SET FOR DEPT.

2018

MATHEMATICS

(Major)

Paper: 5.1

(Real and Complex Analysis)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions:

 $1 \times 7 = 7$

(a) Evaluate:

$$\lim_{(x, y)\to(0, 0)} \frac{x^2y^2}{x^2y^2 + (x^2 - y^2)^2}$$

(b) Find the infimum of all upper sums of the function f(x) = 3x + 1 on the interval [1, 2].

- When is an improper integral said to be convergent?
- (d) Define uniform continuity of a function whose domain and codomain are set of complex numbers.
- Justify whether true of false: "If a complex valued function f(z) is analytic, then the real part of f(z) is harmonic."
- Verify whether the transformation $w = z^3$ is conformal or not at all points of the region |z| < 1.
- Write the physical effect of a region transformed from z-plane to w-plane under the transformation w = az + b; a, bare given complex constants.
- 2. Answer the following questions: $2 \times 4 = 8$
 - Show that the following function is discontinuous at the origin :

$$f(x, y) = \begin{cases} \frac{1}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

(b) Prove that for a bounded function f $\int_{a}^{b} f \, dx \le \int_{a}^{\bar{b}} f \, dx$

(Symbols have their usual meaning.)

(c) Test the convergence of $\int_0^1 \frac{dx}{\sqrt{1+x^3}}$

3. Answer any three parts:

- Prove that the cross ratio is an invariant quantity under bilinear transformation.
- (a) Prove that if f_x and f_y are both differentiable at a point (a, b) of the

domain of definition of a function f, then

$$f_{xy}(a, b) = f_{yx}(a, b)$$

(Symbols have their usual meaning.)

(b) Prove that a monotonic function on a closed interval is integrable therein.

(Continued)

5×3=15

(c) Show that the integral

$$\int_0^{\pi/2} \frac{\sin^m x}{x^n} dx$$

exists, iff n < m+1.

(d) Let f(z) = u + iv, z is a complex number, be analytic in a region R. Prove that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \ \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

(e) Let f(z), z is a complex number, be analytic inside and on the boundary C of a simply connected region R. Prove that

$$f'(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)^2} dz$$

- 4. Answer either (a) or (b):
 - (a) (i) Prove that

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2}$$

is invariant for change of rectangular axes.

(ii) If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, then show that

$$\frac{\partial (x, y, z)}{\partial (r, \theta, \phi)} = r^2 \sin \theta$$

5

5

5

5

5

(b) (i) Show that the function f defined as

$$f(x) = \frac{1}{2^n}$$

when $\frac{1}{2^{n+1}} < x \le \frac{1}{2^n}$, f(0) = 0 is integrable on [0,1].

(ii) If f and g are both differentiable on [a, b] and if f' and g' are both integrable on [a, b], then prove that

$$\int_{a}^{b} f(x) g'(x) dx = [f(x) g(x)]_{a}^{b} - \int_{a}^{b} g(x) f'(x) dx$$

- 5. Answer either (a) or (b):
 - (a) (i) Prove that if f is bounded and integrable on [a, b], then |f| is also bounded and integrable on [a, b] but the converse is not true.
 - (ii) Find a bilinear transformation that maps points z = 0, -i, -1 into w = i, 1, 0, respectively.

(Turn Over)

5

(b) (i) For what value of m and n is the integral

$$\int_0^1 x^{m-1} (1-x)^{n-1} \log x \, dx$$

convergent?

5

(ii) Show that if f and g are positive in [a, x] and

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = l$$

where *l* is a non-zero finite number, then the two integrals

$$\int_A^{\infty} f \, dx$$
 and $\int_a^{\infty} g \, dx$

converge or diverge together.

5

- 6. Answer either (a) or (b):
 - (a) (i) Prove that $f(z) = z^3$ is uniformly continuous but

$$f(z) = \frac{1}{z^3}$$

is not uniformly continuous in the region |z| < 1.

(Continued)

5

(ii) Find a function v such that f(z) = u + iv, z is a complex number, is analytic, where

$$u = x^2 - y^2 - 2xy - 2x + 3y$$
 5

5

- (i) Evaluate $\int_C \overline{z} dz$ along the curve C given by the line from z = 0 to z = 3i and then the line from z = 3i to z = 6 + 3i.
 - (ii) Evaluate

$$\oint_C \frac{z^2}{(z-1)(z-2)} dz$$

and $\oint_C \frac{e^{2z}}{(z+1)^4} dz$, where C is the circle |z|=3. 3+2=5
