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INTRODUCTION

One of the first Computer Science sites in Italy, in recent years, the Friuli region
has become a very active hub in Computational Physics and other applications of
Informatics to Human and Natural Sciences. In particular the University of Udine
has developed a tradition in innovative cross-disciplinary research areas involving
Computer Science and Physics, providing digital tools for laboratories such as
NASA and CERN.

The sixth International Symposium “Frontiers of Fundamental and Computa-
tional Physics” (FFP6) aimed at providing a platform for a wide range of physi-
cists to meet and share thoughts on the latest trends in various research areas
including High Energy Physics, Theoretical Physics, Gravitation and Cosmology,
Astrophysics, Condensed Matter Physics, Fluid Mechanics. Such frontier lines
were unified by the use of computers as an, often primary, research instrument, or
dealing with issues related to information theory.

at the
University of Udine, Italy from 26th to 29th of September 2004. The University of
Udine and the B.M. Birla Science Centre in Hyderabad have collaborated in the
organization of this Symposium and the edition of these Proceedings, under the
auspices of their joint initiative the International Institute of Applicable

and Information Sciences. The contributions in the Proceedings are grouped
as follows:

• Field Theory, Relativity and Cosmology

• Foundations of Physics and of Information Sciences

• Nuclear and High-Energy Particle Physics and Astrophysics; Astroparticle
Physics

• Complex Systems; Fluid Mechanics

• New Approaches to Physics Teaching

This Symposium had an attendance of over 100 participants. There were 63 pa-
pers/presentations, including 4 introductory invited lectures delivered by the No-
bel Laureates L. Cooper and G. ‘t Hooft, and by the eminent physicists Y. Ne’eman
and W. Greiner. As was the case for the previous editions, the conference was
a great success. Full papers in these Proceeding underwent a refereeing process.
When full papers have not been submitted, abstracts have been included.

The Editors
Udine, March 2005

The present Sixth International Symposium in the series was organized

Mathe-
matics
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Part I

Field Theory, Relativity and
Cosmology



COSMOLOGICAL THEORIES OF SPECIAL AND GENERAL
RELATIVITY - I

MOSHE CARMELI a

a Department of Physics, Ben Gurion University of the Negev,
Beer Sheva 84105, Israel

Abstract

In the standard cosmological theory one uses the Einstein concepts of space
and time as were originally introduced for the special theory of relativity
and the general relativity theory. According to this approach all physical
quantities are described in terms of the continuum spatial coordinates and
time. Using general relativity theory a great progress has been made in
understanding the evolution of the Universe. Cosmologists usually measure
spatial distances and redshitfs of faraway galaxies as expressed by the Hubble
expansion. In recent years this fact was undertaken to develop new theories
in terms of distances and velocities (redshift). While in Einstein’s relativity
the propagation of light plays the major role, in the new theory it is the
expansion of the Universe that takes that role and appears at the outset. The
cosmic time becomes crucial in these recent theories, which in the standard
theory is considered to be absolute but here it is relative. In this lecture this
new approach to cosmology is presented.

1 Introduction

It is well known that both Einstein’s theories are based on the fact that light prop-
agates at a constant velocity. However, the Universe also expands at a constant
rate when gravity is negligible. Moreover, cosmologists usually measure spatial dis-
tances and redshifts of faraway galaxies as expressed by the Hubble expansion. In
recent years this fact was undertaken to develop new theories in terms of distances
and velocities (redshift). While in Einstein’s special relativity the propagation of

3
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4 Theories of Special and General Relativity - I

light plays the major role, in the new theory it is the expansion of the Universe
that takes that role. It is the concept of cosmic time that becomes crucial in these
recent theories. In the standard theory the cosmic time is considered to be abso-
lute. Thus we talk about the Big Bang time with respect to us here on Earth as
an absolute quantity. Consider, for example, another galaxy that has, let us say,
a relative cosmic time with respect to us of 1 billion year. Now one may ask what
will be the Big Bang time with respect to this galaxy. Will it be the Big Bang
time with respect to us minus 1 billion year? A person who lives in that galaxy
will look at our galaxy and say that ours is far away from him by also 1 billion
year. Will that mean, with respect to him, our galaxy is closer to the Big Bang
time by 1 billion year? Or will we seem to him to be farther by 1 billion year? All
this leads to the conclusion that there is no absolute cosmic time. Rather, it is a
relative concept.

Based on this assumption, we present in this lecture a theory that relates
distances between galaxies and their relative velocities. These are actually the
dynamical variables that astronomers measure. In the first part the theory will be
relating distances to velocities with very weak gravitational field (special relativ-
ity). We then, in the second part, extend the theory to include the gravitational
field of the Universe. Before doing that, we present a brief review of Einstein’s
special relativity theory.

2 Einstein’s special relativity: A review

We will not give a full detail of this very important theory. Rather, we outline
some of its fundamentals [1,2]
1. The Michelson-Morley experiment for the constancy of the speed of light.
2. Einstein’s two postulates: (a) Constancy of the speed of light; (b) Validity of
the laws of physics in internal coordinate systems. (See Figure 1)
3. The Lorentz transformation. This is given by

ct′ = (ct− βx) /
√

1− β2, x′ = (x− βct) /
√

1− β2, (2.1)

where β = v/c, and y′ = y, z′ = z.
4. Minkowski’s unification of space and time.
5. Invariance of the laws of physics under the Lorentz transformation.
6. Minkowski’s line element

ds2 = c2dt2 − (dx2 + dy2 + dz2
)

(2.2)

7. The light cone (see Figure 2).

3 Cosmological special relativity

We outline this theory very briefly with the following points [3, 4, 5].
1. Hubble’s law R = τv, where R is the distance to a galaxy, v is the receding
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Figure 1. Two coordinate systems K and K′, one moving with respect to the other with a
velocity v in the x-direction.

velocity of the galaxy, τ is universal constant equal to 12.486 Gyr (Big Bang time).
2. Cosmic time is not absolute but a relative concept.
Example: Another galaxy is one billion year with respect to us. One may ask, what
is the Big Bang time with respect to this galaxy. Will it be BB time with respect
to us minus 1 billion year?From the point of view of that galaxy ours is far away
from it by also 1 billion year. Does that mean, with respect to that galaxy, ours is
closer to the BB time by 1 billion year?Or our galaxy will seem to be farther by 1
billion year? All this leads to the conclusion that there is no absolute cosmic time.
Rather, it is a relative concept.
3. Universe with negligible gravity.
4. Line element of an expanding Universe with negligible gravity:

ds2 = τ2dv2 − (dx2 + dy2 + dz2). (3.1)

It is equal to zero for the Hubble expansion but is not vanishing at cosmic times
smaller than τ .

Notice the similarity to Minkowskian line element

ds2 = c2dt2 − (dx2 + dy2 + dz2) (3.2)
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Figure 2. The light cone in two dimensions, x0(= ct) and x1(= x). The propagation of two light
signals in opposite directions passing through x = 0 at time t = 0, is represented by the two
diagonal straight lines. (Compare the galaxy cone given in the sequel.)

which vanishes for light propagation but is different from zero for particles of finite
mass.
5. Postulates of cosmological special relativity: (1) The laws of physics are valid
at all cosmic times; (2) τ has the same value at all cosmic times. (Similarly to
Einstein’s special relativity postulates.)
6. The cosmological transformation. This is the analog to the Lorentz transfor-
mation. It relates physical quantities at different cosmic times (similarly to the
Lorentz transformation that relates quantities at different velocities):

x′ =
x− (τ − t) v

√
(t/τ) (2− t/τ)

, τv′ =
τv − x (τ − t) /τ
√

(t/τ) (2− t/τ)
, (3.3)

y′ = y, z′ = z,

0 ≤ t ≤ τ , t = 0 at the Big Bang, t = τ , now.
7. Example: Denote the temperature of the Universe at a cosmic time t by T and
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Figure 3. The galaxy cone in cosmological relativity, describing the cone in the x − v space

satisfying τ2v2 − x2 = 0, where x represents the three-dimensional space. The heavy dots
describe galaxies. The galaxy cone represents the locations of the galaxies at a given time rather
than their path of motion in the real space.

that at present by T0 (=2.73K), we then have

T = T0/
√

(t/τ) (2− t/τ). (3.4)

At t/τ = 1/2 we get T = 3.15K. (This result assumes negligible gravity and needs
a correction by a factor of 13, and thus the temperature at t/τ = 1/2 is 41K.)
8. The galaxy cone. This is the analog to the light cone in Einstein’s special
relativity. It represents the expansion of the Universe with negligible gravity. It
is a four-dimensional cone. The coordinates are the velocity and the other three
coordinates are the space coordinates. At the cone surface the Hubble expansion
is represented, whereas the inner part of the cone represents events at cosmic times
less than τ . The similarity to the light cone is remarkable.

9. Inflation at the early Universe. From the cosmological transformation we ob-
tain the relationship between the mass density ρ0 now to its value ρ at a backward
time t:

ρ = ρ0/
√

1− t2/τ2. (3.5)
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The volume of the Universe is inversely proportional to its density, hence the ratio
of the volumes at two backward cosmic times t1 and t2 is

V2/V1 =
√

(1− t22/τ2) / (1− t21/τ2). (3.6)

For t1, t2 very close to τ we have

V2/V1 =
√

t′2/t′1, (3.7)

where primes indicate times with respect to the Big Bang. For t′2 − t′1 ≈ 10−32s,
and t′2 much less than 1s, we have

V2/V1 = 10−16/
√

t′1. (3.8)

For example, at t′1 ≈ 10−132s, we obtain V2/V1 ≈ 1050 describing inflation.
The above introduction gives a brief review of a new special relativity (cos-

mological special relativity, for more details see [5]). Obviously the Universe is
filled up with gravity and therefore one has to go to a Riemannian space with
the Einstein gravitational field equations in terms of space and redshift (velocity).
This is done in the second part of these lectures. Before that we outline Einstein’s
general relativity theory.

4 General relativity theory: A brief outline

1. Postulates: (a) Principle of general covariance; (b) Principle of equivalence.
2. Riemannian curved space for the gravitational field. The metric tensor gµν as
the gravitational potential [6].
3. The Einstein field equations:

Gµν = Rµν − 1
2
gµνR = κTµν (4.1)

4. The geodesic equation as the equation of motion:

d2xρ

ds2
+ Γρ

αβ

dxα

ds

dxβ

ds
= 0. (4.2)

5 Extension to curved space

The theory presented here, cosmological general relativity, uses a Riemannian
four-dimensional presentation of gravitation in which the coordinates are those of
Hubble, i.e. distances and velocity rather than the traditional space and time.
We solve the field equations and show that there are three possibilities for the



M. Carmeli 9

Universe to expand. The theory describes the Universe as having a three-phase
evolution with a decelerating expansion, followed by a constant and an accelerating
expansion, and it predicts that the Universe is now in the latter phase. It is
shown, assuming Ωm = 0.245, that the time at which the Universe goes over from
a decelerating to an accelerating expansion, i.e., the constant-expansion phase,
occurs at 8.5 Gyr ago. Also, at that time the cosmic radiation temperature was
146K. Recent observations of distant supernovae imply that the Universe’s growth
is accelerating, contrary to what has always been assumed, that the expansion is
slowing down due to gravity. Our theory confirms these recent experimental results
by showing that the Universe now is definitely in a stage of accelerating expansion.
The theory predicts also that now there is a positive pressure, p = 0.034g/cm2,
in the Universe. It is worthwhile mentioning that the theory has no cosmological
constant. It is also shown that the three-dimensional space of the Universe is
Euclidean, as the Boomerang, Maxima, DASI and CBI microwave telescopes have
shown. Comparison with general relativity theory is finally made and it is pointed
out that the classical experiments as well as the gravitational radiation prediction
follow from the present theory, too.

6 Cosmology in spacevelocity

In the framework of cosmological general relativity (CGR) gravitation is described
by a curved four-dimensional Riemannian spacevelocity. CGR incorporates the BB
constant τ at the outset. The Hubble law is assumed in CGR as a fundamental
law. CGR, in essence, extends Hubble’s law so as to incorporate gravitation in
it; it is actually a distribution theory that relates distances and velocities between
galaxies. The theory involves measured quantities and it takes a picture of the
Universe as it is at any moment. The following is a brief review of CGR as was
originally given by the author in 1996 [7].

The foundations of any gravitational theory are based on the principles of
equivalence and general covariance. These two principles lead immediately to
the realization that gravitation should be described by a four-dimensional curved
spacetime, in our theory spacevelocity, and that the field equations and the equa-
tions of motion should be generally covariant. Hence these principles were adopted
in CGR also. Use is made in a four-dimensional Riemannian manifold with a met-
ric gµν and a line element ds2 = gµνdxµdxν . The difference from Einstein’s general
relativity is that our coordinates are: x0 is a velocitylike coordinate (rather than
a timelike coordinate), thus x0 = τv where τ is the Big Bang time and v the
velocity. The coordinate x0 = τv is the comparable to x0 = ct in ordinary general
relativity. The other three coordinates xk, k = 1, 2, 3, are spacelike, just as in
general relativity theory.

An immediate consequence of the above choice of coordinates is that the null
condition ds = 0 describes the expansion of the Universe in the curved spacevel-
ocity (generalized Hubble’s law with gravitation) as compared to the propagation
of light in the curved spacetime in general relativity. This means one solves the
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field equations (to be given in the sequel) for the metric tensor, then from the null
condition ds = 0 one obtains immedialety the dependence of the relative distances
between the galaxies on their relative velocities.

As usual in gravitational theories, one equates geometry to physics. The first is
expressed by means of the Einstein tensor. The physical part is expressed by the
energy-momentum tensor which now has a different physical meaning from that
in Einstein’s theory. More important, the coupling constant that relates geometry
to physics is now also different.

Accordingly the field equations are

Rµν − 1
2
gµνR = κTµν , (6.1)

exactly as in Einstein’s theory, with κ given by κ = 8πk/τ4, (in general relativity
it is given by 8πG/c4), where k is given by k = Gτ2/c2, with G being Newton’s
gravitational constant, and τ the Big Bang constant time. When the equations of
motion are written in terms of velocity instead of time, the constant k will replace
G. Using the above equations one then has κ = 8πG/c2τ2.

The energy-momentum tensor Tµν is constructed, along the lines of general
relativity theory, with the speed of light being replaced by τ . If ρ is the average
mass density of the Universe, then it will be assumed that Tµν = ρuµuν , where
uµ = dxµ/ds is the four-velocity. In general relativity theory one takes T 0

0 = ρ. In
Newtonian gravity one has the Poisson equation ∇2φ = 4πGρ. At points where
ρ = 0 one solves the vacuum Einstein field equations in general relativity and the
Laplace equation ∇2φ = 0 in Newtonian gravity. In both theories a null (zero)
solution is allowed as a trivial case. In cosmology, however, there exists no situation
at which ρ can be zero because the Universe is filled with matter. In order to be
able to have zero on the right-hand side of (6.1) one takes T 0

0 not as equal to ρ,
but to ρeff = ρ − ρc, where ρc is the critical mass density, a constant in CGR
given by ρc = 3/8πGτ2, whose value is ρc ≈ 10−29g/cm3, a few hydrogen atoms
per cubic meter. Accordingly one takes Tµν = ρeffuµuν ; ρeff = ρ − ρc for the
energy-momentum tensor. Moreover, the above choice of the energy-momentum
tensor is the only possibility that yields a constant expansion when ρ = ρc as it
should be.

In Part II we apply CGR to obtain the accelerating expanding Universe and
related subjects.
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COSMOLOGICAL THEORIES OF SPECIAL AND GENERAL
RELATIVITY - II

MOSHE CARMELI a

a Department of Physics, Ben Gurion University of the Negev,
Beer Sheva 84105, Israel

Abstract

Astronomers measure distances to faraway galaxies and their velocities. They
do that in order to determine the expansion rate of the Universe. In Part
I of these lectures the foundations of the theory of the expansion of the
Universe was given. In this part we present the theory. A formula for the
distance of the galaxy in terms of its velocity is given. It is very simple:
r(v) = cτ/β sinh βv/c, where τ is the Big Bang time, β =

√
1 − Ωm, and

Ωm is the mass density of the Universe. For Ωm < 1 this formula clearly
indicates that the Universe is expanding with acceleration, as experiments
clearly show.

1 Gravitational field equations

In the four-dimensional spacevelocity the spherically symmetric metric is given by

ds2 = τ2dv2 − eµdr2 −R2
(
dθ2 + sin2 θdφ2

)
, (1.1)

where µ and R are functions of v and r alone, and comoving coordinates xµ =
(x0, x1, x2, x3) = (τv, r, θ, φ) have been used. With the above choice of coordinates,
the zero-component of the geodesic equation becomes an identity, and since r, θ
and φ are constants along the geodesics, one has dx0 = ds and therefore uα =
uα = (1, 0, 0, 0) . The metric (1.1) shows that the area of the sphere r = constant
is given by 4πR2 and that R should satisfy R′ = ∂R/∂r > 0. The possibility that
R′ = 0 at a point r0 is excluded since it would allow the lines r = constants at the

13
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14 Theories of Special and General Relativity - II

neighboring points r0 and r0 +dr to coincide at r0, thus creating a caustic surface
at which the comoving coordinates break down.

As has been shown in Part I the Universe expands by the null condition ds = 0,
and if the expansion is spherically symmetric one has dθ = dφ = 0. The metric
(1.1) then yields τ2dv2 − eµdr2 = 0, thus

dr

dv
= τe−µ/2. (1.2)

This is the differential equation that determines the Universe expansion. In the
following we solve the gravitational field equations in order to find out the function
µ (r.v).

The gravitational field equations, written in the form

Rµν = κ (Tµν − gµνT/2) , (1.3)

where
Tµν = ρeffuµuν + p (uµuν − gµν) , (1.4)

with ρeff = ρ − ρc and T = Tµνgµν , are now solved. One finds that the only
nonvanishing components of Tµν are T00 = τ2ρeff , T11 = c−1τpeµ, T22 = c−1τpR2

and T33 = c−1τpR2 sin2 θ, and that T = τ2ρeff − 3c−1τp.
One obtains three independent field equations (dot and prime denote deriva-

tives with v and r)

eµ
(
2RR̈ + Ṙ2 + 1

)
−R′2 = −κτc−1eµR2p, (1.5)

2Ṙ′ −R′µ̇ = 0, (1.6)

e−µ

[
1
R

R′µ′ −
(

R′

R

)2

− 2
R

R′′
]

+
1
R

Ṙµ̇ +

(
Ṙ

R

)2

+
1

R2
= κτ2ρeff . (1.7)

2 Solution of the field equations

The solution of (1.6) satisfying the condition R′ > 0 is given by

eµ = R′2/ (1 + f (r)) , (2.1)

where f (r) is an arbitrary function of the coordinate r and satisfies the condition
f (r) + 1 > 0. Substituting (2.1) in the other two field equations (1.5) and (1.7)
then gives

2RR̈ + Ṙ2 − f = −κc−1τR2p, (2.2)

1
RR′

(
2ṘṘ′ − f ′

)
+

1
R2

(
Ṙ2 − f

)
= κτ2ρeff , (2.3)
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respectively.
The simplest solution of the above two equations, which satisfies the condition

R′ = 1 > 0, is given by R = r. Using this in Eqs. (2.2) and (2.3) gives f (r) =
κc−1τpr2, and f ′ + f/r = −κτ2ρeffr, respectively. Using the values of κ =
8πG/c2τ2 and ρc = 3/8πGτ2, we obtain

f (r) = (1− Ωm) r2/c2τ2, (2.4)

where Ωm = ρ/ρc. We also obtain

p =
1− Ωm

κcτ3
=

c

τ

1− Ωm

8πG
= 4.544 (1− Ωm)× 10−2g/cm2, (2.5)

e−µ = 1 + f (r) = 1 + τc−1κpr2 = 1 + (1− Ωm) r2/c2τ2. (2.6)

Accordingly, the line element of the Universe is given by

ds2 = τ2dv2 − dr2

1 + (1− Ω) r2/c2τ2
− r2

(
dθ2 + sin2 θdφ2

)
, (2.7)

or,

ds2 = τ2dv2 − dr2

1 + (κτ/c) pr2
− r2

(
dθ2 + sin2 θdφ2

)
. (2.8)

This line element is the comparable to the FRW line element in the standard
theory.

It will be recalled that the Universe expansion is determined by Eq. (1.2),
dr/dv = τe−µ/2. The only thing that is left to be determined is the sign of
(1− Ωm) or the pressure p. Thus we have

dr

dv
= τ
√

1 + κτc−1pr2 = τ

√

1 +
1− Ωm

c2τ2
r2. (2.9)

3 Physical meaning

For Ωm > 1 one obtains

r (v) =
cτ

α
sin α

v

c
, α =

√
Ωm − 1. (3.1)

This is obviously a closed Universe, and presents a decelerating expansion.
For Ωm < 1 one obtains

r (v) =
cτ

β
sinhβ

v

c
, β =

√
1− Ωm. (3.2)

This is now an open accelerating Universe.
For Ωm = 1 we have, of course, r = τv.
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Figure 1. Hubble’s diagram describing the three-phase evolution of the Universe according to
cosmological general relativity theory.

4 The accelerating Universe

From the above one can write the expansion of the Universe in the standard Hubble
form v = H0r with

H0 = h
[
1− (1− Ωm) v2/6c2

]
, (4.1)

where h = τ−1. Thus H0 depends on the distance it is being measured [12]. It is
well-known that the farther the distance, the lower the value for H0 is measured.
This is possible only for Ωm < 1, i.e. when the Universe is accelerating. In that
case the pressure is positive.

Figure 1 describes the Hubble diagram of the above solutions for the three
types of expansion for values of Ωm from 100 to 0.245. The figure describes
the three-phase evolution of the Universe. Curves (1)-(5) represent the stages of
decelerating expansion according to Eq. (3.1). As the density of matter ρ decreases,
the Universe goes over from the lower curves to the upper ones, but it does not
have enough time to close up to a Big Crunch. The Universe subsequently goes
over to curve (6) with Ωm = 1, at which time it has a constant expansion for
a fraction of a second. This then followed by going to the upper curves (7) and
(8) with Ωm < 1, where the Universe expands with acceleration according to Eq.
(3.2). Curve no. 8 fits the present situation of the Universe. For curves (1)-(4) in
the diagram we use the cutoff when the curves were at their maximum.
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5 Theory versus experiment

To find out the numerical value of τ we use the relationship between h = τ−1 and
H0 given by Eq. (4.1)(CR denote values according to Cosmological Relativity):

H0 = h
[
1− (1− ΩCR

m

)
z2/6

]
, (5.1)

where z = v/c is the redshift and ΩCR
m = ρm/ρc with ρc = 3h2/8πG. (Notice that

our ρc = 1.194 × 10−29g/cm3 is different from the standard ρc defined with H0.)
The redshift parameter z determines the distance at which H0 is measured. We
choose z = 1 and take for ΩCR

m = 0.245, its value at the present time (corresponds
to 0.32 in the standard theory), Eq. (5.1) then gives H0 = 0.874h. At z = 1
the corresponding Hubble parameter H0 according to the latest results from HST
can be taken [20] as H0 = 70km/s-Mpc, thus h = (70/0.874)km/s-Mpc, or h =
80.092km/s-Mpc, and τ = 12.486Gyr = 3.938× 1017s.

What is left is to find the value of ΩCR
Λ . We have ΩCR

Λ = ρST
c /ρc, where ρST

c =
3H2

0/8πG and ρc = 3h2/8πG. Thus ΩCR
Λ = (H0/h)2 = 0.8742, or ΩCR

Λ = 0.764.
As is seen from the above equations one has

ΩT = ΩCR
m + ΩCR

Λ = 0.245 + 0.764 = 1.009 ≈ 1, (5.2)

which means the Universe is Euclidean.
Our results confirm those of the supernovae experiments and indicate on the ex-

istance of the dark energy as has recently received confirmation from the
Boomerang cosmic microwave background experiment [21, 22], which showed that
the Universe is Euclidean.

6 Comparison with general relativity

One has to add the time coordinate and the result is a five-dimensional theory of
space-time-velocity. One can show that all the classical experiments predicted by
general relativity are also predicted by CGR. Also predicted a wave equation for
gravitational radiation. In the linear approximation one obtains

(
1
c2

∂2

∂t2
−∇2 +

1
τ2

∂2

∂v2

)
γµν = −2κTµν , (6.1)

where γµν is a first approximation term,

gµν ≈ ηµν + hµν = ηµν + γµν − ηµνγ/2, (6.2)

γ = ηαβγαβ . (6.3)

Hence CGR predicts that gravitational waves depend not only on space and time
but also on the redshift of the emitting source.
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COSMOLOGICAL STANDARD
RELATIVITY THEORY

Theory type Spacevelocity Spacetime
Expansion Tri-phase: One phase
type decelerating, constant,

accelerating
Present expansion Accelerating One of three

(predicted) possibilities
Pressure 0.034g/cm2 Negative
Cosmological constant 1.934× 10−35s−2 Depends

(predicted)
ΩT = Ωm + ΩΛ 1.009 Depends
Constant-expansion 8.5Gyr ago No prediction
occurs at (Gravity is included)
Constant-expansion Fraction of Not known
duration second
Temperature at 146K No prediction
constant expansion (Gravity is included)

7 New developments on dark matter

Using the theory presented here, John Hartnett has recently shown that there
is no need for the existence of dark matter in spiral galaxies. We only give the
references to this work by Hartnett [25, 26, 27].
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CARMELI’S COSMOLOGY: THE UNIVERSE IS SPATIALLY FLAT
WITHOUT DARK MATTER

JOHN G. HARTNETT a

a School of Physics, University of Western Australia, 35 Strirling
Hwy, Crawley, WA 6009 Australia

Abstract

Carmeli’s 5D brane cosmology has been applied to the expanding accelerat-
ing universe and it has been found that the distance redshift relation will fit
the data of the high-z supernova teams without the need for dark matter.
Also the vacuum energy contribution to gravity, ΩΛ indicates that the uni-
verse is asymptotically expanding towards a spatially flat state, where the
total mass energy density Ω + ΩΛ → 1.

1 Introduction

The Carmeli cosmology [3] [1] is as revolutionary in its implementation as it is in
its interpretation. The metric used by Carmeli is unique in that it extends the
number of dimensions of the universe by either one dimension if we consider only
the radial velocity of the galaxies in the Hubble flow or by three if we consider all
three velocity components. We will confine the discussion in this paper to only one
extra dimension as does Carmeli. In that case the line element in five dimensions
becomes

ds2 = (1 + Φ)c2dt2 − dr2 + (1 + Ψ)τ2dv2 (1)

where dr2 = (dx1)2 + (dx2)2 + (dx3)2 and Φ are Ψ potential functions to be
determined. The time t is measured in the observer’s frame. The new dimension
(v) is the radial velocity of the galaxies in the expanding universe, in accordance
with Hubble flow. The parameter τ is a constant at any epoch and its reciprocal
(designated h) is approximately the Hubble constant H0.
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The line element represents a spherically symmetric isotropic universe, and
the expansion is the result of spacetime expansion. The expansion is observed
at a definite time and thus dt = 0. Taking into account dθ = dφ = 0 (isotropy
condition) and equation (1) becomes

−dr2 + (1 + Ψ)τ2dv2 = 0 (2)

2 Phase space equation

The solution of equation (2)(given by equation B.38 and solved in section B.10
in [3] is reproduced here.

dr

dv
= τ

√

1 + (1− Ω)
r2

c2τ2
(3)

The parameter Ω is the mass/energy density of the universe expressed as a
fraction of the critical or “closure” density, i.e. Ω = ρm/ρc where ρm is the
averaged matter/energy density of the universe. In this model,

ρc =
3

8πGτ2
= 10−29gcm−3

Then (3) may be integrated exactly to get

r(v) =
cτ√
1− Ω

sinh
(v

c

√
1− Ω

)
∀Ω (4)

Carmeli has expanded (4) in the limit of small z = v/c and small Ω to get

r = τv

(
1 + (1− Ω)

v2

6c2

)
(5)

⇒ r

cτ
= z

(
1 + (1− Ω)

z2

6

)
∀Ω < 1, z < 1 (6)

Thus we can write the expansion in terms of normalized or natural units r/cτ .
Equation (6) is plotted in fig. 1 for various values of Ω = 1, 0.24 and 0.03. Let us
now re-write (4) in terms of natural units and for z small but arbitrary Ω.

r

cτ
=

sinh(z
√

1− Ω)√
1− Ω

(7)

Equation (7) produces curves almost indistinguishable from (6) so this verifies
that the approximations work well for z < 1.

is flat
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Figure 1. Plot of (6), r/cτ vs redshift (z) for Ω = 1 (broken line), Ω = 0.245 (solid black line)
and Ω = 0.03 (solid grey line).

3 Density verses redshift

Now let us consider what happens to the density of matter as we look back in
the cosmos with redshift, z. It was assumed in fig. 1 that the value of Ω is fixed
for each curve. Carmeli does this also in figure A4, page 134 in ref [3]. However,
more correctly Ω varies as a function of z. For flat space we assume the following
relation to hold,

ρm

ρ0
= (1 + z)3 =

Ω
Ω0

(8)

where ρm is a function of the redshift z, and ρ0 is the averaged matter density of
the universe locally. The parameter Ω0 is then the local averaged matter density
expressed as a fraction of “closure” density. Equation (8) results from the fact
that as the redshift increases the volume decreases as (1 + z)3. Notice at z = 1
that the universe is 8 times smaller in volume and therefore 8 times more dense,
that is, at z = 1, Ω = 8Ω0.

Substituting (8) into (7) we get

r

cτ
=

sinh
(
z
√

1− Ω0(1 + z)3
)

√
1− Ω0(1 + z)3

(9)

Carmeli was able to simulate the form of the 0.1 < z < 1 redshift data of [6]
published in 1998 which announced an accelerating universe following the observa-
tions of [4] and [5]. See figure A4, page 134 in [3]. But in fact he had predicted this
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Figure 2. Plot of (7) with Ω = 1 (broken line) and Ω = 0.245 (solid black line) and (9) with
Ω0 = 0.03 (solid grey line). Note: the top two curves lay on top of each other .

in 1996 [2]. So this means that Carmeli assumed a value of total matter (normal
+ dark matter) density Ω = 0.245, which was the accepted value in 1998.

Now let’s plot (7) with Ω = 0.245 and (9) with Ω0 = 0.03. See fig. 2. This
means that my modified equation (9) with Ω0 = 0.03 gives the same result as
Carmeli’s unapproximated equation (7) with his assumed value of Ω = 0.245, but
this includes dark matter. In fact, comparing (7) and (9), a local matter density
of only Ω0 = 0.03–0.04 is necessary to have agreement. This effectively eliminates
the need for the existence of dark matter on the cosmic scale.

Table I shows the critical data from the comparison at redshifts between z =

the domain of the measurements is much less significant than the fit to the data.
If we assume Ω0 = 0.04 instead of Ω0 = 0.03, since both are within measured
parameters, we get closer agreement at smaller redshifts but worse near z = 1.

Redshift z 0.25 0.5 0.75 1.0
r/cτ from (7) with Ω = 0.245 0.251984 0.515984 0.804591 1.13157
r/cτ from (9) with Ω0 = 0.03 0.252459 0.518935 0.810416 1.13157
% difference with Ω0 = 0.03 0.19 0.57 0.72 0.00
% difference with Ω0 = 0.04 0.17 0.43 0.23 1.28

In any case (7) and (9) really must be modified as z → 1 to allow for relativistic

Table 1.

0.25 and z = 1. It can be seen that the difference between the two equations over

Comparison of equations (7) and (9)

Carmeli’s Cosmology: universe is flat
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Figure 3. Plot of (10) with Ω = 0.245 (solid curve) and (11) with Ω0 = 0.03 (broken curve).
Note: the two curves separate for z > 1.2.

effects, by replacing v/c with the relativistic form v/c = ((1+z)2−1)/((1+z)2+1).
Therefore we can re-write (7) and (9) respectively as

r

cτ
=

1√
1− Ω

sinh
(

(1 + z)2 − 1
(1 + z)2 + 1

√
1− Ω

)
(10)

and

r

cτ
=

1
√

1− Ω0(1 + z)3
sinh

(
(1 + z)2 − 1
(1 + z)2 + 1

√
1− Ω0(1 + z)3

)
(11)

where the varying matter density has been taken into account. In fig. 3, (10)
and (11) are compared. The density approximation may be no longer valid past
z = 1, because it is shown below that the vacuum energy term dominates and the
universe is far from flat.

4 Hubble parameter

Based on the above analysis we can rewrite equation A.54 from [3] for H0 as

H0 = h

(
1− (1− Ω0(1 + z)3)

z2

6

)
∀Ω < 1, z < 1 (12)

which according to equation A.51 from [3] may be further generalized without
approximation, and using the relativistic form of the redshift. Still that equation
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Figure 4. Plot of (12) (solid curve) and (13) (broken curve). Note: the two curves intersect at

z = 1 where H0 = 70kms−1Mpc−1.

may only be approximate for z > 1 because of the density assumptions. However
it becomes

H0 = h
ξ

sinh ξ
(13)

where ξ = (1+z)2−1
(1+z)2+1

√
1− Ω0(1 + z)3.

Both (12) and (13) have been plotted in fig. 4, and for Carmeli’s chosen value
of H0 ≈ 70kms−1Mpc−1 at z = 1 in (12) yields h ≈ 80.2kms−1Mpc−1 (very close
to Carmeli’s value) but (13) yields h ≈ 73.27kms−1Mpc−1. This means without
the small z approximation the value of h is reduced when compared to that in [3].

5 Dark energy

The vacuum or dark energy parameter ΩΛ does not appear explicitly in Carmeli’s
model. It is only by a comparison with F-L models can an assignment be made.
On page 138 of [3] by comparing with the standard model it is shown that ΩΛ =
(H0/h)2, therefore we can write

ΩΛ =
(

ξ

sinh ξ

)2

. (14)

From (14) it is expected that using the unapproximated equation (13) for H0

Carmeli’s Cosmology: universe is flat
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Figure 5. Plot of ΩΛ (broken curve) and total density Ω + ΩΛ (solid curve) as a function of
redshift z. Notice that ΩΛ tends to unity as z tends to zero and the total density tends to the
local matter density Ω0 plus the vacuum energy density ΩΛ.

the value of ΩΛ will be larger than Carmeli’s value using the form of (6). Fig. 5
shows the values for the vacuum energy density ΩΛ (broken curve) and for the
total energy density Ω+ΩΛ (solid curve) as a function of redshift, z. From (14) it
follows that as the universe expands the total density tends to the vacuum energy
density ΩΛ → 1 (since Ω0 → 0). This means a totally 3D spatially flat universe in
a totally relaxed state. For small z the total density becomes

Ω + ΩΛ ≈ (1 + Ω0) + 3zΩ0. (15)

It follows from (15) that for Ω0 = 0.03 at z = 0 the total density Ω+ΩΛ ≈ 1.03.
This value is consistent with Carmeli’s result of 1.009. However, it follows from (8)
and (15) that the universe will always be open, Ω < 1 as it expands. From fig. 5
the total density Ω+ΩΛ is always greater than unity and as the universe expands,
it asymptotically approaches unity—therefore a spatially flat universe devoid of
dark matter.

6 Conclusion

The 5D brane world of Moshe Carmeli has been has been applied to the expanding
accelerating universe and the redshift distance relation has been generalised for
redshifts up to at least z = 1.2. It has been found that if a certain form of the
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dependence of baryonic matter density on redshift is assumed then the resulting
distance-redshift relation will fit the data of the high-z supernova teams without
the need for dark matter. Even though it does not explicitly appear in the Carmeli
spacevelocity metric, the vacuum energy contribution to gravity, ΩΛ tends to unity
as a function of decreasing redshift. Also since the baryonic matter density Ω0 → 0
as the universe expands, the total mass/energy density Ω+ΩΛ → 1. This indicates
that the universe, though always open because Ω < 1, is asymptotically expanding
towards a spatially flat state.
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BLACK HOLES AND THE INFORMATION PARADOX
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Abstract

In electromagnetism, like charges repel, opposite charges attract. A remark-
able feature of the gravitational force is that like masses attract. This gives
rise to an instability: the more mass you have, the stronger the attractive
force, until an inevitable implosion follows, leading to a “black hole”. It
is in the black hole where an apparent conflict between Einstein’s General
Relativity and the laws of Quantum Mechanics becomes manifest. Most
physicists now agree that a black hole should be described by a Schrödinger
equation, with a Hermitean Hamiltonian, but this requires a modification
of general relativity. Both General Relativity and Quantum mechanics are
shaking on their foundations.
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Abstract

We present a theory based upon the treatment of the gravitational field
as a sea of gravity quanta, as defined elsewhere. The resultant model for
the Universe is a static one, like Einstein first saw, with a new feature:
a local shrinking quantum world that completely explains the Hubble red
shift under a new point of view. The presently accepted expansion of the
Universe is interpreted here as an apparent effect, as seen from the Lab sys-
tem of reference. The static Universe has immersed in it a local shrinking
atomic world: a fundamental change in the interpretation of the Hubble’s
observations. The conservation principles (momentum, angular momentum
and energy) can be dealt with under 2 different points of view: local (ap-
parent) and COSMOLOGICAL (”real”). The 2 are in complete agreement
with observation. They are also free of well known contradictions or para-
doxes/incoherencies (i.e. in the Big Bang model). By dealing now with very
well known first principles (Heisenberg, Mach, de Broglie, Weinberg’s rela-
tion) under the same 2 points of view, we arrive at the conclusion that our
new approach is in accordance with the Einstein’s field equations of General
Relativity, and Quantum Mechanics. We consider this to be a promising
first step towards the way of dealing with the gravitational field coherently
both from the General Relativity and from the Quantum Mechanical theo-
ries. The agreement with the present values of the cosmological parameters
is very satisfactory.
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1 Introduction

The point of view of considering the gravitational field as a sea of gravity quanta
[1] has been dealt with elsewhere. The published result there for the mass mg
of this quantum is given by the relation mg = �/(c2t), where t is the age of the
Universe (then today mg is of the order of 2× 10−66 grams).

The first important consequence of the above approach is the need to intro-
duce a new concept, that we call the Mass Boom, [2], [3], [4] and [5]. In essence it
expresses the property of any gravitational mass that, due to the emission of these
gravity quanta, having a negative energy, its mass increases linearly with cosmo-
logical time. This linear dependence between mass and time makes it possible to
identify the mass of the Universe M with the cosmological time t. A philosophical
statement like we are made of time obviously follows and merits a deep reflexion.
Clearly this approach is of the Machean type.

The second important consequence of this approach is that the speed of light
must decrease with time. In fact it can be equated to the inverse of t, c = 1/t
[4] and [5] Then the resultant model for the Universe is a static one, as Einstein
first proposed, and mathematically stated as a(t) = ct = constant, i.e. a constant
cosmological scale factor. The expansion of the Universe, a generally accepted
interpretation of the red shift, is interpreted here as an apparent effect seen from
the laboratory system of reference. The reinterpretation of the Hubble red shift
is that the quantum world is shrinking, an effect coming directly from the time
variation of Planck’s constant [3], proportional to 1/t2 or equivalently to c2.

The work we present here is based upon the above results. We analyze, from
this new point of view, the conservation principles, and solve both: the Schrödinger
equation together with the Einstein cosmological equations, which represents a
first step in the harmonization of Quantum Mechanics and Relativity. The con-
clusion is that the whole approach is very promising and liberates present theories
(like the Big Bang) from contradictions ands paradoxes. The agreement with the
known numerical values for the cosmological parameters, as accepted today, is very
satisfactory.

2 New concepts in the conservation principles

A summary of the new concepts is as follows:

• The mass of the gravity quanta, mg = �/(c2t).

• The Mass Boom effect: any gravitational mass m has a time dependence as
m = constant t (t the age of the Universe).

• The decrease of the speed of light with time, c = 1/t.

• The G = c3 relation, following the Action Principle.
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• Heisenberg and the De Broglie wavelength (perhaps the Compton wavelength
as an alternative), �/mc = constant in the Lab.

• The v/c constancy as seen from the LAB system in order to conserve the
constancy of the relativistic relations at any time.

• The Mass Boom is always present (as long as gravity is present).

• The decrease of the speed of light with time as c = 1/t, always present as
a consequence of the constancy of momentum (in the absence of mechanical
perturbations).

• The apparent interpretation of the cosmological expansion, following the
Hubble’s observations.

• The h = c2 relation (which explains the contraction of the quantum world).

• Weinberg’s relation under a new point of view: not only explains the quan-
tum of mass at the local Lab. It explains the Universe as a quantum black
hole whose mass increases linearly with time.

• The introduction of H = 1, the cosmological Planck’s constant, given by
the relation H = �t2 = 1, which is the essence of the quantum approach to
cosmology.

• The Cosmological Planck’s units using H, instead of �, defining the cosmo-
logical quantum given by the whole Universe (mass, size and time M = t,
and size ct = 1 = 1028 cm with the constant homogeneous tic given by
Planck’s time).

• The fluctuation of the whole Universe, seen as a quantum black hole (cor-
roborated by the Weinberg’s relation using H).

• The determination of the age of the Universe as t = 1061 units of time (the
age of the Universe today) and given by the ratio of Planck’s length at t = 1
(the constant length 1028 cm) and the present value of 10−33 cm).

• The solution to the cosmological Schrödinger equation coupled with the
Einstein’s cosmological equations (harmonization of General Relativity and
Quantum Mechanics).

• The new entropy concept, that includes the gravitational entropy: S =
kM/mg = M = t (for the Universe, [6]).
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3 The solution to the Schrödinger cosmological equation coupled to
the Einstein cosmological equations

The Schrödinger equation can be formulated from a cosmological point of view by
using the ”cosmological” Planck’s constant H = �t2 = 1 (a real constant). The
resultant equation is then:

H2
2m

∂2Ψ
∂x2

+ V Ψ = iH
∂Ψ
∂t

We see that all the terms in this equation vary as 1/t. Then multiplying by
t we have both members of the equation constant, as in the normal quantum
mechanical treatment. The solution is then, assuming the wave function to be
represented by a product of two functions: one depending on space and the other
depending on time only, in the usual way one has:

Ψ(x, t) = const (sinx) t2

On the other hand the Einstein cosmological equations have the solution a(t) =
t2 [5] which coincides with the above time dependence, as seen from the Lab
reference system. Hence we have the same time dependent solution for both:
General Relativity and Quantum Mechanics.

4 Conclusions

The main implications of this work are: a change in basic paradigms, perhaps the
most important one is the new explanation for gravitation, in quantum mechanical
terms, and coherent with general relativity. Also a new approach to the entropy
concepts, in particular to the Hawking-Bekenstein treatments, where the entropy
of a black hole is here defined as linear with mass [7]. A return to the Einstein
initial cosmological model is the most significant change in the formulation of
cosmological models.
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Abstract

If Newtonian gravitation is modified to use surface-to-surface separation be-
tween particles, it can have the strength of nuclear force between nucleons.
This may be justified by possible existence of quantum wormholes in par-
ticles. All gravitational interactions would be between coupled wormholes,
emitting graviton flux in proportional to particle size, allowing for the point-
like treatment above. When the wormholes are 1 Planck length apart, the
resultant force is 1040 times the normal gravitational strength for nucleons.
I explain the stability of the nucleus by predicting that the force mediated
by pions is repulsive, not attractive.

1 Introduction

Newtonian gravity encounters issues for microscopic dimensions and cannot ex-
plain the nuclear binding force. Experimentalists and string theorists face a yet
incomplete task of detecting and incorporating the spin 2 graviton into a fully
quantized and renormalized theory. If we use the surface-to-surface separation be-
tween these particles to quantify the gravitational attraction instead of the center-
to-center separation, at small separations relative to the particle radii the force
between these particles grows much larger than classical gravity, and may resolve
the above issues. The first step in the road map suggested by Richard Feynman
for consistency in our physical theories is to see if Newton’s law can be modified
to be consistent with Einstein’s law and can be further modified to be consistent
with the uncertainty principle [4].

SHANTILAL G.GORADIA
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2 Modification of the Inverse Square Law

As an example, for two coupled nucleons (Fig. 1a), I chose the Planck length
L = (Gh/c3)0.5 as the surface separation, as it is the minimum possible spatial
distance that makes any sense in physics. Assuming zero separation distance would
imply that the two particles are joined to form one particle, losing their distinctions
as separate particles. The diameter of the nucleon is about 1 fm (10−15 meters).
The Newtonian gravitational force is then

FN = Gm2/D2, (1)

where D is the center-to-center distance, ∼ 1 fm. If we select the surface-to-surface
separation instead, the force would become

FP = Gm2/d2, (2)

with d = L = 10−20 fm. The ratio of these two forces is

FP

FN
=

D2

d2
= 1040, (3)

which is also the strength of the proposed gravity relative to Newtonian grav-
ity. As the nucleons are separated, D/d shrinks, and FP rapidly approaches FN .
Mathematically,

lim
D→∞

D

d
= 1. (4)

A similar analysis can be made of the quark-lepton interaction (Fig. 1b).
Nucleons are responsible for over 99 percent of gravity, therefore they are the

primary focus of this paper. For nucleons, I recover Newtonian gravity at practi-
cally 1000 fm. This modification yields a force with high intensity at short range,
rapidly falling off to a very low intensity at long range. The values of a field and
its rate of change with time are like the position and velocity of a particle. This
modification meets the uncertainty principle requirement that the field can never
be measured to be precisely zero.

“Einstein, in a paper written in 1919, attempted to demonstrate that his grav-
itational fields play an important role in the structure and stability of elementary
particles. His hypothesis was not accepted because of gravity’s extreme weakness”
[10]. While Einstein’s attempt is worth mentioning, it is not the foundation of
my theory. Einstein could be wrong, but it seems he may not be. “It has been
proposed that the gravitational constant inside a hadron is very large, ∼ 1038

times the Newtonian G” [10]. This “strong gravity” inside the hadron is similar to
my proposed modification, but in my modification, instead of needing to change
G itself, I change the distance measurement and get the same result. My theory
does not create a conflict with the color force theory either. Strong gravity is con-
sistent with string theory. The short range forces are weakened at long range by
a high order of magnitude. This makes other attributes of the short range forces,
infinitesimal at long range.
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Figure 1. Pictorial view of gravitational interaction showing surface and center separations (not

to scale). L is the Planck length, 10−20 fm. a, Two nucleons at minimum separation; b, A
quark and a lepton, also at minimum separation. The standard inverse-square law would use
the center-to-center distances to calculate the force between the particles; using the surface-to-
surface distance yields a much stronger force for these separations, equal to the relative strengths
of the strong and weak nuclear forces, respectively.

One may question the mathematically simple application of the Planck scale
to a problem where the relevant distances seem to be fm. After I first published
my findings in early 1999, Frank Wilczek wrote a series of articles [13], explaining
how these scales can be reconciled and provided responses. While this may seem
simplistic, it seems to be mathematically valid, and frequently significant problems
can be solved simply in the end, as also illustrated by Morris and Thorne [8].
Complexity in physics lies in the abstraction of simplicity. Classical centers of
shapes and therefore surfaces, though used here only for intuitive reasoning are
invoked in nuclear coupling constants by implicit comparison to Newtonian gravity
and in other descriptions in modern physics. My model is very consistent and
therefore suggestive, however it does not reconcile the fact that nucleons overlap.
Thanks are due to Gerald ’t Hooft for this comment. Quantum wormholes, as
currently theorized, may resolve this issue and give a mathematical foundation to
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my model. If quantum wormholes do not resolve the issue, we face a challenge to
investigate some other verifiable quantum entity to explain this phenomenon.

3 Quantum Wormhole Connection

I postulate that each nucleon has a quantum mouth, potentially matching the
mouth of a quantum wormhole [3]. The existence of quantum wormholes was ex-
amined by Visser [12]. The wormhole’s mouth then represents the entire mass of
the particle and propagates its 1/r potential to the rest of the universe. All gravi-
tational interactions become interactions between these wormholes. Radiation by
nucleons would consist of energy being emitted by the mouth of the wormhole. The
high concentration of bosons, whether gravitons or photons, is consistent with the
exclusion principle. This would justify a quantum source of gravity. The mouth
emitting the gravitational radiations does not have to be at the surface, allowing
the nucleons to overlap. This may sound like a radical approach, but it is not.
The direction of my proposal coincides with that in the particle related article by
Einstein and Rosen, introducing what is now known as Einstein–Rosen bridges [1].
The abundance of Planck-length size wormholes required could have evolved from
perturbations in the initial big-bang density.

Stable wormholes require “exotic”, negative energy matter. “... it is not pos-
sible to rule out the existence of such material; and quantum field theory gives
tantalizing hints that such material might, if fact, be possible [8].” The stability
of wormholes is on firmer grounds now. “...the theoretical analysis of Lorentzian
wormholes is “merely” an extension of known physics-no new physical principle or
fundamentally new physical theories are involved [11].” Literature search reveals
no detection of any central force within nucleons, raising a question about the exis-
tence of gravitons within nucleons. Fig. 2 shows the mental picture of the graviton
flux from nucleons with some background data. Richard Feynman seems to have
investigated transfusion of two particles into gravitons [2], but not in this context.
The structure of the quantum space-time is foamy [6]. The potential conversion
of two gluons into one graviton and vice versa would be debatable. However, such
foamy structure may give a green light for some other form of a particle mech-
anism. Since the spin-dependent nuclear force could be positive or negative, my
theory maybe suggestive of photon-like particles as mediators of gravity.

Some long range forces are potentially simple, cumulative long range manifes-
tations of their short range counter parts and vice versa with their intermediate
range immeasurable by microscopic or macroscopic means. My model showing
the strong gravity as a function of D2 instead of particle mass (logical function of
D3) is consistent with the holographic principle. This is analogous to entropy’s
proportionality to the horizon area or D2. Mach principle may imply that the
universe spinning in the reference frame of nucleons may subject the nucleons to
some form of gravity, not residual color force. As long as the observable char-
acteristics of the proposed wormholes are stable, their stability and types are of
secondary importance because the coupling constants are averages of observations.
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Figure 2. Mental image of nuclear interactions via quantum wormholes. The graviton flux would

be proportional to the mass of the interacting particle, yielding couplings of 1040 for nucleons,
1034 for lighter quark-lepton pairs and ∼ 1 for point-like leptons.

The understanding of the coupling constants lies at the heart of our understanding
other important issues. “Using the concept of strong gravity, one can show the
stability and structure of elementary particles, which could not be achieved by
weak gravity” [10]. The sudden decrease in nuclear potential near the surfaces
of nucleons may be a result of pion intervention pushing the nucleons apart as
needed to stabilize the nucleus against the potential collapse by strong gravity.
Pions might not be pulling the nucleons together as originally theorized. Since
pions are observed to be spin-zero and their range matches the size of nuclei, this
possibility cannot be ruled out.

A toy bird thrown in the air follows deterministic path, but a real bird has a
soul. Therefore, it does not follow a deterministic path. A particle does likewise.
This raises a question: does a particle have a soul? Per ancient Hindu Vedas
(Katha Upanishad 1.2.20), a particle has a particle-soul (anu-atma), and it is
also connected to the Supreme, which is omnipresent (param-atma). I see some
qualitative consistency between this Vedic doctrine and my proposal based on a
potentially justifiable speculation that anu-atma and param-atma are analogous
to particle and normal space-time respectively, connected by some quantum entity.

4 Double Slit Experiment

Per my theory, in a two-slit experiment (Fig. 3), the network of geodesics down-
stream of the slits would depend upon whether both slits are open or only one
of them is open, not upon the number of slits used for shooting the photons at
the same time. Strong gravity at the edges of the slits would strongly impact
the network of geodesics downstream geodesics. It does not matter whether the
experiment shoots the photons through one slit or both. The screen pattern is a
function of the network of geodesics.
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Figure 3. Depiction of double slit experiment. As shown, the screen pattern is independent of
whether the left, right, or both slits are used, as long as the slits are open.

5 The Uncertainty Principle

If one assumes the uncertainty created for the information crossing the quantum
wormholes as the Planck time multiplied by the energy of the wormhole (Planck
energy in this specific case), the product of the two closely equals the Planck
constant used in the uncertainty principle as shown below, potentially supporting
my postulation.

∆E = (1019GeV × 109eV/GeV )/(1.6× 1019eV/J) = 0.6× 109J (5)

∆t = 10−43s (6)

Multiplying the above equations

∆E ×∆t = 0.6× 1019J × 10−43s = 0.6× 10−34 · s. (7)

This yields Heisenburg’s Uncertainty, which is

∆E ×∆t ≥ 0.5× 10−34J · s 
 �/2 (8)

In my theory, I do not have to express the range of nuclear force as “short” with
an unanswered question as to precisely how short. The difference between the two
large dynamic numbers of proposed strong gravity and the repulsive nuclear force
manifests into observed short range, short enough to fix the size of the nucleus.
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6 The Early Universe

If God created the universe from nothing, my theory shows that mass energy on
one side of the throat of the quantum wormhole is equal to the gravitational field
energy on the other side of its throat, both canceling each other. This would imply
that the gravitational field is negative energy considering that mass is positive
energy. The appearance of binding energy as mass defect in nuclear engineering
calculations may lead to justify the binding energy (result of strong gravity) as
negative energy. This is consistent with inflationary universe, no matter how big
is the universe. “There is nothing known that places any limit on the amount of
inflation that can occur while the total energy remains exactly zero [5].”

7 Prediction

My model provides a consistent, intuitive and simplistic, but mathematical expla-
nation of the observed relative values of coupling constants, something no other
theory has done. If a theory explains observations, it need not predict. Experi-
mentally, my theory may be explored by a careful examination of the nuclear force
at distances above 10 fm. Recently published test results verified the gravitational
inverse square law down to 218µm [7]. The test results do not verify the higher
dimensional theories that motivated the test, but they are not in conflict with my
theory, as at these separations my modified force should be indistinguishable from
Newtonian gravity. The generalized equation in the conclusion predicts a string
coupling constant of (10−35)2 = 10−70.

My theory does away with the need to renormalize gravity, since the value of
“r” is never zero.

8 Conclusion

In summary, in the early part of last century, when the nuclear force was declared
to be a separate force, the Planck length and its implications were not well under-
stood. Planck’s system of fundamental units was considered heretical until came
the proposal by Peres and Rosen [9]. The weakness of gravity was unquestioned.
Therefore, it was impossible to explain strong gravity force in terms of Newtonian
gravity and Einstein’s view was undermined. In light of my article this issue needs
to be revisited. My consistent results show that strong gravity creates an illusion
of a different force between nucleons. Mathematically, the strong force coupling
constant Cs = D2, where D = nucleon diameter in Planck lengths.
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Abstract

We present a generalization to the N -dimensional case for the nucleation
coefficient of a spherical p-brane, separating two (anti-)de Sitter spacetimes.
We use a semiclassical approximation based on the analytical continuation
to the Euclidean sector of a suitable effective action describing a p-brane in
General Relativity.

1 Introduction

Vacuum decay can be seen as a phase transition in spacetime and a long time ago
the relevance of gravity for the process was studied [1]. The standard treatment
of this process makes use of a scalar field, known as the inflaton, that drives
the transition between the false and true vacuum states. This situation can be
described by instanton calculations as, for instance, the Coleman-de Luccia and
the Hawking-Moss instantons.

Here we present a different approach, generalizing past works of one of the
authors [2, 3]. In particular we are going to use (anti-)de Sitter solutions in
N spacetime dimensions. In this background we put a spherically symmetric
(N−1)-brane that splits spacetime into two domains. The system can be described
by Israel junction conditions [4], which provide the equations of motion for the
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timelike brane. The associated solutions are of two kinds: the first one consists
of a degenerate brane of zero radius, while the second one consists of a bounce
brane collapsing from infinity towards a finite nonzero turning point, and then
re-expanding. To model vacuum decay we consider the tunnelling from the zero
radius solution to the bounce solution. The corresponding physical picture is
the following: a very small brane1 inside a de Sitter geometry with cosmological
constant Λ+, due to quantum effects, has a non-vanishing probability to tunnel into
a brane, containing a de Sitter spacetime with a different cosmological constant
Λ−. This represents the formation of a bubble of a different vacuum phase that
then expands to infinity, realizing a transition of the whole spacetime geometry.
We can obtain an expression for the probability of such a process using an effective
action for this system.

2 Classical Dynamics

The stress-energy tensor for a distribution of matter localized on an hypersurface
Σ (the p-brane we mentioned above) can be written in the form Sµνδ(η), where
δ is a Dirac delta, and η can be thought as a transverse coordinate to Σ. In N -
dimensional General Relativity it is possible to write down the equations of motion
for this infinitesimally thin distribution of matter by splitting Einstein equations
in the tangential and transverse part (see [4] for the 4-dimensional case; it can be
extended to higher dimensions). Israel junction conditions, then, are

[Kij − hijK] ∝ Sij ,

where Kij and K are, respectively, the extrinsic curvature tensor and its trace and
hij is the induced metric on Σ. Here we introduced the standard notation [A] =
limη→0+{A(η)−A(−η)}. Israel junction conditions describe how the (N−1)-brane
is embedded in the (in principle different) geometries of the two spacetime domains
that it separates. For our purposes, we are going to write down these equations
for a spherical brane with surface stress energy tensor Sij = khij separating two
de Sitter spacetimes. This can be done explicitly in terms of the radius R of the
brane2. Then Israel junction conditions reduce to the single differential equation

H(R, Ṙ) =
[
ε

√
Ṙ2 + f(R)

]
R(N−3) − kRN−2 = 0; (1)

k is the constant tension of the brane, ε are signs to be determined by the equation
itself [5], and f(R) = 1 − ΛR2 is the metric function appearing in the static line

1In the mathematical treatment of the classical situation the brane has, in fact, zero radius;
from the physical point of view, with quantum gravity in mind, we can imagine this brane as a
result of zero point quantum fluctuations.

2We are going to consider R as a function R(τ) of the proper time τ of an observer sitting on
the brane and denote by an overdot the derivative with respect to τ .
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element adapted to the spherical symmetry for the (anti-)de Sitter spacetime3.
For suitable values of the cosmological constants equation (1) has two types of
solutions: the first is R ≡ 0, while the second represents a brane collapsing and
re-expanding from and to infinity. For our purpose it is also important to note
that equation (1) can also be obtained by an effective action, which in the N -
dimensional case can be written as

Seff. =
∫




RN−3Ṙ



χth−1



 Ṙ
√

Ṙ2 + f(R)







−H(R, Ṙ)





dτ, (2)

with the additional constraint H = 0 that has to be imposed on the solutions of
the corresponding Euler-Lagrange equation [5].

3 Tunnelling

The action (2) is crucial in our semiclassical quantization program, since it can be
used to quantize the system via a path integral approach. Here we are going to
consider the tunnelling process from the R ≡ 0 solution to the bounce solution,
within the saddle-point approximation. This gives the possibility to estimate the
following approximated amplitude

As.p. ∝ exp
(
−S

(e)
eff.

)
, (3)

where S
(e)
eff. is the Euclidean effective action obtained by analytically continuing

the action (2) to the Euclidean sector. In order to simplify some expressions, we
introduce the following adimensional quantities:

x = kR , t = kτ , α =
Λ− + Λ+

k2
, β =

Λ− − Λ+

k2
.

Moreover it is a well known result that the adimensional version of the equation
of motion (1) can be cast in the following form

(x′)2 + V (x) = 0,

where the prime now denotes the derivative with respect the adimensional time t.
The potential V (x) is given by

V (x) = 1− x2

x2
0

, (4)

3Since the compact notation could be misleading, we remember that we have two spacetimes
with different cosmological constants Λ± and, thus, two metric functions f±(R); please, also
remember the meaning of the square brackets defined above.
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where x0 = 2/
√

(1 + 2α + β2) is the adimensional turning radius, provided that
the argument of the square root is positive. If this condition holds, there is a
bounce trajectory, otherwise we have only the x = 0 solution. Starting from
(2), (3) and (4) it is possible to evaluate the Euclidean action on the tunnelling
trajectory, i.e on the segment [0, x0]. The final result can be expressed as

S
(e)
eff =

x
(N−3)/2
0

2(N − 2)k(N−2)
[(β − ε)J(N,Cσ)] , (5)

where J(N, p) is a function of the dimension of spacetime, N , and of

Cσ = 1−
(

β − σ

2

)2

x2
0;

with
σ± = ±1.

A detailed description of the functional form of J(N, p) is beyond the scope of
this contribution and can be found elsewhere [7]. We just remark one important
feature of it, namely that J(N, p) is defined only when p < 1, a condition that,
according to the form of Cσ, is always satisfied in our case.

4 Conclusions

In this contribution we have summarized how it is possible to compute the tun-
nelling amplitude for a spherical p-brane: the process, in view of our short discus-
sion in the introduction, can be used to model the transition between two different
vacuum phases, one being the de Sitter spacetime with cosmological constant Λ+

and the other being the inflating inside of the p-brane, which is characterized by
the cosmological constant Λ−. This computation was already performed in four
dimensions in the seminal work by Coleman and de Luccia [1] and that result
was reproduced in [3]. Here we have carried out its generalization to arbitrary
dimensions (referring to [7] for a more detailed analysis).
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SUPER-STRONG INTERACTING GRAVITONS AS A MAIN
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Abstract

The basic cosmological conjecture about the Dopplerian nature of redshifts
may be false if gravitons are super-strong interacting particles. A quantum
mechanism of classical gravity and the main features of a new cosmological
paradigm based on it are described here.

If we assume that the background of super-strong interacting gravitons exists, then
the classical gravitational attraction between any pair of bodies arises due to a Le
Sage’s kind mechanism. A net force of attraction and repulsion will be non-zero if
one suggests that graviton pairs exist and these pairs are destructed by collisions.
This pairing is like to the one having place in a case of superconductivity. The
portion of pairing gravitons, 2n̄2/n̄, a spectrum of single gravitons, f(x), and
a spectrum of subsystem of pairing gravitons, f2(2x), are shown on Fig. 1 as
functions of the dimensionless parameter x ≡ �ω/kT (for more details, see [1]).

By the Planckian spectra of gravitons we find for the Newtonian constant [1]:

G =
2
3
·D2c(kT )6

π3�3
· I2 (1)

where I2 = 2.3184 · 10−6, T is an effective temperature of the background, and
D is some new dimensional constant. It is necessary to accept for a value of this
constant: D = 1.124 · 10−27m2/eV 2.

a

a
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Figure 1. The portion of pairing gravitons, 2n̄2/n̄, (solid line), a spectrum of single gravitons,
f(x), (dashed line), and a spectrum of graviton pairs, f2(2x), (dotted line) versus the dimension-
less parameter x.

In a presence of the graviton background, which is considered in a flat space-
time, an energy of any photon should decrease with a distance r, so we have for a
redshift z [2]: z = exp(ar)− 1, where a = H/c with the Hubble constant:

H =
1
2π

D · ε̄ · (σT 4), (2)

where ε̄ is an average graviton energy, σ is the Stephan-Boltzmann constant.
It means that in this approach the two fundamental constants, G and H, are

connected between themselves:

H = (G
45

32π5

σT 4I2
4

c3I2
)1/2, (3)

with I4 = 24.866. Using the known value of G, one can compute:H = 3.026 ·
10−18s−1 = 94.576 km · s−1 ·Mpc−1 by T = 2.7K.

From another side, an additional relaxation of any photonic flux due to non-
forehead collisions of gravitons with photons leads to a luminosity distance DL :

DL = a−1 ln(1 + z) · (1 + z)(1+b)/2 ≡ a−1f1(z), (4)

where b = 3/2 + 2/π = 2.137.
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Figure 2. The ratio of observed to theoretical functions f1obs(z)/f1(z) (dots); observational data
are taken from Table 5 of [3]. If this model is true, the ratio should be equal to 1 for any z (solid
line).

This function fits supernovae data well for z < 0.5 [4]. It excludes a need of
any dark energy to explain supernovae dimming. If one introduces distance moduli
µ0 = 5 log DL +25 = 5 log f1obs +c1, where c1 is a constant, f1obs(z) is an observed
analog of f1(z), we can compute the ratio f1obs(z)/f1(z) using recent supernovae
observational data from [3] (see Fig. 2).

In this approach, every massive body would be decelerated due to collisions
with gravitons [2] that may be connected with the Pioneer 10 anomaly [5].
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GENERALIZED COSMOLOGICAL CONSTRAINTS ON
NEUTRINO OSCILLATIONS - RELAXED OR STRENGTHENED
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Abstract

I discuss cosmological constraints, based on BBN production of He-4, on
electron-sterile neutrino oscillations proceeding after electron neutrino freeze-
out. The general case of sterile neutrino state partially filled at the onset
of oscillations is discussed 0 < δNs < 1. It is shown that δNs �= 0 has two-
fold effect on He-4: (a) it enhances the energy density, increasing the over-
production of He-4 and strengthening BBN constraints on oscillations and
(b) it suppresses the kinetic effects of oscillations on BBN, especially neu-
trino spectrum distortion, thus decreasing He-4 overproduction and relaxing
BBN constraints.

1 Introduction

Evidences for neutrino oscillations were obtained by atmospheric, solar and ter-
restrial experiments. Solar and atmospheric neutrino anomalies were resolved in
terms of neutrino oscillations, flavour oscillations being the dominant channel.
Experimental constraints on the impact of the sterile neutrino νs in the neutrino
anomalies were obtained.

Stringent constraints on active-sterile oscillations were obtained also from Big
Bang Nucleosynthesis (BBN) considerations [1, 2, 3, 4, 5, 6]. For more details
concerning BBN constraints see refs. [7, 8]. LMA and LOW active-sterile solar
oscillation solutions and atmospheric active-sterile solutions were excluded by BBN
many years before global analysis of experimental neutrino data pointed to the
preference of flavour oscillations for solving the neutrino anomalies.
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Update of BBN constraints on oscillations with δm2 > 10−6 eV2, assuming
equilibrium neutrino energy spectrum, is available in refs. [9, 10]. In the nonreso-
nant case they can be approximated by:

(δm2
νeνs

/eV2) sin4 2θνeνs = 3.16× 10−5(δNν)2

(δm2
νµνs

/eV2) sin4 2θνµνs = 1.74× 10−5(δNν)2

In case of oscillations effective after νe decoupling, i.e. (δm2/eV2) sin4 2θ <
10−7, the re-population of active neutrino becomes slow and the spectrum dis-
tortion of νe is considerable. For that nonequilibrium oscillations case BBN con-
straints were discussed in [5, 6]. The analytical fits to the exact constraints,
corresponding to 3% He-4 overproduction, are:

δm2(sin2 2ϑ)4 ≤ 1.5× 10−9eV2 δm2 > 0
|δm2| < 8.2× 10−10eV2 δm2 < 0, large ϑ,

All these BBN constraints assumed initially zero sterile state δNs = 0 before
oscillations. δNs = nνs

/nνe
and nνe

is the equilibrium number density of nνe
.

However, νs may be present at BBN epoch as is predicted by different models.
Here we discuss BBN with neutrino oscillations in the case δNs 
= 0. We

present the results of the analysis of δNs 
= 0 effects on oscillations and on BBN.
We provide generalized BBN constraints on νe ↔ νs oscillations for 0 < δNs < 1.

2 BBN with νe ↔ νs and non-empty initially νs

4He is abundantly produced (25% by mass), precisely measured (∼ 3% uncer-
tainty) and calculated (∼ 0.1% uncertainty) and has simple post-BBN chemical
evolution. Besides it is very sensitive to the kinetics of the nucleon transitions be-
fore the nucleosynthesis epoch, and therefore, as far as nucleons freezing depends
strongly on the expansion rate, it is considered the best speedometer.

Hence, 4He is the preferred primordial element for probing non-standard phys-
ics.

4He yield essentially depends on the freezing of the reactions: νe +n ↔ p+ e−,
e+ + n ↔ p + ν̃e, defined by the equilibration of expansion rate H ∼ geffT 4 and
the weak rate Γw ∼ GF E2N3

ν : Γw ∼ H. The mass fraction of He-4 is roughly
estimated as:

Yp ∼ 2(n/p)f/(1 + n/p)f exp(−t/τn)

where the frozen neutron-to-proton ratio is to a good approximation given by
(n/p)f ∼ exp{−(mn −mp)/Tf}. It depends on relativistic degrees of freedom at
BBN, geff = 10.75 + 7/4 δNs, which enter through H, on the electron neutrino
spectrum and on the neutrino-antineutrino asymmetry through Γw.
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Active-sterile oscillations exert two types of effects on BBN:

• dynamical effect

Through bringing an additional neutrino type into equilibrium they increase
the expansion rate [1] H(t) ∼ g

1/2
eff , leading to earlier n/p-freezing, Tf ∼ (geff )1/6,

and 4He overproduction. This effect gives up to 5% 4He overproduction.
Hence, initially present δNs 
= 0 increases the dynamical effect of oscillations,

as far as it further increases geff and exaggerates He overproduction.

• kinetic effect due to distortion of the electron neutrino spectrum

Oscillations between non-equilibrium νs, δNs 
= 1, and active neutrinos lead
to deviations from the equilibrium ν spectrum because oscillation rate is energy
dependent Γ ∼ δm2/E [2].

The distortion leads both to a depletion of the active neutrino number densities
Nν and a decrease of the Γw, finally overproducing 4He. This kinetic effect in case
of oscillations effective after ν decoupling can be as strong as δNs = 6! [11]

Larger δNs decreases the spectrum distortion, and hence, it decreases the os-
cillations kinetic effect.

In conclusion, δNs 
= 0 has two-fold effect on He-4: (a) it enhances the energy
density, increasing the overproduction of He-4 and strengthening BBN constraints
on oscillations and (b) it suppresses the kinetic effects of oscillations on BBN,
especially neutrino spectrum distortion, thus decreasing He-4 overproduction and
relaxing BBN constraints.

The figure shows the influence of different effects on helium-4 production Yp.
The dotted curve present the kinetic effect, the dashed curve – the dynamical
effect of initially present νs. There is an interplay between the two effects on He
due to the dependence of the kinetic effect on the initial population of νs.

3 BBN constraints on oscillations

Numerical analysis of He-4 production in the presence of νe ↔ νs, effective after
neutrino decoupling, in the general case of partially filled initially sterile neutrino
state Yp(δNs, δm

2, sin2 2ϑ) was provided in ref. [12].
Cosmological constraints on oscillation parameters corresponding to δYp/Yp =

3% overproduction and different initial δNs were calculated in ref. [13]. They
strengthen with the increase of δNs.

BBN constraints corresponding to δYp/Yp = 5% and different νs populations
were calculated in ref. [14]. These constraints relax with the increase of δNs.
The constraints for δNs = 0.5 and δNs = 0 and different He overproduction are
illustrated in the figure 2. The two uppermost contours present the constraints for
δYp/Yp = 5% overproduction, the two lower curves – for δYp/Yp = 3%.

In conclusion BBN constraints may be either strengthened or relaxed with the
increase of the initial population of the sterile state, depending on the level of the
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Figure 1. The solid curve presents frozen neutron number density relative to nucleons Xf
n =

Nf
n/Nnuc as a function of the sterile neutrino initial population, at δm = ±10−8 eV2, sin2 2θ = 1.

