landau Dynamics

Stephen Gustafson
University of British Columbia
gustaf@math.ubc.ca

Ginbzburg-Landau type equations have attracted a great deal of interest from math-
ematicians in recent years. This is a family of nonlinear partial differential equations
which describe statics and dynamics in superconductors and superfluids, and which
admit interesting localized solutions such as vortices. I will describe some of the
recent results on Ginzburg-Landau dynamics.

3.8.3 On the Derivation of Furier’s Law

Antti Kupiainen
Helsinki Univ.
ajkupiai@mappi.helsinki.fi

We study the Hamiltonian system made of weakly coupled anharmonic oscillators
arranged on a three dimensional lattice and subjected to a stochastic forcing on the
boundary. We introduce a truncation of the Hopf equations describing the stationary
state of the system which leads to a nonlinear generalized Boltzman equation for
the two-point stationary correlation functions. We prove that these equations have
a unique solution which, for N large, is approximately a local equilibrium state
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satisfying Fourier law that relates the heat current to a local temperature gradient.
The temperature exhibits a nonlinear profile. We discuss also implications for the
study of Boltzman equations.

3.8.4 TBA

Stefan Mueller
Max Planck Institute for Mathematics in the Sciences, Leipzig
sm@mis.mpg.de

3.8.5 A Criterion for the Logarithmic Sobolev Inequality

Felix Otto
Univ. Bonn
otto@iam.uni-bonn.de

This is joint work with Maria Reznikoff. We present a criterion for the logarithmic
Sobolev inequality (LSI) on the product space X1 × · · · × XN . We have in mind
an N -site lattice, unbounded continuous spin variables, and Glauber dynamics. The
interactions are described by the Hamiltonian H of the Gibbs measure. The criterion
for LSI is formulated in terms of the LSI constants of the single-site conditional
measures and the size of the off-diagonal entries of the Hessian of H . It is optimal
for Gaussians with positive covariance matrix.

3.8.6 Singular Behaviour in Chemotaxis Models

Juan J. L. Velazquez
Universidad Complutense
JJ_Velazquez@mat.ucm.es

In this talk I will describe some of the singular behaviours that arise in the partial
differential equations that describe the phenomenon of chemotactic aggregation. In
particular I will describe solutions that generate Dirac masses in finite time. The
continuation beyond the blow-up will be also considered as well as the study of
the long time asymptotics for some models of chemotactic aggregation where the
interaction takes place by means of nondiffusive chemicals.
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3.9 Probability Theory

Organizer F. Martinelli (Rome)

3.9.1 Aging in the Infinite Volume REM-Like Trap Model at Low
Temperature

Luiz Renato Fontes
IME-USP
lrenato@ime.usp.br

We exhibit the scaling limit of the REM-like trap model at low temperature (with
time scaled as the deepest traps) and show that this dynamics exhibits aging (in
the proper macroscopic time limit). We also discuss extensions to infinite volume
GREM-like trap models at low temperature.

3.9.2 From Planar Gaussian Zeros to Gravitational Allocation

Yuval Peres
UC Berkeley and Microsoft Research
peres@stat.Berkeley.edu

The zeros of the power series with IID complex Gaussian coefficients form a deter-
minantal (Fermionic) process, invariant under hyperbolic isometries. This allows for
exact calculation of “hole” probabilities. Recently another Gaussian power series,
with Euclidean symmetry, has been investigated in depth. Results of Sodin-Tsirelson
reveal a surprising analogy with a four-dimensional Poisson process. We show how
the analysis of gravitational allocation for the Euclidean planar Gaussian analytic
function (Nazarov-Sodin-Volberg) has led to an analysis of gravitational allocation
for the Poisson process in dimensions 3 and higher; each Poisson point is allotted
a unit of volume in a translation invariant way, and the diameters of the allocated
regions have exponental tails. The argument starts with the classical calculation by
Chandrasekar of the total force acting on a point, which has a stable law. (Joint
works with S. Chatterjee, R. Peled, D. Romik, B. Virag).

