

2019

CHEMISTRY

(Major)

Paper: 5.1

(Quantum Chemistry)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

Symbols signify their usual meanings

1. Answer any seven of the following in brief:

 $1 \times 7 = 7$

- (a) Write the postulate of quantum mechanics regarding the expectation value of a physical quantity of a system.
- (b) Find the expression for the Hamiltonian operator for a particle of mass m with potential energy V. Consider only x-dimension.

- (c) The state function Ψ takes on only real values. State True or False.
- (d) The normalization condition is $\int \psi^2 d\tau = 1$. State what this condition actually means.
- (e) Write the spin orbital for ground state H-atom.
- (f) State why the molecular orbitals of a heteronuclear diatomic molecule cannot be classified as g or u.
- (g) Write the term symbol for the ground state hydrogen molecule.
- (h) The energy of a free axis rigid rotator is given by $\frac{\hbar^2}{I}$. State how many folds this energy level will degenerate.
- (i) Give the schematic plot of ψ^2 against x of one-dimensional harmonic oscillator, if the value of the quantum number is zero.

- 2. Answer the following questions:
- $2 \times 4 = 8$
- (a) A function must be quadratically integrable in order to be well-behaved. State when a function is said to be quadratically integrable. Write why the function has to be quadratically integrable.
- (b) Show that e^{ikx} is an eigenfunction of the momentum operator, p_x .
- (c) Normalize the function $\cos \frac{\pi x}{a}$ over the interval $0 \le x \le a$.

Or

Out of $\frac{d}{dx}$ and taking square-root $(\sqrt{\ })$, explain which is linear operator and which is not.

(d) Write the expressions for the magnitude and the z-component of angular momentum. Find the magnitude of the orbital angular momentum of an electron in d-orbital.

Or

Find the magnitude of the spin angular momentum of an electron. Write how many orientations of the spin angular momentum will be observed in presence of a magnetic field applied in a particular direction.

- 3. (a) Write the approximate spatial function and the spin functions for the electrons of the ground state He-atom. State Pauli's antisymmetry principle and hence find the acceptable complete wave function of He-atom.
 - (b) Using Hückel method, find the π -bond energy of ethene. Hence explain how the formation of the π -molecular orbital stabilizes the molecule. 3+2=5
 - (c) Write the time-independent Schrödinger equation for H₂⁺. Indicate the kinetic energy terms and the potential energy terms present in the Hamiltonian of the equation. Using Born-Oppenheimer approximation, explain how the Schrödinger equation for H₂⁺ can be separated into two equations. 1+1+3=5

Or

Use the LCAO method to form the MO wave function of H_2^+ . Using this wave function, deduce the energy expressions for the bonding and the antibonding MOs. 1+4=5

- 4. Answer either (a), (b) and (c) or (d), (e) and (f):
 - (a) For a particle moving on a ring of radius r, the wave function is $\psi = Ne^{im\phi}$. Show that the possible values of m are $0, \pm 1, \pm 2, \dots$.

(b) For a particle in a one-dimensional box of length a, where potential energy is zero, solve the time-independent Schrödinger equation to get the value of the wave function and energy.

(c) The ground-state translational energy of a particle in a one-dimensional box of length 300 pm is 4 eV. Find the ground-state translational energy of the same particle, if it is moving in a cube of length 100 pm.

(d) Deduce Planck's radiation law in terms of wavelength in case of blackbody radiation.

(Turn Over)

3

3

(e) For a particle in one-dimensional box, where potential energy is zero, show that the average value of momentum is zero.

3

3

(Continued)

(f) Assume $b\sin\frac{n\pi x}{a}$ to be the wave function for a particle in one-dimensional box of length a, where V=0. Verify whether it satisfies the eigenvalue equation, $H\psi=E\psi$, or not.

5. Answer either (a), (b) and (c) or (d), (e) and (f):

- (a) Mention the quantum numbers on which the radial function and the angular function of H-atom depend. Discuss what information can be drawn from the plots of the radial function and the square of the radial function against the radial distance.

 1+3=4
- (b) Write in brief about the Russell-Saunders coupling of angular momentum. Write the term symbol for $3s^1$ electron. 2+1=3
- (c) Show that the maximum probability of finding the electron of the ground state H-atom is at $r = a_0$.

(d)	Write	a	short	note	on	Stern-Gerlach
	experiment.					

- (e) Deduce an expression for the radial distribution function for non-s state. 3
- (f) Calculate the average value of the radial distance of the electron from the nucleus of the H-atom in ground state.

6. Answer either (a) and (b) or (c) and (d):

wave function for the bonding in H_2 : $\psi = C_1 1 s_A(1) 1 s_B(2) + C_2 1 s_A(2) 1 s_B(1)$ Explain why this wave function is preferred to the MO wave function of H_2 . Write how this wave function is an improvement over the MO wave function

(a) Heitler and London used the following

b) Using the energy expression of the bonding MO of H_2^+ , write how the potential energy diagram is constructed.

Also write what information you can draw from this diagram. 2+2=4

3+3=6

4

3

of Ho.

- (c) Using the energy expressions, find the normalized MO wave functions of H₂⁺.
 Give the schematic plots of the square of the wave functions against internuclear distance. State what information can be drawn from these plots.
- (d) The energies of the π -MOs of benzene, according to Hückel method, are $\alpha+2\beta$, $\alpha+\beta$, $\alpha-\beta$ and $\alpha-2\beta$. Here each of the energy levels $\alpha+\beta$ and $\alpha-\beta$ is doubly degenerate. Using this result, explain how the formation of delocalized π -MOs stabilizes the molecule.

* * *

Standard integral : $\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$

4