The dotted curve presents the kinetic effect, while the lower dashed curve presents energy density
increase effect. The uppermost long dashed curve corresponds to the total effect when the
decrease of the kinetic effect is not accounted for, i.e. in case the effects were additive.

Figure 2. The lower dashed curve presents BBN constraints corresponding to 3% He overpro-
duction and δNs = 0, while the lowest curve presents the strengthened constraints due to higher
δNs, namely δNs = 0.5. The upper curve gives the relaxed 5% He overproduction contour
corresponding to δNs = 0.5, while the upper dashed curve corresponds to 5% He and δNs = 0.
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He overproduction. The results are important for studying neutrino properties,
for defining the role of the sterile neutrino in resolving the solar and atmospheric
neutrino anomalies, for constraining models the presence of sterile neutrinos during
BBN epoch.
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ATTRACTIONS OF AFFINE QUANTUM GRAVITY
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Abstract

All attempts to quantize gravity face several difficult problems. Among these
problems are: (i) metric positivity (positivity of the spatial distance between
distinct points), (ii) the presence of anomalies (partial second-class nature of
the quantum constraints), and (iii) perturbative nonrenormalizability (the
need for infinitely many distinct counterterms). In this report, a relatively
nontechnical discussion is presented about how the program of affine quan-
tum gravity proposes to deal with these problems.

1 Introduction and Survey

The program of affine quantum gravity differs from that of string theory or loop
quantum gravity: specifically, it differs in the insistence on a spatial metric ten-
sor that is strictly positive definite; in the simultaneous and uniform treatment
of both first- and second-class operator constraints; in dealing with nonperturba-
tive renormalizability; and in maintaining a close connection with the motivating
classical (Einstein) gravity theory. A suitable realization of these principles is
most readily presented within a formalism that is, for the most part, generally
unfamiliar to many readers. The purpose of this paper is to provide a relatively
simple introduction to several concepts used to study quantum gravity from this
new perspective.

a

a
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2 Reproducing Kernel Hilbert Spaces

This important idea can be readily explained. Let |l〉 ∈ H, for all l ∈ L, denote a
set of states (chosen to be normalized, but that is not a requirement) that span
the separable Hilbert space H of interest. In addition we assume that (when it is
finite dimensional) the space L is locally equivalent to a Euclidean space, and that
the states |l〉 are continuously labeled by the (multi-dimensional) labels l. We will
refer to the set of states {|l〉} as coherent states.

Since the coherent states span H, it follows that two elements of a dense set of
states may be given by

|ψ〉 = ΣJ
j=1αj |lj〉 , J <∞ ,

|φ〉 = ΣK
k=1βk |l(k)〉 , K < ∞ .

As functional representatives of these abstract vectors we introduce

ψ(l) ≡ 〈l|ψ〉 = ΣJ
j=1αj 〈l|lj〉 ,

φ(l) ≡ 〈l|φ〉 = ΣK
k=1βk 〈l|l(k)〉 .

Finally, as the inner product for these two elements we choose

(ψ, φ) ≡ ΣJ,K
j,k=1α

∗
j βk 〈lj |l(k)〉 = 〈ψ|φ〉 .

This pre-Hilbert space is completed by adding the limit points of Cauchy se-
quences. The result is a functional representation composed entirely of continuous
functions representing the separable Hilbert space H.

Such spaces are called reproducing kernel Hilbert spaces because if J = 1 and
α1 = 1, then it follows that ψ(l) = 〈l|l1〉 and so

(ψ, φ) = ΣK
k=1βk 〈l1|l(k)〉 = φ(l1) ,

a result which “reproduces” the vector φ(l). Thus the coherent state overlap 〈l|l′〉
serves as the “reproducing kernel” for this space.

Observe that all properties of this representation are determined by the jointly
continuous coherent state overlap function 〈l|l′〉. Indeed, any continuous function
of two (sets of) variables K(l; l′) serves to define a reproducing kernel Hilbert space
provided K satisfies the condition

ΣJ,J
j,k=1α

∗
j αk K(lj ; lk) ≥ 0

for all possible complex choices of {αj} and finite J .

3 Metric Positivity

Distinct points in a space-like 3-dimensional manifold have a positive separation
distance. For a small coordinate separation dxa 
≡ 0, that distance, as usual, is



J.R. Klauder 63

given by ds2 = gab(x)dxadxb > 0. We require that the associated quantum oper-
ator ĝab(x) also satisfy metric positivity such that ĝab(x)dxadxb > 0 in the sense
of operators for all nonvanishing dxa. Moreover, we insist that ĝab(x) becomes self
adjoint when smeared with a suitable real test function. In canonical quantization
one chooses the canonical (ADM) momentum πab(x) as the field to promote to
an operator, π̂ab(x). However, since the momentum acts to translate the metric,
such a choice is inconsistent with the preservation of metric positivity. Instead, it
is appropriate to choose the mixed valence momentum field πa

c (x) ≡ πab(x)gbc(x)
to promote to an operator π̂a

c (x). This choice is dictated by the relation

ei
∫

γa
b (y) π̂b

a(y)d3y ĝcd(x) e−i
∫

γa
b (y) π̂b

a(y)d3y = (eγ(x)/2 )e
c ĝef (x) (eγ(x)/2 )f

d ,

a relation that manifestly preserves metric positivity.
The full set of kinematical commutation relations is given by [1]

[π̂a
b (x), π̂c

d(y)] = 1
2 i[δc

b π̂
a
d(x)− δa

d π̂c
b(x)] δ(x, y) ,

[ĝab(x), π̂c
d(y)] = 1

2 i[δc
aĝbd(x) + δc

b ĝad(x)] δ(x, y) ,

[ĝab(x), ĝcd(y)] = 0 .

These are the so-called affine commutation relations appropriate to the affine fields
π̂a

c (x) and ĝab(x), both of which may be taken as self adjoint when smeared with
real test functions. These commutation relations provide a realization of the group
IGL(3, R), and as such they are more in the spirit of a current algebra than tradi-
tional canonical commutation relations.

It is important to add that by choosing π̂a
c (x) as the partner field to go with

ĝab(x), it follows that the momentum field π̂ab(x) does not make an operator when
smeared but only a form.

4 Quantization of Constraints

There are several schemes in common usage to quantize canonical systems with
constraints. Traditionally, these schemes treat first- and second-class constraints
differently. Gravity is not a traditional gauge theory since the set of classical
constraints form an open first class system, which means that the Poisson brackets
among the constraints have the form of a Lie algebra except that the structure
constants are actually structure functions depending on the canonical variables.
On quantization, these structure functions become operators that do not commute
with the constraints, and as a consequence, the quantum constraints are partially
second class in character. As noted above this usually entails a separate procedure
for their analysis.

However, the recently introduced projection operator method [2] to incorporate
quantum constraints treats first- and second-class constraints in an identical fash-
ion and thereby it seems ideal to apply to gravity. Here, we content ourselves with
a sketch of how this procedure is applied to simple systems.
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We start by assuming that φα(p, q) = 0, α = 1, ..., A, represent a set of real clas-
sical constraints for some multi-dimensional system. We choose some quantization
procedure and identify {Φα(P,Q)} as a set of self-adjoint operators representing
the constraints. Ideally, following Dirac, we would identify the physical Hilbert
space Hphys ⊂ H as composed of vectors |ψphys〉 that have the property that

Φα(P,Q)|ψphys〉 = 0

for all α. Consistency of this procedure requires that (i) 〈ψphys|ψphys〉 < ∞,
and (ii) [Φα(P, Q), Φβ(P, Q)]|ψphys〉 = 0. Unfortunately, for certain constrained
systems, either one or both of these consistency conditions is violated. In that
case it is useful to propose another scheme.

One alternative procedure, known as the projection operator method, involves
a projection operator

IE = IE(ΣαΦ2
α(P,Q) ≤ δ(�)2) ,

an expression which means that

0 ≤ IEΣαΦ2
α(P, Q)IE ≤ δ(�)2I .

In these expressions, δ(�) denotes a small, positive cutoff, generally dependent
on �, that can be reduced to a suitable level. In this approach the (regularized)
physical Hilbert space is taken as Hphys = IEH.

It is pedagogically useful to illustrate this procedure with three simple exam-
ples:

(1) Let Φα = J1, J2, J3 denote the generators of SU(2), and the desired physical
Hilbert space satisfies Jk |ψphys〉 = 0 for k = 1, 2, 3. We can secure the physical
Hilbert space of interest by choosing

IE(ΣkJ2
k ≤ 1

2�
2) .

This example represents a first-class constrained system.

(2) Let Φα = P, Q, a pair of canonical operators. In this case we choose

IE(P 2 + Q2 ≤ �) ,

which projects onto states |ψphys〉 that satisfy (Q+ iP )|ψphys〉 = 0. This example
represents a second-class constrained system.

(3) Let Φα = Q, a single operator with zero in the continuous spectrum and
for which Q|ψphys〉 = 0 has no normalizable solution. here we choose

IE(Q2 ≤ δ2) ,

with no � dependence necessary. As δ → 0, this projection operator passes strongly
(hence weakly) to the zero operator. To overcome this fact, we rescale the pro-
jection operator and take a suitable limit as δ goes to zero. As one example, we
introduce coherent states

|p, q〉 ≡ e−iqP eipQ |0〉 ,
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and we consider

〈〈p′′, q′′|p′, q′〉〉 ≡ lim
δ→0

〈p′′, q′′|IE(Q2 ≤ δ2)|p′, q′〉
〈0|IE(Q2 ≤ δ2)|0〉 .

The resultant expression forms a suitable reduced reproducing kernel which can
be used to characterize the physical Hilbert space as a reproducing kernel Hilbert
space.

If P and Q form an irreducible pair, and for the sake of illustration we choose
|0〉 as a normalized solution of (Q + iP )|0〉 = 0, i.e., |0〉 is the oscillator ground
state, then

〈〈p′′, q′′|p′, q′〉〉 = e−
1
2 (q′′2 + q′2) ,

a reproducing kernel which characterizes a one-dimensional Hilbert space. Differ-
ent choices of the fiducial vector |0〉may lead to different functional representatives,
but they nevertheless still describe one-dimensional Hilbert spaces.

It is noteworthy that path integral expressions exist that directly generate
matrix elements of any desired projection operator. For example, staying with
elementary examples, coherent state path integrals that generate expressions such
as 〈p′′, q′′|IE|p′, q′〉 may formally be written as conventional phase-space path in-
tegrals save for one change, namely, the choice of the integration measure for the
Lagrange multipliers [2].

How these general ideas may be applied to quantum gravity can be found in [1].

5 Perturbative Nonrenormalizability

One of the most challenging aspects of conventional approaches to quantum grav-
ity is its perturbative nonrenormalizability. Divergences can be regularized by
the introduction of cutoffs, as usual, and then counterterms developed on the ba-
sis of perturbation theory can be identified and included in the formalism. For
renormalizable theories there are only a finite number of distinct types of coun-
terterms, while for nonrenormalizable theories – such as gravity – an infinite set of
qualitatively distinct counterterms is mandated by perturbation theory. It is no
wonder that the morass created by renormalized perturbation theory has driven
many workers to alternative approaches such as string theory. On the other hand,
perhaps we are deceiving ourselves; could it be that perturbatively suggested coun-
terterms to nonrenormalizable models are in fact irrelevant? This heretical view-
point is indeed suggested by the hard-core picture of nonrenormalizable interactions
which we now outline [3].

To present the essential ideas as simply as possible let us initially examine
certain singular potentials in quantum mechanics. In particular, consider the
Euclidean-space path integral for a free particle in the presence of an additional
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potential V (x) ≥ 0. In symbols, let us study

Wλ ≡ N
∫ x(T )=x′′

x(0)=x′
e−

1
2

∫
ẋ(t)2dt− λ

∫
V (x(t))dt Dx .

As λ→ 0+, it appears self evident that Wλ passes to the expression

W0 ≡ N
∫ x(T )=x′′

x(0)=x′
e−

1
2

∫
ẋ2(t)dt Dx =

1√
2πT

e−(x′′−x′)2/2T

appropriate to a free particle. Whatever the analytic dependence of Wλ −W0 for
small λ (e.g., O(λ), O(λ1/3), O(e−1/λ), etc.), it is tacitly assumed that as λ → 0+,
Wλ → W0, i.e., that Wλ is continuously connected to W0. However, this limiting
behavior is not always true.

Consider the example V (x) = x−4. In this case the singularity at x = 0 is
so strong that the contribution from all paths that reach or cross the origin is
completely suppressed since

∫
x(t)−4dt = ∞ for such paths, no matter how small

λ > 0 is chosen. As a consequence, as λ → 0+ for V (x) = x−4, it follows that

lim
λ→0+

Wλ = W ′
0 ≡

θ(x′′x′)√
2πT

[
e−(x′′−x′)2/2T − e−(x′′+x′)2/2T

]
.

Stated otherwise, when V (x) = x−4, Wλ is decidedly not continuously connected
to the free theory W0, but is instead continuously connected to an alternative
theory – called a pseudofree theory – that accounts for the hard-core effects of
the interaction. The interacting theory may well possess a perturbation expansion
about the pseudofree theory (to which it is continuously connected), but the in-
teracting theory will not possess any perturbation expansion about the free theory
(to which it is not even continuously connected).

Let us next pass to scalar field theory and the Euclidean-space functional in-
tegral

Sλ(h) ≡ N
∫

exp{∫ hφdnx− 1
2

∫
[(∇φ)2 + m2φ2]dnx− λ

∫
φ4dnx} Dφ

appropriate to the φ4
n model in n spacetime dimensions. We recall for such ex-

pressions that there is a Sobolev-type inequality to the effect that

{∫ φ(x)4dnx}1/2 ≤ K
∫

[(∇φ(x))2 + m2φ(x)2]dnx

holds for finite K (e.g., K = 4/3) whenever n ≤ 4, but which fails to hold (i.e.,
K = ∞) whenever n ≥ 5. Thus for nonrenormalizable interactions φ4

n, for which
n ≥ 5, it follows that there are fields φ for which the free action is finite while the
interaction action is infinite. Just as in the elementary example, there is no reason
to believe that counterterms suggested by a regularized perturbation analysis (the
underlying premise of which is to maintain a continuous connection with the free
theory!) should have any relevance in defining the pseudofree theory S′

0(h).
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It is noteworthy that proposals have been advanced to define S′
0(h) and thereby

to develop a meaningful and nontrivial theory of nonrenormalizable scalar fields [4].
Monte Carlo studies of such proposals are currently under way.

Lastly we observe that gravity is also a theory for which the free action (limited
to quadratic terms) does not dominate the interaction action (remaining terms),
and consequently gravity would seem to be a candidate theory to be understood
on the basis of a hard-core interaction, which, when regularized, leads to its per-
turbatively nonrenormalizable behavior. As plausible as this scenario seems, it
will involve a considerable effort to establish it convincingly.
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Abstract

Thin shells in general relativity have been used in the past as keystones
to obtain realistic models of cosmological and astrophysical situations. A
crucial role for these developments was played by the compact description
of their dynamics in terms of Israel’s junction conditions. Starting from this
geometrical formulation we present a problem related to the WKB regime
of shell dynamics and suggest a possible solution.

General relativistic shells are an interesting system in general relativity and be-
cause of the simple geometrical description of their dynamics provided by Israel’s
junction conditions [1] they became preferred models for many crucial aspects of
astrophysical and cosmological situations (see [2] for a more complete bibliography
on the subject). Many of these models have been developed under the assumption
of spherical symmetry, but (as it happens for instance in the case of gravitational
collapse [3]) this does not seem a severe restriction and it is likely that the ob-
tained results can be extended to more general situations. On the other hand, the
reduction in the number of degrees of freedom that it is possible to obtain in the
spherically symmetric case makes simpler the development of effective models and
more transparent the discussion of the interesting subtleties that often appears in
the geometrodynamics of shells. Here we are, indeed, going to discuss one of these
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a
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b
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subtleties that already manifests itself in the spherically symmetric case, where
the junction conditions reduce to just one equation1

[ε(Ṙ2 + f(R))1/2] ≡ ε−(Ṙ2 + f−(R))1/2 − ε+(Ṙ2 + f+(R))1/2 = M(R)/R, (1)

a first order integral of the second order equation of motion for the shell. In (1) R
is the radius of the shell (a function of the proper time τ of an observer comoving
with the shell); M(R) describes the matter content of the shell (i.e. it is related
to its stress-energy tensor); f±(R) are the metric functions in the two domains
of spacetime separated by the shell when the line element is written in the static
form adapted to the spherical symmetry; ε± are signs (i.e. 0,±1). Much of the dis-
cussion that follows is centered on these last quantities, ε±, but, before embarking
this program, we also remember that, starting from an effective Lagrangian (the
particular form of which is not our concern here), we can compute the second or-
der equation of motion that has (1) as a first integral and also obtain the effective
momentum [4] conjugated to the only surviving degree of freedom R,

P (R, Ṙ) = R

[
tanh−1

(
εṘ/(Ṙ2 + f(R))1/2

)Sgn(f(R))
]

. (2)

Moreover, equation (1) can be cast in the form of an effective equation [5, 4]
for the motion of a unitary mass particle with zero energy in a potential V (R),
Ṙ2+V (R) = 0. Then all the solutions of (1) are solutions of this effective equation
and viceversa. This solves the problem of obtaining a qualitative description of
how the radius R changes as a function of the proper time τ . Of course this is not
the full story, since we still have to build up the global structure of the spacetime in
which the shell leaves. It is in this process that we need also the information pro-
vided by the functions f±(R) and by the two signs ε±. In particular when cutting
and pasting the Penrose diagrams to build up the complete spacetime, ε± select
the sides of the Penrose diagram crossed by the trajectory [5]. Expressions for ε±
can be obtained with little algebra, ε± = Sign

(
M(R)

(
f− − f+ ∓M2(R)/R2

))
,

and the points where ε± change from ±1 to ∓1 are the points in which f±(R)
are tangent to V (R), if they exist. Since f±(R) ≥ V (R) always, the signs can
change i) when the shell is crossing a region with f±(R) ≤ 0 or ii) along a classi-
cally forbidden trajectory2, where V (R) > 0. It is shown in [4] that integrating the
analytic continuation of (2) on the classically forbidden trajectory we can compute
WKB transition amplitudes for the tunnelling process through the potential bar-
rier; these amplitudes agree with those already computed by other means3 in [7].

1Following a standard notation, quantities in the two spacetime regions separated by the shell
are identified by ± subscripts. We use square brackets “[. . . ]” to denote their jump in going from
the “−” to the “+” side of the shell and an overdot, “ ˙ ”, to indicate the derivative with respect
to the proper time measured by a shell-comoving observer.

2Our formulation here is far too synthetic and we refer the reader to the literature on the
subject (for example [5, 6]) for extended background material.

3This is a strong argument in favor of an expression for the effective momentum that, when
evaluated along a classically forbidden trajectory, differs from (2), also evaluated on a classically
forbidden trajectory, by a total derivative of a function of R, at most.



Figure 2. Representation of the Euclidean
momentum wrapped around a (R, Im(P )) -cone
that replaces the standard (R, Im(P )) -plane
(Euclidean phase space). At each value of R the
momentum takes values on an S1 with radius
proportional to the current value of the radius
R. In this way the momentum is both contin-
uous and vanishing at the extrema. The gray
straight segment in the picture corresponds to a
segment of the horizontal R axis in figure 1.
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In the cases discussed in [4] the signs ε± are constant along the forbidden trajec-
tory, but this is not always the case. We are here interested in a more detailed
analysis of those cases in which one of the signs, ε±, indeed changes. Let us then
see what happens to the momentum P (R, Ṙ). Since on a forbidden trajectory
V (R) > 0, then f(R) > 0: we can thus forget the weird exponent in (2). Moreover
from the effective equation we obtain that Ṙ2 < 0 i.e. Ṙ is purely imaginary and
the momentum P (R) also is purely imaginary, since tanh−1(ı . . . ) = ı arctan(. . . ).
Let us now assume there is an R̄ along the forbidden trajectory where, say, ε−
changes sign. This means that when R → R̄± we have (Ṙ2 + f−(R̄))1/2 → 0±

(or 0∓) and the argument of the arctan(. . . ) tends to −∞ on one side and to
+∞ on the other. Correspondingly, choosing the standard branch of the multi-
valued function arctan(. . . ), the Euclidean momentum has a discontinuity. We
can try to cure this pathology by choosing a different branch of arctan(. . . ): but
then, following the evolution of the now continuous momentum till the second
turning point, the offset introduced by the choice of the new branch makes the
momentum non-vanishing there; this seems again a difficult situation to accept.
Apparently, we thus face the unpleasant situation of i) having a discontinuous Eu-
clidean momentum that vanishes at both turning points or ii) having a continuous
momentum that does not vanish at both turning points (we incidentally point out
that if we construct the Penrose diagrams associated to the two spacetimes joined
by the shell before and after the transition, some difficulties in their interpretation
also occur). This situation is pictured in figure 1 and now, after having stated
the problem, we proceed to propose a possible solution, by considering again our
Euclidean momentum and following its evolution from the first turning point. It
starts from zero and after some path on the R line it reaches R̄. At this point we
enforce its continuity and keep following it until the second turning point, where
we impose that it is zero. We said above that this cannot happen, but we im-
plicitly made an assumption, namely that the Euclidean momentum is a function
taking values in the real line. Relaxing this assumption we are going to see that
not so much remains of the above problem. Figure 2 shows indeed that if we
consider the Euclidean momentum as a function that at each point R along the
forbidden trajectory takes values in a circle (S1) of radius R, then we can make
the momentum both continuous and vanishing at both extrema! We end this con-
tribution referring the reader to [9] for an extended discussion from the point of
view of Euclidean quantum gravity.
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Abstract

We discuss the application of our new three-dimensional fully general rela-
tivistic hydrodynamics code which uses high-resolution shock-capturing tech-
niques and a conformal traceless formulation of the Einstein equations, to
the study of the gravitational collapse of uniformly rotating neutron stars
to Kerr black holes. We investigate the dynamics of the matter and of the
trapped surfaces. We provide precise measurements of the black-hole mass
and spin.
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1 Introduction

The numerical investigation of gravitational collapse of rotating stellar configu-
rations leading to black-hole formation is a long standing problem in numerical
relativity. However, it is through numerical simulations in general relativity that
one can hope to improve our knowledge of fundamental aspects of Einstein’s theory
such as the cosmic censorship hypothesis and black-hole no-hair theorems, along
with that of current open issues in relativistic astrophysics research, such as the
mechanism responsible for gamma-ray bursts. Furthermore, numerical simulations
of stellar gravitational collapse to black holes provide a unique mean of computing
the gravitational waveforms emitted in such events, believed to be among the most
important sources of detectable gravitational radiation.

However, the modelling of black-hole spacetimes with collapsing matter sources
in multidimensions is one of the most formidable efforts of numerical relativity.
This is due, on one hand, to the inherent difficulties and complexities of the sys-
tem of equations which is to be integrated, the Einstein field equations coupled
to the general-relativistic hydrodynamics equations, and, on the other hand, to
the immense computational resources needed to integrate the equations in the
case of three-dimensional (3D) evolutions. In addition to the practical difficulties
encountered in the accurate treatment of the hydrodynamics involved in the grav-
itational collapse of a rotating neutron star to a black hole, the precise numerical
computation of the gravitational radiation emitted in the process is particularly
challenging as the energy released in gravitational waves is much smaller than the
total rest-mass energy of the system.

The details of the formulation we use for the hydrodynamics and Einstein equa-
tions can be found in [3]. We stress that an important feature of this formulation is
that it extends to a general relativistic context the powerful numerical methods de-
veloped in classical hydrodynamics, in particular high-resolution shock-capturing
(HRSC) schemes based on linearized Riemann solvers. Such schemes are essen-
tial for a correct representation of shocks, whose presence is expected in several
astrophysical scenarios.

Another fundamental improvement we implemented is the ability to excise from
the evolved grid regions of spacetime within horizons. Such regions are causally
disconnected from the rest of the spacetime and so do not have any influence on
the exterior evolution. The field and hydrodynamical variables in these regions,
though, would get extreme values and so compromise the whole evolution. More
details on how the hydrodynamical excision is applied in practice, as well as tests
showing that this method is stable, consistent and converges to the expected order
are published in [9, 3].

Also for all the details about each of the following sections, which contain only
brief summaries of our work on this subject, the reader is referred to [3].
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Figure 1. View of the final stages of the collapse of model D1.

2 Initial stellar models

The initial data for our simulations are constructed using a 2D numerical code, that
computes accurate stationary equilibrium solutions for axisymmetric and rapidly
rotating relativistic stars in polar coordinates [11, 12]. For simplicity, we have
focused on initial models constructed with the polytropic EOS, choosing the poly-
tropic exponent Γ = 2 and polytropic constant K = 100 to produce stellar models
that are, at least qualitatively, representative of what is expected from observa-
tions of neutron stars. In the following we report in particular about two of the
models we have studied, one slowly rotating (which we refer to as D1) and one
rapidly rotating (D4).

3 Dynamics of the matter

We show in Fig. 1 a representative snapshot of the final stages of the evolution of
a slowly rotating initial model. Soon after an apparent horizon is found and when
this has grown to a sufficiently large area, the portion of the computational domain
containing the singularity is excised (The determination of the apparent horizon
is obtained using the fast finder of Thornburg [13]). This is indicated as an area
filled with squares. Also shown with a thick dashed line is the coordinate location
of the apparent horizon and it should be remarked that, because of rotation, this
surface is not a coordinate two-sphere, although the departures are not significant
and cannot be appreciated in Fig. 1 (see also Section 5). At t = 0.57 ms, the time
which Fig. 1 refers to, most of the matter has already fallen within the apparent
horizon and has assumed an oblate shape.

Overall, confirming what was already discussed by several authors in the past,
the gravitational collapse of the slowly rotating stellar model D1 takes place in an
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Figure 2. view of the final stages of the collapse of model D4.

almost spherical manner and we have found no evidence of shock formation which
could prevent the prompt collapse to a black hole, nor appreciable deviations from
axisymmetry.

As for the slowly rotating star D1, we show in Fig. 2 a representative snapshot
of the evolution of the rapidly rotating model D4. The isocontour levels shown for
the rest-mass density are the same used in Fig. 1. The dynamics is very similar
to the one discussed for model D1 up to a time t ∼ 0.49 ms. However, as the
collapse proceeds, significant differences between the two models start to emerge
and in the case of model D4 the large angular velocity of the progenitor stellar
model produces significant deviations from a spherical infall. Indeed, the parts of
the star around the rotation axis that are experiencing smaller centrifugal forces
collapse more promptly and, as a result, the configuration increases its oblateness.

In this case the star flattens considerably, all of the matter near the rotation
axis has fallen inside the apparent horizon, but a disc of low-density matter remains
near the equatorial plane, orbiting at very high velocities � 0.2 c. The appearance
of an effective barrier preventing a purely radial infall of matter far from the
rotational axis may be the consequence of the larger initial angular momentum of
the collapsing matter and of the pressure wave originating from the faster collapse
along the rotational axis.

Note that the disc formed outside the apparent horizon is not dynamically
stable and, in fact, it rapidly accretes onto the newly formed black hole. This is
shown in Fig. 2, where one can notice that the disc is considerably flattened but
also has large radial inward velocities which induce it to be accreted rapidly onto
the black hole. Note that as the area of the apparent horizon increases, so does
the excised region, which is allowed to grow accordingly.
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4 Dynamics of the horizons

In order to investigate the formation of a black hole in our simulations, we have
used horizon finders, available through the Cactus framework, which compute
both the apparent horizon and the event horizon.

We also adopted several different methods for measuring the black-hole mass
and spin. The first and simplest method of approximating the black-hole mass is
to use the formula M = Ceq

4π , where Ceq ≡
∫ 2π

0

√
gφφdφ is the proper equatorial

circumference. But this would only apply exactly to the Kerr (or Schwarzschild)
solution; which is not the case here.

A second method for estimating the horizon mass is to look at the distortion
of the horizon using the ratio of polar and equatorial proper circumferences, Cr ≡
Cpol/Ceq [6]. For a perturbed Kerr black hole this is expected to oscillate around
the asymptotic Kerr value with the form of a quasi-normal mode. By fitting to this
mode we extract an estimate of the angular momentum parameter a/Mhor from

the relation [5] a
Mhor

=
√

1− (−1.55 + 2.55Cr)
2, where Mhor coincides with the

black-hole mass M only if the spacetime has become axisymmetric and stationary.
A third method of approximating J and hence measuring M is to use the

isolated and dynamical-horizon frameworks of Ashtekar and collaborators [1, 8].
This assumes the existence of an axisymmetric Killing vector field intrinsic to a
marginally trapped surface such as an apparent horizon. This gives an unambigu-
ous definition of the spin of the black hole and hence of its total mass. If there
is an energy flux across the horizon, the isolated-horizon framework needs to be
extended to the dynamical-horizon formalism [2].

In practice, our approach to the dynamical-horizon framework has been through
the use of a code by Schnetter which implements the algorithm of [8] to calculate
the horizon quantities. The advantage of the dynamical-horizon framework is that
it gives a measure of mass and angular momentum which is accurately computed
locally, without a global reconstruction of the spacetime. One possible disadvan-
tage is that the horizon itself is required to be (close to) axisymmetric; so in case
it deviates largely from axial symmetry, no information can be found. However,
because arbitrarily large distortions are allowed as long as they are axisymmetric,
we have not encountered problems in applying the dynamical-horizon framework
to the horizons found in our simulations.

A fourth method for computing J only applies if an event horizon is found
and if its angular velocity has been measured. In a Kerr background, in fact,
the generators of the event horizon rotate with a constant angular velocity ω ≡
−gtφ/gφφ =

√
gtt/gφφ and it can be directly related to the angular momentum

parameter as a/M = J/M2 =
[
Aω2

(
1−Aω2/4π

)
π
]1/2, where A is the event-

horizon proper area (The event horizon is located after the simulation has been
completed and the data produced is post-processed using the level-set finder of
Diener [7]).

Although the direct comparison of many different methods employed here have
provided valuable information on the dynamics of the system, we have found the
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Figure 3. Evolution of the most relevant surfaces during the collapse for the cases D1 and D4.

dynamical-horizon framework to be simple to implement, accurate and not partic-
ularly affected by the errors from which equivalent approaches seem to suffer. As a
result, we recommend its use as a standard tool in numerical relativity simulations.

5 Reconstructing the global spacetime

All of the results presented and discussed in the previous Sections describe only
a small portion of the spacetime which has been solved during the collapse. In
addition to this, it is interesting and instructive to collect all of these pieces of
information into a global description of the spacetime and look for those features
which mark the difference between the collapse of slowly and rapidly rotating
stellar models. As we discuss below, these features emerge in a very transparent
way within a global view of the spacetime.

To construct this view, we use the worldlines of the most representative surfaces
during the collapse, namely those of the equatorial stellar surface, of the apparent
horizon and of the event horizon. For all of them we need to use properly defined
quantities and, in particular, circumferential radii. The results of this spacetime
reconstruction are shown in Fig. 3, whose left and right panels refer to the collapse
of models D1 and D4, respectively. The different lines indicate the worldlines of
the circumferential radius of the stellar surface (dotted line), as well as of the
apparent horizon (dashed line) and of the event horizon (solid line). Note that
for the horizons we show both the equatorial and the polar circumferential radii,
with the latter being always smaller than the former. For the stellar surface, on
the other hand, we show the equatorial circumferential radius only. Note that
in both panels of Fig. 3 the event horizon grows from an essentially zero size to
its asymptotic value. In contrast, the apparent horizon grows from an initially
non-zero size and, as it should, is always contained within the event horizon. At
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late times, the worldlines merge to the precision at which we can compute them.
A rapid look at the two panels of Fig. 3 is sufficient to appreciate the different
properties in the dynamics of the collapse of slowly and rapidly rotating models.

The worldlines of the stellar equatorial circumferential radius are very differ-
ent in the two cases. In the slowly rotating model D1, in particular, the star
collapses smoothly and the worldline always has a negative slope, thus reaching
progressively smaller radii as the evolution proceeds (cf. left panel of Fig. 3). By
time t 
 0.59 ms, the stellar equatorial circumferential radius has shrunk below
the corresponding value of the event horizon. In the case of the rapidly rotating
model D4, on the other hand, this is no longer true and after an initial phase which
is similar to the one described for D1, the worldline does not reach smaller radii.
Rather, the stellar surface slows its inward motion and, at around t ∼ 0.6 ms, the
stellar equatorial circumferential radius does not vary appreciably. Indeed, the
right panel of Fig. 3 shows that at this stage the stellar surface moves to slightly
larger radii. This behaviour marks the phase in which a flattened configuration
has been produced and the material at the outer edge of the disc experiences a
stall. As the collapse proceeds, however, also this material will not be able to
sustain its orbital motion and, after t ∼ 0.7 ms, the worldline moves to smaller
radii again. By time t 
 0.9 ms, the stellar equatorial circumferential radius has
shrunk below the corresponding value of the event horizon.

6 Conclusion

We have implemented a hydrodynamical excision technique within our new 3D
general-relativistic numerical evolution code that combines state-of-the-art nu-
merical methods for the spacetime evolution (i.e. the NOK formulation of the
Einstein equations with Gamma-driver shift conditions) with an accurate hydro-
dynamical evolution employing several high-order HRSC methods. The evolution
of the spacetime and of the hydrodynamics is coupled transparently through the
method of lines, which allows for the straightforward implementation of various
different time-integrators.

As a first astrophysical problem for this novel setup, we have here focused on
the collapse of rapidly rotating relativistic stars to Kerr black holes. The stars are
assumed to be in uniform rotation and dynamically unstable to axisymmetric per-
turbations. While the collapse of slowly rotating initial models proceeds with the
matter remaining nearly uniformly rotating, the dynamics is shown to be very dif-
ferent in the case of initial models rotating near the mass-shedding limit, for which
strong differential rotation develops. Although the stars become highly flattened
during collapse, attaining a disc-like shape, the collapse cannot be halted because
the specific angular momentum is not sufficient for a stable disc to form. Instead,
the matter in the disc spirals towards the black hole and angular momentum is
transferred inward to produce a spinning black hole.

Several different approaches have been employed to compute the mass and an-
gular momentum of the newly formed Kerr black hole. Besides more traditional
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methods involving the measure of the geometrical properties of the apparent and
event horizons, we have fitted the oscillations of the perturbed Kerr black hole
to specific quasi-normal modes obtained by linear perturbation theory. In addi-
tion, we have also considered the recently proposed isolated and dynamical horizon
frameworks, finding it to be simple to implement and yielding estimates which are
accurate and more robust than those of other methods. This variety of approaches
has allowed for the determination of both the mass and angular momentum of the
black hole with an accuracy unprecedented for a 3D simulation.

Recent progress has been made in using mesh refinement techniques [10] to
move the outer boundary sufficiently far from the source so that important infor-
mation can be extracted on the gravitational wave emission produced during the
collapse. The results of these investigations have been presented in ref. [4].
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Abstract

Gravitational waves may reach the Earth in different forms which depend
on the nature of the emitting source: they may be short bursts, outcome
of a catastrophic event like the gravitational collapse or the coalescence of
a binary system; they may be continuous, weak wavetrains emitted by a
non axially symmetric, rotating neutron star or by binary systems far from
coalescence; or, they may appear as a background created as a polyphonic
chorus superposition of different voices: those of populations of astrophysical
sources born and evolved in the past, or those coming from matter and
energy fluctuations in the first instant of life of the Universe. In this paper
we will shortly review some of the most promising astrophysical sources of
gravitational waves to be detected by the the resonant or interferometric
antennas actually in operation or under construction.

1 Introduction

The detection of gravitational waves (GWs) is one of the most challenging prob-
lems of modern astrophysics. The astronomical observations of binary pulsars like
PSR 1913+16 [1], or the more recently discovered PSR J0737-3039 [2], provide
an indirect proof of their existence: indeed, the orbital period of such systems
decreases at a rate which is fully explained if one assumes that the variation of
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the orbital energy compensates the energy emitted by the system in GWs, as pre-
dicted by General Relativity. However, gravitational waves are very elusive, and
have never been observed directly because they are extremely weak, and because
they weakly interact with any form of matter-energy. For this reason to detect
them directely extremely sophisticated instruments are needed that work at the
very edge of modern technology. As an example, few years ago the resonant an-
tenna NAUTILUS in Rome was cooled to a temperature of 100 mK, which is
the lowest temperature ever reached for a massive body. At the same time, in
studying GW sources theorists have to explore phenomena that occur in regions
of spacetime where the known lows of physics have to be applied in some extreme
conditions: extreme is indeed the physics of a gravitational collapse and the co-
alescence of massive bodies, extreme are the densities and pressures reached in
the interior of neutron stars, or the state of matter and energy when the universe
was born. Thus, in searching for GWs we are certainly operating at the fron-
tiers of fundamental physics. It is instructive to see what is the frequency region
that will be explored by the detectors that are in operation, in construction, or
planned for the next future. Resonant bar detectors, ALLEGRO, NIOBE, AU-
RIGA, EXPLORER, NAUTILUS, have been operating for years and are now close
to the maximum sensitivivity that can be reached by these instruments; they are
narrow-band detectors, sensitive in a frequency region of a few Hz centered at
about 1 kHz. A new generation of spherical, omnidirectional resonant detectors
(MINIGRAIL, GRAIL) is presently under study. For instance MINIGRAIL, which
is already in operation, is a sphere of 1400 kg, resonant at 2.9 kHz with a bandwidth
of 230 Hz. The ground based interferometers are sensitive to a larger frequency
region which extends from a few tens of Hz to a few kHz; TAMA, GEO600, LIGO
have already started the first scientific runs, whereas the italian-french experiment
VIRGO is in the commissioning phase [3]. Typical sources for these detectors are
the gravitational collapse to a neutron star (NS) or to a black hole (BH), stellar
pulsations, coalescence of binary systems composed of compact objects like NSs
and BHs. At lower frequencies, the sensitivity of ground based detectors is strongly
deteriorated by the effect of local disturbances (like wind and atmospheric events,
human activities, etc.) and seismic noise that are hard to screen; therefore, space-
based experiments are the only possibility to explore this region, which is rich
of expected sources. For instance some of the most interesting sources to be de-
tected are binary systems like white dwarfs-white dwarfs (WD-WD) binaries and
Low Mass X-Ray Binaries (LMXRB) with short orbital period T ∈ [10m, 1hour],
that are expected to emit gravitational waves at typical frequencies of a few mHz;
or, binary systems composed of two black holes with masses ranging from 102 M�
to 106 M� which, during the last phases of coalescence would emit a GW-signal
that would span the frequency region νGW ∈ [10−4, 10−1] Hz in a time interval
ranging from a tenth of a year to 500 yrs, depending on their mass. LISA (Laser
Interferometer Space Antenna) will be the first high sensitivity space-based GW
detector, consisting of a constellation of 3 spacecraft in heliocentric orbit, located
at the vertices of an equilateral triangle with a 5 · 106 km side. Each spacecraft
contains a pair of test-masses in geodesic motion; the test masses are the end-
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mirror of a single arm interferometer, the other end-mirror being in one of the
other two spacecraft. As in all instruments of these kind, gravitational waves will
be detected by the strain they induce in the distances among the test-particles.
In the following sections we will review some of the most interesting GW sources
that emit in the bandwidth of the above mentioned detectors; in particular, we
will consider signals that exhibit some well defined features and that last for long
enough so that, if detected, will possibly allow the identification of the emitting
source.

2 Rotating neutron stars

Neutron stars can radiate their rotational energy essentially in two ways. If the star
is triaxial, it has a time varying quadrupole moment and emits gravitational waves
at twice the rotation frequency, and with an amplitude which can be parametrized
as follows

h ∼ 4.2× 10−24
(ms

P

)2
(

r

10 kpc

)−1
I

1045 g cm2

( ε

10−6

)

where I = 1045 g cm2, is a typical value for the moment of inertia of a neutron
star, P is the rotation period, and ε is the oblateness of the star which shows how
much it deviates from axial symmetry, here given in units of 10−6. These waves
could be detected, for instance, by VIRGO with one year of integration, if the
amplitude of the signal were of the order of h ∼ 10−26; this means that neutron
stars outside our Galaxy would practically be out of reach by the interferometers
of first generation. In addition, much depends on the value of the oblateness, and
several studies have tried to constraint its possible range of variation. For instance
in ref. [4] observational data on a number of known pulsars have been used to set
an upper limit on ε. Assuming that the observed slowing down of their period
is entirely due to the emission of GWs, the authors found ε ∈∼ [10−2, 10−9]; of
course this can only be an upper bound, since the rotational energy of pulsars
is dissipated also by other mechanisms, like the electromagnetic emission and/or
the acceleration of charged particles in the magnetosphere. Further studies on this
problem [5] established that if the triaxial shape is due to strains in the crust of the
neutron star, the oblateness could be ε<∼10−7

(
σ

10−2

)
; here σ is the strain needed to

break the crust, but it should be said that its value is quite uncertain; for instance
σ ∈ [10−2, 10−1] according to [6], and σ ∈ [10−4, 10−3] according to [7]. Thus, in
the light of what we presently know we cannot say what is the most likely value
of ε and gravitational waves will probably tell us how much oblate a neutron star
can be.

A time dependent quadrupole moment can also be due to a precession of the
star’s angular velocity around the symmetry axes. In this case the radiation is
emitted at a frequency νprec = 1

2π (ωrot + ωprec) 
 νrot, but the amplitude of
the precessional contribution depends on a further parameter, the “wobble-angle”
between the rotation and the symmetry axes which is, however, largely unknown.
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3 Binary systems far from coalescence

In 1975, Hulse and Taylor applied the quadrupole formalism [8] to predict the
slowing down of the period of the binary pulsar PSR 1913+16 [1]. They found
dP
dt = −2.4 · 10−12, in excellent agreement with the observed value, dP

dt = −(2.3±
0.22) · 10−12, thus providing the first indirect evidence of the existence of grav-
itational waves. Since LISA will be sensitive to the low frequency region, it is
now interesting to ask wether these waves could be seen directly. The quadrupole
formalism, used to solve Einstein’s equations in the weak-field, low motion limit,
shows that when the orbit is circular the radiation is emitted at twice the keple-
rian orbital frequency. If, as an example, we assume that we are looking at the
radiation which emerges in the direction orthogonal to the orbital plane, the wave
amplitude, computed in the TT- (Transverse-Traceless) gauge is given by

hTT
ij = −4G2(M1 + M2)µ

l0c4

1
d




cos 2ωKt sin 2ωKt 0
sin 2ωKt − cos 2ωKt 0

0 0 0



 , (1)

where l0 is the orbital separation, ωK =
√

G(M1+M2)
l30

is the orbital frequency, d the

distance of the source from Earth and µ = M1M2
M the reduced mass of the system

of total mass M = M1 + M2. If the orbit is eccentric, waves will be emitted at
frequencies multiple of νk = ωk/2π, and the number of equally spaced spectral
lines will increase with the eccentricity [9]. For instance, the binary pulsar PSR
1913+16 is composed of two very compact stars with masses M1 = 1.4411 M�
and M2 = 1.3874 M�, revolving around their center of mass with an eccentric
orbit (e = 0.617139), and keplerian frequency νk = 3.583 · 10−5 Hz. The system
is at a distance d = 5 kpc from Earth. In this case the maximum of the GW
emission occurs at νmax = 1.44 · 10−4 Hz, with amplitude hmax ∼ 10−23. A
similar calculation for the recently discovered double pulsar PSR J0737-3039, in
which case M1 = 1.337 M�, M2 = 1.250 M�, the orbital period is P = 2.4, h
d = 5 − 600 pc, e = 0.088, shows that the maximum of the GW emission occurs
at νmax = 2.3 · 10−4 Hz, and the amplitude of the corresponding spectral line is
hmax ∼ 6− 7 · 10−22. Thus in both cases the GW emission is in the bandwidth of
LISA, but the expected sensitivity curve of this instrument shows that the signal
is too low to be detectable. However, other interesting sources of radiation of this
kind exist in our Galaxy; they are, for instance, cataclysmic variables that are semi-
detached binaries of low mass and very short period, in which the primary star
is an accreting degenerate white dwarf, and the secondary is usually a late type-
star filling its Roche lobe and transfering matter on the companion; furthermore,
there are double-degenerate binary systems, WD-WD or WD-NS binaries; 10 of
such systems have been observed so far that have ultra-short periods, smaller
than ten minutes. They are typically strong X-ray emitters, and they appear
very promising for LISA because the emission frequency in GW is well inside the
detector bandwidth. In table I the masses, emission frequencies and characteristic
wave amplitude are listed for some of these short period systems, that should serve
as calibration sources for LISA.
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Table 1. Galactic binaries with component masses M1 and M2, gravitational wave frequency
νGW , and gravitational wave amplitude h.

name m1(M�) m2(M�) νGW (Hz) log h
WD 0957-666 0.37 0.32 0.4 · 10−3 −21.4
WD 1101+364 0.31 0.36 0.2 · 10−3 −21.7
WD 1704+481 0.39 0.56 0.2 · 10−3 −21.4
KPD 0422+4521 0.51 0.53 0.3 · 10−3 −21.2
KPD 1930+2752 0.5 0.97 0.2 · 10−3 −21.0
RXJ0806.3+1527 0.4 0.12 6.2 · 10−3 −21.4
RXJ1914+245 0.6 0.07 3.5 · 10−3 −21.2
KUV05184-0939 0.7 0.092 3.2 · 10−3 −22.0
AM CVn 0.5 0.033 1.9 · 10−3 −21.7
HP Lib 0.6 0.03 1.8 · 10−3 −21.7
CR Boo 0.6 0.02 1.4 · 10−3 −22.0
V803 Cen 0.6 0.02 1.2 · 10−3 −22.0
U Gem 1.26 0.57 1.3 · 10−4 -20.8
IP Peg 1.15 0.67 1.5 · 10−4 -20.9
HU Aqr 0.95 0.15 2.7 · 10−4 -21.3
VW Hyi 0.63 0.11 3.1 · 10−4 -21.3
EX Hya 0.78 0.13 3.4 · 10−4 -21.4
WZ Sge 0.45 0.058 4.1 · 10−4 -22.1
ST LMi 0.76 0.17 2.9 · 10−4 -21.4
SW UMa 0.71 0.10 4.9 · 10−4 -21.6
Z Cha 0.84 0.125 3.1 · 10−4 -21.5
V 436 Cen 0.7 0.17 3.7 · 10−4 -21.6

4 Coalescing binary systems

The target of ground-based interferometers is to detect the signal emitted dur-
ing the latest phases of inspiraling of a binary system. Assuming that the two
coalescing bodies are point masses, by using the quadrupole formalism and in-
cluding the radiation reaction effects it is possible to show that the loss of gravita-
tional energy induces a circularization of the orbit, and that the radius decreases
according to the law R(t) = Rin (1− t/tcoal)

1/4 ; where tcoal = 5
256

R4
in

µM2 is the
time of the final coalescence. The orbital frequency consequently increases, and
so does the frequency of the emitted wave, with a time dependence given by

ν = 1
π

[
5

256
1

µM2/3
1

(tcoal−t)

]3/8

. Thus, the gravitational signal emitted by a coa-
lescing system resembles the chirp of a singing bird. For instance if the binary
is composed of two neutron stars, about 108 years after formation the frequency
of the emitted signal will enter the bandwidth of the ground based interferome-
ters and in about 15-20 minutes (depending on the star masses) will sweep the
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Figure 1. The strain amplitude of the gravitational signal produced by the coalescence of binary
systems. In the left panel we plot the noise strain amplitude of the first generation of ground
based intrerferometers VIRGO, LIGO and GEO versus frequency, and the strain amplitude of
the signal produced by the coalescence of two neutron stars (NS-NS) with mass M = 1.4 M�
each, and two black holes of mass M = 10 M�. In both cases the source is assumed to be at
the distance of the Virgo cluster (d ∼ 15 Mpc). In the right panel the same plot is done for
the space-based interfereometr LISA and for two cases of BH-BH coalescence, respectively of
100 M� and 106 M�. In both cases the source is assumed to be at a distance d = 3 Gpc. All
signals extend up to the frequency corresponding to the ISCO (see text).

frequency region ranging from ∼ 10Hz to ∼ 900Hz. The amplitudes of the two
polarizations of the wave emitted during this fast inspiralling phase are

h+ =
2(1 + cos2 i)µ (πMν)2/3

r
cos(2πνt), h× = ±4µ cos i (πMν)2/3

r
sin(2πνt),

(2)
where i is the angle of inclination of the orbit to the line of sight, and the emitted
energy per unit frequency is given by dE

dν = π2/3

3 µM2/3

ν1/3 . In figure 1 we plot the strain
amplitude (i.e.

√
νh(ν), where h(ν) is the Fourier transform of h(t)) associated to

the GW signal emitted by different types of binary systems, compared to the noise
strain amplitude (Sh)1/2 of the first generation of ground based (left panel) and
space-based (right panel) intereferometric detectors. In all cases the signal extends
up to the frequency corresponding to the ISCO (Innermost Stable Circular Orbit
RISCO ∼ 6G(M1+M2)

c2 ) after which the two bodies merge, and the waveform given
in (2) is no longer appropriate to describe the emitted wave. It should be stressed
that near the ISCO the signal (2) has to be corrected to take into account tidal
interaction effects and corrections due to the orbital motion. It should also be
stressed that the signal described by eq. (2) refers to the case of non rotating
bodies. If they are rotating, spin-coupling effect may produce signals that are
considerably different ([10]).

From figure 1 we see that it is quite unlikely that the first generation of ground-
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based interferometrs will observe the coalescence of neutron stars, while they would
be able to detect the coalescence of sufficiently massive black holes. Conversely,
LISA will be a fantastic instrument to detect the coalescence of massive and su-
permassive black holes out to cosmological distances. It is interesting to mention
that given a coalescing source, the larger is the detector bandwidth, the longer
will be the time spent by the signal in that bandwidth, and this will increase the
detection chances. This is of particular importance for the ground based interfer-
ometers: for instance, a signal emitted by two 10M� - black holes will stay in the
VIRGO bandwidth (∼ [10Hz, 1kHz]) about 38 s, whereas it will sweep LIGO’s
bandwidth (∼ [40Hz, 1kHz]) in about 1 s.

The evolution of the system when it approaches the ISCO has to be described
by fully relativistic numerical simulations. Although these studies are fastly pro-
gressing, they are still far from providing reliable waveforms to confront with the
detector sensitivity curves. However we have a clue on what the signal, emitted
after a single compact object forms, could be; indeed, the newly born object will
violently oscillates in its quasi-normal modes emitting GWs at the corresponding
frequencies, which only depend on the mass and angular momentum if it is a black
hole [11], or on the equation of state of matter, if it is a neutron star [12]. Un-
fortunately, we do not know how much energy can be stored in each mode, and
consequently the wave amplitude is unknown. A clue on this crucial information
will be available when the numerical studies of the merging phase will progress
enough to describe the formation and the subsequent initial evolution of the newly
born compact object. However, it should be stressed that it will be the detection
of such signals which will provide the most interesting insight into the physics of
phenomena about which so little is known.

5 Concluding Remarks

The detection of gravitational waves will allow to test the theory of General Rela-
tivity in the strong field regime; but beyond that there are many reason why it is
of fundamental importance. GWs will allow to test alternative theories of gravity:
for example binary pulsars could yield bounds on scalar-tensor theories because
they predict dipole gravitational radiation and violation of the strong equivalence
principle. The most famous of such theories is the Jordan-Brans-Dicke theory
which postulates the existence of a scalar field which couples only to gravity; ω is
the coupling constant, such that the larger the value of ω, the weaker the scalar
field. The bound from PSR 1913+16 is only ω > 100, because the two stars have
nearly equal masses and dipole radiation is suppressed by symmetry. A binary
system composed of two compact stars of unequal mass, like a white dwarf and a
neutron star, could yield bounds as large as 104 [13].

Through the study of radiation reaction effects we will be able to study how
the emission of GWs affects the evolution of the emitting sources, as for instance
the rotation rate of a non axisymmetric neutron stars, the process of coalescence
in a binary system or the evolution of a newly born neutron star.
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GWs will provide information on the equation of state of matter at supranuclear
densities (unreachable by experiments on Earth) through the frequencies of the
quasi normal modes of oscillation of Neutron Stars, which may be excited after the
star formation in a gravitational collapse, during a glitch or in the latest phases
of binary coalescence [12], [14].

GWs have been produced since the beginning of the Universe, and the existence
of relic gravitational waves essentially rely on the validity of General Relativity and
on basic principles of quantum field theory. Indeed, quantum fluctuations of the
gravitational field are amplified by the accelerated expansion of the universe during
the inflationary stage. In the same way as a sudden change in the electromagnetic
field produces photons, the rapid change in the space-time curvature produces
gravitons, and consequently a stochastic background of gravitational waves. The
detection of such background is the only way to learn about the evolution of the
very early Universe, up to the limits of the Planck era and the Big Bang. The
stochastic background of gravitational waves has also a component of astrophysical
origin. Indeed, bursts and continuous signals of gravitational radiation have been
emitted by astrophysical sources since the beginning of star formation, and the
cumulative effect of a large number of unresolved and uncorrelated sources gener-
ates a stochastic background the features of which depend on the specific source.
The different contributions depend also on the rate of events of the selected type
occurred per unit comoving volume, as a function of the cosmological redshift, i.e.
on the star formation rate history (SFRH). For those sources that emit over a
timescale small compared to the typical timescales of evolution of the underlying
galaxy population, the emission of radiation can be considered as “instantaneous”,
and directly related to the rate of star formation at that particular value of the
cosmological redshift when the star formed. Thus, the detection of such back-
ground would provide an insight into the formation and evolution of astrophysical
sources in the Universe [15, 16, 17]

Finally, GWs will allow to discover unknown sources unreachable by electro-
magnetic search, and will enlighten regions of the Universe dominated by strong
gravitational fields and high velocities, unaccessible in any other way.

References

[1] R.A. Hulse, J.H. Taylor, Astrophys. J. 195, L51, 1975

[2] M. Burgay et al, Letter to Nature 426, 531, 2003

[3] For details of the gravitational experiments see the web sites:
www.roma1.infn.it/rog/rogmain.html,
www.auriga.lnl.infn.it,
www.minigrail.nl/index.html,
www.virgo.infn.it, www.ligo.caltech.edu,
www.geo600.uni-hannover.de,
www.tamago.ntk.nao.ac.jp, lisa.jpl.nasa.gov

[4] E. Gourgoulhon, S. Bonazzola, Proceedings of the International Conference on Gravita-
tional Waves, Sources and Detectors, World Scientific, Singapore 1996, 51



V. Ferrari 91

[5] G. Ushomirsky, C. Cutler, L. Bildsten, Mon. Not. R. Astron. Soc. 319 n. 3, 902, 2000

[6] R. Smoluchowski, Phys. Rev. L. 24, 923 1970

[7] R. Ruderman, Ap. J. 382, 587, 1991

[8] P.C. Peters, J. Mathews, Phys. Rev. 131, 435, 1963

[9] V. Ferrari, M. D’Andrea, E. Berti, Int. J. Mod. Phys. D9 n. 5, 495, 2000

[10] K. Glampedakis, D. Kennefick, Phys. Rev. D 66, 044002, 2002

[11] S.Chandrasekhar The mathematical theory of black holes. (Oxford: Claredon Press 1984)

[12] V. Ferrari, G. Miniutti, J.A. Pons Mon. Not. R. Ast. Soc. 342 624, 2003

[13] C. M. Will, in 2001: A Relativistic Spacetime Odyssey, ed. by I. Ciufolini, D. Dominici, L.
Lusanna, World Scientific Pub. , 247, 2003

[14] O. Benhar, V. Ferrari, L. Gualtieri, Phys. Rev. D 70 n.12, 124015, 2004

[15] V. Ferrari, S. Matarrese, R. Schneider, Mon. Not. R. Astron. Soc. 303, 247, 1999

[16] V. Ferrari, S. Matarrese, R. Schneider, Mon. Not. R. Astron. Soc. 303, 258, 1999

[17] R. Schneider, V. Ferrari, S. Matarrese,S.F. Portegies Zwart, Mon. Not. R. Astron. Soc. 324,
797, 2001



MODEL ANALYSIS OF GRAVITATIONAL SHELL COLLAPSES

MASAFUMI SERIU a

a Department of Physics, Faculty of Engineering, University of
Fukui Bunkyo 3-9-1, Fukui 910-8507, Japan
E-mail: mseriu@edu00.f-edu.fukui-u.ac.jp

Abstract

There are two important conjectures concerning gravitational collapses: (A)
The cosmic censorship conjecture and (B) The hoop conjecture. If both
the conjectures are valid, it should follow that any sufficiently elongated
object (made of reasonably natural matter) evolves regularly without any
singularity formation. It implies that the detailed study of the dynamical
evolution of elongated matter provides us with valuable information on the
validity of the two conjectures.

Keeping this point in mind, we here investigate a cylindrical shell-contraction
with rotational pressure, accompanying the radiation of gravitational waves
and massless particles. The model has been introduced previously, and some
authors have claimed the possibility of a singularity-forming evolution of the
model, which could suggest the invalidity of either (or both) of the above
conjectures. Here we analyze this model once again with more rigor and see
whether the claimed singular evolution exists.

It is rigorously proved that, as far as the weak energy condition is satisfied
outside the shell, the collapsing shell bounces back at some point irrespective
of the initial conditions, and no singularity is ever formed.

This result of bouncing behavior is compatible with the results for the other
known cylindrical shell-contracting models, and confirms the essential impor-
tance of the energy condition and the rotational effect in the gravitational
collapse.

The two conjectures (A) and (B) in this manner disclose no flaws in all
the analytical, sufficiently natural models with cylindrical symmetry known
today, suggesting their stable validity in wider class of situations.
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1 Introduction

Physics of gravitation is one of the most actively investigated themes in modern
theoretical physics. Though gravitation is universal and can be experienced daily,
dynamics involved in it is far from simple and gives rise to various complicated
phenomena. Gravitation has so many aspects that it may not be possible to pro-
vide a unified view of the phenomena. In any case, however, at least it can be said
that the nonlinearity always plays the key role in any gravitational phenomenon.

Problems of gravitational contractions are the kind of topics in which the non-
linear nature of gravity is involved in a particularly explicit manner. Indeed, its
highly nonlinear nature is still preventing us from clarifying several issues ques-
tioned even more than 30 years ago.

Among such unanswered questions, the following two conjectures have been in
particular significant and have motivated enormous amount of investigations so
far: (A) The cosmic censorship conjecture (Penrose 1969 [1]) and (B) The hoop
conjecture (Thorne 1972 [2]).

The cosmic censorship conjecture [1] is the claim that no naked singularity is
allowed in Nature. Since standard physical description breaks down at spacetime
singularities, it is not a theoretically desirable situation if such singularities are
visible to distant observers. Thus this conjecture seems quite reasonable at least
conceptually, setting aside technical details. Another way of stating this conjec-
ture is that any matter in natural, smooth initial conditions should either evolve
regularly or evolve into black holes.

The hoop conjecture [2], on the other hand, claims that black holes are formed
when and only when the inequality C ≤ 2π · 2GM

c2 holds (here C is the largest
circumference of the matter, while M is the total mass of the matter). Stated
differently, it claims that black holes are never formed unless matter is compressed
into a small, compact region with the size comparable to its Schwarzschild radius.
The escape velocity v for the matter with mass M and the size R is estimated
by the formula v2/2 ∼ GM/R (note R ∼ C/2π), so that the above inequality
describes the situation in which the matter is compressed so compactly that its
escape velocity exceeds even the speed of light. Thus, the hoop conjecture also
seems quite reasonable.

Now it is very suggestive if the above two conjectures are combined together [3].
Logical consequence of this combination is that any sufficiently elongated object
(made of reasonably natural matter) should evolve regularly without any singularity
formation. As a typical example of the elongated matter, gravitational contrac-
tions of cylindrical models have been studied quite intensively [2, 5, 6]. We also
investigate one of such cylindrical models in this paper.

At this stage it should be noted that even spherical collapses reveal surprisingly
complicated features, and one can even construct spherical models which show
naked singularity formations [4], though their relevance in view of naturalness
and generality should be questioned. At least it should not be overlooked that
some researchers take those solutions very seriously and that investigations are
still going on [4]. It is not surprising, then, that cylindrical models reveal even
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richer features than the spherical models, though the former models have actually
been less investigated so far.

In this paper, we focus on a particular cylindrical shell model discussed by
Pereira and Wang [7, 8]. This model can be interpreted as describing a shell filled
with massless particles rotating in the φ-direction; those rotating particles give
rise to the rotational pressure pφ of the shell.

Regarding this model, it is claimed that there is a special class of solutions
in which the shell develops into line-like singularity, which could possibly be
naked [7, 8]. If this claim were true, it would mean that either (or both) of the
two conjectures mentioned above should be invalid. Thus this model needs to be
investigated in more detail to see whether the claim is true, since the original argu-
ment [7, 8] was just a preliminary one and has been awaiting for detailed analysis.
Here we analyze the model once again with much more care: We then rigorously
prove that the shell always bounces back and singularities are never formed as
far as the weak energy condition is satisfied outside the shell [3]. This bouncing
behavior is similar to the one for the case of a cylindrical shell of counter-rotating
dust particles [6].

The two conjectures [1, 2] in this manner disclose no self-inconsistency in all
the analytical models with cylindrical symmetry known today (with sufficiently
reasonable matter content and initial conditions), suggesting their validity in wider
class of situations.

2 A dynamical shell in a cylindrical spacetime

We start with a metric of a spacetime possessing a cylindrical spatial symmetry,

ds2 = −T (t, r)2dt2 + R(t, r)2dr2 + Z(t, r)2dz2 + Φ(t, r)2dφ2 , (1)

where (t, r, z, φ) is the standard cylindrical coordinate-system. Let Σ be a
timelike surface in the spacetime defined by Eq.(1), given by r = ρ(t) . It is often
convenient to introduce the proper-time τ for an observer sitting on the shell,
determined by

dτ2 = T 2 (1− R2

T 2
ρ̇2) dt2 =: X−2dt2 . (2)

Here the symbols X := dt/dτ and ◦ := ∂τ will frequently appear below. We note
that (eτ , ez, eφ) := (∂τ , 1/Z.∂z, 1/Φ.∂φ) forms a set of orthonormal bases on the
shell Σ.

Now the so-called extrinsic curvature Kαβ of Σ serves as a key tool for the anal-
ysis below. The extrinsic curvature of a surface Σ describes how a 3-dimentional
surface Σ is embedded in a 4-dimentional spacetime [9, 10]. Roughly speaking,
Kαβ is defined as Kαβ ∼ ∂αn̂, where n̂ stands for the unit normal vector of Σ,
while ∂α indicates the derivative along Σ. Since n̂t is proportional to ρ̇, then,
Ktt ∼ ∂tn depends on ρ̈. In this manner, we see that Ktt (or Keτ eτ

) contains the
dynamical information of the shell Σ. More explicitly, the normal unit vector for
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Σ is given by

n̂µ = XTR(− ◦
ρ /X, 1, 0, 0)(trzφ) ,

and it is straightforward to compute the extrinsic curvature of the shell [3];

Keτ eτ
= − R

XT

◦◦
ρ − R

2XT

◦
ρ (ln R2)◦ +

1
2
(T 2X2 − 1) ∂n(lnR2) (3)

+
X2T 2

2
(X2T 2 − 1) ∂n(lnT 2/R2)

−XTR

2
◦
ρ (X2T 2 − 1) (lnT 2/R2)◦ ,

Kezez = ∂n lnZ , Keφeφ
= ∂n ln Φ , others = 0 . (4)

As is already remarked, Keτ eτ
depends on ρ◦◦ and describes the dynamics of

the shell.
According to the standard relativistic junction-condition formulas [10], when

the energy-momentum density is concentrated on a 3-surface Σ, it gives rise to the
discontinuity in the extrinsic curvature across Σ. This result is quite analogous to
the relation of the electric charge induced on the surface of a conducting ball with
the discontinuity in the electric field there. In the present case, we get

− 1
κ

(
[Kezez

] +
[
Keφeφ

])
= ε ,

− 1
κ

(
[Keτ eτ

]− [Keφeφ

])
= pz ,

− 1
κ

([Keτ eτ ]− [Kezez ]) = pφ . (5)

Here ε, pz and pφ are interpreted as the energy density of the shell, the pres-
sure in the z-direction and pressure in the φ-direction, respectively; [K] indicates
discontinuity across Σ (i.e. K(outside) − K(inside)); κ := 8πG is the Einstein’s
gravitational constant. As we will see soon, the second equation in Eq.(5) yields
the dynamical equation for the shell.

3 The cylindrical shell model with rotational pressure

Let us now consider a particular cylindrical shell model discussed by Pereira and
Wang [7, 8]. In this model an interior flat spacetime (described by ds−) and an
exterior cylindrical spacetime (ds+) are matched together at a timelike shell Σ:

ds2
− = −dt−2 + dr−2 + dz−2 + r−2dφ−2 (6)

ds2
+ = e2γ(ξ)(−dt+

2 + dr+
2) + dz+

2 + r+
2dφ+

2 , (7)
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where γ is a function of ξ := t+ − r+ only. Let the shell Σ be specified by
r+ = ρ+(t+) from the exterior viewpoint1.

We now note that the C-energy [11] C and the Einstein tensor Gab outside the
shell are given by

C =
1
8κ

(1− e−2γ) , (8)

Gab =
γ′

α2r+
kakb , (9)

where kµ = (α, −α, 0, 0)(trzφ) is a null-vector. Equation (9) suggests that the
model may be describing a contracting shell accompanied by outward radiation of
massless particles and gravitational waves [7]. Postulating the positivity of the C-
energy (see Eq.(8)) and the weak energy condition (see Eq.(9)), then, the function
γ should satisfy

γ ≥ 0 , γ′ ≥ 0 . (10)

The quantity X (see Eq.(2)) becomes 2

X :=
dt+
dτ

=
e−γ+

√
1− ρ̇ 2

+

so that ρ̇ 2
+ < 1. With the metric Eq.(7), it implies that the radial velocity of the

shell is always less than the light-velocity, as it should be.
Now the junction conditions Eq.(5) yield

κε = e−γ+
∆− 1

ρ+

√
1− ρ̇2

+

(11)

κpz =
e−γ+

∆(1− ρ̇2
+)3/2

{ (∆− 1)ρ̈+ − γ′
+ρ̇+(1− ρ̇+)[(∆ + 1)ρ̇+ + 1] (12)

−∆(∆− 1)
1− ρ̇2

+

ρ+
}

κpφ =
e−γ+

∆(1− ρ̇2
+)3/2

{
(∆− 1)ρ̈+ − γ′

+ρ̇+(1− ρ̇+)[(∆ + 1)ρ̇+ + 1]
}

, (13)

with
∆ :=

dt−
dt+

=
{
(1− e2γ+)ρ̇ 2

+ + e2γ+
}1/2

. (14)

It should be noted that γ+ > 0 (Eq.(10)) implies ∆ > 1 (Eq.(14)), so that it
follows ε > 0 (Eq.(13)).

1The suffix “+” is for the exterior quantities (ds+, t+, r+ and so on), while “-” is for the
interior quantities.

2Here the suffix + in e.g. ρ+ or γ+ implies that the quantity is evaluated on the shell from
the viewpoint of the exterior observer.



98 Model Analysis of Gravitational Shell Collapses

Figure 1. Typical evolutions of the shell-radius ρ+(t+) (thinner curve) and the rotational pressure

pφ (thicker curve). We have set γ+(r+ − t+) = 1
106 (r+ − t+ + 100)3. Initial conditions are

ρ+(0) = 0.1 and ρ̇+(0) = −0.999. The vertical line indicates 100ρ+ and pφ, while the horizontal
line indicates t+.

Let us set
P0 := κpz (constant)

in Eq.(13), then, we finally get the dynamical equation for the shell,

ρ̈+ = ∆
1− ρ̇2

+

ρ+
+ γ′

+

ρ̇+

∆− 1
(1− ρ̇+)[(∆ + 1)ρ̇+ + 1] (15)

+
∆

∆− 1
(1− ˙ρ+

2)3/2eγ+P0.

4 Bouncing of the shell without singularity-formation

As is mentioned in Introduction, the problems of gravitational contractions in-
evitably involve highly nonlinear dynamics. Equation (16) is indeed extremely
nonlinear in ρ+(t+), considering how ρ+(t+) is included in ∆ and γ+ = γ+(t+ −
ρ+(t+)). Before studying the shell dynamics Eq.(16) in detail, it is then helpful
to get a rough idea for the dynamics by showing typical numerical results.

Figure 1 shows the evolutions of the shell-radius ρ+(t) and the rotational pres-
sure pφ for the case γ+(r+− t+) = 1

106 (r+− t+ +100)3 and P0 = 0 with the initial
conditions ρ+(0) = 0.1 and ρ̇+(0) = −0.999 (i.e. very close to the light-velocity).
The figure indicates that the rotational pressure prevents the shell from collapsing
and that the shell bounces back and its velocity approaches to the light-velocity
after the bouncing.

On the other hand, Figure 2 indicates the behavior of the same model as
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Figure 2. The same model as Figure 1 with initial conditions, ρ+(0) = 0.1 and ρ̇+(0) = −0.1.
The vertical line indicates 10ρ+ (for the thinner curve) and pφ (for the thicker curve), while the
horizontal line indicates t+.

Figure 1 but with different (milder) initial conditions ρ+(0) = 0.1 and ρ̇+(0) =
−0.1. The bouncing behavior is again observed.

Even though we change initial conditions in various ways, the bouncing behav-
ior similar to the above typical numerical results always appears. These results
lead us to doubt the claim by the preceding authors [7, 8] that a line-like singu-
larity (possibly naked) could form in this model. Indeed, as we see below, it is
rigorously proved that the shell always bounces back and never forms a singularity
in this model, irrespective of initial conditions.

Let us set V := −ρ̇+ which takes the value 0 < V < 1 in the contracting
phase. Instead of studying Eq.(16), then, it is more convenient to investigate the
following;

ρ̈+ = ∆
1− V 2

ρ+
+γ′

+

V

∆− 1
(1+V )[(∆+1)V −1]+

∆
∆− 1

(1−V 2)3/2eγ+P0 , (16)

where ∆ =
[
V 2 + e2γ+(1− V 2)

]1/2.
Let [[1]], [[2]] and [[3]] be the first, the second and the third term on the right-

hand side of Eq.(16), respectively. Then we observe the following:

(i) The first term [[1]] produces a strong repulsive force, which prevents the shell
from collapsing. The only possible exception may arise when V approaches
to 1 faster than ρ+ → 0. Only in this case the term [[1]] can be negligible. Let
us call, then, the phase-point (ρ+ , V ) = (0, 1) the singularity-prone point.
However, near the singularity-prone point, the other two terms ([[2]] + [[3]])
become dominant and they produce a strong repulsive force:
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(ii) Indeed, the second term [[2]], which is an attractive force when V is small,
turns to a repulsive force as V → 1. This is easily seen by noting that the
function f(V ) := [(∆ + 1)V − 1] is a monotonic, increasing and continuous
function with f(0) = −1 and f(1) = 1. Thus f(V ) has only zero in (0,1),
which means f(V ) turns from negative to positive as V → 1.