3.9.3 Random Walks in Random Environments in the Perturbative Regime

Ofer Zeitouni
Univ. of Minnesota
zeitouni@math.umn.edu

I will describe recent results and technique used in analysing random walks (and
diffusions) in random environment in the perturbative regime, when the environment
satisfies certain isotropy conditions.
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3.10 Quantum Mechanics

Organizers A. Laptev (Stokholm), B. Simon (Pasadena)

3.10.1 Recent Progress in the Spectral Theory of Quasi-Periodic Operators

David Damanik
CALTECH
damanik@caltech.edu

I will describe recent results and technique used in analysing random walks (and
diffusions) in random environment in the perturbative regime, when the environment
satisfies certain isotropy conditions.

3.10.2 Recent Results on Localization for Random Schrödinger Operators

Francois Germinet
Universitéé de Cergy-Pontoise
germinet@math.u-cergy.fr

Since Fröhlich and Spencer in 1983, localization of random Schrödinger operators
can be studied with a so called multiscale analysis. We shall review some recent
developments of this technique and of the kind of localization it implies. It will
include the Anderson Bernoulli model as well as the Schrödinger operator with
Poisson random potential.

3.10.3 Quantum Dynamics and Enhanced Diffusion for Passive Scalar

Alexander Kiselev
University of Wisconsin
kiselev@math.wisc.edu

Consider a dissipative evolution equation ψt = iLψ − εΓ ψ , where Γ,L are self-
adjoint operators, Γ > 0, ε small. Can the presence of unitary evolution correspond-
ing to L significantly speed up dissipation due to Γ ? The question has a long history
in the particular case of the elliptic operators, and has been studied using probabilis-
tic and PDE tools. We prove a sharp result describing the operators L that have this
property in the general setting. The methods employ ideas from quantum dynam-
ics. Applications include the classical passive scalar equation and reaction-diffusion
equations.
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3.10.4 Lieb-Thirring Inequalities, Recent Results

Ari Laptev
KTH, Stockholm
laptev@math.kth.se

Some new recent results concerning Lieb-Thirring inequalities will be discussed. In
particular, inequalities are derived for power sums of the real-part and modulus of
the eigenvalues of a Schrödinger operator with a complex-valued potential. This is
my recent joint paper with Rupert Frank, Elliott Lieb and Robert Seiringer.

3.10.5 Exponential Decay Laws in Perturbation Theory of Threshold
and Embedded Eigenvalues

Gheorghe Nenciu
Univ. of Bucharest
Gheorghe.Nenciu@imar.ro

Exponential decay laws for the metastable states resulting from perturbation of un-
stable eigenvalues are discussed. Eigenvalues embedded in the continuum as well as
threshold eigenvalues are considered. Stationary methods are used, i.e. the evolution
group is written in terms of the resolvent via Stone’s formula and Schur-Feschbach
partition technique is used to localize the essential terms. No analytic continuation
of the resolvent is required. The main result is about threshold case: for Schrödinger
operators in odd dimensions the leading term of the decay rate in the perturbation
strength, ε, is of order εν/2 where ν is an odd integer, ν ≥ 3.

This is joint work with Arne Jensen.

3.10.6 Homogenization of Periodic Operators of Mathematical Physics
as a Spectral Threshold Effect

Tatiana A. Suslina
St. Petersburg State University
suslina@list.ru

In L2(R
d), we consider matrix periodic elliptic second order differential operators

A admitting a factorization of the form A = X∗X. Here X is a homogeneous first
order differential operator. Many operators of mathematical physics have such struc-
ture. We study a homogenization problem in the small period limit. Namely, for the
operator Aε with rapidly oscillating coefficients (depending on x/ε), we study the
behavior of the resolvent (Aε + I )−1 as ε tends to zero. We find approximation
for this resolvent in the (L2 → L2)-operator norm in terms of the resolvent of the
effective operator. For the norm of the difference of the resolvents, we obtain the
sharp-order estimate (by Cε). The constant in this estimate is controlled explicitly.
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Taking the “corrector” into account, we obtain more accurate approximation for the
resolvent in the (L2 → L2)-operator norm with the error estimate by Cε2. Besides,
we find approximation with corrector for the resolvent in the (L2 → H 1)-operator
norm with the error estimate of order O(ε). The obtained results are of new type in
the homogenization theory.

