CSENT ROP SERVI

2018

PHYSICS

(Major)

Paper: 1.1

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Mathematical Methods)

(Marks : 20)

1. (a) Find the Cartesian component of a vector \overrightarrow{C} which is perpendicular to the vector \overrightarrow{A} and vector \overrightarrow{B} , where

$$\vec{A} = 2\hat{i} - \hat{j} + \hat{k}$$
 and $\vec{B} = 3\hat{i} + 4\hat{j} - \hat{k}$

(b) Define vector field in a region of space.

Give an example of vector field.

1

- (a) Give the vector diagram representation of $\vec{A} \times \vec{B} = \vec{C}$ and $\vec{B} \times \vec{A} = \vec{D}$. Name a physical vector quantity which is the product of two vectors.
 - (b) What is the physical significance of divergence of a vector?
 - Find the projection of vector \overrightarrow{A} on vector \vec{B} , where $\vec{A} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{B} = \hat{i} - 3\hat{j} + 4\hat{k}.$
 - (d) A particle with position $\vec{r} = \cos \omega t \hat{i} + \sin \omega t \hat{j}$ moves with a constant angular velocity ω. The linear velocity \vec{v} of the particle is perpendicular to \vec{r} . Show that $\vec{r} \times \vec{v}$ is a constant vector.
- 3. Answer any two questions:

5×2=10

2

2

2

(a) If $\overline{V} = \overline{a} \cos \omega t + \overline{b} \sin \omega t$, find that

$$\overline{V} \times \frac{d\overline{V}}{dt} = \omega(\vec{a} \times \vec{b})$$

Here \vec{a} and \vec{b} are two constant non-linear vectors and ω is constant scalar.

- (b) If $r = (x^2 + u^2 + z^2)^{1/2}$, show that $\nabla^2 \left(\frac{1}{r} \right) = 0$
- Show that gradient of any scalar field $\phi(r)$ is irrotational and the curl of any vector field $\vec{V}(r)$ is solenoidal.

GROUP-B

(Mechanics)

(Marks: 40)

- What is fictitious force? example of it.
 - Is the centre of mass frame of reference an inertial frame? Explain.
 - A particle is moving horizontally at the equator. What is the value of Coriolis force acting on it in local coordinate system?
 - difference between the What laboratory frame of reference and centre of mass frame of reference?

(Turn Over)

1

1

1

1

A9/391

- (e) When is a force field said to be conservative? Give an example of conservative force.
- (f) Can we have equipotential surfaces of the gravitational field of a point mass? What is the value of work done if a mass moves on an equipotential surface?
- 5. (a) Two particles of mass 2 kg each are moving with velocity (2î +4ĵ) m/s and (5î+6ĵ) m/s respectively. Find the kinetic energy of the system relative to centre of mass.
 - (b) Show that force field given by $\vec{F} = x^2 yz\hat{i} xyz^2\hat{k} \text{ is non-conservative.}$
- **6.** Answer any *two* questions : $5\times 2=10$
 - (a) Show that whenever a body is acted upon by a number of forces such that the resultant is not zero, then the work done by the resultant force is equal to the change in the kinetic energy of the body.

- (b) Calculate the moment of inertia of a thin hollow sphere about its diameter.
- (c) Find the centre of mass of a uniform solid hemisphere of radius a.
- 7. Answer any two questions: $10\times2=20$
 - (a) (i) Distinguish between inertial mass and gravitational mass.
 - (ii) Obtain an expression for the gravitational potential and field due to a thin uniform spherical shell at an external point.
 - (iii) The radius of the earth is 6.637×10^6 m and its mean density is 5.57×10^3 kg/m³. Calculate earth surface potential. Given $G = 6.66 \times 10^{11}$ Nm² kg⁻². 2+5+3=10
 - (b) (i) What is the effect of Coriolis force on a particle falling freely under the action of gravity?

1

1

2

2

- (ii) Show that the angular accelerations of a particle in a fixed system and a rotating system are same.

 5+5=10
- (c) (i) Give a schematic diagram of elastic collision of two particles in centre of mass frame and laboratory frame.
 - (ii) Obtain a relation of scattering angles in these two frames of reference. 2+8=10
- (d) (i) Prove that a conservative force can be expressed as negative gradient of potential.
 - (ii) Two particles of masses m_1 and m_2 separated by infinite distance apart, attract each other according to the law of gravitation. Considering the particles to be initially at rest, show that their velocity of approach

$$v = \sqrt{\frac{2G(m_1 + m_2)}{a}}$$

where a is final separation of the two masses.

(iii) Find the force field associated with the potential energy $V = Ae^{\alpha(x+y+z)}$, where A and α are constants. 4+4+2=10

* * *