(iii) The term [[3]] is non-negative when P0 ≥ 0 (pressure in z-direction), while
it is negative when P0 < 0 (tension). In either case, however, it turns out
that the term [[3]] is not important for the whole dynamics.

(iv) Setting V = 1 − δ (δ > 0), it is easy to see that the three terms behave as
[[1]] ∼ δ

ρ+
, [[2]] ∼ 1

δ and [[3]] ∼ δ1/2. Thus even near the singularity-prone
point, the shell always feels a very strong repulsive force and never collapses.

The above argument is refined to prove Theorem shown below [3].

Definition
We define the core-region as a connected region in the phase-space (for the
dynamical variable ρ+) which contains a neighborhood of the singularity-
prone point (ρ+ , V ) = (0, 1) and where [[2]] + [[3]] > 0 is satisfied [3].

Now we first show the following Lemma:

Lemma
Once the shell enters the core-region at t = t∗, it bounces back without reach-
ing zero-radius. Indeed, ρ+(t) is bounded from below as

ρ+(t) > ρ+(t∗)
√

1− ρ̇+(t∗)
2

.

Proof:
The claim follows from the fact that

ρ̈ =
1− ρ̇2

ρ
,with ρ(0) = a , ρ̇(0) = −b (a > 0, 1 > b > 0)

is exactly solved as ρ(t) = ((t−ab)2 ++a2(1−b2))1/2, so that ρ+(t) > ρ(t) ≥
a
√

1− b2 > 0.

Then we immediately arrive at

Theorem
The shell never reaches ρ+ = 0 irrespective of its initial conditions.

Proof:
If the shell could have ever reached ρ+ = 0, it should have been through the
core-region. However, Lemma indicates that this never happens.
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The above Theorem reveals that the singularity-formation “solution” claimed
by the other authors is actually not a solution and should be discarded. The reader
is referred to Ref. [3] for more detailed arguments. Here it suffices to give a simple
example which is analogous to the present case: Let us consider a differential
equation,

ÿ = 1 , (17)

the general solution of which is the one indicating a uniform positive acceleration.
However, if we artificially rewrite Eq.(17) as

ÿ = β/ẏ , (18)

with
β = ẏ , (19)

a formal contracting solution for Eq.(18) emerges as

y(t) = y0 − 2
√

2
3

√
βt3/2 , (20)

provided that β is assumed to be a constant. However, the solution Eq.(20) is in
any case inconsistent: Noting that β := ẏ = −√2βt, it follows that β = 2t so that
it contradicts with the starting assumption of β being a constant.

The singularity-formation “solution” is obtained by the same trick as Eqs.(18)
and (19). Though much more sophisticated arguments are required than this
simple example, it turns out that the singularity-formation “solution” should be
discarded in a more or less similar manner [3].

5 Summary

In this paper, we have investigated the dynamics of a cylindrical shell-contraction
model with rotational pressure. As far as the weak energy condition is satisfied
outside the shell, the collapsing shell always bounces back at some point irrespec-
tive of the initial conditions, and escapes from the singularity formation. This
result reveals that the singularity-formation solution claimed by the preceding au-
thors is not a relevant solution and that it should be discarded. This bouncing
behavior is compatible with the results of other cylindrical shell-collapse models
and confirms once again the essential importance of the rotational effect in the
gravitational collapse.

The two conjectures (“the cosmic censorship conjecture” and “The hoop con-
jecture”) combined together imply that any sufficiently elongated object (made of
reasonably natural matter) should evolve regularly without any singularity forma-
tion. The present result is compatible with this statement, and along with other
known models with cylindrical symmetry, suggests the stable validity of the two
conjectures for wider class of situations.
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Abstract

Following Einstein’s theory of general relativity, the gravitational accelera-
tion of deuteron is shown to be less than that given by Newton’s theory.
During the primordial nucleosynthesis, deuterons were more important than
proposed by the original Big-Bang theory. But these deuterons escaped out
of the gravitational fields of the solar system.

1 Gravitational Acceleration of the Deuteron

Newton, in his equation of motion, assumed that the inertial mass is equal to
the gravitational mass. Thus everything located at a distance r from a gravita-
tional source with mass M is accelerated toward the source with a gravitational
acceleration g,

d2r

dt2
= g. (1)

Following Einstein’s general relativistic equation of motion [1], using the Schwarz-
schild metric, we obtain [2] an expression of this gravitational acceleration as

g =

(

1−
(

dr

cdt

)2
)

gN , (2)

neglecting a correction factor on the speed of light c. Because Einstein assumed
that

(ds)2 = g00(cdt)2 − gαα(dxα)2, (3)
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that is, (
dxα

dt

)2

≤ g00

gαα
c2 ∼ c2, (4)

where the correction factor, on gN in eq. (2), is a natural consequence of his
theory, because, without this correction factor, the radial speed of a test particle
can exceed the speed of light soon, as it falls toward the gravitational source.

Inside a deuteron nucleus, one proton and one neutron are orbiting around each
other. However, the ground state of the deuteron is mostly 3S, which means that
the quantum mechanical expectation value of dr/dt is zero. Because of the tensor
component of the nuclear force, it is shown that a small contribution of a 3D-state
exists. But the correction factor due to this contribution, in eq. (2), is negligible.

The resonating excited state of the deuteron, d∗, must be an (isospin = 1)-state,
which means that its energy is about the same as the ground states of a di-
proton and a di-neutron nucleus, both of which are unstable. In the di-proton, the
Coulomb repulsive force is too strong, and the binding energy of the n+n system is
expected to be less than 0.05 MeV. Even though no di-neutron system is observed,
we know a neutron star exists as a pulsar. We thus expect that an excited-state
deuteron would exist. Actually, a deuteron coupled with a nonresonating γ ray
would be virtually excited. We call such a state a dressed deuteron, d∗. The
virtually excited (isospin = 1)-state should be a 3P -state, in which nucleons are
orbiting around each other with an extremely high speed [3].

d + γ ↔ d∗. (5)

The dressed deuteron is described by a wave function ψP (r)eiωt + ψS(r), where
ψP (r) and ψS(r) are the space parts of the wave functions for the 3P and 3S states,
respectively, and ω is the excitation energy in �. When the intensity of the γ ray is
very high the contributions of the 3S and the 3P states will be about the same to
each other. Thus the expectationvalue of dr/cdt, the correction term of eq. (2), is
about Rω/c where R is the average radius of the nucleon orbits. If the excited 3P
state is at the dissociative level, ω must be 2.73 MeV = 4.15×1021 rad/s. Assum-
ing R = 2 × 10−15 m, we obtain the expectationvalue of dr/cdt to be 0.03 when
the nucleon orbits are in the radial (vertical) plane.

2 The Big Bang

Gamow, Alpher, and others [4,5,6,7,8] proposed that nuclei were formed from pri-
mordial neutrons in a few minutes and were then frozen, as an unfinished building-
up process. A neutron decays into a proton and an electron, n → p + el, with a
lifetime of 10.28 minutes [9]. But before all neutron decay, the newborn proton
interacts with the surviving neutron, forming a deuteron, p + n → d, in about
3 minutes. Reactions p + d → 3He, n + 3He → α, and d + d → α follow
very quickly. Thus, the helium/proton ratio is expected to be about 0.3 at this
stage of the primordial nucleosynthesis. This ratio is close to what we actually
find in the universe [10].



M. Mizushima 105

For the abundance of heavy nuclei, the theory implies a relation [8]

n(A)σ(A) = n(A + 1)σ(A + 1), (6)

where σ is the cross section for neutron capture and n is the abundance. The
relative abundance of heavy nuclei in meterorites [11,12] can be explained by this
simple formula, including the maxima at mass numbers A = 50, 82, and 126.

However, an almost fatal objection to this theory lies in the fact that nu-
clei with mass numbers 5 and 8 are all short-lived with lifetimes 3 × 10−22(5Li),
7× 10−22(5He), 2 × 10−20(8C), 0.77(8B), 7 × 10−17(8Be), 0.845(8Li), and
0.119(8He) in sec, respectively.

Bethe, in his famous theory of the production of solar energy, pointed out [13]
that reactions 3He + α → 7Be and 7Be + el → 7Li are possible. Therefore,
the gap at the mass number 5 is no trouble to Gamow’s theory. We propose that
a large enough number of deuterons or/and dressed deuterons existed during the
period of primodial nucleosynthesis so that a reaction

d∗ + 7Li → 9Be, (7)

was possible. After 9Be, synthesis of heavier nuclei follows.
It is known that deuterons exist on Earth (as ocean water) with the abundance

ratio, d/p, of 1.5×10−4. However, this abundance ratio must be far below this
number in the sun [14]. This isotope ratio in the upper atmosphere of Venus
is 0.016 (which is about 100 times the corresponding number in ocean water),
although the isotope ratios for Ne, Ar, C, and O are almost the same as those
on Earth [15]. On Jupiter, the d/p ratio is 2.8 × 10−5 to 7.5× 10−5 as CH3D
and is 2.1 × 10−5 as HD, and in meteorites, it is 1.3 × 10−4 to 2.0 × 10−4 [16].
Even on Earth, the d/p ratio varies from 3.2 × 10−5 to 1.85 × 10−4 as HD. The
temperature of the sun is so high that some deuterons dissociate. But after the
primordial period, the outside region of the solar system cooled down so that
some deuterons remained on the planets. The large variations in the isotope ratio,
however, suggest that some deuterons have escaped from the gravitational fields of
planets (and the sun) by now, because the gravitational acceleration of the dressed
deuteron is less than the standard acceleration gN , as shown above.

The big bang may have taken place at the time of the galactic nuclear explosions
that have created galactic spiral arms [17,18]. The Milky Way galaxy has four pairs
of spiral arms. Therefore, there were four big bangs in our galaxy during the past.
Near the black hole, the gravitational field was very strong, and that situation
produced the yelm, the primordial compressed neutron gas, from which the big
bang process started.
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Abstract

In the framework of the theory of scale relativity, one considers the possi-
bility that space-time be not only curved but also fractal at large scales.
Then one can show that the equation of dynamics in such a space (i.e. the
geodesics equation), takes the form of a generalized Schrödinger equation.
This approach allows one to suggest new solutions to the problems of the
formation and evolution of gravitational structures and of the ’missing mass’.
Indeed, such a description leads to a natural self-organization process and
involves the apparition of a new potential energy which is a manifestation
of the fractal geometry (in similarity with the Newtonian potential being
a manifestation of curvature). We suggest that this ’dark potential’ is the
cause of the various effects that have up to now been attributed to a pos-
tulated non-baryonic dark matter. We conclude by a brief survey of various
observational effects that come in support of such a proposal.

1 Introduction

In its present acceptance, gravitation is understood as the various manifestations
of the geometry of space-time at large scales. Up to now, in the framework of
Einstein’s theory [1], this geometry was considered to be Riemannian, i.e. curved.
However, in the new framework of scale relativity, the geometry of space-time is
assumed to be characterized not only by curvature, but also by fractality [2] beyond
a new relative time-scale and/or space-scale of transition, which is an horizon
of predictibility for the classical deterministic description. While the concept of
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fractal space-time has been first introduced in connection with the microscopic
quantum theory [3, 4, 5, 6, 7], it can indeed be also applied to the macroscopic
realm, but with a different interpretation. Now, fractality manifests itself, in the
simplest case, in terms of the appearance of a new scalar field. We have suggested
that this new field leads to spontaneous self-organization and may also be able to
explain [11, 18], without additional non-barionic matter, the various astrophysical
effects which have been, up to now, attributed to unseen “dark” matter .

2 Gravitational Schrödinger equation

Let us first briefly recall the basics of the scale-relativistic theoretical approach.
Under three general conditions, namely, {(i) infinity of geodesics (which leads to
introduce a non-deterministic velocity field), (ii) fractal dimension DF = 2 of each
geodesic, on which the elementary displacements are described in terms of the sum
dX = dx+dξ of a classical, differentiable part dx and of a fractal, non-differentiable
fluctuation dξ, (iii) two-valuedness of the velocity field, which is a consequence of
time irreversibility at the infinitesimal level issued from non-differentiability}, one
can construct a complex covariant derivative that reads

d̄

dt
=

∂

∂t
+ V.∇− iD∆ , (1)

where D is a parameter that characterizes the fractal fluctuation, which is such
that < dξ2 >= 2Ddt, and where the classical part of the velocity field, V is complex
as a consequence of condition (iii) (see [8] for a recent complete demonstration).

Then this covariant derivative, that describes the non-differentiable and fractal
geometry of space-time, can be combined with the covariant derivative of general
relativity, that describes the curved geometry. We shall briefly consider in what
follows only the Newtonian limit. In this case the equation of geodesics keeps the
form of Newton’s fundamental equation of dynamics in a gravitational field,

D̄V
dt

=
d̄V
dt

+∇
(

φ

m

)
= 0, (2)

where φ is the Newtonian potential energy. Introducing the action S, which is
now complex, and making the change of variable ψ = eiS/2mD, this equation can
be integrated under the form of a generalized Schrödinger equation [3]:

D2∆ψ + iD ∂

∂t
ψ − φ

2m
ψ = 0. (3)

Since the imaginary part of this equation is the equation of continuity (Sec. 3),
and basing ourselves on our description of the motion in terms of an infinite fam-
ily of geodesics, P = ψψ† naturally gives the probability density of the particle
position [8]. This result is supported by Hermann’s numerical simulations [25].

Even though it takes this Schrödinger-like form, equation (3) is still in essence
an equation of gravitation, so that it must come under the equivalence principle [13,
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19], i.e., it is independent of the mass of the test-particle. In the Kepler central
potential case (φ = −GMm/r), GM provides the natural length-unit of the system
under consideration. As a consequence, the parameter D reads:

D =
GM

2w
, (4)

where w is a constant that has the dimension of a velocity. The ratio αg = w/c
actually plays the role of a macroscopic gravitational coupling constant [19, 17].

3 Formation and evolution of structures

Let us now compare our approach with the standard theory of gravitational struc-
ture formation and evolution. By separating the real and imaginary parts of the
Schrödinger equation we obtain, after a new change of variables, respectively a
generalized Euler-Newton equation and a continuity equation, namely,

m (
∂

∂t
+ V · ∇)V = −∇(φ + Q),

∂P

∂t
+ div(PV ) = 0, (5)

where V is the real part of the complex velocity field V. In the case when the
density of probability is proportional to the density of matter, P ∝ ρ, this system
of equations is equivalent to the classical one used in the standard approach of
gravitational structure formation, except for the appearance of an extra potential
energy term Q that writes:

Q = −2mD2 ∆
√

P√
P

. (6)

The existence of this potential energy, (which amount to the Bohm potential
in standard quantum mechanics) is, in our approach, readily demonstrated and
understood: namely, it is the very manifestation of the fractality of space, in
similarity with Newton’s potential being a manifestation of curvature.

In the case when actual particles achieve the probability density distribution
(structure formation), we have ρ = m0P ; then the Poisson equation (i.e., the field
equation) becomes ∆φ = 4πGmm0ψψ† and it is therefore strongly interconnected
with the Schrödinger equation (which is here a new form for the equation of mo-
tion). Such a system of equations is similar to that encountered in the description
of superconductivity (Hartree equation). We expect its solutions to provide us
with general theoretical predictions for the structures (in position and velocity
space) of self-gravitating systems at multiple scales [10, 18]. This expectation is
already supported by the observed agreement of several of these solutions with
astrophysical observational data [3, 13, 17, 14, 15, 20, 21, 16].
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Figure 1. Distribution of the semi-major axis of Kuiper belt objects (KBO) and scattered Kuiper
belt objects (SKBO), compared with the theoretical predictions (arrows) of probability density
peaks for the outer solar system [18] (see text). The existence of probability density peaks for the
Kuiper belt at ≈ 40, 55, 70, 90 AU, etc..., has been theoretically predicted before the discovery
of these objects [22], and it is now supported by the observational data.

Figure 2. Observed distribution of the semi-major axes of recently discovered exoplanets and
inner solar system planets, compared with the theoretical prediction. One predicts the occurence
of peaks of probability density for semimajor axes an = GM(n/w0)2, where n is integer, M is
the star mass and w0 = 144.7 ± 0.7 km/s is a gravitational coupling constant (see text). The
probability to obtain such an agreement by chance is P = 4 × 10−5.

4 Examples of applications to astrophysics

The theory has been able to predict in a quantitative way several new effects in the
domain of gravitational structuring [18]. Moreover, these predictions have been
successfully checked in various systems on a large range of scales and in terms of a
common gravitational coupling constant (or one of its multiples or submultiples)
whose value averaged on these systems was found to be w0 = c αg = 144.7 ± 0.7
km/s [13]. Indeed, new structures have been theoretically predicted, then checked
by the observational data in a statistically significant way, for our solar system,
including distances of planets [3, 14] and satellites [16], sungrazer comet peri-
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Figure 3. Observed distribution of the eccentricities of exoplanets. The theory predicts that the

product of the eccentricity e by the quantity ñ = 4.83(a/M)1/2, where a is the semi-major axis
and M the parent star mass, should cluster around integers. The data support this theoretical
prediction at a probability level P = 10−4 [18].

helions [18], obliquities and inclinations of planets and satellites [20], exoplanets
semi-major axes [13, 17] (see Fig. 2) and eccentricities [18] (see Fig. 3), includ-
ing planets around pulsars, for which a high precision is reached [13, 21], double
stars [15], planetary nebula [18], binary galaxies [9] (see Fig. 4), our local group of
galaxies [18], clusters of galaxies and large scale structures of the universe [15, 18].

Let us briefly consider the application of the theory to the formation of plan-
etary systems. The standard model of formation of planetary systems can be
reconsidered in terms of a fractal description of the motion of planetesimals in the
protoplanetary nebula. On length-scales much larger than their mean free path,
we have assumed [3] that their highly chaotic motion satisfy the three conditions
upon which the derivation of a Schrödinger equation is based (large number of
trajectories, fractality and time symmetry breaking).

This description applies to the distribution of planetesimals in the proto-plane-
tary nebula at several embedded levels of hierarchy. Each hierarchical level (k)
is characterized by a length-scale defining the parameter Dk (and therefore the
velocity wk) that appears in the generalized Schrödinger equation describing this
sub-system. This hierarchical model has allowed us to recover the mass distribu-
tion of planets and small planets in the inner and outer solar systems [14]. It is
generally supported by the structure of our own solar system, which is made of
several subsystems embedded one in another, namely:

*The Sun. Through Kepler’s third law, the velocity w = 3 × 144.7 = 434.1
km/s is very closely the Keplerian velocity at the Sun radius (R� = 0.00465 AU
corresponds to w� = 437.1 km/s). Moreover, one can also apply our approach
to the organization of the sun surface itself. One expect the distribution of the
various relevant physical quantities that characterize the solar activity at the Sun
surface (sun spot number, magnetic field, etc...) to be described by a wave function
whose stationary solutions read ψ = ψ0 eiEt/2mD.

The energy E results from the rotational velocity and, to be complete, should
also include the turbulent velocity, so that E = (v2

rot + v2
turb)/2. This means that
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we expect the solar surface activity to be subjected to a fundamental period:

τ =
2πmD

E
=

4πD
v2

rot + v2
turb

, (7)

The parameter D at the Sun radius is D = GM�/2w�, then we obtain:

τ =
2πGM�

w�(v2
rot + v2

turb)
. (8)

The average sideral rotation period of the Sun is 25.38 days, yielding a velocity of
2.01 km/s at equator [23]. The turbulent velocity has been found to be vturb =
1.4± 0.2 km/s [24]. Therefore we find numerically

τ = (10.2± 1.0) yrs. (9)

The observed value of the period of the Solar activity cycle, τobs = 11.0 yrs,
supports this theoretical prediction. We shall in future works test this proposal
by a more detailed study of the activity of the Sun and of other stars.

*The intramercurial system, organized on the constant w� = 3 × 144 =
432 km/s. The existence of an intramercurial subsystem is supported by various
stable and transient structures observed in dust, asteroid and comet distributions
(see [18]). We have in particular suggested the existence of a new ring of asteroids,
the ‘Vulcanoid belt’, at a preferential distance of about 0.17 AU from the Sun.

*The inner solar system (earth-like planets), organized with a constant
wi = 144 km/s (see Fig. 2).

*The outer solar system (Jovian planets), organized with a constant wo =
144/5 = 29 km/s (see Fig. 1), as deduced from the fact that the mass peak of
the inner solar system lies at the Earth distance (n = 5). The recently discovered
Kuiper and scattered Kuiper belt objects (Fig. 1) show peaks of probability at
n = 6 to 9 [18], as predicted before their discovery [22].

We have suggested more than ten years ago [3, 22], before the discovery of
exoplanets, that the theoretical predictions from this approach should apply to all
planetary systems, not only our own solar system. Meanwhile more than 120 ex-
oplanets have been discovered, and the observational data support this prediction
in a highly statistically significant way (see [13, 17, 18] and Figs. 2 and 3).

A full account of this new domain would be too long to be included in the
present contribution. We have given here only few typical examples of these effects
(see the figures) and we refer the interested reader to the review paper Ref. [18]
and references therein for more detail.

5 Possible solution to the “dark matter” problem

In the case (ii) of isolated test particles, the density of matter ρ may be nearly
zero while the probability density P does exist, but only as a virtual quantity
that determines the potential Q. In this situation, even though there is no or few
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Figure 4. Deprojection of the intervelocity distribution of galaxy pairs (Tricottet and Nottale,
reported in [18]) from the Schneider-Salpeter catalog with precision redshifts. The main proba-
bility peak is found to lie at 144 km/s (plus secondary peaks at 72=144/2 km/s and 24=144/6
km/s), in agreement with the exoplanet and inner solar system structuring (see Fig. 2).

matter at the point considered (except the test particles that are assumed to have
a very low contribution), the effects of the potential Q are real (since it is the
result of the structure of the geodesics two-fluid).

We have therefore suggested [11, 18, 12] that this extra scalar field, which
is a manifestation of the fractality of space, may be responsible for the various
dynamical and lensing effects which are usually attributed to unseen “dark mat-
ter”. This interpretation is supported by the fact that, for a stationary solution
of the gravitational Schrödinger equation, one gets the general energy relation
E = φ + Q + 1

2mV 2, where E/m can take only quantized values.
This result can be applied, as an example, to the motion of bodies in the outer

regions of spiral galaxies. In these regions there is practically no longer any visible
matter, so that the Newtonian potential (in the absence of additional dark matter)
is Keplerian. While the standard Newtonian theory predicts for the velocity of the
halo bodies v ∝ φ1/2, i.e. v ∝ r−1/2, we predict v ∝ |(φ + Q)/m|1/2, i.e., v =
constant. More specifically, assuming that the gravitational Schrödinger equation
is solved for the halo objects in terms of the fundamental level wave function, one
finds Qpred = −(GMm/2rB)(1− 2 rB/r), where rB = GM/w2

0. This is the result
systematically observed in spiral galaxies (i.e., flat rotation curves) which has
motivated (among other effects) the assumption of the existence of dark matter.

6 Conclusion

We have recalled in the present contribution how the theory of scale relativity is
able to yield equations that describe a natural tendency to make structures, as a
very consequence of the fractality of space.
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Moreover, we have suggested that the effects tentatively attributed to unseen
matter are simply the result of this geometry of space-time. In this proposal,
space-time is not only curved but also fractal beyond some given relative time and
space-scales. While the curvature manifests itself in terms of the Newton potential,
fractality would manifest itself in terms of the new scalar potential Q, and then
finally in terms of the anomalous dynamics and lensing effects.
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Abstract

The anisotropies of the Cosmic Microwave Background are caused by sev-
eral physical phenomena. Those anisotropies produced by cosmological in-
homogeneities placed far away from (close to) the last scattering surface are
called secondary (primary). We focus our attention on one of the secondary
anisotropies: the Rees-Sciama (RS) effect due to the time variation of the
peculiar gravitational potential of non-linear cosmological inhomogeneities.
A full description of a distribution of these structures requires N-body sim-
ulations with appropriate resolutions and box sizes. CMB photons cross a
periodic universe formed by repeated N-body boxes. Periodicity leads to
a magnification of the RS effect. A method to avoid this magnification is
described and, then, it is applied to simulate maps of the RS effect which
are being statistically analysed. RS is a subdominant effect which appears
superimposed to other ones in nature. Each one of these effects must be
studied in detail to make possible an eventual separation of components in
maps of future CMB experiments as PLANCK.
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1 Introduction

The CMB radiation was discovered in 1965 [1]. A few years before, it had been
teoretically predicted in the framework of the Big Bang cosmological model (see [2]
and references therein). This radiation plays a crucial role in modern cosmology
and, consequently, many experiments have been designed to measure its spectrum,
polarisation, and anisotropy. These measurements are to be compared with the-
oretical predictions based on a cosmological background containing some type of
cosmological structures. Now, a few words about the nature and importance of
the CMB are presented.

In the primordial universe, baryonic matter was strongly coupled to radiation.
Protons and electrons were not confined in atoms, in other words, these particles
were free in the so-called primeval plasma. In that situation, photons could not
travel freely because they frequently interacted with the plasma free electrons
and, consequently, the universe was opaque; afterwards, as a result of expansion,
the universe cooled and became transparent. In fact, when the temperature was
low enough ( 
 3500 K ), protons captured electrons and formed stable hydrogen
atoms (recombination). The absence of free electrons led to the decoupling between
matter and radiation at redshift Z ≈ 103. The recombination-decoupling process
lasted for a time corresponding to a redshift increment ∆Z ≈ 80. This short
duration allows us to consider a Last Scattering Surface (LSS) separating the
opaque ionized Universe from the transparent neutral one. From that period
on, CMB photons travelled almost freely. Astrophysical phenomena could have
produced a reionization, which would have altered the CMB radiation at low
redshifts ( Z 
 20 ).

Now, some comments about the information supplied by the study of the CMB
are made. This radiation appears to be very isotropic (see for example [3]) and,
furthermore, it has a black-body spectrum at temperature T ≈ 2.73K, and a low
level of linear polarisation. Small angular temperature fluctuations (anisotropies)
have been detected in the CMB (see for instance [4]). In a fully homogeneous uni-
verse, the CMB would be absolutely isotropic. The anisotropies are due to the fact
that photons coming along distinct directions undergo different frequency shifts, it
occurs because these photons cross distinct inhomogeneous regions. Hence, CMB
anisotropies give information about the distribution of inhomogeneities (large scale
structure) evolving in the universe. On account of these considerations, it is ob-
vious that the observation of the CMB anisotropies allows us to look for the best
theory explaining structure formation in the framework of the Big Bang model.

2 The anisotropies of the CMB

The small angular dependence of the CMB temperature can be understood taking
into account the following formula for the temperature contrast:

∆T

T
(�n) =

(
∆T

T
(�n)
)

E

+ �n · (�vO − �vE) − 1
3

(φO − φE) − 2
∫

∂φ

∂t
dt (1)
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where �n is the unit vector of the line of sight, �v is the peculiar velocity, and φ
the peculiar gravitational potential. E stands for emission and O for observation.
The terms of the r.h.s. of Eq. (1) have the following interpretation:

• (∆T
T

)
E

is the initial anisotropy due to temperature fluctuations on the LSS
produced by previous evolution.

• �n · �vE is a Doppler effect due to peculiar motions on the LSS.

• �n·�vO is another Doppler effect due to the motion of the observer with respect
to the background universe. This component has dipolar structure.

• − 1
3 (φO) is a monopole due to the peculiar gravitational potential at the

position observer.

• 1
3 (φE) is the Sachs-Wolfe effect due to the peculiar gravitational potential
created by the inhomogeneities located close to the LSS.

• − 2
∫

∂φ
∂t dt is the contribution due to time variations of φ, this term is called

the integrated Sachs-Wolfe (Rees-Sciama) effect when the potential is created
by large scale linear structures (non-linear structures).

Hence, the anisotropy given by Eq. (1) is the superimposition of various effects.
Among them, the RS effect is a secondary subdominant anisotropy produced by
the time variation of the potential φ created by non-linear structures at Z ≤ 50.
It is given by the following formula:

∆T

T
≈ −2

∫ t0

t50

∂φ(�x, t)
∂t

dt (2)

The evolution of strongly non-linear structures is a hard problem. Only two meth-
ods are known to deal with it: in the first one, only one symmetric structure is
described using exact solutions of Einstein equations, and in the second method, a
realistic statistical distribution of asymmetric structures is evolved using N-body
simulations. Several studies of the anisotropy generated by a unique symmetric
cosmological inhomogeneity (Great Attractor, voids) have been done. Two main
models have been used for this purpose: the Lemâıtre-Tolman-Bondi model (see
for example [2]) or the Swiss-Cheese model (see for instance [5]). Although these
models led to important qualitative ideas about the Rees-Sciama effect with a
moderated computational cost, only N-body simulations describing a set of inho-
mogeneities can lead to a realistic prediction of the RS effect. These predictions are
based on a periodic Universe filled by identical N-body boxes where CMB photons
move along null geodesics. By this reason ray-tracing through N-body simulations
is first used to get maps of the RS effect and, then, these maps are statistically
analysed to estimate deviations from gaussianity; see for example [6, 7]; in this
last paper, the ray-tracing procedure used here was described in detail. It is based
on the existence of a preferred direction minimising the magnification of the RS
effect in a periodic universe.
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Figure 1. APS of the dominant anisotropies. Model parameters: Ω0 = 1.0, ΩΛ = 0.73, Ωb =
0.04, Ωc = 0.23, h = 0.71 and reionization at Z = 17.

In this paper, the Angular Power Spectrum (APS) of the CMB is calculated
using the code CMBFAST [8] for the model suggested by WMAP observations
[9]. This APS is displayed in Fig. 1 and no subdominant anisotropies as RS, lens
deformations, Sunyaev-Zel’dovich effect and so on have been considered at all.

3 Ray-tracing methods

In standard ray-tracing procedures, photons move along null geodesics in a pe-
riodic universe. Identical N-body boxes are used to tile the space at any given
time (periodicity). All the boxes evolve in the same way according to N-body
predictions. Equation (2) must be integrated along each null geodesic (direction)
in order to estimate the RS effect. This integration must be performed along a set
of appropriate directions to get a RS map.

The main problems with this type of ray-tracing is that CMB photons can be af-
fected by the same structures in successive boxes and, consequently, a wrong mag-
nification of the resultingwidth=9.0cm,height=9.0cm,angle=270 effect appears.
This magnification depends on the propagation direction and it is particularly
great for directions parallel to the box edges. In [10] one of these ray-tracing pro-
cedures involving multiple plane projection is described. It is the classical method.

In order to avoid the above problem, the boxes could be moved (roto-traslations)
when the photon crosses from a box to the next one. Thus, a given photon would
move through separated independent regions in successive boxes. Nevertheless,
this method introduces unavoidable discontinuities in the crossing points, which
affect the integral of the r.h.s. of Eq. (2).

Another procedure was proposed by [11], it is the tiling ray-tracing method,
in which a different N-body simulation describes structure evolution in each box
crossed by the CMB photon. In this way, the above periodicity effect is sur-
mounted, but discontinuities at crossing points appear as it occurs for roto-traslati-
ons. Furthermore, many N-body simulations –large computational cost– must be
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performed.
Recently, another method based on a unique N-body simulation has been pro-

posed [7]. It is based on the existence of preferred directions. A photon moving
along these directions crosses independent regions of the simulation box through
thousands of Megaparsecs and, consequently, no magnification of the RS effect
appears; at least, if an appropriate cut-off is performed to avoid scales larger than
a certain spatial scale Smax satisfying the following conditions: (a) scales smaller
than Smax are well evolved in the N-body simulation, and (b) the scale Smax is
greater than the distance, L, between the regions crossed by the CMB photon in
two neighbouring boxes. No discontinuities appear in the crossing points because
only a simulation is used and no roto-traslations are performed.

Some comments about our simulations are now necessary. A PM (particle-
mesh) N-body code designed by V. Quilis and D. Sáez (see [12] and references
cited therein) is used. The initial redshift: zin = 5 is assumed. The box size
is: Lbox = 256 Mpc. The preferred direction is: θ = 77.2◦, φ = 12.6◦. The
separation, L, between crossed regions in neighbouring boxes is: 52 Mpc. Spatial
scale larger than Smax are eliminated in the peculiar gravitational potential (not
in the N-body simulation). Various scales Smax ≤ 60 Mpc have been tried. The
photon crosses ∼ 30 boxes (∼ 8000 Mpc) before re-entering a box by the zone
where it was placed at the initial position (at zin = 5). Two types of simulations
have been performed, in the first one (hereafter poor resolution simulations) the
cell size is of 2 Mpc and 1283 particles of dark matter are used, whereas in the
second type (hereafter medium resolution simulations) the cell size is 1 Mpc and
the number of particles is 2563. Higher resolution simulations are being developed
but the computational cost is large. A set of directions ensures a uniform coverage
of ∼ 2◦ × 2◦ in the sky. A RS map is generated using these directions.

4 Results

Two particular RS simulations (preferred directions plus cut-off) are now dis-
played.

Fig. 2 corresponds to a low resolution simulation with the following character-
istics: (1) spatial resolution 2 Mpc, (2) maximum spatial scale Smax = 60 Mpc,
(3) number of particles 1283, (4) 1.82◦ × 1.82◦ map, (5) maximum temperature
contrast 1.92× 10−6, and (6) minimum temperature contrast −1.85× 10−6.

Fig. 3 is a particular middle resolution simulation with: (1) spatial resolu-
tion 1 Mpc, (2) maximum spatial scale 128 Mpc, (3) number of particles 2563,
(4) 1.82◦ × 1.82◦ map, (5) maximum temperature contrast 1.70 × 10−6, and (6)
minimum temperature contrast −1.16× 10−6.

The simulations look well, no rare structures appear in them, but what about
their APS?

In the left panel of Fig.4, we present the APS of the low resolution simulation
of Fig. 2, whereas in the right panel of the same Figure, we show the ratio between
this APS and that of Fig. 1. Since this ratio is a few times 10−3 in the wide �
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Figure 2. Low resolution RS simulation.

Figure 3. Middle resolution RS simulation.

Figure 4. Left panel: APS of Fig. 2 simulation. Right panel: Ratio between APS of left panel
and APS of Fig. 1.
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Figure 5. Left panel: APS of Fig. 3 simulation. Right panel: Ratio between APS of left panel
and APS of Fig. 1.

Figure 6. Defining m-direction correlation functions in maps.

interval under consideration, we conclude that the RS effect is much smaller than
the dominant anisotropy due to other effect (see Section 2 and Fig. 1).

Fig. 5 has the same structure as Fig. 4, but it corresponds to the medium
resolution simulation of Fig. 3. Although the resolution is greater than in the
case of Figs. 2 and 4, results are similar. The amplitude of the spectrum (ratio)
presented in the left (right) panel of Fig. 5 is smaller than that of the left panel
of Fig. 4, but it is only due to the fact that we are comparing two arbitrary
simulations and the amplitude (ratio) varies from simulation to simulation for
a given resolution. We have verified that the average spectra corresponding to
twenty simulations are rather similar for low and medium resolutions.

Simulations with higher resolution are in progress.

5 Conclusions and Perspectives

A ray-tracing procedure based on a preferred direction and an appropriate cut-off
has been designed. It has been used to get maps of the RS effect, which appears
to be a subdominant contribution to the total anisotropy of the CMB.

The maps are being statistically analysed in order to estimate deviations from
Gaussianity due to RS. m-direction correlation functions of the form Cm =
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〈ζ(�n1)ζ(�n2) · · · ζ(�nm)〉 are being calculated from our maps (for m ≤ 6), where
ζ = ∆T/T . The chosen sets of m directions draw –on the LSS– the figures dis-
played in Fig. 6.

In Gaussian statistics, Cm functions vanish for odd m values, whereas in the
even case, all these functions can be written in terms of function C2.

For Gaussian statistics and sets of directions with the above relative positions
one obtains the relation: C4(α) = 2[C2(α)]2 + [C2(

√
α)]2, which implies C4(0) =

3[C2(0)]2. The relation corresponding to C6(α) is more complicated and it is not
written. For α = 0, it leads to C6(0) = 15[C2(0)]3.

Non-Gaussianity implies either non vanishing correlations for odd m or vi-
olations of the above relations between the even correlations and C2. We are
computing Cm in order to distinguish the RS effect, which is subdominant and
non-Gaussian, from the dominant effects, which are Gaussian. This work is in
progress.

We are preparing a new code based on the mesh-refined AP3M N-body algo-
rithm designed and used by the HYDRA Consortium [13]. Great resolutions will
be considered with the new N-body.
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Abstract

We investigate the dynamics of gravity coupled to a scalar field using a
non-canonical form of the kinetic term. It is shown that its singular point
represents an attractor for classical solutions and the stationary value of the
field may occur distant from the minimum of the potential. In this paper
properties of universes with such stationary states are considered. We reveal
that such state can be responsible for modern dark energy density.

1 Introduction

Scalar fields play an essential role in modern cosmology. A realistic scenario of the
origin of our universe is based on the inflationary paradigm and a vast majority of
inflationary models use the dynamics of scalar fields. Here we show in a natural
way how to produce a class of effective potentials of the scalar field. It is achieved
by invoking the simplest form of a potential but non-canonical kinetic terms. The
drawback of using scalar fields is the occurence of potentials with unnatural forms.
For example, potentials have to be extremely flat to be consistent with the standard
inflationary scenario [1].
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We consider an action which couples gravity to a scalar field. The latter has a
non-trivial kinetic term K(ϕ) 
= 1. By supposition, it contains a singular point of
the following form

K(ϕ) = Mn/(ϕ− ϕs)n , n = −1, 1, 2 , (1)

and investigate their effect on the scalar field dynamics, see also [6]. Here M is
some model parameter. The existence of the singular kinetic term opens a rich
variety of possibilities for the construction of cosmological models. The well known
Brans - Dicke model [4] is one of the particular case.

It is known that appropriate change of the field variable, leads to the standard
form of kinetic term, i.e. K = ±1 what can be done during inflationary stage. The
situation becomes much more complex when the field fluctuates around a singular
point. The equation of motion for a uniform field distribution has the form

ϕ̈ + 3Hϕ̇− n

2(ϕ− ϕs)
ϕ̇2 + V (ϕs)′(ϕ− ϕs)n/Mn = 0 .

in the Friedmann-Robertson-Walker universe, H is the Hubble parameter and
expression (1) is taken into account. The field value ϕs is a stationary solution for
any smooth potential V and n > 0 provided that ϕ̇ = o(ϕ−ϕs). The cosmological
energy density of the vacuum is connected usually with one of its potential minima.
Here the situation is different - the vacuum state is connected with the singular
point of the kinetic term K(ϕ). To prove this statement, we consider the simplest
form of the potential

V (ϕ) = V0 + m2ϕ2/2 .

In the following we will only consider the class of models characterized by the set
of parameters m,V0,M . The stationary state ϕs is chosen in a way such that it
fits the cosmological Λ-term (see review [5]),

V0 + m2ϕ2
s/2 = V (ϕs) = Λ . (2)

The energy density ∼ Λ in a modern epoch is small compared to any scale during
the inflationary stage, which allows us to neglect it whenever this is possible and
obtain the relation

ϕs
∼=
√

2 |V0|/m. (3)

To proceed, an auxiliary variable χ will be taken into account. We suggest the
substitution of variables ϕ → χ in the form

dχ = ±
√

K(ϕ)dϕ, K(ϕ) > 0 , (4)

what leads to the action in terms of the auxiliary field χ

S =
∫

d4x
√−g

[
R

16πG
+ sgn(χ)

1
2
∂µχ∂µχ− U(χ)

]
, (5)

where the potential U(χ) ≡ V (ϕ(χ)) is a ’partly smooth’ function. Its form
depends on the form of the initial potential V (ϕ), the form of the kinetic term and
the position of the singularities at ϕ = ϕs. Now let us consider some particular
cases of K(ϕ), [7].
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Figure 1. Potential in terms of auxiliary field χ for the case n = 1. If χ < 0 the auxiliary field
behaves like a phantom field moving classically to the local extremum at χ = 0.

2 Effective potentials

The case n = 1
In this case formulas (1,4) give the action (5) with the potential

U(χ) ≡ V (ϕ(χ)) = V0 +
1
2
m2(ϕs + sgn(χ)

χ2

4M
)2 for ϕs > 0. (6)

Here and below we keep the one - to - one correspondence between the physical
variable ϕ and auxiliary variable χ in the intervals:

ϕ < ϕs → χ < 0;
ϕ > ϕs → χ > 0.

If the auxiliary field starts from χ > 0, it finally approaches the singular point
χ = 0 (see Fig.[1]). If the field obeys χ < 0, than the auxiliary field behaves like
a phantom field, which climbs up to the top of the potential and hence tends to
the singular point as well. Finally, the field settles down in the vicinity of the
singular point χ = 0 (ϕ = ϕs). One concludes that this point is the stationary
point and the vacuum energy density equals to V (ϕs), (see Eq.(2)) rather than to
V0. The value of parameters can be estimated if we interpret the auxiliary field
as the inflaton which in addition is responsible for the dark energy. In the course
of inflation, a slow roll condition [1] should hold. This happens if the parameters
take the values

M ∼MP ; |V0| ∼M4
P ; m ∼ 10−12MP . (7)

The parameter m is small in order to fit data of large scale temperature fluctuations
[8].

The problem of smallness of the vacuum energy density, Λ = 10−123M4
P remains

topical in this approach although the situation has changed. As mentioned above,
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the smallness of the vacuum energy density is usually connected with the smallness
of a potential minima. In the case considered here the modern energy density is
determined by the singular point ϕs of the non-canonical kinetic term (see Eq.(2)).
The smallness of Λ may be realized if the singular point ϕs is placed very close to
the zero point ϕ0 of the potential (V (ϕ0) = 0). A suitable interval is

ϕs ∈ [ϕ0, ϕ0+∆ϕ], ∆ϕ ≡
√
−2V0/m2 + 2Λ/m2−

√
−2V0/m2 ∼= Λ

m
√

2 |V0|
. (8)

This interval is extremely small, making its explanation still difficult. The next
section is devoted to a discussion of this subject matter. We will show that a
probabilistic approach may help to obtain a self-consistent picture.

The case n = 2
Now formulas (1, 4) give the action (5) with the potential

U(χ) =
1
2
m2ϕ2

s

[
1 + sgn(ϕs) · sgn(χ) · eχ/M

]2
+ V0 . (9)

In the case ϕs < 0; ϕ > ϕs the potential (9) is highly asymmetric, and the
behavior of the inflaton is rather different at χ < 0 from that at χ > 0. If we
suppose that the inflation starts with χ = χin > 0, the picture is similar to the
improved quintessence potential [10]. It is free of problems with the description
of the radiation-dominated stage during Big Bang nucleosynthesis which could
explain the modern distribution of chemical elements [9]. The chosen parameter
values

M ∼ MP , m ∼MP , |V0| ∼ 10−14M4
P (10)

permit a suitable inflationary stage and they are in agreement with observations
of temperature fluctuations [8].

The case n = −1
A nontrivial situation occurs when the kinetic function has not a pole but a

root at some point, K(ϕ) = (ϕ−ϕs)/M . Let the initial field value obey ϕ = ϕin >
ϕs ∼ MP , which gives rise to the inflation in early universe. Then the potential
of the auxiliary field χ becomes

U(χ) =
1
2
m2(ϕs + sgn(χ) · γ|χ|2/3)2 + V0 . (11)

U(χ) is finite at χ = 0 but its derivative is singular. Classically, the situation looks
very strange - the singular point attracts the solution, but forbids it to stay there
forever. It looks is similar to quantum mechanics, in particular to the case of an
electron in the Coulomb field.

The potential (11) behaves like χ4/3 at large field values. It leads to standard
inflation with moderate fine tuning of the parameters. Namely

M ∼ MP , m ∼ 10−6MP , V0 ∼ 10−12M4
p . (12)

If ϕs > 0, the field ϕ will fluctuate around some critical point with energy density
(2). This motion never attenuates completely because classical stationary points
are absent in this region.

Stationary Points in Scalar Fields
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3 Probabilistic approach to the form of action

Here we have investigated several specific forms of effective potentials. Many other
potentials and kinetic terms have been discussed in the literature. A substantial
number of them does not contradict observational data. In this context the ques-
tion can be raised and need to be answered: Why is it that particular shape of
potential and kinetic term is realized in nature? What are the underlying physical
reasons?

Some theoretical hints on the form of the potential have been given in the
context of supergravity, which predicts an infinite power series expansion in the
scalar field potential [11]. Its minima, if they exist, correspond to stationary states
of the field. The potential, due to an infinite number of terms in a power series
could correspond to a function with an infinite set of potential minima. This
assumption with randomly distributed minima appears to be self-consistent [2].
In the low energy regime it is reasonable to retain only a few terms (lowest powers
in the Taylor expansion) of the scalar field [12]. In the vicinity of each of those
minima the potential has a particular form. A similar behavior may hold also
for the kinetic term. If the scalar field is responsible for the inflation, each local
minimum produces an individual universe, different from any other universe. Our
own universe is associated with a particular potential minimum, not necessarily
located at ϕ = 0.

The observed smallness of the value of the Λ-term is explained usually in terms
of a more fundamental theory like supergravity or the anthropic principle. Our
point of view is that we have to merge these approaches. The more fundamental
theory supplies us with an infinite set of minima of the potential. These minima
having an individual shape are responsible for the formation of those universes
used in the anthropic consideration.

Practically, it could be performed in the framework of the random potential
[2, 3] and the kinetic term of the scalar field discussed in sect.(1). A part of such
potential and the kinetic term in a finite region of the field ϕ are represented in
Fig.[2]. Fluctuations of the scalar field being generated at high energies in the
inflationary stage move classically to stationary points. Those of them who reach
stationary points with appropriate energy density could form a universe similar
to our Universe. This energy density (∼ 10−123M4

P ) is the result of a small value
of the concrete potential minimum or a small value of the difference ϕs − ϕm,
where ϕm is a zero of the potential (V (ϕm) = 0). The fraction of such universes
is relatively small, but nevertheless is infinite because of an infinite number of
stationary states.

How could one decide which of the stationary points is most promising? To
get an idea we should recall that the main defect of the inflationary scenario is
the smallness of some intrinsic parameter compared to unity. It is the value of
selfcoupling λ ∼ 10−13 for the potential V4 = λϕ4 or the smallness of the mass of
the inflaton field in Planck units, m/MP ∼ 10−6 for the potential V2 = m2ϕ2/2.
Let us consider an infinite set of potential wells corresponding to infinite set of
its minima [2] as discussed above. Then we can use the concept of probability
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to find a potential well with specific properties. To estimate the relative number
of specific universes, let us suppose that if there are no observational data on
the value of a parameter g, the probability density W for any parameter g is
distributed by a random uniform distribution in the range (0, 1) in Planck scale.
An immediate conclusion is that the probability of a potential λϕ4 is about 10−13

while the probability of a potential m2ϕ2/2 is about 10−6. It means that the latter
is realized 106 times more frequently.

In fact the probability is much smaller due to smallness of the cosmological
Λ-term. So the probability to find a universe with such small vacuum energy is
PΛ = 10−123. Recall that the set of potential minima is infinite. It means that
the set of universes with an appropriate vacuum energy density is relatively small
but still infinite. So the probability to find an appropriate potential V4 is

P (V4) = 10−13PΛ, V4 ∼ ϕ4, (13)

while the same for the potential V2 is

P (V2) = 10−6PΛ, V2 ∼ ϕ2. (14)

The lowest stationary state could be a singular point of the kinetic term, rather
than a potential minimum. Thus we could expect that singular point(s) ϕs may be
found near some minima ϕm of the potential. Now the problem is reformulated as
follows: “which part of infinite number of minima contains singular points located
closely to them? ” This part is very small, but not zero, due to infinite number of
the minima. Only this part is important - it represents those vacua where galaxies
could be formed due to extremely small value of Λ− term [13].

Following the way discussed above we can compare the probability of realization
of such potentials. Their common factor is connected with the probability to find
the singular point of the kinetic term in a small interval Eq.(8),

P0 = ∆ϕs/MP
∼= Λ

MP m
√

2 |V0|
= PΛ

M3
P

m
√

2V0

. (15)

For the case n = 1 the only additional smallness is dictated by expression (7) and
the probability for such universes to occur is

P1 ∼ m

M
P0 = PΛ

M3
P

M
√

2V0

≈ PΛ . (16)

Universes with the properties described in the case n = 2 are distributed with
probability

P2 ∼ V0

M4
P

P0 
 PΛ

√
2V0

mMP
∼ 10−7PΛ , (17)

if the inflation starts at the right branch of the potential. Here we assumed m ∼
MP , V0 ∼ M4

P . The last case considered, n = 2, has a probability by an order of
magnitude larger

P−1 ∼ m

M

V0

M4
P

P0 
 PΛ

√
2V0

M2
P

∼ 10−6PΛ . (18)

Stationary Points in Scalar Fields
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Figure 2. Random potential and kinetic term. Dots denote stationary states of the field ϕ.

An important conclusion from this consideration is that the model with kinetic
term K ∼ (ϕ− ϕs)

−1 is much more probable (at least by a factor 106) comparing
with other models discussed above, including the models with a standard kinetic
term and potentials ∼ ϕ2 and ∼ ϕ4, see expressions (14), (13). It means that our
Universe is likely governed by the model with kinetic term K ∼ (ϕ− ϕs)

−1.
In conclusion we have discussed several inflationary models having common

features like the occurrence of singular points in non-canonical kinetic terms. We
have shown that the existence of such points where the kinetic term changes its
sign or tends to infinity opens new possibilities for scalar field dynamics. It takes
place even for the simplest form of the potential. Depending on a position of the
singular point of the kinetic term, specific forms of the potential of the auxiliary
field have been obtained. One of the main results is that the stationary value of
scalar field could occur at singular points of kinetic term rather than at minima of
the potential. We estimated the parameter values for three type of new inflationary
models. The probabilities to find universes with specific values of parameters have
been estimated. It was shown that the probability is much greater for the model
with kinetic term K ∼ (ϕ− ϕs)

−1 than for the other models including the most
promising model of chaotic inflation with the quadratic potential.

Another interesting result is that if the singular point is a root of the kinetic
term, the final state is intrinsically a quantum state.
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Abstract

In this paper a new approach to investigation of Quantum and Statistical
Mechanics of the Early Universe (Planck scale) - density matrix deforma-
tion - is proposed. Quantum Mechanics of the Early Universe is chosen as
Quantum Mechanics with Fundamental Length. Here Quantum Mechanics
with Fundamental Length is obtained as a deformation of well-known Quan-
tum Mechanics. The proposed approach allows to describe dynamics. It is
demonstrated that Statistical Mechanics of the Early Universe is a defor-
mation of the conventional Statistical Mechanics. The statistical-mechanics
deformation is constructed by analogy to the earlier quantum mechanical
results. Some implications of the obtained results are discussed. In partic-
ular, the problem of singularity, possible improvement of the definition of
statistical entropy and the problem of information loss in black holes are
considered. It is noted that the obtained results enable the derivation of the
Bekenstein-Hawking’s formula for the black hole entropy in a semiclassical
approximation in a simple and natural way.

As known, Quantum Mechanics of the Early Universe (Planck scale) differs from
the conventional one [1]. The main motivation for this difference is the presence of
the General Uncertainty Relations (GUR) [2] appropriated to describe a physical
behavior of the Early Universe and unavoidably leading to the fundamental length
concept. The derivation of GUR proceeding from the basic principles has been
performed relatively recently [3]. By this means the Quantum Mechanics of the
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Early Universe should be treated as a deformation of the well-known Quantum
Mechanics (QM). The deformation is understood as an extension of a particular
theory by inclusion of one or several additional parameters in such a way that
the initial theory appears in the limiting transition. The deformation in Quantum
Mechanics at Planck scale is realized by the commutator deformation, or more
precisely by deformation of the respective Heisenberg algebra [2],[4]. However,
this approach suffers from two serious disadvantages:1)the deformation parameter
is a dimensional variable κ with a dimension of mass [2] and 2)in the limiting
transition to QM this parameter goes to infinity, whereas fluctuations of other
values are hardly sensitive to it. In this paper it is proposed to study the quantum
mechanics of the Early Universe proceeding from the density matrix deformation
approach [5]-[7]. First starting from the existence of a minimum length lmin ∼ Lpl,
we give strong validation for the dependence of the density matrix on the addi-
tional dimensionless parameter α = l2min/x2 (where x is the scale of measurement)
varying over the interval 0 < α ≤ 1/4. An exact definition and the principal prop-
erties of the characteristic deformed density matrix ρ(α) referred to as the density
pro-matrix may be found in [5]. Of particular importance is the fact that in the
low-energy limit

lim
α→0

ρ(α) = ρ

transforms to the conventional density matrix in Quantum Mechanics. Besides,
the following condition must be fulfilled:

Sp[ρ(α)]− Sp2[ρ(α)] ≈ α. (1)

As a matter of fact, the deformation parameter α should assume the value 0 < α ≤
1. As seen from (1), however, Sp[ρ(α)] is well defined only for 0 < α ≤ 1/4. That
is if x = ilmin and i ≥ 2, then there is no problem at all. At the point of x = lmin

there is a singularity related to the complex values following from Sp[ρ(α)] , i.e.
to the impossibility of obtaining a diagonalized density pro-matrix at this point
over the field of real numbers. In [5, 7] it has been noted that this singularity is
directly associated with the description problem of space-time singularities, at any
rate in case of Schwarzschild black holes.

We consider possible solutions for (1). For instance, one of the solutions of (1),
at least to the first order in α, is

ρ∗(α) =
∑

i

αiexp(−α)|i >< i|, (2)

where all αi > 0 are independent of α and their sum is equal to 1. In this way

Sp[ρ∗(α)] = exp(−α)

We can easily verify that

Sp[ρ∗(α)]− Sp2[ρ∗(α)] = α + O(α2)

The Density Matrix Deformation In Quantum
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Note that in the momentum representation α ∼ p2/p2
pl, where ppl is the Planck

momentum. When present in the matrix elements, exp(−α) can damp the contri-
bution of great momenta in a perturbation theory.

The applications of the obtained results may be as follows [5, 7]:
1) An additional component in the deformed Liouville’s equation arises in two
cases: at transfer out of inflation to low energies; on absorption of the matter by
a black hole and its motion to singularity [8].
Note that the appropriate additional component in the right-hand side of Schrodin-
ger equation may be obtained in similar way [5, 7].
2)The approach used allows for introduction of the following matrix value that is
a complete analog for the statistical entropy in case under consideration and is
meaning the entropy density over a minimum unit area [5, 7]:

Sα1
α2

= −Sp[ρ(α1) ln(ρ(α2))] = − < ln(ρ(α2)) >α1 , (3)

where 0 < α1, α2 ≤ 1/4.
Sα1

α2
has a clear physical meaning: the entropy density is computed on the scale

associated with the deformation parameter α2 by the observer who is at a scale
corresponding to the deformation parameter α1. Note that with this approach
the diagonal element Sα = Sα

α of the described matrix Sα1
α2

is the density of en-
tropy measured by the observer, who is at the same scale as the measured object
associated with the deformation parameter α. In [5, 7] such a construction and ex-
ponential ansatz (2) were used in derivation of a semiclassical Bekenstein-Hawking
formula [9] for the Black Hole entropy from the basic principles.
3) Besides, value Sα1

α2
may be used in analysis of the Information Paradox Problem

[8]. In [5, 7] it has been demonstrated that for any observer in the vicinity of a
black hole the information loss close to the Big Bang initial singularity and close
to the final singularity of a black hole is comparable. But then in both cases the
entropy density should be the same:

S(in) = Sα1
1
4

= S(out)

and in fact there is no any information loss.
Proceeding to the Statistical Mechanics [10], we further assume that an internal
energy of any ensemble U could not be in excess of Emax ∼ Ep which appears
from the generalized uncertainty relations for the ”energy - time” pair and hence
temperature T could not be in excess of Tmax = Emax/kB ∼ Tp. On this basis the
density matrix deformation in Statistical Mechanics at Planck scale is constructed
in the [6, 7]. In this way ρstat at very high T � 0 becomes dependent on the param-
eter τ = T 2/T 2

max, i.e. in the most general case ρstat = ρstat(τ),Sp[ρstat(τ)] < 1
and for τ � 1 we have ρstat(τ) ≈ ρstat in the well-known Statistical Mechan-
ics [10].The following condition must be fulfilled in the same way as in case of
Quantum Mechanics of of the Early Universe:

Sp[ρstat(τ)]− Sp2[ρstat(τ)] ≈ τ. (4)
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Again similar to QMFL, as a possible solution for (4) we have an exponential ansatz
[6, 7] with the help of which the deformation of a canonical Gibbs distribution at
Planck scale (up to factor 1/Q) takes an elegant and completed form:

ωn(τ) = exp(−τ)ωn = exp(− T2

T2
max

− βEn) (5)
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Abstract

To explain the currently observed accelerated expansion of the universe, a
large number of different theoretical models are presently being discussed.
In one way or another, all of these contain ‘new physics’, though at different
levels. The big question is how to select out of infinitely many possible mod-
els the right one. We here discuss a possibility that has so far been somewhat
neglected, namely that the new physics underlying dark energy arises out of
a gravitationally active amendment of the electroweak and strong sector of
the standard model. This amendment basically consists of a rapidly fluctu-
ating gravitationally active dynamics of vacuum fluctuations with a cutoff
of the order of the neutrino mass scale. We consider a concrete model for
this based on second-quantized self-interacting scalar fields, which evolve in
a chaotic way. It is shown that expectations with respect to the chaotic dy-
namics yield statements on the observed numerical values of the electroweak
coupling constants with amazing precision, thus providing evidence for the
physical relevance of this model.

1 Introduction

To understand the fact that the universe is currently in a phase of accelerated
expansion [1, 2, 3, 4], an enormous amount of theoretical and experimental work
is currently being performed. The favoured explanation for the acceleration is
the existence of dark energy, though other possibilities might exist as well. An
amazing number of models has been developed in the mean time, and basically
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every week one finds in the preprint archives some new idea concerning the nature
of dark energy. The most popular models are currently quintessence models of
various kinds [5], phantom fields [6], Born-Infeld quantum condensates [7], the
Chaplygin gas [8], fields with nonstandard kinetic terms [9], to name just a few.
All of these approaches contain ‘new physics’ in one way or another, though at
different levels. However, it should also be clear that the number of possible dark
energy models that are based on new physics is infinite, and in that sense there is
much more to study than the above, currently most popular, models.

When trying to select the most suitable theoretical model for dark energy out
of many possibilities, the most straightforward idea would be to compare the vari-
ous predictions of different theoretical models with the experimental observations
(supernovae, cosmic microwave background, large scale structure, etc.) to single
out the most relevant model. However, there is a huge degeneracy in the sense
that completely different theoretical models cannot be distinguished with the cur-
rently available observational data, they often make the same or indistinguishable
predictions (e.g. for the equation of state as a function of redshift) or no prediction
at all. This situation of degeneracy is not expected to improve significantly in the
near future, though the precision of the observational data will increase.

We are thus lead to single out good dark energy models by other, more theo-
retical criteria. Let us here suggest the following checklist applicable to any dark
energy model:

1. Does the model explain why the current value of dark energy density is so
small (the cosmological constant problem) ?

2. Does the model explain why the current value of dark energy density is of the
same order as the matter density (the cosmological coincidence problem) ?

3. Does the model have a reasonable quantum field theoretical background, or
does it represent a reasonable extension of quantum field theory?

4. Does the model fit into Einstein’s gravity, or does it represent a reasonable
extension of it?

5. Is the model compatible with observations?

6. Does the new physics contained in the model explain some further phenom-
ena that are so far unexplained, for example why the fundamental constants
of nature (coupling constants, mass ratios, mixing angles) take on the values
we observe and not some other values?

7. Does the model give some sense to dark energy (for example, by explaining it
as a relic of inflation), rather than letting it look like an unnecessary curiosity
of the universe?

8. Besides dealing with dark energy, does the model also explain why there is
dark matter?
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9. Is the theory aesthetic and accessible to many physicists, or is it just so
complicated that hardly anybody understands it?

10. Are there any laboratory experiments that can verify or disprove this theory?

Every theoretical model builder may rank his or her favourite dark energy
model on a scale from 0–10, depending on how much of the above criteria are
satisfied. The perfect theory, from which we are still far away, reaches a mark of
10. Current models, perhaps, reach something in the region 1–5, at best.

As mentioned before, with the assumption that new physics is relevant there
is an enormous number of possible models. In the following I will restrict myself
to a model introduced in [10], which scores relatively high on points 3,6,7,10.
With some additional assumptions described in [10], it also scores high on points
1,2 and 4. The basic idea is that there is a rather ‘sterile’ amendment of the
standard model of electroweak and strong interactions which just consists of a
scalar dynamics of vacuum fluctuations with a finite cutoff. The expectation of the
underlying potentials produces the currently observed dark energy. Amazingly, the
above model seems to distinguish the observed values of the electroweak coupling
parameters as local minima in the dark energy landscape. It is well known that
quintessence fields can produce a very slow time variation of fundamental constants
of nature, e.g. of the fine structure constant [11]. Here we go a step further and
show that not only a possible variation of the fine structure constant but also its
currently observed equilibrium value can be understood by a suitable scalar field
dynamics underlying dark energy.

2 Amending the standard model by gravitationally active vacuum
fluctuations

Let us consider the standard model of electroweak and strong interactions. It is a
second-quantized field theory and it allows for vacuum fluctuations. The vacuum
energy density associated with a particle of mass m and spin j is given by

ρvac =
1
2
(−1)2j(2j + 1)

∫
d3k

(2π)3
√

k2 + m2 (1)

in units where � = c = 1. Here k represents the momentum and the energy is
given by E =

√
k2 + m2. Unfortunately, the above integral is divergent. One has

to introduce a suitable upper cutoff. Choosing as an upper cutoff the Planck mass
mPl, one gets an enormous amount of vacuum energy density of the order m4

Pl,
larger than the currently observed dark energy density by a factor of ∼ 10120.
This is the famous cosmological constant problem. To circumvent it, the common
view is that the absolute value of the above vacuum energy (e.g. in QED) is not
observable, it is ‘renormalized away’, which in a sense means that one adds an
infinite constant to get rid of the vacuum energy. This works as long as one does
not consider gravity.
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However, ultimately we have to unify the standard model with gravity. Also
note that almost all particles in the standard model do have mass, so they know
what gravity is. It looks a bit like a ‘dirty trick’ to say that gravity is decoupled
from the standard model if the particles have mass. So let us for the moment
assume that the vacuum energy in the standard model is cancelled by some kind
of symmetry, for example some kind of supersymmetry. This still doesn’t explain
why we do observe some tiny positive amount of vacuum energy density in the
universe, corresponding to the currently measured dark energy density, which is
more of the order m4

ν rather than m4
Pl, where mν is a typical neutrino mass

scale. Hence let us assume that there is something more to the standard model:
In addition to the ordinary standard model fields (whose vacuum energies are
cancelled by some symmetry) there could be other fields that just show up in a
rather sterile way in form of vacuum fluctuations, with a rather small cutoff scale of
the order of the neutrino mass. The vacuum energy of these fields is not cancelled
by symmetry, there is a symmetry breaking towards positive vacuum energy, at
least at the current stage of the universe.

Of course, the above assumption represents new physics, but any decent dark
energy model seems to require new physics, in one way or another. The advantages
of the above idea are straightforward:

• Since we associate dark energy with a broken symmetry in some sector of
this extended standard model, it is not too surprising that the relevant scale
of the dark energy density is of the order of some typical particle mass to
the power 4 in this model, in this case a neutrino.

• There is increasing experimental evidence [12] for the existence of sterile neu-
trinos in addition to the known three ordinary neutrino flavours, so appar-
ently there is something more to the standard model than we know. Sterile
neutrinos may have something to do with the above gravitationally active
sector of the standard model.

• Since our dark energy model deals with vacuum fluctuations that are part
of the electroweak sector, there is a chance to measure the effects of these
fluctuations in laboratory experiments on the earth, such as in Josephson
junction experiments, which do probe the spectrum of vacuum fluctuations
near the neutrino mass scale due to a nonlinear mixing effect in the junction
[13].

In the following, we want to consider a concrete model for vacuum fluctuations
with a small cutoff, as introduced in [10]. For quantum field theories with a cutoff, a
particular quantization scheme is very convenient to choose, namely the stochastic
quantization scheme introduced by Parisi and Wu [14]. This scheme is based on
a stochastic differential equation, which naturally embeds various kinds of cutoffs
and is by far simpler to deal with than the canonical quantization procedure. For
that reason, our gravitationally active amendment of the standard model will be
formulated in terms of stochastic quantization. Amazingly, the model will turn
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out to distinguish the numerical values of the electroweak coupling constants as
corresponding to local minima in the dark energy landscape. This can be seen as
an indication that one is on the the right track with these kinds of models.

3 Chaotic model of vacuum fluctuations

Let us consider a homogeneous self-interacting scalar field ϕ with potential V (ϕ)
that forms the basis for our gravitationally active amendment of the standard
model. Our amendment should have rather ‘sterile’ properties, so it is in good
approximation sufficient to look at the scalar field equations of this sector on its
own, rather than coupling them to the ordinary standard model field equations.
We also need the amended sector to consist mainly of vacuum fluctuations with a
suitable cutoff, rather than containing stable observable particles, with the possi-
ble exception of sterile neutrinos and/or dark matter. In fact, the only connection
to the ordinary standard model is that the virtual particles underlying the vac-
uum fluctuations could potentially interact with the same electroweak and strong
coupling constants as in the ordinary standard model.

We quantize the scalar field underlying the steril sector using the Parisi-Wu
approach of stochastic quantization. The 2nd quantized equation of motion is

∂

∂s
ϕ = ϕ̈ + 3Hϕ̇ + V ′(ϕ) + L(s, t), (2)

where H is the Hubble parameter, t is physical time, s is fictitious time (just
a formal coordinate to do quantization) and L(s, t) is Gaussian white noise, δ-
correlated both in s and t. The fictitious time s is just introduced as a formal
tool for stochastic quantization, it has dimensions GeV −2. Quantum mechanical
expectations can be calculated as expectations of the above stochastic process for
s →∞. The simplest way to introduce a cutoff is by making t and s discrete (as
in any numerical simulation). Hence we write

s = nτ (3)
t = iδ, (4)

where n and i are integers and τ is a fictitious time lattice constant, δ is a physical
time lattice constant. Note that the uncertainty relation ∆E∆t = O(�) always
implies an effective lattice constant ∆t for a given finite energy ∆E. We also
introduce a dimensionless field variable Φi

n depending on i and n by writing ϕi
n =

Φi
npmax, where pmax is some (so far) arbitrary energy scale. The discretized

scalar field dynamics (2) can be written as the following discrete dynamical system
[15, 3, 17]

Φi
n+1 = (1− α)T (Φi

n) +
3
2
Hδα(Φi

n − Φi−1
n ) +

α

2
(Φi+1

n + Φi−1
n ) + τ · noise, (5)

where the local map T is given by

T (Φ) = Φ +
τ

pmax(1− α)
V ′(pmaxΦ) (6)
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and α is defined by

α :=
2τ

δ2
. (7)

For old universes, one can neglect the term proportional to H, obtaining

Φi
n+1 = (1− α)T (Φi

n) +
α

2
(Φi+1

n + Φi−1
n ) + τ · noise. (8)

We now want to construct a field ϕi
n that is different from ordinary fields: Rather

than evolving smoothly it should exhibit strongly fluctuating behaviour, so that
we may be able to interpret it in terms of vacuum fluctuations. As a distinguished
example of a ϕ4-theory generating such behaviour, let us consider the map

Φn+1 = T−3(Φn) = −4Φ3
n + 3Φn (9)

on the interval Φ ∈ [−1, 1]. T−3 is the negative third-order Tchebyscheff map,
a standard example of a map exhibiting strongly chaotic behaviour. It is conju-
gated to a Bernoulli shift, and is distinguished as generating the strongest possible
chaotic behaviour possible for a smooth low-dimensional deterministic dynamical
system [18]. The corresponding potential is given by

V−3(ϕ) =
1− α

τ

{
ϕ2 − 1

p2
max

ϕ4

}
+ const, (10)

or, in terms of the dimensionless field Φ,

V−3(ϕ) =
1− α

τ
p2

max(Φ2 − Φ4) + const. (11)

The important point is that starting from this potential we obtain by second
quantization a field ϕ that rapidly fluctuates in fictitious time on some finite
interval, choosing initially ϕ0 ∈ [−pmax, pmax]. Since these chaotic fluctuations
are bounded, there is a natural cutoff.

The idea is now that the expectation of the potential of this and similar chaotic
fields (plus possibly kinetic terms) underlie the measured dark energy density in
the universe. Expectations 〈· · · 〉 can be easily numerically determined by iterating
the dynamics (8) for random initial conditions. One has

〈V−3(ϕ)〉 =
1− α

τ
p2

max(〈Φ2〉 − 〈Φ4〉) + const, (12)

which for α = 0 can be analytically evaluated [10] to give

〈V−3(ϕ)〉 =
1
8

p2
max

τ
+ const. (13)

Alternatively, we may consider the positive Tchebyscheff map T3(Φ) = 4Φ3 −
3Φ. It is easy to show that this generates vacuum energy of opposite sign. Sym-
metry considerations between T−3 and T3 suggest to take the additive constant
const as

const = +
1− α

τ
p2

max

1
2
〈Φ2〉. (14)
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In this case one obtains the fully symmetric equation

〈V±3(ϕ)〉 = ±1− α

τ
p2

max

{
−3

2
〈Φ2〉+ 〈Φ4〉

}
, (15)

which for α → 0 reduces to

〈V±3(ϕ)〉 = ±p2
max

τ

(
−3

8

)
. (16)

To reproduce the currently measured dark energy, we only need to fix the ratio of
the parameters τ and pmax as

3
8

p2
max

τ
= ρΛ ∼ m4

ν . (17)

This is the simplest model of steril vacuum fluctuations one can think of, a 2nd
quantized field theory underlying the cosmological constant Λ. It is easy to show
[10] that for α = 0 the equation of state of this field is w = −1. For small α, it
is close to w = −1. More complicated models, with w 
= −1, as well as symmetry
breaking breaking between T+3 and T−3 can be worked out in detail [10]. These
can produce tracking behaviour of dark energy during the evolution of the universe,
and mimic some of the properties of quintessence fields.