The method is based on the abstract operator theory approach for selfadjoint opera-
tor families A(t) admitting a factorization of the form A(t) = X(t)∗X(t), X(t) =
X0 + tX1. It turns out that the homogenization procedure for the operator Aε is de-
termined by the spectral characteristics of the periodic operator A near the bottom
of the spectrum. Therefore, homogenization procedure can be treated as a threshold
effect.

General results are applied to specific operators of mathematical physics: the acous-
tics operator, the operator of elasticity theory, the Maxwell operator. A special at-
tention is paid to the operators of quantum mechanics, namely, to the Schrödinger
operator, the magnetic Schrödinger operator (with sufficiently small magnetic po-
tential), the two dimensional Pauli operator. The effective characteristics for these
operators are studied. The effective matrix arising in the homogenization theory is
closely related to the tensor of effective masses which is well known in quantum me-
chanics. It turns out that for the two dimensional periodic Pauli operator the tensor
of effective masses is scalar, which attests some hidden symmetry.

The results were obtained in 2001–2006 jointly with M. Sh. Birman.

3.11 Quantum Field Theory

Organizer K. Fredenhagen (Hamburg)

3.11.1 Algebraic Aspects of Perturbative and Non-Perturbative QFT

Christoph Bergbauer
IHES
bergbau@ihes.fr

We review the Connes-Kreimer approach to perturbative renormalization in terms
of Hopf and Lie algebras of Feynman graphs which capture the combinatorial as-
pects of the renormalization procedure. The solution of the Bogoliubov recursion is
essentially given by the antipode map of the Hopf algebra of graphs. Important prop-
erties can be traced back to 1-cocycles in the Hochschild cohomology of these Hopf
algebras. At the same time these 1-cocycles provide the building blocks of Dyson-
Schwinger equations and thus a link to non-perturbative results. We finally discuss
new ideas on the structure and towards actual solutions of these Dyson-Schwinger
equations.



Appendix: Complete List of Abstracts 853

3.11.2 Quantum Field Theory in Curved Space-Time

Stefan Hollands
University of Goettingen
hollands@theorie.physik.uni-goettingen.de

The theory of quantum fields on a curved background is interesting both physically
—describing effects such as the creation of primordial fluctuations, particle creation
in the expansing universe, black-hole radiance—as well as mathematically, because
it combines in an interesting way ideas from differential geometry, analysis, and
quantum field theory.

I review recent developments in the field, emphasizing the role and construction the
operator product expansion in curved spacetime. In particular, I will argue that prop-
erties such as associativity, general covariance, renormalization group flow/scaling,
and spectral properties of the quantum field theory are encoded in the operator prod-
uct expansion. I indicate how this tool may be used to analyze quantitatively dynam-
ical processes in the Early Universe.

3.11.3 String-Localized Quantum Fields, Modular Localization, and Gauge
Theories

Jens Mund
Universidade Federal de Juiz de Fora
mund@fisica.ufjf.br

The concept of modular localization introduced by Brunetti, Guido and Longo, and
Schroer, can be used to construct quantum fields. It combines Wigner’s particle
concept with the Tomita-Takesaki modular theory of operator algebras. I shall re-
port on the construction of free fields which are localized in semi-infinite strings
extending to spacelike infinity (joint work with B. Schroer and J. Yngvason). Par-
ticular applications are: The first local (in the above sense) construction of fields for
Wigner’s massless “infinite spin” particles; Anyons in d = 2 + 1; String-localized
vector/tensor potentials for Photons and Gravitons, respectively. Some ideas will be
presented concerning the perturbative construction of gauge theories (and quantum
gravity) completely within a Hilbert space, trading gauge dependence with depen-
dence on the direction of the localization string.
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3.11.4 Quantization of the Teichmüller Spaces: Quantum Field Theoretical
Applications

Joerg Teschner
DESY
teschner@mail.desy.de

We will review the geometric interpretation of quantum Liouville theory as a quan-
tum theory of spaces of Riemann surfaces. This interpretation can be used to estab-
lish the consistency of the bootstrap construction of Liouville theory in the presence
of conformal boundary conditions. It also paves the way towards the study of Li-
ouville theory on higher genus Riemann surfaces. If time permits we will outline a
possible extension of this framework to more general conformal field theories.

