3 (Sem-1/CBCS) CHE HC 2

2019

CHEMISTRY

(Honours)

Paper: CHE-HC-1026

(Physical Chemistry—I)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (a) From kinetic gas equation, show that PV = constant for an ideal gas at constant temperature.
 - (b) A gas can be liquefied, when
 - (i) $T > T_c$; $P = P_c$
 - (ii) $T < T_c$; $P < P_c$
 - (iii) $T < T_c$; $P > P_c$
 - (iv) $T = T_c$; $P < P_c$

(Choose the correct option)

- (c) Define vapour pressure of a liquid.
- (d) In a cubic crystal, there are C_4 axes of symmetry, C_3 axes of symmetry and six C_2 axes of symmetry.

(Fill in the blanks)

- (e) Explain why non-stoichiometric form of NaCl is yellow in colour.
- (f) Explain why pH of 1×10^{-8} mol dm⁻³ hydrochloric acid solution is not 8.
- (g) An aqueous solution of Na₂CO₃ is basic. Explain.
- 2. Answer the following questions: 2×4=8
 - (a) Define mean free path of a gas. How does mean free path of a gas vary with temperature and pressure?
 - (b) Give a qualitative idea about the structure of water.
 - (c) State the symmetry elements present in the following molecules:

 $H_2O; C_6H_6$

(d) The pH value of a solution containing equimolar concentrations of a weak acid and its salt is 5.0. Calculate the K_a value of the weak acid.

3. Answer any *three* of the following questions: $5 \times 3 = 15$

- (a) Derive the van der Waals' equation for a gas. Explain why van der Waals' equation cannot be considered as a generalized equation of state for real gases.
- (b) What is critical state of a gas? Derive the expressions for critical constants in terms of the van der Waals' constants.
- (c) Derive the Bragg's equation. In an experiment on a crystal using X-rays of wavelength 10⁻¹⁰ m, the value of angle of incidence for the first-order reflection was found to be 30°. Calculate the interplanar distance of the crystal.
- (d) For a weak monobasic acid, show that the degree of ionization at a given temperature is inversely proportional to the square root of the initial concentration of the acid. Give the expressions for dissociation constants of carbonic acid.

(e) Define solubility product of a sparingly soluble salt solution. Give the conditions for precipitation in terms of solubility product. 50 mL of $0.01 \text{ mol dm}^{-3} \text{ AgNO}_3$ solution is mixed with 50 mL of $0.001 \text{ mol dm}^{-3}$ aqueous NaCl solution. Predict whether AgCl will be precipitated or not. Given $K_{\rm sp}({\rm AgCl}) = 1.7 \times 10^{-10}$.

- **4.** (a) Answer either [(i) and (ii)] or [(iii), (iv) and (v)]:
 - (i) Give the postulates of kinetic molecular model of a gas. On the basis of these postulates, derive the kinetic gas equation.

 3+4=7
 - (ii) Two flasks A and B have equal volumes. Flask A contain H₂ gas at 300 K, while flask B contains equal mass of C₂H₆ gas at 900 K. If both the gases behave ideally, answer the following:

In which flask the molecules will have higher average speed and how many times than the average speed of the other?

(iii)	Derive an expression for root-mean- square speed of gas molecules from				
	the	expression	for	Maxw	ell
	distr	ibution of mo	olecular	speeds	of
	the s	ras.			

- (iv) Show that root-mean-square speed of hydrogen gas is four times that of oxygen gas at the same temperature.
- (v) Derive an expression for reduced equation of state for any substance.

 State the law of corresponding states.

 3+1=4
- (b) Answer either [(i), (ii) and (iii)] or [(iv), (v) and (vi)]:
 - (i) How does viscosity of gas differ from that of liquid?
 - (ii) Describe a method with theory commonly used for the measurement of viscosity of a liquid.
 - (iii) What are liquid crystals? Give the structural difference between smectic and nematic liquid crystals.

 Give two applications of liquid crystals.

 1+2+1=4
 - (iv) Define the terms—symmetry element, plane of symmetry and centre of symmetry.

20A/596

(Turn Over)

3

3

2

3

(v) What are Bravais lattices? How can the following crystal systems be characterized?

Cubic; orthorhombic

Give one example each of these two crystal systems.

- (vi) What are Schottky and Frenkel defects? Give example of each of these two defects.
- Answer either [(i), (ii) and (iii)] or [(iv), (v) and (vi)]:
 - (i) Define pH of a solution. Give the limitations of pH scale. Calculate pH of a solution obtained by mixing 50 mL 0·1 mol dm⁻³ HCl solution with 50 mL 0.2 mol dm⁻³ NaOH solution at 298 K.
 - (ii) Discuss briefly about the following: Applications buffers of qualitative analysis of salt sample.
 - (iii) Obtain an expression for hydrolysis constant for the hydrolysis of CH3COONH4 salt.
 - (iv) What are acid-base indicators? Give examples. Discuss briefly the theory of acid-base Ostwald's indicators. 1+1+3=5

(v) State with reasons, what indicators you would choose for the following titrations:

> NaOH vs. CH3COOH; Na₂CO₃ vs. HCl

3

(vi) Calculate the solubility of Mg (OH)2 in pure water at 298 K. Given K_{sp} for Mg (OH)₂ at 298 K is 1.20×10⁻¹¹.

* * *

3

3