4 Electroweak couplings as local minima in the dark energy landscape

Let us now give a heuristic argument why the coupling constant α in the above
chaotic field equations could have the physical meaning of a gauge coupling. Con-
sider two charges of opposite sign, say, a virtual electron-positron pair, which
exists for a short time interval due to a vacuum fluctuation. If the charges are at
distance r, the Coulomb potential between them is given by

VC(r) = α
1
r

(18)

(in units where � = c = 1), where α is the fine structure constant. Now for
any vacuum fluctuation the inverse distance 1/r is certainly a fluctuating random
variable. Motivated by our interpretation of vacuum fluctuations of the field ϕi

n

we may choose

ϕi
n − ϕi−1

n =
1
r
, (19)

which has the right dimension and is allowing for both attracting and repelling
forces. The above choice basically means that the field difference ϕi

n − ϕi−1
n de-

termines the inverse interaction distance to neighbours in this chaotically evolving
discrete model of vacuum fluctuations. Eq. (19) just represents the uncertainty
relation ∆p∆r = O(�), interpreting ϕi

n−ϕi−1
n as a momentum uncertainty. Com-

bining eq. (18) and (19), the fluctuating Coulomb potential can thus be written
as

VC(ϕi−1
n , ϕi

n) = αpmax(Φi
n − Φi−1

n ). (20)
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Summing the two contributions of the pair (i, i− 1) and (i, i + 1) we just get the
linear interaction terms of the nearest neighbours in the discrete dynamics (8) (for
more details on this model, see [16], chapter 5). The remarkable thing is that in
this interpretation α has now the physical meaning of a gauge coupling. Of course,
a similar consideration applies to all kinds of coupling constants (electroweak and
strong) in the standard model, not only the fine structure constant. Our central
hypothesis is thus that the chaotic fields, though being different from the ordinary
standard model fields, interact with the same coupling constants as in the ordinary
standard model.

There may be various degrees of freedom of the chaotic fields underlying dark
energy. For example, from a dynamical systems point of view, it makes sense to
generalize the chaotic field dynamics (8) to

Φi
n+1 = (1− α)T (Φi

n) + σ
α

2
(T b(Φi−1

n ) + T b(Φi+1
n )) (21)

(the noise term can usually be neglected for chaotic maps). The case σ = +1 is
called ‘diffusive coupling’, the case σ = −1 ‘anti-diffusive coupling’. Chaotic fields
with b = 1 are called to be of ‘type A’ ( T 1(Φ) =: T (Φ)), chaotic fields with b = 0
to be of ‘type B’ (T 0(Φ) =: Φ). There are two different types of vacuum energies
for the chaotic fields, namely the self energy V (α) := p2

max

τ

(
3
2 〈Φ2〉 − 〈Φ4〉) and the

interaction energy W (α) := p2
max

2τ 〈Φi
nΦi+1

n 〉 (see [17] for more details).
Fig. 1 shows that the self energy V (α) of the chaotic fields indeed distinguishes

electroweak coupling constants known from the standard model. Everybody can
easily reproduce this plot, by simply iterating the dynamics (8) for random initial
conditions Φi

0 ∈ [−1, 1] for a long time on a large lattice and averaging the variable
1.5(Φi

n)2 − (Φi
n)4. We observe that V (α) has local minima at a1 = 0.000246(2),

a2 = 0.00102(1), a3 = 0.00220(1) (a1 and a3 are actually small local minima on
top of the hill).

On the other hand, in the standard model of electroweak interactions the weak
coupling constant is given by

αweak = αel
(T3 −Q sin2 θW )2

sin2 θW cos2 θW

(22)

Here Q is the electric charge of the particle (Q = −1 for electrons, Q = 2/3
for u-like quarks, Q = −1/3 for d-like quarks), and T3 is the third component
of the isospin (T3 = 0 for right-handed particles, T3 = − 1

2 for eL and dL, T3 =
+1

2 for νL and uL). Consider right-handed fermions fR. With sin2 θW = s̄2
l =

0.2318 (as experimentally measured) and the running electric coupling αel(E)
taken at energy scale E = 3mf we obtain from eq. (22) the numerical values
αdR

weak(3md) = 0.000246, αcR

weak(3mc) = 0.001013, αeR

weak(3me) = 0.00220. There
is an amazing numerical coincidence between the local minima a1, a2, a3 of V (α)
and the experimentally measured weak coupling constants of fR = uR, cR, eR,
respectively. The factor 3 of the energy scale can be related to the index of the
Tchebyscheff polynomial [16].
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Figure 1. Self energy V (α) of the type-A chaotic field in the low-coupling region. There are local
minima at couplings ai that coincide with the weak coupling constants of right-handed fermions
in the standard model.

Now regard the fine structure constant αel and the Weinberg angle sin2 θW as a
priori free parameters. Suppose these parameters would change to slightly different
values. Then immediately this would produce larger vacuum energy V (α) in our
sterile amendment of the standard model, since we get out of the local minima.
The system is expected to be driven back to the local minima, and the fundamental
parameters are fixed and stabilized in this way.

Further coincidences of this type have been observed for various other observ-
ables associated with the chaotic fields, allowing for a fixing of further fundamental
constants such as mass ratios and strong couplings at bosonic mass scales. See
[3, 17] for details. All these numerically observed coincidences are not explainable
as a random coincidence. Rather, they suggest to interpret the coupling constant α
of our second-quantized chaotic fields ϕ as a running gauge coupling. The chaotic
fields are most naturally associated with an additional, sterile sector of the stan-
dard model, which just consists of vacuum fluctuations of a scalar field with a
cutoff. This sector generates dark energy, and its sense is to fix and stabilize the
fundamental constants of nature.
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Abstract

We consider a model in which the Universe has an underpinning of oscillators
in the Quantum Vacuum (or dark energy) at the Planck scale and deduce a
number of otherwise inexplicable Large Number relations which have been
considered to be empirical accidents. The analysis shows that the gravita-
tional energy is the residual energy of the Planck oscillators constituting the
Universe at large on the one hand, and elementary particles on the other.
This explains a mysterious puzzle first pointed out by Weinberg several years
ago, in a formula relating the pion mass to the Hubble Constant, a puzzle
which has remained unexplained ever since.

1 Introduction

More than five thousand years ago, the Rig Veda repeatedly raised the question:
“How is it that though unbound the sun does not fall down?”

This was a question that puzzled thinking man over the millennia. Indian
scholars right up to Bhaskaracharya who lived about a thousand years ago believed
in some attractive force which was responsible for keeping the celestial bodies from
falling down.

The same problem was addressed by Greek thinkers about two thousand five
hundred years ago. They devised transparent material spheres to which each of
the celestial objects were attached - the material spheres prevented them from
falling down.
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Unfortunately it was this answer to the age old question, which held up further
scientific progress during the time of Kepler, for even Copernicus accepted the
transparent material spheres.

Kepler had a powerful tool in the form of the accurate observations of Tycho
Brahe. He also had the advantage of the Indian numeral system, which via the
Arabs reached Europe just a few centuries earlier. These lead him to his famous
laws of elliptical orbits with definite periods correlated to distances from the Sun.

This was the beginning of modern science.
The important point was that the Greek answer to the problem of why heavenly

objects do not fall down was now demolished. Kepler himself speculated about
some type of a magnetic force between the Sun and the Planets, rather on the
lines of speculations in India.

It was Newton who provided the next chapter in the story.
To quote Hawking [1] “The Philosophiae Naturalis Principia Mathematica by

Isaac Newton, first published in Latin in 1687, is probably the most important
single work ever published in the physical sciences. Its significance is equalled
in the biological sciences only by The Origin of Species by Charles Darwin. The
original impulse which caused Newton to write the Principia was a question from
Edmund Halley as to whether the elliptical orbits of the planets could be accounted
for on the hypothesis of an inverse square force directed towards the Sun. This was
something that Newton had worked out some years earlier but had not published,
like most of his work on mathematics and physics. However, Halley’s challenge,
and the desire to refute the suggestions of others such as Hooke and Descartes,
spurred Newton to try to write a proper account of this result.”

Newton using Galileo’s ideas of Mechanics, thus stumbled upon the universal
Law of Gravitation.

This held sway for nearly two hundred and twenty five years, before Einstein
came out with his own theory of gravitation. This was no force in the sense that
Newton’s and preceding scholars had envisaged it to be. Rather it was due to
the curvature of spacetime itself. Einstein’s bizarre ideas have had some experi-
mental verification while there are some other experimental consequences, such as
gravitational waves, which need to be confirmed.

After Einstein’s formulation of gravitation a problem that has challenged and
defied solution has been that of providing a unified description of gravitation along
with other fundamental interactions. One of the earliest attempts was that of
Hermann Weyl - the gauge geometry [2] , which though elegant was rejected on
the grounds that in the final analysis, it was not really a unification of gravitation
with electromagnetism.

Modern approaches to this problem have lead to the abandonment of a smooth
spacetime manifold. Instead, the Planck scale is now taken to be a minimum
fundamental scale.

We had already argued from different points of view to arrive at the otherwise
empirically known equations [3, 4, 5]

R =
√

NlP =
√

Nl
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l =
√

nlP (1)

where lP , l and R are the Planck length, the pion Compton wavelength and the
radius of the universe and N, N̄ and n are certain large numbers. Some of these
are well known empirically for example N̄ ∼ 1080 being the number of elementary
particles, which typically are taken to be pions in the literature, in the universe.

One way of arriving at the above relations is by considering a series of N Planck
mass oscillators which are created out of the Quantum Vacuum. In this case (Cf.
also ref.[6]) we have

r =
√

Na2 (2)

In (2) a is the distance between the oscillators and r is the extent. Equations (1)
follow from equation (2).

There is another way of arriving at equations (1) (Cf.ref.[5]). For this, we
observe that the position operator for the Klein-Gordan equation is given by [7],

�Xop = �xop − ı�c2

2
�p

E2

Whence we get

X̂2
op ≡

2m3c4

�2
X2

op =
2m3c6

�2
x2 +

p2

2m
(3)

It can be seen that purely mathematically (3) for X̂2
op defines the Harmonic os-

cillator equation, this time with quantized, what may be called space levels. It
turns out that these levels are all multiples of ( �

mc )2. This Compton length is the
Planck length for a Planck mass particle. Accordingly we have for any system of
extension r,

r2 ∼ Nl2

which gives back equation (1). It is also known that the Planck length is also the
Schwarzschild radius of a Planck mass, that is we have

lP = GmP /c2 (4)

Using equations (1) and (4), we will now deduce a few new and valid and a num-
ber of otherwise empirically known relations involving the various microphysical
parameters and large scale parameters. Some of these relations are deducible from
the others. Many of these relations featured (empirically) in Dirac’s Large Num-
ber Cosmology. We follow Dirac and Melnikov in considering l, m, �, lP , mP and e
as microphysical parameters [8, 9]. Large scale parameters include the radius and
the mass of the universe, the number of elementary particles in the universe and
so on.

In the process we will also examine the nature of gravitation. It must also
be observed that the Large Number relations below are to be considered in the
Dirac sense, wherein for example the difference between the electron and pion (or
proton) masses is irrelevant [10].
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2 Interrelationships

We will use the following well known equation which has been obtained through
several routes:

GM

c2
= R (5)

For example in an uniformly expanding flat Friedman spacetime, we have [10]

Ṙ2 =
8πGρR2

3

If we substitute Ṙ = c at the radius of the universe in the above we recover (5).
We now observe that from the first two relations of (1), using the Compton

wavelength expression we get
m = mP /

√
n (6)

Using also the second relation in (1) we can easily deduce

N = N̄n (7)

Using (1) and (5) we have
M =

√
NmP (8)

Interestingly (8) can be obtained directly, without recourse to (5), from the energy
of the Planck oscillators (Cf.ref.[4]). Combining (8) and (6) we get

M =
(√

Nn
)

m (9)

Further if we use in the last of equation (1) the fact that lP is the Schwarzchild
radius that is equation (4), we get,

G =
lc2

nm
(10)

We now observe that if we consider the gravitational energy of the N Planck
masses (which do not have any other interactions) we get,

Gravitational Energy =
GNm2

P

R

If this is equated to the inertial energy in the universe, Mc2, as can be easily
verified we get back (5). In other words the inertial energy content of the universe
equals the gravitational energy of all the N Planck oscillators.

Similarly if we equate the gravitational energy of the n Planck oscillators con-
stituting the pion we get

Gm2
P n

R
= mc2 (11)
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Using in (11) equation (4) we get

lP mP n

R
= m

Whence it follows on using (7), (6) and (1),

n3/2 =
√

N, n =
√

N̄ (12)

Substituting the value for n from (12) into (10) we will get

G =
lc2

√
N̄m

(13)

If we use (12) in (9) we will get

M = N̄m (14)

Alternatively we could use (14) which expresses the fact that the mass of the
universe is given by the mass of the N̄ elementary particles in it and deduce
equations (11), (12) and (13). Indeed a rationale for this is the fact that the
Universe at large is electrically neutral and so it is the gravitational force which
predominates, and this very weak in comparison. Using the expressions for the
Planck length as a Compton wavelength and equating it to (4) we can easily deduce

Gm2 =
e2

n
=

e2

√
N̄

(15)

wherein we have also used �c ∼ e2 and (6). Equation (15) is another empirically
well known equation which was used by Dirac in his Cosmology. Interestingly,
as we have deduced (15), rather than use it empirically, this points to a unified
description of electromagnetism and gravitation.

Interestingly also rewriting (13) as

G =
l2c2

Rm

wherein we have used (1) and further using the fact that H = c/R, where H is
the Hubble constant we can deduce

m ≈
(

H�
2

Gc

) 1
3

(16)

Equation (16) is the so called mysterious Weinberg formula, known empirically
[10]. As Weinberg put it, “...it should be noted that the particular combination
of �,H,G, and c appearing (in the formula) is very much closer to a typical el-
ementary particle mass than other random combinations of these quantities; for
instance, from �, G, and c alone one can form a single quantity (�c/G)1/2 with
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the dimensions of a mass, but this has the value 1.22× 1022MeV/c2, more than a
typical particle mass by about 20 orders of magnitude!

“In considering the possible interpretations (of the formula), one should be
careful to distinguish it from other numerical “coincidences”... In contrast, (the
formula) relates a single cosmological parameter, H, to the fundamental constants
�, G, c and m, and is so far unexplained.”

We will come back to this point but remark that (13) brings out gravitation in a
different light– somewhat on the lines of Sakharov. In fact it shows up gravitation
as the excess or residual energy in the universe.

Finally it may be observed that (13) can also be rewritten as

N̄ =
(

c2l

mG

)2

∼ 1080 (17)

and so also (10) can be rewritten as

n =
(

lc2

Gm

)
∼ 1040

It now immediately follows that

N ∼ 10120

Looking at it this way, given G and the microphysical parameters we can deduce
the numbers N, N̄ and n.

3 Discussion

Thus the many so called large number coincidences and the mysterious Weinberg
formula can be deduced on the basis of a Planck scale underpinning for the elemen-
tary particles and the whole universe. This was done from a completely different
point of view, namely using fuzzy spacetime and fluctuations in a 1997 model
that successfully predicted a dark energy driven accelerating universe with a small
cosmological constant [5, 11].

However the above treatment brings out the role of the Planck scale particles in
the Quantum Vacuum. It resembles, as remarked earlier the Sakharov-Zeldovich
metric elasticity of space approach [12]. Essentially Sakharov argues that the
renormalization process in Quantum Field Theory which removes the Zero Point
energies is altered in General Relativity due to the curvature of spacetime, that
is the renormalization or subtraction no longer gives zero but rather there is a
residual energy similar to the modification in the molecular bonding energy due
to deformation of the solids. We see this in a little more detail following Wheeler
[13]. The contribution to the Lagrangian of the Zero Point energies can be given
in a power series as follows

L(r) = A�

∫
k3dk + B�

(4)r

∫
kdk
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+�[C((4)r)2 + Drαβrαβ ]
∫

k−1dk

+(higher-order terms). (18)

where A,B, C etc. are of the order of unity and r denotes the curvature. By
renormalization the first term in (18) is eliminated. According to Sakharov, the
second term is the action principle term, with the exception of some multiplicated
factors. (The higher terms in (18) lead to corrections in Einstein’s equations).
Finally Sakharov gets

G =
c3

16πB�
∫

kdk
(19)

Sakharov then takes a Planck scale cut off for the divergent integral in the denom-
inator of (19). This immediately yields

G ≈ c3l2P
�

(20)

In fact using relations like (1), (6) and (12), it is easy to verify that (20) gives us
back (10) (and (13)).

According to Sakharov (and (20)), the value of G is governed by the Physics of
Fields and Particles and is a measure of the metrical elasticity at small spacetime
intervals. It is a microphysical constant.

However in our interpretation of (13)(which is essentially the same as Sakharov’s
equation (20)), G appears as the expression of a residual energy over the entire
universe: The entire universe has an underpinning of the N Planck oscillators and
is made up of N̄ elementary particles, which again each have an underpinning of
n Planck oscillators. It must be reiterated that (20) obtained from Sakharov’s
analysis shows up G as a microphysical parameter because it is expressed in their
terms. This is also the case in Dirac’s cosmology. This is also true of (10) because
n relates to the micro particles exclusively.

However when we use the relation (12), which gives n in terms of N̄ , that is
links up the microphysical domain to the large scale domain, then we get (13).
With Sakharov’s equation (20), the mysterious nature of the Weinberg formula
remains. But once we use (13), we are effectively using the large scale character
of G – it is not a microphysical parameter. This is brought out by (17), which
is another form of (13). If G were a microphysical parameter, then the number
of elementary particles in the universe would depend solely on the microphysical
parameters and would not be a large scale parameter. The important point is
that G relates to elementary particles and the whole universe [14]. That is why
(13) or equivalently the Weinberg formula (16) relate supposedly microphysical
parameters to a cosmological parameter. Once the character of G as brought out
by (13) is recognized, the mystery disappears.

Finally it may be remarked that attempts to unite gravitation with other inter-
actions have been unsuccessful for several decades. However, it is possible to get a
description of gravitation in an extended gauge field formulation using noncommu-
tative geometry (to take account of the fact that the graviton is a spin 2 particle)
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[15, 16]. It is important to recognize what Witten has said, ”The existence of
gravity clashes with our description of the rest of physics by quantum fields” [17].
This sentiment was echoed much earlier by Pauli who even went so far as to say
that we should not try to unite what God had intended to be separate.
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Abstract

Based on the wavelet-defined multiscale random noise proposed in [2], a mul-
tiscale version of the stochastic quantization procedure is considered. A new
type of the commutation relations emerging from the multiscale decomposi-
tion of the operator-valued fields is derived.

1 Introduction

A highly original method of stochastic quantization of gauge fields proposed by
G.Parisi and Y.Wu [1] have been attracting attention for more than 20 years.
Let SE [φ] be the action Euclidean field theory in R

d. Then, instead of direct
calculation of the Green functions from the generation functional of the field theory,
it is possible to introduce a fictitious time variable τ , make the quantum fields
into stochastic fields φ(x) → φ(x, τ), x ∈ R

d, τ ∈ R and evaluate the moments
〈φ(x1, τ1) . . . φ(xm, τm)〉 by averaging over a random process φ(x, τ, ·) governed by
the Langevin equation

∂φ(x, τ)
∂τ

+
δS

δφ(x, τ)
= η(x, τ). (1)

The Gaussian random force is δ-correlated in both the R
d coordinate and the

fictitious time:

〈η(x, τ)η(x′, τ ′)〉 = 2D0δ(x− x′)δ(τ − τ ′), 〈η(x, τ)〉 = 0. (2)
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The physical Green functions are obtained by taking the steady state limit

G(x1, . . . , xm) = lim
τ→∞〈φ(x1, τ) . . . φ(xm, τ)〉.

Following [3] we extend the method of stochastic quantization by introducing
the scale-dependent random processes W (a, b, ·), where b ∈ R

d is a spatial coordi-
nate, and a is the spatial resolution. For a square-integrable function f(x, ·) the
wavelet coefficients are

W (a, b, ·) =
∫
|a|−dψ

(
x− b

a

)
f(x, ·)ddx. (3)

Hereafter they will be referred to as the scale components of f with respect to the
basic wavelet ψ. The reconstruction of a function from its scale components is
given by the inverse wavelet transform

f(x, ·) =
2

Cψ

∫ ∞

0

da

ad+1

∫
ddbψ

(
x− b

a

)
W (a, b, ·), Cψ =

∫ |ψ̃(k)|2
Sd|k|d ddk, (4)

with Sd being the are of the unit sphere in d dimensions, is the normalization for
the isotropic wavelets. Performing the wavelet transform (in spatial coordinate)
of the fields and the random force in the Langevin equation, we get the possibility
to substitute the white noise (2) by a scale-dependet random force

〈η̃(a1, k1, τ1)η̃(a2, k2, τ2)〉 = Cψ(2π)dδd(k1+k2)δ(τ1−τ2)a1δ(a1−a2)D(a1, k1) (5)

In case the spectral density of the random force is a constant D(a1, k1) = D0, the
inverse wavelet transform

φ(x) =
2

Cψ

∫ ∞

0

da

a

∫
ddk

(2π)d

dω

2π
exp(ı(kx− ωτ))ψ̃(ak)φ̃(a, k, ω), (6)

drives the process (5) into the white noise (2).
In case of arbitrary functions φ(a, x, ·) we have more possibilities. In particular,

we can define a narrow band forcing that acts at a single scale

D(a, k) = a0δ(a− a0)D0. (7)

The contribution of the scales with the wave vectors apart from the the typical
scale a−1

0 is suppressed by rapidly vanishing wings of the compactly supported
wavelet ψ̃(k).

Here we present two examples of the divergence free stochastic perturbation
expansion: (i) the scalar field theory φ3, (ii) the non-Abelian gauge field theory.

2 Scalar field theory

Let us turn to the stochastic quantization of the φ3 theory with the scale-dependent
noise [3]. The Euclidean action of the φ3 theory is

SE [φ(x)] =
∫

ddx

[
1
2
(∂φ)2 +

m2

2
φ2 +

λ

3!
φ3

]
. (8)
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The corresponding Langevin equation is written as

∂φ(x, τ)
∂τ

+
(
−∆φ + m2φ +

λ

2!
φ2

)
= η(x, τ). (9)

Substituting the scale components in representation (6) we get the integral equa-
tion for the stochastic fields

(−ıω + k2 + m2)φ(a, k, ω) = η(a, k, ω)− λ
2 ψ̃(ak)

(
2

Cψ

)2 ∫
ddk1
(2π)d

dω1
2π

da1
a1d+1

da2
a2d+1

ψ̃(a1k1)ψ̃(a2(k − k1))φ(a1, k1, ω1)φ(a2, k − k1, ω − ω1).
(10)

Starting from the zero-th order approximation φ0 = G0η with the bare Green
function G0(k, ω) = 1/(−ıω + k2 + m2) and iterating the integral equation (10),
we get the one-loop correction to the stochastic Green function

G(k, ω) = G0(k, ω)+λ2G2
0(k, ω)

∫
ddq

(2π)d

dΩ
2π

2∆(q)|G0(q, Ω)|2G0(k−q, ω−Ω)+. . . ,

(11)
where ∆(k) is the scale averaged effective force correlator

∆(k) ≡ 2
Cψ

∫ ∞

0

da

a
|ψ̂(ak)|2D(a, k). (12)

In the same way the other stochastic momenta can be evaluated. Thus the com-
mon stochastic diagram technique is reproduced with the scale-dependent random
force (5) instead of the standard one (2). The 1PI diagrams corresponding to the
stochastic Green function decomposition (11) are shown in Fig. 1.

Figure 1. Diagram expansion of the stochastic Green function in φ3-model

It can be easily seen that for a single-band forcing (7) and a suitably chosen
wavelet the loop divergences are suppressed. For instance, the use of the Mexican
hat wavelet

ψ̂(k) = (2π)d/2(−ık)2 exp(−k2/2), Cψ = (2π)d (13)

for the single band random force (7) gives the effective force correlator

∆(q) = (a0q)4e−(a0q)2D0. (14)
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Table 1. Stochastic diagrams for the non-Abelian gauge fields. Redrawn from [4]

Diagram Notation Formula

Gab
µν(k, τ − τ ′) δabθ(τ − τ ′)

[(
δµν − kµkν

k2

)
e−k2(τ−τ ′) + kµkν

k2

]

Dab
µν(k, τ − τ ′)

δab
[(

δµν − kµkν

k2

) (
e−k2|τ−τ ′| − e−k2(τ+τ ′)

)

+2min(τ, τ ′)kµkν

k2 + kµkν

k2

]

g
2V abc

µκλ(k1, k2, k3)
ıg
2 fabc

[
(k1 − k2)λδµκ + (k2 − k3)µδκλ

+(k3 − k1)κδµλ

]

g2

6 W abcd
µνκλ

− g2

6

[
fxabfxcd(δµκδνλ − δµλδνκ)

+fxacfxbd(δµνδκλ − δµλδνκ)
+fxadfxbc(δµνδκλ − δµκδνλ)

]

The loop integrals taken with this effective force correlator (14) can be easily seen
to be free of ultra-violet divergences

G2(k, ω) = G2
0(k, ω)

∫
ddq

(2π)d
2∆(q)

∫ ∞

−∞

dΩ
2π

1
Ω2 + (q2 + m2)2

× 1
−ı(ω − Ω) + (k − q)2 + m2

(15)

3 Non-Abelian gauge theory

The Euclidean action of a non-Abelian field is given by

S[A] =
1
4

∫
ddxF a

µν(x)F a
µν(x), F a

µν(x) = ∂µAa
ν(x)−∂νAa

µ(x)+gfabcAb
µ(x)Ac

ν(x).

(16)
The Langevin equation for the gauge theory (16) can be written as

∂Aa
µ(x, τ)
∂τ

+
(−δµν∂2 + ∂µ∂ν

)
Aa

ν(x, τ) = ηa
µ(x, τ) + Ua

µ(x, τ), (17)

where ηa
µ(x, τ) is the random force and Ua

µ(x, τ) is the nonlinear interaction term

U [A] =
g

2
V 0(A, A) +

g2

6
W 0(A, A,A).

The stochastic diagram technique for the gauge field Langevin equation (17) is
summarized in the Table 1. The two terms standing in the free field Green function
correspond to the transversal and the longtitudal mode propagation:

Gab
µν(k) =

Tµν(k)δab

−ıω + k2
+

Lµν(k)δab

−ıω
, Tµν(k) = δµν − kµkν

k2
, Lµν(k) =

kµkν

k2
.
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(Here we are concerned with divergences and do not touch any gauge fixing.)
Similarly the scalar field theory, we can use the scale-dependent forcing (18) in

the Langevin equation (17). Since there is no dynamic evolution for the longtitudal
modes in the Langevin equation (17), it is natural to use the transversal scale-
dependent random force

〈ηa
µ(a1, k1, τ1)ηb

ν(a2, k2, τ2)〉 = (2π)dδd(k1 + k2)δ(τ1 − τ2)Tµν(k1)
× Cψa1δ(a1 − a2)D(a1, k1). (18)

Let us consider a gluon loop with two cubic vertices. Summing up over the gauge
group indices

(
ı
2g
)2

fabcδbdf
derδcr = g2

4 δaeC2, with C2 = N for SUN groups, we
can wright the gluon loop as a sum of two diagrams – those with the transversal
and the longtitudal stochastic Green functions

Gab
2µν(k, ω) = g2δabC2|G0(k, ω)|2

∑

I=T,L

∫
dΩ
2π

ddq

(2π)d
N I(k, ω, q, Ω)lIµν(k, q)2∆(q)

(19)
where

N(k, q) =
∣
∣∣
∣

1
−ıΩ + q2

∣
∣∣
∣

2
(

1
−ı(ω−Ω)+(k−q)2

1
−ı(ω−Ω)

)

lµν(k, q) = Vµκλ(k, k − q, q)Tλγ(q)Vσνγ(k − q, k,−q)
(

Tκσ(k − q)
Lκσ(k − q)

)

As it can be observed after explicit evaluation of the tensor structures lTµν and lLµν ,
and integration over dΩ, the wavelet factor in the effective force correlator ∆(q)
will suppress the divergences for a narrow-band forcing (7). The power factor
kn of the basic wavelet ψ, that provides ψ̃(0) = 0, also makes the IR behavior
softer. In this respect the wavelet regularization is different from the continuous
regularization

∫
ddyRΛ(∂2)η(y, τ), see e.g. [6], that makes UV behavior softer by

the factor e−
k2

Λ2 , but do not affect the IR behavior.

4 Commutation relation

The stochastic quantization with a forcing localized at a given scale a0 is in some
way similar to the lattice regularization with the mesh size of order a0. However
there is a question what is the physical sense of the scale components, and what
are the implications for canonical quantization of these fields? The answer to the
first question stems from the definition of wavelet transform: the scale component
φ(a, x) is a projection of the state vector φ to a certain multiresolution space [7],
where ψ is a basis, i.e., the basic wavelet stands for the apperture of the microscope
by which we perceive the system φ. To clarify the second question one can use the
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wavelet decomposition

φ(x) =
2

Cψ

∫ ∞

0

da

a

∫

k0>0

ddk

(2π)d
ψ̃(ak)

[
eıkxu(a, k) + (−1)de−ıkxu(a,−k)

]
,

u+(a, k) ≡ u(a, k)|k0>0, u−(a, k) ≡ u(a,−k)|k0>0, (20)

where the positive and the negative energy components (20) are summed up into
the known plane wave components

u±(k) =
2

Cψ

∫ ∞

0

da

a
ψ̃(ak)u±(a, k).

The canonical quantization of a scalar massless field, the implies the commutation
relations

[u+(k1), u−(k2)] = (2π)dδ(k1 − k2), (21)

that can be maintained if we set [5]

[u+(a1, k1), u−(a2, k2)] = (2π)dδ(k1 − k2)
Cψ

2
a1δ(a1 − a2). (22)

For a massive field, with the given energy of the free particle ωk =
√

k2 + m2, the
commutation relations for creation and annihilation operators

[b(a1, k1), b+(a2, k2)] = (2π)d−1ωkδd−1(k1 − k2)Cψa1δ(a1 − a2). (23)

To keep the Lorentz invariance at all scales the basic wavelet ψ can depend only
on Lorentz scalars, such as kµkµ = m2. Being compactly supported in both x and
k spaces the wavelet filter ψ̃(ak) ≡ µ(a2m2) suppresses the contribution of the
scale components which are far from the typical scale am = m−1.

It should be emphasized that the commutation relations for scale components
(22,23) are not unique: there may be constructed some other commutation rela-
tions is wavelet space that maintain the same canonical commutation relations in
wavenumber space.

As it concerns the causality and operator ordering, the introduction of the scale
argument in operator-valued functions implies the operators should be ordered in
both the time and the scale. Extending the causality in this way it was suggested
[5] to arrange the operator products by decreasing scale from right to left; so that
the rightmost operator should correspond to the largest outermost object

T (A(∆x, x)B(∆y, y)) =






A(∆x, x)B(∆y, y) y0 < x0

±B(∆y, y)A(∆x, x) x0 < y0

A(∆x, x)B(∆y, y) ∆y > ∆x, y0 = x0

±B(∆y, y)A(∆x, x) ∆y < ∆x, x0 = y0.

(24)
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Abstract

We show that quadratic spaces are a fundamental clue to understand the
structure of theoretical physics. Classical Physics is embedded within a 5-D
flat quadratic space, 3 Space-, one Time- and one Action- like basis manifolds
(Lorentz signature 1,4) faithfully providing a Relativistic Theory (START)
describing Newtonian, Maxwell, geometrical optics and General Relativ-
ity as particular linear and quadratic forms of this (flat) START space.
The 5-D space has a quadratic form which maps into the real quadratic
form of a (hyperbolic-complex) 4-D space-time dS2 = dS • dS† . Otherwise
the understanding of a many electron quantum mechanical (QM) system,
with all its QM intricacies, is presented considering the QM ”density” as
a quadratic form and the QM ”wave function” as its corresponding linear
form.

Space-Time-Action, General Relativity, Geometric Optics.
83D05, 83Exx, 11E88, 15A66(67).
E-mail: keller@servidor.unam.mx and keller@cms.tuwien.ac.at

1 Physics and Quadratic Spaces

Physics is understood as the science describing nature as a whole in a useful way.
For the Scientific Method (SM) the usefulness requires that two observers will find

163

© 2006 Springer. Printed in the Netherlands.

B.G. Sidharth, F. Honsell  and A. de Angelis. (eds.), Frontiers of Fundamental Physics, 163–173.



164 Principia Geometrica Physicae

in their experiments similar phenomena and describe them with similar logical
structures. Theoretical Physics provides a mathematical, SM acceptable, frame-
work for this purpose. In this paper we show that a flat 5-D Lorentz Geometry
is a useful formulation to consider frames of reference. Additionally we show the
relation between quadratic spaces and Quantum Mechanics.

• The central purpose of the here formulated START Theory is twofold: first
to have a description of nature, the way we perceive it with our senses and
experiments, which could be useful in accordance with the Scientific Method,
that is which could be a sound basis for physics. Second START is aimed
to be a valid general mathematical theory for all the fundamental physical
objects and the frame of reference we use for their description. The physical
objects are in general aspects of matter, this concept enlarged to englobe
also what previously was known as radiation or particles.

• The quadratic form of the Minkowski space s2 = (ct)2 − (x2 + y2 + z2)
describes kinematics (motion) in Space–Time. To faithfully include matter
and interaction (dynamics) we propose a generalization of this quadratic
form S2 = s2−w2, where w = κ(0)a is an equivalent distance expressing the
physical Action corresponding to a time interval t during which a distance
l =

√
(x2 + y2 + z2) has been covered. The definitions being such that

energy–momentum corresponds to (Planck constant times) the space–time
derivatives of w. We show that the resulting space s2 → S2 = guvxuxv can
also be pictured as a curved space–time. The corresponding linear form (in
Clifford algebra a 5-dimensional vector) is S = euxu, where the first four
components correspond to the (Lorentz-)Minkowski vector s = eµxµ. The
usefulness, and in fact the motivation, of this geometry is illustrated through
the analysis of light propagation in a medium and in a gravitational field.
We adopt the Poincaré’s principle of Relativity for the formulation of the
Theory [2] (set of initials: START), in all cases the base space for the
description is flat. In our presentation in the present paper optics was taken
as an example to guide the reader.

• The 5-D START geometry is presented as a flat simple connected Lorentzian
manifold time-like oriented in which all light rays correspond to null lines.
Massive objects are described as bundles of null trajectories in START. Ob-
servers to 4-D time-like trajectories.

• START provides: first a unified presentation of the main structures of theo-
retical physics, second a common mathematical language for seemingly dif-
ferent branches as geometric optics, optics in a medium, or general relativity.

1.1 THE QUADRATIC FORM IN PHYSICS

We claim that quadratic spaces are the fundamental clue to understand the struc-
ture of theoretical physics. We show several examples: optics in a medium, general
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relativity and, on a different level, the understanding of a many electron quantum
mechanical (QM) system, with all its QM intricacies, considering the QM ”density”
as a quadratic form and the QM ”wave function” as its corresponding linear form.

Our frames of reference formulation (see [1][2][3][4][5]) claims that there is a
useful generalization of the quadratic form which historically started with the
Pythagorean formulation:

Quadratic form Dim/diff. Op Group

l2 = x2 + y2 + z2 (�t) 3-D ∇,∇2 Statics
Galileo

s2 = (ct)2 − (x2 + y2 + z2) 4-D D,�2 Kinetics
Poincaré

S2 = (ct)2 − (x2 + y2 + z2
)− w2

w = κ(0)a, κ(0) = d(0)

h = c
E(0)

5-D K, K2

(a)2 =
∑

µ a2
µ

Dynamics
START

where l, (x, y, z), c, h, w, a, E(0) are distance, distance components, vacuum speed
of light, Planck’s constant, distance equivalent to action, action of a system and
characteristic energy of the system respectively.

The development of the theory follows this scheme in such a form to obtain a
comprehensive theory:

SPACE + TIME + ACTION
+

FUNDAMENTAL PRINCIPLES
and POSTULATES (Carriers)

⇓
START GEOMETRY were ‖dS‖2 = dS • dS† and carriers were ρ = Ψ •Ψ†

↙ ↙ ↘
General Relativity Quantum Mechanics Standard Model

In our formulation [2] of the Standard Model all symmetries are Space-Time-
Action symmetries (no need for “internal” symmetries). In the START space we
introduce physics through the START Relativity Principle

“All trajectories are null for all observers”
“The vacuum Speed of Light is c for all observers”

The set of principles we have introduced are [2]: START Relativity (5-D
Poincaré group and 5-D Lorentz transformations); Existence (physical objects
are represented by energy densities); Least Action (null, optimal possible, tra-
jectories in START); Quantized Exchange of Action (defines systems or sub-
systems as those among a quanta of action can be exchanged) and, Choice of
Descriptions (allows all useful physical models to be employed).

1.2 MULTIVECTOR REPRESENTATION

The base space R
5 corresponds to the real variables set {ct, x, y, z, κ0α} ↔ {xu;u =

0, 1, 2, 3, 4} that is: time, 3-D space and action (in units of distance introducing
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the universal speed of light in vacuum c and the system under observation de-
pendent κ0 = λsystem with energy mc2

Compton /h = 1/m0c). For physics time is usually
an independent evolution coordinate and action (matter and interaction) is dis-
tributed in space, then we consider the functions x(t), y(t), z(t) and w(t, x, y, z) =
κ0α(t, x, y, z). The four (space-time) partial derivatives of w(t, x, y, z) gives to dS2

an structure similar to a, modified, special relativity ds2 world line element. The
nested vectors

dS =
∑

µ
dxueu ; u = 0, 1, 2, 3, 4 5−D

ds =
∑

µ
dxµeµ ; µ = 0, 1, 2, 3 4−D

dx =
∑

i
dxiei ; i = 1, 2, 3 ; ei = e0ei 3−D

are members of a Clifford algebra generated by the definition of a quadratic form

dS2 ≡ (dS)2 =
(∑

µ
dxueu

)2

=
∑

µν
gSTART

uv dxudxv ,

gSTART
uv = diag (1,−1,−1,−1,−1) , euev = −eveu

e = e0e1e2e3e4 = −e† eue = eeu

2 5-D Formulation of OPTICS

Geometric optics in a medium is used as a guiding concept to enlarge the represen-
tation space of physical phenomena to 5-dimensions. Optics was used in the XX
century to create a logical 4-dimensional geometric representation of the frame of
reference to describe events in nature, the basic consideration was that of “free
space” light rays. We show that considering the concept of light propagation in
the medium, where the speed of light is lower, a geometry in 5-dimensions appears
as a natural frame of reference. This 5-D space, a quadratic space, is constructed
from a set of 5 variables: one time-like variable, three space-like variables and
one action-like variable. The Lorentz Geometry fundamental quadratic form of
this space is dS2 = ds2 − (κ0da)2, here ds2 is the Poincaré–Einstein-Minkowski
4-D space–time quadratic form. Below we show that General Relativity is also
faithfully represented in this quadratic space.

2.1 FROM SPACE–TIME GEOMETRIC OPTICS TO START

The trajectory of a light ray in a medium can be represented in two equivalent
forms. Consider dl = vedt = (c/η)dt, for light propagation in a medium
(refraction index η) and use the quadratic form dl2 = dx2 + dy2 + dz2 for the
elementary trajectory in space dl2 = (c/η)2dt2, or (cdt)2 = η2dl2 = (1 + 4πχ)dl2,
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to define

dS2
light−η = (cdt)2 − dl2 − 4πχdl2 = (cdt)2 − dl2 − 4πχ

1 + 4πχ
c2dt2 = 0,

dS2
light−η =

(
1− η2−1

η2

)
c2dt2 − (dx2 + dy2 + dz2

)

The relations above allow a new interpretation of the light propagation in a
medium as a propagation with the vacuum speed of light but in a 5-
dimensional quadratic manifold.

In the 5-D form the fifth term
[(

η2 − 1
)
/η2
]
c2dt2 represents a distance equiv-

alent to the interaction of the medium, with refraction index η, upon the light ray.
We now propose the following 5-dimensional construction, including the action
variable, in the space–time-action quadratic form

dS2 = ds2 − (κ0da)2 = (cdt)2 − (dx2 + dy2 + dz2)− (κ0da)2 (1)

where in the case of light the constant κ0 = c/hν the inverse of the momentum
associated (in vacuum) with the light (one carrier’s, one photon) energy hν. If
we associate then the last term above with the last term in the description of the
light ray propagation

(κ0da)2 =
η2 − 1

η2
c2dt2 =

c2

(hν)2
∆
(E2
)
dt2,

we can define the equivalent interaction potential as (hereE represents light→media
interaction energy)

η2 − 1
η2

=
∆
(E2
)

(hν)2
,

therefore the action Edt equivalent to the interaction between light and the
medium. In this discussion it is fundamental that these processes take place when
the carrier of light is in interaction with a medium, the medium being de-
scribed by an index of refraction η.

2.2 THE ACTION DIFFERENTIAL TERM

The quadratic form which is more relevant for Physics considers that observable
objects are extended in space and then an action density α in space-time is re-
quired. Then, defining m(x, t)c2 = εtotal(x, t), and the (Clifford algebra valued)
inverse of the space-time volume e0e1e2e3/�x�y�z�t, and the space-time Lapla-
cian operator � =

∑
µ eµ∂µ such that along b =

∑
µ bµeµ the directional change

operator is db ·� =
∑

µ dbµ∂µ (we apply four times for b = cte0, xe1, ye2, ze3), we



168 Principia Geometrica Physicae

can obtain the sum of the directed changes of the density of w:

a(x, t)e4 = κ0α(x, t)e4 = κ0
m(x,t)c2�t
�x�y�z�te = 1

m0c
m(x,t)c2�t
�x�y�z�te = (m(x,t)/m0)c�t

�x�y�z�t e

a(x, t)e4 = (m(x,t)/m0)c�t
�x�y�z�t e = w(x,t)

�x�y�z�te = w(x, t)e
edw =

∑
µ [(∂µw(x, t)) dxµ] eµe

(dS)2 = (dS) (dS)† =
(
1− (κ0p0)

2
)

(cdt)2+

−
((

1− (κ0p1)
2
)

(dx)2 +
(
1− (κ0p2)

2
)

(dy)2 +
(
1− (κ0p3)

2
)

(dz)2
)

here pµ = ∂µα(x, t) is a momentum density. Notice that w(x, t) is the distance
equivalent to a reduced action density, this makes the approach universal for all
systems.

3 The photon as a general relativity test particle

General Relativity is considered a comprehensive theory, the best known solutions
are developed for the so called matter-free space and a test particle. We show that
(1) corresponds to a description of the action distribution which agrees with the
conceptual development of General Relativity (GR), this last theory itself being
based on the physical postulate that all observers have the right to consider their
measurements equally valid..

3.1 THE BASIC START SOLUTION

There are two fundamental (energy-)carrier structures: the massless (as the pho-
ton) and the massive fields with basic relation

E2 = (E0 + ∆E)2 , E2 − E2
0 = (pc)2, (2)

where ∆E is any gauge-free energy contribution and E0 = m0c
2 =⇒ hν (for a

photon).
The concept of test particle (at position {r, θ, φ}) in general relativity is com-

patible with the Newtonian limit for the interaction gravitational energy

∆E (r) = −m0
GM

r
, (3)

where M is the total mass of ‘the external system’ (confined within a radius rs)
which we are exploring with the test particle. START uses the action square
difference, writing E = E0 + ∆E for large (classical limit) values of r > rs

E2 − E2
0 = E2

0 + 2E0∆E + (∆E)2 − E2
0 = (pc)2 (4)

= 2E0∆E + (∆E)2 → −2m0c
2m0

GM

r
+
(

m0
GM

r

)2

,
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this corresponds both to the energy (difference square) and radial momentum
terms in (dA)2 − (dA′)2 if (dA′)2 = (m0c

2dt)2 , and according to the GR basic
description principles, substituting (the negative of (4)) in (1) using κ0 = 1/m0c
and space–time spherically symmetric coordinates t, r, θ, φ we obtain

(dS)2 =

(

1− 2
GM

c2r
+
(

GM

c2r

)2
)
(
c2 (dt)2−

{
(dr)2 + r2

[
(dθ)2 + sin2 θ (dφ)2

]})
,

with the same physical consequences for the so called “tests of GR” as those of
the Schwarzschild [1916] metric in the limit of r � GM/c2 . The speed of light in
this metric remains to be c.

3.2 GENERAL RELATIVITY VIEWED AS A LORENTZ TRANSFORMA-
TION

The gravitational field induces a coordinate transformation where it can be re-
quired that the vacuum speed of light is c for all observers. It is shown that this
transformation has a formal structure similar to, and includes, the Lorentz trans-
formation. The new (Lorentz-Keller) transformation simplifies General Relativity
(GR), giving to this theory a Special Relativity structure. It also removes some
conceptual difficult points of GR and simplifies the computation of solutions to
the problem of finding the corresponding quadratic form.

In the Lorentz transformation, written as a ds2 = (cdt́)2 − (dx́)2 form

ds2 =

(

(cdt)2[1− 2
vdx

ccdt
+
(

vdx

ccdt

)2

]− (dx)2[1− 2
vcdt

cdx
+
(

vcdt

cdx

)2

]

)
c2

c2 − v2

consider the case where dx = dl = cdt, the case for light propagation, to write

(cdt)2[1− 2
(v

c

)
+
(v

c

)2

]− (dl)2[1− 2
(v

c

)
+
(v

c

)2

] = 0

a transformation symmetric in t and x, with a form similar to a solution of the
Einstein’s equations. Notice that v is an independent variable 0 ≤ v ≤ c. Our
examples above have the same form and the addition of the action term dw2 has
imposed that dS2 should be null: dS2 = ds2 − dw2 = 0.

4 Action Carriers and Quantum Mechanics

We proceed in the following logical sequence: formally define a carrier as a distri-
bution field, decompose this field into the product of an action per unit density
and a density ρ, impose an observability condition to this density, as a result an
auxiliary amplitude function Ψ is required, show that Ψ is a vector (multivector)
to be defined as a locally dependent sum of basis vectors (multivectors).
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4.1 DEFINITION OF CARRIER FIELDS

Within our fundamental formulation we will have to define properties of the fields
we call “carriers” (see Keller and Weinberger [4] ).

A carrier-domain B is a connected open set whose elements can be put into
bijective correspondence with the points of a region (domain in some instances)
B of a Euclidean point space E. Use X to denotes a representative element of B
and x the position relative to an origin 0 of the point x occupied by X in B.

At each X a scalar quantity is given, called carrier density �(X ), such that if
x = φ(X , t) then �(X ) → ρ(x,t) defines a scalar field called local carrier density.

A carrier will have physical significance through its set of properties. The value
of the density of a carrier field can be defined through a set of fundamental scalar
constants (main examples: mass, electric charges, weak charge, strong charge,
spin) such that the integral of the product of these constants and the density gives
the experimentally attributed value of a property for that carrier. The density
might become an indirect observable through the repeated measurement of those
properties, but it is not an observable in itself. We will use an example. A carrier
field identified with an electron will have a density ρ(x, t) and if the property is Q
we will obtain the definition

Q =
∫
V

q(x, t)dx =
∫
V

Qρ(x, t)dx
for all t in the system’s volume V, which defines that Q is a constant property

(in space and time) for that field (otherwise the variable quantity q(x, t) can
be called “the density of Q ”) The set of properties {Q} characterizes a carrier
field and in turn establishes the conditions for a density field to correspond to an
acceptable carrier.

4.2 COMPOSITE, DECOMPOSABLE, AVERAGE AND AVERAGE DES-
CRIPTION OF CARRIERS

There are several forms of analyzing the density. Each one allows a physical
interpretation. For example:

• A composite carrier is defined as one for which the density

ρC(x, t) =
∑

c

Acρc(x, t), (5)

with the definition of each of the ρc(x, t) being meaningful as a description
of a carrier itself. In particular we can choose

∫
V

ρc(x, t)dx = 1 and Ac=Nc.

• Similarly a non-decomposable, (non-decomposable) elementary, av-
erage, etc. carrier can be defined.

4.3 THE DENSITY

To properly describe systems in nature the conditions to be obeyed by the analyt-
ical function carrier density ρc(x, t) are:
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D1.- ρc(x, t) is a real quantity ρc(x, t) ⊂ R.
D2.- The density 0 ≤ ρc(x, t) < ∞ in order to represent a finite amount of

action.
D3.- The derivatives of the density −∞ < ∂µρc(x, t) < +∞ in order to repre-

sent a finite amount of energy–momentum.
Theorem (Keller and Weinberger 2002) If Ψ(x, t) is an analytical quadra-

tic integrable complex or multivector function, conditions D1, D2 and D3 are
fulfilled identically if ρc(x, t) = |Ψc(x, t)|2. Here |f |2 means the real quadratic
form of any more general function f , even if f itself is not necessarily a real
function and we define: if |f |2 = f+f then ∂µ |f |2 = (∂µf+)f + f+(∂µf).

Condition D1 is fulfilled by the definition ρc(x, t) = |Ψc(x, t)|2, D2 by the
requirement of quadratic integrability, D3 by the definition ∂µ |f |2 = (∂µf+)f +
f+(∂µf) and the analytical properties of Ψ(x, t). It is seen that the conditions
D1, D2, D3 and

∫
V

ρc(x, t)dx = Nc correspond to the Ψ(x, t) being quadratic
integrable Hilbert functions. Thus, even if we selected the density (current in the
general formulation) as the basic function, the auxiliary amplitude function Ψ is
unavoidably necessary.

4.4 THE LINEAR FORM CHARACTER OF THE MANY ELECTRON AUX-
ILIARY AMPLITUDE FUNCTION

Besides all the conditions mentioned above that the auxiliary amplitude function
should fulfill, in the case of a many carriers system there are some additional
conditions. Those conditions arise from two fundamental principles: equivalent
carriers in the same system should correspond to the same density and, second,
the statistics which the carriers should obey among themselves are to be included
in the auxiliary amplitude function.

We consider the case of electrons, fermions, then the statistics are the Fermi-
Dirac statistics and require:

• The density for the N equivalent carriers system is to be constructed as a
sum of M independent alternative contributions ρ(x, t) =

∑M≥N
i=1 ρi(x, t, si).

• There should be at least one linearly independent function (pseudo-carrier
amplitude) contributing to the density for each of the N equivalent carriers
in the system

ψc(x, t) =
1√
N

M≥N∑

i=1

ai
cϕi(x, t, si) ai

c = bcαi (6)

ai
ca

i′
c = −ai′

c ai
c

∥∥ai
c

∥∥2 ≤ 1 ;
∑M

i=1

∥∥ai
c

∥∥2 = N

• The total amplitude function should be a sum of single (pseudo-)carrier
amplitude functions ψc(x, t, s), such that the exchange among two carrier’s of
the space–time–spin (x, t, s) descriptions, in fact the exchange of the indexes
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c and c′, should correspond, to avoid two descriptions being identical, to a
change in sign of the many carrier amplitude function Ψ

Ψ =
∑

c

ωcψc(x, t, s) and Ψ =
∑

c′
�c′ψ†

c′(x, t, s) (7)

This defines Ψ as a vector, linear form, expressed in the basis {ωc}.
• The

{
Ψ,Ψ

}
are defined and the products ordered to obtain

∫
‖Ψ‖2 dx =

∫
ΨΨdx = N (8)

The conditions which the ϕi(x, t, s) and the ωc should obey are simply those
which correspond to the two fundamental principles above:
∫

ϕi′(x, t, si′)ϕi(x, t, si)dx =δi′i ; ωcωc′ = −ωc′ωc ; also �cωc′ = δcc′ (9)

The 1st condition is double: first the orthonormality among the ϕi functions (re-
quiring them to be eigenfunctions of the same differential equation operator) to
fulfill the condition of making linear independent combinations ψc and second the
Grassmann character of the ai

c coefficients, to make the local density per carrier
correspond tho the sum of the squares

∣∣ai
cϕi(x, t, si)

∣∣2, and the 2nd condition,
equivalent to the Pauli principle, defines the ωc as Grassmann variables and the
�c as their Grassmann conjugates. Full presentation see [4].
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Abstract

The real number line has served classical physics well as a model continuum
for both space and time. Quantum mechanics preserves this continuum
picture of space and time while extending the range of functions on spacetime
to complex numbers. The resulting theory is precise, elegant, experimentally
verified and universally accepted. However, since the existence of a ‘realistic’
basis for quantum mechanics remains an open question, there is as yet no
consensus on a satisfactory interpretation of the theory.

The step in the transition from classical to quantum physics that characteris-
tically impedes attempts to construct realistic models is the special extension
of functions from R to C. In quantum mechanics this step is formal and al-
gebraic in nature. This talk discusses an alternative in which the geometry
of a spacetime path automatically builds the extension from Z to C, with
all spacetime functions simply counting contributions of a single path. The
model produces the correct continuum propagator in the continuum limit,
but the realistic origin of the propagator is only apparent when the small-
est scale in the system (Planck scale) remains finite. This type of model is
consequently missed by current formulations of quantum mechanics because
the continuum limit is assumed at the outset. This suggests that it may be
fruitful to look to discrete formulations of quantum mechanics in the quest
for an ontological version of the theory.
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1 Introduction

In Classical physics, the correspondence between the physical world we describe,
and the mathematics we use, is usually very close. When we write an equation
such as F = md2x

dt2 , we are tracking the position of an object x as a function of
time t, and here the differential equation seems a very natural language to use.
The extra assumption brought in by the language is that the trajectory of our
physical object is smooth in space and time. In terms of classical physics this
seems harmless enough. However there is reason to question the smoothness of
space and time in quantum physics. In quantum mechanics, both momentum
and energy vary with an inverse length, be it space or time, so the concept of
localization over small distances or times is problematic. The language we use,
for example Schrödinger’s equation, maintains the classical paradigm of a smooth
background continuum by changing from a description of point-like objects to wave
propagation. This has worked spectacularly well and quantum mechanics provides
a theory with unequalled empirical accuracy and generality. The price we pay is
that we no longer know exactly what it is that the mathematics is describing.
Whereas we can easily believe that the x(t) in Newton’s law above describes the
centre of mass of an object. It is not easy to say what is described by a solution
of Schrödinger’s equation.

When we look at how we quantize a classical system, we can see in the pre-
scription where the break with classical ontology occurs. For example, for the one
dimensional free particle the energy is related to the momentum by E = p2

2m . This
system is quantized by replacing E and p by operators: E → i� ∂

∂t and p → −i� ∂
∂x

to give the wave equation i�∂ψ
∂t = − �

2

2m
∂2ψ
∂t2 . Here the main harbinger of quantum

mechanics is the explicit presence of i =
√−1 in the partial differential equation.

Without the i, the above equation is just a diffusion equation and may be derived
directly from a discrete random walk model.

The presence of i in Schroedinger’s equation and the resulting extension of the
number system from R to C is responsible for wave-particle duality and all the
interference effects associated with quantum mechanics. What is unclear is what
physical process is behind the algebra. Note that whatever the process itself, it is
unlikely to be directly related to the conception of a continuum of phase. That is,
if we relate the i in Schrödingers equation to a real phase φ via i = eiφ, the number
φ = π/2 would have to be extremely accurately maintained by nature in order for
solutions of the Schroedinger equation to survive domination by diffusion. Whereas
we can think of the ’diffusion constant’ �

2m as a real number because our solutions
to Schroedinger’s equation would be stable under a variation of the constant to say
one part in 1020, we cannot say the same for φ. If it is varied by one part in 1020

the solution of the resulting equation changes qualitatively. It would seem that, in
spite of the solutions of Schrödinger’s equation having continuous phase, the origin
of phase in nature is more likely to be discrete than continuous. This means that
if we are to find a physical origin for the complex algebra of quantum mechanics,
it makes sense to look for it in a discrete space prior to taking a continuum limit.

Do Real Numbers Obscure Real Physics?
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This talk gives an example of the above scenario. We construct a realistic sub-
quantum dynamic in 1+1 dimensions through a completely deterministic discrete
process. We do this by essentially drawing a picture on spacetime with a single
path using a severely constrained geometry. The constrained geometry leads to
the required algebra in a fairly transparent way. A free particle propagator may
be constructed so that, in the continuum limit, it is appropriate for a Dirac par-
ticle. However the continuum limit itself essentially erases the evidence for the
underlying dynamical process.

The technical details of the model are not difficult but will appear elsewhere.
[1] What I want to do is to sketch the ideas involved. First of all we might ask:

Q. Is i really necessary? There are many famous statements stressing the
necessity of complex numbers in QM but in the end, surely i is just a notational
convenience?

A. Yes, but because the empirical accuracy of QM is so convincing, the algebra
of quantum mechanics is something that is clearly recognized by nature. What
I would like to argue is that in terms of number systems, the origin of Complex
numbers in QM is based on integer counting and geometry. The idea is that, for
example, in the Euler formula:

eimt = cos(mt) + i sin(mt)

=
∞∑

k=0

(−1)k (mt)2k

(2k)!
+ i

∞∑

k=0

(−1)k (mt)2k+1

(2k + 1)!
(1)

Nature does not construct the alternating signs in the series expansion by having
an algebraic analog of i specifically, but through geometry she does have a way
of implementing the alternating signs in the series. That is, if Nature can add
and subtract integers, she can build the even and odd components of eimt through
geometry, thus imitating a continuum of phase.

Q. If the alternating signs in the above series expansion have a geometric
significance, where does the addition and subtraction come from.

A. We can at least imagine a scenario that would appear to observers moving
forward through time that Nature is able to add and subtract. (This is a well-
known example due to Feynman.) Consider Fig. 1 where we sketch a spacetime
trajectory that progresses from past to future but contains a single closed loop.
An observer moving forward in time sees a single particle before time tA. At time
tA two new particles appear and move away from each other. At time tB they
both reverse direction and at time tC they both disappear. Notice that continuous
closed loops in spacetime, if they occur in Nature, have the appearance of particle
pair creation and annihilation. We would say that the pair of particles created
consist of a particle and its anti-particle. The creation and annihilation then give
us a physical analog of addition and subtraction of integers. In the figure, if
we want to count the number of continuous trajectories in spacetime, we would
associate a +1 with forward moving path segments and a -1 for reversed time
segments. The total count for the figure, for any t, is then just +1, even though
there appears to be more than one particle in the system between tA and tC . That
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Figure 1. On the left is a continuous spacetime trajectory that has a single closed loop. When
viewed by an observer moving forward in time (right sketch) the corner in the path at A looks
like a pair creation event with a particle moving off to the right and an anti-particle moving off to
the left. Particle and anti-particle annihilate at C. Anti-particles provide a geometric mechanism
for subtraction and can be thought of as a discrete precursor of phase.

is, the one continuous trajectory in the system is represented by the integer 1 for
t < tA and by 1 + 1 − 1 for tA < t < tC . Notice that the natural subtraction of
integers signalled by this simple spacetime loop is not present in spacetime paths
that are constrained to have no loops. Thus, for example, the Brownian paths of
diffusion have no loops and are incapable of imitating subtraction.

Simply put, we can use this integer counting of particles and antiparticles
to simulate continuous phase and ultimately the ’quantum mechanical’ extension
from R to C. All we need is this natural addition–subtraction mechanism combined
with a simple spacetime geometry. To see how this works consider Fig. 2. Here a

Figure 2. An entwined path with two loops appears on the left. The particle travels from
t = 0 to t = 4 on the zig-zag path that starts off moving to the right(dark line in figure). At
t = 4 the particle zig-zags back to the origin. The time reversed portions of the trajectory
contribute to a counting process with opposite sign to forward-in-t segments. We count loops
using ‘envelopes’ one of which is pictured to the right of the path. The lower two segments of
this envelope contribute positively to a density, the upper two negatively. The resulting ’density
of right moving particles on the envelope’ is pictured to the right. The density is 1 for 0 < t < 1
because the envelope counts a single right moving particle on that interval. The density is −1
for 2 < t < 3 because the envelope counts a single right-moving anti-particle in the interval. The
density is 0 on the two remaining intervals because there are no right-moving particles on those
intervals.

Do Real Numbers Obscure Real Physics?
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Figure 3. Evolution of the trigonometric functions. The left frame shows a single entwined path
with the associated right and left densities. The second frame shows the path whose densities form
a periodic array of alternating delta functions. The third frame shows the emergent trigonometric
functions with the associated path. The details of the path are below the resolution of the figure
at this point. In conventional quantum mechanics, the continuum language we use assumes the
smooth version of the trigonometric functions on the right of the figure. That being the case, a
path that forms the function would be below the resolution of the language itself.

single spacetime path is sketched in which a particle zig-zags in space while moving
forward in time, and then zig-zags on the return journey to the origin in such a way
that the forward and reversed paths are entwined. An observer moving forward in
t would see this as a pair creation event at t = 0, an annihilation/creation event
at t = 2 and an annihilation event at t = 4. However, since it is really particle
pairs that always appear from closed loops, let us just count pair contributions
by agreeing to count particles to the right of the line x = 0. We shall also count
by spacetime direction. Since we shall have the perspective of an observer moving
forward in time we shall associate a +1 with particles moving in a +t direction
and a −1 for particles moving in a −t direction. Note that in the figure the
density of right-moving particles alternates in sign. In Fig. 3 we first see a single
path that has traversed the t-direction four times instead of just two times as
in the previous figure. This time the regular geometry has been shifted so that
the blank parts of the particle density have been filled in to produce square wave
densities. Here both left and right moving densities are plotted. Note that the
regular geometry forces the left and right densities to be automatically shifted
by 1/4 wavelength. We can repeat the construction shifting the trajectories in t
slightly at each return in just such a way as to form periodic alternating delta
functions as in the centre frame of the figure. Finally we can repeat the process
to form the two trigonometric functions pictured in the last frame. Notice that
although the path on the left looks complicated, it is still only a single path and
the geometry is completely regular except for shifts of ’phase’ at the origin. Notice
also that if we are thinking of this as a model for the way in which a particle could
write phase on spacetime, the smallest scale given by shifts of phase could be
identified with the Planck scale. The wavelength of the trig function density that
we wish to construct is the Compton length. The two densities are then the two
components of eimt.



180

Figure 4. On the left, a few velocity eigen-paths are shown with velocities ranging from −.9 c to
+.9 c. These differ from a v = 0 eigenpath by a Lorentz transformation. On the right is a scan
with a denser coverage of velocities. There is still a single path here but the details are below the
resolution of the figure. Note the alternating bands corresponding to particle or antiparticle-rich
areas. The oscillation between the regions is the origin of phase in this model.

A. In all current versions of quantum mechanics, our language starts in the
continuum. In Fig. 5 we can imagine taking the continuum limit (’Planck length’
goes to zero) so that the discrete approximations to the trig functions on the right
approach their continuum version. The path on the left would then be infinitely
long, and we would not be able to infer its presence with the language of the
continuum. This is similar to the relationship between kinetic theory and ther-
modynamics. We can infer the latter from the former, but the language is wrong
for going in the opposite direction. In this case if we start with the assumption
of a continuum phase, we shall not be able to see that there is a way that nature
could, in principle, approximate continuum phase using only a single continuous
spacetime path for each physical ’particle’ in the system.

Q. The process outlined gives a method for showing how we get eimt from
simple geometry and a continuum limit. How would we get a quantum propagator
from this?

A. This was essentially the content of Feynman’s ’Chessboard model’ which
started out as a problem in Feynman’s book on path integrals [2], and subsequently
developed into a small industry in a series of papers including [3, 4, 6, 5] and [7, 8].
All we really have to do is to notice that the paths we have generated correspond
to a particle that has propagated with a macroscopic velocity v = 0. We can get
the Dirac propagator from this model by applying a Lorentz transformation to get
other velocities. We can still traverse all these ’velocity eigenpaths’ with a single
trajectory because they may all be joined serially at the origin. Fig. 4 shows a
series of ‘velocity eigenpaths’ which are just our v = 0 path of the previous figure
viewed from a moving frame. The dense scan to the right illustrates the hyperbolic
geometry through the alternating light/dark patterns. It is the fluctuation of
particle/antiparticle rich areas that imitates the phase of quantum mechanics and

Do Real Numbers Obscure Real Physics?

Q. It does appear that you could construct the real and imaginary components
of eimt this way, but what relevance would this have to quantum mechanics?
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Figure 5. Here the velocity eigenpaths are chosen to correspond to the energy eigenstates of a
particle-in-a-box. The initial condition is established by choosing the correct velocity eigenpaths,
and moving the origin of the eigenpaths along the x-axis, shifting the t-coordinate in such a way
that the propagator adds to the appropriate eigenfunction of the box. Here the typical standing
wave pattern is still the manifestation of a single continuous trajectory. There is no canonical
quantization, analytic continuation or wave mechanics in this picture.

allows us to construct the Dirac propagator from a single entwined path. Since
the propagator can be constructed in this way we can simulate one-dimensional
quantum phenomena with this ontological model. Fig. 5 is an illustration of this.
The figure appears to be the standing-wave pattern corresponding to an excited
state of a particle-in-a-box. Within numerical error this is exactly what it is.
However it was generated by a single entwined path. The path is a concatenation
of two velocity eigenpaths corresponding to the required energy, shifted in such
a way that the path densities at t = 0 correspond to the eigenfunctions of the
box. The single spacetime path then just propagates the pattern in t through its
intrinsic geometry. Physically this is interesting because to get Fig. 5 we have not
had to resort to quantization, analytic continuation or the introduction of waves.
We are still solidly within the particle paradigm and the ‘waves’ appearing in the
figure are ultimately a manifestation of simple spacetime geometry.

2 Conclusions

The thesis of this paper is that it is possible that the power and convenience of a
language can sometimes be an impediment to its use as a tool to help understand
nature. The use of real numbers as a representation of space and time is useful and
intuitive. However, it may be the case that when we build the continuum limit into
our language, we may not be able to see features hidden by that limit, and as a re-
sult we may have to build structures after the limit when they have a more natural
appearance before the limit. We illustrated a case in point. Quantum mechanics
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typically assumes real numbers represent space and time and as a result has to
propose a formal analytic continuation in the replacement of dynamical variables
by operators. So the transition R → C is formal. The above demonstration shows
that the transition Z → C can be mediated by simple spacetime geometry. This
onlyrequires that we leave the continuum limit to the last in our construction.
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Abstract

In this paper we consider the motion of point-like massive systems on a
Cantorian path. The results is that an harmonic material support with
an external force is equivalent, under some assumptions, to a classical or
quantum harmonic system on a continuous support. The idea that we want
stress in this paper is that a Cantorian space could explain some relevant
stochastic and quantum processes, if the space acts as an harmonic oscillating
support, such as happen in Nature. This means that a quantum process, in
some cases, could be explained as a classical one, but on a non continuous
and fractal support. We consider the validity of this point of view, that
in principle could be more realistic, since it describe the real nature of the
matter and space, which does not only exist in Euclidean space or curved
one, but in a Cantorian one.

1 Introduction

Nature shows us structures with scaling rules, where clustering properties from cos-
mological to nuclear objects reveals a form of hierarchy. Moreover, many systems
shows an oscillatory behaviour. In the previous papers, the authors consider the
compatibility of a Stochastic Self-Similar, Fractal Universe with the observation
and the consequences of this model. In particular, it was demonstrated that the
observed segregated Universe is the result of a fundamental self-similar law, which
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generalizes the Compton wavelength relation (see [1], [2], [3]). Starting from an
universal scaling law, the author showed its agreement with the well–known Ran-
dom Walk equation or Brownian motion relation [4], [5]. The main results by
Iovane in [2], can be summarized as follows.

Theorem 1. The structures of the Universe appears as if they were a classically
self-similar random process at all astrophysical scales. The characteristic scale
length has a self-similar expression

R(N) =
h

Mc
N1+φ =

h

mnc
Nφ,

where the mass M is the mass of the structure, mn is the mass of a nucleon, N
is the number of nucleons in to the structure and φ is the Golden Mean value.

In terms of Plankian quantities the scale length can be recast in

RP (N) =
lP
mP

√
�c

G
N (1+φ).

The previous expression reflects the quantum memory of the Universe at all scales,
which appears as hierarchy in the clustering properties.

Theorem 2. The mass and the extension of a body are connected with its
quantum properties, trough to the relation

EE,N (N) = EP N1+φ,

that links Plank’s energy EP = hν and Einstein’s one EE = mc2.
The quantum memory is reflected at all scales and it manifests itself trough a
clusterization principle of the mass and extension of the body.

In the present paper we study some relevant force field on Cantorian space and
analyze the differences with respect to the analogous case of a continuum, from a
classical and quantum point of view. The idea that we want to stress in this paper
is that a Cantorian space could explain some relevant stochastic and quantum
processes, if the space acts as an harmonic oscillating support, such as happen in
Nature. In other word, the vision is that an apparent indetermination, linked with
a fractal support rather than a continuous one, can produce an indetermination
on the motion of a physical object, which is explained via a stochastic or quantum
process. This means that a quantum process, in some cases, could be explained
as a classical one, but on a non continuous and fractal support. Consequently,
an external observer looking at the motion of a particle under a fixed solicitation
can measure an unusual behaviour with respect to a continuous material support,
that is obvious with respect to the knowledge of the fractal support behaviour. In
this case, he can make the hypothesis of an indetermination or a stochasticity in
the process (motion), while there is just really only ignorance with respect to the
support on which the motion take place.
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Let us introduce some mathematical tools.
In descriptive set theory and the theory of polish spaces we find the following

definitions [6].
Definition 1. When a space AN is viewed as the product of infinitely many

copies of A with discrete topology and is completely metrizable and if A is count-
able, then the space is said to be polish.

In particular, when A = {0, 1} , |A| = 2, then we call C = 2N Cantor space. For
|A|−1 defined in an interval: |A|−1 ∈ ]0, 1[, then CF = AN is called a fuzzy Cantor
space. If |A|−1 = (

√
5−1)/2 and N = n−1, where−∞ ≤ n ≤ ∞, then CF = ε(n) is

the E-infinity Cantorian space. Mohamed El Naschie in [7] showed the relationship
between the Cantor space C and ε(∞). As He reports: ”the relationship comes from
the cardinality problem of a Borel set in polish spaces Thus we call a subset of a
topological space a Cantor set if it is homeomorphic to the Cantor space”.

Let us consider a set of intervals A =
{A(1),A(2), ....,A(n)

}
with

A(0) = [a, b] (1)
A(1) = [a, a + (b− a)/3] ∪ [a + 2(b− a)/3, b]

....

A(n) = [a, a + (b− a)/3n] ∪ ... ∪ [a + 2(b− a)/3n, b] .

where a, b are real numbers.
If w is the level corresponding to A(w) the number of extreme points is 2w.
For a = 0 and b = 1 we obtain the Cantor space C = ∩

n∈N

Cn with the following

well know properties:

• C is compact, with null Reinmannian measure;

• There are no intervals in C;

• C has the cardinality of continuum.

For our purpose we consider the set A. In particular at the level w the length
of a segment is kw+1 = (b− a)/3w with w = 0, 1, 2, .., n− 1.

To evaluate the extremes for each a level w without using an iterative procedure
we show the following algebraic method.