3.12 2D Quantum Field Theory

Organizer J. Cardy (Oxford)

3.12.1 Lattice Supersymmetry From the Ground Up

Paul Fendley
University of Virginia
fendley@rockpile.phys.virginia.edu

I discuss several models of itinerant fermions which exhibit explicit supersymmetry
on the lattice. In 1 + 1 dimensions, one model gives a lattice regularization of the
Thirring model, and shows how the combinatorial results of Stroganov et al. can be
related to supersymmetry. In both 1 + 1 and 2 + 1 dimensions, we can find mod-
els with extensive ground-state entropy. Finally, I present results on a generalized
Yangian-like symmetry algebra underlying some of these models.

3.12.2 Analytical Solution for the Effective Charging Energy of the Single
Electron Box

Sergei Lukyanov
Rutgers University
sergei@physics.rutgers.edu

A single electron box is a low-capacitance metallic island, connected to an outside
lead by a tunnel junction. Over the last decade, correct analytical expressions de-
scribing the single electron box in the limit of large tunneling conductance have
been the subject of controversial debate. In this talk, we will discuss recent exact
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results on the universal scaling behavior of the single electron box in the strong
tunneling limit.

3.12.3 Breaking Integrability

Giuseppe Mussardo
SISSA, Trieste
mussardo@he.sissa.it

Thanks to integrable quantum field theories, there has been in recent year new under-
standing on a large number of models of interest in statistical mechanics or in con-
densed matter physics, e.g. Ising model in a magnetic field or Sine-Gordon model.
Integrability has permitted to determine, for instance, the exact spectrum of many
systems, the explicit determination of the correlation functions of their order para-
meters, as well as their thermodynamical properties. In the seminar there will be
discussed two methods which permits to extend this analysis also to non-integrable
models: the first one is based on the Form Factor Perturbation Theory while the sec-
ond is based on semi-classical techniques. Both approaches will be then illustrated
by studying in details the non-integrable features of theories with kink excitations,
like for instance the Ising model or Double Sine Gordon. We present the evolution
of the spectrum of the stable particles and the computation of the decay width of the
unstable ones.

3.13 Quantum Information

Organizers A. Holevo (Moscow), M. B. Ruskai (Medford)

3.13.1 One-and-a-Half Quantum de Finetti Theorems

Matthias Christandl
Cambridge
mc380@cam.ac.uk

When n-k systems of an n-party permutation invariant density matrix are traced out,
the resulting state can be approximated by a convex combination of tensor product
states. This is the quantum de Finetti theorem. Here we show that an upper bound
on the trace distance of this approximation is given by 2kd2/n, where d is the di-
mension of the system, thereby improving previously known bounds. Our result
follows from a more general approximation theorem for states in representations of
the unitary group by coherent states.

For the class of symmetric Werner states, which are invariant under both the permu-
tation and unitary groups, we give a second de Finetti-style theorem (our “half” the-
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orem). It arises from a combinatorial formula for the distance of symmetric Werner
states to product Werner states, making a connection to the recently defined shifted
Schur functions. This formula also provides us with useful examples that allow us to
conclude that finite quantum de Finetti theorems (unlike their classical counterparts)
must depend on the dimension d . This is joint work with Robert Koenig, Graeme
Mitchison and Renato Renner.

3.13.2 Catalytic Quantum Error Correction

Igor Devetak
University of Southern California
devetak@usc.edu

We exhibit a natural generalization of the stabilizer formalism for entanglement-
assisted quantum error correction. Conventional stabilizer codes for quantum chan-
nels without entanglement assistance are equivalent to isotropic (or self-orthogonal T)
symplectic codes. When entanglement assistance is included, the isotropicity con-
dition is no longer necessary. A catalytic quantum code is one which borrows the
use of a perfect quantum channel and returns it at the end of the protocol. One of the
consequences of the above result is that any classical code over GF(4) can be made
into a catalytic quantum code. In particular, classical codes over GF(4) attaining the
Shannon limit correspond to catalytic quantum codes attaining the hashing bound.

