3 (Sem-2) CHM M 1

Story of the state of the state

2018

CHEMISTRY

(Major)

Paper: 2.1

(Physical Chemistry)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following as directed: 1×7=7

- (a) State True or False:

 "Gases can be liquefied by applying pressure at any temperature."
- (b) Find the critical volume of helium gas $(b = 0.01927 \text{ dm}^3 \text{ mol}^{-1}).$
- (c) If c₀ is the speed of light in vacuum and c is the speed of light in a medium, then what will be the expression for refractive index of the medium?

(d) Choose the correct answer:

At the same temperature, 0.01M solution of urea is isotonic with

- (i) 0.01 M NaCl solution
- (ii) 0.01 M MgCl₂ solution
- (iii) 0.01M glucose solution
- (iv) 0.01M sodium acetate solution
- (e) Choose the correct answer:

 If ΔT_b is the elevation in boiling point for an electrolytic solution and ΔT_b° is elevation of the boiling point for a non-electrolyte solution of the same concentration in the same solvent, then the van't Hoff factor is given by

(i)
$$\Delta T_b \times \Delta T_b^{\circ}$$

- (ii) $\Delta T_b^{\circ} / \Delta T_b$
- (iii) $\frac{\Delta T_b \Delta T_b^{\circ}}{2}$
- (iv) $\Delta T_b / \Delta T_b^{\circ}$
- (f) Define molar conductivity of an electrolytic solution.
- (g) Give the condition for maximum buffer capacity of a buffer solution.

2.	Answer	the	following	questions	•
----	--------	-----	-----------	-----------	---

2×4=8

- (a) For a monatomic ideal gas, show that the molar heat capacity at constant volume is 12.471 J K⁻¹ mol⁻¹.
- (b) A liquid P has half the surface tension of liquid Q. Again the density of liquid P is twice the density of liquid Q. If in a capillary tube P rises to 10·0 cm, what will be the rise of liquid Q in the same capillary tube when inserted identically at the same temperature?
- (c) Define ideal solutions. Give the values of ΔV and $\Delta_{mix}H$ for an ideal solution.
- (d) What are concentration cells? Give one suitable example of concentration cell with transference.

3. Answer the following questions (any three):

5×3=15

2

- (a) (i) Give the postulates of kinetic molecular theory of gases.
 - (ii) Give the limitations of van der Waals equation of state.

(b)	mo	at is 'degrees of freedom' of a lecule? Calculate the various degrees freedom of the following molecules:	
		2+3	3=5
	(i)	CO ₂	
	(ii)	H ₂ O	
(c)	(i)	Give the principle of the stalagmo- meter method of determination of surface tension of a liquid.	3
	(ii)	The numbers of drops of water and an organic liquid in drop number method from a stalagmometer are 100 and 200 respectively. Calculate the surface tension of the organic liquid at 298 K. Given that at 298 K, the surface tension of water is $7 \cdot 28 \times 10^{-3}$ N m ⁻¹ , density of water is $1 \cdot 0$ kg dm ⁻³ and density of	
	. =	the organic liquid is 0.9 kg dm^{-3} .	2
(d)	(i)	What is limiting molar conductivity? State the Kohlrausch law of the independent migration of ions.	2
	(ii)	The limiting molar conductances of Al ³⁺ and SO ₄ ²⁻ are 189 S cm ² mol ⁻¹	
		and $160 \text{ S cm}^2 \text{ mol}^{-1}$ respectively. Calculate the limiting molar conductance of $\text{Al}_2(\text{SO}_4)_3$.	3
		2100413.	•

	(e)	(i) Define degree of dissociation of a weak electrolyte.	1
		(ii) State Ostwald's dilution law. Explain the law with the help of a suitable example.	4
4.	(a)	Answer either [(i) and (ii)] or [(iii) and (iv)]:	
		(i) Derive the equation of corresponding states. Justify why this equation can be considered as a generalized equation of state for a gas.	5
		G	Ü
		(ii) Derive an expression for osmotic pressure of a dilute solution from thermodynamic consideration.	5
		(iii) What are transport properties of gas? Using kinetic theory, derive an expression for self-diffusion coefficient of a gas.	5
		(iv) Discuss the construction of a calomel electrode. Explain the reaction taking place in the electrode.	5
ł	(b)	Answer either [(i), (ii) and (iii)] or [(iv), (v) and (vi)]:	
		(i) Define the terms collision cross- section and mean free path.	3

(ii) What are liquid crystals? Mention the uses of liquid crystals.

(iii) A solution, composed of 0.05M of an organic acid and 0.5M of its sodium salt, gives a pH of 5.5 at 298 K. Calculate the dissociation constant of the acid.

3

(iv) Explain the terms activity and activity coefficient.

2

(v) Discuss briefly about the structure of liquid crystals.

(vi) What is ionic strength of an electrolytic solution? Calculate the ionic strength of 0.01 mol kg⁻¹ H₂SO₄ solution. 1+3=4

Answer either [(i) and (ii)] or [(iii) and (iv)]:

- (i) What is buffer capacity of a buffer solution? Explain the term buffer action with the help of a suitable example. 1+4=5
- (ii) Define electrode potential. the single Calculate electrode potential at 298 K of a half-cell for zinc electrode dipped in 0.01MZnSO₄ solution. Given

$$E_{\text{Zn}^{2+}|\text{Zn}}^{\circ} = -0.763 \text{ volt}$$

1+4=5

(iii) What are fuel cells? Write the electrode reactions of hydrogenoxygen fuel cell. Calculate the standard e.m.f. of hydrogen-oxygen fuel cell. Mention one use of fuel cell. 1+2+2+1=6

Explain briefly how equilibrium constant can be calculated from the measurement of standard electrode potential.

8A-6500/738

3 (Sem-2) CHM M 1