Let us introduce the vector gm = (gm,1, gm,2, ..., gm,2n) with m = 1, ..., n − 1
and with 2n components, whose values are:

gm,z =






2 if z = 2m(1 + 2s) + h
1 if z = 2m(1 + 2s)
0 elsewhere

(2)

with s = 0, ..., 2n−m−1− 1 and h = 1, ..., 2m− 1. For m = n we have a vector with
all components equal to zero except the component at the place 2n, that is equal
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to 1, i.e., gn = (0, 0, ..., 0, 1). Consequently the coordinate of the extremes at a
fixed level n is given by the following vector

A(n)
z = a +

n−1∑

p=0

kn−pgp+1,z. (3)

Clearly appear how the previous results can be also used on the set A, which
generalizes the Cantor space on the interval [a, b] instead of [0, 1].

2 An elastic force field on Cantorian space

As we said a Cantorian space could explain some relevant stochastic and quantum
processes, if the space acts as an harmonic oscillating support, such as happen in
nature. In other words the vision is that an apparent indetermination, linked with
a fractal support rather than a continuous one, can produce an indetermination on
the motion of a physical object, which is explained thanks to stochastic or quantum
process. This means that a quantum process in same case could be explained as
a classical one, but on a non continuous and fractal material support.

To show this result we have to consider a classical harmonic oscillator on a
fractal support and then we have to consider it not as the subject of our study,
but as the scenario where a process could happen.

Let us suppose that an elastic force field f (q) = −αq is on the interval A(1) =
[a, b] =

[
A(1)

1 ,A(1)
2

]
, moreover α is a nonnegative elastic constant; it is well known

the motion equation for a material point of mass m coming from the Newtonian
equation f = ma is,

··
q
(1)

+
(
ω(1)
)2

q = 0, (4)

where ω(1) = α/m and with the solution

q(1) (t) = A(1)
2 cos

(
ω(1)t

)
, (5)

where we have assumed the initial condition q(1)(t=0)=A(1)
2 = b and

·
q
(1)

(t=0)=0.
This can be seen as the level 1 of a recursive procedure, where we consider a fractal
support. In fact, at the level 2 we have

A(2) = [a, a + (b− a)/3] ∪ [a + 2(b− a)/3, b]

=
[
A(2)

1 ,A(2)
1 + k2

]
∪
[
A(2)

1 + 2k2,A(2)
4

]

=
[
A(2)

1 ,A(2)
2

]
∪
[
A(2)

3 ,A(2)
4

]
,
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where k2 = (A(1)
2 −A(1)

1 )/3 = (b− a)/3; consequently we consider the force field

f (2) (q) =






−ε(2)αq ∀q ∈
[
A(2)

1 ,A(2)
2

]
,

0 ∀q ∈
[
A(2)

2 ,A(2)
3

]
,

−ε(2)αq ∀q ∈
[
A(2)

3 ,A(2)
4

]
,

(6)

where ε(2) is a parameter to take into account the reduction of the material support
and to preserve the total energy. We will determine it in the following.

The total path of the level 2 can be see as composed by three sub-path: the
first and the third with an oscillation motion, while the second where we find a
uniform motion. In fact, it is easy to find for the third sub-path

q
(2)
3 (t) = A(2)

4 cos
(
ω(2)t

)
,

with
(
ω(2)
)2

= ε(2)
(
ω(1)
)2

, where we have considered the initial conditions

q
(2)
3 (t = 0) = A(2)

4 = b and
·
q3

(2)
(t = 0) = 0. Analogously, we get for the sec-

ond sub-path
q
(2)
2 (t) = β

(2)
2 t +A(2)

3 ,

where we have used the following initial condition q
(2)
3 (t1) = q

(2)
2 (t1) = A(2)

3 , and

so A(2)
3 = A(2)

4 cos
(
ω(2)t1

) → t1 = 1
ω(2) cos−1

(
A(2)

3 /A(2)
4

)
and

·
q
(2)

2 (t = t1) =
·
q
(2)

3 (t = t1) ≡ β
(2)
2 = −A(2)

4 ω(2) sin cos−1
(
A(2)

3 /A(2)
4

)
. On the first path, we find

again an oscillation motion

q
(2)
1 (t) = A(2)

2 cos
(
ω(2)t + B

(2)
2

)
,

with the following initial condition:

q
(2)
2 (t2) = q

(2)
1 (t2) = A(2)

2 → t2 =
(
A(2)

2 −A(2)
3

)/
β

(2)
2 and

·
q
(2)

2 (t = t2) =
·
q
(2)

1 (t = t2) and so B
(2)
2 = tan−1

(
−β

(2)
2 /A(2)

2

)
−
(
A(2)

2 −A(2)
3

)/
β

(2)
2 . To sum-

marize at the level 2 we obtain

q(2) (t) =






q
(2)
1 (t) = A(2)

2 cos
(
ω(2)t + B

(2)
2

)
∀q ∈

[
A(2)

1 ,A(2)
2

]
,

q
(2)
2 (t) = β

(2)
2 t +A(2)

3 ∀q ∈
[
A(2)

2 ,A(2)
3

]
,

q
(2)
3 (t) = A(2)

4 cos
(
ω(2)t

) ∀q ∈
[
A(2)

3 ,A(2)
4

]
.

(7)

With respect to the level 1 we have different amplitude, frequency and phase, but
not casual ones since they are in agreement with the fractal model inside them.
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Consequently, an external observer looking at the motion of a particle under
a fixed solicitation can measure an unusual behaviour with respect to a contin-
uous material support, that is obvious respect to the knowledge of the support
behaviour. In this case he can make the hypothesis of an indetermination or a
stochasticity in the process (motion), while there is just an ignorance respect to
the material support on which the motion happen.

More in general at the level n the initial conditions for the velocity are

β(n)
z = −A(n)

z+2ω
(n) sin cos−1

(
A(n)

z+1/A(n)
z+2

)
, with z = 0, ..., 2n − 1. (8)

and for the phases factor we can get

B
(n)
z+1 = tan−1

(
−β(n)

z /A(n)
z+1

)
−
(
A(n)

z+1 −A(n)
z

)/
β(n)

z (9)

Consequently, by taking into account Hausdorff ℵ(C) measure the asymptotic
behaviour gives us

f (∞) = lim
n→∞f (n) = − αq

ℵ(C) ,

k∞ = lim
n→∞kn+1 = 0,

(
ω(∞)

)2
= lim

n→∞
(
ω(n)

)2
= (ω(1))2

ℵ(C)

β
(∞)
z = lim

n→∞β
(n)
z = β

(1)
1 = 0

B
(∞)
z = lim

n→∞B
(n)
z = 0

A
(∞)
z ∈ C

(10)

With respect to β
(1)
1 , here we have used the initial condition β

(1)
1 = 0, but it is

obvious that there are no changes if β
(1)
1 = v0.

Thanks to the previous relation we obtain

q(∞) (t) =

{
q
(∞)
odd (t) = A(∞)

odd+1 cos
(
ω(∞)t + B

(∞)
odd

)
,

q
(∞)
even (t) = v0t + A

(∞)
even+1.

(11)

The same considerations can be done for a ε(∞) El Naschie Cantorian space to
obtain similar results.

It is interesting to note that if we have an external solicitation F = αq the
motion equation on C becomes

··
q + 2ω2q = F, (12)

and so ··
q + ω2q = 0, (13)

that is the traditional motion equation for a massive point in an elastic force
field. In other word, what we consider an external force for the support could be
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the classical elastic solicitation on a massive point moving on a continuous mate-
rial support1. This example is just a toy model when we deal with macroscopic
systems, since the frequency of oscillation of the material support could be very
different with respect to the system. But this toy model could be very realistic
with respect to microscopic and quantum processes and systems. For this reason
in [8] we considered oscillating force fields in quantum mechanics to show how
the Heisenmberg uncertainty principle can be translated from the processes and
systems to the material support, where we have classical dynamics. We showed
the validity of this point of view, that in principle could be more realistic, since it
describe the real nature of the matter and space, which does not exist in Euclidean
space or curved one, but in a Cantorian one. A more realistic model can be the
linear chain (see [8]).

3 Conclusions

In this paper we studied the effect of a stochastic self-similar and fractal material
support on some physical quantities and relations. In particular, we present an
algebraic uniterative relation to find the extremes of a Cantor segmentation at
any level of fragmentation. We studied the motion under an elastic force field on
a Cantorian space, from classical point of view. The results of this work can be
summarized as follows.

• A Cantorian space could explain some relevant stochastic and quantum pro-
cesses, if the space acts as an harmonic oscillating support, such as happen
in Nature (see [9]).

• An apparent indetermination, linked with a fractal support rather than a
continuous one, can produce an indetermination on the motion of a physical
object, which is explained thanks to stochastic or quantum process. This
means that a quantum process, in some cases, could be explained as a clas-
sical one, but on a non continuous and fractal support. Consequently, an
external observer looking at the motion of a particle under a fixed solicita-
tion can measure an unusual behaviour with respect to a continuous material
support, that is obvious with respect to the knowledge of the fractal support
behaviour. In this case, he can make the hypothesis of an indetermination
or a stochasticity in the process (motion), while there is just an ignorance
respect to the material support on which the motion happen.

1To be more correct there is a change in the sign of the force, but this is linked with the
subject of the problem (material support or massive point). In other words the sign minus of
the elastic source becomes plus if we have it as an external source for the material support.
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MATHEMATICAL STRUCTURE OF INDIVIDUAL QUANTUM
STATES

S.N. MAYBUROV a

a Lebedev Institute of Physics, Leninsky Prospect 53, Moscow,
117924, Russia

Abstract

The possible structure of quantum states is analyzed in relation to their
preparation and the information available to observer; it’s demonstrated
that beside pure and mixed states the states of other kind - primordial
states can exist. In particular, the states of environment are supposedly to be
primordial, because they can’t be related to the standard way of preparation
admitted in QM.

1 Introduction

The development of quantum information systems revives the interest to the dif-
ferent aspects of Quantum Mechanics (QM) foundations. In this note we analyze
the general structure of quantum states which can be especially important for
the study of decoherence effects induced by the Environment interaction with the
information system (detector) D [1]. Remind that QM deals with two sorts of
states: an individual state ζ which characterizes the object state in the individ-
ual events representing so the most detailed object description, and the statistical
state Ξ which describes the average properties of the objects ensemble. According
to QM axiomatics any object, in principle, posseses the individual state which
formally expressed by the time-dependent density matrix ζ = ρ(t) [2]. It’s well
known that the structure of states in QM depends of their production conditions;
in particular, the pure state ψi of some object is prepared by the experimentalist O
according to the particular preparation procedure PRi. It defines unambiguously
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the produced state properties resulting in ρ(t) = |ψi〉〈ψi| which is the extremal
positive functional (PF) on {Q} set (algebra) of object observables [3]. The states
mixture prepared by use of {PRj} set with the frequencies {P p

j }, in this case at
any t ρ(t) is one of |ψj〉〈ψj | with the probabilities P p

j ; here and below it assumed
that the different objects from the same ensemble don’t intersect on t axe. Due to
statistical character of QM measurements their results are normally averaged over
large time interval T which are expressed via some functions of ζ(t). In particu-
lar, the ensemble state - Gemenge W = {P p

i , ψi} reproduces ζ statistical content,
the statistical state (statistical operator) - Ξ = ζ̄ =

∫
ρ(t)dt averaged over T [4].

Meanwhile we observe around us many objects and systems which aren’t prepared
in the described way and a strict sense weren’t prepared at all, yet they are un-
doubtly possess the individual quantum state of some kind, and here we attempt
to describe their structure for an arbitrary system.

To illustrate our main hypothesis let’s consider the toy model of particle pro-
duction in cosmological Big Bang [5]. Despite its exotics, it is the simplest example
of such unprepared system with high degree of symmetry. We consider the states
of massive particles e with spin 1

2 and assume that they are produced directly from
the initial singularity. Obviously for any e production mechanism their statistical
state Ξb possess the fundamental symmetries of Universe, in particular, the rota-
tional invariance, so that U�nΞbU

−1
�n = Ξb, where U�n is the rotation in �n direction.

Assuming that the momentum �p and spin �S state components are factorized, then
for spin component the only solution is Ξb = σb where:

σb =
1
2
(|s1〉〈s1|+ |s2〉〈s2|) (1)

here s1,2 are u, d e spinors. Because of the invariance of e production process
relative to the time shift (at least at not very large time scale) we can assume
that e individual state ζb = ρb(t) doesn’t depend on t and therefore ρb(t) = σb is
constant. Such state called here the primordial state ξb = ρb(t) isn’t extremal PF
on {Q} as the pure states are, but in general is an arbitrary PF on {Q}. Because
of the assumed time invariance it isn’t the probabilistic mixture of pure states, and
has completely uncertain spin �ns direction in each event. It can be characterized
as the quantum state of third kind which is produced without participation of
any observer. Meanwhile the same statistical state Ξb can be dispatched by ρ(t)
described by the mixture of pure states in case of the spontaneous breaking of
rotational symmetry, For example, it can be the ensemble of pure states with
random spin orientation ρ(tj) = |s(�nr)〉 ; yet currently no suitable randomization
mechanism was proposed which can result in such effect [5]..

The same results can be derived for the collective system e production in
N →∞ limit with total angular momentum J2 = 0. It means that all N par-
ticles ej are entangled and the collective state ρc(t) = |ψc〉〈ψc| where:

ψc =
M∑

i

ai

N∏

j

|s1
l(1,i)〉...|sj

l(j,i)〉...|sN
l(N,i)〉 (2)



S.N. Mayburov 193

here M = 4N !
2N , l(j, i) = 1, 2 - the discrete function with

∑N
j l(j, i) = 3

2N , ai are
the complex parameters with |ai| = 1

M . For N = 2 it gives EPR state ψc =
1√
2
(|s1

1〉|s2
2〉 − |s1

2〉|s2
1〉) The partial ei state for such system ηi(t) = Trρc = σb,

where the trace taken over all j 
= i. The spin correlation for any particles pair
in such state is: 〈�Sj

�Si〉 = − 1
4N and is negligible for N → ∞, consequently e

states can be regarded as factorized in this limit and therefore are equivalent to
the primordial state ξb. This example assumes that e primordial states can be
produced in lab. conditions within some approximation.

Considering the states of environment E [1], it’s plausible to assume that E
states are also primordial states. Really, in some models E elements AE

j are atoms
(of atmospheric air, for example) which in lab conditions can’t be prepared by O
one by one in some pure state. Supposedly AE interact with D independently of
each other and therefore change its individual state ζD. If AE atoms structure is
similar to e, and there is no external influence on E state, then assuming that the
rotational invariance holds also in lab. conditions, it follows that E statistical spin
state ΞE = Ξb. If the lab. conditions are time invariant, then AE individual spin
states ζE = ρE(t) are equivalent to Big Bang e spin states ζE = σb so they are
the primordial states ξE = ζE . They differ from E individual states used in some
decoherence models; in particular, in Zurek model it assumed that E states are
pure and has the random orientation in space: |E〉 = |s(�nr)〉 [6]. This difference
can lead to the important effects but we don’t discuss them here.

In general E states properties can depend on some classical lab. parameters
like the temperature τ , pressure P, etc.; such ensembles are studied by Quantum
Statistics (QS). According to its postulates the quantum ensemble of any objects
is described by the statistical operator R [3]. For E embedded in thermostat its
spin component is equal to:

RE(si, sj) =
∑

Λ

e−
F−Λ

kτ |ψΛ(si)〉〈ψ∗
Λ(sj)|

Here F, Λ is AE free and total energy, ψΛ are its eigenstates. If spin and energy
AE state components are factorized then RE = σb. In our approach the statistical
state ΞE supposedly coincides with RE , but in addition the individual E states
ρE can be defined; from the mentioned t invariance it follows that ρE(t) = RE

and AE states are primordial states with ξE = ρE(t). In this case also we don’t
see any dynamical mechanism which can make such individual states stochastic.
Moreover if E atoms can interact with each other, then their collisions result in
their states entanglement. Consequently, even if some AE

j initial state was pure
with the definite spin direction �ns it will become entangled with other AE states
and its partial state will approximate ηi(t).

The primordial states has the analogy with the so called algebraic states ϕ
arising in Algebraic QM formalism [3]. In this theory the set of states ϕ ∈ Ω
is the linear space dual to Observable Algebra U . The states ϕ, regarded as the
individual states, are also PFs, but aren’t necessarily extremal on U observables,
and due to it their physical meanings is still questionable and put some doubts on
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Algebraic QM consistency [2]. Now it seems that nonextremal ϕ can correspond
to the primordial states ξ, at least for the situations regarded here. Therefore
the introduction of primordial states supports Algebraic QM premises, and in
particular, evidences in favor of the feasibility of algebraic states.

For the conclusion we argued here that the primordial quantum states, which
differ from the pure and mixed states, can exists in the nature. Their appearance
is defined by the fact that they are produced without direct involvement of any
observer, in distinction from QM definition of the pure and mixed states prepara-
tion. It seems that the introduction of primordial states in Quantum Theory can
help to fill the existing gap between QM and QS axiomatics.
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SPACE AND TIME PHYSICS WITH THE LORENTZ ETHER: THE
CLOCK PARADOX
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Abstract

The description of natural phenomena by observers in motion is a problem
that many consider solved by the Lorentz transformations, but that actually
was left open. Consequences of my alternative “inertial” transformations are:
(i) an explanation of the empirical data better than provided by the Theory
of Special Relativity (TSR); (ii) the elimination of those features of the TSR
giving rise to paradoxes thanks to the recovery of a privileged inertial frame
in which the Lorentz ether is at rest. The example of the “clock paradox”
is discussed and a complete resolution is obtained by giving an exhaustive
unified description of all possible situations. Velocity (and nothing else) is
thus seen to be responsible for the differential retardation effect.

1 The equivalent transformations

According to Poincaré [1], Reichenbach [2], Jammer [3], Mansouri and Sexl [4]
the clock synchronization in inertial systems is conventional and the choice of the
invariance of the one way velocity of light made in the TSR is only based on
simplicity. Following the same line of thought, I introduced in the transformations
of the time variable a suitable parameter e1, describing synchronization [5]. The
TSR is obtained for a particular nonzero value of e1. In this way an infinite set of
theories empirically equivalent to the TSR was developed.

Given the inertial frames and one can set up Cartesian coordinates and make
the following standard assumptions:
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(i) Space is homogeneous and isotropic and time homogeneous, at least if judged
by observers at rest in S0;

(ii) In the isotropic system S0 the velocity of light is “c” in all directions, so that
clocks can be synchronized in S0 and one way velocities relative to S0 can
be measured;

(iii) The origin of S, observed from S0, is seen to move with velocity v < c parallel
to the +x0 axis, that is according to the equation x0 = v t0;

(iv) The axes of S and S0 coincide for t = t0 = 0;

The system S0 turns out to have a privileged status in all theories satisfying the
assumptions (i) and (ii), with the exception of the TSR. Two further assumptions
based on direct experimental evidence can be added:

(v) The two way velocity of light is the same in all directions and in all inertial
systems;

(vi) Clock retardation takes place with the usual velocity dependent factor when
clocks move with respect to S0. This assumption is the same as A2 of the
second section.

These conditions were shown [5] to lead to the following transformations of the
space and time variables from S to S0






x =
x0 − v t0

R
y = y0 ; z = z0

t = R t0 − e1(x0 − v t0)

(1)

where
R =

√
1− v2/c2 (2)

and e1 is the synchronization parameter. By using again (ii) and Eq.s (1) one
can find the one way velocity of light relative to the moving system S for light
propagating at an angle θ from the velocity �v of S relative to S0 [5]:

c1(θ) =
c

1 + Γ cos θ
(3)

with
Γ = e1R c +

v

c
(4)

The TSR is a particular case, obtained for

e1 = − v

c2R
(5)

giving Γ = 0 and c1(θ) = c and reducing (1) to their Lorentz form.
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These results are enough for the needs of the present paper. We should men-
tion, however, that we also found that the choice e1 = 0 is the only one allowing
for a treatment of accelerations rationally connected with the physics of inertial
systems S0. The theory was applied to the rotating platform and to the Sagnac
effect [6] with the result that only the choice e1 = 0 could give a satisfactory
explanation [7]. A consequence of this research was the discovery of a relativistic
discontinuity between inertial systems and slowly accelerated systems. The dis-
continuity disappears only if e1 = 0 [8]. Its existence in the TSR is the root of the
difficulties met by Langevin [9], Post [10], Landau-Lifschitz [11], Anandan [12] in
explaining the physics on a rotating platform.

There are several other good reasons to adopt e1 = 0:

(a) Einstein in his 1905 article assumed that aberration depends on the rela-
tive velocity star-Earth, but this relativistic description works poorly, given that
empirically the aberration angle is the same for all stars in the sky [13].

(b) The growing evidence for the existence of superluminal signals can easily
be accommodated in the theory with e1 = 0, while it is incompatible with rela-
tivity due to the presence of a causal paradox in which events belonging to the
future of an observer can actively modify the past of the same observer [14].

(c) Practically all paradoxes of the special theory of relativity disappear in a
theory based on the inertial transformations.

For these reasons a satisfactory theory of the physics of space and time has to be
based on absolute simultaneity (e1 = 0).

Assuming the inertial transformations, the S0 system is initially considered
to be privileged, and the velocity of light relative to it isotropic. Other inertial
systems are described as ”moving” and relative to them the observers detect an
anisotropic velocity of light. In ref. [15] I described a resynchronization of clocks
(ROC) and showed that it is uniquely determined by the new inertial frame S
chosen to replace S0 as “privileged” and by the requirement that absolute simul-
taneity should be preserved. Thus a weak form of relativity principle is restored.
One can add, however, that from the point of view of the inertial transformations
the validity of relativity appears accidental, more than fundamental. It would be
enough to discover a very small noninvariance of the two way speed of light to
make the whole game of ROC impossible.

2 The clock retardation formula

In 1905 Einstein [16] presented the clock retardation prediction as follows: Imagine
one of the clocks which mark the time t0 when at rest in the “stationary” inertial
system S0, and the time t when at rest in the “moving” inertial system S, to be
located at the origin of the coordinates of S, where it marks the time t. What
is the rate of this clock, if viewed from S0? The quantities x0, t0 , and t, which
refer to the position of the clock, satisfy x0 = v t0 and the Lorentz transformation
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of time

t =
1
R

(t0 − v w0/c2)

where R =
√

1− v2/c2. Therefore

t = t0 R = t0 − (1−R)t0

whence it follows that the time t marked by the clock is slow by 1−R seconds per
second with respect to the S0 time t0.

From this Einstein deduced another consequence, which became known as
“clock paradox”. If at the points A and B of S0 there are two synchronous sta-
tionary clocks; and if the clock at A is moved with the velocity v along the line
AB to B, then on its arrival at B the two clocks no longer show the same time,
but the clock moved from A to B lags behind the other which has remained at
B by (1− R)t0, t0 being the duration of the journey from A to B. Einstein con-
sidered evident that this result still holds good if the clock moves from A to B in
any polygonal line, and also when the points A and B coincide. Furthermore, he
assumed that the result obtained for a polygonal line holds also for a continuously
curved line.

That is all. Clearly Einstein went beyond what he could say by considering
only inertial systems, as he introduced also accelerated motions in the vertices of
the polygonal line and along the continuous curve. He did so in an intuitive way,
without solid foundations, and yet he was much closer to the correct result than
with the 1918 paper (as we shall see).

Today, the retardation of moving clocks and its independence of acceleration
are well established empirical facts. In a CERN experiment [17] muons with a
velocity of 0.9994 c, corresponding to R = 0.0346, were circling in a ring with
diameter of 14 m, with a centripetal acceleration 1018g. The lifetime τ0 of the
circling muons, measured in the laboratory, was in agreement with the formula
τ = τ0R, where τ is the lifetime measured in the muon rest system. No effect of
the huge acceleration on the lifetime was observed.

The experiment by Hafele and Keating [18] compared six synchronized caesium
atomic clocks. Two were carried by ordinary commercial jets in an eastbound tour
around the planet; another two were carried in a westbound tour; the last two
remained on the ground. It was observed that with respect to the time shown by
the latter clocks, those of the westbound trip had lost 59±10 ns, while those on
the eastbound trip had advanced 273±7 ns. These results were in agreement with
the usual formula t = t0R if one used three different R’s for the three pairs of
clocks. The largest (smallest) R was that of eastward (westward) clocks, for which
the Earth rotation velocity added to (subtracted from) the jet velocity. One had
to include the effect of the Earth gravitational potential, variable with altitude,
which modifies the rates of travelling clocks differently from those on the ground.

Similar conclusions have been obtained with the GPS (Global Positioning Sys-
tem) network of 24 satellites [19]. With an orbital radius of about four Earth radii
and an orbital speeds of about 3.9 km/sec, each satellite has on board four atomic
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clocks marking time with an error of a few ns/day. The gravitational effect implies
that the atomic clocks on board the satellites tick faster by about 45.900 ns/day
because they are in a larger gravitational potential than atomic clocks on the
Earth surface. The velocity effect makes atomic clocks moving at GPS orbital
speeds tick slower by about 7.200 ns/day. Therefore the global prediction is a gain
of about 38.700 ns/day. Rather than having clocks with such large rate differ-
ences, the satellite clocks were reset in rate before launch slowing them down by
38.700 ns/day. The rich data show that the on board atomic clock rates do indeed
agree with ground clock rates.

The experimental evidence, in full agreement with Einstein’s 1905 statements,
points to the validity of the following clock retardation formula. If a clock U ,
marking the time t0 when at rest in the isotropic inertial system S0, is set in
motion with arbitrarily oriented and possibly variable velocity u(t0) relative to
S0, the rate of the time marked by U at S0 time t0 is given by

dτ = dt0

√
1− u2(t0)/c2 (6)

This τ is exactly what an observer travelling with U reads on the clock itself.
Therefore dτ is the “proper time” variation of U .

The idea behind Eq. (6) is that only instantaneous velocity (and not accel-
eration) fixes the clock rate, in agreement with observations. In physics one can
recognize the cause of a phenomenon by varying it and verifying the existence of
corresponding variations of the effect. Viceversa, if arbitrary variations of a phys-
ical quantity Q do not modify the effect E, one can exclude that Q is among the
causes of E. Let us apply this criterion to Eq. (6). If u(t0) is varied a correspond-
ing variation of the proper time rate arises: therefore velocity can be claimed to
be a cause of the proper time rate variation. On the contrary, if the acceleration
is modified at time t0 while u(t0) remains the same dτ will not change. Therefore
the acceleration has no effect on dτ and cannot be counted among the causes of
its variation. This reasoning is important for determining the real physical roots
of the “clock paradox”.

3 Absolute motion resolution of the clock paradox

As stressed by S. Prokhovnik [20] the resolution of the clock paradox in terms of
absolute motion was found by G. Builder [21] who showed that the differential
retardation effect between two clocks which separate and reunite can be validly
considered in respect to a single inertial reference frame. Such an effect (read on
the clocks) appears obviously to be the same to observers in all states of motion,
and in this sense is absolute (“invariant”). Builder concluded that the emergence
of an absolute effect consequence of velocity implies the existence of a privileged
inertial frame, in the sense that motion relative to this frame assumes an absolute
significance and is quantitatively related to absolute effects.

Builder’s paper is mostly qualitative and in some points difficult to understand.
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My hopefully clearer reformulation of his argument is based on two assumptions:

A1. The velocity of light relative to an inertial system, S0, is “c” in all direc-
tions, so that clocks can be synchronized in S0 with the Einstein method and one
way velocities relative to S0 can be measured;

A2. A clock moving with speed u(t0) relative to S0 during the S0 time interval
dt0 marks a (proper) time increase dτ given by Eq. (6).

The TSR is well known to satisfy the above assumptions in all inertial systems.
The theory of the “equivalent transformations” [5] accepts S0 as the privileged
system relative to which A1 and A2 are satisfied as well. Therefore all the con-
sequences deduced below from A1 and A2 are valid both in the TSR and in the
theory of the equivalent transformations.

In this paper we consider only one spatial dimension. According to A2 the
proper time increase T marked by a clock moving from the point a at time t0a to
the point b at time t0b, both fixed in S0, (see Fig. 1) is

T =
∫ t0b

t0a

dt0

√
1− u2(t0)/c2 (7)

where
u(t0) =

dx0

dt0
(8)

and x0 = x0(t0) is the equation of motion of the clock on some “trajectory” in the
(x0, t0) plane connecting the points a, b of Fig. 1. We consider a second (“varied”)
trajectory, very near to the original one, as follows

x0(t0) → x0(t0) + δx0(t0) (9)

with
δx0(t0a) = δx0(t0b) = 0 (10)

According to Eq. (10) the clock on the varied trajectory occupies the points a
and b at the same times t0a and t0b as on the unvaried trajectory. This clearly
corresponds to the situation in which two clocks separate at point a at time t0a,
follow different trajectories and reunite again in point b at time t0b.

Also the velocity undergoes a variation

u(t0) → u(t0) + δu(t0) (11)

with u(t0) given by Eq. (8) and

δu(t0) ≡ d

dt0
δx0(t0) (12)

The proper time integral will correspondingly become

T + δT =
∫ t0b

t0a

dt0

√
1− [u(t0) + δu(t0)]

2
/c2 (13)
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Figure 1. A space and time diagram showing a “trajectory” between two points, and a second
varied trajectory between the same points.

From (12) and (13) it follows, for small variations

δT = − 1
c2

∫ t0b

t0a

dt0
u(t0)√

1− u(t0)2/c2

d

dt0
δx0(t0) (14)

Integrating by parts one gets

δT = − 1
c2






[
u(t0)δx0(t0)√
1− u(t0)2/c2

]t0b

t0a

−
∫ t0b

t0a

dt0
d

dt0

[
u(t0)√

1− u(t0)2/c2

]

δx0(t0)






(15)
Due to (10) the first term in the right hand side vanishes. The derivative in the
second term gives

δT =
1
c2

∫ t0b

t0a

dt0

[
u′(t0)√

1− u(t0)2/c2

]3/2

δx0(t0) (16)

where u′(t0) = du(t0)/dt0. Clearly, δT = 0 for arbitrary δx0(t0) satisfying (10) if
and only if u′(t0) = 0 at all times. This is like saying that the extremum proper
time T of all motions is the uniform one with the constant velocity

u1 =
x0b − x0a

t0b − t0a
(17)

for which the proper time integral (7) takes the value

T1 = (t0b − t0a)
√

1− u2
1/c2 (18)
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Figure 2. Space and time diagram showing a constant velocity connection between two points a
and b, and a second varied trajectory between the same points.

Among all motions connecting a and b this extremum is unique, as it can be ob-
tained for u′(t0) = 0 only. Therefore it gives either the maximum or the minimum
proper time of all possible motions from a to b, not only of those obtained with
an infinitesimal deformation of the straight line.
That the extremum is actually a maximum can be seen as follows. One has
√

1− (u1 + δu
)2

/c2 ∼=
√

1− u2
1/c2 − 1

c2

u1δu√
1− u2

1/c2
− 1

2c2

(δu)2
(
1− u2

1/c2
)3/2

(19)

But u1 is constant and δu satisfies (12) so that, after integration, the first order
variation of T1 arising from (19) vanishes due to (10). The second order variation is

δ2T = − 1
2c2

∫ t0b

t0a

dt0

[
δu(t0)

]2

[
1− u2

1/c2
]3/2

(20)

Clearly, δ2T < 0 for all possible velocity variations. Therefore, moving away from
the constant velocity line of Fig. 2 to a different line connecting a and b implies
in all cases a decrease of the elapsed proper time. Then the found extremum is
a maximum. Comparing the motion with velocity u1 with any different motion
from a to b with velocity u2(t0) one has

∆T = T1 − T2 =
∫ t0b

t0a

dt0

[√
1− u2

1/c2 −
√

1− u2(t0)2/c2

]
> 0 (21)

As a difference of proper times, ∆T is exactly what two observers who traveled
with the clocks find by direct comparison of the clocks readings.

The clock moving with rectilinear uniform motion can be considered at rest
in a different inertial system. Therefore the previous argument can be taken to
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describe all possible “clock paradox” situations from the point of view of the
particular inertial system S0 we have considered. The description is the same in
the TSR and in all other theories satisfying the assumptions A1 and A2 above. But
the principle of relativity, the metrics of Minkowski space and/or the gravitational
potential of the fictitious forces have nothing to do with the essence of the matter.
Only velocities are able to influence the working of a clock. In a forthcoming paper
we will show that the previous argument can be extended to three dimensional
space [22].

4 Most general clock retardation formula

We now generalize the obtained results by substituting assumption A2 with the
following one: If during the S0 time interval dt0 a clock is moving with velocity
u(t0) relative to S0, it marks a (proper) time change dτ given by

dτ = dt0F
[
u(t0)

]
(22)

where F is an arbitrary function of its argument. Thus the proper time T spent
by a clock moving between any two points a, b fixed in S0 is given by

T =
∫ t0b

t0a

dt0F
[
u(t0)

]
(23)

where
u(t0) =

dx0

dt0
(24)

and x0 = x0(t0) is the equation of motion of the clock on some “trajectory”
connecting the points a, b of Fig. 1 in the (x0, t0) plane. We consider a variation
of this trajectory as in eq. (9), with the conditions (10) satisfied. Thus the proper
time integral becomes

T + δT =
∫ t0b

t0a

dt0 F
[
u(t0) + δu(t0)

]
(25)

From (12) and (25) it follows, for small variations

δT =
∫ t0b

t0a

dt0 F ′[u(t0)
] d

dt0
δx0(t0) (26)

where F ′ indicates the u derivative of F . An integration by parts now gives

δT =
{

F ′[u(t0)
]
δx0(t0)

}t0b

t0a

−
∫ t0b

t0a

dt0
d

dt0

{
F ′[u(t0)

]}
δx0(t0) (27)

Due to (10) the first term in the right hand side vanishes and from the second
term one gets

δT = −
∫ t0b

t0a

dt0 F ′′[u(t0)
]
u′(t0) δx0(t0) (28)
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Clearly, δT = 0 for arbitrary δx0(t0) if, at all times t0

F ′′[u(t0)
]
u′(t0) = 0 (29)

Thus we see that at least one of the possible solutions is u′(t0) = 0 at all times,
the uniform motion. Whether it corresponds to a maximum or to a minimum has
to be seen case by case. Many functions F give rise to a maximum of the proper
time integral for u′(t0) = 0, e.g.

F
[
u(t0)

]
= exp

{
−1

2
u2

c2

}
(30)

Therefore there is nothing typical of a relativistic theory in the maximum of the
proper time integral provided by the rectilinear uniform motion.

5 Clock retardation in general relativity

The 1905 formulation of the clock paradox had implications that probably Einstein
did not like. The delay is an absolute effect, as all observers agree that the clock
moving with variable velocity marks a smaller time. They disagree, however, on
the numerical value of this variable velocity. In relativity all potential observers
(forming an infinite set) are completely equivalent, so that, in a sense, one can say
that the clock velocity assumes at any time all conceivable values. But a quantity
having infinitely many values is totally undefined. In this way the presumed cause
of the differential retardation effect seems to vanish into nothingness. But the
cause of a real physical effect should be concrete as well, in spite of the evasive
description given by the theory. Therefore velocity itself should be well defined,
that is, relative to a physically active reference background (ether) defining at the
same time the privileged reference frame.

It is no surprise, then, that the original formulation was completed with a later
one based on the theory of general relativity (TGR) [23], whose essential points
we will now review. Let S be an inertial reference system. Further, let U1 and U2

be two exactly similar clocks working at the same rate when at rest in S. If one of
the clocks - let us say U2 - is in a state of uniform translatory motion relative to S,
then, according to the TSR it works more slowly than U1, which is at rest in S.
At this point Einstein adds a remark: “This result seems odd in itself. It gives rise
to serious doubts when one imagines the following thought experiment.” In the
thought experiment A is the origin of S, and B a different point of the positive
x-axis. The two clocks, initially at rest at A, work at the same rate and their
readings are the same. Next, a constant velocity in the direction +x is imparted
to U2, so that it moves towards B. At B the velocity is reversed, so that U2 returns
towards A. When it arrives at A its motion is stopped, so that it is again at rest
near U1. Since U2 works more slowly than U1 during its motion along the line AB,
U2 must be behind U1 on its return.

Now comes the problem, says Einstein. According to the principle of relativity
the whole process must surely take place in exactly the same way if it is considered
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in a reference frame S′ sharing the movement of U2. Relatively to S′ it is U1 that
executes the to-and-fro movement while U2 remains at rest throughout. From this
it would seem to follow that, at the end of the process, U1 must be behind U2,
which contradicts the former result.

But, Einstein adds, the TSR is inapplicable to the second case, as it deals only
with inertial frames, while S is at times accelerated. Only the TGR deals with
accelerated frames. From the point of view of the TGR, one can use the coordinate
system S′ just as well as S. But in describing the whole process, S and S′ are not
equivalent as the following comparison shows.

Description relative to the S Reference System

1. The clock U2 is accelerated by an external force in the direction +x until it
reaches the velocity v. U1 is at rest, now as in all the subsequent steps;

2. U2 moves with constant velocity v to the point B on the +x-axis;

3. U2 is accelerated by an external force in the direction −x until it reaches
the velocity v in the direction −x;

4. U2 moves with constant velocity v in the direction −x back to the neigh-
bourhood of U1;

5. U2 is brought to rest by an external force very near to U1.

Description relative to the S′ Reference System

1. A gravitational field, oriented along −x, appears, in which the clock U1 falls
with an accelerated motion until it reaches the velocity v. When U1 has
reached the velocity v the gravitational field vanishes. An external force
applied to U2 prevents U2 from falling in the gravitational field;

2. U1 moves with constant velocity v to a point B′ on the x-axis. U2 remains
at rest;

3. A homogeneous gravitational field in the direction +x appears which accel-
erates U1 in the direction +x until it reaches the velocity v, whereupon the
gravitational field vanishes. U2 is kept at rest by an external force;

4. U1 moves with constant velocity v in the direction +x into the neighbour-
hood of U2. U2 remains at rest;

5. A gravitational field in the direction −x appears, which brings U1 to rest.
The gravitational field then vanishes. U2 is kept at rest by an external force.

The second description is based on the principle of equivalence between fictitious
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and gravitational forces. According to both descriptions, at the end of the process
the clock U2 is retarded by a definite amount compared with U1. With reference to
S′ this is explained by noticing that during the stages 2 and 4, the clock U1, moving
with velocity v, works more slowly than U2, which is at rest. But this retardation is
overcome by the quicker working of U1 during stage 3. For, according to the GTR,
a clock works faster the higher is the gravitational potential in the point where it
is placed, and during stage 3 U1 is indeed placed in a region of higher gravitational
potential than U2. A calculation made with instantaneous acceleration shows that
the consequent advancement amounts to exactly twice as much as the retardation
during stages 2 and 4 [24]. After this conclusion Einstein states: “This completely
clears up the paradox.”

The prediction of the TGR that a clock works faster the larger is the gravi-
tational potential φ in the region in which it is placed is fully confirmed by the
experiments in the gravitational field of the Earth. At first sight the 1918 rea-
soning could seem to be a consequence of the empirical facts. The mathematical
treatment of the clock paradox situation given by the TGR leads to the right result
by describing the retardation of U2 as a consequence of the action of φ on U1 [24].
Yet the theory shows its weakness in several ways.

It is unreasonable that something happens to U1, as the effect should be
objective and during the (short) times of acceleration some change in U1 should
be seen also by some independent observers.

For the sake of clarity let us compare two different experiments, E1 and E2
below, both starting in the same way, as follows. Let A be a point of the inertial
system S. Let U1 be the clock constantly at rest in A and U2 the mobile clock,
initially at rest in A. At time t = 0 we give U2 a constant acceleration in the
direction +x until it reaches the constant velocity v as in Einstein’s thought ex-
periment. After this U2 moves with velocity v until, at time t = t1, two alternative
developments can start.

E1. In the time interval (t1, t2), with t2 > t1 > 0, U2 experiences a constant
acceleration, exactly reversing its velocity. The 1918 formulation introduces a
gravitational potential φ in the rest system of U2, during (t1, t2). The role of φ
is very important as it must give rise to a variation in the time marked by U1

opposite and twice as large as that arising in the long stretches of uniform motion
during which U1 is delayed with respect to U2.

E2. In the time interval (t1, t2) U2 continues its rectilinear and uniform motion
in the direction +x. The two clocks do not reunite anymore. No gravitational
potential can arise, as there is no acceleration. Therefore in this second case there
is no retardation of U1 with respect to U2.

In comparing E1 and E2, we note that the observers at rest with respect to U1

see in both cases the same identical situation, namely no modification of the rate
of time keeping of U1. This can also be checked from a distance by observers in
arbitrary states of motion, e.g. by monitoring U1 on a TV screen. The fundamental
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fact is always the same: nothing ever happens to U1, in particular nothing happens
in the time interval (t1, t2), when U2 accelerates. Therefore φ cannot be the cause
of any change of U1, as in passing from E1 to E2 the presumed cause varies from
a position dependent φ to φ = const. without any variation of the effect.

The criticism becomes even stronger if one considers not just one but several
clocks

U1 , U ′
1 , U ′′

1 , . . .

at rest in different points of the line AB of the inertial reference frame S. When
U2 accelerates these clocks should be influenced differently, as φ depends on dis-
tance from U2. But in reality nothing happens: observers can check in particular
that the delays with which a light signal originated near U1 touches U ′

1 , U ′′
1 , . . .

are the same before and after the time interval during which U2 was accelerated.
We can conclude that the gravitational potential of the fictitious forces exerts

no action on the clocks, contrary to Einstein’s 1918 opinion. The gravitational
fields in the accelerated systems are not ordinary static fields, but arise from the
accelerations of bodies [25]. Einstein assumed that these fields had on clocks the
same action as ordinary fields, but we can now conclude that on this particular
point he was not right, in spite of the very probable correctness of the general idea
of equivalence between fictitious and gravitational forces. One finds an analogy
in the magnetic field, which can be considered a dynamical manifestation of the
electric field, but has quite different interaction properties.

We can claim, finally, that concerning the nature of the differential retardation
of separating and reuniting clocks Einstein was much nearer to the truth in 1905
than in 1918.
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Abstract

In this talk I first present the vacuum for the e+-e− field of QED and show
how it is modfied for baryons in nuclear environment. Then I discuss the
possibility of producing new types of nuclear systems by implanting an an-
tibaryon into ordinary nuclei. The structure of nuclei containing one an-
tiproton or antilambda is investigated within the framework of a relativistic
mean-field model. Self-consistent calculations predict an enhanced binding
and considerable compression in such systems as compared with normal nu-
clei. I present arguments that the life time of such nuclei with respect to the
antibaryon annihilation might be long enough for their observation.

It is generally accepted that physical vacuum has nontrivial structure. This conclu-
sion was first made by Dirac on the basis of his famous equation for a fermion field
which describes simultaneously particles and antiparticles. The Dirac equation in
the vacuum has a simple form

(iγµ∂µ −m)Ψ(x) = 0 , (1)

where γµ = (γ0, γ) are Dirac matrices, m is the fermion mass and Ψ(x) is a 4-
component spinor field. For a plane wave solution Ψ(x) = e−ipxup this equation
is written as

(p̂−m)up = 0 , (2)
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Figure 1. Lowest bound states of the Dirac equation for nuclei with charge Z. While the
Sommerfeld fine-structure energies (dashed line) for ξ = 1 (s states) end at Z = 137, the
solutions for extended Coulomb potentials (full line) can be traced down to the negative-energy
continuum reached at the critical charge Zcr for the 1s state. The bound states entering the
continuum obtain a spreading witdth as indicated.

where p̂ = γ0E − γp. Multiplying by (p̂ + m) and requiring that up 
= 0 one
obtains the equation E2 − p2 −m2 = 0 which has two solutions

E±(p) = ±
√

p2 + m2 . (3)

Here the + sign corresponds to particles with positive energy EN (p) = E+(p),
while the − sign corresponds to solutions with negative energy. To ensure stabil-
ity of the physical vacuum Dirac has assumed that these negative-energy states
are occupied forming what is called now the Dirac sea. Then the second solu-
tion of eq. (3) receives natural interpretation: it describes holes in the Dirac sea.
These holes are identifed with antiparticles. Their energies are obviously given by
EN (p) = −E−(p) =

√
p2 + m2. Unfortunately, the Dirac sea brings divergent

contributions to physical quantities such as energy density, and one should intro-
duce a proper regularization scheme to rid off these divergences. This picture has
received numerous cofirmations in quantum electrodynamics and other fields.

One of the most fascinating aspects is the structure of the vacuum in QED and
its change into charged vacuum states under the influence of strong (supercritical)
electric fields [1]. I shortly remind of this phenomenon.
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Figure 2. Time dependence of the quasi-molecular energy levels in a supercritical heavy ion
collision. The arrows denote various excitation processes which lead to the production of holes
and positrons.

Fig. 1 shows the diving of the deeply bound states into the lower energy contin-
uum of the Dirac equation. In the supercritical case the dived state is degenerate
with the (occupied) negative electron states. Hence spontaneous e+e− paircreation
becomes possible, where an electron from the Dirac sea occupies the additional
state, leaving a hole in the sea which escapes as a positron while the electron’s
charge remains near the source. This is a fundamentally new process, whereby
the neutral vacuum of QED becomes unstable in supercritical electrical fields. It
decays within about 10−19s into a charged vacuum. The charged vacuum is now
stable due to the Pauli principle, that is the number of emitted particles remains
finite. The vacuum is first charged twice because two electrons with opposite
spins can occupy the 1s shell. After the 2p1/2 shell has dived beyond Zcr = 185,
the vacuum is charged four times, etc. This change of the vacuum structure is
not a perturbative effect, as are the radiative QED effects (vacuum polarization,
self-energy, etc.).

The time-dependence of the energy levels in a supercritical heavy-ion collision
is depicted in Fig. 2. An electron (or hole) which was in a certain molecular eigen-
state at the beginning of the collision can be transfered with a certain probability
into different states by the dynamics of the collision. This can lead to the hole
production in an inner shell by excitation of an electron to a higher state and/or
hole production by ionization of an electron to the continuum. Further possibil-
ities are induced positron production by excitation of an electron from the lower
continuum to an empty bound level and direct pair production [2].
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Figure 3. Positron energy spectra measured in collisions of Th+Ta, Th+Th, and U+Cm at
energies of about 6 MeV per nucleon. The QED predictions (dashed lines) and the experimentally
determined background from nuclear pair conversion (dotted lines) add up to the full lines which
are in close agreement with experiment.

A comparison of the theoretical predictions and expectations and experimental
data is shown in figure 3. Sharp positron peeks can be expected if there were
a mechanism in the heavy ion collision leading to a time delay. This may be
caused by a pocket in the potential between the two ions. Spontaneous pair
production should then be enhanced in supercritical systems. Until now, however,
the situation remains inconclusive [2].

It has been noticed already many years ago (see e. g. ref. [3]) that nuclear
physics may provide a unique laboratory for investigating the Dirac picture of
vacuum. The basis for this is given by relativistic mean-field models which are
widely used now for describing nuclear matter and finite nuclei. Within this ap-
proach nucleons are described by the Dirac equation coupled to scalar and vector
meson fields. Scalar S and vector V potentials generated by these fields modify
plane-wave solutions of the Dirac equation as follows

E±(p) = V ±
√

p2 + (m− S)2 (4)

Again, the + sign corresponds to nucleons with positive energy EN (p) = V +√
p2 + (m− S)2, and the− sign corresponds to antinucleons with energy EN (p) =

−E−(−p) = −V +
√

p2 + (m− S)2. It is remarkable that changing sign of the
vector potential for antinucleons is exactly what is expected from the G-parity
transformation of the nucleon potential. As follows from eq. (4), in nuclear envi-
ronment the spectrum of single-particle states of the Dirac equation is modified
in two ways. First, the mass gap between positive- and negative-energy states,
2(m− S), is reduced due to the scalar potential and second, all states are shifted
upwards due to the vector potential. These changes are illustrated in Fig. 4.
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Figure 4. Schematic spectrum of Dirac equation in vacuum (upper panel) and in a nucleus of
radius R (lower panel). A divergent contribution of negative-energy states is often regularized
by introducing a cut-off momentum Λ.

ground state is achieved with S 
 350 MeV and V 
 300 MeV so that the net
potential for nucleons is V − S 
 −50 MeV. Using the same values one obtains
for antinucleons very a deep potential, −V − S 
 −650 MeV. Such a potential
would produce many strongly bound states in the Dirac sea. However, if these
states are occupied they are hidden from the direct observation. Only creating a
hole in this sea, i.e. inserting a real antibaryon into the nucleus, would produce
an observable effect. If this picture is correct one should expect the existence of
strongly bound states of antinucleons with nuclei. Below I report on our recent
study of antibaryon doped nuclear systems [4].

It is well known from nuclear phenomenology that good description of nuclear
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Unlike some previous works, we take into account the rearrangement of nuclear
structure due to the presence of a real antibaryon. The structure of such systems
is calculated using several versions of the relativistic mean field model (RMF):
TM1 [5], NL3 and NL-Z2 [6]. Their parameters were found by fitting binding
energies and charge form-factors of spherical nuclei from 16O to 208Pb. The general
Lagrangian of the RMF model is written as

L =
∑

j=B,B

ψj(iγ
µ∂µ −mj)ψj

+
1
2
∂µσ∂µσ − 1

2
m2

σσ2 − b

3
σ3 − c

4
σ4

− 1
4
ωµνωµν +

1
2
m2

ωωµωµ +
d

4
(ωµωµ)2

− 1
4
�ρµν�ρµν +

1
2
m2

ρ�ρµ�ρµ

+
∑

j=B,B

ψj(gσjσ + gωjω
µγµ + gρj�ρ

µγµ�τj)ψj

+ Coulomb part

(5)

Here summation includes valence baryons B, in fact the nucleons forming a nu-
cleus, and valence antibaryons B inserted in the nucleus. They are treated as
Dirac particles coupled to the scalar-isoscalar (σ), vector-isoscalar (ω) and vector-
isovector (�ρ) meson fields. The calculations are carried out within the mean-field
approximation where the meson fields are replaced by their expectation values.
Also a “no-sea” approximation is used. This implies that all occupied states of the
Dirac sea are “integrated out” so that they do not appear explicitly. It is assumed
that their effect is taken into account by nonlinear terms in the meson Lagrangian.
Most calculations are done with antibaryon coupling constants which are given by
the G-parity transformation (gσN = gσN , gωN = −gωN ) and SU(3) flavor sym-
metry gσΛ = 2

3gσN , gωΛ = 2
3gωN ). In isosymmetric static systems the scalar and

vector potentials for nucleons are expressed as S = gσNσ and V = gωNω0.
Following the procedure suggested in Ref. [7] and assuming the axial symmetry

of the nuclear system, we solve effective Schrödinger equations for nucleons and
an antibaryon together with differential equations for mean meson and Coulomb
fields. We explicitly take into account the antibaryon contributions to the scalar
and vector densities. It is important that antibaryons give a negative contribution
to the vector density, while a positive contribution to the scalar density. This
leads to increased attraction and decreased repulsion for surrounding nucleons.
To maximize attraction, nucleons move to the center of the nucleus, where the
antiproton has its largest occupation probability. This gives rise to a strong local
compression of the nucleus and leads to a dramatic rearrangement of its structure.

Results for the 16O nucleus are presented in Fig. 5 which shows 3d plots of
nucleon density distributions. The calculations show that inserting an antiproton
into the 16O nucleus leads to the increase of central nucleon density by a factor
2–4 depending on the parametrization. Due to a very deep antiproton potential
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Figure 5. Sum of neutron and proton densities for 16O (top), 16O with p (bottom right) and
16O with Λ (bottom left) calculated with the parametrization NL-Z2.

the binding energy of the whole system is increased significantly as compared with
130 MeV for normal 16O. The calculated binding energies of the p–16O system are
830, 1050 and 1160 MeV for the NL-Z2, NL3 and TM1, respectively. Due to this
anomalous binding we call such systems super bound nuclei (SBN). In the case of
antilambdas we rescale the coupling constants with a factor 2/3 that leads to the
binding energy of 560÷700 MeV for the Λ–16 system.
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Figure 6. Contour plot of nucleon densities for 8Be without (left) and with (right) antiproton
calculated with the parametrization NL3.

into the 8Be nucleus. The normal 8Be nucleus is not spherical, exhibiting a clearly
visible 2α structure with the ground state deformation β2 
 1.20. As seen in Fig. 6,
inserting an antiproton in 8Be results in a much less elongated shape (β2 
 0.23)
and disappearance of its cluster structure. The binding energy increases from
53 MeV to about 700 MeV. Similar, but weaker effects have been predicted [8] for
the K− bound state in the 8Be nucleus.

The calculations have been performed also with reduced antinucleon coupling
constants as compared to the G-parity prescription. We have found that the
main conclusions about enhanced binding and considerable compression of p-doped
nuclei remain valid even when coupling constants are reduced by factor 3 or so.

The crucial question concerning possible observation of the SBNs is their life
time. The main decay channel for such states is the annihilation of antibaryons on
surrounding nucleons. The energy available for annihilation of a bound antinucleon
equals Q = 2mN − BN − BN , where BN and BN are the corresponding binding
energies. In our case this energy is at least by a factor 2 smaller as compared
with the vacuum value of 2mN . This should lead to a significant suppression
of the available phase space and thus to a reduced annihilation rate in medium.
We have performed detailed calculations assuming that the annihilation rates into
different channels are proportional to the available phase space. All intermediate
states with heavy mesons like ρ, ω, η as well as multi-pion channels have been

As a second example, we investigate the effect of a single antiproton inserted
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considered. Our conclusion is that decreasing the Q value from 2 GeV to 1 GeV
may lead to the reduction of total annihilation rate by factor 20÷30. Then we
estimate the SBN life times on the level of 5-25 fm/c which makes their observation
feasible. This large margin in the life times is mainly caused by uncertainties in
the overlap integral between antinucleon and nucleon scalar densities. Longer life
times may be expected for SBNs containing antihyperons. The reason is that
instead of pions more heavy kaons must be produced in this case. We have also
analyzed multi-nucleon annihilation channels (Pontecorvo-like reactions) and have
found their contribution to be less than 40% of the single-nucleon annihilation.

We believe that such exotic nuclear states can be produced by using antipro-
ton beams of multi-GeV energy, e.g. at the future GSI facility. It is well known
that low-energy antiprotons annihilate on the nuclear periphery (at about 5% of
the normal density). Since the annihilation cross section drops significantly with
energy, a high-energy antiproton can penetrate deeper into the nuclear interior.
Then it can be stopped there in an inelastic collision with a nucleon, e.g. via the re-
action A(p,Nπ)pA

′, leading to the formation of a p-doped nucleus. Reactions like
A(p,Λ)ΛA′ can be used to produce a Λ-doped nucleus. Fast nucleons or lambdas
can be used for triggering such events. In order to be captured by a target nucleus
final antibaryons must be slow in the lab frame. Rough estimates of the SBN
formation probability in a central pA collision give the values 10−5 − 10−6. With
the p beam luminocity of 2 · 1032 cm−2s−1 planned at GSI this will correspond to
the reaction rate of a few tens of desired events per second.

Several signatures of SBNs can be used for their experimental observation.
First, annihilation of a bound antibaryon can proceed via emission of a single
photon, pion or kaon with an energy of about 1 GeV (such annihilation channels
are forbidden in vacuum). So one may search for relatively sharp lines, with
width of 10÷40 MeV, around this energy, emitted isotropically in the SBN rest
frame. Another signal may come from explosive disintegration of the compressed
nucleus after the antibaryon annihilation. This can be observed by measuring
radial collective velocities of nuclear fragments.

It is interesting to look at the antibaryon-nucleus system from somewhat differ-
ent point of view. An antibaryon implanted into a nucleus acts as an attractor for
surrounding nucleons. Due to the uncompensated attractive force these nucleons
acquire acceleration towards the center. As the result of this inward collective
motion the nucleons pile up producing local compression. If this process would
be completely elastic it would generate monopole-like oscillations around the com-
pressed SBN state. The maximum compression is reached when the attractive
potential energy becomes equal to the compression energy. Simple estimates show
that local baryon densities up to 5 times the normal nuclear density may be ob-
tained in this way. It is most likely that the deconfinment transition will occur at
this stage and a high-density cloud containing an antibaryon and a few nucleons
will appear in the form of a multi-quark-antiquark cluster. One may speculate
that the whole 4He or even 16O nucleus can be transformed into the quark phase
by this mechanism. As shown in ref. [9], an admixture of antiquarks to cold quark
matter is energetically favorable. The problem of annihilation is now transferred
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to the quark level. But the argument concerning the reduction of available phase
space due to the entrance-channel nuclear effects should work in this case too.
Thus one may hope to produce relatively cold droplets of the quark phase by the
inertial compression of nuclear matter initiated by an antibaryon.

I am grateful to T. Bürvenich, I.N. Mishustin and L.M. Satarov for fruitful
discussions and help in the preparation of this talk.
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(2002) 261.

[5] Y. Sugahara and H. Toki, Nucl. Phys. A579 (1994) 557.

[6] M. Bender, K. Rutz, P.–G. Reinhard, J.A. Maruhn, and W. Greiner, Phys. Rev. C60
(1999) 34304.
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Abstract

A major effort is undergoing at DESY, at CERN, and at BNL to investigate
the spin structure of the nucleon. Following the original EMC discovery in
1988 that the quarks contribute only a small amount to the nucleon spin, a
direct determination of ∆G, the gluon polarization in a polarized nucleon,
has become the primary goal of many presently running experiments. After
reviewing our present knowledge of the spin of the nucleon, I briefly describe
COMPASS, a new fixed target experiment at CERN, and present some pre-
liminary physics results.

1 The nucleon spin puzzle

The original EMC discovery [1] that the singlet axial vector current matrix element
∆Σ is smaller than the value predicted by the Ellis-Jaffe sum rule is by now firmly
established.

In the simple quark model the spin of the proton is carried by its three valence
quarks, so that ∆Σ = ∆u + ∆d = 4

3 − 1
3 = 1. In the usual notation, the quantities

∆q =
∫ 1

0

{(
q(x)↓↑ + q̄(x)↓↑

)− (q(x)↑↑ + q̄(x)↑↑
)}

dx =
∫ 1

0

∆q(x) dx

are the differences of the integrated quark densities of a given flavour q, for quark
spin anti-parallel or parallel to the proton direction. In general terms one writes
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the spin equation for the proton (or neutron) as

1
2

=
1
2
∆Σ + ∆G + < Lz >

where ∆Σ = ∆u + ∆d + ∆s is the contribution of the quarks spins, ∆G is the
contribution of the gluons, and < Lz > is a possible contribution from the gluons
and quarks angular momentum.

Since fifteen years, i.e. since the EMC discovery, we know that this picture
does not correspond to reality, and that the contribution of the quarks to the spin
of the nucleons is much smaller.

Polarized lepton - polarized nucleon deep inelastic scattering (DIS) provided a
way to access the polarized quark densities ∆q. It can be shown [2] that the cross-
section difference ∆σ for parallel and antiparallel spins depends on two structure
functions, g1 and g2, ∆σ = a·g1(x,Q2)+b·g2(x,Q2), very much like the unpolarized
cross-section depends on two structure functions, F1(x,Q2) and F2(x,Q2). The
coefficients a and b are kinematical factors, and can be calculated in QED. In the
case of longitudinally polarized beam and target the quantity b is small, and a
measurement of ∆σ allows g1(x,Q2) to be measured. Conversely, if the target
spin is perpendicular to the beam direction, a is smaller than b and g2(x,Q2) can
be measured.

In the quark and parton model the structure function g1 and F1 are simply
related to the quark densities ∆q(x,Q2) :

g1(x,Q2) = 1
2

∑
e2
q ·∆q(x, Q2); F1(x,Q2) = 1

2

∑
e2
q ·
{
q(x, Q2) + q̄(x,Q2)

}
.

The summations extend over the quark flavours. By measuring ∆σ over a large x
and Q2 domain one can derive the first moment of g1, i.e.

Γp(n)
1 (Q2) =

∫ 1

0
g

p(n)
1 (x,Q2)dx .

To leading order in QCD we can neglect scaling violation, identify ∆q(x,Q2) with
∆q(x), and write the moment Γp(n)

1 as a linear combination of ∆q :

Γp(n)
1 (Q2) = +(−) 1

12a3 + 1
36a8 + 1

9a0.

In this expression the ai are the diagonal combinations in the SU(3) nonet of the
axial matrix elements, and are related to the quantities ∆q by the relations:

a3 = ∆u−∆d = gA, a8 = ∆u + ∆d− 2∆s, a0 = ∆u + ∆d + ∆s = ∆Σ.

From the identity ∆q · 2MSµ =< P,S|Ψ̄qγ
µγ5Ψq|P, S >, where Sµ is the spin

of the proton, one can see that the quantities ∆q are also related to the weak
decay of the baryons. Using the values of a3 and a8 derived from the neutron and
hyperon decay, and the measured value of Γ1 coming from polarized DIS one can
derive ∆Σ. When this was done by the EMC Collaboration [1] the measured value
of Γp

1 implied that ∆Σ = 0.12 ± 0.09 ± 0.14, i.e. only a small part (compatible
with zero!!) of the spin of the proton is carried by the quarks.
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In order to understand the picture which emerged from the EMC experiment, a
number of new experiments were executed (SMC at CERN [3], E142, E143, E154
and E155 at SLAC [4], and HERMES at DESY [5], the only one which is still
running), and a much larger number of theoretical papers were dedicated to the
subject.

On the experimental side, the finding of EMC for the proton was confirmed,
and a similar result was obtained for the neutron. Today the compilation of all
the available measurements for g1 for the proton, the deuteron and the neutron is
impressive [6].

On the theoretical side, much progress was done to go beyond the quark-parton
model and analyze the polarized DIS data within the framework of QCD. Perturba-
tive QCD analysis in next-to-leading order have been performed by several groups
to determine the polarized parton distribution functions ∆q and ∆G using all the
available data sets.

By now it is understood that
i) the singlet axial charge a0 receives a contribution from ∆G due to the Adler

- Bell - Jackiw anomaly, thus the ∆Σ and ∆G contributions to a0 cannot be
separately determined;

ii) the results depend on the renormalisation scheme which is used;
iii) although in principle ∆G could be determined from the Q2 evolution of

g1 (given the large span of energies of the incident lepton in the various
experiments, a broad range of Q2 is covered by the data in most bins of
x-Bjorken), it turns out that the present inclusive DIS data do not put a
strong constraint on the polarized gluon distribution.

The results of various fits suggest a large positive value (1 - 2) for ∆G (see
f.i. [7]), but the uncertainties in these determinations are ∼ 100%.

A direct measurement of ∆G seems essential to progress in this field.

2 The spin puzzle, present activities

To understand the nucleon spin today three lines of attack are being pursued:
i) a direct measurement of ∆G. This is the main goal of both the COMPASS [8]

experiment at CERN and of the RHIC spin program [9] at BNL, which all
have recently started data taking.

ii) to measure transversity. These parton distributions represent a new territory
and there is a broad interest in their properties. COMPASS and RHIC
have definite plans to measure them, and at lower energy transversity is
an important part of the physics objectives of the HERMES experiment at
DESY and of the experiments at JLab.

iii) on a longer term there are ideas to derive < Lz > from measurements of
Generalized Parton Distributions (GPDs) via the Ji sum rule [10]. First
measurements of exclusive reactions (in particular deeply virtual Compton
scattering) have been done by HERMES and at JLab, but the full program
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is terribly ambitious and anyway necessitates of a new high energy and high
intensity CW electron machine.

Particularly interesting is the physics case for transversity. Large transverse
spin effects at high energy have been discovered since many years, but their expla-
nation in terms of QCD has always been lacking. Well known examples are the Λ
polarization in NN scattering, the impressive Cnn values in elastic pp scattering
at 90o c.m. measured at BNL, and the asymmetry of pion production in polarized
proton-proton scattering measured at FNAL. Undoubtedly the awareness of these
phenomena played a major role in launching the polarized proton collider project
at BNL and has been an important stimulus in developing a theory of transversity.

Although the basic ideas are almost 30 years old, the rigorous treatment of
transversity is relatively recent, and has gained a high momentum only the past
few years. As originally shown by Jaffe and Ji [11], to completely specify the
quark state at the twist-two level, to the momentum distribution q(x) and to
the helicity distribution ∆q(x) one has to add the transverse spin distributions
∆T q(x). Its measurement gives access to new information related to relativistic
effects for bound quark states, the study of new evolution in QCD, the knowledge
of the tensor charge of the nucleon, and predictions for other processes involving
transversity.

The transversity distributions ∆T q(x) have never been measured, since they
are chirally-odd functions and do not contribute to inclusive deep inelastic scatter-
ing. They may instead be extracted from measurements of the spin asymmetries
in cross-sections for semi-inclusive deep inelastic scattering between leptons and
transversely polarized nucleons, in which a hadron is also detected in the final
state. In such processes the measurable asymmetry is due to the combined effect
of ∆T q(x) and another chirally-odd function, which contributes to the fragmenta-
tion of the transversely polarized quark. In the case in which the observed final
hadron is a pion or, in general, a scalar particle, this new fragmentation function
is the so-called Collins function ∆T Dh

q that describe the hadronization of a trans-
versely polarized quark q in a hadron h [12], as yet unmeasured, which in its own
right merits serious study. In the case in which the observed final particle is for ex-
ample a Λ◦, the chirally-odd function is a transverse fragmentation function, also
unknown and interesting. Other channels for accessing ∆T q require the detection
of a vector particle or two pions in the final state. An important side-product of
the study of transversity is, therefore, the determination of a certain number of
fragmentation functions.

3 Spin physics with COMPASS

Inclusive DIS does not allow to solve the spin puzzle, and to progress a direct de-
termination of ∆G is necessary. A new experimental approach is required, namely
semi-inclusive DIS with a full reconstruction of the hadronic current jet. A flavour
tagging procedure allows to identify the struck quark in the DIS process. A sugges-
tion to isolate the photon-gluon fusion process and directly measure ∆G was put
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Figure 1. The photon-gluon fusion diagram, dominant mechanism for charm production at
COMPASS energies.

forward already in 1988 [13, 14], and implied measuring the cross-section asym-
metry of open charm in DIS. A new experiment, with full hadron identification
and calorimetry, seemed to be necessary: COMPASS (COmmon Muon and Proton
Apparatus for Structure and Spectroscopy) was proposed in 1996 and approved
one year later.

The main goal of COMPASS is indeed a direct measurement of ∆G by mea-
suring the cross-section asymmetry Acc̄

µN

Acc̄
µN =

∆σµN→cc̄X

σµN→cc̄X
. (1)

At COMPASS energies the production of charm goes predominantly via photon-
gluon fusion (PGF), according to the diagram shown in Fig. 1, and the quantities
σµN→cc̄X and ∆σµN→cc̄X can be expressed as a convolution of the elementary
photon-gluon cross-section with the gluon distributions G and ∆G.

The most promising additional way to measure ∆G in COMPASS uses the
asymmetry of charged hadron pairs at high pt [15]. Originally developed for the
COMPASS experiment, the method has been recently applied also to the HERMES
data [16]. The basic diagram is still the PGF, γg → qq̄ → h+h−X, and the
hardness of the process is guaranteed by the large pt. The background from the
leading order process γq → q, and the QCD-Compton process, γq → γq, is in
general dominating the PGF creation of a light qq̄ pair, but suitable kinematic
cuts can enhance considerably this process and allow for a statistically precise
measurement.

Apart from ∆G, the COMPASS spectrometer is measuring ∆q and ∆T q from
the relevant identified hadron asymmetries, in semi-inclusive polarized muon -
polarized nucleon DIS, in the longitudinal and in the transversal mode respectively.

COMPASS has also an important physics programme using hadron beams, in
particular to address the long standing question of exotic states. A first pilot run
will take place at the end of the 2004 run, and the measurement will be resumed
after the technical stop of the CERN accelerators in 2005.
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Figure 2. Top view of the lay-out of the spectrometer for the COMPASS experiment in 2002. The
labels and the arrows refer to the major components of the tracking, trigger, and PID systems.

4 The COMPASS spectrometer

A common requirement of all the measurements foreseen by COMPASS is the
detection and identification of particles over a large angular (±200 mrad) and
dynamical (up to ∼ 150 GeV) range. To perform these measurements an Interna-
tional Collaboration of 31 Institutes, presently consisting of more than 200 physi-
cists from 11 different Countries, including a strong group from Trieste, has built
COMPASS, a new state-of-the-art spectrometer, capable of standing beam inten-
sities of up to 2 · 108 particles/spill. The COMPASS spectrometer comprises two
magnetic stages. Both stages are complemented with charged particle identifica-
tion with fast RICH detectors, electromagnetic calorimetry, hadronic calorimetry,
and muon identification via filtering through thick absorbers. The lay-out of the
spectrometer which was on the floor in the year 2002 is shown in Fig. 2.

The experiment has been run at a muon energy of 160 GeV. The beam is natu-
rally polarized by the π−decay mechanism. The beam polarization was measured
by the SMC Collaboration to be about 80% at 190 GeV. The triggering system and
the tracking system of COMPASS have been designed to stand the associated rate
of secondaries, and use state-of-the-art detectors. Also, fast front-end electronics,
multi-buffering, and a large and fast storage of events are essential.

We use the polarized target system of the SMC experiment, which allows for
two oppositely polarized target cells, 60 cm long each. The PT magnet can provide
both a solenoidal field (2.5 T) and a dipole field (0.5 T), for adiabatic spin rotation.
The target polarization can then be oriented either longitudinally or transversely
to the beam direction. Use of two different target materials, NH3 as proton target
and 6LiD as deuteron target, is foreseen. Polarizations of 85 % and 50 % have
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been reached, respectively. In so far we have used 6LiD: its favourable dilution
factor of 0.4 is of the utmost importance for the measurement of ∆G.

To match the expected particle flux in the various locations along the spectrom-
eter, COMPASS uses very different tracking detectors, in particular the experiment
has been the first to use on a large scale novel detectors like Micromegas’s and
triple-GEM detectors.

The charged particle identification relies on the RICH technology. Presently,
only RICH1 (the RICH in the first magnetic spectrometer) exists. As VUV photon
detectors we use a novel technique, developed at CERN, i.e. MWPC’s with a CsI
photocathode (segmented in 8 × 8 mm2 pads) which detect photons with wave
length shorter than 200 nm, i.e. in the far UV domain. The total active area of
the photon detectors is 5.6 m2 and the total number of pads is about 80,000. The
front-end electronics uses a modified version of the Gassiplex chip, and the read-out
cards constitute a major project of the Trieste ICTP Microprocessor Laboratory,
which utilises hundreds of DSP’s.

The readout system uses a modern concept, involving highly specialized inte-
grated circuits. The readout chips are placed close to the detectors and the data
are concentrated at a very early stage via high speed serial links. At the next level
high bandwidth optical links transport the data to a system of readout buffers.
The event building system is based on PCs and Gigabit or Fast Ethernet switches
and is highly scalable. This high performance network is also used to transfer the
assembled data to the computer center for database formatting, reconstruction,
analysis and mass storage. The data are sent via an optical link from the Hall 888
directly to the Computer building for Central Data Recording (CDR).

