Total number of printed pages-8

Lib. Colt 1000

3 (Sem-5/CBCS) MAT HC 1

2021

(Held in 2022)

MATHEMATICS

(Honours)

Paper: MAT-HC-5016

(Riemann Integration and Metric Spaces)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 10 = 10$
 - (a) Describe an open ball in the discrete metric space.
 - (b) Find the derived set of the sets (0,1] and [0,1].
 - (c) A subset B of a metric space (X, d) is open if and only if
 - (i) $B = \overline{B}$
 - (ii) $B = B^{\circ}$
 - (iii) $B \neq \overline{B}$
 - (iv) $B \neq B^{\circ}$

(Choose the correct one)

Contd.

(d) Which of the following is false?

(i)
$$\phi^o = \phi$$
, $X^o = X$

(ii)
$$A \subseteq B \Rightarrow A^{\circ} \subseteq B^{\circ}$$

(iii)
$$(A \cap B)^o = A^o \cap B^o$$

(iv)
$$(A \cup B)^o = A^o \cup B^o$$

where A, B are subsets of a metric space (X, d). (Choose the false one)

(e) The closure of the subset

$$F = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\}$$
 of the real line \mathbb{R} is

- (i) ¢
- (ii) F
- *(iii)* F∪{0}
- (iv) $F-\{0\}$

(Choose the correct one)

(f) In a metric space an arbitrary union of closed sets need not be closed. Justify it with an example. (g) If A is a subset of a metric space (X, d), then which one is true?

(i)
$$d(A) = d(\overline{A})$$

(ii)
$$d(A) \neq d(\overline{A})$$

(iii)
$$d(A) > d(\overline{A})$$

(iv)
$$d(A) < d(\overline{A})$$

(Choose the true one)

(h) When is an improper Riemann integral said to be convergent?

(i) Evaluate $\int_{0}^{\infty} e^{-x} dx$ if it exists

(i) Show that
$$\Gamma(1)=1$$

2. Answer the following questions: 2×5=10

(a) Let F be a subset of a metric space (X, d). Prove that the set of limit points of F is a closed subset of (X, d).

(b) If F_1 and F_2 are two subsets of a metric space (X, d), then $\overline{F_1 \cap F_2} = \overline{F_1} \cap \overline{F_2}$. Justify whether it is false or true.

- (c) Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \to Y$. If for all subsets A of X, $f(\overline{A}) \subseteq \overline{f(A)}$, then show that f is continuous on X.
- (d) Let $f:[a,b] \to \mathbb{R}$ be integrable. Show that |f| is integrable.
- (e) Show that the function $f:[a,b] \to \mathbb{R}$ defined by f(x)=c for all $x \in [a,b]$ is integrable with its integral c(b-a).
- 3. Answer any four parts: 5×4=20
 - (a) Define a complete metric space. Show that the metric space $X = \mathbb{R}^n$ with the metric given by

$$d_p(x,y) = \left(\sum |x_i - y_i|^p\right)^{\frac{1}{p}}, p \ge 1$$

where $x = (x_1, x_2, ..., x_n)$ and

 $y = (y_1, y_2, ..., y_n)$ are in \mathbb{R}^n , is a complete metric space. 1+4=5

- (b) Let (X, d_X) and (Y, d_Y) be metric spaces. Prove that a mapping $f: X \to Y$ is continuous on X if and only if $f^{-1}(G)$ is open in X for all open subsets G of Y.
- (c) Prove that if the metric space (X, d) is disconnected, then there exists a continuous mapping of (X, d) onto the discrete two-element space (X_0, d_0) .
- (d) Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Prove that f is integrable.
- (e) Discuss the convergence of the integral $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ for various values of p. 5
- (f) Show that for a > -1,

$$S_n = \frac{1^n + 2^n + \dots + n^n}{n^{1+a}} \to \frac{1}{1+a}.$$
 5

- 4. Answer **any four** parts: $10\times4=40$
 - (a) (i) Let (X,d) be a metric space. Define $d: X \times X \to \mathbb{R}$ by $d'(x,y) = \frac{d(x,y)}{1+d(x,u)}$ for all

 $x, y \in X$. Prove that d' is a metric on X.

Also show that d and d' are equivalent metrices on X.

4+2=6

- (ii) Prove that a convergent sequence in a metric space is a Cauchy sequence.
- (b) (i) Let (X, d) be a metric space and F be a subset of X. Prove that F is closed in X if and only if F^c is open.
 - (ii) If (Y, d_Y) is a subspace of a metric space (X, d), then show that a subset Z of Y is open in Y if and only if there exists an open set $G \subseteq X$ such that $Z = G \cap Y$.

5

- (c) Prove that a metric space (X, d) is complete if and only if for every nested sequence $\{F_n\}_{n\geq 1}$ of non-empty closed subsets of X such that $d(F_n) \to 0$ as $n \to \infty$, the intersection $\bigcap_{n=1}^{\infty} F_n$ contains one and only one point.
- (d) (i) Prove that in a metric space (X, d), each open ball is an open set.
 - (ii) Let (X, d_X) and (Y, d_Y) be metric spaces and $A \subseteq X$. Prove that a function $f: A \to Y$ is continuous at $a \in A$ if and only if whenever a sequence $\{x_n\}$ in A converges to a, the sequence $\{f(x_n)\}$ converges to f(a).
- (e) (i) Define uniformly continuous mapping in a metric space. Give an example to show that a continuous mapping need not be uniformly continuous. 1+4=5

- (ii) Prove that the image of a Cauchy sequence under a uniformly continuous mapping is itself a Cauchy sequence.
- (f) Let (\mathbb{R}, d) be the space of real numbers with the usual metric. Prove that a subset $I \subseteq \mathbb{R}$ is connected if and only if I is an interval.
- (g) Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Show that f is integrable if and only if it is Riemann integrable.
- (h) (i) State and prove first fundamental theorem of calculus. Using it show that

$$\int_0^a f(x)dx = \frac{a^4}{4} \text{ for } f(x) = x^3.$$

1+3+2=6

(ii) Let f be continuous on [a, b]. Prove that there exists $c \in [a, b]$

such that
$$\frac{1}{b-a}\int_{a}^{b}f(x)dx = f(c)$$
.

4

- (ii) Prove that the image of a Cauchy sequence under a uniformly continuous mapping is itself a Cauchy sequence.
- (f) Let (\mathbb{R}, d) be the space of real numbers with the usual metric. Prove that a subset $I \subseteq \mathbb{R}$ is connected if and only if I is an interval.
- (g) Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Show that f is integrable if and only if it is Riemann integrable.
- (h) (i) State and prove first fundamental theorem of calculus. Using it show that

$$\int_{0}^{a} f(x)dx = \frac{a^{4}}{4} \text{ for } f(x) = x^{3}.$$

1+3+2=6

(ii) Let f be continuous on [a, b]. Prove that there exists $c \in [a, b]$ such that $\frac{1}{b-a} \int_{a}^{b} f(x) dx = f(c)$.

4