3.13.3 Quantum State Transformations and the Schubert Calculus

Patrick Hayden
McGill University
patrick@cs.mcgill.ca

The problem of relating the eigenvalues of a density operator to those of its reduc-
tions, known as the quantum marginal problem, is closely connected to determining
the amount of communication required to convert one entangled quantum state into
another. I’ll develop this connection and show how the solution to a restricted ver-
sion of the marginal problem can be used to extract simple conditions governing the
existence of transformations in particular cases.

3.13.4 The Local Hamiltonian Problem

Julia Kempe
CNRS & University of Paris
kempe@lri.fr

Most physical systems are described by a sum of local Hamiltonians, i.e. Hamilto-
nians that act on a few particles each. Computing the ground state energy of these
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systems is notoriously hard in general and has been studied in many settings, most
importantly on square lattices. Kitaev was the first to cast the problem in complexity
theoretic terms; he showed that the 5-Local Hamiltonian problem is as hard as any
problem in QMA, the quantum analogue of NP. We will review the status of the
problem since then with some new rigorous perturbation theory techniques on the
way and also give a connection to adiabatic quantum computing.

3.13.5 The Information-Disturbance Tradeoff and the Continuity
of Stinespring’s Representation

Dennis Kretschmann
TU Braunschweig
d.kretschmann@tu-bs.de

Stinespring’s famous dilation theorem is the basic structure theorem for quantum
channels: it states that every quantum channel (i.e., completely positive and trace
preserving map) arises from a unitary evolution on a larger system. The theorem not
only provides a neat characterization of the set of permissible quantum operations,
but is also a most useful tool in quantum information science.

Here I will present a continuity theorem for Stinespring’s dilation: if two quantum
channels are close in cb-norm, then we can always find unitary implementations
which are close in operator norm, with dimension-independent bounds. This result
can be seen as a generalization of Uhlmann’s theorem from states to channels and
allows to derive a formulation of the information-disturbance tradeoff in terms of
quantum channels, as well as a continuity estimate for the no-broadcasting theorem.
Other applications include a strengthened proof of the no-go theorem for quantum
bit commitment.

Joint work with D. Schlingemann and R. F. Werner.

3.13.6 Locality Estimates for Quantum Spin Systems

Robert Sims
University of Vienna
robert.sims@univie.ac.at

We review some recent results that express or rely on the locality properties of the
dynamics of quantum spin systems. In particular, we present a slightly sharper ver-
sion of the recently obtained Lieb-Robinson bound on the group velocity for such
systems on a large class of metric graphs. Using this bound we provide expressions
of the quasi-locality of the dynamics in various forms, present a proof of the Expo-
nential Clustering Theorem, and discuss a multi-dimensional Lieb-Schultz-Mattis
Theorem.
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3.14 Random Matrices

Organizers J. Baik (Ann Arbor), J. Harnad (Montréal)

3.14.1 Exact Solution of the Six-Vertex Model with Domain Wall Boundary
Conditions

Pavel M. Bleher
Indiana University Purdue University Indianapolis
bleher@math.iupui.edu

The six-vertex model, or the square ice model, with domain wall boundary condi-
tions (DWBC) has been introduced and solved for finite N by Korepin and Izergin.
The solution is based on the Yang-Baxter equations and it represents the free en-
ergy in terms of an N × N Hankel determinant. Paul Zinn-Justin observed that the
Izergin-Korepin formula can be re-expresses in terms of the partition function of a
random matrix model with non-polynomial interaction. We use this observation to
obtain the large N asymptotic of the six-vertex model with DWBC in the disordered
phase. The solution is based on the Riemann-Hilbert approach and the Deift-Zhou
nonlinear steepest descent method. As was noticed by Kuperberg, the problem of
enumeration of alternating sign matrices (the ASM problem) is a special case of the
six-vertex model. We compare the obtained exactsolution of the six-vertex model
with known exact results for the 1, 2, and 3 enumerations of ASMs, and also with
the exact solution on the so-called free fermion line. We prove the conjecture of
Zinn-Justin that the partition function of the sic-vertex model with DWBC has the
asymptotics, ZN ∼ CNκeN

2f as N → ∞, and we find the exact value of the
exponent κ .