To handle the huge amount of data (the collected raw data size is ∼300
TB/year) we used Objectivity/DB until the end of 2002, and Oracle since. The
power needed to process COMPASS data is about 100 kSI2k. In the off-line farm,
the data servers handle the network traffic from the CDR, distribute the raw data
to the CPU clients (where they are put in the data base), receive them back from
the PCs, and finally send them to a hierarchical storage manager (HSM) system.
In parallel, the data servers receive the data to be processed from the HSM, send
them to the PCs for processing, collect the output (DST or mDST), and send it to
the HSM. Data processing is performed on the farm at CERN while DST’s data
analysis is done on satellite farms in the major home institutes (including Trieste).

A major effort was devoted to writing from scratch the off-line programs
(CORAL, the new COmpass Reconstruction and AnaLysis program) using object-
oriented technology and C++ language.

5 First physics results

Over the 80 days of the 2002 run, a total of about 6000 millions of events have
been collected, corresponding to a data size of 260 TB. Similar numbers have been
taken in the 2003 run and are presently being collected in the 2004 run. Many
different physics channels are presently being investigated,
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Figure 3. Preliminary results for the asymmetry AUT for positive (a) and negative (b) leading

hadrons produced by 160 GeV µ+ on a transversely polarized deuterium target. The data refer
to the year 2002 COMPASS run, while the curves are from Ref. [17].

- ∆G from open charm and high pT hadron pair,
- ALL to extract g1,
- vector meson (ρ, φ, J/Ψ) production to test S-channel helicity conservation,
- Λ physics,
- transversity (single hadron, hadron pairs, Λ),
- Chan asymmetries,
- search of exotics (Θ+, Ξ−−, ...).

A flavour of the physics results is given below.

5.1 COLLINS ASYMMETRY AND TRANSVERSITY

Semi-Inclusive Deep Inelastic Scattering (SIDIS) provides the possibility to mea-
sure the transverse polarized parton distribution function ∆T q(x) via the az-
imuthal dependence of the momentum of the leading hadron. This measurement
requires to operate with a transversely polarized target: about 20% of the COM-
PASS running time has been devoted to this measurement. Figure 3 shows pre-
liminary values of the first ever measured Collins asymmetry on a deuteron target,
separately for positive and negative leading hadrons. The data are compared with
a model calculation [17] of the asymmetry AUT , which includes the transversity
distribution function ∆T q(x) through the following linear combination of quark
flavours:

AUT (x) =
Σe2

q ·∆T q(x) ·∆T Dh
q

Σe2
q · q(x) ·Dh

q

.

The small values of the measured asymmetries at all x might imply either a cancel-
lation between the proton and the neutron asymmetries, or a small Collins effect
in the fragmentation.

5.2 ∆G/G FROM CHARM PHOTO-PRODUCTION AND HIGH pT HADRON
PAIRS

As mentioned in Section 3, the gluon polarization will be obtained from the mea-
sured cross-section asymmetry of open charm events. Open-charm events are
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Figure 4. Left: D∗ produced by requiring the invariant mass of the Kπ pair to be in a 60 MeV

window around the D0 peak and a soft pion being detected. Cutting the events around the D∗
mass, the D0 peak in the invariant mass spectrum of Kπ is very clear (figure at the right).

identified by reconstructing D◦, D̄◦, and D∗± mesons from they decay products,
i.e. D◦ → K−π+ and D∗+ → D◦π+ → K−π+π+ and charge conjugate. In the
first case, cuts on the K direction in the D◦ rest frame (|cos(θ∗K)| < 0.5) and on the
D◦ energy fraction (zD = ED/Eγ∗ > 0.25) are needed to reduce the background
contamination. Preliminary signals of the D mesons are shown in fig. 4 Kaon-pion
pairs are selected by asking: zD > 0.2; |cos(θ∗K)| < 0.85; 10 < pK < 35 GeV in
order to be in the RICH K identification region. A soft pion (< 10 GeV) is also
required. This measurement is statistically limited. The D◦ signal in our data is
at the level of 10−7, and other decay channels are also being investigated presently.
From the present analysis the projected error on ∆G/G using the data from 2002,
2003 and 2004 should be about 0.24. From the same data, using unidentified
hadron pairs at high pT , as mentioned in Section 3, we should be able to estimate
∆G/G with an error of 0.16 when requiring Q2 > 1. Releasing the cut on Q2

(as HERMES did) the hadron pair statistics increases by one order of magnitude,
both the theoretical interpretation of the result becomes more difficult.

6 Conclusions and outlook

I have briefly summarized our present understanding of the nucleon spin. Fol-
lowing the EMC discovery in 1988, the importance of this issue has been broadly
recognized, and the field has enjoyed a true “Renaissance”. In this context one
has witnessed the approval and the starting up of the most ambitious project spin
physics could ever dream of, namely the polarized proton-proton collider at BNL,
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as well as of the COMPASS experiment at CERN, to which I have largely con-
tributed and to which I have dedicated a good fraction of my talk. The physics
goals of COMPASS and of RHIC largely overlap, although the measurements are
complementary and both necessary to assess a coherent picture of the QCD struc-
ture of the nucleon, Both COMPASS and the RHIC experiments have just started
to produce physics results, which presumably will be first shown in three weeks
from now in Trieste, at the 16th International Spin Physics Symposium. And, as
it has always been the case for spin physics, many more surprises are expected in
the years to come.
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Abstract

The rest masses of the stable mesons and baryons and the rest masses of
their antiparticles, as well as the rest masses of the µ± and τ± leptons can
be explained, within 1% accuracy, with the standing wave model, which
uses only photons, neutrinos, charge and the weak nuclear force. And we
can explain the spin of the stable mesons and baryons and the spin of the µ±

and τ± leptons without any additional assumption. We can also determine
the rest masses of the e, µ and τ neutrinos.

1 Introduction

When elementary particles are discussed usually the so-called “Standard Model”
is invoked and it is implied that this solves the problem. However, it is an obvious
fact that in the forty years since the introduction of the quark concept we have not
arrived at precise theoretical values for the masses of the mesons and baryons and
for the masses of the leptons. That means that neither the mass of the fundamental
proton nor the mass of the fundamental electron have been explained so far.

Many other attempts to explain the elementary particles have been made. For
example, El Naschie [1] has proposed a topological theory from which the masses
of the proton and the electron, as well as of the pions, can be determined with
great accuracy. And, as another example, Sidharth [2] has suggested a model of
the π0 meson in which an electron and a positron circle their center of mass.
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In the following I will show that one can explain the masses of the mesons,
baryons and leptons with the “Standing Wave Model”. This model uses only
photons, neutrinos, charge and the weak nuclear force. We can also explain the
spin of the mesons and baryons without any additional assumption. A complete
description of the standing wave model has been posted on the internet [3].

2 The integer multiple rule of the particle masses

The spectrum of the so-called “stable” mesons and baryons consists of the γ-branch
and the ν-branch as we have shown in [4]. The masses of the π0, η, Λ, Σ0, Ξ0,
Ω−, Λ+

c , Σ0
c , Ξ0

c , and Ω0
c particles, i.e. the masses of the γ-branch, are in a first ap-

proximation integer multiples of the mass of the π0 meson. A least square analysis
shows them to follow the formula

m(N)/m(π0) = 1.0065 N − 0.0043 N ≥ 1, (1)

with the correlation coefficient 0.999. The letter N stands for the integer number
closest to the ratio of any particle of the γ-branch to the mass of π0 meson. The
principal decays, i.e. decays with a percentage >1%, of the γ-branch particles
occur always with the emission of γ-rays or π0 mesons, that means without the
emission of neutrinos.

The neutrino branch, or ν-branch, consists of the π±, K±,0, n, p, D±,0 and D±
s

particles. Their masses follow the formula

m(N)/0.853m(π±) = 1.000 N + 0.00575 N ≥ 1, (2)

with a correlation coefficient 0.998. The principal decays of the ν-branch particles
occur always with the emission of neutrinos.

That means: The masses of the γ-branch particles are, in a first approximation,
integer multiples of the mass of π0. The masses of the ν-branch particles are, in a
first approximation, integer multiples of π± times a factor ≈ 0.85.

3 The γ-branch particles

The characteristic particle of the γ-branch is the π0 meson which is created in the
process γ + p → π0 + p and decays via π0 → γγ (98.8%). A γ-ray impinges on
a proton and creates a π0 meson. Fourier analysis dictates that a continuum of
frequencies of electromagnetic waves must be present in the wave packet created
by the high energy collision. The wave packet is the π0 meson. We assume that
the wave packet is organized in a cubic lattice, because the continuous Fourier
frequency spectrum of the high energy collision can be absorbed by the continuous
frequency spectrum of the lattice oscillations. The relevance of cubic lattices for
particle theory was first suggested by Wilson [5]. According to lattice theory
the lattice oscillations are standing waves. A rest mass can only be formed by
standing waves.
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The frequencies of longitudinal standing waves in a cubic lattice are according
to Born and v. Karman [6] given by

ω = ± 2
√

α/msin(φ/2) , (3)

where α is the constant of the force acting between the particles of mass m within
the lattice, and φ is given by φ = 2πa/λ. There is a continuum of frequencies
with a cutoff at φ = π. However, the increase of the frequencies is limited by
the requirement that the group velocity cannot exceed the velocity of light. That
means that the frequencies of the oscillations must follow the formula

ν = ν0 φ . (4)

The rest mass of the packet of standing waves is the sum of the energy of
all oscillations. The second mode of the oscillations has frequencies twice the
frequencies of the basic mode and twice as many oscillations, that means 4× as
much energy as the basic mode. That confirms the integer multiple rule: The
particles of the γ-branch consist of the basic mode (the π0 meson), or of higher
modes (the η meson m(η) ∼= 4m(π0)), or of superpositions of modes, for example
two higher modes make the Λ baryon m(Λ) ∼= 2m(η).

Summing up: The π0 meson and the other particles of the γ-branch are like
cubic black bodies filled with standing electromagnetic waves. A conservative
explanation of the γ-branch particles which does not use hypothetical particles.
It appears that the π0 meson can be derived from the theory of electromagnetic
waves, that means from first principle.

4 The ν-branch particles

The characteristic particles of the ν-branch are the π± mesons which can be created
in the reaction γ + p → π+ + π− + p. A γ-ray impinges on a proton and is
converted into a π+ and a π− meson. The π± mesons decay as π± → µ± + νµ(ν̄µ)
(99.98%), followed by the decay of the µ± mesons, e.g. µ+ → e++ν̄µ+νe (≈100%).
It appears that the π± mesons consist of νµ, ν̄µ, νe, ν̄e neutrinos which are held
together in a cubic lattice by the weak nuclear force. The existence of the neutrinos
and of the antineutrinos and of the weak nuclear force is unquestionable. Since the
weak nuclear force has a range of only 10−16 cm and the radius of the π± mesons
is ≈ 0.8·10−13 cm, the weak force can hold the π± mesons together only if the
neutrinos and antineutrinos are arranged in a lattice. The lattice points must
oscillate because the lattice has been created in a high energy collision. The size
of the nucleon and the range of the weak nuclear force determine the number of
the lattice points. From the measured radius of the proton rp = 0.88·10−13 cm
and the lattice constant which is equal to the range of the weak nuclear force
rw = 1·10−16 cm follows that the number of the lattice points is

N = 2.854 · 109 . (5)
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The energy in the rest mass of the π± mesons is the energy of all standing
lattice oscillations plus the energy in the rest masses of all neutrinos in the lattice

m(π±)c2 = Eν(π±) + Σ m(neutrinos)c2 . (6)

Using Eq.(4) we can calculate the energy

Eν(π±) = 67.82MeV ≈ 0.5E(m(π±))

of the lattice oscillations. If the number of the neutrinos and their rest masses is
also known, then m(π±) is known. Assuming that m(νe) � m(νµ) we obtain from
Eq.(6) a first approximation for the mass of the muon-neutrino

m(νµ) ≈ 50milli eV/c2 , (7)

Summing up: The π± mesons can be explained by an oscillating cubic lattice
of νµ, ν̄µ, νe, ν̄e neutrinos plus an electric charge.

The primary decay of the K± mesons K± → µ± + νµ(ν̄µ) (63.5%) leads to
the same products as the decay of the π± mesons π± → µ± + νµ(ν̄µ) (99.98%).
Therefore it appears that the K± mesons should consist at least partially of the
same νµ, ν̄µ, νe, ν̄e neutrinos as the π± mesons. However the K± mesons with a
mass of 0.8843·4m(π±) cannot be solely the second mode of the π± mesons because
the second mode of π± does not have the energy 4 times of π±, because the rest
masses of the neutrinos which make up part of the energy of π± do not change
when the energy of the lattice oscillations is increased fourfold in the second mode
of the oscillations. The difference between the second mode of π± and the real mass
of the K± mesons is made up by a π0 meson, whose presence in K± is confirmed by
the appearance of π0 among the decay products of K±, in particular in the decay
K± → π±π0 (21.13%). So the K± mesons are the state (2.)π± + π0. The K0 and
K0 mesons are the state (2.)π± + π∓, they consist of neutrinos only.

The neutron is a superposition of a K0 and a K0 meson and must have a neutrino
lattice. The structure of the proton follows from the β-decay of the neutron. The
proton must have a neutrino lattice as well.

The characteristic feature of the particles of the ν-branch is their neutrino
lattice of νµ, ν̄µ, νe, ν̄e neutrinos. We do not use hypothetical particles.

5 The mass of the µ± mesons

Surprisingly the mass of the µ± mesons can be explained with the standing wave
model as well. The µ± mesons are leptons which do not interact strongly with the
mesons and baryons. Leptons make up 1/2 of the number of stable elementary
particles. The µ± mesons originate from the decay π± → µ± + νµ(ν̄µ) (99.98%).
From the experiments we learn that

m(µ±)/m(π±) = 0.757027 = 1.00936 · 3/4 ∼= 3/4 . (8)
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With m(νµ) from Eq.(7) or from Eq.(12) we find that

m(π±)−m(µ±) ≈ N/4 ·m(νµ) , (9)

where N is the number of all neutrinos in the π± lattice as given by Eq.(5). We
find also that the oscillation energies Eν are

Eν(π±) ≈ Eν(µ±) . (10)

Eq.(9) says that the energy in the rest masses of all muon (respectively) anti-
muon neutrinos is consumed in the π± decay. Eq.(10) says that the oscillation
energy of all neutrinos in the π± mesons is conserved in the π± decay. Conse-
quently there is no other source for the kinetic energy of the decay products of
the π± mesons than the energy in the rest masses of either all muon or anti-muon
neutrinos in π±.

That means: The µ± mesons have a neutrino lattice which differs from the neu-
trino lattice of the π± mesons by the absence of the muon or anti-muon neutrinos.

This contradicts the common belief that the µmesons are point particles. How-
ever, since neutrinos do not interact, in a good approximation, with neither mass
nor charge the finite size of the neutrino lattice of the µmesons cannot be detected
by conventional scattering experiments.

Summing up: The mass of the µ± mesons can be explained with a neutrino
lattice which contains the remains of the π± lattice and an electrical charge. Since
either all muon neutrios or all antimuon neutrinos have been removed from the
π± lattice to form the µ± mesons it must be that m(µ±) ≈ 3/4 m(π±) as the ex-
periments found. The mass of the τ± mesons can be explained along similar lines.

6 The neutrino masses

The rest mass of the electron neutrino can be determined from the energy released
in the decay of the neutron n → p + e− + ν̄e. Likewise the rest mass of the
anti-electron neutrino follows from the decay of the antineutron. We find that

m(νe) = m(ν̄e) = 0.365meV/c2 . (11)

Inserting Eq.(11) into Eq.(6) we obtain an accurate value for the mass of the muon
neutrino

m(νµ) = m(ν̄µ) = 49.91meV/c2 . (12)

Since the same considerations apply for either the π+ or π− meson it must be that
m(νµ) = m(ν̄µ). The ratio of the neutrino masses is then

m(νµ)/m(νe) = 136.74 , (13)

or 99.8% of the inverse of the fine structure constant αf = 1/137.036. It does not
seem likely that this is just a coincidence.
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We also find from the decay of the D±
s mesons that the mass of the τ neutrino is

m(ντ ) = m(ν̄τ ) ∼= 0.54 eV/c2
. (14)

Since N/4·m(νe) = 0.51 m(e±) ∼= 0.5m(e±) we arrive with Eq.(13) at

m(µ±)/m(e±) ∼= 3/2αf + 2 , (15)

whereas the empirical formula for the ratio of the mass of the µ± mesons to the
mass of the electron is m(µ±)/m(e±) = 3/2αf + 1 = 206.55. The experimental
ratio is 206.768. Similarly we arrive at

m(π±)/m(e±) ∼= 2/αf + 2 , (16)

whereas the empirical formula is m(π±)/m(e±) = 2/αf − 1 = 273.07. The exper-
imental ratio is 273.13. Finally we find for the long sought for ratio of the mass
of the proton to the mass of the electron the value

m(p)/m(e−) ∼= 0.9426[14/αf + 14] = 1821.5 , (17)

which is 99.2% of the experimental value 1836.16. For details see [3].
Summing up: We can explain the rest masses of the µ± and τ± mesons and

we can determine the rest masses of the e, µ, τ neutrinos. In other words, we have
found the masses of all leptons exempting the electron. We will deal with the
electron later.

7 The spin of the particles

It appears to be a necessary condition for the validity of a model of the particles
that the model can also explain the spin of the particles. We have proposed an
explanation of the spin of the particles in [7].

The spin, or the intrinsic angular momentum, of a particle is, of course, the sum
of the angular momentum vectors of all components of the particle. The π0 and
η mesons do not have spin because their O(109) standing electromagnetic waves
must be linearly polarized and hence do not have an angular momentum. The
longitudinal oscillations of the π0 or η lattices do not have an angular momentum
either because for longitudinal oscillations �r×�p = 0. So s(π0, η) = 0 as it must be.

The Λ baryon appears to be the superposition of two η mesons, m(Λ) =
1.019·2m(η). The superposition of two perpendicular oscillations of the same
amplitude and frequencies produces a circular oscillation whose angular momen-
tum is �/2, see [7]. The angular momentum vector of each of the O(109) circular
oscillations is canceled by the angular momentum vector of the circular oscillation
at the mirror position in the lattice. Only the angular momentum �/2 of the
circular oscillation at the center is not canceled. That means that the intrinsic
angular momentum of the Λ baryon is �/2, or s(Λ) = 1/2 as it must be. The other
baryons of the γ-branch are composites of the Λ baryon with spin 1/2 and one or
two π mesons which do not have spin. Consequently their spin is 1/2, exempting
the Ω− particle.
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The explanation of the spin of the ν-branch particles is different because each
of the O(109) neutrinos which are in the ν-branch particles has spin 1/2. However,
the spin vectors of the neutrinos in the lattice cancel because the spin vector of
each neutrino has an opposite spin vector at the mirror position in the lattice,
but for the central neutrino. That makes the intrinsic angular momentum of
the neutrino lattice of the π± mesons equal to �/2, however s(π±) is zero. This
problem is solved by the spin of the electric charge e± carried by the π± mesons.
The spin 1/2 carried by one of the electric charges cancels the spin 1/2 of the
neutrino lattice, so s(π±) = 0 as it must be. Similar considerations apply for K±

with s(K±) = 0.
The explanation of s(K0) = 0 is more difficult because there is no charge to

cancel the spin of the neutrino lattice. However, the K0 lattice does not contain
single neutrinos, but neutrino pairs, because the K0 and K0 mesons are superpo-
sitions of the second mode of the π± mesons and the first mode of the π∓ mesons,
K0 = (2.)π± + π∓. The spin of the neutrino pairs is zero, therefore the spin of the
entire neutrino lattice is zero. The K0 meson also contains a pair of opposite elec-
trical charges whose spin cancels likewise. That means that the intrinsic angular
momentum of K0 is zero.

The spin of the neutron whose mass is ≈ 2 m(K0) is s(n) = 1/2. The spin
of the neutron is caused by the angular momentum of circular oscillations which
result from the superposition of two perpendicular lattice oscillations from a K0

and a K0 meson, similar to the superposition of two η mesons in the Λ baryon.
For details see [7]. The spin of the proton s(p) = 1/2 is determined by the decay
of the neutron, details are in [7].

8 Conclusions

The standing wave model solves a number of problems for which an answer hereto-
fore has been hard to come by. Only photons, neutrinos, charge and the weak
nuclear force are needed to explain the masses of the stable mesons and baryons
and of the leptons. We can also explain the spin of the mesons and baryons and
of the µ± and τ± mesons.
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Abstract

The notion of state is a central notion for all branches of physics. Surprisingly
enough, Newton’s notion differs from the nowadays notion. Our review of the
benefits of Newton’s notion comprises Gibbs’s paradox, Einstein’s derivation
of the classical and quantum distribution laws from the energetic spectrum
(serving to remove anthropomorphic elements), the difference between ‘iden-
tical’ and ‘indistinguishable’ (being a property of states rather than of par-
ticles), a new physical content of |ψ(x, t)| (the invariance of |ψ(x, t)| rather
than ψ(x, t) against permutations yields not only fermions and bosons, but
also anyons), and a novel classification of forces (leading eventually to a
derivation of the Maxwell-Lorentz equations from classical mechanics).

1 Introduction

Classical mechanics is the safest (if not the only safe) ground we can move on.
For this, we will analyze the implications of Newton’s notion of state differing
considerably from the contemporary one for the notions ‘equality’, ‘identity’ and
‘(in)distinguishability’ playing a paramount role in statistics and in quantum me-
chanics. Newton’s notion allows for considering them within classical point me-
chanics, what frees the discussion from anthropomorphic elements. Bach’s (1997)
fundamental results are obtained within an elementary dynamical framework.
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2 Newton’s notion of state

Newton’s First Law “Every body perseveres in its state of being at rest or
of moving uniformly straight forward, except insofar as it is compelled to
change its state by forced impressed.” –
Newton’s state corresponds to nowadays’ stationary state.

Newton’s Second Law “A change in motion is proportional to the motive force
impressed and takes place along the straight line in which that force is im-
pressed.” –
∆�p ∼ �F : Newton’s state variable is the momentum (the conserved quanti-
ties).

Laplace’s demon “A sufficiently powerful intelligence knowing all loci and ve-
locities in a mechanical systems at one time is able to calculate the loci and
velocities at all later times.” –
Laplace’s state is nowadays’ state, including both stationary and non-statio-
nary ones, the state variables are a complete set of independent dynamical
variables.

Advantages of Newton’s notion:

• Easily generalized to classical and quantum systems (not tied to orbits);

• Amount of conserved quantities ˜ amount of quantum (state) numbers;

• Symmetry of state = symmetry of state function → gauge symmetry, geo-
metric phases, . . .

Advantages of modern (Laplace’s) notion:

• Complete description of motion;

• Identification of phase space points differing only by interchanging equal
bodies → multiply connected spaces → appropriate topology for anyons.

Disadvantages of modern (Laplace’s) notion:

• The state changes even in absence of causes;

• State at rest is ignored;

• Interchange of equal bodies changes state → Gibbs’s paradox;

• Inapplicable to quantum systems.
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3 Equal bodies in Newtonian states

Equal / identical bodies / particles

Equality We call two classical bodies or quantum particles equal, when their
interchange does not change the properties / state / motion of a system. (cf
Helmholtz, §10)

Identity “Particles are called identical, if they agree in all their intrinsic (i.e.
state independent) properties.” (Bach, p.15)
Remark: The restriction to the intrinsic properties circumvents the conflict
with the logical notion ‘identical’ (= equal in all properties).

Permutation symmetry of Newtonian states

All conserved quantities of a classical-mechanical system: total energy / mo-
mentum / angular momentum / . . . , are invariant w.r.t. the permutation of equal
parameters, ie, w.r.t. the permutation of (labels of) equal bodies, ie, w.r.t. bodies
with equal properties concerning the system considered, ⇒

• A Newtonian state is invariant against interchanging (labels of) equal bodies,

• Equal bodies cannot be distinguished or identified by means of the conserved
quantities (Newtonian/ stationary-state variables),

• Anthropomorphic arguments like ‘particle can be marked or not’ are not
relevant points of view (interchanging or marking two resting red balls in a
snooker game does not interfere the game);

• Indistinguishable classical particles have no trajectories (Bach provides prob-
abilistic proof).

Comparison with Laplace’s notion of state (continued)

The locus of a body is that part of space it occupies. Euler’s exclusion principle
(not to be interchanged with Pauli’s exclusion principle!) states, that no body can
occupy more than one locus, and no part of space can be occupied by more than
one body. ⇒

• Equal bodies can, at least in principle, always be distinguished and identified
by means of their locus.

• Equal bodies are distinguishable within Laplace’s notion of state.

• (In)distinguishability is a property of states, not of particles/bodies. (cf
Bach, p.15)

1)

2)

3)
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4 Classical and quantum distribution laws

Einstein (1907) has derived the classical and quantum distribution laws using just
the energetic spectra of a classical (continuous spectrum) and a quantum harmonic
oscillator (discrete spectrum):

〈E〉class =

∫∞
0

Ee−
E

kT dE
∫∞
0

e−
E

kT dE
= kT (1)

〈E〉quant =
∑∞

n=0 �ωne−
�ωn
kT

∑∞
n=0 e−

�ωn
kT

=
�ω

e
�ω
kT − 1

= 〈E〉class

�ω
kT

e
�ω
kT − 1

(2)

(In)distinguishability does not play any role (cf Bach’s “Bose-Einstein statistics
as invented by Boltzmann”).

5 New physical content of |ψ(x, t)|

FFP5: Quantum-mechanical systems are conservative systems which may assume
configurations for which V (x) > E
⇒ There is an effective potential energy

Vnkl(x) = VEnkl
(x) = FEnkl

(x) · V (x) ≤ Enkl; −∞ <x < +∞ (3)

FEnkl
(x) ∼ |ψEnkl

(x)|2 is a limiting function such, that Vnkl(x) ≤ Enkl even if
V (x) > Enkl (→ tunnel effect demystified).

Progress since FFP5:

• Common principles of state change for classical and quantum systems→ Eu-
lerean derivation of time-dependent Schrödinger equation from time-indepen-
dent one;

• FEnkl
is dimensionless ⇒ FEnkl

= FEnkl
(x/x0): All quantum systems

exhibit characteristic length x0;

• FE(nkl)(x/x0) ∼ |ψE(x)|2 → gauge symmetry;

• Novel classification of fields:
A) Fields being related to total energy, E (accelerating fields like electric
field, �E),
B) Fields being related not to E, but to x0 (refracting fields like magnetic
field, �B),
C) Fields being related neither to E, nor to x0 (gauge fields, see Aharonov-
Bohm effect);
Remark: The Maxwell-Lorentz equations turn out to be just compatibility
conditions for such fields �E and �B.
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6 Newtonian state variable |ψ(x, t)|

1) By virtue of their definition, limiting functions are invariant against permu-
tations of equal particles (omitting x0):

FE(x2, x1) = FE(x1, x2) ≥ 0 (4)

⇒ the most general representation of FE(x1, x2) reads (mE entire)

FE(x1, x2) = |ψγ,m
E (x1, x2)|2 ; (5)

ψγ,m
E (x1, x2) =

1√
2
eiγE(x1,x2)

[
ψ̃E(x1, x2) + eimEπψ̃E(x2, x1)

]
(6)

2) Wigner’s theorem:
If ψγ,m

E (x1, x2) is eigenfunction, then

R̂ψγ,m
E (x1, x2) = eiρ

(1,2)
E ψγ,m

E (x2, x1) (7)

= eiρ
(1,2)
E eimEπei[γE(x2,x1)−γE(x1,x2)]ψγ,m

E (x1, x2) (8)

is also eigenfunction ⇒ [γE(x2, x1)− γE(x1, x2)] can be absorbed into ρ
(1,2)
E .

3) 2nd permutation:

R̂2ψm
E (x1, x2) = R̂eiρ

(1,2)
E ψγ,m

E (x2, x1) = eiρ
(1,2)
E eiρ

(2,1)
E ψm

E (x1, x2) (9)

Standard case:

R̂2 = eiρ
(1,2)
E eiρ

(2,1)
E = 1; ρ

(2,1)
E = −ρ

(1,2)
E ; γE(x1, x2) = 0 (10)

⇒ Wave functions are either symmetric (bosons, +) or anti-symmetric (ferm-
ions, −):

ψ±
E (x1, x2) =

1√
2

[
ψ̃E(x1, x2)± ψ̃E(x2, x1)

]
(11)

Non-standard, ‘anyonic’ case:

R̂2 = eiρ
(1,2)
E eiρ

(2,1)
E 
= 1; ρ

(2,1)
E 
= −ρ

(1,2)
E ; γE(x2, x1)− γE(x1, x2) 
= 0 (12)

⇒ If there are topologically inequivalent paths, the wave function is neither sym-
metric, nor anti-symmetric, but can exhibit any intermediate behaviour → anyons
(the clue to the fractional quantum Hall effect).
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7 About the meaning of ‘identical’ and ‘indistinguishable’

1) Some rigorous definitions

Equal means ‘equal in some well-defined properties such as mass, density, shape,
charge . . . , but not in all’
Example: the 2 electrons in the ground state of He (they differ in sz)
‘equal’ depends on the view, ie, which properties one is looking at.

Congruent means ‘equal in all essential (geometric) properties, but not in locus’
Example: 2 red snooker balls of high quality

Identical means ‘one and the same’, ie, equal in all properties (strictly speaking,
no exception at all)
Example: 2 squares of equal side length on the same place of a sheet

Indistinguishable means, that there is no mean (no one differing property/at-
tribute) for discrimination.

⇒ Indistinguishable things are identical (Leibniz)

2) Questions

If we weaken the definition of ‘identical’, there may be a weakening of ‘distin-
guishable’ to ‘identifiable’, so that we are led to the question

• Are there non-classical indistinguishable bodies/particles not being identi-
cal?

• Are there principally distinguishable (ie, not identical) bodies/particles not
being identifiable?

3) Observations

• Quantum particles are identical w.r.t. intrinsic properties and ‘almost iden-
tical’ w.r.t. state properties: All electrons (protons, . . . ) exhibit the same
mass at rest, electrical charge, modulus of spin, etc.;

• Pauli’s exclusion principle: 2 electrons differ in at least one quantum number
– however: it does not say, which electron is in which state (entanglement);

• The quanta occupying an oscillator loose their individuality: Say, 12 quanta
in state E12 occupy all together the one 12-quanta state, not 12 single-
quantum states,⇒ they have got no individual properties (parameter values)
(in contrast to electrons, these quanta – Planck’s “energy elements” – occupy
not single-particle, but single-system states); – nevertheless: these 12 quanta
are not one and the same (one thing) as we are thinking them as 12 particles.

• Cluster law: Wave functions of distinct systems need not to be entangled ↔
There are distinguishable equal quantum particles.
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4) Conclusions

• The notions ‘identical’ or ‘distinguishable’ as used in logics play almost no
role, in fact: the actual physical meaning of ‘distinguishability’ as property
of states is the identifiability ;

• ‘Identical’ is meaningful in the sense of Bach (including only intrinsic prop-
erties, eg, spin s – but not sz);

• There is no principal difference between classical bodies, bosons and fermions
w.r.t. these properties.

8 Summary

Newton’s notion of state is an addition to, though not a complete replacement
of Laplace’s notion. Our treatment of equality, identity and (in)distinguishability
accounting for Newton’s notion of state reveals the following advantages and new
results.

• Common treatment of classical bodies and quantum particles;

• Non-probabilistic classification of (bodies/particles in) states;

• The limiting function FE gives |ψE | a new physical meaning as relative space
occupation; both exhibit the same symmetry as Newtonian (stationary-)
state variables (quantum numbers) w.r.t. external fields (→ gauge invari-
ance) and permutations (→ fermions, bosons, and anyons);

• Distribution functions can be related to energetic spectra and occupation ⇒
they are independent of (in)distinguishability;

• The meaning of ‘identity’ and ‘indistinguishability’ in physics is partly at
variance with their meaning in logics, hence, careful restrictions are neces-
sary;

• There are particles exhibiting different extrinsic properties (eg, spin direction
in EPR), but not being identifiable: Equal bodies in symmetric states cannot
be identified, be there different attributes or not.
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Abstract

Numerical modelling of quantum effects caused by bosonic or fermionic char-
acter of secondaries produced in high energy collisions of different sorts is at
the moment still far from being established. In what follows we propose novel
numerical method of modelling Bose-Einstein correlations (BEC) observed
among identical (bosonic) particles produced in such reactions. We argue
that the most natural approach is to work directly in the momentum space
of produced secondaries in which the Bose statistics reveals itself in their
tendency to bunch in a specific way in the available phase space. Fermionic
particles can also be treated in similar fashion.

The multiparticle production processes consist substantial part of the high energy
collisions and are of considerable theoretical interest. Unfortunately their descrip-
tion is so far available only by means of numerical Monte Carlo codes based to some
extent on modern theoretical ideas but otherwise remaining purely phenomenolog-
ical [1]. They are build in such manner as to describe as close as possible the com-
plicated final state of such reaction, cf., Fig. 1. However, using classical (positive
defined) probabilities as their basic tool such MC codes cannot directly describe
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some observed features, which are connected with Bose-Einstein (BE) (or Fermi-
Dirac (FD)) statistics of produced secondaries (in case they are identical and oc-
cupy almost the same parts of the phase space defined by the uncertainty relation,
see Fig. 1). When two (or more) identical particles of the same kind are observed,
their common wave function should be symmetrized (for BE statistics) or antisym-
metrized (for FD statistics) what results in characteristic shapes of (two particle,
for example) correlation function C2(Q = |p1 − p2|) = N(p1, p2)/[N(p1) ·N(p2)],
cf., Fig. 2.

Figure 1. Schematic view of high energy collision resulting in production of many particles of
different statistics.

Figure 2. Example of BE and FD statistics (left panel) and two particle correlation functions
they lead to (right panels).

Referring for details of Bose-Einstein correlations (BEC) to the literature (cf.,
for example, [2] and references therein) let us concentrate here directly on the
problem of their proper numerical modelling, i.e., such in which the bosonic char-
acter of secondaries produced in hadronization process are going to be accounted
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for from the very beginning. This problem was so far considered only in [3] (using
statistical approach based on information theory approach, cf., however, also [4]).
All other approaches, which claim to model BEC numerically [5], simply add to
the outcomes of existing MC codes [1] some afterburners, which modify them in
a suitable way to be able fit the BEC data. Such approach inevitably leads to
such unwanted features as violation of energy-momentum conservation or changes
in the original (i.e., obtained directly form MC code) multiparticle spectra.

In [6] we have proposed afterburner free from such unwanted effects. It was
based on different concept of introducing quantum mechanical (QM) effects in the
otherwise purely probabilistic distributions then those proposed in [7]. Namely,
each MC code provides us usually with a given number of particles, each one en-
dowed with either (+) or (−) or (0) charge and with well defined spatio-temporal
position and energy-momentum. But experiment provides us information on only
the first and last characteristics. The spatio-temporal information is not avail-
able directly. In fact, the universal hope expressed in [2, 5] is that precisely this
information can be deduced from the previous two via the measured BEC. Our
reasoning was as follows: (i) BEC phenomenon is of QM origin therefore one has to
introduce in the otherwise purely classical distributions provided by MCG the new
element mimicking QM uncertainties; (ii) it cannot be done with energy-momenta
because they are measured and therefore fixed; (iii) the next candidate, i.e., spatio-
temporal characteristics can be changed but it was already done in [7, 5]; (iv) one
is thus left with charges and in [6] we have simply assigned (on event-by-event
basis) new charges to the particles from MCG conserving, however, the original
multiplicities of (+/ − /0). This has been done in such way as to make particles
of the same charge to be located maximally near to each other in the phase space
exploring for this natural fluctuations in spatio-temporal and energy-momentum
characteristic of the outcome of MCG. The advantages of such approach are: (a)
energy-momentum is automatically conserved and multiparticle distributions are
not modified and (b) it is applicable already on the level of each event provided
by MCG (not only, as some of propositions of [5] only to all events). However, the
new assignment of charges introduces a profound change in the structure of the
original MCG. Generally speaking (cf. [6] for details) it requires introduction of
bunchings of particles of the same charge.

This observation will be the cornerstone of our new proposition. Let us first
remind that idea of bunching of particles as quantum statistical (QS) effect is not
the new one [8]. It was used in connection with BEC for the first time in [9] and
then was a basis of the so called clan model of multiparticle distributions leading
in natural way to their negative binomial (NB) form observed in experiment [10].
It was then again introduced in the realm of BEC in [11] and [3, 4]. Because
our motivation comes basically from [3] let us outline shortly its basic points. It
deals with the problem of how to distribute in a least biased way a given number of
bosonic secondaries, 〈n〉 = 〈n(+)〉+〈n(−)〉+〈n(0)〉, 〈n(+)〉 = 〈n(−)〉 = 〈n(0)〉. Using
information theory approach (cf., [12]) their rapidity distribution was obtained in
form of grand partition function with temperature T and chemical potential µ.
In addition, the rapidity space was divided into cells of equal size δy each (it was
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fitted parameter). It turned out that whereas the very fact of existence of such cells
was enough to obtain reasonably good multiparticle distributions, P (n), (actually,
in the NB-like form), their size, δy, was crucial for obtaining the characteristic
form of the 2−body BEC function C2(Q = |pi − pj |) (peaked and greater than
unity at Q = 0 and then decreasing in a characteristic way towards C2 = 1
for large values of Q, see Fig. 2) out of which one usually deduces the spatio-
temporal characteristics of the hadronization source [2] (see [3] for more details).
The outcome was obvious: to get C2 peaked and greater than unity at Q = 0 and
then decreasing in a characteristic way towards C2 = 1 for large values of Q one
must have particles located in cells in phase space which are of nonzero size. It
means then that from C2 one gets not the size of the hadronizing source but only
size of the emitting cell, in [3] R ∼ 1/δy, cf. [13]. In the quantum field theoretical
formulation of BEC this directly corresponds to the necessity of replacing delta
functions in commutator relations by a well defined peaked functions introducing
in this way same dimensional scale to be obtained from fits to data [14]. This fact
was known even before but without any phenomenological consequences [15].

Let us suppose now that we have mass M and we know that it hadronizes into
N = 〈n〉 bosonic particles (assumed to be pions of mass m) with equal numbers of
(+/ − /0) charges and with limited transverse momenta pT . Let the multiplicity
distribution of these pions follows some NB-like form, broader than Poissonian
one. Suppose also that the two-particle correlation function of identical particles,
C2(Q), has the specific BEC form mentioned above. How to model such process
from the very beginning, i.e., in such way that bosonic character of produced
particles is accounted for from the very beginning and not imposed at the end?
We propose the following steps (illustrated by comparison to some selected LEP
e+e− data [16]):

(1) Using some (assumed) function f(E) select a particle of energy E
(1)
1 and

charge Q(1). The actual form of f(E) should reflect somehow our a priori
knowledge of the particular collision process under consideration. In what
follows we shall assume that f(E) = exp (−E/T ), with T being parameter
(playing in our example the role of ”temperature”).

(2) Treat this particle as seed of the first elementary emitting cell (EEC) and
add to it, until the first failure, other particles of the same charge Q(1)

selected according to distribution P (E) = P0 · f(E), where P0 is another
parameter (actually it plays here the role of ”chemical potential” µ = T ·
lnP0). This assures that the number of particles in this first EEC, k1, will
follow geometrical (or Bose-Einstein) distribution, and in precisely this way
one accounts for the bosonic character of produced pions. This results in
C2(Q) > 1 but only at one point, namely for Q = 0.

(3) To get the observed spread out of C2(Q) one has to allow that particles in
this EEC have (slightly) different energies from energy of the particle being
its seed. To do it allow that each additional particle selected in point (2)
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Figure 3. Schematic view of our algorithm, which leads to bunches of particles (clans). Whereas
in [10] these clans could consist of any particles distributed logarithmically in our case they consist
of particles of the same charge and (almost) the same energy and are distributed geometrically
to comply with their bosonic character.

above have energy E
(1)
i selected from some distribution function peaked at

E
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(
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1 − E

(1)
i

)
.

(4) Repeat points (1) to (2) as long as there is enough energy left. Correct in
every event for every energy-momentum nonconservation caused by selection
procedure and assure that N (+) = N (−).

As result we get a number of EECs with particles of the same charge and (almost)
the same energy, which we regard as being equivalent to clans in the [10] (see
Fig. 3). These clans are distributed in the same way as the particles forming the
seeds for those EEC, i.e., according to Poisson distribution (see Fig. 4, upper-left
panel). On the other hand, as was already said, particles in each EEC will be
distributed according to geometrical distribution (see Fig. 4, upper-right panel).
As a result the overall distribution of particles will be of the so called Pòlya-Aeppli
distribution [17]. It fits our examplatory data reasonable well. It is interesting to
notice at this point that to get NB distribution resulting from the classical clan
model of [10] one should have logarithmic rather than geometrical distribution
of particles in EEC, which would then not account for the bosonic character of
produced secondaries. In this respect our model differs from this classical clan
model and we see that what we have obtained is indeed its quantum version,
therefore its proposed name: quantum clan model.

The first preliminary results presented in Fig. 4 are quite encouraging (espe-
cially when one remembers that so far effects of resonances and all kind of final
state interactions to which C2 is sensitive were neglected here). It remains now to
be checked what two-body BEC functions for other components of the momentum
differences and how they depend on the EEC parameters: T , P0 and σ. So far the
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Figure 4. Upper panels: distribution of cells and particles in a given cell. Lower-left panel:
the corresponding summary P (n) which is convolution of both P (ncell) and P (np). Lower-right
panel: examples of the corresponding corresponding correlation functions C2(Q) . Two sets of
parameters were used. Data are from [16].

main outcome is that BEC are due to EEC’s only and therefore provide us mainly
with their characteristics (it is worth to mention at this point that essentially
this type of approach has been also proposed to simulate Bose-Einstein conden-
sate phenomenon in [18]). This should clear at least some of many apparently
”strange” results obtained from BEC recently (see Quark Matter 2004 proceed-
ings, especially [19]). The most intriguing is the fact that apparently the ”size” of
the hadronizing source deduced from the BEC data does not vary very much with
energy and with the size of colliding objects as has been naively expected [2]. In
our approach this has simple explanation, see Fig. 5. The point is that BEC are
mainly sensitive to the correlation length, which in our case is dimension of the
emitting cell, not to dimension of the ”fireball” in which hadronization process
takes place. The size of this fireball depends mainly on the number of produced
secondaries [19], which in our case is given by the ”partition temperature” pa-
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Figure 5. Schematic view of how in our approach the size of the EEC compares with the size of
hadronizing fireball at different energies and for different types of projectiles.

rameter T and by the ”chemical potential” parameter µ = T · lnP0. They are
changing with mass M (and therefore with the energy of reaction and the type
of projectile). On the other hand dimension of EEC is given entirely by param-
eter σ describing the spread of energy of particles belonging to this EEC, which
is only weakly depending on energy (if at all). We shall close with mentioning
that our approach accounts also for multiparticle BEC and, because of this, by
intermittence effects seen in data (at least to some extend) [6].
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FRONTIERS OF HIGH ENERGY COSMIC RAYS

MÁRIO PIMENTA

LIP, Av. Elias Garcia, 14-12, 1000-149 Lisboa, Portugal
IST, Av. Rovisco Pais,1049-001 Lisboa, Portugal

Abstract

Ultra high energy cosmic rays are a mystery and a challenge. Its theoretical
and experimental status, as well as the expected performance of the future
generation of experiments, are briefly reviewed.

Cosmic rays were always a frontier domain. In this short lecture I have no time to

of the already 100 years of history. I would nevertheless refer two events: the
discovery by Victor Hess in 1912, with pioneer balloon flights, of a strange radiation
coming from the space and not correlated with the sun [1]; the discovery of Ultra
High Energy Cosmic Rays (UHECR), with an energy greater than 1019 eV, by
John Linsley in 1962 at Volcano Ranch [2].

The energy spectrum of cosmic rays extends over more than 11 decades of
energy, following an almost perfect power law (see figure 1) [3]. The fluxes are
quite high at low energies (up to 1 particle/m2/s for energies of the order of the
GeV), but extremely small at the highest energies (1 particle/km2/century at
1020 eV). Under a closer inspection, changes in the slope can be observed around
1015 eV (the knee) and 1018 eV (the ankle). There is a great deal of interest
these two regions. This review will however be dedicated to the far end of the
spectrum (figure 2), where just a few events have been observed, mainly in two
experiments: AGASA [4] and HiRes [5]. While AGASA seems to be compatible
with no slope change in the spectrum at these extreme energies, HiRes seems to
suggest a dramatic drop. The statistical significance of the difference between the
two experiments is however slightly above 2σ [6]!
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There is however a consensus: UHECR do exist and have been observed. The
most energetic event ever registered was collected by the Fly’s Eye experiment in
1991 and has an estimated energy of 3.2 1020 eV [7]. The geographical distribution
of the highest energy data (above 4 1019 eV) collected by AGASA is isotropic at
large scales but shows some clustering at smaller scales: one triplet and six doublets
with ∆(Θ) = 2.50 [8].

There are many papers discussing possible acceleration mechanisms able to
produce particles with such energies. The main idea is to have somewhere a shock
wave, and particles undergoing successive crossings of the shock front. It is the so

The cosmic ray spectrum [23].Figure 1.
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called first-order Fermi mechanism [9]. The non-relativistic case is well understood,
but the relativistic case is much more difficult. The regions where such events may
occur can be characterised by two variables: the size of the region and the intensity
of the existing magnetic fields. It is possible to have confinement either in small
regions, if there is an intense magnetic field, or, if the magnetic field is weak, in
extended regions. Such a feature is usually summarised in the so called Hillas
plot (figure 3) [10]. There are several possible sources for 1020 eV UHECR but
at higher energies it is much more difficult to find good candidates. Furthermore,
energy losses due to Bremsstrahlung have to be taken into account whenever the
accelerations are very large [11].

In any case, the observed UHECR would have to propagate through very large
distances before reaching the Earth. But there is no empty space. The space is,
as it is well known, filled with the Cosmic Microwave Background (CMB). The
interaction of the UHECR with the CMB γs can be quite dramatic if the centre-
of-mass energy is above the first inelastic channel threshold. The net result is that
UHECR with energies at the source well above 1020eV would have dropped to
about 1020eV by the time they reach Earth. This is the famous GZK effect [12].
GZK is not however a real cut-off. The threshold energy depends on many param-
eters (the type of the sources and its distribution in space, the existing magnetic
fields, the particle type, . . . ).

But if AGASA is right how to avoid the GZK? One possible solution is to
imagine that UHECR are particles with small electromagnetic couplings but able
to originate normal air showers. Possible candidates may be neutrinos. In the Z
burst model [13], very energetic neutrinos collide with the cosmological neutrino
background producing energetic Z0 bosons near our galaxy. It is an elegant model,
but it implies the existence of intense and monochromatic neutrino beams with
an energy around 4 1021eV! There are many other proposed solutions [14] such as:
enhanced neutrino-nucleon cross-sections, the existence of “new” particles (axions,
glueballinos, . . . ) or even the violation of Lorentz symmetry which could lead to a
change on the relevant thresholds. However in this kind of models (the bottom-up
scenarios), UHECR would be produced as secondaries of very energetic “ordinary”
particles (E > 1022eV). There is another way out (the top-down scenarios):
UHECR may be decay products of super-heavy particles, which would be produced
continuously by cosmological “objects” left over after the phase transitions that
the Universe has suffered, or even produced directly in the early Universe. The
challenge is to increase the statistics of observed UHECR. If this is achieved,
models can be disentangled looking at the energy spectrum power law, the UHECR
composition, the geographical distribution, the possible counter-parts in other
wavelengths - all a program!
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Another major challenge in cosmic ray frontiers is the observation of high en-
ergy cosmic neutrinos. In fact astrophysical neutrino beams should exist [15]! A
safe prediction is the existence of the cosmological neutrinos produced in the in-
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Figure 2.

Figure 3. plot [10].
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teraction of the primordial UHECR with the γCMB or with clouds of intergalactic
gas. These interactions produce collimated pions and kaons, which will originate
energetic neutrino beams. But there are many other models: from the Z burst
mechanism, to the possible Zevatron sources (AGNs, GRBs, supernovae, ...) and
to the top-down scenarios discussed just above (see figure 4). These neutrinos
can propagate to Earth almost unscattered and so their detection would open an
important channel to observe the Universe. However, so far, there is no experi-
mental measurement above 106 GeV. The existing limits, as well as the expected
sensitivities of future experiments, are shown in figure 5.

UHECR are the most energetic beams ever accessible. The centre-of-mass en-
ergy of a 1019−1020 eV UHECR collision in the atmosphere is around 100-400 TeV,
which is well above the present and future man made accelerators. But UHECR
fluxes are small, the accessible kinematic region is very narrow (very forward re-
gion) and the detection capability is much poorer than in conventional Particle
Physics experiments. The solution for these low fluxes is to have huge detection
areas. The surface of the Pierre Auger observatory is around 3000 Km2 [16], while
the planned space based experiments like EUSO [17] will cover a surface of around
200000 Km2. The limit is the Earth surface, which is still a factor 1000 larger.
Nevertheless, important particle physics results were already obtained or are ex-
pected in the near future. For instances: pp cross-sections measurements were
extended to higher centre-of-mass energies (figure 6) [18]; heavy quark production
is very abundant at these energies and may represent an important channel for
QCD studies; new particles (Higgs, SUSY, excited fermions, leptoquarks...) with
masses above the TeV can be produced; Lorentz symmetry can be tested at very
high boost factors; the existence of extra-dimensions may imply important en-
hancements in the neutrino-air cross-section [19]. The search for new physics is,
therefore, a relevant issue in the next generation of UHECR experiments and an
effort for finding new signatures must be pursued. An example of such possible
signatures is the so-called double-bang signature. An example would be the ob-
servation, in an experiment like EUSO, of the production and the instantaneous
decay of a microscopic black hole (first bang), followed, at a measurable distance,
by the decay of an energetic tau lepton (second bang) [20].

In the next decade a spectacular increase in the number of observed UHECR
is expected (one to two orders of magnitude). Auger is right around the corner.
It combines the technique of sampling the shower particles reaching the Earth
surface with the technique of detecting the fluorescence light produced by the
excitation of Nitrogen molecules by the low energy electrons of the shower. At
present, 25% of the 1600 sampling detectors (water tanks) and two of the three
sites for fluorescence light detection are already fully working! EUSO, an ESA
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mission planned for the first years of the next decade, is basically a telescope
looking downwards to the Earth in order to collect a fraction of the fluorescence
light produced in the interaction of the UHECR with the atmosphere. And there
are already plans to go further, OWL [21] is a NASA mission under study which
will use two satellites, reaching a field of view about 5 times larger than EUSO.
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Figure 4.

Figure 5.

Figure 6.

Expected neutrino fluxes [15].

Sensitivities for neutrino detection[15].

The PP crosssection[18].
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Finally, there are several experiments on the way to the detect the coherent radio
emission by very energetic showers [22].

New frontiers in Particle Physics, Astrophysics and Cosmology are right ahead
of us!

I would like to thank Catarina Esṕırito Santo and Pedro Abreu for reading the
manuscript and help in preparing these proceedings, and Alessandro De Angelis
for the nice atmosphere during all the conference.
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OUTLOOKS ON GAMMA RAY ASTROPHYSICS
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Abstract

Gamma Ray Astrophysics, extending from MeV to PeV, covers a wide range
of phenomena in the domain of both particle physics and astrophysics, pro-
viding one of the most active field of modern astroparticle physics. Moreover,
the study of gamma rays from the universe can unveil some profound im-
plications for the foundation of physics itself (from Quantum Gravity to
Cosmology) and provide a challenging domain for technology and comput-
ing too, bringing together researchers of different domains in an growing
interesting crucible of ideas and experiences.
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WILL ANTIHYDROGEN LIGHT SHINE?
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Abstract

In 2002 the ATHENA experiment announced the first production of anti-
hydrogen atoms at cryogenic temperature. This achievement is an impor-
tant step towards antimatter atoms fine spectroscopy. Antihydrogen light
is expected to make it possible to carry out very accurate CPT invariance
measurements as well as, for the first time ever, tests on the gravitational
interaction between matter and antimatter with important consequences for
cosmology. Over the last two years significant results have been obtained in
the investigation of antihydrogen production mechanisms. They are all the
more important given the strong limitations imposed by the neutral atom
trapping techniques required for fine spectroscopy measurements. This talk
will focus on the main scientific motivations in the study of cold antihy-
drogen, the results obtained so far and the medium-term plans for the first
measurements of the interaction between antiatoms and photons.
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PHYSICS POTENTIAL OF THE ATLAS EXPERIMENT
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Abstract

The ATLAS experiment at the CERN Large Hadron Collider (LHC) will
present the most extraordinary challenges that particle physics has ever
faced. By studying the collisions of high intensity proton beams at a center-
of-mass energy of 14 TeV, ATLAS will explore for the first time the TeV
scale region. This paper reviews the experiment’s potential for discovery of
physics beyond the Standard Model (SM) and for the investigation of the
nature of electroweak symmetry breaking.

1 Introduction

The SM has been verified with an impressive accuracy, i.e. to 0.1% or better in
most cases [1]. However, there are numerous indications that this is not the ulti-
mate theory of elementary particles. Among them, the evidence for atmospheric [2]
and solar [3] neutrino oscillations, and the incapacity of the SM to give satisfac-
tory answers to fundamental questions [4] such as the mass and flavour problems,
baryogenesis and the matter-antimatter asymmetry in the universe, the origin of
dark matter, the size of the cosmological constant, and the unification of gravity
with the other interactions.
One of the most urgent issues is to explain the origin of the particle masses. In
the SM particles acquire a mass through their coupling with the Higgs boson.
The Higgs mass is not specified by the theory, which provides only an upper
bound of ∼1 TeV. Direct searches performed at LEP have set a lower limit of
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mH > 114.4 GeV [5], and a fit of the SM to the data collected by various ma-
chines (LEP, Tevatron, SLC) gives a 95% C.L. upper bound on mH of about
250 GeV [1]: experimental data therefore favour a light Higgs boson.
The introduction of the Higgs mechanism brings however some problems: the

Higgs mass increases with the energy scale Λ up to which the SM is valid and
therefore it requires a large amount of “fine tuning” to be stabilized at the elec-
troweak scale. In addition, the generation of fermion masses spoils the simplicity
of the SM with a proliferation of unknown parameters. There are several candi-
date scenarios for physics beyond the Standard Model, including Supersymmetry
(SUSY), Technicolour and theories with Extra-dimensions. All of them predict
new particles in the TeV region, as needed to stabilize the Higgs mass.

ATLAS [6] is a general purpose detector which will operate at the LHC at centre-
of-mass-energies of 14 TeV from 2007 onwards, in search of the Higgs and of new
and even unexpected physics. The design of the detector will allow measurement
and identification of leptons, photons up to rapidities |η| < 2.5 and jets up to ra-
pidities |η| < 5, thus allowing the exploitation of a wide range of physics signatures.
Given the high-energy and high-luminosity which will characterize the LHC, the
rate of events produced in the collisions will be huge and LHC will be a factory
of all particles with masses up to a few TeV which have reasonable couplings to
SM particles. For example, when the machine luminosity will be about a factor of
ten lower than the design luminosity L = 1034 cm−2 s−1, million of events should
be collected for many SM channels over only one year of data taking (i.e.: 107

tt̄, 108 W → eν) and 
 130 H → γγ with mH = 120 GeV). This will allow not
only to explore new territories of discovery, but also to perform many precision
measurements (like the determination of the top and W mass, or the study of the
Triple Gauge Couplings) with high accuracy. In the following, we will concentrate
on the Higgs and SUSY searches.

2 Searches for the SM Higgs boson

The SM predicts that the Higgs couples to fermions and bosons with strength
proportional to their masses. Therefore, for mH < 120 GeV the Higgs boson
should decay mainly into bb, whereas for larger masses decays into W pairs and
Z pairs should dominate. Gluon-gluon fusion through a top-quark loop is the
dominant production channel for all masses. Vector boson (WW , ZZ) fusion
contributes about 20% of the cross-section for mH ∼ 120 GeV and becomes
more and more important with increasing mass. This process leads to the very
distinctive topology of a Higgs boson accompanied by two jets emitted in the
forward regions of the detector and very little activity in the central region (since no
colour lines are exchanged between the two interacting bosons). Higgs production
with a tt pair or a W/Z boson has a smaller cross-section; however it allows
detection of the purely hadronic H → bb decay mode, because the reconstruction
of the particles produced in association with the Higgs provides additional handles
against the large QCD backgrounds. A SM Higgs boson can be discovered over

Physics Potential of the
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Figure 1. a) The expected SM Higgs signal significance in ATLAS in the low-mass region

for 30 fb−1. The total significance (full line) and the contributions of the individual channels
(symbols) are shown. b) The regions of the (constrained) MSSM plane {mA-tanβ} where the
various Higgs bosons can be discovered at the LHC through their decays into SM particles. The
region below the thick curve has been excluded by LEP.

the full allowed mass range (114.4 GeV to 1 TeV) with only 10 fb−1 of integrated
luminosity, which corresponds (in principle) to only one year of LHC operation
at low luminosity. The Higgs boson discovery should be easier and faster for
masses above 200 GeV, thanks to the “gold-plated” H → ZZ → 4� (where � =
e, µ) channel, which is essentially background-free. In contrast, the most difficult
region is the low-mass region close to the LEP limit and at the overlap with
the Tevatron reach. The total significance of about 4σ per experiment (4+2.2

−1.3 σ
including the expected systematic uncertainties) is more or less equally shared
among three channels (see Fig. 1 a): H → γγ, ttH production with H → bb, and
Higgs production in vector-boson fusion followed by H → ττ . If a Higgs boson
were to be discovered at the LHC, ATLAS should be able to perform several
precise measurements of its properties. For example, with the ultimate integrated
luminosity of 300 fb−1 the Higgs mass should be measured with the remarkable
experimental precision of 0.1% over the mass region up to ∼ 400 GeV. This direct
measurement can then be compared to the indirect determination of mH obtained
from the measurements of the W and top masses. The expected precisions at the
LHC are ∼15 MeV on mW and ∼1 GeV on mtop [8], leading to a 25% (indirect)
accuracy on the mass of a light Higgs boson.

3 Searches for Supersymmetry and beyond

SUSY [9], a symmetry relating fermions and bosons, that is matter fields and force
fields, is one of the relevant scenario today for physics beyond the SM [4]. It does
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not contradict the precise, and therefore very constraining, electroweak data, it
predicts a light Higgs boson, as favoured by these data, it allows unification of
the gauge couplings at the Grand Unification scale and a natural incorporation
of gravity, it is an essential element of string theories, it provides a candidate
particle for the universe cold dark matter. Furthermore, it is able to stabilize the
Higgs boson mass, through radiative corrections, provided that the SUSY particles
(sparticles) have masses at the TeV scale or below. In SUSY, for each SM particle
p there exists a supersymmetric partner p̃ with identical quantum numbers except
the spin which differs by half a unit. However, up to now there are no experimental
evidences for SUSY. Direct searches for sparticles at LEP and Tevatron have been
unsuccessful, and have set mass lower bounds in the range 90-300 GeV depending
on the sparticle type. Important phenomenological consequences arise from the
fact that the theory contains a multiplicative quantum number, called R-parity,
which takes opposite values for SM and SUSY particles. The conservation of R-
parity, motivated by cosmological arguments, is assumed here. This implies that
sparticles are produced in pairs and that the Lightest Superymmetric particle
(LSP), to which all sparticles eventually decay, must be stable. In most models the
LSP is the lightest neutralino χ0

1, which is a stable, massive and weakly-interacting
particle, and therefore an excellent candidate for the universe cold dark matter. At
the LHC, the dominant SUSY process is expected to be the production of pairs of
squarks or gluinos, because these are strongly-interacting particles with QCD-type
cross-sections. For instance, a sample of about 104 q̃q̃, g̃g̃ and q̃g̃ events should
be produced over only one year of data taking at L = 1033 cm−2 s−1 if squarks
and gluinos have masses of ∼1 TeV. Because these sparticles weigh at least 200-
300 GeV, given the present Tevatron limits, they are expected to decay through
long chains with several intermediate steps, and hence should give rise to very
busy final states containing in general several jets, leptons and missing transverse
energy. Squark and gluino masses of 1 TeV are accessible after only one month
of data taking at L = 1033 cm−2 s−1, once the backgrounds (e.g. tt production,
mismeasured QCD multijet events) and the detector performance (in particular
tails in the calorimeter response to jets) will have been well understood. The
ultimate mass reach is up to ∼3 TeV for squarks and gluinos. As a consequence,
SUSY discovery at the LHC could be relatively easy and fast, and if nothing is
found at the LHC, TeV-scale Supersymmetry will most likely be ruled out, because
of the arguments related to stabilizing the Higgs mass mentioned above. On the
other hand if SUSY is there, ATLAS should go beyond the mere discovery phase,
being able to perform several precise measurements of the sparticle masses, and
thus determining the fundamental parameters of the theory with a precision of
∼10% or better in many cases, at least in minimal models like mSUGRA [10].
The correct identification of the underlying theory and the measurements of its
fundamental parameters will not be easy for general models with many unknown
parameters. It is however hoped that, by exploiting the expected richness of the
data with a lot of different measurements (masses, cross-sections, decay modes,
etc.) and observations (e.g. excess of events with b-quarks or taus), and with some
guidance from theory, it will eventually be possible to narrow the a priori large
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spectrum of models and pin down the correct framework. A rich phenomenology
is also expected from the SUSY Higgs sector, which consists of five bosons, three
neutral (h,H, A) and two charged (H±). The mass of the lightest one, h, is
predicted to be below 135 GeV, whereas the others are expected to be heavier
and essentially mass-degenerate over most of the parameter space. The Higgs
sector of the Minimal Supersimmetric Standard Model (MSSM) can be described
in terms of the mass of the A boson mA and of the parameter tanβ (the ratio of
the vacuum expectation values of the two Higgs doublets which give rise to the
five physical states). Figure 1 b shows the regions of this parameter space where
the various Higgs bosons can be discovered at the LHC through their decays into
SM particles. It can be seen that over a large fraction of the parameter space
two or more Higgs bosons should be observed. The only exception is the region
at large mA and moderate tanβ, where only h can be discovered at the LHC,
unless the heavier Higgs bosons have observable decays into SUSY particles. The
LHC may therefore miss part of the SUSY Higgs spectrum. Many other examples
of physics beyond the SM have been studied by ATLAS: theories with Extra-
dimensions, Little Higgs models, Technicolour, Compositeness, etc, to exploit all
the relevant expected topology (in particular at the trigger level) and to address
as many signatures as possible. The LHC discovery potential for some scenarios
beyond the SM is illustrated in Table 1. In most cases the direct reach extends
well beyond the 1 TeV “threshold”. More details can be found in Refs. [6, 11].

Table 1. LHC discovery potential for some scenarios beyond the Standard Model.

Scenario/channel Reach

Z ′ → �� m∼5 TeV
W ′ → �ν m∼6 TeV
Leptoquarks m∼1.5 TeV
Compositeness Compositeness scale Λ ∼ 40 TeV
Excited quarks m∼6.5 TeV
Extra-dimensions Gravity scale M ∼ 9 TeV for 2 extra-dimensions
Monopoles m∼20 TeV

4 Conclusions

In about three years from now the LHC will start operation, and CERN and exper-
imental particle physics will enter a new epoch. Given the compelling motivations
for new physics at the TeV scale, one can anticipate a profusion of exciting re-
sults from a machine able to explore this scale in detail, with a direct discovery
potential up to particle masses of ∼5-6 TeV. As a consequence, the LHC should

M. Cobal
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provide definitive answers about the SM Higgs mechanism, Supersymmetry, and
several other TeV-scale predictions that have resisted experimental verification for
decades.
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A GLOBAL OPTIMIZATION ALGORITHM FOR FINITE DENSITY
QUARK MATTER

RAFFAELE BUFFA a

a Dipartimento di Fisica, Università di Udine, via delle Scien-
ze 208, 33100 Udine, Italy

Abstract

Using a parallel genetic algorithm we study a SU(3)f ×SU(3)c Nambu Jona-
Lasinio model at finite density and zero temperature within the context
of normal and superconducting quark matter. We study the most stable
charged configuration in normal quark matter with the use of the Powell
constraint techniques and we obtain the phase diagram of superconducting
quark matter in the µ, µQ plane for different values of the t’Hooft interaction.
At the superconducting phase transitions we embed the genetic algorithm in
a branch & bound algorithm.

1 Introduction

Stability of compact astrophysical objects and heavy ion collisions are controlled
by the behavior of finite density and low temperature hadronic matter. At these
densities QCD must be treated in a nonperturbative way. We choose to carry on
our analysis by mean field approximation applied to a Nambu Jona-Lasinio (NJL)
model. The mean ingredient in the determination of the ground state of a zero
temperature field theory is the detection of the global minimum of the effective
potential or of the energy. To this aim we adopt a parallel elitist genetic algorithm
(for a review about genetic algorithms we send to [1]). We have tried different
kinds of parallelization and we have found it convenient to adopt the evolution of
parallel populations interacting by the crossing of parents of different populations.
This new crossing is able to give richer chromosome variety to the individuals.
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Figure 1. Normal quark matter; fig.1.a left: the fractions rs = ρs/ρB (solid line) and ru =
ρu/ρB = rd = ρd/ρB (dotted line); fig.1.b right: the constituent masses (Mev) Ms (solid line)
and Mu = Md (dotted line)

A particular attention must be payed to the proximity of superconducting phase
transitions. The genetic algorithm may lose the true minimum of the effective
potential. The trivial solution is to increase the number of individuals of the pop-
ulations and/or the number of generations. We have found it more convenient to
embed the genetic algorithm in a simple branch & bound algorithm. The relax-
ation and the value of the objective function are given by the genetic algorithm
applied to the effective potential. Concerning the branching we have divided the
variables’ domain in distinct regions corresponding to different phases. We have
tested the efficiency of our approach with respect to results taken from the litera-
ture [2], [3] and we have found good agreement except for what concerns fig.5.6 of
[2] at zero temperature and for the parameters set I. In the second section we ad-
dress the problem of finding the most stable charged solution for SU(3)f ×SU(3)c

normal quark matter at zero temperature and finite density. The third section is
devoted to the determination of the phase diagram in the µ, µQ plane at differ-
ent values of the t’Hooft interaction for SU(3)f × SU(3)c superconducting quark
matter at zero temperature (µ is the chemical potential relative to the total quark
number density and µQ is the chemical potential relative to the electric charge
density). The two problems are non linear and non convex. In the last section we
report the conclusions. The analysis has been carried on on a cluster composed of
three nodes.

2 Normal quark matter

In this section we consider a NJL Lagrangian without superconducting interac-
tions:

L = Ψ̄(i
∂ −mbare)Ψ + GS

(
(Ψ̄λaΨ)2 + (Ψ̄iγ5λaΨ)2

)

−K
(
Detf (Ψ̄(1 + γ5)Ψ) + Detf (Ψ̄(1− γ5)Ψ)

)
(1)
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Figure 2. Superconducting quark matter; fig.2.a left: the phase diagram in µ (Mev), µQ (Mev)

plane for K = 0 Mev−5; fig2.b right: the phase diagram in µ (Mev), µQ (Mev) plane for
K = 7.795 10−14 Mev−5. Region I corresponds to D2 = D5 = D7 = 0, region II corresponds to
D2 �= 0, D5 = D7 = 0, region III corresponds to D2 � D5 � D7 �= 0

where summation over repeated indices is assumed, λa are the SU(3) flavor matri-
ces and Detf is the determinant in flavor space. Our aim is to determine the zero
temperature ground state of the theory in the bulk without leptons and without
imposing constraints over the charge and the β-equilibrium. The freedom in charge
and β-equilibrium makes necessary to minimize the energy with respect to the chi-
ral condensates φu, φd, φs and the densities ρu, ρd, ρs of up, down and strange
quarks maintaining fixed the total density at the desired value. To fix the total den-
sity we use a simple repair algorithm in the generation of the initial populations and
a Powell [1] constraint method during the evolution of the populations. We have
chosen the following set of parameters: Λ = 602.3, GS = 5.0575 10−06 Mev−2,
K = 1.5590 10−13 Mev−5, mu = 5.5 Mev, md = 5.5 Mev, ms = 140.7 Mev where
Λ is a sharp cut-off in momentum space. We send to [4] for the derivation of the
energy of the system in mean-field approximation. We report in fig.1.a and fig.1.b
respectively the fractions ρq/ρB of the densities and the constituent masses Mq of
up, down and strange quarks with respect to ρB/ρ0 (ρB is the total density and
ρ0 is the nuclear density). The most stable solution is positively charged.

3 Superconducting quark matter

In this section we consider a NJL model with superconducting interactions. The
total Lagrangian is given by adding Lqq to eq.1:

Lqq = H(Ψ̄iγ5λaλACΨ̄T )(ΨT Ciγ5λaλAΨ)

where summation over repeated indices is assumed, λA are the SU(3) color matrices
and C is the charge conjugation operator. NJL is a low energy effective theory
of QCD. There is no reason to assume that the parameters of the NJL at finite
density must reproduce the vacuum quark masses. We would aspect a density
dependence of the parameters. Therefore, it is of some interest to study the finite
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density phase diagram at varying of some parameters. In this section we choose
the simple approach of varying the t’Hooft interaction without paying attention
to the vacuum properties: we start with a set of parameters that reproduce the
vacuum constituent quark masses Λ = 602.3, GS = 6.3926 10−06 Mev−2, H = GS ,
K = 0 Mev−5, mu = 5.5 Mev, md = 5.5 Mev, ms = 112 Mev (taken from [2],
parameters set I) and we increase the t’Hooft interaction K maintaining fixed Λ,
GS , H, mu, md and ms. We fix the color chemical potentials to zero and we analyze
the superconducting zero temperature phase diagram in the bulk at varying of the
chemical potentials µ and µQ (µ is relative to the total quark number density and
µQ is relative to the electric charge density). We deal with the minimization of the
effective potential over the chiral condensates φu, φd, φs and the superconducting
condensates D2, D5, D7. The evaluation of the effective potential has been carried
out without approximations other than the mean field approximation in the same
spirit of [5]. We report in fig.2.a and fig.2.b respectively the phase diagrams for
K = 0 Mev−5 and for K = 7.795 10−14 Mev−5. We can see: i) the region
of superconductivity is restricted at increasing of the t’Hooft interaction; ii) the
line separating the two phases relative to 2SC (D2 
= 0, D5 = D7 = 0) and to
CFL (D2 
 D5 
 D7 
= 0) is practically unaffected by the change of the t’Hooft
interaction.

