2019

MATHEMATICS

(Major)

Paper: 6.2

(Numerical Analysis)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Answer the following questions: $1 \times 7 = 7$
 - (a) If x = 2.536, find the absolute and the relative errors if x is truncated to two-decimal digits.
 - (b) Define 'truncation' error.
 - (c) Write the following numbers correct up to four significant figures:

0.00408, 0.10254

- (d) Evaluate $\Delta^2 \left(\frac{1}{x-1} \right)$, taking h = 1.
- (e) Show that $\Delta \cdot \nabla \equiv \Delta \nabla$.
- (f) State Lagrange's interpolation formula for (n+1) unequally spaced arguments.
- (g) Write Simpson's one-third rule in numerical integration.
- 2. Answer the following questions: 2×4=8
 - (a) Find the number of significant figures in 1.8921 given its relative error as 0.1×10^{-2} .
 - (b) Prove that

$$\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$$

(c) Write the proper numerical differentiation formula to find the first derivative of a function f(x) at a point x near the middle of a given set of tabulated values.

(Continued)

- (d) Write a short note on numerical integration.
- **3.** Answer the following questions: $5 \times 3 = 15$
 - (a) If $\Delta x = 0.005$, $\Delta y = 0.001$ be the absolute errors in x = 2.11 and y = 4.15, find the relative error in the computation of x + y.
 - (b) Use the method of separation of symbols to prove the following identity:

$$u_0 - u_1 + u_2 - \dots = \frac{1}{2}u_0 - \frac{1}{4}\Delta u_0 + \frac{1}{8}\Delta^2 u_0 - \dots$$

Or

Find the missing entry in the following table:

x	0	1	2	3	4
y_x	1	3	9	ALIEN STEEN	81

(c) Find the cubic polynomial corresponding to the following data and hence evaluate $f(2\cdot 4)$:

x	0	1	2	3	4
f(x)	1	2	1	10	41

horizonam un esta Oriona la estada (S)

Prove that the nth order divided differences of a polynomial of degree n in x are constants.

- 4. Answer any one part:
 - (a) (i) Apply Gauss's forward formula to find the value of u_9 , if $u_0 = 14$, $u_4 = 24$, $u_8 = 32$, $u_{12} = 35$, $u_{16} = 40$.
 - (ii) From the following data, compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1:

х	1	2	3	4	5	6
y	1	8	27	64	125	216

5+5=10

(b) (i) From the following table, find the value of y when x = 1.62, using Stirling's formula:

x	1.3	1.4	1.5	1.6
y = f(x)	0.26236	0.33647	0.40547	0.47000
x	1.7	1.8	1.9	
y = f(x)	0.53063	0.58779	0.64185	

- (ii) Calculate the value of $\int_0^1 \frac{x}{1+x} dx$ correct up to three significant figures taking six intervals, using the trapezoidal rule. 5+5=10
- 5. Answer any one part :
 - (a) (i) A rod is rotating in a plane about one of its ends. If the following table gives the angle θ (in radians) through which the rod has turned for different values of time t (in seconds), find its angular velocity at t = 7 sec:

t (in seconds)						
θ (in radians)	0.0	0.12	0.48	1.10	2.0	3.20

(ii) Find the maximum and minimum values of y from the following data:

x	0	1	2	5
y	2	3	12	147

5+5=10

(b) (i) The velocity v of a particle moving in a straight line covering a distance x in time t are given by the following table :

x	0	10	20	30	40
υ	45	60	65	54	42

Find the time taken to traverse the distance of 40 units.

- (ii) Find the value of $\int_0^{0.6} e^x dx$ by Simpson's $\frac{1}{3}$ rd rule, dividing the range into six equal parts. 5+5=10
- 6. Answer any one part:
 - (a) (i) Give the geometrical interpretation of Newton-Raphson method.
 - (ii) Find the root of $\tan x + x = 0$, using bisection method, lying between 2 and 2·1. (Perform five iterations) 5+5=10

- (b) (i) Find a negative root of the equation $x^3 - \sin x + 1 = 0$ correct to three decimal places, using Newton-Raphson method.
 - (ii) Derive the rate of convergence of Newton-Raphson method. 5+5=10

* * *