3.14.2 Probabilities of a Large Gap in the Scaled Spectrum of Random
Matrices

Igor Krasovsky
Brunel Univ.
mastiik2@brunel.ac.uk

In the Gaussian Unitary Ensemble of random matrices, the probability of an interval
(gap) without eigenvalues in the spectrum (rescaled in a standard way) is given
by the sine-kernel Fredholm determinant in the bulk of the spectrum, and by the
Airy-kernel Fredholm determinant at the edge. We calculate asymptotics of these
determinants for a large gap proving the conjectures of Dyson, Tracy and Widom
about the multiplicative constant in these asymptotics. Our method uses analysis
of a Riemann-Hilbert problem and can be adapted to calculate such constants in
asymptotics of a number of similar determinantal correlation functions of random
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matrix theory and exactly solvable models. The talk is based mostly on joint works
with P. Deift, A. Its, and X. Zhou.

3.14.3 Random Matrices, Asymptotic Analysis, and d-bar Problems

Kenneth McLaughlin
University of Arizona
mcl@math.arizona.edu

The aim of the research is to study random matrix models for which the external
field is outside the analytic class.

3.14.4 Central Limit Theorems for Non-intersecting Random Walks

Toufic Suidan
UC Santa Cruz
tsuidan@ucsc.edu

We describe several central limit theorems for non-intersecting random walks. The
limiting distributions which arise are related to classical random matrix theory. Con-
nections to last passage percolation and other models will be discussed. This work
is joint with Jinho Baik.

3.14.5 On the Distribution of Largest Eigenvalues in Random Matrix
Ensembles

Alexander Soshnikov
UC Davis
soshniko@math.ucdavis.edu

In the talk, we will consider the Wigner and Wishart ensembles of random matrices
and their generalizations. We will discuss the spectral properties of random matrices
from these ensembles, in particular the distribution of the largest (smallest) eigen-
values.

3.14.6 Non-Intersecting Brownian Excursions

Craig A. Tracy
UC Davis
tracy@math.ucdavis.edu

A Brownian excursion is a Brownian path starting at the origin at time t = 0 and
ending at the origin at time t = 1 and conditioned to remain positive for 0 < t < 1.
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We consider n such Brownian excursion paths conditioned to be nonintersecting.
Using techniques from random matrix theory, we discuss this process. This is joint
work with H. Widom.

3.15 Stochastic PDE

Organizer W.E. (Princeton)

3.15.1 Degenerately Forced Fluid Equations: Ergodicity and Solvable Models

Jonathan C. Mattingly
Duke University
jonmmath.duke.edu

I will present some recent results on the existence of spectral gaps for the 2D Navier
Stokes equation under very degenerate stochastic forcing. I will use these results to
show that the statistical steady states depend in a nice fashion on the parameters of
the problem.

I will close with some interesting results on some exactly solvable models of energy
transport in stochastic systems.

3.15.2 Microscopic Stochastic Models for the Study of Thermal Conductivity

Stefano Olla
Université de Paris, Dauphine
ollaceremade.dauphine.fr

Anomalous large thermal conductivity has been observed numerically and experi-
mentally in one- and two-dimensional systems. We study the thermal conductivity
of an infinite system of oscillators whose Hamiltonian dynamics is perturbed by a
multiplicative (non-linear) noise conserving energy and momentum. The decay of
the energy current correlation function C(t) can be estimated. In the harmonic case
C(t) can be computed explicitly and we prove that thermal conductivity is finite if
d = 3 or if an on-site potential is present, while it is infinite if d = 1 or 2. This
result clarifies the role of conservation of momentum and dispersion relation in the
anomalous thermal conductivity in low dimensions. We also discuss Fourier’s law
and evolution of energy fluctuations. This is a joint work with Giada Basile and
Cedric Bernardin.
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3.15.3 Boundary Effects on the Interface Dynamics for the Stochastic
Allen-Cahn Equation

Stella Brassesco
IVIC, Caracas
sbrasses@ivic.ve

We consider a stochastic perturbation of the Allen–Cahn equation in a bounded
interval [−a, b] with boundary conditions fixing the different phases at a and b. We
investigate the asymptotic behavior of the front separating the two stable phases in
the limit ε → 0, when the intensity of the noise is

√
ε and a, b → ∞ with ε. In

particular, we prove that it is possible to choose a = a(ε) such that in a suitable time
scaling limit, the front evolves according to a one-dimensional diffusion process
with a nonlinear drift accounting for a “soft” repulsion from a. We finally show that
a “hard” repulsion can be obtained by an extra diffusive scaling.