4 Conclusions

We have applied a parallel genetic algorithm to two non convex problems: i) the
determination of the most stable charged solution of zero temperature normal
quark matter in the bulk; ii) the determination of the phase diagram in the µ, µQ

plane of zero temperature superconducting quark matter in the bulk for different
values of the t’Hooft interaction. Concerning the first application we have obtained
a positively charged solution. The result must be taken with care because we
have neglected leptons degrees of freedom and β-equilibrium. Our result could
be useful for mixed phase studies [6]. The second application is much more time
consuming and the parallelization becomes really useful. With our choices of the
parameters we have found superconducting gaps of the order of 200 Mev. At the
superconducting phase transitions we have improved the genetic algorithm by a
branch & bound algorithm.
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MULTIPHOTON APPROACH ON PAIR PRODUCTION UNDER
THE LIGHT OF RECENT EXPERIMENTAL AND THEORETICAL
INVESTIGATIONS

Technical University of Crete, Institute of Matter Structure and
Laser Physics, Chania 73100, Crete, Greece

Abstract

We explore the range of applicability of the imaginary time approach and
the two level on resonance approach of e+e− pair production from vacuum
both theoretically and on the E-144 experiment. We show that the resonance
approximation is more efficient by many orders of magnitude.

1 Introduction

One of the most intriguing non-linear phenomenon in QED is particle-antiparticle
pair production from vacuum in the presence of strong elm fields[1]. Schwinger
[2] implementing the proper time method obtained conditions under which pair
production is possible: F = 1

4FµνFµν , G =1
4Fµν F̃µν , where Fµν and F̃µν are the

elm field tensor and its dual respectively, must be such that such that neither
F =0 , G =0 nor F >0 , G =0 . For the case of a uniform, constant electric field
he obtained a probability density w ∼ 1

n2 e−
m2πn

eE . Brezin and Itzykson [3] exam-
ined the case of pair creation in the presence of a pure oscillating electric field
E by applying a version of WKB approximation and treating the problem in an
analogous way as in the ionization of atoms(where the three basic mechanisms
multiphoton, tunnelling and over the barrier ionization are present), considering
the pairs as bound in vacuum with binding energy 2mc2. With the critical value
of electric field strength Ec being Ec = mc2

eλc

 1.3 × 1018V/m and under the
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conditions E � Ec , �ω � mc2, they obtained a probability per 4-Compton
volume of e+e− pair creation given by wBI = e2E2

π�c
1

g(γ)+
γg′(γ)

2

exp
(
−πm2

eE g(γ)
)
,

where g(γ) = 4
π

∫ 1

0

(
1−y2

1+γ2y2

) 1
2

dy . The parameter γ = mcω
eE is the equivalent of

the Keldysh parameter in the ionization of atoms and the above formula interpo-
lates between the regimes γ � 1 (adiabatic non-perturbative tunneling mechanism
regime) and γ � 1 (multiphoton mechanism regime ) . Popov [4] using the imagi-
nary time method obtained more accurate formulas for pair production taking also
in to account interference effects. The condition F <0 is achieved by using two
oppositely propagating laser beams. The probability over a 4-Compton volume

w is obtained as w =
∑

n>n0
wn where w = m4

2
3
2 π4

(
E
Ec

) 5
2

e
−π Ec

E

ş
1− γ2

8 +O(γ4)
ť

for
γ � 1. For γ � 1

wn =
2
π3

m4 (n0)
− 5

2

(
e

4γ

)2n

q (n− n0) , and w ≈ 2m4

π3
(n0)

− 5
2

(
e

4γ

)2n0

, (1)

where q (n− n0) = 1
2e−2(n−n0)

∫ 2(n−n0)

0
ett−

1
2 dt and n0 = 2mc2/�ω is the thresh-

old number of photons. The number of e−e+pairs created can be obtained by
multiplying the above relations by the 4-volume λ3τ = λ4/c where τ is the pulse
duration and λ is the elm wavelength. Specially for the γ � 1 regime

N(τ) ≈ 2πn
3
2
0

( ω

m

)(4γ

e

)−2n0

N ′, (2)

where N ′ = ωτ/2π is the number of oscillations of the electric field in a laser pulse.
In a recent paper Avetissian et al [5] treated the problem of e+e− produc-

tion in a standing wave of oppositely directed laser beams using a two level
multiphoton on resonance approximation. Pairs are produced close to antin-
odes and in spacial dimensions l � λ. Transitions can be thought to occur
between two energy levels from −E to E by the absorption of n photons and
the multiphoton probabilities will have maximum values for resonant transitions
2E = nω. The probability of n-photon e+e− production process with certain en-
ergy E , summing over the spin states, obtained as Wn = 2f2

n

Ω2
n

sin2
(
Ω2

nτ
)
, where

fn = E
2py

(
1− p2 cos2 θ

E2

) 1
2

nωJn(4ξ
mpy

Eω ), θ is the angle between the momentum of

produced e−(e+) and the amplitude of the electric field, the parameter ξ = 1
γ , Ωn =

√
f2

n + ∆2
n

4 is the ’Rabi frequency’ , τ is the interaction time and ∆n = 2E −nω is
the detuning of resonance. With the usual condition Ωn � ω, field intensities are
such that ξ � 1 (i.e. γ > 1). The function fn (Rabi frequency on exact resonance)
and correspondingly the probabilities obtained maximize when n = N = 2

√
2m/ω.

Then the angular distribution of a n-photon probability density on exact reso-

nance is given by dwn

do = n3ω3

64π2
n2ω2 sin2 θ+4m2 cos2 θ

(n2ω2−4m2)
1
2 cos2 θ

J2
n

(
4ξ

m(n2ω2−4m2)
1
2 cos θ

nω2

)
where
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do = sin θdθdϕ. dw
do =

∑
n=n0

dwn

do and integrating over the solid angle, the total
probability density can be found in [5]. We shall use only dwn

do at angle θ = 0
and for n = N as this is quite adequate to give an estimate of the power of this
approach compared to others.

2 Comparison of the imaginary time and two level resonance approx-
imation

The relation for dwn

do at angle θ = 0 and for n = N becomes

dwN

do
|θ=0=

1√
2

m4

π2
J2

N (ξN) (3)

Numerical simulations can be performed for the common Nd laser [5] with ω =
1.7eV , λ = 1.074µm , I = 1.35W/m2 and ξ = 0.9995. As N ∼ 106 , JN (ξN) ∼
exp(N tanh a−Na)√

2πN∈tanh a
, where a = sech−1ξ, giving dwN

do |θ=0= 1.9 × 1040m−3s−1 . To
meet the conditions for two level resonance approximations a 4-volume V =
d2lτ = (10λ)2 (0.1λ) 10fs can be chosen (i.e maximum laser intensity close to the
diffraction limit, where the radius of focus is d ∼ 10λ and duration of the pulses
τ = 10fs), leading to 108−109 number of pairs per laser pulse. On the other hand
if we use relation (2) for the same laser characteristics as above we obtain that
in the above four volume the number of pairs N(τ) predicted is approximately
10−216546 per laser shot, which suggests that the multiphoton on resonance ap-
proximation is by far more efficient. Moreover requiring the same number of pairs,
for ω = 1.7eV , the imaginary time method would require very high E of the order
of 1017V/m while being in the regime γ < 1. The above analysis shows that im-
plementing the resonance approximation, one does not need to use laser such as
XFEL [6] or the laser of NIF (National Ignition Facility) [10] in order to observe
e+e− pair creation as present lasers technology is adequate.

3 Application of the imaginary time and the multiphoton resonance
approximations on E-144 experiment.

The first experimental verification of e−, e+ pair production took place in SLAC
and it is known as E-144 experiment [7]. In the first stage non linear Compton scat-
tering [9], of highly energetic electrons (maximum 46.6GeV) with n laser photons
(527nm, ω = 2.35eV and laser pulses of nominal energy 500mJ ) , e+nω → e′+ω′

, produces backscattered photons ω′(27-30Gev) which in the second stage in-
teract via the multiphoton Breit -Wheeler [8] mechanism with the laser photons,
ω′ +nω → e− e+,to produce e−, e+ pairs . The scattering occurs at angle a = 17◦

between the initial electron and the laser beam (and thus for pair creation F < 0
holds). The minimum number of photons required for pair production is given
by n0 = 2m2(1+η2)

ωω′(1+β cos a) where η = ξ = γ−1. The number of positrons measured in
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21962 laser pulses was 175 ± 13 for a n = 5.1 ± 0.2(statistical)+0.5
−0.8(systematic)

multiphoton order process, in very good agreement with the theory. We shall
examine whether the result of E-144 experiment can be in agreement with the
two methods mentioned above. In E-144 experiment ω′ ∼ 30GeV in the lab-
oratory frame. Changing to the electron’s frame in the beam, both the laser
photons and the backscattered ones have the same energy ω = 2.35 × γLeV
where γL = 46GeV

0.511MeV ∼ 105 is the Lorenz factor, λ = 5. 78 × 10−12m and pe-
riod of the field T = 1. 9× 10−20s. Similarly the electric field EL = γL

√
377Ilaser

∼ 3×1017V/m ( with maximum laser intensity at focus Ilaser ∼ 1.35×1022W/m2

), very close to Ec for pair production. Thus the E-144 experiment, in the elec-
trons’ frame, can be viewed as an e+e− production from vacum in the presence
of strong field. Applying the imaginary time approach with relativistic invariant
γ = 2.7, the probability density wn of (1) (with n0 = 4. 77) has a pick when
q(n − n0) maximizes and this happens for n 
 5 , thus verifying that the multi-
photon process is a 5th order one . From (1) w5 ∼ 9 × 1048m−3s−1, which for
pulse duration τ = 1. 9× 10−18s in the 4-volume V τ = λ3τ and for 21962 shots,
we obtain ∼ 73 pairs. Moreover from N(τ) of (2) (where the choice τ ∼ 10−18

corresponds to N ′ ∼ 102) we can obtain an estimate for N(τ) to be 155 to 182
pairs, in very good agreement with E-144 experiment .

Applying the resonance approximation on the E-144 experiment (electron’s
frame) and using (3) we first note that N = 2

√
2m

ω must be taken to be the closest
integer to the ratio 2

√
2m

ω . For ω = 235keV , N ∼ 6 which suggests that with a
fine tuning of ω i.e fine tuning of the electrons’ energy in the electron beam, we
can achieve exact resonance with N = 6. Thus using 2

√
2m

ω = 6, we find that
the backscattered photons on the electrons frame will have energy 240. 88keV (
λ = 5. 15 × 10−12 and period T = 1. 7 × 10−20s ). Then with ξ = 1

2.7 = 0.37,
n = 6 we find from (3) dwn

do |θ−0
= 4. 56 × 1051pairs/m3s1 and in the volume

V τ = (10λ)2 (0.1λ) 10−18 m3s1and for 21962 shots we would have observed on
exact resonance, 1. 37 × 105 pairs. Thus had we the opportunity to calibrate the
energy of the electrons in the electron beam of SLAC experiment in order to be
on exact resonance for a 6th order multiphoton process, we should have observed
many orders of magnitude more pairs per laser shot than it was observed.
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NIELSEN IDENTITY, WILSON LINE AND CONSTRAINED
EFFECTIVE ACTION: THE HIGH TEMPERATURE STANDARD
MODEL

RAFFAELE BUFFA a

a Dipartimento di Fisica, Università di Udine, via delle Scien-
ze 208, 33100 Udine, Italy

Abstract

Using Nielsen Identities we study the high temperature Electroweak Stan-
dard Model. We show the gauge fixing parameter independence at the first
non trivial order of the Fukuda effective action constrained over the phase
of the Polyakov loop.

1 Introduction

Nielsen identities originate from enlarged BRST symmetry [1]. They provide a
good framework to study problems related to gauge dependence. Moreover they
don’t depend on the topology of space time. For this reason they are suitable
for studying finite temperature field theory. Thermal gluodynamics break spon-
taneously the centergroup symmetry developing a A0 condensation, primarily due
to the breaking of the Lorentz invariance. The lack of gauge invariance for the
effective potential at 2 loops order and for the effective action for a slowly vary-
ing background at 1 loop is well known [2],[3]. Moreover the centergroup sym-
metry is not explicit. This problem has been solved by Belyev [2] by the so
called renormalization of the Polyakov loop, the trace of the thermal Wilson line:
Ω(x) = tr P exp

(
i
∫ 1/T

0
dτ A0(x, τ)

)
, where P stands for the path ordering. It is

clearly a gauge invariant operator. Adding dynamical fermions and scalars in the
fundamental representation lifts the centergroup degeneracy, the Z(N) non-trivial
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vacua become metastable with interesting phenomenological consequences [4]. In
this presentation we show the link between Nielsen identity and the Fukuda ef-
fective action [5] constrained over the phase of the Polyakov loop. As a concrete
example we treat the Electroweak Standard Model at temperatures well above the
phase transition where we can ignore the bare masses of fermions and the elec-
troweak symmetry is restored. We show for the Standard Model case how the gauge
invariance of the off shell Fukuda effective action comes from the perturbative ar-
rangement of new terms coming from the non linearity of the constraint. Moreover
we show a very convenient way to extract the gauge dependence at 1 loop for a
slowing varying background without the occurrence of the steepest descendant.
We work with the imaginary time formalism and zeta function regularization.

2 Nielsen identity and 1PI effective action

In this section we are interested in the gauge dependence of the perturbative 1PI
effective action. Within the context of high temperature SM A0 and B0 condense
[4]. Thus we split the fields into background plus small quantum fluctuations:Aµ =
δµ0ã + gAq, Bµ = δµ0b̃ + g′Bq where Aµ and Bµ are respectively the SU(2) and
U(1) gauge fields. Other fields have only the quantum part. For the sake of
simplicity we choose ã a time independent diagonal matrix in the Lie algebra of
SU(2). We need to fix the gauge, we have chosen to use background gauge fixing:
Sg.f. = g2

2ξ tr
(
Dã

µAµ
q

)2 + g′2

ξ′
(
∂µBµ

q

)2 where Dã
µ = ∂µ + δµ0[ã, .]

In this context the Nielsen identity takes the form [1]:

∫

x

∫

x′

(
δΓ

δA0(x′)
δΓOã(x)

δkA0(x′)
+

δΓ
δB0(x′)

δΓOb̃(x)

δkB0(x′)

)

= −ξ∂ξΓ (1)

where Γ is the 1PI effective action, ΓO is the 1PI effective action with a one O

insertion (Oã = 1
2 η̄ADã

µAµ
q , Ob̃ = 1

2 η̄B∂µBµ
q ), kA0 is the source of sAq0 (which

is the BRST transformation of Aq0) and kB0 is the source of the BRST transfor-
mation of Bq0. We consider b̃ constant in time, so the second term on the left
hand side is zero. By the use of identity (1) we see that the gauge dependence
at the order of 1 loop is factorized in a classic term plus a 1 loop term. For a
constant background field the classical action does not depend on ã. On the other
side < OãsAq0 > at the classical level is zero. Thus the 1 loop effective action
is independent from gauge fixing parameter for constant background. At 1 loop
order the effective potential depends on the background and the derivative is no
longer zero. Again using eq.(1) we obtain:

ξ∂ξV
2loop = g2 δV 1loop

δA0
< η̄Dã

µAµ
q D0η >1loop (2)

Other terms are zero following the same arguments followed in the 1 loop effective
potential gauge fixing independence.

Nielsen identity, wilson line and action
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For a slowly varying ã we consider the spatial derivative of the background as
a new scale. The effective action already has a non trivial gauge dependence at
1 loop order in the coupling constant and at second order in ∂iã. For a slowing
varying background the classical action has a kinetic term different from zero of
the order ∂2

i ã so that we can use the powerful technique of Nielsen identity to
extract ∂2

i ã and treat the rest of the calculation for a constant background. The
Nielsen identity takes the form:

ξ∂ξΓ1loop =
δScl

δã
< η̄Dã

µAµ
q D0η >1loop (3)

3 Constrained effective action

The constrained effective action first introduced by Fukuda et al. [5] has been ap-
plied to finite temperature SU(N) gluodynamics with Nf fermions for a constant
background field, to a pure gauge Z(N) interface and to a pure gauge Z(N) dimen-
sionally reduced interface [3]. In this section we consider the Polyakov loop to be
constant and slowly varying in the z direction and we show how the non-linearity
of the constraint takes care of the gauge dependence of the 1PI effective action.
The effective action constrained over the phases of the Polyakov loop is defined in
the following way:

exp− V Γ(a, b) =
∫

DA DB Dψ̄ Dψ Dη̄ Dη DΦ δ (a− p̄(ã + gAq0))

δ
(
b− p̄(b̃ + g′Bq0)

)
exp

(
− 1

g2
(Scl + Sg.f. + Sghosts)

)
(4)

where ψ are left and right fermions, η are the ghosts, Φ is the Higgs, p(.) denotes
the phase of the Polyakov loop and .̄ means the spatial average for a constant
Polyakov loop and the transverse spatial average for a Polyakov loop varying in
the z direction. The second constraint is linear and does not introduce new terms
to the effective action. Its treatment is standard [5], in the following we ignore it.

As in [3] we Fourier transform the δ function: δ(t− t̃) =
∫

DΛ exp
(
i Λ
g2 (t− t̃)

)
.

We insert this representation of the constraint in eq.(4) and we expand the new
field into background plus quantum fluctuation: Λ = λ + gΛq.

In the constrained effective action formulation the saddle point solution at the
thermodynamical limit takes care of the Legendre transformation. We obtain 3
saddle point equations:

a− ã = 0

iλp̄(1)(ã)− gS
′(1)
cl (ã) = 0

S
(1)
cl (ã, b̃) = 0

where p̄(1)(ã) = −g is the development of p̄(.) at first order with respect to Aq0,
S
′(1)
cl (ã) is the linear development of the action with respect to the same quantum
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degrees of freedom that are linked to p̄(1)(ã), S
(1)
cl (ã, b̃) is what remains of the linear

development of the action with respect to quantum fluctuations. The classical
action for a constant Polyakov loop does not depend on ã and the saddle point
equations impose λ = 0. At one loop order the constraint has no effect other than
the Legendre transformation. At 2 loops there is a new vertex coming from the
dynamical propagation of Λ1q. It couples the derivative of the 1 loop effective
potential to the renormalization of the Polyakov loop (see [3] for more details):

δV 2loops
constraint = g2 δV 1loop

δã

p̄(2)(ã)∗ < Aq0Aq0 >

(p(1)(ã))2
(5)

where p̄(2)(ã) ∗ Aq0Aq0 is the development of p̄(ã + gAq0) at second order in Aq0.
For a background varying in the z direction the classical action is no longer zero
and the saddle point equations give: λ = −i g

p(1)
δScl

δã . At 1 loop order λ couples to
p(2)(ã)∗ < Aq0Aq0 > and we arrive at the following expression for the constraint
contribution to the effective action:

δΓ1loop
constraint = −δScl

δã

p̄(2)(ã)∗ < Aq0Aq0 >

g p(1)(ã)
(6)

What remains to be done is the explicit calculation of p̄(2)(ã)∗ < Aq0Aq0 > and
< η̄Dã

µAµ
q D0η >. The first gives (3− ξ)(ã/2πT −1/2) and second ξ(ã/2πT −1/2).

We have shown the gauge invariance of the constrained effective action.

4 Conclusions

We have shown the connection between the Nielsen identity and the effective action
constrained over the phase of the Polyakov loop.

We have shown the gauge invariance of the off-shell constrained effective action
in the high temperature Standard Model for both constant and slowly varying
background fields.

The constrained path integral has also found application in the study of the
Casimir effect [6]. We believe that the work undertaken in this presentation can
be applied in this context.
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Italy

Abstract

With its diameter of 17m, the MAGIC telescope is the largest Cherenkov
detector for gamma ray astrophysics. It is sensitive to photons above an en-
ergy of 30 GeV. MAGIC started operations in October 2003 and is currently
taking data. This report summarizes its main characteristics, its first results
and its potential for physics.

1 Introduction

The MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescope was de-
signed in 1998 [1] with the main goal of being the Imaging Atmospheric Cherenkov
Telescope (IACT) with the lowest gamma energy threshold. It is based on the ex-
perience acquired with the first generation of Cherenkov telescopes, and includes
a large number of technological improvements [2]. With a reflector diameter of
17 m, it is the largest Imaging Cherenkov Telescope in the world.
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Figure 1. The MAGIC detector.

The study of γ rays is fundamental for our understanding of the universe [3]:
γ rays probe the most energetic phenomena occurring in nature, and several sig-
natures of new physics are associated with the emission of γ rays. Photons can
travel essentially undeflected and unabsorbed in space, and thus they point with
excellent approximation to the source of their emission.

Together with HESS [4] in Namibia, VERITAS [5] in the USA, and CAN-
GAROO [6] in Australia, MAGIC is one of the “big four” ground-based gamma
experiments; among them, it is the only one consisting for the moment of a single
telescope.

MAGIC comes after the scientific success of the Energetic Gamma Ray Ex-
periment Telescope (EGRET) instrument on the Compton Gamma Ray Obser-
vatory [7]. Launched in 1991, EGRET made the first complete survey of the
sky above 30 MeV. EGRET increased the number of identified γ sources produc-
ing a catalog which is a reference. Still a large fraction of EGRET sources are
unidentified and, besides other fundamental physics goals, MAGIC aims at their
identification.

MAGIC is located at the Roque de los Muchachos Observatory (ORM) at 2200
m asl (28.8o north, 17.9o west) on the Canary island of La Palma.

MAGIC has an effective area of about 4·104 m2, angular resolution of about
0.2 degrees, relative energy resolution of the order of 20% and can well separate
gammas from background (mainly due to hadrons).

The MAGIC detector is shown in Figure 1.
The sensitivity of MAGIC as calculated from Monte Carlo is shown together

with the expected sensitivity from other gamma-ray detectors in the GeV-TeV
range in Figure 2.

MAGIC has already observed a source, 1ES1959, 10 times fainter than Crab.
By observing gamma rays in the energy range from a few tenth of GeV up-

wards, in overlap with satellite observations and with a substantial improvement
in sensitivity, energy and angular resolution, results in several fields of science can

The Magic Experiment and its First Results
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Figure 2. Sensitivities for some operating and proposed gamma detectors.

be achieved:

• Fundamental physics.

– Gamma Ray Horizon, with a larger sensitivity for tests of light propa-
gation effects.

– Dark matter, extending the sensitivity to many theoretical models.

– Quantum gravity: the search for effects using time delays in the arrival
of gammas dependent on the energy, will profit of an improved energy
resolution.

• Astrophysics.

– Gamma Ray Bursts (GRBs): several tests of fundamental physics can
be performed based on the characteristics of the transient emission.
GRBs are among the most distant and powerful sources in the Universe
and key informations on space-time structure and cosmology can be
gained. In addition a more accurate localization of such sources can
help in correlating GRBs with known astrophysical objects.

– Supernova remnants and plerions: improved energy resolution will help
in discriminating between the various acceleration mechanisms assumed
to be at the origin of VHE gammas.

– Active Galactic Nuclei: the precise gamma-ray observation of more
AGNs at different redshifts will much contribute to answer one of the
major open questions in extragalactic astronomy, the formation and
evolution of galaxies in the early universe.

– Pulsars: the known pulsars have cutoff energies of their pulsed emission
in the few GeV range, hence their detection will become possible by
lowering the energy threshold.

D. Bastieri et al.
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– Unidentified EGRET sources: this is an enormously rich field of activity
for detailed studies, possible with modest observation times on nearly
half of the observable EGRET sources.

– Diffuse photon background: the present knowledge of both the extra-
galactic background radiation and the diffuse galactic emission would
improve with a more accurate pointing, which could help in separating
unidentified sources from a continuum emission.

– Nearby galaxies: their expected steep energy spectrum makes observa-
tions at low energy particularly important, as they allow enough flux
to be detected in the gamma ray domain.

– Studies on the galactic center, where a precise pointing might help in
reducing the background on nearby sources.

2 First results

All the results presented here are preliminary since the analysis software is still in
its development phase.

In the first months of data taking, we have mainly concentrated on low zenith
angle (<40◦) observations of TeV sources like Crab Nebula, Mrk 421, Mrk 501,
1ES 1426 and 1ES 1959. A roughly equivalent amount of OFF source data have
been recorded under the same conditions as the ON data for background substrac-
tion.

We have applied standard analysis based on the angle α between the major
axis of the ellipsis which gives the best approximation of the energy deposition
in the detector and the line joining the tenter of such ellipsis to the center of the
camera [9].

We give in what follows a flavor of the results collected during the first semester
of 1004 on two sources: Crab Nebula and Markarian 421.

2.1 CRAB NEBULA

The Crab nebula is one of the most studied sources in the sky. It radiates a wide
range of electromagnetic radiation from radio to 100 TeV γ rays. The spectrum
of this source has been measured in the GeV range by EGRET and at energies
above 300 GeV by a number of Cherenkov telescopes. MAGIC can determine for
the first time the peak of the emission by inverse Compton, where no experimental
data have been published, yet.

A significance of around ∼20σ per hour of data taking is presently reached by
MAGIC. The data can be subdivided in ranges of energy to obtain an energy scan
in the region of interest. Presently we are sensitive to energies above 
 50 GeV
and below 2 TeV (Figure 3).

The Magic Experiment and its First Results
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Figure 3. Differential energy spectrum from Crab; data are preliminary. The study of the
efficiency on the first two bins is still under study.

2.2 MRK 421

Mrk 421 undergoes the fastest flares that have been observed at the TeV energies,
with durations as short as 20 minutes. During 2004 the source has undergone an
episode of intense flaring.

The preliminary MAGIC data show a significant signal also at energies as low
as 50-60 GeV.

3 Conclusions

MAGIC’s preliminary results confirm its instrumental capabilities to scan gamma
emissions from the Universe above 30 GeV. MAGIC has demonstrated the observ-
ability of sources as faint as 10% of Crab.

The construction of a second detector (MAGIC II) to be put at 80 m from
MAGIC has started, and completion is expected in 2006.
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35131 Padova, Italy

Abstract

Neural networks have proved to be versatile and robust for particle separa-
tion in many experiments related to particle astrophysics. We apply these
techniques to separate gamma rays from hadrons for the MAGIC Čerenkov
Telescope. Two types of neural network architectures have been used for the
classification task: one is the MultiLayer Perceptron (MLP) based on super-
vised learning, and the other is the Self-Organising Tree Algorithm (SOTA),
which is based on unsupervised learning. We propose a new architecture
by combining these two neural networks types to yield better and faster
classification results for our classification problem.

1 Introduction

Many gamma ray experiments have to deal with the problem of separating gam-
mas from hadrons. The experiments usually generate large data sets with many
attributes in them. This multi-dimensional data classification problem offers a
daunting challenge of extracting small number of interesting events (gammas) from
an overwhelming sea of background (hadrons). Many techniques are in active re-
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search for addressing this problem. The list includes classical statistical multivari-
ate techniques to more sophisticated techniques like neural networks, classification
trees and kernel functions.

The class of neural networks provides an automated technique for the classifica-
tion of the data set into given number of classes [3]. It is in active research in both
artificial intelligence and machine learning communities. Several neural network
models have been developed to address the classification problem. Usually, one
makes the distinction between supervised and unsupervised classifiers: the former
are trained with data for which the classification is known and then used to classify
raw data, while the latter attempt to find the best-fitting class structure in the in-
put data by using some measure of merit (usually an euclidean metric is used [6]).
From a mathematical perspective, a neural network is simply a mapping from
Rn → Rm, where Rn is the input data set dimension and Rm is the output dimen-
sion of the neural network. The network is typically divided into various layers;
each layer has a set of neurons also called nodes or information units, connected
together by the links. The artificial neural networks are able to classify data by
learning how to discriminate patterns in features (or parameters) associated with
the data. The neural network learns from the data set when each data vector from
the input set is subjected to it. The learning or information gain is stored in the
links associated with the neurons. The output structure of the network is depen-
dent on both the problem and the network type. For a gamma/hadron separation
problem the network maps each input vector onto the [0,1] interval in supervised
networks, whereas in unsupervised networks the nodes are adapted to the input
vector in such a way that the output of the network represents the natural groups
that exist in the data set. The output of the unsupervised network is generally
stored in an ASCII file. A visualization technique is then used to view the groups
by processing the output file generated by the network.

Section 2 describes the data sets used for the classification. Section 3 deals
with the MultiLayer Perceptron network and its classification results. Section 4
deals with the Self-Organizing Tree Algorithm and its variant along with their
classification results. Conclusions and future perspectives are discussed in the
section 5.

2 Data set description

The data sets are generated by a MonteCarlo simulation program, CORSIKA [2].
They contain 12332 gammas, 7356 ON events (mixture of gammas and hadrons),
and 6688 hadron or OFF events. These events are stored in different files. The
files contain event parameters in ASCII format, each line of 10 numbers being one
event [5] with the parameters defined below.

1. Length: major axis of ellipse [mm]

2. Width: minor axis of ellipse [mm]
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3. Size: 10-log of sum of content of all pixels

4. Conc: ratio of sum of two highest pixels over fSize [ratio]

5. Conc1: ratio of highest pixel over fSize [ratio]

6. Asym: distance from highest pixel to centre, projected onto major axis [mm]

7. M3Long: 3rd root of third moment along major axis [mm]

8. M3Trans: 3rd root of third moment along minor axis [mm]

9. Alpha: angle of major axis with vector to origin [deg]

10. Dist: distance from origin to centre of ellipse [mm]

These Hillas image parameters [1] are derived from pixel analysis and are used for
classification.

3 Multi-Layer Perceptron

For this approach we used the ROOT Analysis Package (v4.00/02) and in par-
ticular the MultiLayer Perceptron class [4] which implements a generic layered
network. Since this is a supervised network we took two thirds of gamma and
OFF data to train the network and the remaining data to test it.The code of
the ROOT package is very flexible and simple to use. It allowed us to create a
network with a 10 nodes input layer, a hidden layer with the same number of
nodes and an output layer with just a single neuron which should return ”0” if
the data represent hadrons or ”1” if they are gammas. Weights are put randomly

(a) The error functions for training and
test data took on 1000 runs

(b) The histogram of distributions for
gamma and hadron parameters

Figure 1. MLP classification results using the BFGS default learning method.
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at the beginning of the training session and then adjusted from the following runs
in order to minimize errors (back-propagation). Errors at cycle i are defined as:
erri = 1

2 o2
i where oi is the error of the output node. Data to input and output

nodes are transferred linearly, while for hidden layers they use a sigmoid (usually:
σ(x) = 1/(1 + exp(−x))).

We have tested the same network using different learning methods proposed by
the code authors, as for example the so called ”Stochastic minimization”, based on
the Robbins-Monro stochastic approximation, but the default ”Broyden, Fletcher,
Goldfarb, Shanno” (BFGS) method has proved to be the quickest and with the
best error approximation.

Figures 1.a and 1.b represent a possible output when using the ROOT package
on those data. The first one depicts the error function for each run of the network,
comparing the training and the test data. Note that the greater is the number of
runs, the better the network behaves. The second one shows the distributions of
output nodes, that is how many times the network decides to give a value near to
”0” or to ”1”.

4 Self-Organizing Tree Algorithm (SOTA)

The Self-Organizing Tree Algorithm [8] is an unsupervised neural network which
implements a growing hierarchical clustering and is based on the self organising
map network [7]. It hierarchically clusters the data into a binary tree of natural
groups that exist in the data set. Initially the tree consists of one root node
linked to 2 child cells. All the input events are randomly distributed between
the 2 initial child nodes. The tree grows by expanding the child node having the
most heterogeneous population of associated inputs. Two new descendants are
generated from this heterogeneous cell that changes its state from cell to node.
The tree then grows by descending the cells into child nodes until each cell has
one single input sequence, producing a complete classification of the sequences.

Figure 2. SOTA classification results.
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Figure 3. Data flow for a SOTA-MLP network using MonteCarlo datasets.

Alternatively, the expansion can be stopped at the desired level of heterogeneity in
the cells, producing in this way a classification of sequences at a higher taxonomic
level.

This kind of classification could be useful for astrophysics when a multi-event
separation is needed on the same dataset, that is when multiple particles have been
detected simultaneously and the analysis software should assign them a label (as
”proton”, ”muon”, ”gamma”, etc.). They are also used as a data mining tool to
explore the natural groups that exists in data sets. Using the MAGIC datasets the
tree has grown up to 10 levels, with the training sets taken from the MonteCarlo
simulations (Figure 2). This approach gives a hierarchical view of data, is robust
for noisy data and is faster than traditional hierarchical clustering.

4.1 SOTA + MLP

Figure 3 shows the combination of SOTA with MLP for the separation task. The
SOTA method is applied to the initial MonteCarlo datasets (gamma, ON and
OFF) to find the natural clusters that exist in the datasets. The SOTA tree
produced two clusters of gamma and hadron which are used to train the MLP.

Figure 4. A preliminary result using an MLP feeded with SOTA labelled datasets.
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The SOTA cluster emulates the data distribution of the patterns, thus reducing
the number of events in the training set. The use of these clustered data can result
in fast training for the MLP. The trained MLP network is then used to perform
testing through the ON dataset and producing hadron probability for each event.

The preliminary results for this approach are shown on Figure 4 where we
can notice a better separation in the histograms respect to the non-treated MLP
results (Figure 1.b).

5 Discussion

In this article we classified the gamma ray data using MLP and SOTA. Both
MLP and SOTA shown some good classification results. The algorithms used here
suggest that a complex problem could not be solved using standalone methods
even if they are suitable for a large part of other data analysis problems.

SOTA algorithm clusters the data set into groups thus reducing the number of
events in the training set. This can be useful for the MAGIC experiment where
there are overwhelming events to be classified. MLP based on supervised technique
identifies the group labels, but the training session could be longer. By combining
SOTA with MLP we can significantly decrease the training period and yield better
classification results.

The work can be further extended by using combination of different models in
both self-organizing networks and supervised networks. Future experiments can
be done using Growing Cell Structures and Growing Neural Gas models [9] in the
unsupervised category. In supervised networks, tests can be performed by using
probabilistic networks and MLP trained with fast back-propagation.
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Abstract

A brief description of the new generation high-energy gamma-ray astro-
physics experiment AGILE and its main science objectives are presented.

1 Introduction

The Energetic Gamma-Ray Experiment Telescope (EGRET) aboard CGRO (1991-
2000) was very successful in detecting γ-rays (in the energy band 100 MeV - few
GeV) from around 70 AGN, 8 pulsars, and 170 sources not yet identified firmly
with known objects [1]. EGRET has also measured the spectrum and the spatial
distribution of the diffuse galactic γ-ray emission with unprecedented sensitivity
and resolution [2].

The italian AGILE satellite (Astro-rivelatore Gamma a Immagini LEggero), to
be launched in 2006, will offer a sensitive area similar to that of EGRET and an
angular resolution somewhat better than EGRET [3].

2

All GeV gamma-ray experiments use pair production in thin foils of high-Z ma-
terial to actually detect the γ-rays . Different techniques are used to track the
e+/e−-pairs and to measure their energy, though. In principle the gamma-ray
energy threshold is around 10 MeV, but the short range of the pairs and small-
angle scattering in the tracker significantly deteriorate the detector performance
below 100 MeV. Towards high γ-ray energies self-vetoing and the finite thickness
of the calorimeter can reduce the quality of measurement. The main problems
with satellite-based γ-ray detectors, however, are the technical constraints which
prohibit satellite payloads with an effective area of much more than a squareme-
ter. The flux of all cosmic γ-ray sources falls off with photon energy and therefore
the scientific return of the γ-ray detectors at high photon energies is limited by
statistics rather than inapplicability of the technique of measurement.

3 AGILE

The AGILE scientific instrument is based on an innovative design based on three
detecting systems: (1) a Silicon Tracker, (2) a Mini-Calorimeter (MC), and (3)
an ultralight coded mask system with Si-detectors (Super-AGILE). AGILE is de-
signed to provide: (1) excellent imaging in the energy bands 30 MeV–50 GeV
(5–10 arcmin for intense sources) and 15-40 keV (1–3 arcmin); (2) optimal timing
capabilities, with independent readout systems and minimal deadtimes for the Sil-
icon tracker, Super-AGILE and Mini-Calorimeter; (3) large fields of view for the
gamma-ray imaging detector (GRID) (∼3 sr) and Super-AGILE (∼1 sr) [3].

Detection technique
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Figure 1. Schematic view of the AGILE instrument

Despite of its smaller dimensions AGILE will have comparable performances
to EGRET on axis and substantially better off axis. The innovative technology
will allow AGILE to achieve the smallest deadtime in high-energy astrophysics.

Fig. 1 shows the AGILE instrument configuration of total weight of ∼ 120 kg
including the Si-Tracker, Super-AGILE, Mini-Calorimeter, the Anticoincidence
system and electronics.

• The Silicon-Tracker, is a gamma-ray pair-converter and imager made of
12 planes, with two Si-layers per plane providing the X and Y coordinates
of interacting charged particles. The fundamental Silicon detector unit is
a tile of area 9.5× 9.5 cm2. Each Si-Tracker layer is made of 4 ladders
(each composed of 4 Si tiles), for a total geometric area of 38× 38 cm2 and
1,536 readout channels. The first 10 planes are made of three elements:
a first layer of Tungsten (0.07 X0) for gamma-ray conversion, and two Si-
layers (views) with microstrips orthogonally positioned. Both digital and
analog information (charge deposition in Si-microstrip) is read by front-end
electronics (FEE). The GRID has an on-axis total radiation length near
∼ 0.8 X0. Special algorithms applied off-line to telemetered data will allow
optimal background subtraction and reconstruction of the photon incidence
angle. Both digital and analog information are crucial for this task.

• Super-AGILE is made of four square Silicon detectors (19× 19 cm2 each)
and associated FEE placed on the first GRID tray plus an ultra-light coded
mask system supporting a Tungsten mask placed at a distance of 14 cm
from the Silicon detectors. Super-AGILE tasks are: (i) photon-by-photon
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detection and imaging of sources in the energy range 15-40 keV, with a field-
of-view (FOV) of ∼ 0.8 sr, good angular resolution (1-3 arcmins, depending
on source intensity and geometry), and good sensitivity (∼ 5 mCrab for 50
ksec integration, and < 1 Crab for a few seconds integration); (ii) simul-
taneous X-ray and gamma-ray spectral studies of high-energy sources; (iii)
excellent timing (∼ 4 µs); (iv) burst trigger for the GRID and MCAL; (v)
GRB alert and quick on-board positioning capability.

• The Mini-Calorimeter (MCAL) is made of two planes of Cesium Iodide
(CsI) bars, for a total (on-axis) radiation length of 1.5 X0. The signal
from each CsI bar is collected by two photodiodes placed at both ends.
The MCAL tasks are: (i) obtaining additional information on the energy of
particles produced in the Si-Tracker; (ii) detecting GRBs and other impulsive
events with spectral and intensity information in the energy band ∼ 0.3 −
100 MeV. We note that the problem of “particle backsplash” for AGILE
is much less severe than in the case of EGRET. AGILE allows a relatively
efficient detection of (inclined) photons near 10 GeV and above also because
the AC-veto can be disabled for events with more than ∼ 100 MeV total
energy collected in the MCAL.

Table 1 summarizes the main characteristics of the AGILE gamma-ray instru-
ment and its performance compared to that of EGRET. We assumed a typical
2-week pointing duration and a ∼ 50% exposure efficiency.

EGRET AGILE
Mass 1830 kg 120 kg
Gamma-ray energy band 30 MeV–30 GeV 30 MeV–50 GeV
Field of View ∼ 0.5 sr ∼ 3 sr
PSF 5.5◦ 4.7◦ (@ 0.1 GeV)
(68% containment radius) 1.3◦ 0.6◦ (@ 1 GeV)

0.5◦ 0.2◦ (@ 10 GeV)
Deadtime for γ-ray detection >∼ 100 ms <∼ 100 µs
Sensitivity 8× 10−9 6× 10−9 (@ 0.1 GeV)
( ph cm−2 s−1 MeV−1) 1× 10−10 4× 10−11 (@ 1 GeV)

1× 10−11 3 ×10−12 (@ 10 GeV)

Table 1. A comparison between EGRET and AGILE

4 Science Objectives

4.1 GALACTIC DIFFUSE EMISSION

The galactic diffuse emission is produced in interactions of cosmic rays with gas
and ambient photon fields and thus provides us with an indirect measurement of
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cosmic rays in various locations in the Galaxy. A significant fraction of the dif-
fuse galactic γ-rays is supposedly produced in decays of neutral pions following
inelastic collisions of cosmic ray nucleons. Leptonic emission is particularly impor-
tant at γ-ray energies below 100 MeV, where bremsstrahlung is presumably the
main emission mechanism. Inverse Compton scattering of relativistic electrons on
soft ambient photons is expected to provide γ-rays with a hard spectrum, thus
eventually dominating over the π0-decay γ-rays at high energies. A new model for
Galactic diffuse emission suited for the AGILE observations has been developed[4].

4.2 GALACTIC SOURCES

The capabilities of AGILE with respect of the astrophysics of Galactic γ-ray
sources have been recently discussed elsewhere[5].

• Supernova remnants: SNR are considered the most likely sources of galac-
tic cosmic rays. Observational evidence in favor of this scenario has been
found only for cosmic ray electrons, not for the nucleons. The signal of
π0 decaying into γγ could indicate the dominant role of the acceleration of
nuclei.

• Unidentified EGRET sources: EGRET has left a legacy of about 170
sources not yet identified firmly with known sources. Various population
studies have been performed to search for correlations with classes of galactic
objects.

• Pulsars: To date eight pulsars have been identified in the EGRET data on
account of pulsed emission. AGILE will offer the first possibility of detecting
several young and energetic radio pulsars that have been discovered since the
end of the CGRO mission[6].

4.3 EXTRAGALACTIC SOURCES

• Active galactic nuclei These sources show very intense emission, which in
many cases is variable. The variability has been observed on all time scales
accessible with the available measurement techniques down to about one
hour. Simultaneous monitoring of a large number of AGNs per pointing will
be possible with the new generation satellites. Several outstanding issues
concerning the mechanism of AGN gamma-ray production and activity can
be addressed in the near future (e.g. [7]) including: (1) the study of tran-
sient vs. low-level gamma-ray emission and duty-cycles; (2) the relationship
between the gamma-ray variability and the radio-optical-X-ray-TeV emis-
sion; (3) the correlation between relativistic radio plasmoid ejections and
gamma-ray flares; (4) hard X-ray/gamma-ray correlations.

• Gamma-ray bursts: About ten GRBs were detected by the EGRET spark
chamber during ∼ 7 years of operations [8]. This number was limited by
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the EGRET FOV and sensitivity and, from what we know today, not by
the GRB emission mechanism normally producing gamma-rays above 100
MeV[9]. The small deadtime of the new generation satellites allows a better
study of the initial phase of GRB pulses (for which EGRET response was in
many cases inadequate). The remarkable discovery of ‘delayed’ gamma-ray
emission up to ∼ 20 GeV from GRB 940217 [10] is of great importance to
model prompt and afterglow acceleration processes. Measuring the HE com-
ponent of GRBs may be critical to the understanding of the charged particle
acceleration. AGILE will be able to detect most of the bright long bursts
and its two detectors (Super-AGILE and MCAL), with their independent
trigger algorithms, compensate each other in detecting soft and high energy
GRBs[11].

5 Conclusions

The AGILE scientific instrument is innovative in many ways, and is designed to
obtain an optimal gamma-ray detection performance despite its relatively small
mass and absorbed power. The combination of hard X-ray and gamma-ray imaging
capabilities in a single integrated instrument is unique to AGILE. We anticipate
a crucial role of Super-AGILE for studies of AGNs, GRBs, and Galactic sources.
AGILE will provide an important step forward in γ astronomy. We are confident
that the partnership between High Energy Physics and High Energy Astrophysics
will be the source of new discoveries over a wide range of subjects.
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Abstract

This paper presents the simulation of the GLAST high energy gamma-ray
telescope. The simulation package, written in C++, is based on the Geant4
toolkit, and it is integrated into a general framework used to process events.
A detailed simulation of the electronic signals inside Silicon detectors has
been provided and it is used for the particle tracking, which is handled by
a dedicated software. A unique repository for the geometrical description of
the detector has been realized using the XML language and a C++ library
to access this information has been designed and implemented. A new event
display based on the HepRep protocol was implemented. The full simulation
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was used to simulate a full week of GLAST high energy gamma-ray observa-
tions. This paper outlines the contribution developed by the Italian GLAST
software group.

1 Introduction

The Gamma-ray Large Area Space Telescope (GLAST) is an international mission
that will study the high-energy phenomena in gamma-rays universe [1]. GLAST
is scheduled for launch in mid 2007.

GLAST is instrumented with a hodoscope of Silicon planes with slabs of con-
verter, followed by a calorimeter; the hodoscope is surrounded by an anticoinci-
dence (ACD). This instrument, called the Large Area Telescope LAT, is sensitive
to gamma rays in the energy range between 30 MeV and 300 GeV. The energy
range, the field of view and the angular resolution of the GLAST LAT are vastly
improved in comparison with those of its predecessor EGRET (operating in 1991-
2000), so that the LAT will provide a factor of 30 or more advance in sensitivity.
This improvement should enable the detection of several thousands of new high-
energy sources and allow the study of gamma-ray bursts and other transients, the
resolution of the gamma-ray sky and diffuse emission, the search for evidence of
dark matter and the detection of AGNs, pulsars and SNRs. A detailed description
of the scientific goals of GLAST mission and an introduction to the experiment
can be found in [2].

GLAST is a complex system, and detailed computer simulations are required
to design the instrument, to construct the response function and to predict the
background in the orbit. To accomplish these tasks an object-oriented C++ ap-
plication called Gleam (GLAST LAT Event Analysis Machine) was adopted and
implemented by the GLAST LAT collaboration. A brief description of Gleam
could be found in [3]. Its structure is described in figure 1. An entire week of the
gamma-ray observations by GLAST-LAT was simulated using Gleam in order to
develop and test GLAST LAT scientific analysis softaware.

2 Simulation and Reconstruction Software

The GLAST off-line software is based manly on Gaudi, a C++ framework, orig-
inally developed at CERN [4]. Gaudi manages the loop of particles to be sim-
ulated, then a series of algorithms are applied to each of them to get the result
of the complete simulation and reconstruction chain. The Source Generation is
the first algorithm called within the particle loop. Its task is to generate particles
according to certain characteristcs. This algorithm must store the information on
the temporal and spectral behaviour of the source, as well as on the orbital char-
acteristics of GLAST. It provides a user interface to produce additional incoming
particles and is responsible for setting the current time, the particle energy, direc-
tion, and type. Within this package a series of default sources are implemented.

HSimulating the igh Energy Gamma-Ray Sky
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Figure 1. General scheme for simulation and reconstruction within the GLAST off-line software
framework

They include source for testing purposes as well as the description of astrophysical
spectra and the expected particle and albedo gamma backgrounds. An extension
of this framework has been implemented for simulating transient sources such as
Gamma-Ray Bursts (GRB). It can be used for studying the capability of GLAST
for the observation of rapid transient fluxes in general[5].

The algorithm which is responsible for generating the interactions of particles
with the detector is based on the Geant4 MonteCarlo toolkit [6] which is an Object
Oriented (OO) simulator of the passage of particles through matter. Its applica-
tion areas include high energy physics and nuclear experiments, medical science,
accelerator and space physics. Within the Gleam application the simulation is
managed by the Gaudi algorithm G4Generator.

Figure 2 shows an event generated using Geant4 within the GLAST LAT ex-
periment.

The next algorithm to be applied is the digitization which transforms the hits
generated by the Monte Carlo simulations into the signal as read by the electronics.
To implement a detailed digitization of the Tracker system a full simulation code
has been developed[7]. Starting from Monte Carlo hits in the Silicon detectors, the
current signals induced on each strip are evaluated and are converted into voltage
signals using the transfer function associated to the detector electronics, taking
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Figure 2. High energy gamma-ray interacting with the GLAST LAT detector

into account the detector noise as well as the noise associated to the electronics.
The fired strips and the time over threshold are then determined.

The signals in the Tracker are then analysed by the reconstruction package. It
generates a series of clusters, that are used to find and fit the best track candidates.
This last procedure is done using alternative pattern recognition algorithms and
a Kalman Filter based algorithm. Finally, using the best track found, another
algorithm finds the best vertex candidate for gamma events.

Although it is not part of the simulation, the visualization package is essential
for the use of the simulation itself. A new version [8, 9] of the event display based
on the HepRep protocol was developed and integrated in the offline software. The
figure 3 shows a recent FRED-based event display of GLAST.

3 Simulating the GLAST LAT High Energy Sky

Using Gleam it’s possible to compute and store time, direction and energy of
each incoming simulated and reconstructed gamma ray. The Data Challenge One
(DC1), organized by the LAT Collaboration from December 2003 to February
2004, represented the first opportunity to test the complete simulation chain, and
the first attempt to perform scientific analyses on simulated data. For DC1, only

HSimulating the igh Energy Gamma-Ray Sky
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Figure 3. GLAST LAT event display based on FRED

the gamma-ray sky was simulated, while the cosmic-ray flux (about 104 times
greater) was modeled separately for development of the background rejection al-
gorithms. These algorithms were then applied to the simulated gamma-ray data.
The gamma-ray sky simulated for DC1 was quite rich: a variety of sources was
included. The simulation software takes into account the relative fluxes and com-
putes from which source the next photon arrives. A map of the simulated sky is
reported in fig. 4.

Figure 4. Full simulated gamma-ray sky seen by GLAST LAT

Based on the simulated data, several groups tried to develop the best algorithms
to detect unknown gamma-ray sources. GLAST observations contain photons
from astrophysical sources, convoluted with the spatial and spectral instrument

F. Longo et al.



314

response. Moreover in most astronomical gamma-ray images a large fraction of
sources is near the detection limit. Thus a careful statistical treatment is needed to
determine their existence and properties. Many tools (parametric methods) need
a priori model to fit the data and estimate their parameters. No model or hypote-
sis on the data are requested by the wavelet method[10]. Through an iterative
procedure the wavelet method allows a blind search of gamma-ray point sources.

Another goal for the DC1 was to test the possibility to trigger Gamma-Ray
Bursts using only LAT information. Several groups within the LAT collaboration
are prototyping trigger and alert algorithms for detecting transient signals in DC1
data, and different algorithms were studied[11]. Different algorithms were success-
fully applied for searching for transient signals in DC1 data. Bright bursts (with
fluence greater than 10−5 erg/cm2 between 20 keV and 1 MeV) can be detected
with simple algorithms. Further studies will include the particle background, and
the possibility to implement an on-board LAT alert algorithm. All of these items
will be addressed for the next Data Challenge (DC2), in which one month of
simulated data will be produced.

4 Conclusions

The Gleam simulation program has been developed in the last few years and now
it’s ready for simulating the full GLAST satellite and is being used for deriving
the final instrumental parameters and for generating a full set of events for the
developing of scientific analysis software.
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Abstract

The content of matter in the Universe is estimated to be the 27% of its
critical density. It is almost universally accepted that most ot this matter
is non-baryonic. Constraints from primordial nucleosynthesis and cosmic
background radiation measurements impose that the baryonic content of
the Universe cannot exceed the 4% of the critical density, so the nature of
the remaining 23% has yet to be identified. In this sense, one of the most
promising candidates is represented by supersymmetric neutralinos. If they
exist, they give rise to relic densities in the required range, and are very
well motivated in the framework of theoretical extensions of the Standard
Model of particle physics. In addition to direct neutralino searches and col-
lider experiments, neutralino annihilation into gamma rays, neutrinos and
synchrotron emission from the charged products represents a reliable way
of detecting these intriguing particles. The strongest signals are expected
to come from the Galactic Center and from the nearest dwarf spheroidals.
Clumps of dark matter in galactic haloes are well predicted by high resolution
cold dark matter numerical simulations. In this work we present our studies
on the gamma-ray emission from the Galactic Center and from the Draco
dwarf spheroidal. We investigate the effect of clumpiness on the detection
of signals from neutalinos for different mass density profiles. One of the sci-
entific goals of the MAGIC telescope are just searches for the stable lightest
supersymmetric particle in the different physical scenarios in which they are
produed. Assuming MAGIC specifications, we draw some conclusions about
the potentialities of this telescope in such a kind of investigation.
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1 Introduction

One of the most promising candidates for halo dark matter are weakly interacting
massive particles (WIMPs), although it is not excluded that particles of other
kinds, not yet predicted by particle physics models, might represent the solution
of this issue. These particles give a relic density which is of the right order of
magnitude to explain the dark matter on all scales. Neutralino is the lightest
stable supersymmetric particle in most models, so we focus on detection prospects
of such a candidate, working either in the MSSM or in the mSUGRA frameworks.

High resolution numerical simulations of dark haloes formation suggest that
the strongest signals are likely to come from the Galactic Center and from the
nearest dwarf spheroidals. The persistence of substructures in these simulations
induces to argue that at least a fraction of the dark matter in haloes is clustered
in clumps.

Taking a phenomenological approach, we here discuss the implications of
clumpiness on neutralino dark matter searches.

2 Particle physics models

Minimal supersymmetric model has many free parameters, but with some as-
sumptions we are left with seven parameters in the MSSM model and with five
parameters in the mSUGRA setup, namely the supersymmetric extension of the
Standard Model defined in a supergravity inspired framework. For details about
the parameters which fully define the action of MSSM and mSUGRA see Ref. [6, 7].

Table 1 shows the range of parameter values used in our scan of the MSSM
space. Choosing the cosmologically interesting relic density range 0.094 < Ωχh2 <
0.129, we generate in this framework 500000 models and impose that they are not
excluded by accelerators constraints.

We sample the 5-dimensional mSUGRA parameter space choosing a few values
of tg β and A0, and slices along the m1/2,m0 plane for both sign µ. We consider
both the slepton and the stop coannihilation regions and calculate the relic density
with all coannihilations. Visited benchmark points are indicates at the upper left
of Fig. (3).

Table 1. Scans of the MSSm space

Parameter µ M2 tgβ mA m0 Ab/m0 At/m0

Unit GeV GeV 1 GeV GeV 1 1

Min 10 10 1 10 50 -3 -3

Max 10000 10000 60 1000 10000 3 3
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3 Dark matter distribution models

We focus on indirect searches of neutralinos in the Milky Way and in the Draco
dwarf spheroidal. We model haloes of these galaxies using the following dark
matter profiles:

• Navarro−Frenk−White cuspy model [4]: ρcusp(r) = ρ0
(r/rs)γ (1+(r/rs))3−γ ,

γ = 1;

• Moore & al. cuspy model [3]: the same as above with γ = 1.5;

• a milder cuspy profile [2]: the same as above with γ = 0.5;

• Burkert & al. profile [5]: ρBurk(r) = ρ0
(1+(r/rs)) (1+(r/rs)2) .

4 Gamma ray flux

Neutralino annihilation in the galactic halo produces both a gamma-ray flux with
a continuum energy spectrum and monochromatic gamma-ray lines. Considering
a detector with an angular acceptance ∆Ω pointing in a direction of galactic lon-
gitude and latitude (l, b), the gamma-ray flux from neutralino annihilation at a
given energy E is:

Φγ(E, ∆Ω, l, b) = const.
∑

F

< σ vF >

m2
χ

dNF
γ

dE
< J(l, b) > (∆Ω) cm−2 s−1 sr−1

(1)
for the continuum gamma. If we assume a spherical dark matter halo in the form
of a perfectly smooth distribution of neutralinos, < J(l, b) > (∆Ω) is equal to:

< J(l, b) > (∆Ω) = const′
1

∆Ω

∫

∆Ω

dΩ′
∫

lineofsight

ρ(L,ψ′)2dL, (2)

where L is the distance from the detector along the line of sight, ψ is the angle
between the direction of observation and that of the center of the galaxy and the
integration over dΩ′ is performed over the solid angle ∆Ω centered on ψ.

4.1 EFFECT OF CLUMPINESS

To discuss the implications of clumpiness on neutralino dark matter searches, we
follow the phenomenological approach of Bergström & al. (1999) [1]. This model
is mainly focused on a many small clumps scenario, where substructures are light,
with Mcl less than 104− 106M�. Postulating that a fraction f of the dark matter
is concentrated in clumps, they find that the increase of the signal compared to a
smooth halo is determined by the enhancement factor f δ, where δ is the effective
contrast between the dark matter density in clumps and the local halo density ρ0.
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Figure 1. Values of < J(l, b) > (∆Ω) for different halo profiles for the Milky Way and Draco.

Assuming that the clumps can be regarded as pointlike sources, authors derive the
anoalogous of Eq. (2) in the clumpy scenario:

< J(l, b) > (∆Ω) = const′
f δ

∆Ω
ρ0

∫

∆Ω

dΩ′
∫

lineofsight

ρ(L,ψ′)dL. (3)

Fig. (1) illustrates the values of < J(l, b) > (∆Ω) for three of the halo profiles
introduced above, giving the smooth and clumpy components in the cases of the
Milky Way and Draco respectively. The clumpiness enhancement factor is taken
reasonably equal to 20. Values of the scale lenght and local halo densities follow
prescriptions of Ref. [1, 2].

5 Results and discussion

As the background follows a poissonian statistics, the minimum detectable flux of
gamma rays from an ACT telescope is determined by the condition:

Φγ Aeff t∆Ω√
Nb

≥ 5, (4)

for a 5σ detection level. Nb is the number of background counts, hadrons and
electrons, which is obtained on the ground of Ref. [1]. We assume the following
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Figure 2. The minimum detectable < σ v >cont versus mχ for the NFW, Moore & al. and
Burkert & al. profiles. Dots are points of the parameter space of MSSM, lines represent the 5σ
detection level for the MAGIC telescope. Only models corresponding to SUSY points above the
curves yield a detectable signal.

MAGIC specifications: Eth = 60 GeV, Aeff = 109 cm2, t = 250 h, ∆Ω = 10−5 sr
and an energy resolution of 25%. Plotting inequality (4) with the equality sign onto
the SUSY parameter space, we divide it into the detectable (above the line) and
undetectable (below the line) regions. Results for the Galactic Center are shown
in Fig. (2) and Fig. (3), for the MSSM and mSUGRA scenarios respectively and
for a clumpiness enhancement factor of 20. This factor is anyway uninfluential in
this case.

As we can see from Fig. (2)−(3) plots, detectability of SUSY particles is very
sensitive to the choice of the dark matter profile. We find that the scenario which
gives the best opportunities for the MAGIC telescope is the Navarro-Frenk-White.
Anyway, our model doesn’t take into account distribution functions for substruc-
tures; an extension of our investigations at higher galactic latitudes does need this
is to be modeled in detail, so we will address our future interests in this direction.
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Abstract

Luminosities and fluxes of the expected population of galactic gamma-ray
pulsars become foreseeable if physical distributions at birth and evolutive his-
tory are assigned. In this work we estimate the contribution of pulsar fluxes
to the gamma-ray background, which has been measured by the EGRET
experiment on board of the CGRO. For pulsar luminosities we select some
of the most important gamma-ray emission models, taking into account both
polar cap and outer gap scenarios. We find that this contribution strongly
depends upon controversial neutron star birth properties. A comparison be-
tween our simulation results and EGRET data is presented for each model,
finding an average contribution of about 10%. In addition, we perform the
calculation of the number of new gamma-ray pulsars detectable by GLAST
and AGILE, showing a remarkable difference between the two classes of mod-
els. Finally, we suggest some improvements in the numerical code, including
more sophisticated galactic m odels and different populations of pulsars like
binaries, milliseconds, anomalous pulsars and magnetars.

1 Introduction

The estimation of the contribution of pulsars to the gamma-ray background is
based on the comparison between theoretical predictions on the flux emitted by
these sources and experimental observations. Each model for the emission of
radiation by a stellar population is specified by the galactic distribution of sources
and their individual luminosities.
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Figure 1. Distributions of pulsars ages (t), distances (d), magnetic fields (B0), periods (P0),

period derivatives (Ṗ ). Dot lines represent a situation with constant magnetic field, solid lines
are referred to the field decay case (E. Bisesi, 2002).

2 Galactic model

2.1 SPATIAL DISTRIBUTIONS

We here present a numerical simulation of the galactic population of radio pulsars
giving all initial spatial and physical parameters in the framework of the galactic
models of Paczyński (1990) and of Gonthier & al. (2002) [4]; we then make them
evolve accordingly with the velocity model of Sturner & Dermer (1994) [10]. We
show histograms of distributions of various pulsar properties in Fig. (1), assuming
both constant magnetic field and field decay.

2.2 PULSAR LUMINOSITIES

In the commonly accepted hypotesis that every pulsar irradiates on the whole
electromagnetic spectrum, we assign a gamma luminosity to each source. We
consider a suitable choise of emission models.

POLAR CAP MODELS:

• Harding (1981) [5]: Lγ(>100 MeV) = 1.2× 1035B0.95
12 P−1.7 ph s−1;

• Zhang & Harding (2000) [12]:

Lγ(I) = 5.87×1035B12
6/7 P−1/7 ph s−1 for B12

1/7 P−11/28 > 6.0,

Lγ(II) = 1.0× 1035B12 P−9/4 ph s−1 for B12
1/7 P−11/28 < 6.0;
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Figure 2. Map of the gamma-ray sky as seen by EGRET (E. Bisesi, 2002).

Figure 3. Comparison between the EGRET gamma-ray background (in blue) and predictions for
the polar cap model of Harding (1981) (in violet). We also give the simulated number of pulsars
above the EGRET detection threshold for this model. Plots on the right side are enlargements
of the simulated profiles (E. Bisesi, 2002).

• Sturner & Dermer (1994) [10]: Lγ = 6.25× 1035B12
3/2 P−2 ph s−1.

OUTER GAP MODELS with the death line 5 log B − 12 log P ≤ 72:

• Romani & Yadigaroglu (1995) [9]: Lγ =1.56×1036B12
0.48 P−2.48 ph s−1;

• Cheng & Zhang (1996) [2]: Lγ = 3.93× 1037B12
0.3 P−0.3 ph s−1.

We calculate the integrated flux on the galactic latitude −10◦ < b < 10◦ as
a function of the longitude l; results are plotted together with the experimental
points as they have been measured by the EGRET experiment.

Fig. (2) and (3) respectively show the map of the gamma-ray sky as seen by
EGRET and our results for the polar cap model of Harding (1981).

The contribution of pulsars to the gamma-ray background is less than 10% for
this model; the foreseen number of sources above the EGRET detection threshold
of 10−7 ph cm−2 s−1 in not far from the observed value.
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Figure 4. Diagram period−magnetic field for different pulsar families. Points indicate young
isolated pulsars, circle−dots pulsars in binary systems. The population of millisecond pulsars is
visible at the bottom left (from Phinney & Kulkarni, 1994 [8]).

3 Comparison among models

In the previous discussion we have forced the physical parameters involved in the
calculation of gamma ray luminositied and fluxes to assume some definite values.
In order to give a meaningful comparison among different emission models an
extension to a more general parameter space is required.

So we define a parameter space whose extremes are corresponding to the limit
conditions for pulsating gamma neutron stars; we then follow the evolution of a
representative point inside this space. The most relevant physical parameters are
the rotation period, the magnetic field and the velocity fron the Galactic Centre.

3.1 PULSAR POPULATIONS

Different families of pulsars follow distinct evolutive histories, and this has a di-
rect impact on their physical properties. Furthemore, physical mechanisms ruling
over the gamma-ray emission are peculiar of each class. Fig. (4) shows a dia-
gram period−magnetic field for young isolated, binaries and millisecond pulsars.
Magnetars are characterized by very high magnetic fields, typically 1014− 1016 G.

We bind the parametric space in this way:

• P0min = 0.01 s (when the centrifugal force equals molecular bonds of the
star, yielding its survival);

• P0max = 1 s (fixed from observations);

• B0min = 1011 G (the lowermost value for young isolated pulsars);

• B0max = 4.413× 1013 G (condition for the magnetar regime);
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Figure 5. Comparison among models (E. Bisesi, 2002).

• v0min = 120 km/s (Gonthier & al., 2002 [4]);

• v0max = 350 km/s (Lyne & Lorimer, 1994).

We show a tridimensional representation of the parametric space 〈log P0〉,
〈log B0〉, V in the left side of Fig. (5). The bidimensional portion on the right
shows the positions of two models of interest [4, 3].

We compare predictions for the five models introduced above for a set of points
of the parametric space. As physical mechanisms for the gamma-ray emission differ
from one pulsar family to another, we would give luminosity function expressions
for each of them. We purpose to improve our work in such a way in future; in this
context we restrict our analysis to young isolated pulsars. An example relevant to
the point X3 is shown in Fig. (6).

Figure 6. Comparison between EGRET observations and simulation results for the point X3 of
the parametric space (E. Bisesi, 2002).
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4 Discussion

For each point considered, we evaluate the percentual excess between the foreseen
number of gamma-ray pulsars for each model and their actual number of 7. The
total percentual excess for each model gives us the possibility of select the most
reliable model, which we find being that of Harding (1981) [5].

We finally estimate the number of gamma-ray pulsars detectable by the next
space telescopes GLAST and AGILE for the model selected.

GLAST and AGILE detection thresholds are 6× 10−9 ph cm−2 s−1 and 10−7

ph cm−2 s−1 respectively.
Our results for the five points of the right side of Fig. (5) are shown in Table 1.
Predictions for GLAST are very optimistic, remarkably we expect to detect a

very large number of new gamma-ray pulsars, opening very promising frontiers in
understanding these mysterious and fascinating objects.

Table 1. Total percentual excess for each model on the whole parametric space for young pulsars.

Model |Total percentual excess| =
P8

i=1 |Percentual excess(Xi)|
H 27

ZH 220
SD 174
RY 30506
CZ 2277
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Udine, Italy
Dipartimento di Matematica e Informatica, Università degli
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Abstract

Data mining techniques, including clustering and classification tasks, for
the automatic information extraction from large datasets are increasingly
demanded in several scientific fields. In particular, in the astrophysical field,
large archives and digital sky surveys with dimensions of 1012 bytes currently
exist, while in the near future they will reach sizes of the order of 1015.
In this work we propose a multidimensional indexing method to efficiently
query and mine large astrophysical datasets. A novelty detection algorithm,
based on the Support Vector Clustering and using density and neighborhood
information stored in the index structure, is proposed to find regions of
interest in data characterized by isotropic noise. We show an application of
this method for the detection of point sources from a gamma-ray photon list.

1 Characterization of the astrophysical datasets

At present, several projects for the multi-wavelength observation of the Universe
are underway, for example SDSS, GALEX, POSS2, DENIS, etc. In the next years,
new spatial missions will be launched (e.g. GLAST, Swift), surveying the wall sky
at different wavelengths (gamma-ray, X-ray, optical). In the Astroparticle and
Astrophysical fields, data is mostly characterized by multidimensional arrays. For
instance, in X-ray and Gamma-ray astronomy, the data gathered by detectors
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are lists of detected photons whose properties include position (RA, DEC), arrival
time, energy, error measures both for the position and the energy estimates, quality
measures of the events . Source catalogs, produced by the analysis of the raw data,
are lists of point and extended sources characterized by coordinates, magnitude,
spectral indexes, flux, etc.

1.1 MINING MULTIDIMENSIONAL DATA

Data mining applied to multidimensional data analyzes the relationships between
the attributes of a multidimensional object stored into the database and the at-
tributes of the neighboring ones. Several queries are required by this kind of
analysis:

• point queries, to find all objects overlapping the query point;

• range queries, to find all objects having at least one common point with a
query window;

• nearest-neighbor queries, to find all objects that have a minimum distance
from the query object.

Another important operation is the spatial join, which in the astrophysical field is
needed to search multiple source catalogs and cross-identify sources from different
wavebands. This multidimensional (spatial) data tend to be large (sky maps can
reach sizes of Terabytes) requiring the integration of the secondary storage, and
there is no total ordering on spatial objects preserving spatial proximity. This
characteristic makes it di cult to use traditional indexing methods, like B+-trees
or linear hashing.

2 An optimized R-tree structure

The R-tree is a data structure meant to efficiently index multidimensional point
data or objects with a spatial extent. The structure of an R-tree is the following:

• an inner node of the R-tree has entries of the form (cp, MBB), where
cp is the address of a child node and MBB is the n-dimensional Minimum
Bounding Box of all entries in that child node;

• a leaf node has entries of the form (cp, MBB), where cp refers to a record
describing a particular object and MBB is its minimum bounding box, or
(Point, Attributes), where Point is a coordinate in the n-dimensional space
and Attributes are data associated to that point.

An optimized index, in terms of construction time, memory occupied and query
performances, can be built using a priori information on the dataset by means
of bulk loading algorithms. We have followed a top-down construction method
called VAMSplit algorithm to build and optimized R-Tree. This method preserves
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Figure 1. The structure of the optimized R-tree built a photon dataset

the spatial proximity between sibling nodes, resulting in a partition of the dataset
with no overlapping between MBBs. Moreover, the volume of the data space
covered by each node (at a particular level) is variable and dependent on data
density. The main idea of this method is to recursively split the dataset on a near
median element along the dimension with maximum variance. In particular, at
each recursive step, child subtrees capacity is calculated by:

cscap = B · F
⌈

logF

⌈
N
B

⌉⌉
−1

where B is the page capacity, F is the internal fanout and N is the number of
elements to index in the current step. The near median element is computed by:

med = cscap ·
⌊

1
2
·
⌈

N

cscap

⌉⌋

Our implementation uses a sampling strategy to find a good pivot value in the par-
tition step and reduce the number of I/O operations; a caching strategy has been
adopted to partition the data into the secondary storage. The total construction
time is O

(
N
B log M

B

N
B

)
.

3 A scalable novelty detection algorithm

The structure of the optimized R-tree can help exploring the data and finding
regions of interest. For this purpose, other information can be added to each node:
the total number of data points covered by the node, their mean and variance,
other statistical moments. In this work we propose a novelty detection algorithm
based on the Support Vector Clustering (SVC).
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3.1 THE SVC ALGORITHM

The SVC algorithm estimates the support of a high dimensional distribution. It
computes the hypersphere with minimal radius which encloses the data points
when mapped to a high dimensional feature space. Given a set of points x1, . . . ,xN,
with xi ∈ X ⊆ R

d, it finds the hypersphere (c, r) that solves the optimization
problem:

min
c,r,ρ

r2 + C

N∑

i=1

ρi

s.t. ‖φ(xi)− c‖ ≤ r2 + ρi

ρi ≥ 0, i = 1, . . . , N

where ρi are slack variables and C is a positive constant. Defining the Lagrangian,
the solution is obtained solving the dual problem:

max
α

N∑

i=1

αik(xi,xi)−
N∑

i,j=1

αiαjk(xi,xj)

s.t. 0 ≤ αi ≤ C, i = 1, . . . , N

where αi are the lagrange multipliers and k(xi,xj) = 〈φ(xi), φ(xj)〉.

3.2 FEATURES FROM THE R-TREE

The partition generated at a given level of the optimized R-tree is used as the
input space of the novelty detection algorithm. For each node of the partition, the
input parameters include the center c of its bounding box and the density (the
ratio between the number n of elements covered by the node and the volume V of
its bounding box). These features are not orthogonal. Therefore, we first apply
the PCA method to find the directions along which the variance is higher and
project the features on the corresponding eigenvectors. The projected features are
passed to the SVC algorithm.

3.3 GAMMA SOURCE DETECTION

Point sources are mostly characterized by a stronger flux, with respect to the
surrounding, focused on a small angular region. The area covered by a point
source depends also on the instrument point spread function. An optimized R-
tree index can be built on a dataset including photons gathered in a certain range of
time (we are using, for the analysis, a minimum interval of 6 days). To find static
or strong variable sources (e.g. gamma-ray bursts) we use only a bidimensional
indexing on the RA and DEC values. The algorithm estimates the support of the
diffuse background. The output of the SVC algorithm is filtered to single out the
nodes with lowest density. Point sources are considered as the remaining outliers.
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Figure 2. The novelty detection algorithm applied to the anticenter

Figure 2 shows the application of our method to the anticenter region. Green
boxes represent the background (support) while yellow boxes are support vectors
and the red ones are the outliers. In particular,the three major sources of the
anticenter are highlighted as novelty.

4 Conclusions

In this work we have realized a multidimensional indexing method to efficiently
access and mine large multidimensional astrophysical data. The index adapts the
VAMSRtree to large datasets. The partition generated by the optimized R-tree is
used to scale the SVC algorithm and find regions of interest where a more accurate
analysis can be performed.
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Abstract

Exploring signals from the outer space has become an observational science
under fast expansion. On the basis of its advanced technology the MAGIC

high energy γ-ray observatory. The low energy threshold for γ-rays together
with different background sources leads to a considerable amount of data.
The analysis will be done in different institutes spread over Europe. There-
fore MAGIC offers the opportunity to use the Grid technology to setup
a distributed computational and data intensive analysis system with the
nowadays available technology. Benefits of Grid computing for the MAGIC
telescope are presented.

1 MAGIC

The MAGIC telescope has been designed to search the sky to discover or observe
high energy γ-rays sources and address a large number of physics questions [1].
Located at the Instituto Astrophysico de Canarias on the island La Palma, Spain,
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at 28◦ N and 18◦ W, at altitude 2300m asl, it is the largest γ-ray telescope in the
world. MAGIC is operating since October 2003, data are taken regularly since
February 2004 and signals from Crab and Markarian 421 was seen. The main
characteristics of the telescope are summarized below:

• A 17m diameter (f/d=1) tessellated mirror mounted on an extremely light
carbon-fiber frame (< 10 tons), with active mirror control. The reflecting
surface of mirrors is 240 m2; reflectivity is larger than 85% (300 - 650nm).

• Elaborate computer-driven control mechanism.

• Fast slewing capability (the telescope moves 180◦ in both axes in 22s).

• A high-efficiency, high-resolution camera composed by an array of 577 fast
photomultipliers (PMTs), with a 3.9◦ field of view.

• Digitalization of the analogue signals performed by 300 MHz FlashADCs
and a high data acquisition rate of up to 1 KHz.

• MAGIC is the lowest threshold (≈ 30 GeV) IACT operating in the world.

Gamma-rays observation in the energy range from a few tenth of GeV upwards, in
overlap with satellite observations and with substantial improvement in sensitivity,
energy and angular resolution, leads to search behind the physics that has been
predicted and new avenues will open. AGNs, GRBs, SNRs, Pulsars, diffuse photon
background, unidentified EGRET sources, particle physics, darkmatter, quantum
gravity and cosmological γ-ray horizon are some of the physics goals that can be
addressed with the MAGIC telescope.

2 Grid

The idea of computational and data grids dates back to the first half of the 90’s.
The vision behind them is often explained using the electric power grid metaphor.
The electric power grid delivers electric power in a pervasive and standardized
way. You can use any device that requires standard voltage and has a standard
plug if you are able to connect it to the electric power grid through a standard
socket. When you use electricity you don’t worry were it is produced and how it
is delivered, you just plug your device into the wall socket and use it. Currently
we have millions of computing and storage systems all over the planet connected
through the Internet. What we need is an infrastructure and standard interfaces
capable of providing transparent access to all this computing power and storage
space in a uniform way. This is the concept behind Grid. More precisely, Grid
is a kind of parallel and distributed system that enables the sharing, selection
and aggregation of services of heterogeneous resources distributed across multiple
administrative domains based on their availability, capability, performance, cost,
and users quality-of-service requirements [2]. As network performance has out-
paced computational power and storage capacity, this new paradigm has evolved
to enable the sharing and coordinated use of geographically distributed resources.

Grid services for the MAGIC experiment
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2.1 VIRTUAL ORGANIZATION

The Virtual organization is an important Grid concept. Grid allows a pool of
heterogeneous resources both within and outside of an organization to be virtual-
ized and form a large, virtual computer. This virtual computer can be used by a
collection of users and/or organizations in collaboration to solve their problems.
The rules governing the participants providing the resources and the consumers
using the resources, as well as the conditions for sharing, dictate the nature of the
virtual organization. Hence, a virtual organization groups people and resources
without worry about their physical location or institute boundaries. For security
reasons, the use of the resources is constrained by an authentication process.

3 Benefits of Grid computing for Magic

The collaborators of the MAGIC telescope are mainly spread over Europe, 18
institutions from 9 countries, with the main contributors (90% of the total) lo-
cated in Germany (Max-Planck-Institute for Physics, Munich and University of
Wuerzburg), Spain (Barcelona and Madrid), Italy (INFN and Universities of Pa-
dova, Udine and Siena).

The geographical distribution of the resources makes the management of the
experiment harder. This is a typical situation for which Grid computing can be of
great help, because it allows researchers to access all the resources in a uniform,
transparent and easy way. The telescope is in operation during moonless nights.
The average amount of raw FADC data recorded is about 500-600 GB/night.
Additional data from the telescope control system or information from a weather
station are also recorded. All these information have to be taken into account in
the data analysis.

The MAGIC community can leverage from Grid facilities in areas like file shar-
ing, Monte Carlo data production and analysis. In a Grid scenario the system can
be accessed through a web browser based interface with single sign-on authentica-
tion method. We can briefly summarize the main benefits given by the adoption
of Grid technology for the MAGIC experiment:

• Presently, users analyzing data must know where to find the required files
and explicitly download them. In a Grid perspective, instead, users don’t
care about data location and files replication policies improve access time
and fault tolerance.

• Grid workflow tools can manage the MAGIC Monte Carlo simulation. The
resources from all the members of the MAGIC community can be put to-
gether and exploited by the Grid. Easy access to data production for every
user, or accordingly to the VO policies.

• Analysis tools can be installed on the Grid. They are thus shared and avail-
able for all the users (no need for single installations), moreover, they can
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Figure 1. MAGIC Monte Carlo Simulation workflow

exploit the facilities of a distributed system.

3.1 MMCS

The MAGIC Monte Carlo simulation workflow is a series of programs which sim-
ulate the properties of different physics processes and detector parts (figure 1):

• CORSIKA: air shower and hadronic background simulation. The output
contains information about the particles and the Cherenkov photons reaching
the ground around the telescope.

• Reflector : simulates the propagation of Cherenkov photons through the at-
mosphere and their reflection in the mirror up to the camera plane. The
input for the Reflector program is the output of CORSIKA.

• StarfieldAdder : simulation of the field of view. It adds light from the non-
diffuse part of the night sky background, or the effect of light from stars, to
images taken by the telescope.

• StarResponse: simulation of NSB (night sky background) response.

• Camera: simulate the behavior of the photomultipliers and of the electronic
of the MAGIC camera. It also allows to introduce the NSB (optionally),
from the stars and/or the diffuse NSB.

Grid services for the MAGIC experiment
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3.2 THE PRESENT

The EGEE (Enabling Grids for E-science in Europe) project brings together ex-
perts from 70 organizations and 27 countries with the common aim of building on
recent advances in Grid technology and developing a service grid infrastructure
in Europe which is available to scientists 24 hours-a-day. Recently MAGIC has
became part of the EGEE project. This is the first step for enabling MAGIC on
the Grid. This process migration is a big effort and must be divided in smaller
steps. The first step was chosen to be the migration of the MAGIC Monte Carlo
simulation workflow and it is now working [3] thanks to the effort of the Udine,
Padova and CNAF (Bologna) groups.

4 Conclusions

Grid technologies promise to change the way organizations tackle their complex
computational and data-intensive problems. The vision of large scale resource
sharing is nowadays becoming a reality in many areas. However, it must be realized
that Grid is an evolving field in computer science, where standards and technology
are still being under development to enable this new paradigm. Presently, many
efforts are being made to attract a wide range of new users to the grid. MAGIC has
caught this big opportunity and now another step is made towards the realization
of a wide project that wants to connect the compute and storage resources of
the astroparticle institutions in order to collaborate across the institute borders as
well as across the collaboration borders. This new challenge will be the ASTROPA
Grid project [4].

References

[1] Lorenz, E., New Astron. Rev. vol. 48, 339-344 (2004).

[2] Foster, I., Kesselman, C. (eds.). The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1999.

[3] M. Piraccini, tesi di Laurea in Fisica Computazionale, Udine 2004.

[4] ASTROPA Grid, proposal by the MAGIC Collaboration to EGEE, 2004.



Part IV

Complex Systems



TOWARDS A PHYSICAL MODEL FOR MEMORY

LEON COOPER a

a Brown University, Providence, USA

Abstract

The Interaction of theory with experiment?normal in physics since Galileo,
but novel in neuroscience? has proven fruitful in neuroscience.

Theory has suggested experiments that have uncovered new phenomena:

a. Long Term Depression (LTD) and bi-directional synaptic modification
dependent on the depolarization of the postsynaptic cell in agreement with
the BCM synaptic modification function.

b. The sliding modification threshold. This has provided experimental veri-
fication of the postulates of the BCM theory of synaptic plasticity.

Theory has been able to relate diverse observations in different brain regions
such as LTD/LTP in hippocampus to monocular deprivation and reverse
suture results in visual cortex.

Theory has also shown that one underlying calcium dependent mechanism
can account for the various methods of inducing synaptic plasticity. Cellular
and molecular mechanisms that underlie this synaptic plasticity have been
proposed, and some of these have been confirmed experimentally. The inter-
action of local and global modulatory signals, the probable basis for memory
consolidation, as well as the implication of LTD mechanisms in such patholo-
gies as the Fragile X Syndrome are being explored.
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PATTERNS AND DISSIPATIVE WAVES, INCLUDING SOLITONS,
IN LATTICES AND AT INTERFACES
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Abstract

A succint account is given here of recently discovered salient features of
selforganizing processes (disorder-order transitions) leading to cellular con-
vective patterns and dissipative (and solitonic) waves in fluid layers with an
interface and in active lattices. Emphasis is given to the recently predicted
transition from (Drude) Ohm’s linear electric conduction to a form of (high-
temperature) superconduction mediated by the formation of electron-soliton
(solectron) dynamic bound states in a nonlinear lattice, a phenomenon rem-
iniscent of surfing.

1 Introduction

The apparently unrelated phenomena of cellular convective patterns and waves oc-
curring at fluid interfaces and in discrete lattices can be explained using a common
ideology, if not a theory. I refer to the onset of cooperative phenomena driven by a
constraint that, on the one hand, leads to a (non-equilibrium) phase transition to
a more ordered state and, on the other hand, provides a steady (dynamic) balance
between energy input and dissipation. Beyond threshold the form and evolution
of the newly formed “dissipative structures” [1] depend on the level of that en-
ergy balance sustaining the opportunistic mode (pattern or wave) dominating the
others. This enslaving mode or “order parameter” in the supercritical regime is
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the “master/conductor” in the selforganizing, synergetic process occurring in the
system [2]. Lack of space permits me to just itemize a few salient features with
emphasis, in particular, on a recently predicted curious phenomenon triggered
by dissipative solitons in a lattice operating as an electric circuit: the transition
from (Drude) Ohm’s linear electric conduction to an apparently purely classical
form of electric (high-temperature) superconduction (the more ordered phase), an
intriguing result indeed [3, 4].

2 Cellular patterns at interfaces

The onset and development beyond threshold of (steady) cellular convection driven
by interfacial agents, e.g. surface tension gradients, is a typical case of selforgani-
zation and cooperative processes in a fluid layer subjected to a thermal constraint,
like heating or ad/absorption and (mass) diffusion of a (surface active agent) sur-
factant. The engine providing the (steady) energy balance that allows the disorder-
order transition is the Marangoni effect [5]-[8]. Here a variation of temperature
and/or (excess) surfactant concentration at the interface creates shear stress and
flow through the coupling between the “thermal” field and the velocity. The essen-
tial character of this process is that the engine operates not in the bulk of the fluid
but rather at an open surface or interface between two fluids (e.g. an air-liquid
interface). The enslaving of the velocity field by the “thermal” one feeds forward
on the bulk equations where the “energy” (Fourier or, alternatively, Fick) equation
couples to the (Navier-Stokes) equations of motion. Literally, a strict enslaving
of the velocity by e.g. the temperature occurs with heated layers of high Prandtl
number fluids like silicone oils. Fig. 1 illustrates the onset of cellular convection
in one such liquid. It shows a disorder-order transition from a homogeneous, dif-
fusion, motionless state to a finite-wavenumber, cellular, and hence more ordered
convective state. This is not the only possibility offered by the dynamics or ob-
served in experiment. Indeed, a long wavelength (zero-wavenumber) convective
mode is also possible, and may even coexist with the above mentioned case. The
control, or bifurcation, parameter of the dynamics is the temperature difference or
the surfactant concentration difference or gradient (e.g. across the layer) creating
the surface tension gradient that leads to and sustains the “ordered” flow.

To study the (nonlinear) evolution of the cellular convection illustrated in Fig. 1
both the (Newton/Navier-Stokes) equations of motion and the energy equation are
needed. However, this poses a formidable task. A drastic albeit significant and
universal approximation to the dynamics valid near and slightly above threshold is
possible. Generic arguments permit one to reduce the problem to a set of Landau-
Ginzburg equations for the amplitudes of the velocity and the thermal field [9, 10].
This is indeed the natural extension of Landau’s approach to disorder-order equi-
librium phase transitions where now the amplitudes of the cellular flow are the
enslaving modes or order parameters in the evolution. A notable phenomenon is
the (unavoidable) appearance of defects in such cellular structures. The defect not
only contains significant information in itself but, moreover, contains the whole
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Figure 1. Benard cells. A shallow (mm depth) layer of silicone oil open to the ambient air is
heated from the bottom side. As the temperature difference across the layer increases there is
the transition from the motionless, heat diffusion phase to the cellular convective one. Once the
critical temperature difference for the onset of convection is achieved the sequence proceeds with
a constant value of this constraint. Velocities are about a hundredth of a centimeter per second.
[Details can be found in Refs. 6, 8 and 11].

dynamics as it is known in crystal growth processes. The evolution of a defect,
e.g. the screw dislocation is enough to grow the full crystal, perfect or otherwise.
The reader is referred to several recent publications where in-depth analyses are
provided and due comparison with experimental observations given [8]-[11].

3 Patterns in (active, nonlinear) lattices

Cellular patterns arising from a disorder-order transition with a supporting (steady)
input-output energy balance also appear in (active) lattices. Here (think about ac-
tion potential transmission and pattern dynamics in brain activity or about arrays
of lasers or collections of linked mechanical or electronic oscillators or the discrete
version of reaction-diffusion systems) the equations of motion may be Newton’s
equations (in a generalized sense) for the units considered as (nearest-neighbor,
n.n. in short) particles interacting with a given force (again in a generalized sense).
The “activity” of the units and the role played by the bonds (springs, resistors, etc.)
coupling the units necessitates the energy equation. Diffusion, noise, etc. provide
the disorder when we consider not a purely deterministic case but a stochastic
one. The latter is easy to visualize if we take the units to be immersed in a “heat”
bath where the noise level (via Einstein’s fluctuation-dissipation theorem) also
provides a temperature. Then the disorder-order transition could depend on the
temperature as well as on the control or bifurcation parameter of the dynamics
that drives the change from one mode of operation to another in the time and/or
space evolution of the system. Such a bifurcation parameter may affect only the
“activity” of the units or the “interaction” between units or both. By “activity”
of a unit I mean that if left alone it has an intrinsic evolution independent of
the others. These units may all be the same, e.g. electronic oscillators with a
rich panoply of dynamic states, from the simplest motionless one to bistability of
steady states or oscillations, excitability or even time-chaotic states. Through cou-
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Figure 2. Typical replication of a pattern (a) using raw material (b) following the mutual
interaction of two “active” lattices (130×130 units). The two (identical) off-springs, (c) and
(d), almost perfectly reproduce the pattern but this need not be the case in general; combina-
tion/competition of patterns is also possible. The outcome of “evolution” depends on parameter
values controling the “activity” of units and bonds/interactions, here between n.n. [Details can
be found in Refs. 12 and 13].

pling and suitable synchronization patterns may appear in the lattice. Note that
in a 2D, N×N lattice, if a unit possesses two accessible states, diffusive coupling,
a resistor in an electric circuit/lattice, there may be as many as 2N2

patterns, an
extraordinary wealth indeed. Furthermore we can replicate a given pattern in a
(father) lattice by dynamically “imprinting” it on a disordered (mother) lattice
coupled to the former; the disordered state is also a possible steady pattern of the
system [12, 13].

Fig. 2 illustrates two steps, initial and final, of one such replication process
with two identical offsprings, almost cloning the father but this need not to be
so. It is a dynamic process and not the mere action of a photocopying machine.
We see again how significant the role of defects may be in this replication process.
Replicating a given pattern is in general a difficult problem in the transfer process.
Hence for purposes of information only it may be enough to replicate a defect in
the original and nothing more. As a lattice and its dynamics with active units may
be considered as a discrete version of a (continuous) reaction-diffusion system, the
evolution of the “order parameters” (patterns) in many such problems can again
be described, in approximate way, by a set of generic Landau-Ginzburg equations,
much as in the case of cellular fluid flows described above.

4 Dissipative waves and solitons in fluid layers

Earlier we illustrated the onset of (steady) cellular convective patterns occurring
at the open surface of a heated liquid layer. As indicated in the caption of Fig. 1
the heating is done from the liquid side, i.e., from the solid support below the
liquid, while the open atmosphere is (mechanically passive) air. [N.B. The dy-
namic or shear viscosity of air is much lower than that of most liquids, hence
air exerts negligible traction at the open surface]. In fact, if the ambient atmo-
sphere is another liquid, cellular patterns may appear for either way of heating
albeit depending on the values of the ratios of the corresponding (heat or mass)
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diffusivities and kinematic viscosities [14]. [N.B. This is a significant statement
because the latter quantities control the diffusion of vorticity while the dynamic
or shear viscosity comes in the stress balance at the interface and accounts for
the relative traction of one liquid over the other (hence controlling momentum
transfer)]. Restricting consideration to the case of a liquid layer open to air, what
is the expected outcome of heating from the ambient atmosphere or cooling from
the solid support? Theory predicts and experiments have confirmed that various
types of waves, with and without significant surface deformation, transverse or lon-
gitudinal waves (and even internal waves in the otherwise stably stratified layer)
can be excited and, eventually, sustained past threshold, again by the Marangoni
“engine” operating at the open surface. The argument applies verbatim to the
case of ad/absorption of a “light” surfactant that lowers the surface tension of
the liquid in the layer. A surprising result is that some of the waves appearing at
the open surface have solitonic features [11, 15]. For instance, as solitary waves
or periodic wave trains (series of periodic wave peaks) they travel undeformed for
long times, they cross/collide with each other with no appreciable change of form,
they reflect at solid surfaces exhibiting Mach-Russell’s stems, or not, according to
the incident angle (a phenomenon also occurring in wide/obtuse angle collisions).
These solitonic waves are very much like surf waves or hydraulic jumps (bores in
English and mascarets in French) moving (upstream) in certain rivers and shallow
channels and straits. [N.B. Solitary waves were found in canals. They were beau-
tifully described by Russell, around the mid-XIXth Century. He also proposed,
in 1840, that solitary waves could be used as a clever way to traverse canals (like
surfing) in boats whose keel lengths might be greater than the depth of the canal.
However, solitons were first described in the evolution of nonlinear lattices and
their (quasi) continuum approximations around mid-XXth Century. Pioneering
work by Fermi, Pasta and Ulam was followed by that of Zabusky and Kruskal
(who coined the word soliton) and others].

Fig. 3 illustrates dissipative solitonic wave trains [16]. Here, the threshold for
instability occurs in the long wavelength limit (zero wavenumber). In the energy
balance the input of energy comes in this long wave range while dissipation (due
to viscosity) occurs in the short wave range. In the zero-wavenumber case the ap-
proximation to the equations of motion and the energy equation cannot be a set of
Landau-Ginzburg equations because there is a Goldstone mode (the conservation
of liquid does not permit lifting the surface all at once in a homogenous way). The
natural approach is that opened by Boussinesq and, subsequently, taken by others
leading to a wave equation for the corresponding order parameters (e.g., for a one-
sided propagation the Boussinesq-Korteweg-de Vries equation), augmented by the
energy balance [11]. Mathematically, the original hyperbolic equations are then
modified by (super) parabolic terms (e.g., the dissipation modified BKdV equa-
tion). Hence their solutions have been called dissipative solitons [17] as they are
the generalization of the soliton concept introduced in conservative (hyperbolic)
systems (for fluids those obeying the Euler equations and not the Navier-Stokes
equations). As in the earlier cases discussed here there is a (non-equilibrium)
transition from a disordered state, the motionless case or even a flow regime, to
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Figure 3. Typical dissipative periodic wave trains (like cnoidal waves) whose wave peaks/crests
have been shown to exhibit solitonic features. The experiment corresponds to heating the liq-
uid layer from the ambient air side or ad/absorbing a “light” surfactant, e.g., pentane vapor
ad/absorbed by liquid toluene or hexane. Velocities are about a centimeter per second, hence
two orders of magnitude higher than the velocities in Fig. 1 corresponding to steady convection.
[Details can be found in Refs. 11 and 16]

a solitonic wave regime, the more ordered state, sustained by the steady input-
output energy balance.

5 Dissipative solitons in (active) lattices and superconducting circuits

In the final section of this short text let me describe what can occur in a lattice of
“active” units if we take ions as the units, electrons as “boats”, and an electric field
as the “wind” and/or powerful horses, all immersed in a heat bath. Can an electron
surf on a nonlinear lattice of strongly interacting (positive) ions? What follows is
a rough account of work done with W. Ebeling and A. P. Chetverikov [3, 4].

Toda showed that a 1D lattice with a suitable exponential (hence nonlinear)
interaction between n.n. units of the form [18]

UT (r) =
a

b

(
ēbr − 1

)
+ ar; a, b > 0, (1)

has an exact solution in the form of solitonic (cnoidal or solitary) waves. The force
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corresponding to (1) is

F (r) = a
(
ēbr − 1

)
or else Fn = a

(
ēbrn − 1

)
. (2)

Thus for positive r the force is attractive (and constant) while for negative r it
is repulsive (and very much like hard rods when b is large and a → 0; this is the
case of strong compression of the spring defined by (2)). [N.B. A more realistic
interaction is the Morse potential, a combination of two exponentials that treats
adequately the attractive component and fits well the Lennard-Jones interaction.
However, we have no exact solutions of the corresponding equations of motion.
Both the Toda and Morse potentials are easy to implement electronically]. The
Taylor expansion of (1) yields the (cubic and quartic) anharmonic interactions used
by Fermi, Pasta and Ulam in their pioneering computational physics work (with
the earliest computer available at the Los Alamos Labratory) and of current use in
solid state theory to explain equipartition, thermal expansion and heat transfer in
a lattice (for b small the compression-expansion obeys Hooke’s law and the motions
are harmonic vibrations or phonons in the lattice). [N.B. The pure Toda lattice
is transparent to heat but here we use more than the pure Toda interaction]. The
solution found (constructed) by Toda is (using the force)

ēbrn − 1 = sinh2 κ sec h2 (κn− βt + δ) , (3)

hence defining a solitary wave propagating supersonicaly with velocity

c =
|β|
κ

y = y

(
ab

m

)1/2 sinh κ

κ
>

(
ab

m

)1/2

, (4)

where y accounts for the mean interparticle distance between the units (of mass,
m).

For a 1D lattice of length L, with periodic b.c. xi+N = xi + L we have

U =
N∑

i=1

UT
i (ri), (5)

with UT
i given by (1) with r → ri − σ, ri = xi+1 − xi, σ > 0. Then the (Newton)

equations of motion of the units are

m
dvk

dt
+

∂U

∂xk
= 0. (6)

To these deterministic and Hamiltonian equations we shall add an energy equation
after having also added the following: (i) the consideration of the units as Brownian
particles in a heat bath (white Gaussian noise, delta correlated in space -discrete
units- and time), (ii) as Brownian particles they experience dissipation/friction
and fluctuations and, eventually, they are able to pump energy, first internal and,
subsequently, kinetic energy/motion from the (disordered) noise, (iii) the units are
charged particles, e.g., ions with positive charge (+e), and (iv) the lattice/system
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is subjected to an external electric field, E. Thus the equations of motion (6)
become stochastic (Langevin) equations,

m
dvk

dt
+

∂U

∂xk
= ekE + F (vk) +

√
2Dξk(t), (7)

where the force F accounts for two terms. We set F (vk) = −mγ(vk)vk, with
γ = γ0 + γ1. Here γ0 is the standard (fluctuating) friction coefficient obeying
Einstein’s fluctuation-dissipation theorem. The other term, γ1, is taken to be
nonfluctuating and with values at our “will” in view of the energy balance to be
satisfied in the evolution of the system.

Let us introduce now a particular form of the energy balance [19]. Each Brow-
nian particle is considered as “active”, capable of pumping internal energy from
the bath (noise), dissipating internally and transforming internal energy into mo-
tion, hence feed forwarding the equations of motion. [N.B. We are now exploring
the possibility of direct energy pumping by “passive” (γ1 = 0) particles from the
electric field alone taken indeed as “wind”]. Let ε(t) be the energy, then we may
write

dε

dt
= q(t)− cε(t)− d(v)ε(t), (8)

which is reminiscent of metabolic processes in biosystems. The quantity q(t) ac-
counts for the energy flux from the bath to the unit’s “internal” depot. The internal
dissipation is assumed proportional to the actual energy level with a constant rate
of energy loss, c. The third term describes how internal energy is converted into
motion, with a rate depending on the velocity value, d(v), and indeed proportional
to the actual energy level. For simplicity, we assume a steady state, q = q0, and
d(v) = dv2, with d constant and positive. Hence if at the initial time ε(0) = ε0 we
have

ε0 = q0/
(
c + dv2

)
. (9)

Then we should write γ1 = −q0d/
(
c + dv2

)
. However, to further simplify we

shall use γ1 ≈ γR
1 ≈ γ0v

2, which is a function introduced by Lord Rayleigh [20]
that approximates γ1 well for negative values, when γ1 acts opposite to γ0, as
an energy pumping (negative friction) mechanism. The two quantities γ1 and γR

1

differ drastically for positive values where γ1 saturates while γR
1 diverges when v

is large. Hence we write

F (v) = mγ0v

[
µ− v2

v2
1

]
, (10)

where for convenience we have rewritten γ1 in terms of two new parameters µ and
v1. The former, µ, is now the key parameter of the problem. Indeed for µ = 0 the
montionless state is the only stable phase of the system that for µ positive yields a
new state with motion (expected to be the more ordered phase), v = ±v0 = v1

√
µ.

To the 1D lattice of ions we now couple a 1D lattice of electrons. For simplicity
we take only one electron (-e) whose mass is a thousand times smaller than that of
the ions (hence meγ0e << miγ0i; e denotes electron and i, ion). The electrostatic
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Figure 4. Typical current-voltage/field characteristics of the electrically conductive Toda lattice
described in the main text. The dotted diagonal line corresponds to (Drude) Ohm’s law, the
broken line at the bottom is the ionic current (can be set to zero or a reference value by changing
the frame of reference), and the solid line (with dots) is the solectronic current, which significantly
deviates from Ohm’s law as we lower the field intensity. [Details can be found in Refs. 4 and 5]

electron-ion interaction is taken as the pseudopotential

Ue (yj , xk) =
(−e)ek[

(yj − xk)2 + h2
] , (11)

(h denotes a cut-off, h ≈ σ/2, with σ the interion mean distance; note that to
rule out unnecessary difficulties the interaction (11) is taken in 3D). Hence to the
equations of motion of the ions we add the equation of motion for the electron

med
2yj

dt2
+

∂Ue

∂yj
= −eE −meγeovj +

√
2Deξj(t). (12)

Ions and electrons with a field E create currents. The current density (per unit
length) a la Drude is

jD =
(
e2/meγe0

)
E, (13)

while the total current is
j = ei 〈vi〉 − e 〈ve〉 . (14)

The brackets indicate average values taken over numerous computer simulations
of the motions. Figs. 4 and 5 illustrate results found for σ = 1, a = 13.69, b = 1,
h2 = 0.08, mi = 103me, me = 1, γe0 = γi0 = 1, µ = 1, and v1 = 1. Upon
compressing two nearby ions, thus forming an electrostatic valley, the electron
tends to seat on its minimum. [N.B. By plotting (11) for one electron between two
positive ions it can be seen that given any compression (respectively, h) there is
always a value of h (respectively, compression) providing such a valley].

The electric field breaks the symmetry pushing the electron off-center/off-
minimum. Then the solitonic wave catches the electron and displaces it to the
nearest ion-pair (some kind of promiscuity of the electron) and so on. This is
the soliton-electron (“solectron”) dynamic bound state that, thanks to the energy
balance, sustains the ordered state with higher current. Note that the actual value
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Figure 5. Typical current-temperature characteristics for the lattice of Fig. 4 when we lower
the noise level, and hence the temperature, showing a significant increase in the value of the
solectronic current (solid line with dots) relative to Ohm’s law (dotted line at bottom). [Details
can be found in Ref. 4]

of the field intensity is immaterial. What really matters is its symmetry breaking
role. As the phenomenon exhibits a transition from (Drude) Ohm’s linear current
to a kind of supercurrent, the latter is indeed the more ordered state (recall that
this phase transition occurs at µ = 0). The results found with such (an appar-
ently) simple lattice model are intriguing for they are reminiscent of experimental
curves obtained with high-T superconductors [21, 22].

6 Concluding remarks

The sketchy account here given, as a summary of my presentation at the Sixth In-
ternational Symposium on Frontiers of Fundamental and Computational Physics,
hopefully offers an overview of fascinating phenomena occurring in driven, non-
equilibrium, dissipative, systems when nonlinearities dominate their evolution. I
have focused on work I have been doing in the recent past, years and weeks, and
hence there is indeed much more in the field that I have not described. Refer-
ence to publications other than mine is expected to help the reader proceeding on
his/her own.

In all cases described we have seen how disorder-order transitions occur when
the equations of motion, being neither Hamiltonian and integrable nor conser-
vative, are augmented with an appropriately coupled energy equation providing,
e.g., a steady input-output energy balance. Steady patterns or dissipative waves
(including solitons) are typical cases of “selforganization” and “ordering” in fluid
layers (with an interface) or lattices (discrete version of, e.g., reaction-diffusion
systems). I have emphasized an intriguing result found in a 1D lattice with non-
linear (anharmonic) interactions: the transition from the standard linear electric
conduction (Drude-Ohm) to a form of (an apparently purely classical high-T) su-
perconduction mediated by the formation of electron-soliton (solectron) dynamic
bound states. Is it not fun to see how an electron could “surf” on a nonlinear
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(Toda) lattice?
Despite the fact that I have been talking about a driven-dissipative system, one

should be aware of one train hiding another and also of pictures that look alike
yet refer to different objects! Linking the predictions made using the drastically
simplified 1D lattice model studied here with real data about high-T supercon-
ductors is beyond the scope of this discussion. However, should the model (or
variations on it like using the Morse potential or removing, one way or another,
the “activity” of the particles, etc.) be derived from first principles (quantum
mechanics) by generalizing Bloch’s theorem (a non trivial problem since we have
nonlinearity and time-dependence from the beginning), should (relatively strong)
spring compressions be possible in a conductor/metal, should the major predic-
tions in 1D hold for 2D lattices (with a Fermi-like level), etc. then it might be that
the present results already provide a key to understanding “room” temperature
superconductivity: the formation of “solectrons” and the (nonlinear) cooperativity
leading to the disorder-order transition.
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LATTICE PROTEIN MODELS: A COMPUTATIONAL APPROACH
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Abstract

Square lattice protein models are used to study the competition between
folding and aggregation phenomena. The problem is approached by con-
sidering Metropolis Monte Carlo simulations of non-isolated lattice protein
models; different protein molecules can interact each other and, in compe-
tition with folding, can aggregate by forming dimers. The calculations take
in exam the behavior of three types of proteins: a) proteins with a very well
designed sequence (good folders); b) proteins which folding kinetics present
kinetic partitioning effects (intermediate folders); c) small proteins with na-
tive states having the geometry of pure secondary structure motives (like
alpha helices or beta sheets). The results show that good folders very rarely
form aggregates; on the contrary, in almost all considered cases, intermediate
folders display high tendency to form dimers. Finally, alpha helices display a
low tendency to aggregate in comparison to that found for beta-sheets. How-
ever, also for these systems, structural intermediates in the folding kinetics
can strongly influence the aggregation tendency.
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1 Introduction

Protein molecules are found in all superior living systems and contribute at many
levels to their functionality. The folding process of a protein molecule consists
in its self–assembly into a specific conformation: the native state. Most of pro-
teins found in nature are good folders and therefore self–assembly to the native
conformation efficiently and reversibly: they have very small folding times [1]. In
this respect, besides the intrinsic properties relied to a specific protein amino acid
sequence, the efficiency of the folding process can be influenced by native state
geometry (secondary structure motives), as well as, by the presence of structural
intermediates in the folding path (kinetic partitioning mechanism) [2].

Failures in protein folding bring to misfolding events and possibly to aggrega-
tion phenomena [3]. A striking example if these phenomena is offered by prion
proteins misfolding; although not yet completely clear, such events seem to trig-
ger very unhealthy protein aggregations processes degenerating in disorders like
bovine spongiform encephalopathy (BSE) [4].

In the present work we present some preliminary results of a study in which
equilibrium and non–equilibrium properties of single and interacting protein mole-
cules are analyzed with the purpose of getting insights into the competition be-
tween folding and aggregation mechanisms. The study, based on lattice protein
models and Metropolis Monte Carlo simulations, reveal that, in most of the cases,
protein molecules with tendency to aggregation are also affected by kinetic par-
titioning effects. Moreover, on a preliminary base, we observed some relations
between these effects and the α–helix or β–sheet nature geometry of the protein
native state.

2 Model and calculation methods

In our minimalist model a protein chain is seen as a self–avoiding walk in a 2D
square lattice. We have considered chain lengths ranging between 20 and 36 and
amino acid interactions have been simulated by a pair–wise interaction energy [5]
between nearest neighbors (extra chain) beads.

Amino acid sequences used in the work have been selected to have near 45%
of hydrophobic residues and, then, have been optimized (Z-score optimization) to
have a preselected native states.

Equilibrium thermodynamics calculations has been obtained on the basis of sev-
eral Metropolis Monte Carlo simulations [6] done at different temperatures; equi-
librium averages were then computed by means of multi–histogram technique [7].
In the simulations concerning interacting molecules, two different chains were con-
sidered and, correspondingly, the Monte Carlo algorithm was modified in a way
that elementary moves were accept with the additional condition to maintain the
distance between the center of mass of the molecules, Dc,m, below a preselected
value. Folding kinetics were based on several (up to 200-500) relaxation Monte
Carlo trajectories to chain native state, after a temperature quenching.
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Figure 1. Typical behavior of a 25–beads good folder. Temperature dependence of the average
values of energy (〈E〉), heat capacity (CV ), χ factor (〈χ〉) and radius of gyration (〈Rg〉) for
single molecule (dashed lines) and two interacting molecules (continuous lines) simulations. Good
folder character of the chain is stated by the pure exponential and fast decay of the fraction of
unfolded molecules, Pu, (obtained over 500 trajectories). Note that the chain show no tendency
to aggregation; the average distance between the centers of mass, Dc,m is always well above the
minimal distance between centers of mass of folded chains.

3 Results

We have considered a rather systematic analysis of thermodynamics and kinetics
of both isolated and interacting protein chains. The series of calculations done for
2D protein models have revealed that:

• very good folders are usually not affected by aggregation phenomena. The
good design of the sequence prevents the protein from aggregation also in
very unfavorable conditions (for an example see Fig. 1).

• folders exhibiting kinetic intermediates are found to have a good propensity
to form aggregates. In particular, models with β–sheet like native states
seem to form aggregates easily than others (for an example see Fig. 2).

• folders with α–helix like native states are found more rarely to form aggre-
gates (in particular with respect to models with β–sheet like native states).
However, also in this case the presence of kinetic intermediate favor the
formation of aggregates.

We are working to extend the calculations to 3D lattice models (also with
higher coordination).



358

Figure 2. Behavior of a 25–beads β–sheet like folder exhibiting tendency to aggregation (as in Fig.
1 dashed and continuous lines refer to single and interacting molecules simulation, respectively).
Note that now, As the temperature is decreased χ factor (〈χ〉) and radius of gyration (〈Rg〉)
do not goes to the native state prescribed values; CV peak is now shifted a higher temperature.
Fraction of unfolded molecules (average over 500 trajectories) display a double exponential decay;
the analysis of the trajectories reveal the presence of kinetic partitioning effects and a structural
intermediate. The chain show high tendency to aggregation; average Dc,m reaches very small
values and the resulting aggregate structure is very different from chain native state.
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Abstract

The depinning properties of a fluctuating interface near 2D and 3D wedges
with a central ridge are studied by discrete models with short range interac-
tions. The calculations demonstrate that, in both cases, depinning take place
in two stages: i) a continuous filling-like transition in the pure wedge-like
components of the system; ii) a final discontinuous jump from the central
ridge. In 2D an exact transfer matrix approach shows that, in the thermody-
namic limit, the threshold of the depinning from the central ridge coincides
with the one corresponding to the continuous filling transition. In 3D, on
the contrary, accurate Metropolis Monte Carlo simulations show that the
two transitions are separated by a finite gap. The mechanism at the basis of
the phenomenon is studied in detail and, in 2D, the whole interface phase
diagram and free energy profiles are provided. The physical scenario emerg-
ing from these results is discussed also in relation with the problem of the
wetting transition in the case of random rough walls.

1 Introduction

The wetting properties of the liquid film forming when an undersaturated vapor is
put in contact with a solid inert substrate are, generally, determined by nature and
range of intermolecular interactions (for a review on these phenomena see [1]). But
these properties can be strongly influenced by substrate surface geometry. For ex-
ample, adsorption isotherms of random rough and linearly sculpted substrates [2]

359

a

a

© 2006 Springer. Printed in the Netherlands.

B.G. Sidharth, F. Honsell  and A. de Angelis. (eds.), Frontiers of Fundamental Physics, 359–363.



360 Interface Depinning from Wedges with Central Ridge

Figure 1. Sketch of the 2D (panel (a)) and 3D (panel (b)) SW geometries studied in this paper.
The magnifying glasses show the staircase nature of the tilted smooth walls (with slope |1/n|)
by which the SW are constructed

exhibit unusual geometry–determined exponents; while partial wetting prevents
the growth of macroscopic films, in pure wedges, one finds continuous filling phe-
nomena [3]. Finally, there are many indications that increasing surface roughness
can drive wetting transition from second to first–order [4].

In this work we report the results of an accurate investigation about the un-
binding properties of a thermally fluctuating interface from substrate geometries
(see Fig. 1), we denoted structured wedges (SW). Such a surface structure is mo-
tivated by the fact in these systems coexist contrasting geometrical motives (like
wedges and ridges) which are usually present in the geometry of rough surfaces,
which combination determine peculiar effects. In the work we have considered
both 2D (Fig. 1(a)) and 3D (Fig. 1(b)) SWs.

2 The Model

We construct a liquid–vapor interface in the framework of solid on solid (SOS)
approach. Therefore, the interface corresponds to a lattice random walk (in 2D) or
to a random surface (in 3D) in the vicinity of a fixed substrate boundary. Denoting
with HX the substrate boundary (integer) height at X, each interface configuration
can be specified in terms of the local relative (integer) height variables zX .
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At coexistence the interface can be studied in terms of an Hamiltonian of the
form

H =
∑

〈X,X′〉
E(1 + |hX − hX′ |γ)− U

∑

X

δzX ,0, (1)

where the first sum is done over all pairs of nearest neighbor columns, E and −U
(with E ,U > 0) are the energy cost of any interface step (or plaquette in 3D) and
the energy gain of each interface contact (of horizontal step or plaquette) with
the substrate, respectively, and γ = 1 or ∞ determines the SOS or restricted SOS
(RSOS) character of the implemented walk model, respectively.

In 2D the problem can be fully treated by a transfer matrix approach based
on the following definitions

[R̂x]z,z′ = ω|z′−z+Hx+1−Hx|γ kδz′,0 , (2a)

[L̂x]z,z′ = ω|z′−z+Hx−1−Hx|γ kδz′,0 , (2b)

where ω = e−E/kBT = e−1/t (t = kBT/E) and k = eU/kBT = eu/t (u = U/E)
correspond to step and wall fugacities

These matrices allows, by iterations, the direct calculation of the interface dis-
tance probability distribution functions (PDF) at any position along the boundary,
Px0 , in terms the corresponding ones, P

(R)
x0 and P

(L)
x0 , for right and left travelling

walks. That is
Px0(z) = P (R)

x0
(z)P (L)

x0
(z), (3)

and the quantity

∆fx0 = − lnPx0(z) = −
[
lnP (r)

x0
(z) + ln P (l)

x0
(z)
]
, (4)

can be seen as the corresponding local excess interface free energy profile (more
details about the treatment will be published elsewhere [5].

Specializing the method to our particular surface geometry, the wetting prob-
lem can be further reduced to an eigenvalue problem which, depending on the
cases, can be exactly or numerically solved.

Transfer matrix approach is not applicable to the wetting problem in 3D. In
this case we have considered Metropolis Monte Carlo simulations of an RSOS
fluctuating interface in a 3D SW geometry like the one sketched in Fig. 1(b).
Simulations were done for squared system with size L = 50, 100, 150 (in the y axis
direction) and W = L/2 (L and W are in lattice units) and periodical boundary
conditions along both x and y axes. After equilibration, the calculation of equilib-
rium average parameters has been performed on the basis of very long simulations
of up to 105 ÷ 106 MCS (1 MCS ≡ L2 Monte Carlo moves).

3 Results and Conclusions

The phase diagram of SW wetting in 2D is reported in Fig. 2(a). However, the
nature of the unbinding transitions we found in 2D SWs can be extracted by
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Figure 2. (a) Interface phase–line boundaries for 2D SWs (like in Fig. 1(a)) for SOS (continuous
lines) and RSOS (dashed lines) models. Different lines correspond to tilted wall slope |1/n|
(n = 1, 2, . . . , 10). Lower (light) curves are the interface phase–line boundary for a flat wall [6].
Interface profiles (panel (b)), and interface excess free energy profiles at x = 0 (panel (c)) and
x = ±w (panel (d)). The free energy profiles have been obtained by a numerical calculation at
ω = 0.2 (t = 0.6213 . . .)

an analysis of free energy profiles shown in Fig.2 (c) and (d). In particular, at
fixed temperature, as k is decreased from k > kc (the critical wall fugacity) the
situation can be resumed as follows: i) a unique free energy minimum at z = 0
(for k = 2.6100 > kc) which delocalizes into a wide one at k = 2.6075 
 kc (i.e. a
continuous unbinding transition in the pure component wedges); ii) double minima
profiles for k = 2.6050, 2.6025 � kc with the minima placed at z = d1−d and z = d1

(i.e. coexistence between the state localized at the SW central ridge height and
the bulk unbound state); iii) dominance of bulk unbound state (k = 2.6000 > kc).
This scenario supports an interface unbinding in two steps, with a first–order
unbinding from the SW central ridge.

Figure 3. Average interface distances (black dots) from 3D SW central ridge (panel (a)) and
bottoms (panel (b). The data come from Metropolis Monte Carlo simulations at constant t = 2.0
and system sizes L = 100, W = 50, wall unit slope and d1/d = 2 (i.e. d = 16). In the insets is
the detail of interface distance distributions at the u values marked by the dashed lines
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Surprisingly, such a mechanism, as shown in Fig. 3, is fully confirmed by our
Monte Carlo simulations for 3D SWs. In fact also in this case we have a discon-
tinuous unbinding of the interface from the central ridge. The only difference is
between 2D and 3D problems seems to be related to the fact that in 3D continuous
and discontinuous unbindings seem to be separated by a finite gap.

Our investigation demonstrate that interface unbinding in SWs involves also a
discontinuous transition. In this respect, this result opens new possible extensions
to the wetting problem of random rough surfaces. In particular, our arguments give
some more efforts on the key role of surface roughening exponent ζS in determining
the nature of the wetting transition in self–affine rough substrates.

References

[1] S. Dietrich, in Phase Transition and Critical Phenomena, edited by C. Domb and J. L.



Part V

New Approaches to Physics
Teaching



LEARNING PROBLEMS RELATED TO THE CONCEPT OF FIELD

FRANCESCA BRADAMANTE, MARISA MICHELINI,
ALBERTO STEFANEL

Research Unit in Physics Education University of Udine, Italy

Abstract

The concept of field has formed itself through a process of elaboration of con-
cepts both on the historical level, and on that of mathematic formalism (in-
tegral or differential approach, Lagrangian and Hamiltonian formalism), and
in the relationship between mathematics and physics. In didactic tradition it
is used as an example of the formalised analogical process. Its phenomeno-
logical aspects and its characteristics of time and space are only partially
described for the various types of field, mixing the descriptive and interpre-
tative levels. In this review we select some of the main teaching-learning
problems and students’ difficulties with learning the concept of field, that
many researches have stressed, such as: the concept of field and its represen-
tation by lines of force, the difference between field and force, the connection
between field and its sources, the concept of the field’s superposition and the
interpretation of mathematical formulas, the application of the third princi-
ple of dynamics, the motion of the field’s characteristic particles in the field
itself. We consider the field in static situations, because these learning prob-
lems are fundamental and basic for when we will pass to dynamic situations
(electromagnetic field).

1 Introduction

The concept of field has formed itself through a process of elaboration of con-
cepts both on the historical level and on that of mathematics formalism, and in
the relationship between mathematics and physics. This concept is central in the
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description of the real world that physics gives nowadays. It is of fundamental
importance when dealing with interaction processes, both in classic physics and in
quantum physics, even if with different meanings. The extension of the Lagrangian
and Hamiltonian formalisms in systems with a limited or definite number of lev-
els of freedoms in dealing with continuous systems provides the formal tools for
a unified treatment of classical fields and for their following quantization. The
concept of field is no longer used only when dealing with interaction mediators,
even in classical physics. It is more often used to describe physical quantities
in relation to space and time within phenomenologies where local variations of
physical dimensions are followed by global variations of the same quantities or of
connected ones. The unified treatment of fields gives a unified view of the two
different formal approaches that have been historically developed: the differential
one, starting from the mathematic apparatus of fluid-dynamics and of physics of
continuous systems based on the use of curl and divergence, and that of differential
geometry, which uses integral-differential formalism. The first approach refers to
many instruments which are typical of plane and geometry (curves and vectors),
which initially facilitate the understanding for a broader public, but that have later
a complex formal use in the forward developments and cause wrong local visions,
inhibiting or strongly contrasting the formation of a global vision of the matter.
The second approach is developed with a less common formalism and is therefore
thought to be more complex, but it is actually more complete, general and elegant
than the first. The concept of field can also be built without having to use other
notions such as “force”. Both approaches, in order to be fully developed, require
mathematical instruments that are usually acquired during the first two years of a
degree course in a scientific subject, but in all cases remain references for dydactic
approaches of field concept also in secondary school. Historically [1, 2, 3] field
lines and field concept, as “field of force”, were introduced in 1845 by Faraday in
the debate of action at a distance [4]. According to Faraday the propagation of
forces takes place through a medium and not at a distance. Also, lines of force
have a physical reality and represent the structure of material substances and their
interactions. According to Maxwell “Faraday . . . saw lines of force traversing all
space where the mathematicians saw centres of force, . . . saw a medium where they
saw nothing but distance . . . ” [5].

Afterwards, Faraday’s concept of field was adopted and changed by Thomson
and Maxwell. The first gave a mathematical representation of Faraday’s theory of
magnetic field and developed a theory on the “ethereal continuum” as a physical
expression of Faraday’s “plenum of forces”.

Maxwell, as well as completing the electromagnetic theory with his equations,
formulated the first clear definition of a field, giving it the role of mediator of the in-
teractions between systems. The field of forces was seen as a continuous or discrete
system formed by interacting particles (the ether) or as a spatial distribution of
forces. Maxwell also elaborated a “geometrical model” of field, in which Faraday’s
lines of force constituted a purely geometric representation of the field’s structure.
A confirmation of Maxwell’s theory came from Hertz’s experiments, which allowed
to directly highlight the propagation of electromagnetic waves. Lorentz described



F. Bradamante, M. Michelini, A. Stefanel 369

the interaction between fields and matter, separating the concepts of ether and
matter, finally setting up a theory that developed a universal physics based on
electromagnetism.

With the ridding of the ether and the discovery of the quantum nature of the
electromagnetic field (Einstein, 1905) it was possible to pass from classical physics
to modern physics, based on the quantum theory, and reach a modern concept of
field. The theory of field brought a redefinition not only of the physical model, but
also of the meanings and the role given to the field, and it also drew attention on
the need to acquire a unitary vision of the fields. The study on learning problems,
on mental models and on the students’ reasoning patterns is carried out considering
these two problems: the historical point of view and the mathematical formalism.

As shown in literature, among the pupils’ learning knots [6], there are often the
ones1 that scientists encountered in the process of building physics theories: they
have a privileged position in offering different and partial representations, which
are presented in an alternative and separate way to the physical meaning of the
entity.

The concept of field is one of these. In mathematics it has an autonomous
nature. In physics, it is re-interpreted with a role of synthesis and generalization,
referring to different types of field and a complex nature in relation to various
phenomenologies. It is a typical physical entity2, object of interest also from the
point of view of disciplinary foundations. Considered by physicists themselves
only a formal (mathematical) object, an object/physics entity (for example the
electromagnetic field), a property of a physical system (for example the field of
the velocity in a fluid), a property of space or a structure or a tool for describing
interaction [7, 8], it occupies a privileged position among the basic concepts for
the building of physics culture.

In didactic tradition it is used as an example of the formalised analogical pro-
cess. Its phenomenological aspects and its characteristics of time and space are
only partially described for the various types of field, mixing the descriptive and
interpretative levels3. The local characters are never discussed with the general
ones and properties are presented depending on the type of field, without giv-
ing a role to the compared physical meaning of formal entities, which have the
unifying power of the field concept (field lines, potential, flux, circuitation, etc.).
As happens for other abstract and/or general concepts4, which recall the human
toil needed to acquire familiarity with their representative power, many ignore it

1The difficulties children meet obviously are not only the historical interpretative knots or
those unifying concepts which single out new physical entities: there are also various cognitive
aspects, which complicate the problem.

2The nature of the concept of field summarises physics’ modalities in the interpretative pro-
cesses.

3The confusion between the descriptive and interpretative levels is a typical problem of formal
didactics and a lot of proof may be found in research on learning processes [22]

4The case of fractions in maths is famous: though handled with ease by primary school
children, they are a complex learning problem at the ages of 14-16 [7].
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or consider it in a reductive way in school practics, while even younger children
have intuitions that allow to deal with the physical meaning at a high level of
abstraction and symbolic representation [9].

Our research aims at building didactic proposals that precociously introduce
the concept of field, giving a modern vision of physics, able to overcome learning
problems or avoid the obstacles in learning that many researches have shown and
that are encountered also by university students [10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21]; for example those relating to the concept of field and its representation
by lines of force, the difference between field and force, the connection between
field and its sources, the concept of the field’s superposition and the interpretation
of mathematical formulas, the application of the third principle of dynamics, the
motion of the field’s characteristic particles in the field itself.

In this paper we present a critical overview of the learning problems related to
the concept of field, which have been pointed out in literature. These problems,
together with the analysis of the fundamental principles of the concept of field,
both on the historical and on the formal level, allow us to consider the relationship
between science and mathematics and to discuss the meaning of the concept of
field, putting in correlation the knowledge problems with the conceptual aspects.
Here we take into consideration only static fields; however, the learning difficulties
and problems students encounter and that we analyse concerning the field concept
foundations, are therefore important also when considering dynamic situations
(electromagnetic field).

2 Learning problems related to the concept of field

In this work we select some of the main problems and difficulties students en-
counter when learning the concept of field, which have already been pointed out
in literature. This review, concerning only static fields, is the base for future re-
searches on the construction of learning proposals for teaching and learning the
field as a unifying concept in static and dynamic contexts, that can be proposed
from primary school to secondary and university level.

2.1 THE ROLE OF ACTION AT A DISTANCE IN OPPOSITION TO THE
CONCEPT OF FIELD AS A MODIFICATION OF SPACE POINTS

The explanation of interaction as action at a distance has always been problematic,
either on historical level [1, 2, 3] or common sense one [16, 23]. The action at a
distance concept implies some presuppositions that causes learning difficulties in
the comprehension of field concept. These presuppositions, as some researchers
pointed out [23] in their studies with pupils of 9-18 age years old, are: the idea
that the interaction is instantaneous, the need for a connection between the objects
interacting at a distance (many pupils expressed a need for air as a conducting
medium for magnetic and gravitational attraction [16, 23]), the need for a medium
for the transmission of interaction, how various forces support and focus each
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other, and the idea of the field’s action as a limited region of space. Bar [23, 24]
analyzed children’s conceptions about “gravity” and found that they considered
the atmosphere as the limit of the Earth’s gravitational attraction; while Borges’
and Gilbert’s studies [15] reveal one of the models of magnetism as a “cloud” or a
“finite region of influence”.

On the other hand a completely different lay-out is to consider the different
phenomenologies, interpreted up to now in terms of action at a distance, in a
unifying framework where the concept of field acts as a cognitive organizer. The
analysis of difficulties of students in learning the concept of field, have been the
bases for some proposals [17, 18, 25, 26] for the introduction of this concept in Sec-
ondary Education and High School. The purpose of these proposals is to overcome
some learning problems, as:

1) the students’ idea of field as a limited space region or a volume;

2) the students’ identification of the field with the force and not with a physical
entity and a modification of space which allow interactions;

3) the students’ difficulty in understanding the differences between Newtonian
conception of interactions and the conception of interaction described by
fields.

2.2 GRAPHIC REPRESENTATIONS OF A FIELD AND THE ROLE OF
FIELD LINES

Here are some learning problems related to field representation by field lines [13,
14, 27]:

• Interpretation of field representation by field lines [13, 15, 27]

• Objectualization of field lines [13, 15, 27]

• Difficulties to recognize differences and to integrate alternative representa-
tions of fields (field lines, equipotential surfaces. . . ) [28, 29]

• Interpretation of the representation of objects in a field and situations in-
volving fields.

The concept of field and field lines are sources of confusion among students
even at university level. Tornkvist, Pettersson and Transtromer in a research on
the electrostatic field [13] have shown that university students dont treat field lines
using arguments in terms of mathematical concepts (uniqueness and continuity,
proportionality and isomorphic mapping). In fact, students often consider field
lines as isolated entities in the Euclidean space, not as a set of curves representing
a vectorial property of that space; finally they don’t fully understand the hier-
archical sequence between the concepts, for instance: charge geometry, field line,
force vector, velocity vector, trajectory (fig.1). The authors suggest that this con-
fusion by representation is, at least partly, the cause of the well-known conceptions
students have on the concept of force, reported by Johansson and Viennot [10].
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Figure 1. From [13]

Some other studies [29] on the graphical representation of electric and magnetic
fields, suggest to not limit to field lines but also to draw the orthogonal equipo-
tential surfaces. The authors believe that in such a field diagram it is possible
not only to clearly distinguish the distribution of the “flux sources”, but also that
of the “circulation sources”. Maxwell already used lines of force and “level sur-
faces” in all his graphical representations of fields, with and without circulation
[5] (figure 2).

In the case of the gravitational field there are some studies that investigate the
way pupils envisage the Earth, its shape and its relationship with the direction
of the gravitational field [9, 23, 24, 30, 31, 32, 33, 34]. In the 80’s Nussbaum
[30, 31] made a first classification of children’s ideas about Earth, finding three
essential elements: the Earth’s shape, the feature of the sky and the space, and
the direction of falling objects from different locations of the Earth. We found this
type of classification in Vosniadou’s studies about conceptual change and teaching
of science [32, 33], where she classified Mental models of the Earth. For the
author (Vosniadou) the representation of Earth as flat is based on the assumption
that the Earth is a physical body, and children must understand that Earth is
an “astronomical” rather than a “physical object”. In particular she observes
that in the area of astronomy students understand the spherical shape of the
Earth only after they have acquired an elementary notion of gravity; and that it
seems particularly important to teach children something about gravity in order
to understand how people can live on a spherical, rotating Earth.

On the other hand, Arnold [34] investigates the development of children’s con-
cept of the Earth and the direction of the gravitational field, and the relationship
between the development sequence of children’s drawings of the Earth’s shape and
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Figure 2. Maxwell’s diagram of the superposition of the magnetic field of a linear current and a
homogeneous magnetic field, in [5] quoted by [29]

the quality of their drawings of human figures.

2.3 THE FIELD AND ITS SOURCES: THE NATURE OF FIELD SOURCES;
FIELD SUPERPOSITION

Even at university level, students don’t identify correctly magnetic field sources,
and most of them have difficulties in the distinction between electrostatic and mag-
netic interaction, i.e. they consider an electrostatic charge as a source of magnetic
field [20, 35]. Students from 13 to 20 years old identify the magnet as a source
of magnetic field, and motivate it considering its magnetic nature; but they think
that the objects interact differently with it because of the difference of their elec-
trostatic charge [35]. Borges Gilbert has investigated the ideas of students from
15 to 18 years old about the sources of the magnetic field and its action on objects
[15]; they classify the answers in five categories: the models of magnetism.

Viennot and Rainson, while investigating university students’ reasoning on elec-
trostatics identify two main problems: “field only if mobility” and “cause in the
formula” [11, 12]. The first one means that students have difficulty in accepting the
existence of an electric field in a medium where charges are motionless. Students
are not able to understand the different behaviours of conductors and insulators
[11, 36] and to recognize the possible presence of an electric field in insulators. The
second one (“cause in the formula”) is a result of a questionnaire on Gauss’s The-
orem [12] and consists in ignoring the sources of the field that are not represented
by their symbol in the formula which expresses the field. In these researches the
authors describe a teaching sequence for the superposition of electric fields, which
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Figure 3. From reference [19, 20]

is a prerequisite for a basic understanding of electrostatics and for a unified view
of electrostatics and electric circuits that can be fostered by teaching strategies,
which emphasize causal aspects and transient phases. The authors suggest that
the principle of field superposition is not obvious to students, and that it is useful
to work on it in static situations before analysing electric circuits.

2.4 THE DYNAMICS OF INTERACTIONS MEDIATED BY A FIELD

Researches show that university students do not have a complete comprehension
of the following:

• the objects on which a magnetic field can act, for example they think that
a magnetic field can interact with electrostatic charges and can move them
[19, 20] ( Fig.3)

• the application of the third Dynamics Law and its applicability in contexts
other than the mechanics one.

At every level from primary school [23, 24] to university [14, 19] students are
not able to recognize that interaction is reciprocal in the different fields: the
gravitational one [16, 23, 24, 37, 38], the electric one [18, 19, 25], the magnetic
and electromagnetic one [14, 19, 20]. Most of them consider the force only in one
direction: this shows the importance to teach force concept not as a cause that
produces an effect but as an interaction (reciprocal). The motion of the field’s
characteristic particles in the field itself implies learning problems on:

• the recognition of the role of initial conditions when the particle is moving
in a field,

• the distinction between trajectories of the particles and field lines [13, 14,
18, 20] (Fig.4)

Other studies [12, 20] reveal that at university level students have some learning
problems related to the application of the magnetic force law: F = qv × B, due
mostly, for the authors, to the incomprehension of the vectorial product.



F. Bradamante, M. Michelini, A. Stefanel 375

Figure 4. From reference [13]

2.5 CORRELATION BETWEEN GRAVITY AND MAGNETISM IN
STUDENTS’ CONCEPTIONS

Among the difficulties pointed out in research literature concerning these two types
of interaction, in the last twenty years several studies [16, 23, 24, 34, 37, 38] have
investigated children’s commonsense ideas about gravity and its relationship with
magnetism, and reveal that students (9-18 years old) identify gravitational effects
with magnetic ones, considering the gravitational attraction as a magnetic one.
They also connect gravity and magnetism on the Earth, considering gravity as
necessary for a magnetic field on the Earth, a uniqueness of the Earth’s system; in
fact some children think that “the magnet cannot function without gravity”, while
others affirm that “electrostatic force cannot function without gravity”, founding
in that case a link between gravity and electrostatics.
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2.6 THE STUDENTS’ IDEAS OF MAGNETISM DESCRIBED BY ELECTRO-
STATIC EFFECTS

Many studies [15, 20, 21] reveal some difficulties in the comprehension of the
magnetic field at university or during the last years of secondary school and the
confusion of magnetism with electrostatics:

• the description of the magnetic field using electric field representations [20]

• models of magnetism in terms of electrostatic effects [15]

Some authors [23] consider that the “link between electricity and magnetism should
be emphasized in education, enabling pupils to understand Ampere’s explanation
of magnetism. This relates magnetism to micro-currents within particles of matter
and electromagnetic waves.”

3 Conclusions

The analysis of field concept foundations, on the historical and formal level, and
also the analysis, on the didactical level, of teaching-learning problems and schemes
of reasoning, allow us to consider on one hand the relationship between science and
mathematics, together with the role of formalism in giving interpretative models
of physics, and on the other hand it lays down the problem of the meaning of
this concept, both from the scientific point of view and from that of the students’
conceptions. The learning problems are related to knowledge problems of the
concept of field (from the mathematical and historical point of view), thus they
have to be considered together. For example, the problem of identification of
the field’s lines with something “real” (their objectualisation) can be found both
in students and in children, who give a physical meaning to the field lines, thus
getting very near to Faraday’s concept.

Can the field be considered as a property of space? Or should it be considered
as a field of force momentum, or as a system? Or does it allow us to define
the structured properties of a system? And finally, is it correct to observe all
fields in only one way? From the point of view of mathematics, one could answer
affirmatively, since scalar fields are a subclass of vectorial fields; however, from the
physical point of view the answer is more difficult and questionable.

In light of the above, it is necessary to interpret the ways in which students and
scientists consider this concept, and how they are associated to ideas and to the
capacity to represent the concept dealt with. In view of a cognitive research for
the development of a didactical proposal a question that could therefore be asked
is: which are the representations that are triggered when the concept of field is
explained by using an approach based on fluids’ mathematics? Which are instead
the ones when the approach adopted is based on differential geometry? What are
the children’s analogical representations according to the different approaches?

The problem here is that of knowledge and of the building of knowledge itself,
together with the didactic problem. If we limited ourselves to the present requests
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of secondary school (applicative science conception), we could adopt a conceptual
model of the nineteenth century. But if we want to give a unitary description of
physical phenomena and a cognitive organisation of the different parts of physics,
such as mechanics and electromagnetism, then it is necessary to adopt a unitary
model (scientific competence conception) finding out new modalities to introduce
in a simple way otherwise complex formalism.

Whatever choice is made from a didactical point of view, it is necessary to carry
it on rigorous way, both with regard to the choice of the model and with regard
to the formalization of the model itself, highlighting its qualities and limits.

This work has only taken into consideration the fundamental problems related
to static fields. It is a preliminary work for future researches concerning the
possible teaching proposals on field as a unitary and unifying concept, starting
from elementary school and carrying on until secondary school and university.
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ELASTIC WAVES: MENTAL MODELS AND TEACHING/
LEARNING SEQUENCES
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Abstract

In last years many research studies have pointed out relevant student diffi-
culties in understanding the physics of mechanical waves. Moreover, it has
been reported that these difficulties deal with some fundamental concepts
as the role of the medium in wave propagation, the superposition principle
and the mathematical description of waves involving the use of functions of
two variables. In the context of pre-service courses for teacher preparation
a teaching/learning (T/L) sequence based on using simple RTL experiments
and interactive simulation environments aimed to show the effect of medium
properties on the propagation speed of a wave pulse, has been experimented.
Here, preliminary results of investigations carried out with a 120 trainee-
teacher (TT) group are reported and discussed.

1 Introduction

According to experiences reported by many physics teachers, students are in trou-
ble whenever they have to face up to elastic wave phenomena. Investigations [1]
have shown that the difficulties students have with wave physics mainly involve the
mathematical description of wave phenomena, requesting the use of two-variables
functions, the concept and the application of the superposition principle, often
mistaken by a mere overlap of waveforms, and the role that has to be assigned to
the medium through which wave is propagating . This role is sometimes consid-
ered passive in the sense that the propagation is described as not directly affected
by the elastic properties of the medium.

381

© 2006 Springer. Printed in the Netherlands.

B.G. Sidharth, F. Honsell  and A. de Angelis. (eds.), Frontiers of Fundamental Physics, 381–384.



382 Elastic waves: Mental Models and T/L Sequences

Nevertheless, in real life, it is possible to find some examples which can be
considered a clear proof that probably people perceive what a wave is. To produce
the ”Ola” (the typical wave in a stadium), for example, the fans know well when
they have to stand up or sit down.

On the other hand, if we change the context, what happens is that students
seem to apply inappropriate cognitive resources to describe the event propaga-
tion [2].

Consider, for example, a pulse wave travelling along a slinky. Many research-
es [1] have shown that a large group of students, even at university level, describe
the pulse as if it were a moving body. Consequently, the medium is thought
as playing a passive role and the propagation properties are wrongly considered
as depending on the way the pulse has been generated. When we think of a
propagating pulse as a whole (for example a pulse travelling along an elastic rope),
we usually attribute to the pulse some object-like features (shape, width, speed
etc.). But, while in the ”Ola” case, the two levels of representation (on the whole
and in terms of individual agents) are well distinguishable and people recognize
that what is propagating is an event (standing up or sitting down), in the ”slinky”
case the switching between the two levels of representation is harder. Then, they
are unable to recognize that they’re dealing with the propagation of an event
and use cognitive and perceptual resources which are adequate for describing the
propagation of an object but inadequate to interpret the propagation of events.

Things get worse when we deal with sound waves because the difficulty of
discerning between event and particle propagation is hampered by the impercep-
tibility of the medium: the perception of phenomenon is auditory and not visual
and what is moving must be indirectly inferred.

In the next section, we discuss the results obtained in the preliminary phase
of the research study carried out with a group of 120 trainee-teachers attending
the teachers preparation school (SSIS) at University of Palermo concerning the
understanding of the role of medium in elastic waves propagation.

2 The Pre-Test

By means of a questionnaire, students have been requested to describe three dif-
ferent situations dealing with propagation of pulses through elastic media. The
situations were:

1. The free end of an horizontal elastic rope fixed on the wall is moved quickly
up and down. A travelling pulse is generated. What happens if the hand
generating the pulse is moved more rapidly?

2. The end of a two meters long metal bar is hit by an hammer. Two micro-
phones are positioned at the same distance from the hit point but one is near
the other end of the bar, while the second probe is far away from it. Which
probe does the sound pulse reach before?
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3. Consider a dust particle in front of a loudspeaker emitting a sound of a given
frequency. Describe the motion of the particle.

The analysis of pre-test results has shown that the students answered to the ques-
tionnaire by using two different mental models.

The first model may be defined as the Active Medium Model (AMM). In this
model the medium is thought as playing an active and essential role in the prop-
agation mechanisms.

Those who used this model gave correlated interpretations of the three problem-
atic situations of pre-test according to which the propagation speed is not affected
by the way the pulse is generated (question 1), the sound pulse propagates faster
along the metal bar because of the different elastic properties of metal and air
(question 2) and the dust particle (question 3) moves back and forth.

The second mental model has been called the Passive Medium Model (PMM).
Predictions made according this model have been based on the representation of
the medium as a passive element in the propagation. While the pulse is travelling,
it is subjected to the resistance exerted by the medium and depending on the
medium density, just like a body moving in a viscous medium.

Those who applied this model provided some interpretations like:

• The pulse travels faster if the hand is moved faster

• Concerning question 2, the sound pulse reaches before the microphone placed
far from the bar end because of resistance offered by the metal bar

• The dust particle in front of the loudspeaker moves forward or it keeps still.

All these wrong representations show that when the event-like nature of waves is
not recognized, object-like properties are attributed to the wave pulse.

3 The Teaching/Learning Sequences

The teaching/learning sequences have been aimed to stimulating the use of the
appropriate cognitive resources for description of wave phenomena and have been
based on two different kinds of tools:

• RTL experiments

• Simulation environments

The experiments concerned essentially the measurement of the sound speed in
different media (air and metals) with the aid of real time data logger.

Regarding the second kind of tools, we used the Interactive Physics environment
to build up several simulations of linear chains of identical masses interacting
through a linear nearest-neighborhood coupling. Students used such kind of tools
in a constructivistic context stimulating the learning by means of work-sheets and
adoption of a PEC (Prediction-Experiment-Comparison) cycle.
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The analysis of materials produced by the students (work-sheets, interviews
etc.) has shown the following two main results:

• The understanding of elastic wave phenomena is improved by choosing an ap-
proach based onto the representation of waves in terms of individual agents,
rather than based ”on the whole”

• The ”pulse” approach is more effective than the ”sinusoidal” one.

First result may be explained by considering that, when we observe a wave
phenomenon, its wave-like nature is recognizable not until we think of it in terms
of the behavior of the individual agents. In terms of conceptual resources, we
find that the appropriate resources for description of wave phenomena are mostly
stimulated by an approach based on individual agents representation.

On the other hand, the approach to waves based on the properties of sinusoidal
and/or other periodic waves focus on the periodicity of a wave and not on its
propagation. For this reason we think that, in order to explain the role of medium
in the propagation process, a pulse approach be more effective. We found that
students often associate the wave-like properties of a system to its shape. The term
wave evokes the waves propagating through the surface of liquids (the sea waves,
for example) and the sinusoidal approach fosters this kind of misunderstanding.

4 Conclusions

The starting point of the research study here described is based on the measured
difficulties the students show to have in interpreting elastic wave phenomena.

By now, we are still analyzing the students work-sheets together with other
materials and improving them on the basis of the feed-back.

However, the tutorials have met with measurable success and preliminary re-
sults obtained by examination of questionnaires, tests and interviews have shown
an improvement in understanding and in the ability to describe the correct physics.
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