3.16 String Theory

Organizers N. Berkovits (São Paulo), R. Dijkgraaf (Amsterdam)

3.16.1 Topological Strings and (Almost) Modular Forms

Mina Aganagic
UC Berkeley
minamath.berkeley.edu

The mapping class group Γ is a symmetry of the topological string theory on a
Calabi-Yau. This symmetry has a natural realization in the quantum theory, and
constrains the topological string partition function. The topological string ampli-
tudes are either holomorphic, quasi-modular forms of Γ , or modular forms which
are almost holomorphic. Moreover, at each genus, certain combinations of the am-
plitudes have to be both holomorphic and modular invariant.

3.16.2 Gauge Theory and Link Homologies

Sergei Gukov
Harvard
gukovsakharov.physics.harvard.edu

The main goal of this talk is to explain the physical interpretation of the existing
link homologies—such as the Khovanov homology or knot Floer homology—and
to propose their various generalizations motivated from physics. In particular, start-
ing with a brief introduction into knot homology theories, I will describe a frame-
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work for unifying the sl(N) Khovanov-Rozansky homology (for all N) with the knot
Floer homology. This unification, based on the interpretation in topological string
theory, is accomplished by a new triply graded homology theory which categori-
fies the HOMFLY polynomial. Further insights can be obtained by realizing knot
homologies in gauge theory. As I will explain in the main part of the talk, surface
operators in gauge theory and braid group actions on categories play an important
role in such realizations.

3.16.3 Non-Geometric String Backgrounds

Chris Hull
Imperial College
c.hullimperial.ac.uk

In string theory, the standard field theory symmetries of diffeomorphisms and gauge
symmetries are augmented by stringy duality symmetries that have no field the-
ory analogue. Conventional spacetime manifolds are constructed from local patches
equipped with a metric and gauge and matter fields, and these are glued together
using diffeomorphisms and gauge symmetries. In string theory there is the possi-
bility of also using duality symmetries to glue together local spacetime patches,
resulting in a “non-geometric background” that has no conventional geometric de-
scription. This suggests that in string theory the conventional geometric spacetime
picture should be replaced by something more general, allowing a much wider class
of string theory backgrounds than has hitherto been considered. The purpose of this
talk is to explore such non-geometric backgrounds and some of their implications.

3.16.4 Topological Reduction of Supersymmetric Gauge Theories and
S-Duality

Anton Kapustin
Caltech
kapustintheory.caltech.edu

I discuss topological and semi-topological reduction of N = 4 and N = 2 field
theories on a Riemann surface. In the N = 4 case, this relates S-duality of 4d gauge
theories with mirror symmetry of the Hitchin moduli space. In the N = 2 case, the
reduction yields a half-twisted sigma-model with Hitchin moduli space as a target.

3.16.5 Phase Transitions in Topological String Theory

Marcos Marino Beiras
CERN
Marcos.Marino.Beirascern.ch
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Topological strings in Calabi–Yau manifolds undergo phase transitions at small dis-
tances that signal the onset of quantum geometry. In this talk, after a brief review,
I analyze this phenomenon when the Calabi–Yau is a bundle over a sphere. Math-
ematically, this theory can be regarded as a deformation of Hurwitz theory. The
resulting models exhibit critical behavior, but the universality class of the transition
corresponds to pure 2d gravity, and one can define a double–scaled theory at the
critical point which is governed by the Painleve I equation. It is also possible to
induce multicritical behavior. I will also comment on the implications of this result
for the conjectural nonperturbative completion of these models.

3.16.6 Hyper-Multiplet Couplings in N = 2 Effective Action

Pierre Vanhove
CEA Saclay
pierre.vanhovecea.fr

We will address the analysis of the quantum corrections to the hypermultiplet geom-
etry of N = 2 supergravity, with some emphasis on the case of the of universal
(dilaton) hypermutiplet. We will discuss some special contributions to the N = 2
effective action in the hypermultiplet sector from higher-genus string theory ampli-
tude computation.
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